Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
PROCESSES AND COMPOSITIONS FOR METHYLATION-BASED ENRICHMENT OF FETAL NUCLEIC ACID FROM A MATERNAL SAMPLE USEFUL FOR NON INVASIVE PRENATAL DIAGNOSES
Document Type and Number:
WIPO Patent Application WO/2011/034631
Kind Code:
A1
Abstract:
Provided are compositions and processes that utilize genomic regions that are differentially methylated between a mother and her fetus to separate, isolate or enrich fetal nucleic acid from a maternal sample. The compositions and processes described herein are particularly useful for non-invasive prenatal diagnostics, including the detection of chromosomal aneuplodies.

Inventors:
EHRICH MATHIAS (US)
NYGREN ANDERS OLOF HERMAN (US)
JENSEN TAYLOR JACOB (US)
Application Number:
PCT/US2010/027879
Publication Date:
March 24, 2011
Filing Date:
March 18, 2010
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
SEQUENOM INC (US)
SEQUENOM CT FOR MOLECULAR MEDICINE (US)
EHRICH MATHIAS (US)
NYGREN ANDERS OLOF HERMAN (US)
JENSEN TAYLOR JACOB (US)
International Classes:
C12Q1/68; C12N15/10; C12N15/117
Domestic Patent References:
WO2007132166A22007-11-22
WO2007140417A22007-12-06
WO2009032781A22009-03-12
WO2008157264A22008-12-24
WO2006056480A22006-06-01
WO2005012578A12005-02-10
WO2005023091A22005-03-17
WO1997037041A21997-10-09
Foreign References:
US20070275402A12007-11-29
US20030211522A12003-11-13
US6258540B12001-07-10
US6258540B12001-07-10
US20050164241A12005-07-28
US20070065823A12007-03-22
US20090029377A12009-01-29
US6143496A2000-11-07
US6440706B12002-08-27
US20080305479A12008-12-11
US20090111712A12009-04-30
US20100279295A12010-11-04
US7081339B22006-07-25
US20040081993A12004-04-29
US20070207466A12007-09-06
US6927028B22005-08-09
US20070071232W2007-06-14
US5786146A1998-07-28
US20050079521A12005-04-14
US20070202525A12007-08-30
US7169314B22007-01-30
US20090031169A12009-01-29
US6723513B22004-04-20
US6043031A2000-03-28
US5547835A1996-08-20
US20060252071A12006-11-09
Other References:
OLD RW.: "Candidate epigenetic biomarkers for non-invasive prenatal diagnosis of Down syndrome.", REPROD. BIOMED., vol. 15, no. 2, 2007, pages 227 - 235, XP008144463
LO; 350 ET AL., LANCET, 1997, pages 485 - 487
LO ET AL., N. ENGL. J. MED., vol. 339, 1998, pages 1734 - 1738
COSTA ET AL., N. ENGL. J. MED., vol. 346, 2002, pages 1502
AMICUCCI ET AL., CLIN. CHEM., vol. 46, 2000, pages 301 - 302
SAITO ET AL., LANCET, vol. 356, 2000, pages 1170
CHIU ET AL., LANCET, vol. 360, 2002, pages 998 - 1000
LO ET AL., CLIN. CHEM., vol. 45, 1999, pages 184 - 188
ZHONG ET AL., AM. J. OBSTET. GYNECOL., vol. 184, 2001, pages 414 - 419
LO ET AL., CLIN. CHEM., vol. 45, 1999, pages 1747 - 1751
ZHONG ET AL., PRENAT. DIAGN., vol. 20, 2000, pages 795 - 798
SEKIZAWA ET AL., CLIN. CHEM., vol. 47, 2001, pages 2164 - 2165
MARGULIES, M. ET AL., NATURE, vol. 437, 2005, pages 376 - 380
HARRIS T D ET AL., SCIENCE, vol. 320, 2008, pages 106 - 109
SONI GV; MELLER A, CLIN CHEM, vol. 53, 2007, pages 1996 - 2001
DING C; CANTOR CR: "A high-throughput gene expression analysis technique using competitive PCR and matrix-assisted laser desorption ionization time-of-flight MS", PROC NATL ACAD SCI U S A, vol. 100, 2003, pages 3059 - 3064, XP002556773, DOI: doi:10.1073/pnas.0630494100
WALD; HACKSHAW, PRENAT DIAGN, vol. 17, no. 9, 1997, pages 921 - 9
BATZER ET AL., NUCLEIC ACID RES., vol. 19, 1991, pages 5081
OHTSUKA ET AL., J. BIOL. CHEM., vol. 260, 1985, pages 2605 - 2608
ROSSOLINI ET AL., MOL. CELL. PROBES, vol. 8, 1994, pages 91 - 98
YAMADA ET AL., GENOME RESEARCH, vol. 14, 2004, pages 247 - 266
TAKAI ET AL., PROC. NATL. ACAD. SCI. U.S.A., vol. 99, 2002, pages 3740 - 3745
LO ET AL., LANCET, vol. 350, 1997, pages 485 - 487
SAMBROOK; RUSSELL: "Molecular Cloning, A Laboratory Manual 3rd ed.", 2001
KRIEGLER: "Gene Transfer and Expression: A Laboratory Manual", 1990
AUSUBEL ET AL.,: "Current Protocols in Molecular Biology", 1994
BEAUCAGE; CARUTHERS, TETRAHEDRON LETT., vol. 22, 1981, pages 1859 - 1862
VAN DEVANTER, NUCLEIC ACIDS RES., vol. 12, 1984, pages 6159 - 6168
PEARSON; REANIER, J. CHROM., vol. 255, 1983, pages 137 - 149
SAMBROOK; RUSSELL: "Molecular Cloning: A Laboratory Manual", 2001
GEBHARD C; SCHWARZFISCHER L; PHAM TH; SCHILLING E; KLUG M; ANDREESEN R; REHLI M: "Genomewide profiling of CpG methylation identifies novel targets of aberrant hypermethylation in myeloid leukemia", CANCER RES, vol. 66, 2006, pages 6118 - 6128, XP002663139, DOI: doi:10.1158/0008-5472.CAN-06-0376
GEBHARD C; SCHWARZFISCHER L; PHAM TH; ANDREESEN R; MACKENSEN A; REHLI M: "Rapid and sensitive detection of CpG-methylation using methyl-binding (MB)-PCR", NUCLEIC ACIDS RES, vol. 34, 2006, pages E82
SAMBROOK ET AL.: "Molecular Biology: A laboratory Approach", 1989, COLD SPRING HARBOR
FROMMER ET AL., PROC. NATL. ACAD. SCI. USA, vol. 89, 1992, pages 1827 - 1831
SADRI; HOMSBY, NUCL. ACIDS RES., vol. 24, 1996, pages 5058 - 5059
XIONG; LAIRD, NUCLEIC ACIDS RES., vol. 25, 1997, pages 2532 - 2534
EADS ET AL., CANCER RES., vol. 59, 1999, pages 2302 - 2306
GONZALGO; JONES, NUCLEIC ACIDS RES., vol. 25, 1997, pages 2529 - 2531
HERMAN ET AL., PROC. NAT. ACAD. SCI. USA, vol. 93, 1996, pages 9821 - 9826
TOYOTA ET AL., CANCER RES., vol. 59, 1999, pages 2307 - 12
LAIRD, P.W., NATURE REVIEWS CANCER, vol. 3, 2003, pages 253 - 266
UHLMANN, K. ET AL., ELECTROPHORESIS, vol. 23, 2002, pages 4072 - 4079
COLELLA ET AL., BIOTECHNIQUES, vol. 35, no. L, July 2003 (2003-07-01), pages 146 - 50
DUPONT JM; TOST J; JAMMES H; GUT IG, ANAL BIOCHEM, vol. 333, no. 1, October 2004 (2004-10-01), pages 119 - 27
TOOKE N; PETTERSSON M., IVDT., November 2004 (2004-11-01), pages 41
INNIS ET AL.: "PCR Protocols: A Guide to Methods and Applications", 1990, ACADEMIC PRESS, INC
NOLTE, ADV. CLIN. CHEM., vol. 33, 1998, pages 201 - 235
KALININA ET AL.: "Nanoliter scale PCR with TaqMan detection", NUCLEIC ACIDS RESEARCH, vol. 25, 1997, pages 1999 - 2004, XP002471289, DOI: doi:10.1093/nar/25.10.1999
VOGELSTEIN; KINZLER, DIGITAL PCR. PROC NATL ACAD SCI USA., vol. 96, 1999, pages 9236 - 41
JURINKE, C.; OETH, P.; VAN DEN BOOM, D.: "MALDI-TOF mass spectrometry: a versatile tool for high-performance DNA analysis", MOL. BIOTECHNOL, vol. 26, 2004, pages 147 - 164
OETH, P. ET AL.: "iPLEX™ Assay: Increased Plexing Efficiency and Flexibility for MassARRAY® System through single base primer extension with mass-modified Terminators", SEQUENOM APPLICATION NOTE, 2005
DEAR BRIEF FUNCT GENOMIC PROTEOMIC, vol. 1, 2003, pages 397 - 416
NAKANO ET AL.: "Single-molecule PCR using water-in-oil emulsion", JOURNAL OF BIOTECHNOLOGY, vol. 102, 2003, pages 117 - 124, XP002399942, DOI: doi:10.1016/S0168-1656(03)00023-3
BRASLAVSKY ET AL., PNAS, vol. 100, no. 7, 2003, pages 3960 - 3964
SONI; MELLER, CLINICAL CHEMISTRY, vol. 53, no. 11, 2007, pages 1996 - 2001
VENTER ET AL., SCIENCE, vol. 291, 2001, pages 1304 - 1351
EHRICH M ET AL.: "Quantitative high-throughput analysis of DNA methylation patterns by base specific cleavage and mass spectrometry", PROC NATL ACAD SCI USA, vol. 102, 2005, pages 15785 - 15790, XP055083781, DOI: doi:10.1073/pnas.0507816102
LEE TI ET AL.: "Control of developmental regulators by Polycomb in human embryonic stem cells", CELL, vol. 125, 2006, pages 301 - 313, XP055221189, DOI: doi:10.1016/j.cell.2006.02.043
EHRICH M ET AL.: "Cytosine methylation profiling of cancer cell lines", PROC NATL ACAD SCI USA, vol. 105, 2008, pages 4844 - 48
EHRICH M; NELSON MR; STANSSENS P; ZABEAU M; LILOGLOU T; XINARIANOS G; CANTOR CR; FIELD JK; VAN DEN BOOM D: "Quantitative high-throughput analysis of DNA methylation patterns by base specific cleavage and mass spectrometry", PROC NATL ACAD SCI U S A, vol. 102, 2005, pages 15785 - 15790, XP055083781, DOI: doi:10.1073/pnas.0507816102
Attorney, Agent or Firm:
TAM, Tobey, M. et al. (C/o PortfolioIPP.O. Box 5205, Minneapolis MN, US)
Download PDF:
Claims:
What is claimed is:

1. A method for preparing fetal nucleic acid, which comprises:

a) providing a sample from a pregnant female;

b) separating fetal nucleic acid from maternal nucleic acid from the sample of the pregnant female according to a different methylation state between the fetal nucleic acid and the maternal nucleic acid counterpart, wherein the fetal nucleic acid comprises one or more CpG sites from one or more of the polynucleotide sequences of SEQ ID NOs: 90-261; and

c) preparing nucleic acid comprising fetal nucleic acid by a process in which fetal nucleic acid separated in part (b) is utilized as a template.

