Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
PROCESS FOR PREPARATION OF 3-(2-HYDROXY-5-SUBSTITUTED PHENYL)-N-ALKYL-3-PHENYLPROPYLAMINES
Document Type and Number:
WIPO Patent Application WO/2007/147547
Kind Code:
A1
Abstract:
A new process for preparation of 3-(2-hydroxy-5-substituted phenyl)-N,alkyl-3- phenylpropylamiηes from cinamoyl chloride via N-alky-3-phenylprop-2-en-1 -amine has been developed.

Inventors:
FISCHER ERIK (DK)
Application Number:
PCT/EP2007/005357
Publication Date:
December 27, 2007
Filing Date:
June 18, 2007
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
LEK PHARMACEUTICALS (SI)
FISCHER ERIK (DK)
International Classes:
C07C213/08; C07C215/54; C07C253/30; C07C255/59
Domestic Patent References:
WO2007017544A22007-02-15
WO1998043942A11998-10-08
WO2005012227A22005-02-10
WO1994011337A11994-05-26
WO2003002059A22003-01-09
Other References:
M. GOPALAKRISHNAN: "Novel Carbon-Carbon Bond Formation between N-Methyl-3-phenyl-3-hydroxypropylamine and Cresols Catalyzed by p-Toluenesulphonic Acid", SYNTHETIC COMMUNICATIONS, vol. 36, July 2006 (2006-07-01), pages 1923 - 1926, XP002450044
Attorney, Agent or Firm:
LIPHARDT, Bernd (Corporate Intellectual Property, Basel, CH)
Download PDF:
Claims:

Claims

1. A process for preparing a compound of formula 111'

where Rt is selected from: H, Ci - C 3 alkyl; and R 2 is selected from C 1 -C 3 alkyl or a salt thereof characterized in that compound of formula Il

where R 1 and R 2 are defined as above is reacted with compound of formula

, wherein R 3 is selected from CH 3 , Cl, Br, I, CHO, or CN.

2. The process according to previous claim wherein the compound of formula III' is further converted into compound of formula IV

, where Ri is selected from: H, C, - C 3 alkyl; and

R 2 is selected from Ci-C 3 alky! or a salt thereof.

3. The process according to claim 2 where in compound of formula III', R 3 is Br, Cl and the conversion into compound of formula IV is performed by subjecting compound of formula III' to Grignard reaction with appropriate reagent in DMF introducing CHO as R 3 , and reducition.

4. The process according to claim 2 where in compound of formula IH', R 3 is CHO, the conversion into compound of formula IV is performed by reduction

5. The process according to claim 2 where in compound of formula IM', R 3 is CN is the conversion into compound of formula IV is performed by hydrolysis and reduction.

6. The process according to claim 2 where in compound of formula III', R 3 is CN is the conversion into compound of formula IV is performed and reduction

7. The process according to any of claims 3 to 6 where the reduction is performed with a hydride reduction reagent.

8. The process according to previous claim where hydride reduction reagent is selected from LiAIH 4 or NaBH 4 .

9. The process according to previous claim wherein compound of formula IV

where R 1 is selected from: H, C, - C 3 alkyl; and R 2 is selected from C-C 3 alkyl is isolated as a mixture of enantiomers which is subsequently optically resolved and optionally purified.

10. The process according to claim 1 where R 3 is CH 3 .

1 1. The process according to any of the previous claims, where hydroxyl group is protected, to give compound of formula

wherein P is a protecting group.

12. The process according to the previous claim, where protected hydroxyl group is subsequently deprotected.

13. The process according to any of previous two claims, where the protecting group is sylil protecting group.

14. A process according to any of previous claims where compound of formula Il is prepared by reacting an amine of formula IV

where Ri and R 2 are defined as above

with cinnamyl halide or with cinnamaldehyde and a hydride reducing agent.

15. A process according to any of the preceding claims where compound of formula Il is prepared by vicinal elimination of substituents Y 1 and Y 2 from the compound of formula V

where Y, and Y 2 are substituents that can be eliminated.

