Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
PROCESS FOR PRODUCING ORGANIC POLYSULFIDES
Document Type and Number:
WIPO Patent Application WO/2000/043359
Kind Code:
A1
Abstract:
A process for producing an organic polysulfide compound comprises contacting, in th presence of a catalyst, a mercaptan with elemental sulfur to produce a product medium and contacting the product medium with a material comprising carbon dioxide or a carbon dioxide-generating compound wherein the catalyst comprises a base and optionally a surfactant and the organic polysulfide contains about 3 or more sulfur atoms per molecule.

Inventors:
SHAW JAMES E (US)
Application Number:
PCT/US2000/001453
Publication Date:
July 27, 2000
Filing Date:
January 21, 2000
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
PHILLIPS PETROLEUM CO (US)
SHAW JAMES E (US)
International Classes:
C07B61/00; C07C319/24; C07C319/26; C07C321/04; C07C321/14; (IPC1-7): C07C312/12; C07C312/14
Foreign References:
US5232623A1993-08-03
US5218147A1993-06-08
Other References:
See also references of EP 1149071A4
Attorney, Agent or Firm:
Richards, John (NY, US)
Download PDF:
Claims:
CLAIMS
1. A process for producing stabilized organic polysulfide, which comprises (1) contacting a mercaptan with sulfur in the presence of a catalyst comprising a base to produce a product medium comprising a polysulfide; and (2) contacting said product medium with carbon dioxide.
2. A process according to claim 1, wherein said organic polysulfide has about 3 or more sulfur atoms per molecule.
3. A process according to claim 2, wherein said organic polysulfide is di tbutyl polysulfide.
4. A process according to claim 2, wherein said organic polysulfide is di tdodecyl polysulfide.
5. A process according to claim 1, wherein said sulfur is elemental sulfur.
6. A process according to claim 1, wherein said base is triethylamine, trimethylamine, tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrapropylammonium hydroxide, tetramethylammonium bisulfide, tetraethylammonium bisulfide, lithium hydroxide, sodium hydroxide, potassium hydroxide, calcium hydroxide, magnesium hydroxide, sodium bicarbonate, sodium carbonate, sodium oxide, magnesium oxide, calcium oxide, calcium carbonate, potassium carbonate, sodium phenoxide, barium phenoxide, calcium phenoxide, NaSH, Na2S, R'ONa, R'SNa, or a combination of any two or more of said bases, wherein R'is a ClCl8 alkyl radical.
7. A process according to claim 6, wherein said base is sodium hydroxide.
8. A process according to claim 6, wherein said base is triethylamine.
9. A process according to any one of claims 18, wherein said catalyst further comprises a surfactant which is an alkoxylated compound, a quaternary ammonium salt, an alkali metal alkyl sulfate, an alkali metal salt of an alkanoic acid, an alkali salt of an alkaryl sulfonic acid, a 1alkyl pyridinium salt, or a combination of any two or more of said surfactants.
10. A process according to claim 9, wherein said surfactant is a quaternary ammonium salt.
11. A process according to claim 10, wherein said quaternary ammonium salt is methyltrialkyl (C8C, 0) ammonium chloride.
12. A process according to claim 9, wherein said surfactant is an alkoxylated mercaptan, an alkoxylated alcohol, or a combination thereof.
13. A process according to claim 12, wherein said surfactant is an alkoxylated alcohol.
14. A process according to claim 13, wherein said alkoxylated alcohol has a general formula of R2O [CH2CH (R3) O] qH wherein R2 is a hydrocarbyl radical which is an alkyl radical, an alkylaryl radical, an aryl radical, a cycloalkyl radical, an alkenyl radical or a combination of any two or more of said hydrocarbyl radicals; R3 is hydrogen, a C,C, 6 alkyl radical, a C2C, alkenyl radical or a combination of any two or more of said hydrogen and said radicals; and q is a number of from 1 to about 20.
15. A process according to claim 13, wherein said alkoxylated alcohol has the formula of R2O (CH2CH2O) 7H, wherein R2 is a secondary alkyl radical having 11 to 15 carbon atoms.
16. A process according to claim 1, which comprises: (1) contacting t butyl mercaptan with sulfur in the presence of a catalyst at a temperature in the range of from 50°C to 150°C for 30 minutes to 5 hours to produce said product medium; wherein said catalyst is prepared by heating sodium hydroxide and an ethoxylated alcohol having the formula of R2O (CH2CH2O) 7H wherein R2 is a secondary alkyl radical having 1115 carbon atoms; and (2) contacting said product medium with carbon dioxide to produce ditbutyl polysulfide.
17. A process for producing stabilized organic polysulfide substantially as herein described.
18. A process for producing stabilized organic polysulfide substantially as herein described with reference to any of the Examples.
19. A stabilized organic polysulfide when produced by a process according to claim 1.
Description:
PROCESS FOR PRODUCING ORGANIC POLYSULFIDES The present invention relates to a process for producing an organic polysulfide compound.