2. The method of claim 1, wherein the fetal nucleic acid is separated from the maternal nucleic acid by an agent that specifically binds to methylated nucleotides.

3. The method of claim 2, wherein the agent that binds to methylated nucleotides is a methyl-CpG binding protein (MBD) or fragment thereof.

4. The method of claim 2, wherein the agent that binds to methylated nucleotides binds to methylated fetal nucleic acid.

5. The method of claim 2, wherein the agent that binds to methylated nucleotides binds to methylated maternal nucleic acid.

6. The method of claim 2, wherein the fetal nucleic acid is separated from the maternal nucleic acid by an agent that specifically binds to non-methylated nucleotides.

7. The method of claim 1, wherein the fetal nucleic acid is separated from the maternal nucleic acid by an agent that specifically digests non-methylated maternal nucleic acid.

8. The method of claim 7, wherein the agent that specifically digests non-methylated maternal nucleic acid is a methyaltion-sensitive restriction enzyme.

9. The method of claim 8, wherein two or more methyaltion-sensitive restriction enzymes are used in the same reaction.

10. The method of claim 1, wherein the process of step c) is an amplification reaction.

11. The method of claim 1 wherein the process of step c) is a method for determining the a bsolute amount of fetal nucleic acid.

12. The method of claim 1, wherein three or more of the polynucleotide sequences of SEQ ID NOs: 90-261 are prepared.

13. A method for determining the absolute amount of fetal nucleic acid in a maternal sample, wherein the maternal sample comprises differentially methylated maternal and fetal nucleic acid, comprising:

a) digesting the maternal nucleic acid in a maternal sample using one or more methylation sensitive restriction enzymes, thereby enriching the fetal nucleic acid, wherein the fetal nucleic acid comprises one or more CpG sites from one or more of the polynucleotide sequences of SEQ ID NOs: 90- 261; and

b) determining the absolute amount of fetal nucleic acid from step a) using a non-polymorphic- based and non-bisulfite-based quantitative method.

14. The method of claim 13, wherein the absolute amount or concentration of fetal nucleic acid is used in conjunction with a diagnostic method to determine a fetal trait, wherein the diagnostic method requires a given absolute amount or concentration of fetal nucleic acid to meet certain clinical sensitivity or specificity requirements.

15. A method for determining the concentration of fetal nucleic acid in a maternal sample, wherein the maternal sample comprises differentially methylated maternal and fetal nucleic acid, comprising: a) determining the total amount of nucleic acid present in the maternal sample;

b) digesting the maternal nucleic acid in a maternal sample using a methylation sensitive restriction enzyme thereby enriching the fetal nucleic acid;

c) determining the amount of fetal nucleic acid from step b) using a non-polymorphic-based and non-bisulfite-based quantitative method, wherein the fetal nucleic acid comprises one or more CpG sites from one or more of the polynucleotide sequences of SEQ ID NOs: 90-261; and

d) comparing the amount of fetal nucleic acid from step c) to the total amount of nucleic acid from step a), thereby determining the concentration of fetal nucleic acid in the maternal sample.

16. The method of claim 15, wherein the absolute amount or concentration of fetal nucleic acid is used in conjunction with a diagnostic method to determine a fetal trait, wherein the diagnostic method requires a given absolute amount or concentration of fetal nucleic acid to meet certain clinical sensitivity or specificity requirements.

17. A method for determining the presence or absence of a fetal aneuploidy using fetal nucleic acid from a maternal sample, wherein the maternal sample comprises differentially methylated maternal and fetal nucleic acid, comprising:

a) digesting the maternal nucleic acid in a maternal sample using a methylation sensitive restriction enzyme thereby enriching the fetal nucleic acid;

b) determining the amount of fetal nucleic acid from a target chromosome using a non- polymorphic-based and non-bisulfite-based quantitative method, wherein the fetal nucleic acid comprises one or more CpG sites from one or more of the polynucleotide sequences of SEQ ID NOs: 164-261;

c) determining the amount of fetal nucleic acid from a reference chromosome using a non- polymorphic-based and non-bisulfite-based quantitative method, wherein the fetal nucleic acid comprises one or more CpG sites from one or more of the polynucleotide sequences of SEQ ID NOs: 90- 163;

d) comparing the amount of fetal nucleic acid from step b) to step c), wherein a statistically significant difference between the amount of target and reference fetal nucleic acid is indicative of the presence of a fetal aneuploidy.

18. The method of claim 17, wherein the amount of fetal nucleic acid at between 3 and 15 loci on each of the target chromosome and reference chromosome is determined.

19. The method of claim 13, 15 or 17, wherein the digestion efficiency of the methylation sensitive restriction enzyme is determined.

20. The method of claim 13, 15 or 17, wherein a non-polymorphic-based and non-bisulfite-based method for performing said quantification uses a competitor-based method to determine the amount of fetal nucleic acid.

21. The method of claim 13, 15 or 17, wherein the method further comprises determining the presence or a bsence of Y-chromosome nucleic acid present in a maternal sample.

22. The method of claim 21, wherein the amount of Y-chromosome nucleic acid present in a maternal sample is determined for a male fetus.

23. The method of claim 22, wherein the amount of fetal nucleic acid is compared to the amount of Y-chromosome nucleic acid.

24. The method of claim 13 or 15 , wherein the amount of fetal nucleic acid at 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 30, 40, 50 or more loci is determined.

25. The method of claim 13 or 17, wherein the total amount of nucleic acid present in a maternal sample is determined.

26. The method of claim 13, 15 or 17, wherein the total amount of nucleic acid and the amount of Y- chromosome nucleic acid for a male fetus are determined.

27. The method of claim 13, 15 or 17, wherein the total amount of nucleic acid, the amount of Y- chromosome nucleic acid for a male fetus, and the digestion efficiency of the methylation sensitive restriction enzyme are all determined.

28. The method of claim 27, wherein two or more assays are used to determine the total amount of nucleic acid, one or more assays are used to determine the amount of Y-chromosome nucleic acid for a male fetus, and one or more assays are used to determine the digestion efficiency of the methylation sensitive restriction enzyme.

29. The method of claim 28, wherein the amount of fetal nucleic acid at 3 or more loci is determined.

30. The method of claim 13, 15 or 17, wherein the amount of fetal nucleic acid is determined by an amplification reaction that generates amplicons larger than the average length of the digested maternal nucleic acid, thereby further enriching the fetal nucleic acid.

Description:
PROCESSES AND COMPOSITIONS FOR METHYLATION-BASED ENRICHMENT OF FETAL NUCLEIC ACID FROM A MATERNAL SAMPLE USEFUL FOR NON-INVASIVE PRENATAL DIAGNOSES

RELATED PATENT APPLICATIONS

This patent application is a continuation-in-part of U.S. Patent Application No. 12/561,241, filed

September 16, 2009, having the sa me title as this application, and designated by attorney docket no. SEQ-6022-UT, which claims the benefit of U.S. Provisional Patent Application No. 61/192,264, filed September 16, 2008 and designated by attorney docket no. SEQ-6022-PV. The entire content of the foregoing patent applications is incorporated by reference herein, including all text, drawings and ta bles.

FIELD

The technology in part relates to prenatal diagnostics and enrichment methods. BACKGROUND

Non-invasive prenatal testing is becoming a field of rapidly growing interest. Early detection of pregnancy-related conditions, including complications during pregnancy and genetic defects of the fetus is of crucial importance, as it allows early medical intervention necessary for the safety of both the mother and the fetus. Prenatal diagnosis has been conducted using cells isolated from the fetus through procedures such as chorionic villus sampling (CVS) or amniocentesis. However, these conventional methods are invasive and present an apprecia ble risk to both the mother and the fetus. The National Health Service currently cites a miscarriage rate of between 1 and 2 per cent following the invasive amniocentesis and chorionic villus sampling (CVS) tests.

An alternative to these invasive approaches has been developed for prenatal screening, e.g., to detecting fetal a bnormalities, following the discovery that circulating cell-free fetal nucleic acid can be detected in maternal plasma and serum (Lo et al., Lancet 350:485-487, 1997; and U.S. Patent

6,258,540). Circulating cell free fetal nucleic acid (cffNA) has several advantages making it more applica ble for non-invasive prenatal testing. For example, cell free nucleic acid is present at higher levels than fetal cells and at concentrations sufficient for genetic analysis. Also, cffNA is cleared from the maternal bloodstream within hours after delivery, preventing contamination from previous pregnancies.

Examples of prenatal tests performed by detecting fetal DNA in maternal plasma or serum include fetal rhesus D ( hD) genotyping (Lo et al., N. Engl. J. Med. 339:1734-1738, 1998), fetal sex determination (Costa et al., N. Engl. J. Med. 346: 1502, 2002), and diagnosis of several fetal disorders (Amicucci et al., Clin. Chem. 46:301-302, 2000; Saito et al., Lancet 356: 1170, 2000; and Chiu et al., Lancet 360:998-1000, 2002). In addition, quantitative a bnormalities of fetal DNA in maternal plasma/serum have been reported in preeclampsia (Lo et al., Clin. Chem. 45: 184-188, 1999 and Zhong et al., Am. J. Obstet.

