Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
PROCESS FOR MANUFACTURE OF ORGANIC ESTERS OF STRONG ACIDS
Document Type and Number:
WIPO Patent Application WO/1991/017142
Kind Code:
A1
Abstract:
A method for preparing (R)Xm-pAp by reacting (R)Xm and MA in N-methylpyrrolidone and recovering the by-product MX as a precipitate.

Inventors:
NARAYANAN KOLAZI S (US)
TAYLOR PAUL D (US)
Application Number:
PCT/US1991/002717
Publication Date:
November 14, 1991
Filing Date:
April 19, 1991
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
ISP INVESTMENTS INC (US)
International Classes:
C07B61/00; C07C331/20; (IPC1-7): C07C331/00
Foreign References:
US4880894A1989-11-14
Download PDF:
Claims:
WHAT IS CLAIMED IS;
1. A method for the preparation of a compound having the formula (R)Xm_pAp characterized by dissolving a compound having the formula (R) m and a compound having the formula MA in Nmethylpyrrolidone, wherein: X is halide; R contains from 1 to 8 carbon atoms, can be substituted or unsubstituted, and is straight or branched chain alkyl, cycloaliphatic, aralkyl, alkylene, alkenyl, alkenylene, alkynyl or alkynylene with the proviso that X is not attached to a carbon atom having a double bond; A~ is a monovalent anion soft base selected from a halide other than X, 3CN", SH", S03H", R2P04", R2P03", PF6~, and [SP(Z) (0R1)2]~ wherein R1 is lower alkyl and Z is sulfur or oxygen; M is an alkali metal or Ntϊ^; m is an integer from 1 to 3 with the proviso that m is 1 or 2 when R has one carbon; and p is an integer from 1 to m; and heating the mixture at a temperature and for a time period sufficient to drive the reaction to conversion. 8 .
2. The method of claim 1 wherein the temperature is about 40 to 60°C.
3. The method of claim 1 wherein the heating is carried out for about 20 minutes to 18 hours.
4. The method of claim 1 wherein stoichiometric amounts of the Compounds I and II are used.
5. The method of claim 1 wherein the heating is carried out at a pressure of from about 1 to 51 atmospheres.
6. The method of claim 1 wherein Nalkylpyrrolidone, the alkyl portion of which contains 8 to 16 carbon atoms, or a polyol is used as a cosolvent.
7. The method of claim 8 wherein the polyol is propylene glycol, polypropylene or polyethylene diol.
Description:
- 1

PROCESS FOR MANUFACTURE OF ORGANIC ESTERS OF STRONG ACIDS

Compounds having the formula ( JX j ^ p p (hereinafter Compound III) as defined below can be prepared by the following reaction sequence:

I II III IV

wherein:

X is halide;

R contains from 1 to 8 carbon atoms, can be substituted or unsubstituted, and is straight or branched chain alkyl, cycloaliphatic, aralkyl, alkylene, alkenyl, alkenylene, alkynyl or alkynylene with the proviso that X is not attached to a carbon atom having a double bond;

A " is a monovalent anion soft base selected from a halide other than X, 3CN " , SH " , S0 3 H " ,

R P0 ~, R2PO 3 "" , PF 6 " , and

[SP(Z) (0R 1 ) 2 ]~ wherein R 1 is lower alkyl and Z is sulfur or oxygen;

M is an alkali metal or NHj; m is an integer from 1 to 3 with the proviso that m is 1 or 2 when R has one carbon; and p is an integer from 1 to m.

A soft base is an anion of a relatively large size and having a diffused charge. Soft bases include those having the formulas SCN " and [SP(Z) (OR 1 ) 2 . ~ • Lower alkyl is alkyl having from 1 to 4 carbon atoms.

The R group may be substituted with halide, nitro, cyano, and other conventional substituents which do not interfere with the reaction.

Typical of Compound III is methylene bisthiocyanate which is well-known for use limiting the growth and reproduction of microorganisms. It is particularly of use in the paper industry to prevent the growth of fungi, bacteria, and other microorganisms or enzymes produced by the growth.

Traditionally, this reaction has been carried out in aqueous solvent although other solvents such as cyclic aromatics have been used.

A major problem with the prior art process is that the by-product metal is a halide MX, e.g., sodium bromide, which is left in the mother liquor. This metal halide is a waste material since the compound (RJX^ p A p precipitates out and is formulated in a separate step from the synthesis. For example, when compound III is methylene bisthiocyanate prepared from CH 2 Br 2 or sodium or ammonium thiocyanate, the mother liquor, after separation of (RJX jjj . p A p contains about 45% of the metal halide, about 3% of reactant MA, and from 0.5-1% of (R)X m _ p A p . This is a hazardous waste material. The (R)X m _ p A p which is precipitated is then treated in an aqueous dispersion or a non-aqueous solvent, such as, dimethyl formamide, alcohols, and the like. The aqueous dispersion is undesirable because of its great instability resulting from sudden changes in temperature. It is desirable that it be maintained as a homogeneous solution for use.

