Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
PROCESS FOR PRODUCING FAULT CLASSIFICATION SIGNALS
Document Type and Number:
WIPO Patent Application WO/1997/036185
Kind Code:
A1
Abstract:
The invention relates to a process for generating fault classification signals which in a multiphase power supply network, seen from a protective device with excitation system, designate fault-afflicted loops formed in the event of faults. In order to facilitate relatively simple generation of such fault classification signals, use is made of a neural network (9) which is instructed with input values which simulate fault-afflicted loops in the form of standardised resistance and reactance values formed in accordance with the excitation characteristic curve of the excitation device (5). To generate the fault-classification signals (F1, F2) the neural network (9) in the event of a fault is acted on by standardised resistance and reactance measurement values (RL1-E, XL1-E; RL3-L1, XL3-L1).

Inventors:
BOEHME KLAUS (DE)
JURISCH ANDREAS (DE)
Application Number:
PCT/DE1997/000682
Publication Date:
October 02, 1997
Filing Date:
March 25, 1997
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
SIEMENS AG (DE)
BOEHME KLAUS (DE)
JURISCH ANDREAS (DE)
International Classes:
H02H1/00; (IPC1-7): G01R31/02; H02H1/00
Foreign References:
DE4333257A11995-03-30
DE4333259C11995-05-24
Other References:
BOEHME K ET AL: "OPTIMIERUNG VON DISTANZSCHUTZ-ALGORITHMEN MIT HILFE NEURONALER NETZE", ELEKTRIE, vol. 47, no. 1, 1 January 1993 (1993-01-01), pages 2 - 10, XP000335613
DALSTEIN T ET AL: "NEURAL NETWORK APPROACH TO FAULT CLASSIFICATION FOR HIGH SPEED PROTECTIVE RELAYING", IEEE TRANSACTIONS ON POWER DELIVERY, vol. 10, no. 2, 1 April 1995 (1995-04-01), pages 1002 - 1011, XP000539127
Download PDF:
Claims:
Patentansprüche
1. Verfahren zum Erzeugen von Fehlerklassifizierungssignalen, die in einem mehrphasigen Energieversorgungssystem von einer Schutzeinrichtung mit einer Anregeanordnung aus betrachtet im Fehlerfalle sich ausbildende, fehlerbehaftete Schleifen be¬ zeichnen, bei dem ein neuronales Netz verwendet wird, das mit fehlerbehaftete Schleifen simulierenden Eingangsgrößen angelernt ist, und bei dem daε neuronale Netz im Fehlerfalle zum Erzeugen der Fehler klaεεifizierungεεignale an seinen Eingängen mit aus Strömen und Spannungen der Schleifen des Energieversorgungssystemε abgeleiteten Meßgrößen beaufschlagt wird, um an seinen Aus gangen die Fehlerklasεi f i zierungεsignale zu erhalten , d a d u r c h g e k e n n z e i c h n e t , d a ß ein neuronales Netz (9) verwendet wird, das mit fehlerbe¬ haftete Schleifen simulierenden Eingangsgrößen in Form von unter Berücksichtigung der Anregekennlinie der Anregeanord nung (5) gebildeten, normierten Reεiεtanz und Reaktanz¬ größen angelernt ist, und das so angelernte neuronale Netz (9) zum Erzeugen der Fehlerklasεifizierungεεignale (F1;F2) im Fehlerfalle mit unter Berücksichtigung der Anregekennlinie normierten Resiεtanz und Reaktanzmeßgrößen (RLlE, XLlE; RL3L1, XL3L1) der Schleifen beaufεchlagt wird.
2. Verfahren zum Erzeugen von Fehlerklasεifizierungssignalen, die in einem mehrphasigen Energieversorgungssystem von einer Schutzeinrichtung mit einer Anregean^rdnung aus betrachtet im Fehlerfalle εich auεbildende, fehle ^haftete Schleifen be¬ zeichnen, bei dem ein neuronaleε Netz verwendet wird, das mit fehlerbehaftete Schleifen simulierenden Eingangsgrößen angelernt ist, und bei dem daε neuronale Netz im Fehlerfalle zum Erzeugen der Fehler¬ klassifizierungssignale an seinen Eingängen mit aus Strömen und Spannungen der Schleifen des Energieversorgungssystemε abgeleiteten Meßgroßen beaufschlagt wird, um an seinen Aus¬ gangen die Fehlerklasεiflzierungεsignale zu erhalten, d a d u r c h g e k e n n z e i c h n e t, d a ß ein neuronales Netz (20) verwendet wird, das mit fehlerbe¬ haftete Schleifen simulierenden Eingangsgroßen in Form von Resistanz und Reaktanzgrößen der Schleifen und die Lage dieser Großen in bezug auf die Anregekennlinie beschreiben¬ den Einordnungssignalen angelernt iεt, und daε so angelernte neuronale Netz (20) zum Erzeugen der Fehlerklassifizierungsεignale (F1;F2) im Fehlerfalle mit Resiεtanz und Reaktanzmeßgroßen (RLlE, XLlE; RL3L1, XL3L1) der Schleifen und mit die Lage dieεer Meßgrößen in bezug auf die jeweilige Anregekennlinie bezeichnenden Unterscheidungsεignale (ULlE; UL3L1) beaufεchlagt wird.
Description:
Beschreibung

