Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
PROCESS FOR PRODUCING A HOT DIP-COATED STEEL SHEET AND HOT DIP-COATED STEEL SHEET
Document Type and Number:
WIPO Patent Application WO/2022/013038
Kind Code:
A1
Abstract:
The invention relates to processes for producing a hot dip-coated steel sheet, wherein the process comprises the following steps: providing a steel sheet; hot dip coating the steel sheet with a zinc-based coating, wherein the steel sheet passes through a melt bath comprising aluminium at between 0.1% and 4.0% by weight and optionally magnesium at between 0.1% and 4.0% by weight, the balance being zinc and unavoidable impurities; stripping the steel sheet still coated with liquid melt to establish a defined thickness of the coating, which is then converted to a solidified state. The invention further relates to a hot dip-coated steel sheet having a zinc-based coating that includes aluminium at between 0.1% and 4.0% by weight and optionally magnesium at between 0.1% and 4.0% by weight, the balance being zinc and unavoidable impurities.

Inventors:
CETINKAYA BURAK WILLIAM (DE)
JUNGE FABIAN (DE)
SCHULZ JENNIFER (DE)
Application Number:
PCT/EP2021/068863
Publication Date:
January 20, 2022
Filing Date:
July 07, 2021
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
THYSSENKRUPP STEEL EUROPE AG (DE)
International Classes:
C23C2/02; C23C2/06; C23C2/14; C23C2/16; C23C2/18; C23C2/20; C23C2/26; C23C28/00
Domestic Patent References:
WO2012091385A22012-07-05
Foreign References:
EP2876182A12015-05-27
US20090123651A12009-05-14
US20180002798A12018-01-04
EP2297372B12012-03-28
Attorney, Agent or Firm:
THYSSENKRUPP STEEL EUROPE AG (DE)
Download PDF:
Claims:
Ansprüche

1. Verfahren zur Herstellung eines schmelztauchbeschichteten Stahlblechs, wobei das Verfahren folgende Schritte umfasst:

- Bereitstellen eines Stahlblechs,

- Schmelztauchbeschichten des Stahlblechs mit einem zinkbasierten Überzug, wobei das Stahlblech ein Schmelzbad durchläuft, welches Aluminium zwischen 0, 1 und 4,0 Gew.-%, Magnesium zwischen 0,1 und 4,0 Gew.-% und Rest Zink und unvermeid bare Verunreinigungen umfasst,

- Abstreifen des noch mit flüssiger Schmelze beschichteten Stahlblechs zur Ein stellung einer vorgegebenen Dicke des Überzugs, welche anschließend in einen erstarrten Zustand überführt wird, dadurch gekennzeichnet, dass das Abstreifen in einer inerten Atomsphäre erfolgt, welche Wasserstoff zwischen 0,1 und 10 Vol.-%, Rest Stickstoff und unvermeidbare Verunreinigungen enthält und einen Taupunkt zwischen -50°C und +5°C besitzt.

2. Verfahren nach Anspruch 1, wobei das Abstreifen mit einem aktiven Abkühlen durch geführt wird, wobei das aktive Abkühlen mit einer Kühlrate von mindestens 3 K/s erfolgt.

3. Verfahren nach einem der vorhergehenden Ansprüche, wobei das Abkühlen aktiv mit einer Kühlrate von mindestens 3 K/s durchgeführt wird.

4. Verfahren nach einem der vorhergehenden Ansprüche, wobei der zinkbasierte Überzug AI und Mg mit jeweils mindestens 0,5 Gew.- % aufweist.

5. Verfahren nach einem der vorhergehenden Ansprüche, wobei der zinkbasierte Überzug eine Dicke zwischen 2 und 20 pm aufweist.

6. Verfahren nach einem der vorhergehenden Ansprüche, wobei sich eine Oxidschicht auf dem Überzug ausbildet, welche eine Dicke kleiner 10 nm aufweist.