16. The process according to the previous claim where both Y 1 and Y 2 are halogens or

Y 2 is hydrogen and Y 1 is hydroxy or halogen.

17. The process according to any of the previous claims where the compound of formula Il is formed in situ.

18. The process according to any of the previous claims where the mixture of enantiomers of compound of formula III' is optically resolved.

19. The process according to any of the previous claims where R 1 and R 2 are both isopropyl.

20. A process for preparing N,N-diisopropyl-3-(2-hydroxy-5-methylphenyl)-3- phenylpropyl amine or a salt thereof characterized in that it comprises following steps: a) providing N, N-diisopropyl-3-phenylprop-2-en-1 -amine; b) reacting N,N-diisopropyl-3-phenylprop-2-en-1-amine with p-cresol to give N,N-diisopropyl-3-(2-hydroxy-5-methylphenyl)-3-phenylpropyl amine; c) (optionally) isolating the obtained compound of previous step; and

d) optically resolving the mixture of enantiomers of N,N-diisopropyl-3-(2- hydroxy-5-methylphenyl)-3-phenylpropyl amine by conversion into a salt of tartaric acid.

21. A process for making a pharmaceutical composition comprising a compound of formula III

where R 1 is selected from: H, C t - C 3 alkyl; and R 2 is selected from C 1 -C 3 alkyl or a salt thereof, preferably (+)-N,N-diisopropyl-3-(2-hydroxy-5-methylphenyl)-3-phenylpropylamine hydrogen tartrate; where said compound has been prepared according to any of the previous claims, wherein said compound is incorporated into a pharmaceutical composition together with a pharmaceutically acceptable carrier.

22. Use of compound prepared according to claim 9 or a salt thereof in the process of preparing a medicament.

23. A pharmaceutical composition comprising a compound prepared according to claim 9 or a salt thereof together with a pharmaceutically acceptable carrier.

Description:

PROCESS FOR PREPARATION OF 3-(2-HYDROXY-5-SUBSTITUTED PHENYL)-N- ALKYL-3-PHENYLPROPYLAMINES

Technical Field

The invention belongs to the field of organic chemistry and relates to a novel efficient synthetic process for the preparation of substituted 3-(2-hydroxy-5-methylpheπyl)-N-alkyl- 3-phenylpropylamines, such as 3-(2-hydroxy-5-methylphenyl)-N,N-diisopropyl-3- phenylpropylamine.

Background Art

By our process one can synthesize 3,3-diphenylpropyl amines, such as those known from EP 325571. Those compounds may be tertiary or secondary amines. Several synthetic approaches for preparation of such compounds have been described. For example 3-(2-hydroxy-5-methylphenyl)-N,N-diisopropyl-3-phenylpropyla mine may be prepared using relatively long synthetic sequence or special equipment. If desired, enantiomerically pure product is obtained either with the resolution of the enantiomers in the last step or the chiral synthesis.

However there is still a need for shorter, less expensive and more industrially applicable processes performed under milder conditions still remains.

Representative compound prepared according to our process: (+)-(R)-3-(2-hydroxy-5- methylphenyl)-N,N-diisopropyl-3-phenylpropylamine, currently marketed as (+)-L-tartarate salt is an important urological drug, which acts as a selective muscarinic receptor antagonist. It is used for manufacturing of the medicament for treating the patients with overactive bladder showing symptoms of urinary frequency, urgency, or urge incontinence and can be used for treating asthma, CODP and allergic rhinitis. Also its metabolite a 5- hydroxymethyl compound exhibits antimuscarinic activity. Same 3,3- diphenylpropyl amines structure is also found in some other drugs, and those compounds obtained by our process may be used for manufacturing the medicament, when they are combined with a pharmaceuticaly acceptable carrier.