Organic polysulfides such as alkyltrisulfides are useful for many purposes such as additive for elastomers, as antioxidants for lubricating oils, as intermediate for the production of organic chemicals, insecticides, and germicides and as additive to diesel fuels to improve the cetane number and ignition qualities of these fuels. These compounds are also useful in the compounding of extreme pressure lubricants and in the acceleration of rubber treating processes.

Such polysulfide compounds can be produced by reacting mercaptans with elemental sulfur in the presence of a basic catalyst. For example, Shaw (United States Patent No. 5,530,163) discloses that organic polysulfides can be produced from a mercaptan and sulfur catalyzed by a basic catalyst.

A conventional process for producing an organic polysulfide is to react a mercaptan with elemental sulfur. However, the polysulfide thus produced is generally associated with some unreacted mercaptans and dissolved H2S, both of which contribute to unpleasant odor. Additionally, possibly because of the unreacted mercaptan and/or the catalyst, the polysulfide thus produced generally becomes unstable, i. e., the polysulfide turns cloudy, upon storage. The mercaptan content can also increase with storage. The instability and odor greatly reduce the desirability and utility of organic polysulfides.

Therefore, there is an increasing need to develop a process for producing a substantially odor-reduced and substantially stable organic polysulfide.

The present invention provides a process for producing an organic polysulfide. An advantage of the present invention is the organic polysulfide is stable during the workup or storage.

According to the present invention, a process for producing an organic polysulfide is provided which comprises, consists essentially of, or consists of contacting a mercaptan with elemental sulfur in the presence of a catalyst wherein the catalyst comprises a base and optionally a surfactant to produce a product medium comprising the polysulfide and thereafter the product medium is contacted with a polysulfide-stabilizing material which comprises carbon dioxide or a carbon dioxide-

generating compound.

According to a preferred embodiment of the invention, a process for producing stabilized organic polysulfide is provided which comprises (1) contacting a mercaptan with sulfur in the presence of a catalyst comprising a base to produce a product medium comprising a polysulfide; and (2) contacting said product medium with carbon dioxide.

According to the present invention, the term"stable"refers to a polysulfide compound that does not substantially turn cloudy or hazy or demonstrate increased mercaptan content during production or storage for at least about 30 days, preferably about 6 months. The term"substantial"or"substantially"means more than trivial.

According to the present invention, an organic polysulfide compound having the formula of R-Sq-R, wherein each R can be the same or different and are each a hydrocarbyl radical having 1 to about 30, preferably about 1 to about 20, and most preferably 2 to 15 carbon atoms and q is a number from 2 to about 10, preferably 2 to 8, more preferably 3 to 5, and most preferably 3, can be produced by a process of the present invention. The hydrocarbyl radical can be linear or branched and can be alkyl, aryl, cycloalkyl, alkaryl, aralkyl, alkenyl radicals, or combinations of any two or more thereof. Preferably the hydrocarbyl radical is an alkyl radical.