7. Verfahren nach einem der vorhergehenden Ansprüche, wobei das schmelztauch- beschichtete Stahlblech dressiert wird.

8. Verfahren nach einem der vorhergehenden Ansprüche, wobei das schmelztauch- beschichtete Stahlblech phosphatiert wird.

9. Verfahren nach einem der vorhergehenden Ansprüche, wobei das schmelztauch- beschichtete Stahlblech lackiert wird.

10. Schmelztauchbeschichtetes Stahlblech mit einem zinkbasierten Überzug, welcher Aluminium zwischen 0,1 und 4,0 Gew.-%, Magnesium zwischen 0,1 und 4,0 Gew.-% und Rest Zink und unvermeidbare Verunreinigungen aufweist, dadurch gekennzeichnet, dass eine Oxidschicht auf dem Überzug ausgebildet ist, welche eine Dicke kleiner lOnm aufweist.

Description:
Verfahren zur Herstellung eines schmelztauchbeschichteten Stahlblechs und schmelztauchbeschichtetes Stahlblech

Die Erfindung betrifft ein Verfahren zur Herstellung eines schmelztauchbeschichteten Stahl blechs, wobei das Verfahren folgende Schritte umfasst:

Bereitstellen eines Stahlblechs,

Schmelztauchbeschichten des Stahlblechs mit einem zinkbasierten Überzug, wobei das Stahlblech ein Schmelzbad durchläuft, welches Aluminium zwischen 0,1 und 4,0 Gew.-%, Magnesium zwischen 0,1 und 4,0 Gew.-% und Rest Zink und unvermeidbare Verunreinigungen umfasst,

Abstreifen des noch mit flüssiger Schmelze beschichteten Stahlblechs zur Ein stellung einer vorgegebenen Dicke des Überzugs, welche anschließend in einen erstarrten Zustand überführt wird.

Des Weiteren betrifft die Erfindung auch ein schmelztauchbeschichtetes Stahlblech mit einem zinkbasierten Überzug.

Aus der Patentschrift EP 2 297 372 Bl ist zum Beispiel ein Verfahren zum Schmelztauch beschichten eines Stahlblechs bekannt, mit dem Ziel ein mit einem metallischen Überzug beschichtetes Stahlblech mit einer geringen Welligkeit bereitzustellen. Zum einen soll das Abstreifen zur Einstellung des Überzugs in einer oxidativen Atmosphäre durchgeführt werden, um eine Reduktion der Welligkeit nach dem Verfestigen des Überzugs auf dem Stahlblech bewirken zu können. Zum anderen soll eine Abkühlung des Stahlblechs mit unterschiedlichen Kühlraten durchgeführt werden: das Stahlblech mit dem noch in flüssiger Form applizierten Überzug soll nach Verlassen der Abstreifeinheit mit einer Kühlrate kleiner 5 K/s bis zum Start der Erstarrung des Überzugs abgekühlt werden; nach dem Start bis zum Ende der Erstarrung des Überzugs soll die Abkühlung des Stahlblechs mit einer Kühlrate größer 20 K/s betragen, um eine bessere, reduzierte Welligkeit bereitstellen zu können.

Um eine erfolgreiche Lackanbindung an Stahlblechen gewährleisten zu können, ist eine chemische Behandlung und Modifikation der Stahlblechoberfläche erforderlich. Im Automobil bereich wird im Rahmen eines Phosphatierungsprozesses ein hoher Aufwand betrieben, damit auf einem in der Regel schmelztauchbeschichteten (feuerverzinkten) Überzug ein flächen deckendes Wachstum von Phosphatkristallen eingestellt und so eine ausreichende Adhäsion und ein homogenes Erscheinungsbild des Lackes erreicht werden kann. Bevor es zu einer Kristallbildung kommt, wird die Oberfläche des schmelztauchveredelten Stahlblechs durch die in der Phosphatierungslösung vorhandene Phosphorsäure „angebeizt“, um die nicht reaktive Oxidschicht vom Überzug zumindest teilweise zu entfernen/lösen. Erst nachdem diese Reaktionsbarriere abgelöst wird/ist, kann eine erfolgreiche Konversionschemie ausgebildet werden. Auch im Coil-Coating-Bereich können Vorbehandlungen durchgeführt werden, welche häufig auch „beizende“ Komponenten beinhalten, um die vorhandene Oxidschicht an schmelztauchveredelten Stahlblechen oder auch blanken (nicht veredelten) Stahlblechen zumindest teilweise zu entfernen/lösen und dadurch die Oberfläche für weitere Behandlungs schritte zu aktivieren.