Disclosure of the Invention

In the most general aspect the invention provides a process for preparing a compound of formula III'

where Ri is selected from: H, C, - C 3 alkyl; R 2 is selected from Ci-C 3 alkyl, and R 3 is selected from CH 3 , Cl, Br, I, CHO, or CN, or a salt thereof characterized in that compound of formula Il

where R, and R 2 are defined as above is reacted with compound of formula V

, wherein R 3 is selected from CH 3 , Cl, Br, I, CHO, or CN.

Specifically compound of formula III 1 is in one aspect further converted into compound of formula IV

where R, is selected from: H, C, - C 3 alkyl; and R 2 is selected from C 1 -C 3 alkyl or a salt thereof. Which can be is isolated as a mixture of enantiomers which is subsequently optically resolved and optionally purified, and which is subsequently formulated into pharmaceutical together with a pharmaceutically acceptable carrier

In another aspect the invention represents a process for preparing a compound of formula III

where Ri is selected from: H, C, - C 3 alkyl; and R 2 is selected from d-C 3 alkyl, preferably R 1 is hydrogen or isopropyl and R 2 is methyl or isopropyl, more preferably R 1 and R 2 are isopropyl, or a salt thereof, preferably tartrate salt, characterized in that compound of formula Il

where R 1 and R 2 are defined as above is reacted with p-cresol.

The process is in general performed in presence of an acid and followed by isolation by extraction into an organic solvent and conversion into salt.

In an aspect the above compound of formula Il is prepared by reacting an amine of formula IV

NH

< . where R 1 and R 2 are defined as above with cinnamyl halide, which is preferably chloride or alternatively with cinnamaldehyde and a hydride reducing agent, which is preferably lithium, sodium or potassium borohydride, or cyanoborohydride.

Said reaction for preparation of compound of formula Il is preferably performed in presence of base at room temperature in solvents suitable for amination or reductive aminition.

In an aspect the above compound formula Il is prepared by vicinal elimination of substituents Y 1 and Y 2 from the compound of formula V

where Y 1 and Y 2 are substituents that can be eliminated, and are preferably both Y 1 and Y 2 are halogens or Y 2 is hydrogen and Yi is hydroxy or halogen.

In a specific aspect the compound of formula Il is not isolated and alternatively is formed in-situ.

Generally in the process of our invention, the mixture of enantiomers of compound of formula III is optically resolved, preferably by salt formation with an optically active organic acid or alternatively by chromatography.

Specifically our invention is a process for preparing N,N-diisopropyl-3-(2-hydroxy-5- methylphenyl)-3-pheny!propyl amine or a salt thereof characterized in that it comprises following steps: providing N,N-diisopropyl-3-phenylprop-2-en-1 -amine; reacting N,N-diisopropyl-3-phenylprop-2-en-1 -amine with p-cresol to give N 1 N- diisopropyl-3-(2-hydroxy-5-methy!phenyl)-3-phenylpropyl amine; (optionally) isolating the obtained compound of previous step; and optically resolving the mixture of enantiomers of N,N-diisopropyI-3-(2-hydroxy-5- methylphenyl)-3-phenylpropyl amine by conversion into a salt of tartaric acid wherein more specifically N,N-diisopropyl-3-phenylprop-2-en-1 -amine is provided by amination of cinnamyl halide or reductive amination of cinnamaldehyde or by elimination of water from 3-hydroxy-N,N-diisopropyl-3-phenylpropan-1 -amine.

Industrial aspect of the invention is also a process for making a pharmaceutical composition comprising a compound of formula III

where R 1 is selected from: H, C 1 - C 3 alky!; and R 2 is selected from C 1 -C 3 alkyl or a salt thereof, preferably (+)-N,N-diisopropyl-3-(2-hydroxy-5-methylphenyl)-3-phenylpro pylamine hydrogen tartrate; where said compound has been prepared as described above, wherein said compound is in a process step incorporated into a pharmaceutical composition together with a pharmaceutically acceptable carrier, which may be done by tableting or preparing a granulate or pellets which are filled into capsules.

An aspect of the invention is the use of compound prepared as above disclosed in the process of preparing a medicament.