The presently most preferred organic sulfide compounds are di-t-butyl trisulfide and di-t-dodecyl trisulfide.

The term"stable organic polysulfide"or"stable organic polysulfide compound"used in the present application, unless otherwise indicated, denotes an organic polysulfide compound which does not substantially or significantly change the number of sulfur atoms per molecule of the organic polysulfide, or which has reduced susceptibility to decomposition, when the organic polysulfide is further processed by a physical treatment or is stored. The physical treatment can include purification, separation, recovery, or combination of two or more thereof. Examples of such physical treatments include, but are not limited to, distillation, gas sparging, mixing, heating, chromatographic separation, recovery, or combination of two or more thereof. For example, a stable organic trisulfide is an organic polysulfide compound, which, when it is processed such as, for example, distilled under reduced

pressure, is not substantially or significantly decomposed to an organic disulfide or does not substantially or significantly increase the sulfur atoms in the trisulfide to, for example, tetrasulfide or pentasulfide.

According to the present invention, the base useful as a component of the catalyst can be an organic or an inorganic base, or combinations of two or more thereof. Suitable organic bases include, but are not limited to, trimethylamine, triethylamine, methylamine, ethylamine, dimethylamine, diethylamine, other amines, tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrapropylammonium, hydroxide, tetramethylammonium bisulfide, tetraethylammonium bisulfide, and combinations of two or more thereof. Suitable inorganic bases include, but are not limited to, lithium hydroxide, sodium hydroxide, sodium hydrogensulfide, sodium sulfide, potassium hydroxide, potassium hydrogensulfide, calcium hydroxide, magnesium hydroxide, sodium bicarbonate, sodium carbonate, sodium oxide, magnesium oxide, calcium oxide, calcium carbonate, sodium phenoxide, barium phenoxide, calcium phenoxide, R'ONa, R'SNa, and combinations of two or more thereof ; where R'is a C,-C, 8 alkyl radical.

Presently, an inorganic base is preferred. Among the inorganic bases, sodium hydroxide is preferred because it is readily available and inexpensive.

According to the present invention, an aqueous medium denotes, unless otherwise indicated, a reaction medium, which does not contain substantial concentration of an organic solvent. Generally, an aqueous medium can comprise regular tap water, deionized water, distilled water, a solution, a suspension, and combinations of two or more thereof. Presently it is preferred that regular tap water be used because it is readily available and economical. According to the present invention, any surfactant that facilitates the mixing of reactants into substantially a single phase can be used. The term"substantial"or"substantially"means more than trivial. The term"fluid"denotes liquid, gas, or combinations thereof.

Generally, the surfactant comprises one or more compounds which exhibit surface-active properties. A preferred surfactant for use in the reaction system of the present invention is selected from the group consisting of alkoxylated compounds, quaternary ammonium salts, alkali metal alkyl sulfates, alkali metal salts of alkanoic acids, alkali metal salts of alkaryl sulfonic acids, 1-alkyl pyridinium salts,

and combinations of two or more thereof.

The presently preferred surfactant is an alkoxylated compound.

Examples of suitable alkoxylated compounds include, but are not limited to, alkoxylated alcohols, alkoxylated mercaptans, sulfates of alkoxylated alcohols, alkoxylated phenols, sulfates of alkoxylated phenols, and combinations of two or more thereof.