Je nach Überzug bilden diese prozess- und zusammensetzungsbedingt nach der Applikation unterschiedlich dicke Oxidschichtdicken aus. Zum Beispiel besitzen elektrolytisch verzinkte Stahlbleche prozessbedingt Oxidschichten (ZnO), die kleiner als 10 nm sind. Bei dem Schmelztauchveredeln (Feuerverzinken) bilden sich deutlich dickere Oxidschichten aus, die je nach Schmelztauchzusammensetzung eine unterschiedliche chemische Zusammensetzung aufweisen. Derartige schmelztauchveredelte Überzüge reagieren unmittelbar nach dem Ab streifen weiter mit der umgebenden Luftatmosphäre. Je nach Anlage können die schmelz tauchveredelten Stahlbleche noch Kühlstrecken durchlaufen, in welchen sie mit Luft aktiv gekühlt werden. Der Kontakt des Stahlblechs mit der Luft verstärkt und beschleunigt die Oxidationsvorgänge und sorgt dafür, dass die sauerstoffaffinen Elemente im Überzug bevorzugt an die Oberfläche diffundieren. Im Allgemeinen bildet sich hierdurch eine dicke, tiefe in den Überzug reichende Oxidschicht aus.

Sowohl im Automobil- als auch im Coil-Coating-Bereich bedarf es einer gewissen Kontaktzeit mit dem „beizenden“ Medium, die im Idealfall so lang sein sollte, dass die Oxidschicht auf der Oberfläche der Stahlbleche im Wesentlichen vollständig abgetragen wird. Ist dies nicht der Fall, kann es beim Phosphatieren zu einer Fleckenausbildung kommen, die auf lokal unter schiedliches Kristallwachstum zurückzuführen ist. Auch die Anbindung von automobiltypischen Haftvermittlern oder Vorbehandlungen aus dem Coil-Coating-Bereich, die für eine Applikation auf metallische Überzüge konzipiert worden sind, können durch die vorhandene, insbesondere dickere Oxidschicht nicht ihre Wirkung vollständig und zufriedenstellend entfalten. Eine fehlerhafte Anbindung derartiger Systeme bringt im Allgemeinen eine schlechtere Klebe eignung und/oder eine schlechtere Lackhaftung mit sich. Bereiche, in denen die Oxidschicht nicht vollständig abgebeizt worden ist, können im ungünstigsten Fall Sollbruchstellen darstellen.

Um diesem Nachteil entgegenzutreten, besteht Bedarf an einem Verfahren zum Schmelz tauchveredeln eines Stahlblechs, mit welchem sich eine Oxidschicht mit einer im Vergleich zum Stand der Technik kleineren Oxidschichtdicke auf dem metallischen Überzug des Stahlblechs ausbilden kann.

Die Aufgabe der Erfindung ist es, ein Verfahren zur Herstellung eines schmelztauch- beschichteten Stahlblechs anzugeben, mit welchem die Phosphatierbarkeit und/oder Lack- anmutung von schmelztauchbeschichteten Stahlblechen verbessert werden können sowie ein entsprechendes schmelztauchbeschichtetes Stahlblech anzugeben.

Gelöst wird die Aufgabe in Bezug auf das Verfahren mit den Merkmalen des Patentanspruchs 1 und in Bezug auf das Stahlblech mit den Merkmalen des Patentanspruchs 10.