Verfahren zum Erzeugen von Fehlerklassifizierungssignalen

Aus dem Siemens-Gerätehandbuch „ Digitaler Abzweigschutz

7SA511 V3.0, Bestell-Nr. C53000-G1100-C98-1, 1995, Seite 36, ist ein Verfahren zum Gewinnen von fehlerbehaftete Schleifen in einem mehrphasigen elektrischen Energieversorgungsnetz kennzeichnenden Fehlerklassifizierungssignalen beschrieben. Bei diesem bekannten Verfahren erfolgt eine Impedanzanregung in Form eines schleifenbezogenen Anregeverfahrens. Dabei wer¬ den nach Durchführen eines ersten Verfahrenεschrittes zur Erdfehlererkennung bei mindestens einem erkannten Erdfehler die Leiter-Erde-Schleifen und bei keinem erfaßten Erdfehler die Leiter-Leiter-Schleifen überwacht. Eine Schleife gilt als angeregt, wenn der ermittelte entsprechende Impedanzzeiger innerhalb des für die jeweilige Schleife geltenden Anrege¬ polygons liegt. Sind mehrere Schleifen gleichzeitig angeregt, wird ein Impedanzvergleich vorgenommen, bei dem nur solche Schleifen als angeregt eingestuft werden, deren Impedanz nicht mehr als das l,5fache der kleinsten Schleifenimpedanz beträgt .

Um mit großer Sicherheit alle die Schleifen zu eliminieren, die trotz anfänglicher Anregung tatsächlich nicht fehlerbe¬ haftet sind, werden bei einem in der älteren deutschen Patentanmeldung P 195 45 267.4 beschriebenen Verfahren zum Gewinnen von fehlerbehaftete Schleifen kennzeichnenden Feh¬ lerklassifizierungssignalen bei Ermittlung ausschließlich erdfehlerfreier Schleifen durch Vergleich von hinsichtlich der erfaßten Leiter-Leiter-Schleifen errechneten virtuellen Impedanzen nach Betrag und Phase mit bei der Impedanzanregung ermittelten Impedanzen die tatsächlich fehlerbehafteten Schleifen ermittelt. Bei Feststellung mindestens einer Schleife mit Erdfehler werden durch einen Vergleich der

Beträge von aus den Impedanzwerten der als Fehler behaftet erfaßten Leiter-Erde-Schleifen gebildeten virtuellen Impe¬ danzwerten mit dem kleinsten virtuellen Impedanzwert fehler¬ freie Leiter-Erde-Schleifen erkannt und eliminiert. Zur Wei- terverarbeitung der Impedanzwerte der übrigen nichtelimi- nierten, und als fehlerbehaftet erfaßten Schleifen werden im Hinblick auf die Anzahl von gleichzeitig festgestellten Lei¬ ter-Erde-Schleifen unterschiedlich ausgestaltete Prüfungs¬ verfahren verwendet, von denen jeweils das der jeweils fest- gestellten Anzahl von Leiter-Erde-Schleifen zugeordnete Prüf¬ verfahren durchlaufen wird.