The alkoxylated alcohol useful in the present invention has a general formula of R2O [CH2CH (R3) O] n H where R2 is a C,-C20 hydrocarbyl radical selected from the group consisting of alkyl radical, alkylaryl radical, aryl radical, cycloalkyl radical, alkenyl radical, and combinations of two or more thereof. Preferably W is a C6-C, 8 alkyl radical. Most preferably R2 is a C, o-C, 6 alkyl radical; R3 is selected from the group consisting of hydrogen, C1-C16 alkyl radicals, C2-C, 6 alkenyl radicals, and combinations of two or more thereof ; and n is a number of from 1 to about 20, preferably from about 2 to about 12, most preferably from 5 to 10. Generally R3 can contain from 0 to about 16 carbon atoms. Preferably R3 is a hydrogen or a Cl-C3 alkyl radical. Most preferably R3 is hydrogen. An example of suitable alkoxylated alcohol is TERGITOL 15-S-7 which is an ethoxylated alcohol, is manufactured and marketed by Union Carbide Corporation, and has the formula of Rz0 (CH2CH2O) 7H where R2 is a secondary alkyl radical having 11-15 carbon atoms and 7 is the averaged number of the ethylene oxide units. Another example is an ethoxylated phenol having the same number of ethylene oxide units. Other suitable alkoxylated alcohols are also available from Union Carbide Corporation.

The sulfate of alkoxylated alcohol useful in the present invention has a general formula of R20 [CH2CH (R3) O] nS03M where R2, R3, and n are the same as those described above and M is an alkali metal or an alkaline earth metal or combinations of two or more thereof. An example of suitable sulfate of alkoxylated alcohol is sodium sulfate of an ethoxylated alcohol having the formula of WO (CH2CH20) n, SO3 Na in which R2 and n are the same as those disclosed above.

Useful alkoxylated phenols and sulfates of alkoxylated phenols can have general formulas of (R3) pArO [CH2CH (R3) O] nH and (R2) pArO [CH2CH (R3) O] nSO3M, respectively where R2, R3, n and M are the same as those disclosed above, Ar is an aryl group, preferably a phenyl group, and p is an

integer ranging from 0 to 5. Examples of these alkoxylated phenols are ethoxylated phenol ArO (CH2CH20) nH and sodium sulfate of ethoxylated phenol ArO (CH2CH2O) nSO3Na where Ar and n are the same as disclosed above.

The alkoxylated mercaptan useful in the present invention has a general formula of WS [CH2CH (R3) 0],, H where R2, R3, and n are the same as those described above. An example of an alkoxylated mercaptan is an ethoxylated mercaptan having the formula of R2S (CH2CH2O) 7H where R2 is primarily a tertiary dodecyl group and 7 is the averaged number of ethylene oxide units. This ethoxylated mercaptan is a surfactant, available under the trade name AQUA-CLEEN II. Another example is an ethoxylated thiophenol having the same number of ethylene oxide units. Other suitable alkoxylated mercaptans are also available from Phillips Petroleum Company.

Quaternary ammonium salts useful in the present invention have the general formula (R4)4N+X- where R4 is an alkyl radical of from 1 to 20 carbon atoms ; and X is selected from the group consisting of Br~, C1-, I-, F-, R4CO21-, QSO3-, BF4-, and HS04-, where Q is an aryl, alkaryl or arylalkyl radical of 6 to 10 carbon atoms.

It will be noted that a variety of anions are suitable as the component of the quaternary ammonium salts.

Useful quaternary ammonium salts according to the general formula given above include, but are not limited to, methyltrialkyl (C8-CIo) ammonium chloride (also known as Adogen 464), cetyltrimethylammonium bromide, hexadecyltrimethylammonium bromide, tetraheptylammonium bromide, cetyltrimethylammonium stearate, benzyltributylammonium chloride, benzyltriethylammonium bromide, benzyltrimethylammonium bromide, phenyltrimethylammonium bromide, phenyltrimethylammonium iodide, tetrabutylammonium bromide, tetrabutylammonium chloride, tetrabutylammonium hydrogen sulfate, tetrabutylammonium iodide, tetraethylammonium bromide, tetrabutyl ammonium fluoride, tetrabutylammonium tetrafluoroborate, and combinations of two or more thereof.