Detailed Description of the Invention

The process comprises the steps of : a) reacting an amine of formula HNR 1 R 2 , where R 1 and R 2 are as defined above, preferably diisopropyl amine, with cinnamyl halide; or in alternative embodiment with cinnamaldehyde and suitable reducing reagent (reductive amination) and b) reacting thus obtained compound with p-cresol, and c) optionally optically resolving the mixture of enantiomers obtained in previous step. In case the aminating agent used in step a) is different from diisopropylamine the formed compound can be optionally converted to another amine, preferably diisopropylamine, and isolating the desired compound and is depicted on following Scheme 1 :

("V)

Scheme 1

In specific embodiment in above step a) cinnamyl halide is preferably chloride, but also bromide or iodide or a halo substitutes alkanesulphonate, preferably methanesulphonate or trifluorometansulphonate or arenesulphonate preferably tosylate or another analogue with easily removing group, which are considered equivalent.

In said alternative reductive amination suitable reducing agent is preferably alkali metal borohydride, more preferably selected from lithium, sodium or potassium borohydride, cyanoborohydride or triacetoxyborohydride, most preferably sodium cyanoborohydride.

This embodiment is especially suitable for reductive amination with an amine of formula HNR 1 R 2 , where R, is hydrogen and R 2 as defined above.

In an alternative embodiment the compound to be reacted in step b) with p-cresol is obtained by vicinal elimination of 2,3 substituents on the compound of the amine of formula IV, where Yi and Y 2 are substituents that can be eliminated by an acid or preferably by base catalyzed elimination. Preferably the compound if formula IV is 2,3- dihalo substituted or 3-halo substituted amine where Ri and R 2 are as defined above, more preferably Y 1 is hydroxyl and Y 2 is hydrogen from which water is eliminated by a base such as NaOH, in a suitable apolar solvent. The specific preferred compounds of formula IV are 3-bromo-N,N-diisopropyl-3-phenylpropan-1 -amine and 3-hydroxy-N,N- diisopropyl-3-phenylpropan-1 -amine. Under certain conditions this and subsequent reaction may be conducted in a single vessel and the intermediate compound Il is not isolated or is formed in situ.

Most preferably or most preferably water elimination intermediates like 3-hydroxy-N,N- diisopropyl-3-phenylpropan-1 -amine, which may be conveniently prepared from simple compounds by reacting acetophenone and formaldehyde with an amine of formula HNR 1 R 2 , where R 1 and R 2 are as defined above, preferably diisopropylamine and subsequent reduction of obtained compound.

The reaction steps a) and b) may proceed with substituted cinnamyl derivatives.

More genraly in accordance with our invention also derivatives may be prepared, especially 5-hydroxymethyl substituted derivatives.

The process in general thus comprises the steps of : a) reacting an amine of formula HNR 1 R 2 , where R 1 and R 2 are as defined above, preferably diisopropyl amine, with cinnamyl halide; or in alternative embodiment with cinnamaldehyde and suitable reducing reagent (reductive amination) and b) reacting thus obtained compound with compound of formula V

wherein R 3 is either CH 3 , or X (where X is Br, Cl, or I), CHO, or CN and

c) optionally optically resolving the mixture of enantiomers obtained in previous step. In case the aminating agent used in step a) is different from diisopropylamine the formed compound can be optionally converted to another amine, preferably diisopropylamine, and d1 ) where R 3 is Br, Cl, or I, protecting the obtained compound of formula III', subjecting obtained compound to conditions of Grignard reaction in DMF or another N 1 N- disubstituted formamide giving (N,N-diisopropyl-3-phenyl-3-(5-formyl-2- hydroxyphenyl)prop-2-en-1 -amine (III 1 , R 3 =CHO), and reducing to give the compound of formula IV; or d2) where R 3 is CHO, reducing to give the compound of formula IV; or d3) where R 3 is CN, hydrolizing the obtained compound of formula IN', and reducing to give the compound of formula IV, d4) where R 3 is CN, reducing the obtained compound of formula III', to give the compound of formula III' (R=CHO), and further reduced it to the compound of formula IV and isolating the desired compound and is depicted on following Scheme 2:

Scheme 2

In the preferred embodiment the reaction sequence is as follows

(I) (Ha) (Ilia)

In the preferred embodiment the process starts with a reaction of cinnamyl chloride with amine, preferably primary or secondary amine having C 1 to C 3 alkyl substituents, preferably diisopropyl amine in presence of a base, preferably inorganic, more preferably potassium carbonate. The use of an additional base nic is highly preferable as use of an excess of reacting amines as a base is not cost effective and may cause ecological problems. Suitable solvents are selected from the group of alcohols, acetonitril, esters , ethers or aromatic hydrocarbons, preferably mixture of toluene and methanol, the reaction proceeds for up to 1 day at room temperature.

An important step of our process is subsequent reaction of the obtained compound Il with p-cresol or equivalently with phenol, o- cresol, m-cresol but also other substituted phenols, in presence of an acid, preferably in an organic acid, preferably methanesulfonic acid at an elevated temperature, preferably at 80 to 200 °C, more preferably at 120 to 130 0 C, for up to one day. Preferably the p-cresol functions also as a solvent.

Subsequent isolation of the obtained compound is preferably done by adding water and an organic solvent not miscible with water, preferably toluene to the reaction mixture, adjusting pH to about 9,5, distilling said solvents off and upon dissolving in a suitable solvent, preferably isopropanol, adding a suitable optically active carboxylic acid and a formic acid, preferably from 0,5 to 0,6 molar equivalents of each, preferably 0,55 equivalents of each, stirring the mixture for up to one day, whereupon the product is isolated and optionally recrystallized.

The preferable workup is by treating the compound (III) with (+)-L-tartaric acid to achieve resolution of the enantiomers. The resolution of enatiomers will however mean to include

also any other usual method. The following examples are offered to illustrate aspects of the present invention, and are not intended to limit or define the present invention in any manner.

Example 1

Preparation of compound of formula II. where R 1 and R? are both iPr. and R 3 is Me 51 g cinnamyl chloride is reacted with 50 g diisopropyl amine in presence of 41 g potassium carbonate in 100 ml toluene containing 25 ml methanol and after 24 hours reflux, 96 % conversion is observed. Addition of water and separating the phases, and subsequent washing and evaporation leaves a quantitative amount of the amine (72,8 g).

Example 2

Preparation of compounds of formula II. where R 1 is H and R? an alkyl or aryl, and R 3 is Me

51 g cinnamyl chloride is reacted with 27 g isopropyl amine in presence of 40 g potassium carbonate in 100 ml toluene containing 25 ml methanol) for 1 day. Addition of water and separating the phases, and subsequent washing and evaporation leaves a quantitative amount of the amine. In a similar manner reacting cinnamyl chloride with equimolar amounts of methylamine or phenylamine yields corresponding amines.

Example 3

Alternative preparation of compound of formula II, where R 1 and R? are both iPr, and R 3 is Me

20,0 g of acetophenone is reacted with 18,7 g of diisopropylamine and 40 ml of water solution of formaldehyde in presence of 20 ml of cone. HCI in 360 ml of methanol for 2 hours at reflux temperature. After evaporation of most of methanol water and ethylacetate is added. After separation the organic phase was concentrated by evaporation and diluted with methanol. The dissolved compound is reduced with 4,2 g of sodium borohydride. to yield 3-hydroxy-N,N-diisopropyl-3-pheπylpropan-1 -amine which may be converted into N,N-diisopropyl-3-phenylpropyl-2-ene-1 -amine by treating with strong alkali.