Ferner ist es aus der in „Fortschritt-Berichte VDI", Reihe 21: Elektrotechnik, Nr. 173, veröffentlichten Dissertation „Einsatz neuronaler Netze im Distanzschutz", Seiten 71 bis 76 von T. Daistein bekannt, zum Erzeugen von Fehlerklassifizie¬ rungssignalen ein neuronales Netz einzusetzen. Dieses Netz ist in der Weise angelernt, daß es mit mindestens für 50.000 Störfälle simulierten Abtastwerten von Strom und Spannung beaufschlagt wird. Das Anlernen muß jeweils individuell für den jeweiligen Einbauort in einem Energieversorgungssystem durchgeführt werden, wodurch die Herstellungskosten eines mit einem solchen neuronalen Netz ausgerüsteten Schutzgeräteε extrem hoch werden, so daß es für einen praktischen Einsatz nicht in Frage kommt. Dem neuronalen Netz ist eine An¬ regeanordnung zugeordnet.

Die Erfindung geht von dem zuletzt behandelten bekannten Ver¬ fahren aus und betrifft demzufolge ein Verfahren zum Erzeugen von Fehlerklassifizierungssignalen, die in einem mehrphasigen Energieversorgungssystem von einer Schutzeinrichtung mit einer Anregeanordnung aus betrachtet im Fehlerfalle sich aus¬ bildende, fehlerbehaftete Schleifen bezeichnen, bei dem ein neuronales Netz verwendet wird, das mit fehlerbehaftete Schleifen simulierenden Eingangsgrößen angelernt ist, und bei

dem das neuronale Netz im Fehlerfalle zum Erzeugen der Feh¬ lerklassifizierungssignale an seinen Eingängen mit aus Strömen und Spannungen der Schleifen des Energieversorgungs¬ systems abgeleiteten Meßgrößen beaufschlagt wird, um an sei- nen Ausgängen die Fehlerklassifizierungssignale zu erhalten.

Der Erfindung liegt die Aufgabe zugrunde, das bekannte Ver¬ fahren so fortzuentwickeln, daß es mit vergleichsweise gerin¬ gem Aufwand durchführbar und daher auch in der Praxis ein- setzbar ist.

Zur Lösung dieser Aufgabe wird erfindungsgemäß ein neuronales Netz verwendet, das mit fehlerbehaftete Schleifen simulieren¬ den Eingangsgrößen in Form von unter Berücksichtigung der An- regekennlinie der Anregeanordnung gebildeten, normierten Re¬ sistanz- und Reaktanzgrößen angelernt ist; das so angelernte neuronale Netz wird zum Erzeugen der Fehlerklassifizierungs¬ signale im Fehlerfalle mit unter Berücksichtigung der Anrege¬ kennlinie normierten Resistanz- und Reaktanzmeßgrößen der Schleifen beaufschlagt.

Es ist zwar aus der deutschen Offenlegungsschrift

DE 43 33 257 AI ein Verfahren zum Gewinnen eines Fehlerkenn- zeichnungs-Signals mittels einer Neuronalnetz-Anordnung be- kannt, bei dem der Neuronalnetz-Anordnung normierte Span¬ nungswerte zugeführt werden, jedoch wird nach diesem Verfah¬ ren ein Fehlerkennzeichnungs-Signal erzeugt, mit dem eine Un¬ terscheidung zwischen einem Kurzschluß mit Lichtbogen und einem metallischen Kurzschluß ermöglicht ist; außerdem er- folgt die Normierung der Spannungswerte offenbar in üblicher

Weise und nicht mit unter Berücksichtigung einer Anregekennlinie normierter Resistanz- und Reaktanzmeßgrößen, was bei dem erfindungsgemäßen Verfahren wegen eines entspre¬ chenden Anlernvorganges der Neuronalnetz-Anordnung unbedingt erforderlich ist.

Entsprechendes gilt bezüglich der Verwendung normierter Ab¬ tastsignale hinsichtlich eines weiteren, aus der deutschen Offenlegungsschrift DE 43 33 260 AI bekannten Verfahrens, mit dem im Unterschied zum oben behandelten Verfahren und zum er- findungsgemäßen Verfahren ein Anregesignal in einer Selektiv¬ schutz-Anordnung gewonnen werden kann.

