Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
A PROCESS FOR THE PREPARATION OF 1-(3-TRIFLUOROMETHYLPHENYL)-PROPAN-2-OL ENANTIOMERS
Document Type and Number:
WIPO Patent Application WO/2002/055724
Kind Code:
A1
Abstract:
A process for the preparation of 1-(3-trifluoromethylphenyl)-propan-2-ol enantiomersthrough enzymatic resolution by a lipase.

Inventors:
NICOLOSI GIOVANNI (IT)
MANGIAFICO SEBASTIANO (IT)
D ANTONA NICOLA (IT)
Application Number:
PCT/EP2002/000182
Publication Date:
July 18, 2002
Filing Date:
January 10, 2002
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
FIDIA RES SUD S P A (IT)
CONSIGLIO NAZIONALE RICERCHE (IT)
NICOLOSI GIOVANNI (IT)
MANGIAFICO SEBASTIANO (IT)
D ANTONA NICOLA (IT)
International Classes:
C12P7/22; C12P7/62; C12P41/00; (IPC1-7): C12P7/22; C12P7/62
Foreign References:
EP0441160A11991-08-14
Other References:
GARCA-URDIALES E ET AL: "Enzymatic one-pot resolution of two nucleophiles: alcohol and amine", TETRAHEDRON: ASYMMETRY, ELSEVIER SCIENCE PUBLISHERS, AMSTERDAM, NL, vol. 11, no. 7, April 2000 (2000-04-01), pages 1459 - 1463, XP004199005, ISSN: 0957-4166
DATABASE CA [online] CHEMICAL ABSTRACTS SERVICE, COLUMBUS, OHIO, US; GOUMENT, B. ET AL: "Synthesis of (S)-fenfluramine from (R)- or (S)-1-[3- (trifluoromethyl)phenyl]propan-2-ol", XP002195662, retrieved from STN Database accession no. 120:244208
KAWASAKI M ET AL: "The effect of vinyl esters on the enantioselectivity of the lipase-catalysed transesterification of alcohols", TETRAHEDRON: ASYMMETRY, ELSEVIER SCIENCE PUBLISHERS, AMSTERDAM, NL, vol. 12, no. 4, 19 March 2001 (2001-03-19), pages 585 - 596, XP004234157, ISSN: 0957-4166
Attorney, Agent or Firm:
Minoja, Fabrizio (Via Rossini 8, Milano, IT)
Download PDF:
Claims:
CLAIMS
1. A process for the preparation of 1 (3trifluoromethylphenyl)propan2 ol enantiomers, which comprises the esterification of racemic 1 (3 trifluoromethylphenyl)propan2ol with an acylating agent or the alcoholysis of 1 (3trifluoromethylphenyl)propan2ol esters of formula wherein R is alkyl or ClCg alkenyl or benzoyl, in the presence of a lipase and the separation of the unreacted S (+) 1 (3 trifluoromethylphenyl)propan2ol or of the corresponding ester respectively from the R () 1 (3trifluoromethylphenyl)propan2ol ester or from R () 1 (3trifluoromethylphenyl)propan2ol resulting from the lipasecatalyzed esterification or alcoholysis reactions.
2. A process as claimed in claim 1, which comprises the esterification of racemic 1 (3trifluoromethylphenyl)propan2ol with an acylating agent in the presence of a lipase and the subsequent separation of S (+) 1 (3trifluoromethylphenyl)propan2ol from the R () 1 (3 trifluoromethylphenyl)propan2ol ester.
3. A process as claimed in claim 2, wherein the acylating agent is selected from vinyl or isopropenyl alcohols esters.
4. A process as claimed in claim 3, wherein the acylating agent is selected from vinyl acetate, isopropenyl acetate, vinyl benzoate.
5. A process as claimed in any one of claims 2 to 4, wherein the esterification reaction is carried out in hexane.
6. A process as claimed in claim 1, which comprises the alcoholysis of 1 (3trifluoromethylphenyl)propan2ol esters of formula wherein R is alkyl or ClCg alkenyl or benzoyl, in the presence of a lipase and of a straight C2C6 alkyl alcohol and the separation of the unreacted S (+) 1 (3trifluoromethylphenyl)propan2ol ester from R () 1 (3trifluoromethylphenyl)propan2ol.
7. A process as claimed in claim 6, wherein the alkyl alcohol is nbutanol.
8. A process as claimed in claim 6 or 7, wherein R is methyl.
9. A process as claimed in any one of claims 6 to 8, wherein the alcoholysis is carried out in hexane.
10. A process as claimed in any one of claims 1 to 9, wherein the lipase derives from Candida antarctica, Mucor miehei or Pseudo7nonas cepacia.
Description:
A PROCESS FOR THE PREPARATION OF 1- (3- TRIFLUOROMETHYLPHENYL)-PROPAN-2-OL ENANTIOMERS The present invention relates to a process for the preparation of 1- (3- trifluoromethylphenyl)-propan-2-ol enantiomers through enzymatic resolution by a lipase.