Example 4

Preparation of compound of formula III, where R 1 and R? are both iPr, and R 3 is Me 10,2 g of N,N-diisopropyl-3-phenylprop-2-en-1-amine, is added 20,5 g p-cresol and 15,8 g methanesulfonic acid and heated to 130 0 C for 6 hours. Chromatography shows disappearance of the peak corresponding N,N-diisopropyl-3-phenylprop-2-en-1 -amine, and a fine peak at the retention time of 3-(2-hydroxy-5-methylphenyl)-N,N-diisopropyl-3- phenylpropylamine. From the reaction mixture the (+)-(R)-3-(2-hydroxy-5-methylphenyl)- N,N-diisopropyl-3-phenylpropylamine is isolated as follows: Water and toluene (200 ml each) are added to the reaction mixture and pH adjusted to 9,5. The toluene layer is isolated and washed with water. Distilling off the toluene leaves an oily mass. This is taken up in 300 ml 2-propanol, added 0,55 eq tartaric acid and 0,55 eq formic acid, After stirring overnight, the suspension is filtered. The wet filter cake is approximately 97% pure. The wet filter cake is taken up in 300 ml 2-propanol and heated to reflux, cooled to 5 °C, filtered and dried (yield 85%). Purity on HPLC (achiral) 99,5%.

Example 5

Preparation of compound of formula III, where R 1 Js H and R? is Me, and Rg is Me 7,5 g of N-methyl-3-phenylprop-2-en-1 -amine is added 20,5 g p-cresol and 15,8 g methanesulfonic acid and heated to 125 °C for 8 hours. From the reaction mixture the (+)- (R)-3-(2-hydroxy-5-methylphenyl)-N-methyl-3-phenylpropylamin e is isolated by addition of water and toluene and extraction to toluene and addition of 0,6 eq tartaric acid and 0,6 eq formic acid and crystallizing and recrystallizing till e.e. exceed 99,5 %.

Example 6

Alternative preparation of compound of formula III, where R 1 and R? are both iPr, and R 3 is Me 5, 2 g of N,N-diisopropyl-3-hydroxy-3-phenylpropan-1-amine was added to the mixture of 20 ml 40 % sol of NaOH and 10 ml methanol and heated to 50 S C for 40 min. The mixture was diluted with 50 ml of toluene, water phase was separated and toluene fraction was concentrated.10,3 g of p-cresol and 15,8 g methanesulfonic acid is added to concentrate and the mixture is heated to 130 0 C for 8 hours. The resulted mixture is further treated as described in the previous example to yield title product in the form tartrate in 64 % yield (purity 99,1 %).

Example 7

Preparation of compound of formula IH', where R 1 and R? are both iPr. and R^ is Cl 2,04 g of N,N-diisopropyl-3-phenylprop-2-en-1-amine is added to 4,86 g p-chlorophenol and 3,1 g methanesulfonic acid and heated to 130 0 C for 8 hours. The mixture is cooled down, water (30 ml) and toluene (400 ml) are added to the reaction mixture and pH adjusted to 9,5. The toluene layer is isolated and washed with water. Distilling off the toluene leaves an oily mass. This is taken up in 50 ml ethanol, added 28 eq tartaric acid. After stirring overnight, the suspension is filtered. The wet filter cake is taken up in 60 ml 2-propanol and heated to reflux, cooled to 5 0 C, filtered and dried ((R)-N, N-diisopropyl-3- phenyl-3-(5-chloro-2-hydroxyphenyl)prop-2-en-1 -amine tartrate, yield 65%, e.e. 98 %).

Example 8

Preparation of compound of formula IH'. where R 1 and R? are both iPr, and R 3 is Br 3,57 g of N,N-diisopropyl-3-phenylprop-2-en-1-amine, is added 11 ,5 g p-bromophenol and 5,5 g methanesulfonic acid and heated to 150 0 C for 8 hours. The mixture is cooled down, water and toluene (70 ml each) are added to the reaction mixture and pH adjusted to 9,5. The toluene layer is isolated and washed with water. Distilling off the toluene leaves an oily mass. This is taken up in 100 ml 2-propanol, added 0,19 eq tartaric acid and 0,19 eq formic acid. After stirring overnight, the suspension is filtered. The wet filter cake is taken up in 60 ml 2-propanol and heated to reflux, cooled to 5 °C, filtered and dried ((R)-N, N-diisopropyl-3-phenyl-3-(5-bromo-2-hydroxyphenyl)prop-2-en- 1 -amine tartrate, yield 82 %, e.e. 98 %).