Es ist auch eine Distanzschutzeinrichtung bekannt (deutsche Patentschrift DE 44 33 406 Cl) , die eine Neuronalnetzanord- nung alε wesentlichen Bestandteil enthält. Diese Anordnung weist für jede auf dem zu überwachenden Abschnitt eines Ener¬ gieversorgungsnetzes mögliche Fehlerart jeweils ein eigenes neuronales Netz auf. Der Neuronalnetzanordnung ist eine Fhlerartbestimmungseinrichtung zugeordnet, die eingangsseitig an eine Merkmalsextraktionseinrichtung angeschlossen ist.

Ausgangsseitig ist diese Einrichtung mit Kontakteinrichtungen in einer Anzahl verbunden, die der der möglichen Fehlerarten entspricht. Die Ausgänge aller Kontakteinrichtungen sind zu einem gemeinsamen Ausgang geführt, an dem bei einem Fehler einer bestimmten Art auf dem zu überwachenden Abschnitt auf¬ grund einer Ansteuerung der entsprechenden Kontakteinrichtung ein Ausgangssignal des neuronalen Netzes auftritt, das für die Erfassung dieses bestimmten Fehlers vorgesehen iεt.

Es ist ferner ein Verfahren zum Erzeugen von Signalen bekannt (deutsche Offenlegungsschrift DE 43 33 258 AI), die die Art eines Fehlers im Hinblick auf einpolige Fehler gegen Erde, zweipolige Fehler mit Erdberührung, zweipolige Fehler ohne Erdberührung und dreipolige Fehler mit oder ohne Erdberührung kennzeichnen; Fehlerklassifizierungssignale, die sich im

Fehlerfalle ausbildende, fehlerbehaftete Schleifen bezeich¬ nen, werden also nicht erzeugt. Bei dem bekannten Verfahren wird ein einziges neuronales Netz mit mehreren Neuronen in seiner Ausgangsschicht verwendet, das mit in üblicher Weise normierten Strom- und Spannungswerten derart angelernt ist,

daß bei einem Fehler einer bestimmten Art jeweils ein Neuron der Ausgangsschicht ein Ausgangssignal abgibt.

Darüber hinaus ist es aus dem Buch von E. Schöneburg „Industrielle Anwendung Neuronaler Netze" 1993, Seite 51 bzw. 324 bekannt, im Rahmen einer Getriebediagnose mit Neuronalen Netzen alle Hochschaltungen der zu untersuchenden Getriebe mit einem Neuronalen Netz zu erfassen, indem die unterschied¬ lichen Reaktionszeiten und Rutschzeiten normiert werden.

Ein wesentlicher Vorteil des erfindungsgemäßen Verfahrens be¬ steht darin, daß es mit einem neuronalen Netz durchführbar ist, das für Einsätze an verschiedenen Orten von Energiever¬ sorgungssystemen einheitlich angelernt ist, so daß für ver- schiedene Einsatzzwecke „Kopien" des einmal angelernten neu¬ ronalen Netzes eingesetzt werden können. Dies ist darauf zu¬ rückzuführen, daß bei dem erfindungsgemäßen Verfahren das An¬ lernen des neuronalen Netzes nicht mit im Hinblick auf im Fehlerfalle sich ausbildende, fehlerbehaftete Schleifen simu- lierenden Strömen und Spannungen erfolgt, sondern mit fehler¬ behaftete Schleifen simulierenden, normierten Resistanz- und Reaktanzgrößen; im praktischen Einsatz müssen dann im Rahmen des erfindungsgemäßen Verfahrens im Hinblick auf die jewei¬ lige Anregekennlinie der Anregeanordnung aus den jeweils be- stimmten Resistanz- und Reaktanz-Meßgrößen normierte Resi¬ stanz- und Reaktanz-Meßgrößen gebildet werden, mit denen dann das neuronale Netz beaufschlagt wird. Durch Berücksichtigung der jeweiligen Anregekennlinie bzw. des jeweiligen Anrege¬ polygons bei der Bildung der normierten Resistanz- und Reak- tanz-Meßgrößen der Schleifen erfolgt somit bei dem erfin¬ dungsgemäßen Verfahren eine Anpassung an unterschiedliche Verhältnisse am jeweiligen Einbauort im jeweiligen Energie¬ versorgungssystem. Ein weiterer Vorteil des erfindungsgemäßen Verfahrens beεteht darin, daß aufgrund der Verwendung des entsprechend angelernten neuronalen Netzes die vorteilhafte

Möglichkeit besteht, auch in schwierigen Grenzsituation fehlerbehaftete Schleifen von tatsächlich nicht fehler¬ behafteten Schleifen eindeutig unterscheiden zu können.