1- (3-Trifluoromethylphenyl)-propan-2-ol enantiomers are useful intermediates for the preparation of the enantiomers of fenfluramine, a known medicament with anorectic activity used in the treatment of obesity. In particular, S-fenfluramine, which is considered the more active enantiomer, or eutomer, (Grice et al. Clin. Exp. Pharmacol. Physiol. 1998, 25,621-23), can be obtained by tosylation of R- (-) 1- (3- trifluoromethylphenyl)-propan-2-ol and subsequent reaction with ethylamine.

A process for the separation of R, S-fenfluramine enantiomers by selective crystallization has been described [Morehead AT jr. et al., Enantiomer 1996,1,63-8]. The kinetic resolution of the amine precursor of fenfluramine by lipase-catalyzed enantioselective acylation has also been effected [Garcia-Urdiales et al., Tetrahedron: Asymmetry, 2000.11,1459- 63]. Both procedures however involve the problem of the recycle of the undesired enantiomer.

EP-A-441160 discloses a process for the preparation of the two fenfluramine isomers, which uses as an intermediate the chiral alcohol obtained by reducing (3-trifluoromethylphenyl) acetone with beer yeast. Said process provides only one of the two enantiomeric alcohols, as a product of the enantioselective reduction, but has the drawback of requiring a high number of steps, so that the final yield in S-fenfluramine is rather low.

It is therefore necessary to develop a simple, advantageous method for

the preparation of fenfluramine precursors in enantiopure form.

Said problem is solved by the process of the invention, which makes use of lipase biocatalysis in an organic solvent to obtain both enantiopure forms of 1- (3-trifluoromethylphenyl)-propan-2-ol (1) enantiomers in high yields.

It has, in fact, been found that some lipases are capable of catalyzing the esterification of (1) with high enantioselectivity, to yield the ester (2) with configuration R and the alcohol (1) with configuration S. \ Lipase ! \ Lipase 9 R'-OCOR-- /OH/OCOR R'-OH Organic solvent CF3 CF3 CF3 ()-1 (+)-1 (-)-2 Said lipases are also capable of enantioselectively catalyzing the alcoholysis of 1- (3-trifluoromethylphenyl)-propan-2-ol racemic ester (2), to give the alcohol (1) with configuration R and the ester (2) with configurationS. ' /OCOR R'-OH Lipase i '/OCOR I/OH R'-OCOR Organic solvent CF3 CF3 CF3 (+)} (+)-2 ( Therefore, the invention provides a process for the preparation of 1- (3- trifluoromethylphenyl)-propan-2-ol enantiomers, which process comprises the esterification of racemic 1- (3-trifluoromethylphenyl)-propan-2-ol with an acylating agent or the alcoholysis of 1- (3-trifluoromethylphenyl)-propan- 2-ol esters of formula wherein R is alkyl or Cl-Cg alkenyl or benzoyl, in the presence of a lipase and the separation of the unreacted S- (+) I- (3-trifluoromethylphenyl)-propan-2-ol or of the corresponding ester respectively from R- (-) 1- (3-trifluoromethylphenyl)-propan-2-ol ester or from R- (-) 1- (3-trifluoromethylphenyl)-propan-2-ol resulting from the esterification or lipase-catalyzed hydrolysis/alcoholysis reactions.