Gynecol. 184:414-419, 2001), fetal trisomy 21 (Lo et al., Clin. Chem. 45: 1747-1751, 1999 and Zhong et al., Prenat. Diagn. 20:795-798, 2000) and hyperemesis gravidarum (Sekizawa et al., Clin. Chem. 47:2164- 2165, 2001).

SUMMARY

The invention provides inter alia human epigenetic biomarkers that are useful for the noninvasive detection of fetal genetic traits, including, but not limited to, the presence or absence of fetal nucleic acid, the absolute or relative amount of fetal nucleic acid, fetal sex, and fetal chromosomal

abnormalities such as aneuploidy. The human epigenetic biomarkers of the invention represent genomic DNA that display differential CpG methylation patterns between the fetus and mother. The compositions and processes of the invention allow for the detection and quantification of fetal nucleic acid in a maternal sample based on the methylation status of the nucleic acid in said sample. More specifically, the amount of fetal nucleic acid from a maternal sample can be determined relative to the total amount of nucleic acid present, thereby providing the percentage of fetal nucleic acid in the sample. Further, the amount of fetal nucleic acid can be determined in a sequence-specific (or locus- specific) manner and with sufficient sensitivity to allow for accurate chromosomal dosage analysis (for example, to detect the presence or a bsence of a fetal aneuploidy).

In the first aspect of the invention, a method is provided for enriching fetal nucleic acids from a maternal biological sample, based on differential methylation between fetal and maternal nucleic acid comprising the steps of: (a) binding a target nucleic acid, from a sample, and a control nucleic acid, from the sample, to a methylation-specific binding protein; and (b) eluting the bound nucleic acid based on methylation status, wherein differentially methylated nucleic acids elute at least partly into separate fractions. In an embodiment, the nucleic acid sequence includes one or more of the polynucleotide sequences of SEQ ID NOs: 1-261. SEQ ID NOs: 1-261 are provided in Tables 4A-4C. The invention includes the sequences of SEQ ID NOs: 1-261, and variations thereto. In an embodiment, a control nucleic acid is not included in step (a).

In a related embodiment, a method is provided for enriching fetal nucleic acid from a maternal sample, which comprises the following steps: (a) obtaining a biological sample from a woman; (b) separating fetal and maternal nucleic acid based on the methylation status of a CpG-containing genomic sequence in the sample, wherein the genomic sequence from the fetus and the genomic sequence from the woman are differentially methylated, thereby distinguishing the genomic sequence from the woman and the genomic sequence from the fetus in the sample. In an embodiment, the genomic sequence is at least 15 nucleotides in length, comprising at least one cytosine, further wherein the region consists of (1) a genomic locus selected from Tables 1A-1C; and (2) a DNA sequence of no more than 10 kb upstream and/or downstream from the locus. For this aspect and all aspects of the invention, obtaining a biological sample from a woman is not meant to limit the scope of the invention. Said obtaining can refer to actually drawing a sample from a woman (e.g., a blood draw) or to receiving a sample from elsewhere (e.g., from a clinic or hospital) and performing the remaining steps of the method.

In a related embodiment, a method is provided for enriching fetal nucleic acid from a maternal sample, which comprises the following steps: (a) obtaining a biological sample from the woman; (b) digesting or removing maternal nucleic acid based on the methylation status of a CpG-containing genomic sequence in the sample, wherein the genomic sequence from the fetus and the genomic sequence from the woman are differentially methylated, thereby enriching for the genomic sequence from the fetus in the sample. Maternal nucleic acid may be digested using one or more methylation sensitive restriction enzymes that selectively digest or cleave maternal nucleic acid based on its methylation status. In an embodiment, the genomic sequence is at least 15 nucleotides in length, comprising at least one cytosine, further wherein the region consists of (1) a genomic locus selected from Tables 1A-1C; and (2) a DNA sequence of no more than 10 kb upstream and/or downstream from the locus.

In a second aspect of the invention, a method is provided for preparing nucleic acid having a nucleotide sequence of a fetal nucleic acid, which comprises the following steps: (a) providing a sample from a pregnant female; (b) separating fetal nucleic acid from maternal nucleic acid from the sample of the pregnant female according to a different methylation state between the fetal nucleic acid and the maternal nucleic acid counterpart, wherein the nucleotide sequence of the fetal nucleic acid comprises one or more CpG sites from one or more of the polynucleotide sequences of SEQ ID NOs: 1-261 within a polynucleotide sequence from a gene or locus that contains one of the polynucleotide sequences of SEQ ID NOs: 1-261; and (c) preparing nucleic acid comprising a nucleotide sequence of the fetal nucleic acid by an amplification process in which fetal nucleic acid separated in part (b) is utilized as a template. In an embodiment, a method is provided for preparing nucleic acid having a nucleotide sequence of a fetal nucleic acid, which comprises the following steps: (a) providing a sample from a pregnant female; (b) digesting or removing maternal nucleic acid from the sample of the pregnant female according to a different methylation state between the fetal nucleic acid and the maternal nucleic acid counterpart, wherein the nucleotide sequence of the fetal nucleic acid comprises one or more CpG sites from one or more of the polynucleotide sequences of SEQ ID NOs: 1-261 within a polynucleotide sequence from a gene that contains one of the polynucleotide sequences of SEQ ID NOs: 1-261; and (c) preparing nucleic acid comprising a nucleotide sequence of the fetal nucleic acid. The preparing process of step (c) may be a hybridization process, a capture process, or an amplification process in which fetal nucleic acid separated in part (b) is utilized as a template. Also, in the above embodiment wherein maternal nucleic acid is digested, the maternal nucleic acid may be digested using one or more methylation sensitive restriction enzymes that selectively digest or cleave maternal nucleic acid based on its methylation status. In either embodiment, the polynucleotide sequences of SEQ ID NOs: 1-261 may be within a polynucleotide sequence from a CpG island that contains one of the polynucleotide sequences of SEQ ID NOs: 1-261. The polynucleotide sequences of SEQ ID NOs: 1-261 are further characterized in Tables 1-3 herein, including the identification of CpG islands that overlap with the polynucleotide sequences provided in SEQ ID NOs: 1-261. In an embodiment, the nucleic acid prepared by part (c) is in solution. In yet an embodiment, the method further comprises quantifying the fetal nucleic acid from the amplification process of step (c).

In a third aspect of the invention, a method is provided for enriching fetal nucleic acid from a sample from a pregnant female with respect to maternal nucleic acid, which comprises the following steps: (a) providing a sample from a pregnant female; and (b) separating or capturing fetal nucleic acid from maternal nucleic acid from the sample of the pregnant female according to a different methylation state between the fetal nucleic acid and the maternal nucleic acid, wherein the nucleotide sequence of the fetal nucleic acid comprises one or more CpG sites from one or more of the polynucleotide sequences of SEQ ID NOs: 1-261 within a polynucleotide sequence from a gene that contains one of the

polynucleotide sequences of SEQ ID NOs: 1-261. In an embodiment, the polynucleotide sequences of SEQ ID NOs: 1-261 may be within a polynucleotide sequence from a CpG island that contains one of the polynucleotide sequences of SEQ ID NOs: 1-261. The polynucleotide sequences of SEQ ID NOs: 1-261 are characterized in Tables 1A-1C herein. In an embodiment, the nucleic acid separated by part (b) is in solution. In yet an embodiment, the method further comprises amplifying and/or quantifying the fetal nucleic acid from the separation process of step (b).

In a fourth aspect of the invention, a composition is provided comprising an isolated nucleic acid from a fetus of a pregnant female, wherein the nucleotide sequence of the nucleic acid comprises one or more of the polynucleotide sequences of SEQ ID NOs: 1-261. In one embodiment, the nucleotide sequence consists essentially of a nucleotide sequence of a gene, or portion thereof. In an embodiment, the nucleotide sequence consists essentially of a nucleotide sequence of a CpG island, or portion thereof. The polynucleotide sequences of SEQ ID NOs: 1-261 are further characterized in Tables 1A-1C. In an embodiment, the nucleic acid is in solution. In an embodiment, the nucleic acid from the fetus is enriched relative to maternal nucleic acid. In an embodiment, the composition further comprises an agent that binds to methylated nucleotides. For example, the agent may be a methyl-CpG binding protein (MBD) or fragment thereof.

In a fifth aspect of the invention, a composition is provided comprising an isolated nucleic acid from a fetus of a pregnant female, wherein the nucleotide sequence of the nucleic acid comprises one or more CpG sites from one or more of the polynucleotide sequences of SEQ ID NOs: 1-261 within a

polynucleotide sequence from a gene, or portion thereof, that contains one of the polynucleotide sequences of SEQ ID NOs: 1-261. In an embodiment, the nucleotide sequence of the nucleic acid comprises one or more CpG sites from one or more of the polynucleotide sequences of SEQ ID NOs: 1- 261 within a polynucleotide sequence from a CpG island, or portion thereof, that contains one of the polynucleotide sequences of SEQ ID NOs: 1-261. The polynucleotide sequences of SEQ ID NOs: 1-261 are further characterized in Tables 1A-1C. In an embodiment, the nucleic acid is in solution. In an embodiment, the nucleic acid from the fetus is enriched relative to maternal nucleic acid. Hyper- and hypomethylated nucleic acid sequences of the invention are identified in Tables 1A-1C. In an embodiment, the composition further comprises an agent that binds to methylated nucleotides. For example, the agent may be a methyl-CpG binding protein (MBD) or fragment thereof.