An alkali metal alkyl sulfate of the general formula of R40S03M can be used in the present invention, wherein R4 and M are the same as those disclosed above. Examples of suitable compounds according to the general formula for the

alkali metal alkyl sulfates include, but are not limited to, lithium decylsulfate, potassium dodecylsulfate, sodium dodecylsulfate, sodium hexadecylsulfate, potassium hexadecylsulfate, rubidium dodecylsulfate, cesium dodecylsulfate, sodium octadecylsulfate, potassium octadecylsulfate, potassium eicosylsulfate, sodium eicosylsulfate, and combinations of two or more thereof.

Useful alkali metal salts of alkanoic acids have the general formula of R4CO2M, where R4 and M have the same meaning as given above. Examples of suitable alkali metal salts of alkanoic acids include, but are not limited to, lithium decanoate, sodium dodecanoate, potassium dodecanoate, rubidium dodecanoate, cesium dodecanoate, sodium hexadecanoate, potassium hexadecanoate, sodium octadecanoate, potassium octadecanoate, sodium eicosanoate, potassium eicosanoate, and combinations of two or more thereof.

Useful alkali metal salts of alkaryl sulfonic acids have the general formula of (R4) pArSO3M where R4 and M are the same as those disclosed above, Ar is an aryl group or a phenyl group, and p is an integer ranging from 0 to 5. Typical compounds within the group include, but are not limited to, sodium dodecylbenzenesulfonate, potassium dodecylbenzenesulfonate, lithium dodecylbenzenesulfonte, sodium tetradecylbenzenesulfonate, potassium hexadecylbenzenesulfonate, rubidium dodecylbenzenesulfonate, cesium dodecylbenzenesulfonate, sodium octadecylbenzenesulfonte, potassium octadecylbenzenesulfonate, sodium eicosylbenzenesulfonate, and combinations of two or more thereof.

Examples of suitable 1-alkyl pyridinium salts include, but are not limited to, 1-dodecylpyridinium para-toluenesulfonate, 1-dodecylpyridinium chloride, 1-hexadecylpyridinium chloride, 1-hexadecylpyridinium para-toluenesulfonate, 1-decylpyridinium chloride, 1-hexadecylpyridinium bromide, 1-tetradecylpyridinium chloride, 1-octadecylpyridinium chloride, 1-eicosylpyridinium chloride, 1-octadecylpyridinium benzenesulfonate, and combinations of two or more thereof.

The weight ratio of surfactant to base can vary widely, preferably in the range of from about 0.001: 1 to about 1000: 1, more preferably about 0.01: 1 to about 100: 1, and most preferably from about 0.1: 1 to 50: 1 for best results. If a combination of bases is used, the weight ratio of one base to the other base can be in

the range of from about 0.01: 1 to about 100: 1.

The catalyst can be made by properly mixing the base and surfactant, if used, in the ratio described above employing any suitable mixing means such as shaking or stirring. Presently, it is preferred that the catalyst be produced in-situ by adding a base and a surfactant to a reaction vessel or reactor that is used for producing an organic polysulfide.

The organic polysulfide can be produced by the reaction of mercaptans and elemental sulfur catalyzed by the catalyst disclosed above. The reaction is <BR> <BR> <BR> depicted as RSH+RSH+ (q-l) S-> RSQR + H2S where R and q are the same as those described above. The reaction can be carried out in any suitable reaction vessel. The choice of reaction vessel is a matter of preference to those skilled in the art.

The suitable conditions for the contacting of mercaptan with sulfur can include a temperature in the range of from about 20°C to about 250°C, preferably from 50°C to 150°C and a time of from about 10 minutes to about 10 hours, preferably 30 minutes to 5 hours. The pressure can vary widely from about 1 atmosphere to about 30 atmospheres, preferably from about 1 atmosphere to about 10 atmospheres.