Die Erfinder haben überraschend festgestellt, dass positiv Einfluss auf die Verbesserung der Phosphatierbarkeit und/oder Lackanmutung dadurch genommen werden kann, indem nur eine im Vergleich zum Stand der Technik geringere Oxidschichtdicke nach dem Applizieren des flüssigen Überzugs auf dem Stahlblech entstehen kann, wenn das Abstreifen in einer inerten Atomsphäre erfolgt, welche Wasserstoff zwischen 0,1 und 10 Vol.-%, Rest Stickstoff und unvermeidbare Verunreinigungen enthält und einen Taupunkt zwischen -50°C und +5°C besitzt. Durch die gezielte Einstellung des Taupunkts zwischen -50°C und +5°C, insbesondere zwischen -40°C und 0°C, vorzugsweise zwischen -30°C und -10°C, kann bereits die Ausbildung einer dicken Oxidschicht verhindert werden, da durch die Absenkung des Taupunktes die Atmosphäre an Feuchtigkeit verliert, sodass sich weniger Wassermoleküle bilden können, die mit den sauerstoffaffinen Legierungselementen an der Oberfläche des Überzuges zu Metalloxiden oder -hydroxiden reagieren, und demnach die Ausbildung dickerer Oxidschichten verhindert wird. Dadurch können sich Oxidschichten mit bis zu 10 nm auf dem Überzug ausbilden, wobei neben der geringen Oxidschichtdicke sich zudem auch eine im Wesentlichen homogene Dicke auf dem Überzug einstellt. Das Stahlblech wird mit einem zinkbasierten Überzug schmelztauchbeschichtet, wobei das Stahlblech ein Schmelzbad durchläuft, welches Aluminium zwischen 0,1 und 4,0 Gew.-%, Magnesium zwischen 0,1 und 4,0 Gew.-% und Rest Zink und unvermeidbare Verunreinigungen umfasst. Als Verunreinigungen im Schmelzbad können Elemente wie Bismut, Zirkon, Nickel, Chrom, Blei, Titan, Mangan, Silizium, Kalzium, Zinn, Lanthan, Cer, Eisen in Gehalten einzeln oder kumuliert bis zu 0,4 Gew.-% vorhanden sein. Zur Einstellung einer vorgegebenen Dicke des Überzugs wird die noch im flüssigen Zustand auf dem Stahlblech applizierte Schmelze abgestreift, dadurch, dass nach dem Verlassen des Schmelzbads das mit flüssiger Schmelze beschichtete Stahlblech durch eine Abstreifvorrichtung hindurchgeführt wird, welche Mittel aufweist, beispielsweise Düsen, insbesondere Schlitzdüsen, welche beidseitig auf das Stahlblech vorzugsweise mittels eines Gasstroms einwirken. Nach dem Einstellen der vorgegebenen Dicke wird die noch im flüssigen Zustand auf dem Stahlblech befindliche Schmelze anschließend in einen erstarrten Zustand überführt. Abstreifvorrichtungen sind aus dem Stand der Technik bekannt.

Je nach Zusammensetzung des Schmelzbads kann der erstarrte Überzug auf dem Stahlblech unterschiedlich ausgeführt werden, je nach Anforderung und Einsatzzweck. In dem zink basierten Überzug sind neben Zink und unvermeidbaren Verunreinigungen zusätzliche Elemente wie Aluminium mit einem Gehalt zwischen 0,1 und 4,0 Gew.-% und Magnesium mit einem Gehalt zwischen 0,1 und 4,0 Gew.-% enthalten sein. Stahlbleche mit zinkbasiertem Überzug weisen einen sehr guten kathodischen Korrosionsschutz auf, welcher seit Jahren im Automobilbau eingesetzt wird. Ist ein verbesserter Korrosionsschutz vorgesehen, weist der Überzug zusätzlich Magnesium mit einem Gehalt von mindestens 0,1 Gew.-%, insbesondere von mindestens 0,3 Gew.-%, vorzugsweise von mindestens 0,5 Gew.-% auf. Aluminium ist zusätzlich zu Magnesium mit einem Gehalt von mindestens 0,1 Gew.-%, insbesondere von mindestens 0,3 Gew.-%, vorzugsweise von mindestens 0,5 Gew.-% vorhanden sein. Besonders bevorzugt weist der zinkbasierte Überzug Aluminium und Magnesium mit jeweils mindestens 0,5 Gew.-% auf, um eine verbesserte kathodische Schutzwirkung bereitstellen zu können.