In some embodiments, a nucleotide sequence of the invention includes three or more of the CpG sites. In an embodiment, the nucleotide sequence includes five or more of the CpG sites. In an embodiment, the nucleotide sequence is from a gene region that comprises a P C2 domain (see Table 3). In an embodiment, the nucleotide sequence is from a gene region involved with development. For example, SOX14 - which is an epigenetic marker of the present invention (See Table 1) - is a member of the SOX (SRY-related HMG-box) family of transcription factors involved in the regulation of embryonic development and in the determination of cell fate. In some embodiments, the genomic sequence from the woman is methylated and the genomic sequence from the fetus is unmethylated. In other embodiments, the genomic sequence from the woman is unmethylated and the genomic sequence from the fetus is methylated. In an embodiment, the genomic sequence from the fetus is hypermethylated relative to the genomic sequence from the mother. Fetal genomic sequences found to be hypermethylated relative to maternal genomic sequence are provided in SEQ ID NOs: 1-59, 90-163, 176, 179, 180, 184, 188, 189, 190, 191, 193, 195, 198, 199, 200, 201, 202, 203, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 221, 223, 225, 226, 231, 232, 233, 235, 239, 241, 257, 258, 259, and 261. Alternatively, the genomic sequence from the fetus is hypomethylated relative to the genomic sequence from the mother. Fetal genomic sequences found to be hypomethylated relative to maternal genomic sequence are provided in SEQ ID NOs: 60-85, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 177, 178, 181, 182, 183, 185, 186, 187, 192, 194, 196, 197, 204, 215, 216, 217, 218, 219, 220, 222, 224, 227, 228, 229, 230, 234, 236, 237, 238, 240, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, and 260. Methylation sensitive restriction enzymes of the invention may be sensitive to hypo- or hyper- methylated nucleic acid.

In an embodiment, the fetal nucleic acid is extracellular nucleic acid. Generally the extracellular fetal nucleic acid is about 500, 400, 300, 250, 200 or 150 (or any number there between) nucleotide bases or less. In an embodiment, the digested maternal nucleic acid is less than about 90, 100, 110, 120, 130, 140 or 150 base pairs. In a related embodiment, the fetal nucleic acid is selectively amplified, captured or separated from or relative to the digested maternal nucleic acid based on size. For example, PC primers may be designed to amplify nucleic acid greater than about 75, 80, 85, 90, 95, 100, 105, 110, 115 or 120 (or any number there between) base pairs thereby amplifying fetal nucleic acid and not digested maternal nucleic acid. In an embodiment, the nucleic acid is subjected to fragmentation prior to the methods of the invention. Examples of methods of fragmenting nucleic acid, include but are not limited to sonication and restriction enzyme digestion. In some embodiments the fetal nucleic acid is derived from the placenta. In other embodiments the fetal nucleic acid is apoptotic.

In some embodiments, the present invention provides a method in which the sample is a member selected from the following: maternal whole blood, maternal plasma or serum, amniotic fluid, a chorionic villus sample, biopsy material from a pre-implantation embryo, fetal nucleated cells or fetal cellular remnants isolated from maternal blood, maternal urine, maternal saliva, washings of the female reproductive tract and a sample obtained by celocentesis or lung lavage. In certain embodiments, the biological sample is maternal blood. In some embodiments, the biological sample is a chorionic villus sample. In certain embodiments, the maternal sample is enriched for fetal nucleic acid prior to the methods of the present invention. Examples of fetal enrichment methods are provided in PCT

Publication Nos. WO/2007140417A2, WO2009/032781A2 and US Publication No. 20050164241.

In some embodiments, all nucleated and anucleated cell populations are removed from the sample prior to practicing the methods of the invention. In some embodiments, the sample is collected, stored or transported in a manner known to the person of ordinary skill in the art to minimize degradation or the quality of fetal nucleic acid present in the sample. The sample can be from any animal, including but not limited, human, non-human, mammal, reptile, cattle, cat, dog, goat, swine, pig, monkey, ape, gorilla, bull, cow, bear, horse, sheep, poultry, mouse, rat, fish, dolphin, whale, and shark, or any animal or organism that may have a detectable pregnancy- associated disorder or chromosomal abnormality.

In some embodiments, the sample is treated with a reagent that differentially modifies methylated and unmethylated DNA. For example, the reagent may comprise bisulfite; or the reagent may comprise one or more enzymes that preferentially cleave methylated DNA; or the reagent may comprise one or more enzymes that preferentially cleave unmethylated DNA. Examples of methylation sensitive restriction enzymes include, but are not limited to, Hhal and Hpall.

In one embodiment, the fetal nucleic acid is separated from the maternal nucleic acid by an agent that specifically binds to methylated nucleotides in the fetal nucleic acid. In an embodiment, the fetal nucleic acid is separated or removed from the maternal nucleic acid by an agent that specifically binds to methylated nucleotides in the maternal nucleic acid counterpart. In an embodiment, the agent that binds to methylated nucleotides is a methyl-CpG binding protein (MBD) or fragment thereof.

In a sixth aspect of the invention, a method is provided for determining the amount or copy number of fetal DNA in a maternal sample that comprises differentially methylated maternal and fetal DNA. The method is performed by a) distinguishing between the maternal and fetal DNA based on differential methylation status; and b) quantifying the fetal DNA of step a). In a specific embodiment, the method comprises a) digesting the maternal DNA in a maternal sample using one or more methylation sensitive restriction enzymes thereby enriching the fetal DNA; and b) determining the amount of fetal DNA from step a). The amount of fetal DNA can be used inter alia to confirm the presence or absence of fetal nucleic acid, determine fetal sex, diagnose fetal disease or a pregnancy-associated disorder, or be used in conjunction with other fetal diagnostic methods to improve sensitivity or specificity. In one embodiment, the method for determining the amount of fetal DNA does not require the use of a polymorphic sequence. For example, an allelic ratio is not used to quantify the fetal DNA in step b). In an embodiment, the method for determining the amount of fetal DNA does not require the treatment of DNA with bisulfite to convert cytosine residues to uracil. Bisulfite is known to degrade DNA, thereby, further reducing the already limited fetal nucleic acid present in maternal samples. In one embodiment, determining the amount of fetal DNA in step b) is done by introducing one or more competitors at known concentrations. In an embodiment, determining the amount of fetal DNA in step b) is done by T-PC , primer extension, sequencing or counting. In a related embodiment, the amount of nucleic acid is determined using BEAMing technology as described in US Patent Publication No. US20070065823. In a another related embodiment, the amount of nucleic acid is determined using the shotgun sequencing technology described in US Patent Publication No. US20090029377 (US Application No. 12/178,181), or variations thereof. In an embodiment, the restriction efficiency is determined and the efficiency rate is used to further determine the amount of fetal DNA. Exemplary differentially methylated nucleic acids are provided in SEQ ID NOs: 1-261. In a seventh aspect of the invention, a method is provided for determining the concentration of fetal DNA in a maternal sample, wherein the maternal sample comprises differentially methylated maternal and fetal DNA, comprising a) determining the total amount of DNA present in the maternal sample; b) selectively digesting the maternal DNA in a maternal sample using one or more methylation sensitive restriction enzymes thereby enriching the fetal DNA; c) determining the amount of fetal DNA from step b); and d) comparing the amount of fetal DNA from step c) to the total amount of DNA from step a), thereby determining the concentration of fetal DNA in the maternal sample. The concentration of fetal DNA can be used inter alia in conjunction with other fetal diagnostic methods to improve sensitivity or specificity. In one embodiment, the method for determining the amount of fetal DNA does not require the use of a polymorphic sequence. For example, an allelic ratio is not used to quantify the fetal DNA in step b). In an embodiment, the method for determining the amount of fetal DNA does not require the treatment of DNA with bisulfite to convert cytosine residues to uracil. In one embodiment, determining the amount of fetal DNA in step b) is done by introducing one or more competitors at known concentrations. In an embodiment, determining the amount of fetal DNA in step b) is done by T-PC , sequencing or counting. In an embodiment, the restriction efficiency is determined and used to further determine the amount of total DNA and fetal DNA. Exemplary differentially methylated nucleic acids are provided in SEQ ID NOs: 1-261.

In an eighth aspect of the invention, a method is provided for determining the presence or absence of a fetal aneuploidy using fetal DNA from a maternal sample, wherein the maternal sample comprises differentially methylated maternal and fetal DNA, comprising a) selectively digesting the maternal DNA in a maternal sample using one or more methylation sensitive restriction enzymes thereby enriching the fetal DNA; b) determining the amount of fetal DNA from a target chromosome; c) determining the amount of fetal DNA from a reference chromosome; and d) comparing the amount of fetal DNA from step b) to step c), wherein a biologically or statistically significant difference between the amount of target and reference fetal DNA is indicative of the presence of a fetal aneuploidy. In one embodiment, the method for determining the amount of fetal DNA does not require the use of a polymorphic sequence. For example, an allelic ratio is not used to quantify the fetal DNA in step b). In an embodiment, the method for determining the amount of fetal DNA does not require the treatment of DNA with bisulfite to convert cytosine residues to uracil. In one embodiment, determining the amount of fetal DNA in steps b) and c) is done by introducing one or more competitors at known concentrations. In an embodiment, determining the amount of fetal DNA in steps b) and c) is done by RT-PCR, sequencing or counting. In an embodiment, the amount of fetal DNA from a target chromosome determined in step b) is compared to a standard control, for example, the amount of fetal DNA from a target chromosome from euploid pregnancies. In an embodiment, the restriction efficiency is determined and used to further determine the amount of fetal DNA from a target chromosome and from a reference chromosome. Exemplary differentially methylated nucleic acids are provided in SEQ ID NOs: 1-261.

In a ninth aspect of the invention, a method is provided for detecting the presence or absence of a chromosomal abnormality by analyzing the amount or copy number of target nucleic acid and control nucleic acid from a sample of differentially methylated nucleic acids comprising the steps of: (a) enriching a target nucleic acid, from a sample, and a control nucleic acid, from the sample, based on its methylation state; (b) performing a copy number analysis of the enriched target nucleic acid in at least one of the fractions; (c) performing a copy number analysis of the enriched control nucleic acid in at least one of the fractions; (d) comparing the copy number from step (b) with the copy number from step (c); and (e) determining if a chromosomal abnormality exists based on the comparison in step (d), wherein the target nucleic acid and control nucleic acid have the same or substantially the same methylation status. In a related embodiment, a method is provided for detecting the presence or absence of a chromosomal abnormality by analyzing the amount or copy number of target nucleic acid and control nucleic acid from a sample of differentially methylated nucleic acids comprising the steps of: (a) binding a target nucleic acid, from a sample, and a control nucleic acid, from the sample, to a binding agent; (b) eluting the bound nucleic acid based on methylation status, wherein differentially methylated nucleic acids elute at least partly into separate fractions; (c) performing a copy number analysis of the eluted target nucleic acid in at least one of the fractions; (d) performing a copy number analysis of the eluted control nucleic acid in at least one of the fractions; (e) comparing the copy number from step (c) with the copy number from step (d); and (f) determining if a chromosomal abnormality exists based on the comparison in step (e), wherein the target nucleic acid and control nucleic acid have the same or substantially the same methylation status. Differentially methylated nucleic acids are provided in SEQ ID NOs: 1-261.