Generally, one of the reactants, either the mercaptan or sulfur, is added to the other reactant in the presence of the catalyst described above to form a reaction mixture. The molar amount of sulfur added depends on the desired sulfur content of the polysulfide and generally are shown in the above equation. For example, for an average sulfur content of q per molecule of polysulfide, (q-1) moles of sulfur are reacted with 2 moles of mercaptan. The weight of the catalyst (base and surfactant, if used) as a percentage of the weight of mercaptan is generally in the range of from 0.01 to 50%, preferably about 0.05 to 20%, and most preferably 0.1 to 10%.

During the reaction, residual hydrogen sulfide produced is generally removed or allowed to escape from product mixture or reaction vessel which contains the crude organic polysulfide product, for example, continuously or periodically venting off H2S. Any unreacted mercaptan is generally removed by any means known to one skilled in the art such as, for example, distillation.

The product mixture, whether it has been further processed or not, is then contacted with a polysulfide-stabilizing material which comprises carbon dioxide

or a carbon dioxide-generating compound. The material can be a gas, liquid, solid, or combinations of two or more thereof and can contain about 0.1 to about 100 weight % of carbon dioxide or carbon dioxide-generating compound. For example, air contains carbon dioxide and can be used. The presently preferred is carbon dioxide for it is readily available.

The amount of carbon dioxide required is the amount that can produce a polysulfide that is substantially stable during production workup and during storage of the polysulfide. Generally, the amount can be in the range of from about 0.1 to about 100,000, preferably about 0.5 to about 10,000, and most preferably 1 to 1,000 molar equivalent of the base used in the catalyst. The amount of carbon dioxide-generating compound is the amount that can generate the amount of carbon dioxide disclosed above.

Any carbon dioxide-generating compound can be used to purify the organic polysulfide product. Examples of suitable carbon dioxide-generating compounds such as ammonium bicarbonate, sodium bicarbonate, and combinations thereof can be used.

The contacting of the reaction medium with the fluid containing carbon dioxide or carbon dioxide-generating compound can be carried out under any conditions that are effective to produce a stable polysulfide or that can reduce the susceptibility of the organic polysulfide to decomposition during heating, during distillation of unreacted mercaptan, or sparging, of the reaction medium. Such conditions can be the same conditions employed for contacting mercaptans with elemental sulfur, as disclosed above.

The contacting of the reaction medium with the material can be carried out before the removal of the residual hydrogen sulfide or immediately after the removal of the residual hydrogen sulfide. However, such contacting is carried out before, during, or after the reaction medium is heated. For example, the reaction medium is contacted with the material before the reaction is distilled to remove unreacted mercaptan and later sparging with nitrogen. Residual hydrogen sulfide formed is generally removed from the crude organic polysulfide product by either an inert gas, such as nitrogen, purge or by vacuum stripping. Thereafter, if necessary, the organic polysulfide product can be further stabilized using any known methods

such as, for example, those disclosed in the U. S. Pat. Nos. 5,206,439; 5,218,147; and 5,530,163. For example, the polysulfide-containing product medium can also be contacted with alkylene oxide such as propylene oxide, disclosed in U. S. 5,218,147, and a base in a solvent such as methanol before the contacting with the polysulfide-stabilizing material disclosed in this invention.

The stable organic polysulfide compound thus produced can be further processed such as purification, separation, recovery, or combinations of any two or more thereof by any methods known to one skilled in the art such as, for example, distillation. Thereafter, if necessary, the organic polysulfide product can be further stabilized using any known methods such as, for example, those disclosed in the U. S.

Pat. Nos. 5,206,439; 5,218,147; and 5,530,163.

The process of the invention can also be carried out continuously. For example, the contacting of mercaptans with organic polysulfide in the presence of the catalyst can be done by employing continuous stir tank reactors connected in series, packed columns or towers in which the invention catalyst is supported on a solid support, and other continuous flows that are readily within the realm of one skilled in the art.

The following examples are provided to further illustrate the practice of the invention and are not intended to limit the scope of the invention of the claims.

EXAMPLE I This example illustrates the production of di-t-butyl polysulfide.