Unter Stahlblech ist ein Stahlflachprodukt in Bandform oder Blech-/Platinenform zu verstehen. Es weist eine Längserstreckung (Länge), eine Querstreckung (Breite) sowie eine Höhen erstreckung (Dicke) auf. Das Stahlblech kann ein Warmband (warmgewalztes Stahlband) oder Kaltband (kaltgewalztes Stahlband) sein oder aus einem Warmband oder aus einem Kaltband hergestellt sein. Die Dicke des Stahlblechs beträgt beispielsweise 0,5 bis 4,0 mm, insbesondere 0,6 bis 3,0 mm, vorzugsweise 0,7 bis 2,5 mm.

Weitere vorteilhafte Ausgestaltungen und Weiterbildungen gehen aus der nachfolgenden Beschreibung hervor. Ein oder mehrere Merkmale aus den Ansprüchen, der Beschreibung wie auch der Zeichnung können mit einem oder mehreren anderen Merkmalen daraus zu weiteren Ausgestaltungen der Erfindung verknüpft werden. Es können auch ein oder mehrere Merkmale aus den unabhängigen Ansprüchen durch ein oder mehrere andere Merkmale verknüpft werden.

Gemäß einer Ausgestaltung des erfindungsgemäßen Verfahrens wird das Abstreifen mit einem aktiven Abkühlen durchgeführt, wobei das aktive Abkühlen mit einer Kühlrate von mindestens 3 K/s erfolgt. Das Abstreifen mittels eines Gasstroms wird temperiert durchgeführt, soll heißen, dass das Gas, welches zum Abstreifen auf die flüssige Schmelze auf dem Stahlblech einwirkt, derart auf eine bestimmte Temperatur temperiert wird, welche insbesondere abhängig von dem Gasdurchfluss (Geschwindigkeit, Impuls) zu einer Abkühlung der flüssigen Schmelze und damit zu einer Initiierung der Erstarrung führt. Es ist von Vorteil eine schnelle Erstarrung nach der Benetzung des Stahlblechs mit der flüssigen Schmelze zu ermöglichen, um die Möglichkeit der Diffusion von Sauerstoff in den Überzug gering zu halten. Insbesondere beträgt die Kühlrate mindestens 5 K/s, vorzugsweise mindestens 8 K/s, bevorzugt mindestens 11 K/s, weiter bevorzugt mindestens 14 K/s, um die Ausbildung einer dicken Oxidschicht zu vermeiden.

Gemäß einer Ausgestaltung des erfindungsgemäßen Verfahrens wird das Abkühlen aktiv mit einer Kühlrate von mindestens 3 K/s durchgeführt. Die auf dem Stahlblech befindliche flüssige Schmelze kann vor, während und/oder nach dem Abstreifen aktiv gekühlt werden, beispiels weise der inerten Atmosphäre, welche entsprechend temperiert wird, um insbesondere ab hängig von der Durchlaufgeschwindigkeit des Stahlblechs (Verweilzeit) eine aktive Abkühlung mit einer Kühlrate von mindestens 3 K/s zu bewirken, welche zu einer Abkühlung der flüssigen Schmelze und damit zu einer Initiierung der Erstarrung führt. Es ist von Vorteil eine schnelle Erstarrung nach der Benetzung des Stahlblechs mit der flüssigen Schmelze zu ermöglichen, um die Möglichkeit der Diffusion von Sauerstoff in den Überzug gering zu halten. Insbesondere beträgt die Kühlrate mindestens 5 K/s, vorzugsweise mindestens 8 K/s, bevorzugt mindestens 11 K/s, weiter bevorzugt mindestens 14 K/s, um die Ausbildung einer dicken Oxidschicht zu vermeiden. Gemäß einer Ausgestaltung des erfindungsgemäßen Verfahrens weist der zinkbasierte Überzug eine Dicke zwischen 2 und 20 gm, insbesondere zwischen 4 und 15 gm, vorzugsweise zwischen 5 und 12 gm, auf. Dies entspricht der vorgegebenen Dicke, welche gezielt beim Abstreifen der noch flüssigen Schmelze vor der Erstarrung einstellbar ist.