In a tenth aspect of the invention, a method is provided for detecting the presence or absence of a chromosomal abnormality by analyzing the allelic ratio of target nucleic acid and control nucleic acid from a sample of differentially methylated nucleic acids comprising the steps of: (a) binding a target nucleic acid, from a sample, and a control nucleic acid, from the sample, to a binding agent; (b) eluting the bound nucleic acid based on methylation status, wherein differentially methylated nucleic acids elute at least partly into separate fractions; (c) performing an allelic ratio analysis of the eluted target nucleic acid in at least one of the fractions; (d) performing an allelic ratio analysis of the eluted control nucleic acid in at least one of the fractions; (e) comparing the allelic ratio from step c with the all from step d; and (f) determining if a chromosomal abnormality exists based on the comparison in step (e), wherein the target nucleic acid and control nucleic acid have the same or substantially the same methylation status. Differentially methylated nucleic acids are provided in SEQ ID NOs: 1-261, and SNPs within the differentially methylated nucleic acids are provided in Table 2. The methods may also be useful for detecting a pregnancy-associated disorder.

In an eleventh aspect of the invention, the amount of maternal nucleic acid is determined using the methylation-based methods of the invention. For example, fetal nucleic acid can be separated (for example, digested using a methylation-sensitive enzyme) from the maternal nucleic acid in a sample, and the maternal nucleic acid can be quantified using the methods of the invention. Once the amount of maternal nucleic acid is determined, that amount can subtracted from the total amount of nucleic acid in a sample to determine the amount of fetal nucleic acid. The amount of fetal nucleic acid can be used to detect fetal traits, including fetal aneuploidy, as described herein.

For all aspects and embodiments of the invention described herein, the methods may also be useful for detecting a pregnancy-associated disorder. In some embodiments, the sample comprises fetal nucleic acid, or fetal nucleic acid and maternal nucleic acid. In the case when the sample comprises fetal and maternal nucleic acid, the fetal nucleic acid and the maternal nucleic acid may have a different methylation status. Nucleic acid species with a different methylation status can be differentiated by any method known in the art. In an embodiment, the fetal nucleic acid is enriched by the selective digestion of maternal nucleic acid by a methylation sensitive restriction enzyme. In an embodiment, the fetal nucleic acid is enriched by the selective digestion of maternal nucleic acid using two or more methylation sensitive restriction enzymes in the same assay. In an embodiment, the target nucleic acid and control nucleic acid are both from the fetus. In an embodiment, the average size of the fetal nucleic acid is about 100 bases to about 500 bases in length. In an embodiment the chromosomal abnormality is an aneuploidy, such as trisomy 21. In some embodiments, the target nucleic acid is at least a portion of a chromosome which may be abnormal and the control nucleic acid is at least a portion of a chromosome which is very rarely abnormal. For example, when the target nucleic acid is from chromosome 21, the control nucleic acid is from a chromosome other than chromosome 21 - preferably another autosome. In an embodiment, the binding agent is a methylation-specific binding protein such as MBD-Fc. Also, the enriched or eluted nucleic acid is amplified and/or quantified by any method known in the art. In an embodiment, the fetal DNA is quantified using a method that does not require the use of a polymorphic sequence. For example, an allelic ratio is not used to quantify the fetal DNA. In an embodiment, the method for quantifying the amount of fetal DNA does not require the treatment of DNA with bisulfite to convert cytosine residues to uracil.

In some embodiments, the methods of the invention include the additional step of determining the amount of one or more Y-chromosome-specific sequences in a sample. In a related embodiment, the amount of fetal nucleic acid in a sample as determined by using the methylation-based methods of the invention is compared to the amount of Y-chromosome nucleic acid present.

Methods for differentiating nucleic acid based on methylation status include, but are not limited to, methylation sensitive capture, for example using, MBD2-Fc fragment; bisulfite conversion methods, for example, MSP (methylation-sensitive PC ), COBRA, methylation-sensitive single nucleotide primer extension (Ms-SNuPE) or Sequenom MassCLEAVE™ technology; and the use of methylation sensitive restriction enzymes. Except where explicitly stated, any method for differentiating nucleic acid based on methylation status can be used with the compositions and methods of the invention.

In some embodiments, methods of the invention may further comprise an amplification step. The amplification step can be performed by PCR, such as methylation-specific PCR. In an embodiment, the amplification reaction is performed on single molecules, for example, by digital PCR, which is further described in US Patent Nos 6,143,496 and 6,440,706, both of which are hereby incorporated by reference. In other embodiments, the method does not require amplification. For example, the amount of enriched fetal DNA may be determined by counting the fetal DNA (or sequence tags attached thereto) with a flow cytometer or by sequencing means that do not require amplification. In an embodiment, the amount of fetal DNA is determined by an amplification reaction that generates amplicons larger than the digested maternal nucleic acid, thereby further enriching the fetal nucleic acid. In some embodiments, the fetal nucleic acid (alone or in combination with the maternal nucleic acid) comprises one or more detection moieties. In one embodiment, the detection moiety may be any one or more of a compomer, sugar, peptide, protein, antibody, chemical compound (e.g., biotin), mass tag (e.g., metal ions or chemical groups), fluorescent tag, charge tag (e.g., such as polyamines or charged dyes) and hydrophobic tag. In a related embodiment, the detection moiety is a mass-distinguishable product (MDP) or part of an MDP detected by mass spectrometry. In a specific embodiment, the detection moiety is a fluorescent tag or label that is detected by mass spectrometry. In some embodiments, the detection moiety is at the 5' end of a detector oligonucleotide, the detection moiety is attached to a non-complementary region of a detector oligonucleotide, or the detection moiety is at the 5' terminus of a non-complementary sequence. In certain embodiments, the detection moiety is incorporated into or linked to an internal nucleotide or to a nucleotide at the 3' end of a detector oligonucleotide. In some embodiments, one or more detection moieties are used either alone or in combination. See for example US Patent Applications US20080305479 and US20090111712. In certain embodiments, a detection moiety is cleaved by a restriction endonuclease, for example, as described in US Application No. 12/726,246. In some embodiments, a specific target chromosome is labeled with a specific detection moiety and one or more non-target chromosomes are labeled with a different detection moiety, whereby the amount target chromsome can be compared to the amount of non- target chromosome.

For embodiments that require sequence analysis, any one of the following sequencing technologies may be used: a primer extension method (e.g., iPLEX ® ; Sequenom, Inc.), direct DNA sequencing, restriction fragment length polymorphism (RFLP analysis), real-time PCR, for example using "STAR" (Scalable Transcription Analysis Routine) technology (see US Patent No. 7,081,339), or variations thereof, allele specific oligonucleotide (ASO) analysis, methylation-specific PCR (MSPCR), pyrosequencing analysis, acycloprime analysis, Reverse dot blot, GeneChip microarrays, Dynamic allele-specific hybridization (DASH), Peptide nucleic acid (PNA) and locked nucleic acids (LNA) probes, TaqMan, Molecular Beacons, Intercalating dye, FRET primers, fluorescence tagged d NTP/ddNTPs, AlphaScreen, SNPstream, genetic bit analysis (GBA), Multiplex minisequencing, SNaPshot, GOOD assay, Microarray miniseq, arrayed primer extension (APEX), Microarray primer extension, Tag arrays, Coded microspheres, Template-directed incorporation (TDI), fluorescence polarization, Colorimetric oligonucleotide ligation assay (OLA), Sequence-coded OLA, Microarray ligation, Ligase chain reaction, Padlock probes, Invader™ assay, hybridization using at least one probe, hybridization using at least one fluorescently labeled probe, electrophoresis, cloning and sequencing, for example as performed on the 454 platform (Roche) (Margulies, M. et al. 2005 Nature 437, 376-380), lllumina Genome Analyzer (or Solexa platform) or SOLiD System (Applied Biosystems) or the Helicos True Single Molecule DNA sequencing technology (Harris T D et al. 2008 Science, 320, 106-109), the single molecule, real-time (SMRT.TM.) technology of Pacific Biosciences, or nanopore-based sequencing (Soni GV and Meller A. 2007 Clin Chem 53: 1996- 2001), for example, using an Ion Torrent ion sensor that measures an electrical charge associated with each individual base of DNA as each base passes through a tiny pore at the bottom of a sample well, or Oxford Nanopore device that uses a nanopore to measure the electrical charge associated with each individual unit of DNA, and combinations thereof. Nanopore-based methods may include sequencing nucleic acid using a nanopore, or counting nucleic acid molecules using a nanopore, for example, based on size wherein sequence information is not determined.

The absolute copy number of one or more nucleic acids can be determined, for example, using mass spectrometry, a system that uses a competitive PCR approach for absolute copy number measurements. See for example, Ding C, Cantor CR (2003) A high-throughput gene expression analysis technique using competitive PCR and matrix-assisted laser desorption ionization time-of-flight MS. Proc Natl Acad Sci U S A 100:3059-3064, and US Patent Application No. 10/655762, which published as US Patent Publication No. 20040081993, both of which are hereby incorporated by reference.