In the case of the resolution through esterification, the acylating agent is preferably selected from the vinyl or isopropenyl alcohols esters, in particular vinyl acetate, vinyl propionate, isopropenyl acetate, vinyl benzoate.

The lipases for use in the process of the invention are commercially available and derive from microorganisms such as Candida antarctica, Mucor miehei or Pseudomonas cepacia.

The esterification reaction is carried out in an organic apolar solvent compatible with the lipase, such as pentane, hexane, heptane, octane, dichloromethane, diethyl ether, diisopropyl ether, t-butyl methyl ether, preferably hexane, at a temperature ranging from 20 to 70°C, for times ranging approximately from 30 min to 10 hours.

In the case of resolution through alcoholysis, the same lipases can be used as well as the same conditions and solvents as described for the esterification, in the presence of a straight alkyl alcohol, preferably n- butanol. Acetic, propionic, benzoic esters and the like, preferably the acetic ester, can be used as racemic esters.

Both in the esterification and in the alcoholysis, the lipases selectively recognize the isomer with configuration R, which can be transformed into ester or hydrolyzed with enantiomeric purity above 98%. The separation of the reaction products is carried out with known procedures.

Racemic 1- (3-trifluoromethylphenyl)-propan-2-ol can be obtained by reduction of 1- (3-trifluoromethylphenyl) acetone, preferably by reaction with lithium aluminium hydride in ethyl ether.

The process of the invention can also be used for the optical resolution of 1- (phenyl)-propan-2-ol or of derivatives substituted at the phenyl ring with hydroxy or methoxy groups, in particular at the meta and para positions.

The following examples illustrate the invention in greater detail.

Example 1 Preparation of (R)-1- (3-trifluoromethylphenyl)-propan-2-ol, (-)- (l) and of (S)-1-(3-trifluoromethylphenyl)-propan-2-ol, (+)-(1), by esterification.

One gram of 1- (3-trifluoromethylphenyl)-propan-2-ol, ()- (1), is dissolved in 100 ml of hexane, then is added with 0.5 g of Novozym (lipase from Candida antarctca) and 1 ml of vinyl acetate. The suspension is then incubated at 45°C in a rotating stirrer (300 rpm). After 1 h, when the reaction mixture contains only two compounds in 1: 1 ratio, the reaction is stopped and the solvent is distilled off under vacuum. The resulting residue is subjected to chromatographic separation on silica gel, eluting with ethyl ether/petroleum ether gradient, to yield 0.627 g of (R)-1- (3- trifluoromethylphenyl)-propan-2-ol acetic ester, (-)- (2), (52% yield, 92% ee) and (S)-1-(3-trifluoromethylphenyl)-propan-2-ol, (+)-(1), 0.470 g (47% yield, >98% ee). The (-)- (2) ester is dissolved in 50 ml of hexane containing 1. 5 ml of butanol and added with 0.5 g of Novozym. The suspension is then incubated at 45°C in a rotating stirrer (300 rpm). After 5 h, the reaction is

stopped to yield (R)-1-(3-trifluoromethylphenyl)-propan-2-ol, (-)-(1), 0.488 g (94% yield, >98% ee).

Example 2 Preparation of (R)-1-(3-trifluoromethylphenyl)-propan-2-ol,(-)-(1) and of (S)-1-(3-trifluoromethylphenyl)-propan-2-ol, (+)-(1), by alcoholysis.

One gram of 1- (3-trifluoromethylphenyl)-propan-2-ol acetic ester ()-2 is dissolved in 100 ml of hexane, which is added with 0.5 g of Novozym (lipase from Candida antarctica) and 1 ml of butanol. The suspension is then incubated at 45°C in a rotating stirrer (300 rpm). After 6 h, when the reaction mixture contains only two reaction products in a 1: 1 ratio, the reaction is stopped and the solvent is distilled off under vacuum. The resulting residue is subjected to chromatographic separation on silica gel eluting with petroleum ether/ethyl ether gradient, to yield 0.480 g of (S)-1- (3-trifluoromethylphenyl)-propan-2-ol acetic ester, (+)- (2) (48% yield, >98% ee) and (R)-1- (3-trifluoromethylphenyl)-propan-2-ol (-)- (1), 0.420 g (51% yield, 96% ee).