Bei einer alternativen vorteilhaften Ausführungsform des er¬ findungsgemäßen Verfahrens wird erfindungsgemäß ein neurona¬ les Netz verwendet, das mit fehlerbehaftete Schleifen simu¬ lierenden Eingangsgrößen in Form von Resistanz- und Reak¬ tanzgrößen der Schleifen und die Lage dieser Größen in bezug auf die Anregekennlinie beschreibenden Einordnungssignalen angelernt ist; das so angelernte neuronale Netz wird zum Er¬ zeugen der Fehlerklassifizierungssignale im Fehlerfalle mit Resistanz- und Reaktanzmeßgrößen der Schleifen und mit die Lage dieser Meßgrößen in bezug auf die jeweilige Anregekenn- linie bezeichnenden Unterscheidungsεignalen beaufschlagt.

Auch diese Ausführungεform des erfindungsgemäßen Verfahrens beruht darauf, daß das neuronale Netz mit gewissermaßen nor¬ mierten Eingangsgrößen angelernt wird, indem bei dieser Aus- führungsform daε Anlernen deε neuronalen Netzes nicht nur mit fehlerbehaftete Schleifen simulierenden Eingangsgrößen in Form von Resistanz- und Reaktanzgrößen der Schleifen erfolgt, sondern zusätzlich unter Berücksichtigung von Einordnungs¬ signalen, die die Lage dieser Größen in bezug auf die Anre- gekennlinie der Anregeanordnung beschreiben. Dadurch läßt sich auch diese Auεführungεform deε erfindungεgemäßen Verfah- renε unabhängig von den jeweiligen Netzverhältnissen ohne weiteres an verschiedenen Orten von Energieversorgungs- syεtemen einsetzen, indem nur eine Anpaεεung an die jeweili- gen Gegebenheiten durch die im Hinblick auf die jeweilige An¬ regekennlinie der Anregeanordnung erzeugten Unterscheidungε- signale vorgenommen wird.

Zur Erläuterung der Erfindung ist in

Figur 1 ein Ausfuhrungsbeispiel einer Anordnung zur Durch¬ führung des erfindungsgemäßen Verfahrens mit einem mit normierten Resistanz- und Reaktanzgrößen ange¬ lernten neuronalen Netz und in

Figur 2 ein Ausführungsbeispiel einer Anordnung zur Durch¬ führung des erfindungsgemäßen Verfahrens mit einem mit Resistanz- und Reaktanzgrößen unter Berücksich¬ tigung von Unterεcheidungεsignalen angelernten neu¬ ronalen Netz dargestellt.

Der Figur 1 ist zu entnehmen, daß ein Analog-Digital-Wandler 1 eingangsseitig mit Strömen in den Leitern eines nicht dar¬ gestellten mehrphasigen Energieversorgungssystems proportio¬ nalen Strömen I über Stromwandler 2 und mit Spannungen an den Leitern proportionalen Spannungen U über Spannungswandler 3 beaufschlagt ist. Der Analog-Digital-Wandler 1 ist aus¬ gangsseitig über einen Datenbus 4 mit einer Anregeanordnung 5 verbunden, die nach Art einer Impedanzanregung auεgebildet εein kann und somit für jede Leiterschleife aus den Strömen und Spannungen der beiden beteiligten Leiter Impedanzen bildet und den jeweils gebildeten Impedanzzeiger dahingehend überprüft, ob er innerhalb der jeweiligen Anregekennlinie liegt. Die Anregeanordnung 5 ist außerdem mit einer Einrich¬ tung 6 zur Einstellung der Parameter der Anregekennlinie der Anregeanordnung 5 verεehen.