In some embodiments, the amount of the genomic sequence is compared with a standard control, wherein an increase or decrease from the standard control indicates the presence or progression of a pregnancy-associated disorder. For example, the amount of fetal nucleic acid may be compared to the total amount of DNA present in the sample. Or when detecting the presence or absence of fetal aneuploidy, the amount of fetal nucleic acid from target chromosome may be compared to the amount of fetal nucleic acid from a reference chromosome. Preferably the reference chromosome is another autosome that has a low rate of aneuploidy. The ratio of target fetal nucleic acid to reference fetal nucleic acid may be compared to the same ratio from a normal, euploid pregnancy. For example, a control ratio may be determined from a DNA sample obtained from a female carrying a healthy fetus who does not have a chromosomal abnormality. Preferably, one uses a panel of control samples.

Where certain chromosome anomalies are known, one can also have standards that are indicative of a specific disease or condition. Thus, for example, to screen for three different chromosomal aneuploidies in a maternal plasma of a pregnant female, one preferably uses a panel of control DNAs that have been isolated from mothers who are known to carry a fetus with, for example, chromosome 13, 18, or 21 trisomy, and a mother who is pregnant with a fetus who does not have a chromosomal abnormality.

In some embodiments, the present invention provides a method in which the alleles from the target nucleic acid and control nucleic acid are differentiated by sequence variation. The sequence variation may be a single nucleotide polymorphism (SNP) or an insertion/deletion polymorphism. In an embodiment, the fetal nucleic acid should comprise at least one high frequency heterozygous polymorphism (e.g., about 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, 11%, 12%, 13%, 14%, 15%, 16%, 17%, 18%, 19%, 20%, 25% or more frequency rate), which allows the determination of the allelic-ratio of the nucleic acid in order to assess the presence or absence of the chromosomal abnormality. A list of exemplary SNPs is provided in Table 2, however, this does not represent a complete list of polymorphic alleles that can be used as part of the invention. Any SNP meeting the following criteria may also be considered: (a) the SNP has a heterozygosity frequency greater than about 2% (preferably across a range of different populations), (b) the SNP is a heterozygous locus; and (c)(i) the SNP is within nucleic acid sequence described herein, or (c)(iii) the SNP is within about 5 to about 2000 base pairs of a SNP described herein (e.g., within about 5, 10, 15, 20, 25, 30, 40, 50, 60, 70, 80, 90, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 1250, 1500, 1750 or 2000 base pairs of a SNP described herein). In other embodiments, the sequence variation is a short tandem repeat (ST ) polymorphism. In some embodiments, the sequence variation falls in a restriction site, whereby one allele is susceptible to digestion by a restriction enzyme and the one or more other alleles are not. In some embodiments, the sequence variation is a methylation site.

In some embodiments, performing an allelic ratio analysis comprises determining the ratio of alleles of the target nucleic acid and control nucleic acid from the fetus of a pregnant woman by obtaining an nucleic acid-containing biological sample from the pregnant woman, wherein the biological sample contains fetal nucleic acid, partially or wholly separating the fetal nucleic acid from the maternal nucleic acid based on differential methylation, discriminating the alleles from the target nucleic acid and the control nucleic acid, followed by determination of the ratio of the alleles, and detecting the presence or absence of a chromosomal disorder in the fetus based on the ratio of alleles, wherein a ratio above or below a normal, euploid ratio is indicative of a chromosomal disorder. In one embodiment, the target nucleic acid is from a suspected aneuploid chromosome (e.g., chromosome 21) and the control nucleic acid is from a euploid chromosome from the same fetus.

In some embodiments, the present invention is combined with other fetal markers to detect the presence or a bsence of multiple chromosomal abnormalities, wherein the chromosomal abnormalities are selected from the following: trisomy 21, trisomy 18 and trisomy 13, or combinations thereof. In some embodiments, the chromosomal disorder involves the X chromosome or the Y chromosome.

In some embodiments, the compositions or processes may be multiplexed in a single reaction. For example, the amount of fetal nucleic acid may be determined at multiple loci across the genome. Or when detecting the presence or absence of fetal aneuploidy, the amount of fetal nucleic acid may be determined at multiple loci on one or more target chromosomes (e.g., chromosomes 13, 18 or 21) and on one or more reference chromosomes. If an allelic ratio is being used, one or more alleles from Table 2 can be detected and discriminated simultaneously. When determining allelic ratios, multiplexing embodiments are particularly important when the genotype at a polymorphic locus is not known. In some instances, for example when the mother and child are homozygous at the polymorphic locus, the assay may not be informative. In one embodiment, greater than 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 25, 30, 35, 40, 50, 100, 200, 300 or 500, and any intermediate levels,

polynucleotide sequences of the invention are enriched, separated and/or examined according the methods of the invention. When detecting a chromosomal abnormality by analyzing the copy number of target nucleic acid and control nucleic acid, less than 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, or 14 polynucleotide sequences may need to be analyzed to accurately detect the presence or absence of a chromosomal abnormality. In an embodiment, the compositions or processes of the invention may be used to assay samples that have been divided into 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 25, 30, 35, 40, 50, 100 or more replicates, or into single molecule equivalents. Methods for analyzing fetal nucleic acids from a maternal sample in replicates, including single molecule analyses, are provided in US Application No, 11/364,294, which pu blished as US Patent Publication No. US 2007- 0207466 Al, which is hereby incorporated by reference. In a further embodiment, the present invention provides a method wherein a comparison step shows an increased risk of a fetus having a chromosomal disorder if the ratio of the alleles or absolute copy number of the target nucleic acid is higher or lower by 1 standard deviation from the standard control sequence. In some embodiments, the comparison step shows an increased risk of a fetus having a chromosomal disorder if the ratio of the alleles or absolute copy number of the target nucleic acid is higher or lower by 2 standard deviation from the standard control sequence. In some other embodiments, the comparison step shows an increased risk of a fetus having a chromosomal disorder if the ratio of the alleles or absolute copy number of the target nucleic acid is higher or lower by 3 standard deviation from the standard control sequence. In some embodiments, the comparison step shows an increased risk of a fetus having a chromosomal disorder if the ratio of the alleles or absolute copy number of the target nucleic acid is higher or lower than a statistically significant standard deviation from the control. In one embodiment, the standard control is a maternal reference, and in an embodiment the standard control is a fetal reference chromosome (e.g., non-trisomic autosome).

In some embodiments, the methods of the invention may be combined with other methods for diagnosing a chromosomal abnormality. For example, a noninvasive diagnostic method may require confirmation of the presence or absence of fetal nucleic acid, such as a sex test for a female fetus or to confirm an hD negative female fetus in an RhD negative mother. In an embodiment, the compositions and methods of the invention may be used to determine the percentage of fetal nucleic acid in a maternal sample in order to enable another diagnostic method that requires the percentage of fetal nucleic acid be known. For example, does a sample meet certain threshold concentration

requirements? When determining an allelic ratio to diagnose a fetal aneuploidy from a maternal sample, the amount or concentration of fetal nucleic acid may be required to make a diagnose with a given sensitivity and specificity. In other embodiments, the compositions and methods of the invention for detecting a chromosomal abnormality can be combined with other known methods thereby improving the overall sensitivity and specificity of the detection method. For example, mathematical models have suggested that a combined first-trimester screening program utilizing maternal age (MA), nuchal translucency (NT) thickness, serum-free beta-hCG, and serum PAPP-A will detect more than 80% of fetuses with Down's syndrome for a 5% invasive testing rate (Wald and Hackshaw, Prenat Diagn 17(9):921-9 (1997)). However, the combination of commonly used aneuploidy detection methods combined with the non-invasive free fetal nucleic acid-based methods described herein may offer improved accuracy with a lower false positive rate. Examples of combined diagnostic methods are provided in PCT Publication Number WO2008157264A2 (assigned to the Applicant), which is hereby incorporated by reference. In some embodiments, the methods of the invention may be combined with cell-based methods, wherein fetal cells are procured invasively or non-invasively.

In certain embodiments, an increased risk for a chromosomal abnormality is based on the outcome or result(s) produced from the compositions or methods provided herein. An example of an outcome is a deviation from the euploid absolute copy number or allelic ratio, which indicates the presence of chromosomal aneuploidy. This increase or decrease in the absolute copy number or ratio from the standard control indicates an increased risk of having a fetus with a chromosomal abnormality (e.g., trisomy 21). Information pertaining to a method described herein, such as an outcome, result, or risk of trisomy or aneuploidy, for example, may be transfixed, renditioned, recorded and/or displayed in any suita ble medium. For example, an outcome may be transfixed in a medium to save, store, share, commu nicate or otherwise analyze the outcome. A medium can be ta ngible (e.g., paper) or intangible (e.g., electronic medium), and examples of media include, but are not limited to, computer media, data bases, charts, patient charts, records, patient records, graphs and tables, a nd any other medium of expression. The information sometimes is stored and/or renditioned in computer reada ble form and sometimes is stored and organized in a data base. In certain em bodiments, the information may be transferred from one location to another using a physical medium (e.g., paper) or a computer reada ble medium (e.g., optical and/or magnetic storage or transmission medium, floppy disk, hard disk, random access memory, computer processing unit, facsimile signal, satellite signal, transmission over an internet or transmission over the world-wide web).

In practicing the present invention within all aspects mentioned a bove, a CpG island may be used as the CpG-containing genomic sequence in some cases, whereas in other cases the CpG-containing genomic sequence may not be a CpG island.

In some em bod iments, the present invention provides a kit for performing the methods of the invention. One component of the kit is a methylation-sensitive binding agent.

BRIEF DESCRIPTION OF THE DRAWINGS

FIGURE 1: Shows the design of the recombinant M BD-Fc protein used to separate differentially methylated DNA.

FIGURE 2: Shows the methyl-CpG-binding, antibody-like protein has a high affinity and high avidity to its "antigen", which is prefera bly DNA that is methylated at CpG di-nucleotides.

FIGURE 3: Shows the methyl binding domain of M BD-FC binds all DNA molecules regardless of their methylation status. The strength of this protein/DNA interaction is defined by the level of DNA methylation. After binding genomic DNA, eluate solutions of increasing salt concentrations can be used to fractionate non-methylated a nd methylated DNA allowing for a controlled separation.

FIGURE 4: Shows the experiment used to identify differentially methylated DNA from a fetus and mother using the recom binant M BD-Fc protein and a microarray.

FIGURE 5 : Shows typical results generated by Sequenom ® EpiTYPER™ method, which was used to validate the results generated from the experiment illustrated in Figure 4.