Gemäß einer Ausgestaltung des erfindungsgemäßen Verfahrens bildet sich eine Oxidschicht auf dem Überzug aus, welche eine Dicke kleiner lOnm aufweist. Abhängig von den vorbe schriebenen Prozessparametern kann sich auch eine Oxidschichtdicke ausbilden, welche insbesondere kleiner als 8nm, vorzugsweise kleiner als 6nm, bevorzugt kleiner als 5nm ist. Je geringer die Oxidschichtdicke ausfällt, können bei Bedarf und im Falle eines insbesondere flächendeckenden Abtrags der Oxidschicht die Kontaktzeiten mit zum Beispiel sauren Medien verkürzt werden.

Gemäß einer Ausgestaltung des erfindungsgemäßen Verfahrens wird das schmelztauch- beschichtete Stahlblech dressiert. Durch das Dressieren wird in das schmelztauchbeschichtete Stahlblech eine Oberflächenstruktur eingeprägt, welche beispielsweise eine deterministische Oberflächenstruktur sein kann. Unter deterministischer Oberflächenstruktur sind insbesondere regelmäßig wiederkehrende Oberflächenstrukturen zu verstehen, welche eine definierte Form und/oder Ausgestaltung bzw. Dimensionierung aufweisen. Insbesondere gehören hierzu zudem Oberflächenstrukturen mit einer (guasi-)stochastischen Anmutung, die sich aus stochastischen Formelementen mit einer wiederkehrenden Struktur zusammensetzen. Alternativ ist auch das Einbringen einer stochastischen Oberflächenstruktur denkbar.

Gemäß einer Ausgestaltung des erfindungsgemäßen Verfahrens wird das schmelztauch beschichtete Stahlblech phosphatiert. Im automobiltypischen Phosphatierungsprozess kommt es durch alkalische Reinigung zu einer Modifizierung und ggf. zur Ausdünnung der sich im konventionellen Schmelztauchbeschichten einstellenden (native) Oxidschicht auf dem Überzug. Um die dicke Oxidschicht im Tauchphosphatierungsprozess zu modifizieren respektive aktivieren wird mehr Zeit benötigt als bei der erfindungsgemäß sich einstellenden geringeren Oxidschichtdicke, so dass dadurch der Phosphatierungsprozess mehr Zeit zur Verfügung hat, um eine flächenendeckende Phosphatschicht auszubilden. Alternativ oder zusätzlich könnte der Phosphatierungsprozess beschleunigt werden. Gemäß einer Ausgestaltung des erfindungsgemäßen Verfahrens wird das schmelztauch- beschichtete Stahlblech lackiert. Vorzugsweise wird das schmelztauchbeschichtete Stahlblech zunächst phosphatiert und anschließend lackiert.

Gemäß einer zweiten Lehre wird ein schmelztauchbeschichtetes Stahlblech mit einem zink basierten Überzug angegeben, welcher Aluminium zwischen 0,1 und 4,0 Gew.-%, Magnesium zwischen 0,1 und 4,0 Gew.-% und Rest Zink und unvermeidbare Verunreinigungen aufweist. Erfindungsgemäß ist eine Oxidschicht auf dem Überzug ausgebildet, welche eine Dicke kleiner lOnm aufweist. Insbesondere ist die Dicke der Oxidschicht im Wesentlichen homogen auf dem Überzug vorhanden. Im Wesentlichen soll heißen, dass Schwankungen beispielsweise lokal bis zu +/- l,5nm möglich sind. Die Messung der Oxidschichtdicke kann beispielsweise mittels Röntgenphotoelektronenspektroskopie durch eine Tiefenprofilmessung durchgeführt werden, wobei die bei der Berechnung der Oxidschichtdicke zugrundeliegende Abtragrate beispiels weise der von Siliziumdioxid auf einem Siliziumwafer entspricht.

Um Wiederholungen zu vermeiden, wird auf die Ausführungen in Bezug auf das erfindungs gemäße Verfahren verwiesen.

