Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
PROCESS FOR IMMOBILISING ARSENIC WASTE
Document Type and Number:
WIPO Patent Application WO/2000/078402
Kind Code:
A1
Abstract:
The invention provides a process for removing and immobilising arsenic from an arsenic-containing waste. It comprises oxidising the arsenic to pentavalent arsenic in an aqueous medium, contacting the pentavalent arsenic with trivalent iron to form an insoluble iron-arsenic compound and separating precipitated iron-arsenic compound from the aqueous medium. The oxidation of arsenic is effected using oxidising bacteria at a pH between 0.5 and 4 and at a temperature between 20 and 90 °C in the presence of a mineral catalyst such as pyrite.

Inventors:
RUITENBERG RENATE (NL)
BUISMAN CEES JAN NICO (NL)
Application Number:
PCT/NL2000/000434
Publication Date:
December 28, 2000
Filing Date:
June 22, 2000
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
PAQUES BIO SYST BV (NL)
RUITENBERG RENATE (NL)
BUISMAN CEES JAN NICO (NL)
International Classes:
A62D3/02; A62D3/33; A62D3/38; C12S5/00; A62D101/43; (IPC1-7): A62D3/00
Domestic Patent References:
WO1997005292A11997-02-13
Foreign References:
US4888293A1989-12-19
US4822413A1989-04-18
Other References:
DATABASE WPI Section Ch Week 198901, Derwent World Patents Index; Class D15, AN 1989-002553, XP002121037
DATABASE WPI Section Ch Week 199826, Derwent World Patents Index; Class D16, AN 1998-295491, XP002121038
Attorney, Agent or Firm:
Jorritsma, Ruurd (Nederlandsch Octrooibureau Scheveningseweg 82 P.O. Box 29720 LS The Hague, NL)
Download PDF:
Claims:
Claims
1. A process for removing and immobilising arsenic from an arseniccontaining waste comprising oxidising the arsenic to pentavalent arsenic in an aqueous medium, contacting the pentavalent arsenic with trivalent iron to form an insoluble ironarsenic compound and separating precipitated ironarsenic compound from the aqueous medium, characterised by oxidising the arsenic using oxidising bacteria at a pH between 0.5 and 4 and at a temperature between 20 and 85°C in the presence of a mineral catalyst and producing an ironarsenic compound having a molar Fe/As ratio of about 1: 1.
2. A process according to claim 1, characterised by producing the trivalent iron by oxidative dissolution of an iron source using oxidising bacteria.
3. A process according to claim 2, in which the production of trivalent iron is carried out separately from the oxidation of the arsenic.
4. A process according to claim 2 or 3, in which said iron source comprises pyrite (FeS2) or pyrrhotite (FeS) or a oxidation product thereof.
5. A process according to any one of claims 14, in which said trivalent iron is obtained by oxidation of iron scrap.
6. A process according to any one of claims 15, in which about 1 mole of trivalent iron is used per mole of arsenic.
7. A process according to any one of claims 16, in which said mineral catalyst is a sulphurcontaining catalyst such as pyrite (FeS2), chalcopyrite (CuFeS2) or molydenite (MoS2).
8. A process according to any one of claims 17, in which said insoluble iron arsenic compound is scorodite (FeAs04.2H20).
9. A process according to any one of claims 18, in which the oxidation of arsenic is carried out at a temperature between 30 and 45°C.
10. A process according to any one of claims 19, in which said oxidising bacteria comprise mesophilic bacteria of the species Thiobacillus ferrooxidans, T. thio oxidans and/or Leptospirillum ferrooxidans.
11. A process according to any one of claims 18, in which the oxidation of arsenic is carried out at a temperature between 45 and 65°C.
12. A process according to claim 11, in which said oxidising bacteria comprise thermophilic bacteria of the genera Acidomicrobium, Sulfobacillus and/or Thiobacillus.
13. A process according to any one of claims 18, in which the oxidation of arsenic is carried out at a temperature between 65 and 90°C.
14. A process according to claim 13, in which said oxidising bacteria comprise thermophilic bacteria of the genera Sulpholobus and/or Acidianus, in particular of the species S. acidocaldarius.
15. A process according to any one of claims 111, in which the oxidation of the arsenic is carried out in an airlift reactor.
Description:
Process for immobilising arsenic waste [0001] The present invention relates to a process for immobilising arsenic ions com- prising oxidising arsenic to pentavalent arsenic and supplying trivalent iron, and subsequently immobilising the pentavalent arsenic as an iron arsenate.