In der Anregeanordnung 5 werden im Hinblick auf vom Einbauort der Anordnung aus betrachtet im Fehlerfalle sich ausbildende Schleifen dahingehend auεgemessen, daß aus dem jeder Schleife zugeordneten Strom sowie zugeordneter Spannung eine Reεi- stanz-Meßgröße, beiεpielεweiεe RLl-E, und eine Reaktanz-Me߬ größe XLl-E gewonnen wird, wenn es sich bei diesem Fehlerfall um einen Kurzschluß zwischen einem (nicht dargestellten) Leiter LI einer ebenfalls nicht gezeigten mehrphasigen Energieversorgungsleitung und Erde E handelt, somit also eine

Leiter-Erde-Schleife durch den Fehler gebildet ist. Die εo gewonnene Resistanz- bzw. Reaktanz-Meßgröße wird im Hinblick auf die mittels der Einrichtung 6 vorgegebene Anregekennlinie bzw. das vorgegebene Anregepolygon dadurch normiert, daß unter Bezugnahme auf die Anregekennlinie mittels Quotien¬ tenbildung normierte Resistanz- bzw. Reaktanz-Meßgrößen RLl-E und XLl-E gebildet werden. Diese normierten Resistanz- bzw. Reaktanzgrößen werden Eingängen 7 und 8 eines neuronalen Netzes 9 zugeführt, das über weitere jeder möglichen Schleife zugeordnete Eingänge mit entsprechenden weiteren Resiεtanz- bzw. Reaktanz-Meßgrößen beaufεchlagt werden kann; nur bei¬ spielsweise ist zusätzlich gezeigt, daß an weiteren Eingängen 10 und 11 des neuronalen Netzes 9 eine normierte Resistanz- Meßgröße RL3-L1 und eine weitere normierte Reaktanz-Meßgröße XL3-L1 anstehen kann, wenn ein Fehler zwischen den Leitern L3 und Ll der nicht dargestellten mehrphasigen Ener¬ gieversorgungsleitung aufgetreten ist. An jedem Eingang 7, 8 sowie 10, 11 und weiteren Eingängen des neuronalen Netzes 9 liegt ein Eingangsneuron des neuronalen Netzes 9, das in be- kannter Weise als ein mehrschichtiges neuronales Netz ausge¬ führt sein kann. Das neuronale Netz 9 weist eine Reihe von Ausgängen auf, von denen in der Figur 1 nur die Ausgänge 12 und 13 dargestellt sind. Die Zahl der Ausgänge bemißt sich nach der Anzahl der Schleifen, die mit dem neuronalen Netz 9 im Hinblick auf die jeweilige Energieversorgungsleitung als fehlerbehaftet erkannt werden sollen. Die Ausgänge deε neuro¬ nalen Netzes 9 stellen Ausgänge jeweils eines Ausgangεneuronε deε neuronalen Netzes 9 dar. An dem Ausgang 12 tritt ein Fehlerklassifizierungssignal Fl auf, wenn ein Fehler zwisc en dem Leiter Ll und Erde E aufgetreten iεt, während beispiel¬ weise am Ausgang 13 ein Signal F2 erscheint, wenn ein Fehler zwischen dem Leiter L3 und Ll der Energieversorgungsleitung aufgetreten ist .

An die Ausgänge 12 und 13 des neuronalen Netzes 9 iεt eine Auswahlschaltung 14 angeschloεεen, die eingangεseitig mit einem Datenbus 15 an den Ausgang des Analog-Digital-Wandlers 1 angeschlossen ist. Entsprechend den Signalen an den Ausgän- gen 12 und 13 des neuronalen Netzeε 9 werden von der Auεwahl- εchaltung 14 die den fehlerbehafteten Schleifen zugeordneten Meßgrößen am Ausgang des Wandlers 1 auf eine über einen Aus- gangsdatenbuε 16 der Auswahlschaltung 14 nachgeordnete, nicht dargestellte Schutzeinrichtung, beispielsweise eine Distanzschutzeinrichtung, zugeführt, die daraufhin im Zuge der Energieversorgungsleitung liegende Leistungsεchalter be¬ tätigt .