Im Folgenden werden konkrete Ausgestaltungen der Erfindung im Detail näher erläutert:

Ein konventionelles Stahlblech der Güte DC04, in Form eines Stahlbands mit der Dicke 0,7mm, wurde in einem konventionellen Schmelztauchbeschichtungsprozess mit einem zinkbasierten Überzug beschichtet, wobei das Stahlband durch ein Schmelzbad mit AI = 1,8 Gew.-%, Mg = 1,4 Gew.-%, Rest Zink und unvermeidbare Verunreinigungen hindurchgeführt wurde. Die mittlere Bandgeschwindigkeit betrug 90 bis 110m/min. Das Stahlband wurde aus dem Schmelzbad herausgeführt und einer konventionellen Abstreifvorrichtung zugeführt, welche Schlitzdüsen aufwies, welche beidseitig auf die auf dem Stahlband flüssige Schmelze einwirkten und überflüssige Schmelze abstreiften, wobei der Gasstrom aus den Schlitzdüsen derart eingestellt wurde, dass sich nach dem Erstarren des zinkbasierten Überzugs eine Dicke von und 7pm einstellte. Der Überzug wies eine Zusammensetzung von AI = 1,6 Gew.-% und Mg = 1,1 Gew.-%, Rest Zink und unvermeidbare Verunreinigungen auf. Das Abstreifen erfolgte an Luftatmosphäre und auch als das Gas zum Abstreifen wurde Luft verwendet. Auch die anschließende Abkühlung erfolgte mit Umgebungsluft mit einer Kühlrate von 7 K/s. Bedingt durch den forcierten Kontakt mit der Luft wurden die Oxidationsvorgänge verstärkt und beschleunigt und sorgten dafür, dass die sauerstoffaffinen Elemente im Überzug bevorzugt an die Oberfläche diffundierten. Aus dem schmelztauchbeschichteten Stahlband wurde eine Probe abgeschnitten und weiter untersucht. Es wurde festgestellt, dass sich infolge des konventionellen Schmelztauchbeschichtungsprozesses eine dicke, tiefe in den Überzug reichende Oxidschicht ausbildet, welche inhomogen auf der Oberfläche des Überzugs verteilt war. Es wurde an drei Stellen mittels Röntgenphotoelektronenspektroskopie gemessen und Dicken zwischen 17 und 33 nm gemessen. Im Mittel betrug die Oxidschichtdicke 24nm mit einer Standardabweichung von 7nm. Eine weitere Probe wurde aus dem schmelztauchbeschichteten Stahlband entnommen und einer Phosphatierung zugeführt, wobei die Probe für 120s eine Phosphatierungslösung ohne vorherige Aktivierung getaucht wurde. Figur 1 zeigt das Phosphatierungsbild, aufgenommen mittels Rasterelektronenmikroskopie. Gut zu erkennen ist, dass Phosphatkristalle aufgrund der vorhandenen relativ dicken Oxidschicht mit unter schiedlichen Größen ungleichmäßig und inhomogen verteilt Vorlagen.