To a 250 ml, 3-necked flask equipped with a thermowell, magnetic stirring bar, pressure equalizing addition funnel, and condenser with outlet tube on top connected to the flare line was added 0.170 g of aqueous 25% NaOH solution, 0.48 g of TERGITOL (g) 15-S-7 (Union Carbide), and 16.87 g of elemental sulfur. To the addition funnel was added 76.1 g of t-butyl mercaptan. The mercaptan was added in portions to the reaction flask and when enough liquid was in the flask, it was stirred and heated to 50°C. Alternatively, the sulfur can be added in portions to the mercaptan. Hydrogen sulfide was evolved during the addition. After all the mercaptan was added, the reaction mixture was heated at 60°C for one hour with stirring. GC analysis (20 inch x 1/8 inch 2% OV-101 packed column, 50°C initially, then ramping at 15°C/minute till 200°C, injection port at 150°C to avoid

decomposition, FID detector) at this point showed that the reaction product excluding the excess mercaptan consisted of 92% di-t-butyl trisulfide, 5% di-t-butyl tetrasulfide, and 2% disulfides.

After cooling to near room temperature (25°C), pure gaseous COZ was bubbled into the reaction mixture at 1-2 SCFH (standard cubic feet per hour) for 0.5 hours. The addition funnel and condenser were removed, and the reaction flask was connected to a vacuum pump for vacuum distillation to remove unreacted t-butyl mercaptan. The pressure was reduced to 400 torr and the reaction mixture was heated to 130°C and maintained at 130°C for 1.5 hours at 400 torr. Unreacted t-butyl mercaptan was collected in a trap for recycling. Then the pressure was raised back to atmospheric, and the reaction mixture was sparged with N2 at 130°C for 2 hours to remove the small amount of t-butyl mercaptan which was not removed in the vacuum distillation. After cooling, the reaction mixture was filtered to give 55.1 g of a clear yellow liquid. The yield of trisulfide was 99.5% based on elemental sulfur.

GC analysis showed that the liquid consisted of 92% di-t-butyl trisulfide, 5% tetrasulfide, and 2% disulfides. Comparison of these GC results with those above show that after addition of CO2 and vacuum distillation and sparging, there was no change in the product. The product was stable during the workup due to the CO2 treatment.

EXAMPLE II This example also illustrates the production of di-t-butyl polysulfide.

This run was the same as above except that instead of bubbling in CO2, small amounts of dry ice were added to the reaction mixture with stirring over 0.5 hours, so that it was always bubbling with CO2 gas. The results were the same as above.

EXAMPLE III This example is a comparative example illustrating an organic polysulfide was produced without the use of carbon dioxide.

The run was carried out the same way as described in Example I except that 0.15 g of 50% aqueous NaOH, 1.06 g of TERGITOL 15-S-7,135.3 g of t-butyl mercaptan, and 33.0 g of sulfur were used. Carbon dioxide was not added before vacuum distillation. The vacuum distillation was carried out at 60°C and 25 torr. GC analysis was performed each hour. The GC analyses are shown in the following Table I.

TABLE I Hours of Weight % by GC vacuum distillation Disulfide Trisulfide Tetrasulfide Pentasulfide Mercaptan 0 1. 6 61. 0 6.1 0.1 30.8 1 6. 7 85. 1 5.3 0.2 2.4 2 8. 5 82. 9 6.3 0.3 1.6 82.36.538.7 0.3 0.6 The results in Table I show that the product mixture changed with time, and the final mixture was lower in trisulfide and higher in disulfide when CO2 was not used, as compared with the results shown in Examples 1-11. These results also show that t-butyltrisulfide made without CO2 treatment was susceptible to decomposition during distillation even at lower temperature.

EXAMPLE IV This is also a comparative example.

The run was carried out the same was as that described in Example III except that after heating at 70°C for 1 hour, COZ was not added before vacuum distillation. The vacuum distillation was carried out at 70°C and 100 torr and GC analyses were performed each hour. The results are shown in Table II.