The method herein for the one-step preparation of Compound III facilitates the handling of the by-product metal halide and provides the product in an immediately useable form without further formulation or treatment. More particularly, by reacting a halide of formula I and a metal compound of formula II in M-pyrol, the reaction

proceeds relatively rapidly to completion and the by-product metal halide precipitates from the solution. The product. Compound III, remains dissolved in the reaction solution. Because of the compatibility of M-pyrol with environmental systems. Compound III in solution may be used directly without further treatment. Moreover, the metal halide by-product is easily separated by precipitation and filtration and can be re-used.

The process of the present invention is carried out by mixing N-methylpyrrolidone with Compounds I and II at a temperature and for a period of time sufficient to complete the reaction. Completion of the reaction is evidenced by the disappearance of one of the reactants. Thereafter, the reaction mixture is cooled and filtered to remove the precipitated metal halide. The filtrate may be used directly, and, typically, would contain concentrations of Compound III of about 5 to 25% by weight. Conversions in the reaction are about 70 to 90%, based on the weight of starting halide (Compound I) . The recovery of the metal halide is about 80 to 90%. Of course, additional conventional surface active agents or other adjuvants can be added to the reaction solution, if desired.

The present process is advantageous inasmuch as a separate formulation step is not required and the expensive metal halide is recovered. Also, no water is required for the reaction and there is no need to displace any aqueous halide salt. This results in improved economics for the process. In addition, the reaction can be carried out at relatively low temperatures in the range from about 40 to 60°C. Preferably, the reaction is carried out at about 50°C. The time period for the reaction to go to completion can be from about 20 minutes to 24 hours depending on the temperature. The higher the temperature, the more rapid the reaction. The preferred time period is from about 20 minutes to 6 hours.

The reactants are normally added in essentially a stoichiometric ratio of about 1 mole of Compound I to 1 to 3 moles of Compound II. A ten to twenty percent excess of the materials may be used.

A catalyst is not needed since the solvent appears to have a catalytic effect. Normally, the amount of the N-methylpyrrolidone used is from about 1 to 5 times the weight of the reactants. Preferably, the amount of solvent used is equivalent to the combined weight of the alkyl dihalide and thiocyanate salt.

The following examples illustrate the invention:

EXAMPLE 1

A four-necked, 500 ml round-bottom flask fitted with a magnetic stirrer, thermometer, two water condensers, and a nitrogen gas inlet and outlet was charged with 50.63 grams of NaSCN (0.63 moles) and 100 grams of N-methyl-2-pyrrolidone (1 mole) . The mixture formed a pasty slurry and its temperature increased to about 50°C. then 45.15 grams (0.26 moles) of methylene dibromide was admixed to the slurry over a period of twenty minutes while the reaction mixture was maintained under nitrogen gas at about 53°C. The reaction mixture was maintained at this temperature for an additional 24 hours. After this time, practically all of the methylene dibromide had reacted as determined by gas chromatography.

A white precipitate settled to the bottom of the flask and this was separated by suction filtration. The precipitate was sodium bromide. The amount of sodium bromide produced and gas chromatography analysis of the filtrate confirmed that the yield of methylene dithiocyanate was 83%.

A portion of the filtrate (28 grams) was used to isolate the product. The isolation was achieved by adding water slowly to the filtrate. When six grams of water had been added, the methylene thiocyanate began to precipitate. After 35 grams of water had been added, the product was completely precipitated from solution. This product was separated and dried. It weighed 5.0 grams and melted at 102-104°C. Gas chromatography of the purified product in N-methylpyrrolidone showed 1 peak other than the solvent peak. lH nmr' and 13c nmr and infrared spectra were identical with that of a known pure sample of methylene bisthiocyanate. The product yield based on the total recovered methylene bisthiocyanate was 73%. The estimated purity of the product was 99+%. This cyanate was determined spectrophotometrically.

EXAMPLE 2

The same procedure of Example 1 was used. A reaction flask was charged with 16.40 grams of NaSCN (0.203 mole), 18.82 grams of CH 2 Br 2 (0.108 mole) and 100 grams N-methyl-2-pyrrolidone. The temperature rose to 39°C. from an initial 25°C. upon addition of the reagents. It took one hour for all the solids to dissolve while stirring with a mechanical stirrer. After a period of 72 hours standing at room temperature under N 2 with mild stirring, analysis of the reaction mixture showed 38% reaction completion of the reaction via ~SCN consumption as well as isolation of methylene bisthiocyanate from an aliquot of the reaction mixture.

EXAMPLE 3

Example 2 was repeated using 16.17 grams (0.1996 mole) of NaSCN, 17.50 grams of CH 2 Br 2 (0.1006 mole) and 99.6 grams of N-methylpyrrolidone. The temperature was maintained at 54 to 62°C. for a period of 5 hours. Analysis of the reaction mixture via GC analysis showed 8% of the total CH 2 Br remained and a yield of 61% of methylene bisthiocyanate. The ~SCN consumption was monitored by determination of ~SCN spectrophotometrically.