Wesentlich für die Wirkungεweiεe der Anordnung nach Figur 1 ist, daß das neuronale Netz 9 so angelernt ist, daß es aus den ihm zugeführten normierten Resistanz- und Reaktanzme߬ größen, z.B. RLl-E und XLl-E und RL3-L1 und XL3-L1 an den Eingängen 7 und 8 sowie 10 und 11, an den Ausgängen 12 und 13 Fehlerklasεifizierungssignale Fl und F2 erzeugt. Dies ist dadurch erreicht, daß das neuronale Netz 9 mit normierten Resistanz- und Reaktanzgrößen angelernt ist, mit denen feh¬ lerbehaftete Schleifen simuliert sind. Durch Berücksichtigung der Anregekennlinie der Anregeanordnung bei der Bildung der normierten Resistanz- und Reaktanzgrößen iεt das neuronale Netz 9 unabhängig vom jeweiligen Einsatzort anwendbar, sofern ihm eingangsseitig im jeweiligen Einsatzfalle normierte Resistanz- und Reaktanz-Meßgrößen zugeführt werden. Dieε iεt gewährleistet durch die Einrichtung 6, von der die bevorzugt in Form eines Rechners ausgebildete Anregeanordnung 5 in die Lage gesetzt wird, die normierten Resistanz- und Reaktanz- Meßgrößen zu bilden, die das neuronale Netz 9 aufgrund seines Anlernens erkennt und mit denen eε gezielt und zuverläεεig Fehlerklassifizierungssignale, unter anderem Fl und F2, erzeugt .

Bei der Anordnung gemäß Figur 2 sind mit der Anordnung nach Figur 1 übereinstimmende Bestandteile mit gleichen Bezugszei¬ chen versehen. Die Anregeanordnung 20 ist hier in anderer Weise ausgeführt, da sie an ihren Ausgängen unnormierte Resi- stanz- und Reaktanz-Meßgrößen RLl-E, XLl-E bzw. RL3-L1, XL3-L1 ausgibt, also Meßgrößen, die sich aus Strömen und Spannungen der jeweiligen Schleifen errechnen lassen. Die unnormierten Resistanz- und Reaktanz-Meßgrößen RLl-E und XLl-E werden Eingängen 21 und 22 eines neuronalen Netzes 23 zugeführt. Außerdem wird einem weiteren Eingang 24 des neuro¬ nalen Netzes 23 ein Unterscheidungssignal UL1-E von der Anre¬ geanordnung 20 zugeführt. Dieses Unterscheidungssignal ULl-E zeigt an, ob mit den zugeordneten Resistanz- bzw. Reaktanz- Meßgrößen RLl-E und XLl-E ein Zeiger beschrieben ist, der in- nerhalb der durch die Einrichtung 6 vorgegebenen Anregekenn¬ linie bzw. des vorgegebenen Anregepolygons liegt. Entεpre- chend iεt beiεpielsweise an weiteren Eingängen 25 und 26 des neuronalen Netzes 23 eine unnormierte Reaktanz-Meßgröße RL3- Ll und XL3-L1 angeεchloεsen sowie an einen weiteren zugeord- neten Eingang 27 ein Unterscheidungεsignal UL3-L1, das auch hier angibt, ob die genannten Meßgrößen einen Zeiger inner¬ halb der Anregekennlinie bzw. innerhalb des Anregepolygons beschreiben. An Ausgängen beispielsweise 28 und 29 des neuro¬ nalen Netzes 23 werden dann Fehlerklassifizierungssignale F3 und F4 abgegeben, die beispielsweise die Schleife Ll-E der nicht dargestellten Energieversorgungsleitung als fehlerbe¬ haftete Schleife und die Schleife L3-L1 als weitere fehlerbe¬ haftete Schleife kennzeichnen.

Das neuronale Netz 23 ist in anderer Weise angelernt als das neuronale Netz 9 gemäß Figur 1. Das neuronale Netz 23 ist nämlich mit Resistanz- und Reaktanzgrößen angelernt unter Be¬ rücksichtigung von Einordnungεsignalen, die jeweils angeben, ob die paarweise zugeführten Größen einen innerhalb der Anre- gekennlinie oder außerhalb der Anregekennlinie liegenden

Zeiger beschreiben. Dadurch ist eine „Normierung" erzielt, so daß die Anordnung gemäß Figur 2 auch an verschiedenen Einbau¬ orten in einem Netz einwandfrei arbeitet und über eine Aus¬ wahlschaltung gemäß der Auswahlschaltung 14 nach Figur 1 einer nicht dargestellten Schutzeinrichtung, insbesondere einer Distanzεchutzeinrichtung, die Meßgrößen zuleitet, die im jeweiligen Fehlerfall auεzuwerten sind.