FIGURE 6: Shows the correlation between the log ratios derived from microarray analysis (x axis) and methylation differences obtained by EpiTYPER analysis (y axis). Each data point represents the average for one region across all measured samples. The microarray analysis is comparative in nature because the highly methylated fraction of the maternal DNA is hybridized together with the highly methylated fraction of placenta DNA. Positive values indicate higher methylation of the placenta samples. In mass spectrometry each samples is measured individually. We first calculated difference in methylation by subtracting the maternal methylation values from the placenta methylation value. To compare the results with the microarray data we calculated the average of the differences for all maternal / placenta DNA pairs.

FIGURE 8: Shown is the correlation between the number of gDNA molecules that were expected and the number of molecules measured by competitive PCR in combination with mass spectrometry analysis. In this experiment we used DNA derived from whole blood (black plus signs) and commercially available fully methylated DNA(red crosses) in a 90 to 10 ratio. We used the MBD-FC fusion protein to separate the non-methylated and the methylated fraction of DNA. Each fraction was subject to competitive PCR analysis with mass spectrometry readout. The method has been described earlier for the analysis of copy number variations and is commercially available for gene expression analysis. The approach allows absolute quantification of DNA molecules with the help of a synthetic oligonucleotides of know concentration. In this experiment we targeted the MGMT locus, which was not methylated in the whole blood sample used here. Using an input of 300 total gDNA copies we expect to see 270 copies of non- methylated DNA and 30 copies of methylated DNA. The measured copy numbers are largely in agreement with the expected values. The data point at 600 copies of input DNA indicates a bias in the reaction and shows that this initial proof of concept experiment needs to be followed up with more development work, before the assay can be used. However, this initial data indicates the feasibility of the approach for capturing and quantifying of a few copies of methylated DNA in the presence of an excess of unmethylated DNA species.

FIGURE 9A-9C: Shown are bar graph plots of the methylation differences obtained from the microarray analysis (dark bars) and the mass spectrometry analysis (light grey bars) with respect to their genomic location. For each of the 85 region that were identified to be differentially methylated by microarray an individual plot is provided. The x axis for each plot shows the chromosomal position of the region. The y axis depicts the log ration (in case of the microarrays) and the methylation differences (in case of the mass spectrometry results). For the microarrays each hybridization probe in the area is shown as a single black (or dark grey) bar. For the mass spectrometry results each CpG site, is shown as a light grey bar. Bars showing values greater than zero indicate higher DNA methylation in the placenta samples compared to the maternal DNA. For some genes the differences are small (i.e. RBI or DSCR6) but still statistically significant. Those regions would be less suitable for a fetal DNA enrichment strategy.

FIGURE 10: Shows one embodiment of the Fetal Quantifier Method. Maternal nucleic acid is selectively digested and the remaining fetal nucleic acid is quantified using a competitor of known concentration. In this schema, the analyte is separated and quantified by a mass spectromter.

FIGURE 11: Shows one embodiment of the Methylation-Based Fetal Diagnostic Method. Maternal nucleic acid is selectively digested and the remaining fetal nucleic acid is quantified for three different chromosomes (13, 18 and 21). Parts 2 and 3 of the Figure illustrate the size distribution of the nucleic acid in the sample before and after digestion. The amplification reactions can be size-specific (e.g., greater than 100 base pair amplicons) such that they favor the longer, non-digested fetal nucleic acid over the digested maternal nucleic acid, thereby further enriching the fetal nucleic acid. The spectra at the bottom of the Figure show an increased amount of chromosome 21 fetal nucleic acid indicative of trisomy 21.

FIGURE 12: Shows the total number of amplifiable genomic copies from four different DNA samples isolated from the blood of non-pregnant women. Each sample was diluted to contain approximately 2500, 1250, 625 or 313 copies per reaction. Each measurement was obtained by taking the mean DNA/competitor ratio obtained from two total copy number assays (ALB and RNAseP in Table X). As Figure 12 shows, the total copy number is accurate and stable across the different samples, thus validating the usefulness of the competitor-based approach.

FIGURES 13A and B: A model system was created that contained a constant number of maternal non- methylated DNA with varying amounts of male placental methylated DNA spiked-in. The samples were spiked with male placental amounts ranging from approximately 0 to 25% relative to the maternal non- methylated DNA. The fraction of placental DNA was calculated using the ratios obtained from the methylation assays (Figure 13A) and the Y-chromosome marker (Figure 13B) as compared to the total copy number assay. The methylation and Y-chromosome markers are provided in Table X.

FIGURES 14 A and B: Show the results of the total copy number assay from plasma samples. In Figure 14A, the copy number for each sample is shown. Two samples (no 25 and 26) have a significantly higher total copy number than all the other samples. A mean of approximately 1300 amplifiable copies/ml plasma was obtained (range 766-2055). Figure 14B shows a box-and-whisker plot of the given values, summarizing the results.

FIGURES 15A and B: The amount (or copy numbers) of fetal nucleic acid from 33 different plasma samples taken from pregnant women with male fetuses are plotted. The copy numbers obtained were calculated using the methylation markers and the Y-chromosome-specific markers using the assays provided in Table X. As can be seen in Figure 15B, the box-and-whisker plot of the given values indicated minimal difference between the two different measurements, thus validating the accuracy and stability of the method.

FIGURE 16: Shows a paired correlation between the results obtained using the methylation markers versus the Y-chromosome marker from Figure 15A.

FIGURE 17: Shows the digestion efficiency of the restriction enzymes using the ratio of digestion for the control versus the competitor and comparing this value to the mean total copy number assays. Apart from sample 26 all reactions indicate the efficiency to be above about 99%.

FIGURE 18: Provides a specific method for calculating fetal DNA fraction (or concentration) in a sample using the Y-chromosome-specific markers for male pregnancies and the mean of the methylated fraction for all pregnancies (regardless of fetal sex).

FIGURE 19: Provides a specific method for calculating fetal DNA fraction (or concentration) in a sample without the Y-chromosome-specific markers. Instead, only the Assays for Methylation Quantification were used to determine the concentration of fetal DNA. FIGURE 20: Shows a power calculation t-test for a simulated trisomy 21 diagnosis using the methods of the invention. The Figure shows the relationship between the coefficient of variation (CV) on the x-axis and the power to discriminate the assay populations using a simple t-test (y-axis). The data indicates that in 99% of all cases, one can discriminate the two population (euploid vs. aneuploid) on a significance level of 0.001 provided a CV of 5% or less.

DEFINITIONS

The term "pregnancy-associated disorder," as used in this application, refers to any condition or disease that may affect a pregnant woman, the fetus, or both the woman and the fetus. Such a condition or disease may manifest its symptoms during a limited time period, e.g., during pregnancy or delivery, or may last the entire life span of the fetus following its birth. Some examples of a pregnancy-associated disorder include ectopic pregnancy, preeclampsia, preterm labor, RhD incompatibility, fetal

chromosomal abnormalities such as trisomy 21, and genetically inherited fetal disorders such as cystic fibrosis, beta-thalassemia or other monogenic disorders. The compositions and processes described herein are particularly useful for diagnosis, prognosis and monitoring of pregnancy-associated disorders associated with quantitative a bnormalities of fetal DNA in maternal plasma/serum, including but not limited to, preeclampsia (Lo et al., Clin. Chem. 45:184-188, 1999 and Zhong et al., Am. J. Obstet.

Gynecol. 184:414-419, 2001), fetal trisomy (Lo et al., Clin. Chem. 45:1747-1751, 1999 and Zhong et al., Prenat. Diagn. 20:795-798, 2000) and hyperemesis gravidarum (Sekizawa et al., Clin. Chem. 47:2164- 2165, 2001). For example, an elevated level of fetal nucleic acid in maternal blood (as compared to a normal pregnancy or pregnancies) may be indicative of a preeclamptic preganancy. Further, the ability to enrich fetal nucleic from a maternal sample may prove particularly useful for the noninvasive prenatal diagnosis of autosomal recessive diseases such as the case when a mother and father share an identical disease causing mutation, an occurrence previously perceived as a challenge for maternal plasma-based non-trisomy prenatal diagnosis.

The term "chromosomal abnormality" or "aneuploidy" as used herein refers to a deviation between the structure of the subject chromosome and a normal homologous chromosome. The term "normal" refers to the predominate karyotype or banding pattern found in healthy individuals of a particular species, for example, a euploid genome (in humans, 46XX or 46XY). A chromosomal abnormality can be numerical or structural, and includes but is not limited to aneuploidy, polyploidy, inversion, a trisomy, a monosomy, duplication, deletion, deletion of a part of a chromosome, addition, addition of a part of chromosome, insertion, a fragment of a chromosome, a region of a chromosome, chromosomal rearrangement, and translocation. Chromosomal abnormality may also refer to a state of chromosomal abnormality where a portion of one or more chromosomes is not an exact multiple of the usual haploid number due to, for example, chromosome translocation. Chromosomal translocation (e.g. translocation between chromosome 21 and 14 where some of the 14th chromosome is replaced by extra 21st chromosome) may cause partial trisomy 21. A chromosomal abnormality can be correlated with presence of a pathological condition or with a predisposition to develop a pathological condition. A chromosomal abnormality may be detected by quantitative analysis of nucleic acid. The terms "nucleic acid" and "nucleic acid molecule" may be used interchangea bly throughout the disclosure. The terms refer to nucleic acids of any composition from, such as DNA (e.g., complementary DNA (cDNA), genomic DNA (gDNA) and the like), RNA (e.g., message RNA (mRNA), short inhibitory RNA (siRNA), ribosomal RNA (rRNA), tRNA, microRNA, RNA highly expressed by the fetus or placenta, and the like), and/or DNA or RNA analogs (e.g., containing base analogs, sugar analogs and/or a non-native backbone and the like), RNA/DNA hybrids and polyamide nucleic acids (PNAs), all of which can be in single- or dou ble-stranded form, and unless otherwise limited, can encompass known analogs of natural nucleotides that can function in a similar manner as naturally occurring nucleotides. For example, the nucleic acids provided in SEQ ID NOs: 1-261 (see Tables 4A-4C) can be in any form useful for conducting processes herein (e.g., linear, circular, supercoiled, single-stranded, double-stranded and the like) or may include variations (e.g., insertions, deletions or substitutions) that do not alter their utility as part of the present invention. A nucleic acid may be, or may be from, a plasmid, phage, autonomously replicating sequence (ARS), centromere, artificial chromosome, chromosome, or other nucleic acid able to replicate or be replicated in vitro or in a host cell, a cell, a cell nucleus or cytoplasm of a cell in certain embodiments. A template nucleic acid in some embodiments can be from a single chromosome (e.g., a nucleic acid sample may be from one chromosome of a sample obtained from a diploid organism). Unless specifically limited, the term encompasses nucleic acids containing known analogs of natural nucleotides that have similar binding properties as the reference nucleic acid and are metabolized in a manner similar to naturally occurring nucleotides. Unless otherwise indicated, a particular nucleic acid sequence also implicitly encompasses conservatively modified variants thereof (e.g., degenerate codon substitutions), alleles, orthologs, single nucleotide polymorphisms (SNPs), and complementary sequences as well as the sequence explicitly indicated. Specifically, degenerate codon substitutions may be achieved by generating sequences in which the third position of one or more selected (or all) codons is substituted with mixed-base and/or deoxyinosine residues (Batzer et al., Nucleic Acid Res. 19:5081 (1991); Ohtsuka et al., J. Biol. Chem. 260:2605-2608 (1985); and Rossolini et al., Mol. Cell. Probes 8:91- 98 (1994)). The term nucleic acid is used interchangeably with locus, gene, cDNA, and mRNA encoded by a gene. The term also may include, as equivalents, derivatives, variants and analogs of RNA or DNA synthesized from nucleotide analogs, single-stranded ("sense" or "antisense", "plus" strand or "minus" strand, "forward" reading frame or "reverse" reading frame) and double-stranded polynucleotides. Deoxyribonucleotides include deoxyadenosine, deoxycytidine, deoxyguanosine and deoxythymidine. For RNA, the base cytosine is replaced with uracil. A template nucleic acid may be prepared using a nucleic acid obtained from a subject as a template.