Example 9

Preparation of compound of formula III', where R 1 and R? are both iPr. and R 3 is CN 20,4 g of N,N-diisopropyl-3-phenylprop-2-en-1-amine is added to 53,5 g p-cyanophenol and 35,1 g ethanesulfonic acid and heated to 130 0 C for 6 hours. The mixture is cooled down, water (300 ml) and toluene (350 ml) are added to the reaction mixture and pH adjusted to 9,5. The toluene layer is isolated and washed with water. Distilling off the toluene leaves an oily mass. This is taken up in 500 ml ethanol, added 280 eq tartaric acid. After stirring overnight, the suspension is filtered. The wet filter cake is taken up in 600 ml ethanol and heated to reflux, cooled to 5 0 C, filtered and dried ((R)-N, N-diisopropyl -3-phenyl-3-(5-cyano-2-hydroxyphenyl)prop-2-en-1 -amine tartrate, yield 67%, e.e. 97 %).

Example 10

Preparation of compound of formula III', where R 1 and R ? are both iPr, and R 3 is CHO a) (R)-N, N-diisopropyl-3-phenyl-3-(5-cyano-2-hydroxyphenyl)prop-2-en- 1 -amine tartrate prepared as described in the previous example is recrystallized twice from ethanol to reach 99,9 % e.e, the product is dissolved in ether, shaked three times with NaHCO 3 solution, ether dried over MgSO 4 and evaporated to give a compound in a form of base as yellow oil. b) To a stirred solution of triisopropylsilyl chloride (26 ml) in anhydrous 1 ,2-dichloroethane (150 ml) is added 16,7 g of imidazole and 26,0 (R)-N, N-diisopropyl-3-phenyl-3-(5-cyano-2- hydroxyphenyl)prop-2-en-1 -amine. The reaction is refluxed for 30 min and then is stirred overnight at room temperature, then 0,5 M HCI is added, layers are separated and the aqueous phase is extracted with ether. Combined organic fractions are washed with aturated NaHCO 3 , dried over MgSO 4 filtered and solvents are evaporated to silylated product as brownish oil c) The obtained silylated product is dissolved in 100 ml of dichlorometane absolute at a temperature between 0 0 C and -5 0 C in argon atmosphere, 120 ml of diisobutylaluminium hydride (DIBAL-H) (1 M in n-hexane, 50 mmol ) is added in a period of 3 hours. Reaction mixture was poured in a mixture of 500 g of ice and 100 ml of 6 M hydrochloric acid and stirred at room temperature for 1 h. Layers were separated and the water layer is reextracted twice with 120 ml of ethyl ether. Combined organic layers are washed with 120 ml of 5% solution of NaHCO 3 and 50 ml of brine successively. After drying over MgSO 4 and evaporating under reduced pressure giving (R)-N, N-diisopropyl-3-phenyl-3-(5- formyl-2-triisopropylsilyloxyphenyl)prop-2-en-1 -amine as an oily residue. d) A solution of protected formyl derivative (25 g, 0,06 mol) and triethylamine trihydrofluoride (9 ml, 0,06 mol) in 20 ml THF is stirred overnight and then cooled to -5 e C and quenched with cautious addition of potassium carbonate (1 1 g) in water (30 ml). The mixture was extracted with ether, dried over MgSO 4 , evaporate to give (R)-N 1 N- diisopropyl-3-phenyl-3-(5-formyl-2-hydroxyphenyl)prop-2-en-1 -amine as crude oil (44 % from III', R 3 is cyano) which could be further chromatographic purified (silica gel, chloroform - methanol 5:1 v/v) to give solid material.