[0002] Arsenic is an important and unwanted by-product in many metallurgical processes. For example, copper ores contain a substantial amount of arsenic, which is undesired for health and environmental reasons and must therefore be separated from the copper metal and be safely disposed of. In pyrometallurgic processes, arsenic is usually separated from off-gas and converted to arsenic trioxide (As203). This trivalent arsenic compound is unstable, since arsenic is slowly oxidised to pentavalent arsenic.

Where there is no use for such arsenic trioxide, it should be carefully deposited so as to avoid leaching of arsenic to the aquatic environment.

[0003] A conventional method for separating and disposing arsenic form metallurgical process streams involves chemical oxidation of the arsenic-containing liquid, which also contains iron, in an oxygenated autoclave at about 90°C at pH 3-4. The pentavalent arsenic thus produced is then converted to a stable insoluble ferric arsenate typically having a molar Fe/As ratio of at least 4 (see e. g. G. B. Harris,"The Control and Disposal of Arsenic in Hydrometallurgical Systems", 24th Annual CIM Hydro- metallurgical Conference, Toronto, Ontario, August 20-21,1994). This chemical oxidation using autoclaves is expensive because of the use of expensive equipment and chemicals, and because of high training costs to avoid personal hazard.

[0004] US 4,888,293 discloses a process wherein a mixture of pyrite and arsenopyrite with a molar Fe/As ratio of about 4: 1 is treated with a mixed culture of Thiobacillus ferrooxidans, T. thiooxidans and Leptospirillum ferrooxidans resulting in a strongly acidic (pH 1.1) solution. This solution is neutralised and produces a precipitate containing iron arsenate and jarosite, having an Fe/As ratio in the order of 8.

[0005] A new process for the immobilisation of arsenic has been found, involving biological oxidation of arsenic to pentavalent arsenic as well as supply of trivalent iron, in particular by biological oxidation of scrap iron. This oxidation results in effective oxidative solubilisation of the metals followed by effective disposal of the arsenic. The process is defined in the appending claims.

[0006] The oxidation of trivalent arsenic in the presence of iron is carried out using suitable oxidising bacteria. In general, these bacteria assist in the oxidation of divalent

iron to trivalent iron using oxygen and acid (protons). Suitable bacteria are usually present in the raw materials (ores) from which the arsenic waste originates. Suitable bacteria can also be derived form other biological, aerobic waste treatment plants. The bacteria capable of oxidising iron and arsenic will normally spontaneously become dominant as a result of the process conditions which can be selected by the skilled person. The bacteria can be heterotrophic such as soil bacteria of the genera Pseudo- monas, Achromobacter, Bacillus (especially B. cereus) and Alcaligenes (especially A. faecalis). It is preferred, however, that the bacteria are autotrophic bacteria, as these do not need other carbon sources than carbon dioxide, which may be present in sufficient amounts in the waste to be treated, e. g. in the form of carbonates (FeCO3) or with the air supplied to the oxidation process. Suitable autotrophic bacteria for oxidising sulphur and/or iron species include mesophilic bacteria, in particular Thiobacillus species such as T. ferrooxidans and T. thiooxidans and Leptospirillum species including L. ferro- oxidans, moderately thermophilic bacteria, in particular Acidomicrobium, Sulfobacillus and Thiobacillus species and extremely thermophilic bacteria, in particular Sulpholobus and Acidianus species such as S. acidocaldarius. Mesophiles are typically active at temperatures from about 20°C to about 45°C, moderate thermophiles at about 45 to 65 °C and extreme thermophiles at between about 65 and 90°C.

[0007] The biological oxidation is carried out at a pH between 0.5 and 4, especially between 1 and 3, at a temperature (depending on the type of bacteria used) between ambient temperature and about 85°C or even up to 90°C. A process using mesophilic bacteria is preferably operated at 30 to 45°C, while a process using thermophilic bacteria is preferably performed at 50 to 80°C. Hyperthermophilic bacteria capable of activity between about 75 and 90°C, which can be isolated from hot pools and other hot water sources, can be used according to the invention at those high temperatures. The biological oxidation of arsenic usually requires the presence of a mineral catalyst, in particular a (semi-) noble metal or a metal or metal complex in the galvanic series from noble metals downwards to complexes comparable to pyrite-type minerals. The latter include pyrite, chalcopyrite and molybdenite. The catalyst should have a clean surface.

[0008] The reaction for oxidative arsenic trioxide dissolution by ferric ion can be represented by the following equation: As203 + 2 Fe2 (SO4) 3 + 5 H20 ~ 2 H3As04 + 4 FeS04 + 2 H2SO4

The ferric ion is regenerated by the bacteria using oxygen, so that the net reaction is conversion of As203 with oxygen and water to H3As04.