Mit gleichen Schmelztauchbeschichtungsparametern und gleichem Stahlblech (Stahlband) wurde eine weitere Untersuchung durchgeführt, wobei jedoch das Abstreifen erfindungsgemäß in einer inerten Atmosphäre mit H 2 = 5 Vol.-%, Rest N 2 und unvermeidbaren Verunreinigungen und einem Taupunkt von -20°C durchgeführt wurde. Zwischen dem Austreten aus dem Schmelzbad und dem Hindurchführen durch eine Abstreifvorrichtung wurde ein Kontakt mit Luft verhindert. Mit anderen Worten, der Bereich des Austritts des Stahlblechs aus dem Schmelzbad bis zur Abstreifvorrichtung wurde mit der vorgenannten Zusammensetzung beaufschlagt, wobei ein Luftzutritt durch gezielte Anordnung von Düsen zur Erzeugung der inerten (homogenen) Atmosphäre ausgeschlossen wurde, wobei die inerte Atmosphäre derart temperiert war, so dass eine aktive Abkühlung mit einer Kühlrate von 7 K/s erfolgen konnte. Nach dem Abstreifen, wobei Stickstoff als Gas zum Abstreifen, um die Oxidation so gering wie möglich zu halten, verwendet wurde, wobei die Parameter analog zu dem konventionellen Beispiel eingestellt wurden, bildete sich ein zinkbasierter Überzug auf dem Stahlblech/-band mit einer Dicke von 7 pm aus. Bis zur vollständigen Erstarrung des Überzugs wurde das schmelztauchbeschichtete Stahlband unter Ausschluss von Luft durch einen Tunnel geführt und darin abgekühlt, wobei die Kühlrate von 7 K/s beibehalten wurde. Aus dem schmelztauchbeschichteten Stahlband wurde eine Probe abgeschnitten und weiter untersucht. Es wurde festgestellt, dass sich infolge des erfindungsgemäßen Schmelztauchbeschichtungsprozesses eine dünne Oxidschicht aus bildet hatte, welche im Wesentlichen homogen auf der Oberfläche des Überzugs verteilt war. Es wurde an drei Stellen mittels Röntgenphotoelektronenspektroskopie gemessen und durch gehende Dicken (im Mittel) von 4nm gemessen. Mit gleichen Schmelztauchbeschichtungsparametern und gleichem Stahlblech (Stahlband) wurde eine weitere Untersuchung analog zu dem ersten erfindungsgemäßen Ausführungs beispiel durchgeführt. Bis zur vollständigen Erstarrung des Überzugs wurde das schmelz- tauchbeschichtete Stahlband unter Ausschluss von Luft durch einen Tunnel geführt und darin abgekühlt, wobei die Kühlrate von 15 K/s beibehalten wurde. Aus dem schmelztauch- beschichteten Stahlband wurde eine Probe abgeschnitten und weiter untersucht. Es wurde festgestellt, dass sich infolge des erfindungsgemäßen Schmelztauchbeschichtungsprozesses eine im Vergleich zu ersten erfindungsgemäßen Ausführungsbeispiel noch dünnere Oxidschicht ausbildet hatte, welche im Wesentlichen homogen auf der Oberfläche des Überzugs verteilt war. Es wurde an drei Stellen mittels Röntgenphotoelektronenspektroskopie gemessen und durchgehende Dicken (im Mittel) von lnm gemessen. Eine weitere Probe wurde aus dem schmelztauchbeschichteten Stahlband entnommen und einer Phosphatierung zugeführt, wobei die Probe für 120s eine Phosphatierungslösung ohne vorherige Aktivierung getaucht wurde. Figur 2 zeigt das Phosphatierungsbild, aufgenommen mittels Rasterelektronenmikroskopie. Gut zu erkennen ist, dass gleich große Phosphatkristalle aufgrund der vorhandenen sehr dünnen Oxidschicht gleichmäßig und homogen verteilt Vorlagen.

Die Kühlrate wurde derart bestimmt, dass Pyrometer oberhalb der Schmelze und vor der ersten Umlenkrolle im sogenannten Kühlturm einer standardmäßigen Schmelztauchbeschichtungs anlage die Temperatur des Stahlblechs erfasst hatten und in Abhängigkeit von der Bandgeschwindigkeit guasi die mittlere Kühlrate des Stahlblechs/-bands ermittelt wurde.

Durch das erfindungsgemäße Verfahren kann verhindert werden, dass sich auf einem schmelztauchbeschichteten, zinkbasierten Überzug keine zu dicke Oxidschicht ausbildet, welche im weiteren Bearbeitungsprozess zu Problemen und Nachteilen führen kann, beispiels weise beim Phospatieren und Lackieren. Auch die Klebeignung der Überzüge durch eine Reduktion der Oxidschichtdicke kann verbessert werden. Beispielsweise sind Klebstoffe derart entwickelt, dass sie bevorzugt auf Metall- und nicht zwangsweise auf Oxidoberflächen anbinden. So können Klebstoffe beispielsweise Komponenten enthalten, um den pH-Wert des Klebstoffs anzupassen und so die Bestandteile der Oxidschicht anzugreifen sowie das metallische Substrat freizusetzen. Durch eine geringere Oxidschichtdicke ist eine erfolgreichere Freilegung der metallischen Komponenten des Überzugs gewährleistet, an denen der Klebstoff besser anbinden kann. Durch die schnelle Initiierung der Erstarrung des Überzugs wird eine erschwerte Sauerstoffdiffusion in den Überzug bewirkt. Alternativ kann der Bereich des Austritts des Stahlblechs aus dem Schmelzbad bis zur Abstreifvorrichtung auch mit einer Einhausung versehen und mit der oben beschriebenen Atmosphäre geflutet werden.