Example 1 1

Preparation of compound of formula HI', where R 1 and R 7 are both iPr. and R 3 is CHO (R)-N, N-diisopropyl-3-phenyl-3-(5-bromo-2-triisopropylsilyloxyphen yl)prop-2-en-1 -amine

(4,7 g), prepared by Example 10a and 1 Ob 1 is dissolved in 30 ml freshly distilled THF, 0,06 g of iodine and 1 ,0 g of magnesium are added. The reaction mixture is refluxed in an argon atmosphere for 4 h. To the obtained Grignard reagent, 3 ml of anhydrous DMF is slowly added at 0 Q C. The reaction mixture was stirred for 2 h and overnight at room temperature and quenched with saturated ammonium chloride and the organic layer is separated from the aqueous layer. The aqueous layer is washed twice with diethyl ether (30 ml each), dried and evapoprate dto oil which is deprotected and purified as described I in Example 6. Yield 36 % form III', R 3 is Br.

Example 12

Preparation of compound of formula III', where R 1 and R? are both iPr, and Rq is CHO 2,04 g of N,N-diisopropyl-3-phenylprop-2-en-1-amine is added to 4,76 g p- hydroxybenzaldehyde and 3,1 g methanesulfonic acid and heated to 130 0 C for 8 hours. The mixture is cooled down, water (30 ml) and toluene (400 ml) are added to the reaction mixture and pH adjusted to 9,5. The toluene layer is isolated and washed with water. Distilling off the toluene leaves an oily mass, which is chromatographilly purified in silica gel, first by dichloromethane-diethyl ether, than chloroform - methanol 5:1 and crystallized in ethyl acetate - hexane to R 1 S-(R)-N, N-diisopropyl-3-phenyl-3-(5-formyl-2- hydroxyphenyl)prop-2-en-1 -amine (yield 8 %).

Example 13

Preparation of compound of formula III', where R 1 and R? are both iPr, and R 3 is CHpOH A solution of (R)-N, N-diisopropyl-3-phenyl-3-(5-formyl-2-hydroxyphenyl)prop-2-en -1- amine, prepared by Example 10 (1 ,82 g) in THF (10 ml) is slowly added to a suspension of LiAIH 4 (0,13 g and the mixture is stirred for further 2 h. After cooled to 0 S C 0,2 ml of water andthen 0,2 ml 10 % NaHCO 3 is carefully dropped to the mixture, inorganic material is then filtered off and washed with fresh THF. Combined fractions are evaporated, the residue is dissolved in ethyl acetate, the solution is washed with 10 % NaHCO 3, dried over MgSO 4 evaporated and the residue is crystallized from ethyl acetate to give a yellowish solid material (Yield 73 %, m. p. 100 - 102 S C).

Example 14

Preparation of compound of formula III 1 , where R 1 and R? are both iPr, and R 3 is CH?OH The title compound can also be prepared from (R)-N, N-diisopropyl-3-phenyl-3-(5-formyl-2- hydroxyphenyl)prop-2-en-1 -amine by reduction with sodium borohydride in methanol in 74 % yield

Example 15

Preparation of compound of formula III', where R 1 and R? are both iPr, and R 3 is CH?OH (R)-N, N-diisopropyl-3-phenyl-3-(5-carboxy-2-hydroxyphenyl)prop-2-e n-1 -amine is prepared from ((R)-N, N-diisopropyl-3-phenyl-3-(5-cyano-2-hydroxyphenyl)prop-2-en- 1 - amine tartrate by hydrolysis with 20 % HCI in 6 h at 60 8 C, (yield 80 %, m.p. 140 - 143 Q C). A solution of said carboxy compound 51 ,82 g, extra dried over P2O in vacuo for two days, in THF (10 ml) is slowly added to a suspension of LiAIH 4 (0,23 g and the mixture is stirred for further 2 h. After cooled to 0 S C 0,2 ml of water andthen 0,2 ml 10 % NaHCO 3 is carefully dropped to the mixture, inorganic material is then filtered off and washed with fresh THF. Combined fractions are evaporated, the residue is dissolved in ethyl acetate, the solution is washed with 10 % NaHCO 3 , dried over MgSO 4 evaporated and the residue is crystallized from ethyl acetate to give a yellowish solid material (Yield 55 %, m. p. 101 - 102 3 C).