[0009] The trivalent iron necessary for producing the insoluble arsenic compound can be added as such, if an economic source of soluble trivalent iron is available. However, a suitable source of readily soluble trivalent iron is often not available, while a cheap source of iron may be present, especially at a mining site. A common source of iron is pyrite (FeS2) or pyrrhotite (FeS or Fe7Ss). Also oxidation products thereof, such as iron oxides, can be used. Most advantageously, the source of iron is iron scrap, which is usually available at mining sites and other sites where arsenic should be disposed, e. g. in the form of broken or unused equipment, rails, scaffolding or the like.

[0010] It is preferred then that the trivalent iron is produced by biological oxidative dissolution of the iron source, using the same bacteria as those assisting in the oxidation of arsenic. The oxidations can be performed simultaneously in the same reactor, but preferably, the generation of trivalent iron in solution is performed in a separate reactor.

In the former case, pyrite used for catalysing the arsenic oxidation can be used to provide iron for ferric arsenate precipitation as well.

[0011] The precipitation of arsenic in a stable form occurs with an excess of ferric ion resulting in a stable amorphous ferric arsenate. The stability was found to be satis- factory when the Fe/As molar ratio in the precipitate is greater than 4. For a 10 g/1 arsenic solution, the precipitation starts at about pH = 3. The following reaction may occur: 2 H3As04 + 4 Fe2 (SO4) 3 + 22 H2O- 2 FeAs04.3Fe (OH) 3.2H20 + 12 H2SO4 [0012] The overall reaction produces acid. However, the iron source may contain some acid-consuming gangue. Furthermore, the acid production can be reduced by using iron-bearing minerals with lower sulphur levels. When pyrrhotite is used instead of pyrite, the bio-oxidation of the iron-bearing mineral becomes acid-consuming rather than acid-producing.

[0013] A preferred option according to the invention is to precipitate the arsenic acid under carefully controlled conditions as crystalline scorodite (FeAs04.2H20; Fe/As = 1), which considerably reduces the iron requirement and hence the acid production. This requires a molar ratio of iron to arsenic of about 1: 1. Thus, the amount of iron added is adjusted such that this ratio is achieved in the precipitation reactor. Preferably between 0.9 and 1.8 mole of iron is used per mole of arsenic present in the arsenic-containing waste to be treated. The net reaction is than as follows:

2 H3As04 + Fe2 (SO4) 3 + 2 H20--+ 2 FeAs04. 2H20 + 3 H2SO4 When the iron dissolution is assumed to be the rate-limiting step, the kinetics of the overall process rises considerably when less iron is needed. The oxygen requirement will then go down, bringing down both the operational cost and the capital cost.

[0014] The precipitation of crystalline scorodite is favoured, although not necessary. It can take place at elevated temperatures (above 80°C) and at controlled pH (about 2-3, depending on concentrations). As thermophiles can be used for oxidising both the iron and the arsenic, the invention is also suitable for high-temperature applications.

[0015] The process of the invention can advantageously be carried out in an installation as depicted in the accompanying figure 1. According to this figure, the trivalent arsenic waste (e. g. As203) and the catalyst (e. g. pyrite) are introduced into a mixing tank 1. Means for adjusting the pH to between e. g. 1 and 3 can also be added to tank 1. The mixed liquid is transferred to airlift reactor 2, having an oxygen inlet 21, means for maintaining a vertical recirculation (cylinder) 22, and a plate separator 23 for separating the treated liquid from biomass. A second aerobic (airlift) reactor 3 is fed with an iron source (e. g. pyrite) and also has an oxygen inlet 31, an internal cylinder 32 and a separator 33. Nutrients, including e. g. phosphate and nitrate, may be added to both aerobic reactors 2 and 3. The effluents from reactor 2 and reactor 3 are conducted to a mixing tank 4. The lines between reactors 2 and 3, respectively, and tank 4 may be provided with a metering system 24 and 34, respectively, e. g. a redox indicator, connected to a flow regulator. The effluent of mixing tank 4 is fed to a precipitation tank 5, in which the pH is adjusted to about 4 (using e. g. CaCO3). Instead of distinct tanks 4 and 5, a single mixing/precipitation tank may be used. The solid/liquid mixture from tank 5 is separated in separator 6. The solid precipitate issued from separator 6 is dewatered further and can be deposited. The liquid issuing form separator 6 can be discharged or can be reused e. g. for adjusting the pH in the process.

[0016] Alternatively, the process of the invention can also be carried out in an installation as depicted in figure 2. Similar parts in figures 1 and 2 are referred to by the same numerals. According to this figure, the trivalent arsenic waste (e. g. dissolved arsenite), the catalyst (e. g. pyrite) and the iron source are introduced into the mixing tank 1. Both the oxidation of arsenic and the oxidative dissolution of iron are performed in airlift reactor 2. The further processing can be as described for the installation of figure 1.