TABLE II Hours ofWeight % by GC vacuum TetrasulfideDisulfideTrisulfide Pentasulfide Mercaptan distillation 66.15.901.4 0.1 26.0 84.05.715.0 4.6 82.66.727.3 0.1 2.9 78.78.939.5 0.2 1.5 Similar to the results shown in Table I, when COZ was not used, the trisulfide weight % decreased with increased time and was much lower than that

obtained from the invention runs shown in Examples I and II.

EXAMPLE V This example shows the production of di-t-dodecyl trisulfide.

The following were weighed into a 2 liter, 3-necked flask: 0.35 g of 50% NaOH, 5.32 g of TERGITOL (» 15-S-7 (Union Carbide), and 665.5 g (3.29 mole) of t-dodecyl mercaptan. The flask was equipped with a thermowell, magnetic stirring bar, and condenser with N2 inlet on top. Under a N2 atmosphere, the mixture was heated to 75°C. Then 89.9 g (2.84 mole) of elemental sulfur was added in portions over 15 minutes at 75°C with stirring. Hydrogen sulfide was evolved and was vented to the low pressure flare line after the sulfur addition was complete, the mixture was heated to 130°C and maintained at this temperature with stirring for 1 hour. Then the mixture was sparged with N2 (about 2 SCFH) for 4 hours at 130°C with stirring. During the sparging time the condenser was removed. The mixture was cooled to 72°C and sparging was stopped. At this point the mercaptan sulfur level was 5900 ppm.

A flask equipped with a Dewar condenser containing dry ice with a N2 inlet on top of the condenser was used to treat the crude product produced above. It should be noted that if the procedure was carried out in an autoclave, the Dewar condenser would not be needed since the propylene oxide would be confined in the autoclave. The other condenser used at the beginning of the procedure would also not be needed.

To the crude product at 72°C was added 3.3 g of NaOH in methanol solution which was made from 2.2 g of methanol and 1.1 g of 50% aqueous NaOH.

Then propylene oxide (35.7 g, 43.0 ml) was added over 15 minutes at 72°C. The mixture was heated with stirring for an additional 2.25 hours at 72°C. After this time, the dry ice condenser and addition funnel were replaced by a gas dispersion tube and gas outlet tube connected to a flare line. Carbon dioxide was sparged into the reaction mixture at a rate of 1-2 SCFH for 15 minutes as the mixture cooled to 60°C. Then both CO2 and N2 were bubbled in at the same rate (1-2 SCFH) for the next 45 minutes at 60°C. Sparging with COZ was stopped with N2 sparging continued for 1 hour additional at 60°C. Total reaction mixture was then filtered (Whatman I filter paper) giving a very clear, light yellow di-t-dodecyl trisulfide

product (706 g, 100% yield).

The product was stable as shown by an accelerated aging test at 140°F.

When the product was put in a bottle with a polyseal cap and was heated for 7 days at 140°F, the mercaptan sulfur value was essentially the same before and after showing no decomposition had occurred.

It should be noted that filtration of the CO2 treated trisulfide gave a much clearer liquid than the one only involving N2 sparging.

In a second invention run, 1.75 g of water was added just before sparging with CO2 as described above. Based on the product obtained and its stability on aging, no advantage could be found for adding the additional water.

Results were essentially the same as for the first invention run above.

EXAMPLE VI This example is a comparative example showing the production of di-t-dodecyl mercaptan without CO2 treatment.

The same procedure as in Example V was used except no COz was used. After the propylene oxide treatment at 72°C, sparging was only done with N2 for 2 hours at 60°C. The product was not as stable as when CO2 was used.

Accelerated aging tests at 140°F for 7 days showed that the mercaptan sulfur value increased 3-4 times during aging indicating decomposition was occurring.

It should be noted that filtration of the CO2-treated trisulfide gave a much clearer liquid than the one only involving N2 sparging.