A "nucleic acid comprising one or more CpG sites" or a "CpG-containing genomic sequence" as used herein refers to a segment of DNA sequence at a defined location in the genome of an individual such as a human fetus or a pregnant woman. Typically, a "CpG-containing genomic sequence" is at least 15 nucleotides in length and contains at least one cytosine. Preferably, it can be at least 30, 50, 80, 100, 150, 200, 250, or 300 nucleotides in length and contains at least 2, 5, 10, 15, 20, 25, or 30 cytosines. For anyone "CpG-containing genomic sequence" at a given location, e.g., within a region centering around a given genetic locus (see Tables 1A-1C), nucleotide sequence variations may exist from individual to individual and from allele to allele even for the same individual. Typically, such a region centering around a defined genetic locus (e.g., a CpG island) contains the locus as well as upstream and/or downstream sequences. Each of the upstream or downstream sequence (counting from the 5' or 3' boundary of the genetic locus, respectively) can be as long as 10 kb, in other cases may be as long as 5 kb, 2 kb, 1 kb, 500 bp, 200 bp, or 100 bp. Furthermore, a "CpG-containing genomic sequence" may encompass a nucleotide sequence transcribed or not transcribed for protein production, and the nucleotide sequence can be an inter-gene sequence, intra-gene sequence, protein-coding sequence, a non protein-coding sequence (such as a transcription promoter), or a combination thereof.

As used herein, a "methylated nucleotide" or a "methylated nucleotide base" refers to the presence of a methyl moiety on a nucleotide base, where the methyl moiety is not present in a recognized typical nucleotide base. For example, cytosine does not contain a methyl moiety on its pyrimidine ring, but 5- methylcytosine contains a methyl moiety at position 5 of its pyrimidine ring. Therefore, cytosine is not a methylated nucleotide and 5-methylcytosine is a methylated nucleotide. In another example, thymine contains a methyl moiety at position 5 of its pyrimidine ring, however, for purposes herein, thymine is not considered a methylated nucleotide when present in DNA since thymine is a typical nucleotide base of DNA. Typical nucleoside bases for DNA are thymine, adenine, cytosine and guanine. Typical bases for NA are uracil, adenine, cytosine and guanine. Correspondingly a "methylation site" is the location in the target gene nucleic acid region where methylation has, or has the possibility of occurring. For example a location containing CpG is a methylation site wherein the cytosine may or may not be methylated.

As used herein, a "CpG site" or "methylation site" is a nucleotide within a nucleic acid that is susceptible to methylation either by natural occurring events in vivo or by an event instituted to chemically methylate the nucleotide in vitro.

As used herein, a "methylated nucleic acid molecule" refers to a nucleic acid molecule that contains one or more methylated nucleotides that is/are methylated.

A "CpG island" as used herein describes a segment of DNA sequence that comprises a functionally or structurally deviated CpG density. For example, Yamada et al. (Genome Research 14:247-266, 2004) have described a set of standards for determining a CpG island: it must be at least 400 nucleotides in length, has a greater than 50% GC content, and an OCF/ECF ratio greater than 0.6. Others (Takai et al., Proc. Natl. Acad. Sci. U.S.A. 99:3740-3745, 2002) have defined a CpG island less stringently as a sequence at least 200 nucleotides in length, having a greater than 50% GC content, and an OCF/ECF ratio greater than 0.6.

The term "epigenetic state" or "epigenetic status" as used herein refers to any structural feature at a molecular level of a nucleic acid (e.g., DNA or RNA) other than the primary nucleotide sequence. For instance, the epigenetic state of a genomic DNA may include its secondary or tertiary structure determined or influenced by, e.g., its methylation pattern or its association with cellular proteins.

The term "methylation profile" "methylation state" or "methylation status," as used herein to describe the state of methylation of a genomic sequence, refers to the characteristics of a DNA segment at a particular genomic locus relevant to methylation. Such characteristics include, but are not limited to, whether any of the cytosine (C) residues within this DNA sequence are methylated, location of methylated C residue(s), percentage of methylated C at any particular stretch of residues, and allelic differences in methylation due to, e.g., difference in the origin of the alleles. The term "methylation" profile" or "methylation status" also refers to the relative or absolute concentration of methylated C or unmethylated C at any particular stretch of residues in a biological sample. For example, if the cytosine (C) residue(s) within a DNA sequence are methylated it may be referred to as "hypermethylated";

whereas if the cytosine (C) residue(s) within a DNA sequence are not methylated it may be referred to as "hypomethylated". Likewise, if the cytosine (C) residue(s) within a DNA sequence (e.g., fetal nucleic acid) are methylated as compared to another sequence from a different region or from a different individual (e.g., relative to maternal nucleic acid), that sequence is considered hypermethylated compared to the other sequence. Alternatively, if the cytosine (C) residue(s) within a DNA sequence are not methylated as compared to another sequence from a different region or from a different individual (e.g., the mother), that sequence is considered hypomethylated compared to the other sequence. These sequences are said to be "differentially methylated", and more specifically, when the methylation status differs between mother and fetus, the sequences are considered "differentially methylated maternal and fetal nucleic acid".

The term "agent that binds to methylated nucleotides" as used herein refers to a substance that is capable of binding to methylated nucleic acid. The agent may be naturally-occurring or synthetic, and may be modified or unmodified. In one embodiment, the agent allows for the separation of different nucleic acid species according to their respective methylation states. An example of an agent that binds to methylated nucleotides is described in PCT Patent Application No. PCT/EP2005/012707, which published as WO06056480A2 and is hereby incorporated by reference. The described agent is a bifunctional polypeptide comprising the DNA-binding domain of a protein belonging to the family of Methyl-CpG binding proteins (MBDs) and an Fc portion of an antibody (see Figure 1). The recombinant methyl-CpG-binding, antibody-like protein can preferably bind CpG methylated DNA in an antibody-like manner. That means, the methyl-CpG-binding, antibody-like protein has a high affinity and high avidity to its "antigen", which is preferably DNA that is methylated at CpG dinucleotides. The agent may also be a multivalent MBD (see Figure 2).

The term "polymorphism" as used herein refers to a sequence variation within different alleles of the same genomic sequence. A sequence that contains a polymorphism is considered "polymorphic sequence". Detection of one or more polymorphisms allows differentiation of different alleles of a single genomic sequence or between two or more individuals. As used herein, the term "polymorphic marker" or "polymorphic sequence" refers to segments of genomic DNA that exhibit heritable variation in a DNA sequence between individuals. Such markers include, but are not limited to, single nucleotide polymorphisms (SNPs), restriction fragment length polymorphisms (RFLPs), short tandem repeats, such as di-, tri- or tetra-nucleotide repeats (STRs), and the like. Polymorphic markers according to the present invention can be used to specifically differentiate between a maternal and paternal allele in the enriched fetal nucleic acid sample.

The terms "single nucleotide polymorphism" or "SNP" as used herein refer to the polynucleotide sequence variation present at a single nucleotide residue within different alleles of the same genomic sequence. This variation may occur within the coding region or non-coding region (i.e., in the promoter or intronic region) of a genomic sequence, if the genomic sequence is transcribed during protein production. Detection of one or more SNP allows differentiation of different alleles of a single genomic sequence or between two or more individuals.

The term "allele" as used herein is one of several alternate forms of a gene or non-coding regions of DNA that occupy the same position on a chromosome. The term allele can be used to describe DNA from any organism including but not limited to bacteria, viruses, fungi, protozoa, molds, yeasts, plants, humans, non-humans, animals, and archeabacteria.

The terms "ratio of the alleles" or "allelic ratio" as used herein refer to the ratio of the population of one allele and the population of the other allele in a sample. In some trisomic cases, it is possible that a fetus may be tri-allelic for a particular locus. In such cases, the term "ratio of the alleles" refers to the ratio of the population of any one allele against one of the other alleles, or any one allele against the other two alleles.

The term "non-polymorphism-based quantitative method" as used herein refers to a method for determining the amount of an analyte (e.g., total nucleic acid, Y-chromosome nucleic acid, or fetal nucleic acid) that does not require the use of a polymorphic marker or sequence. Although a polymorphism may be present in the sequence, said polymorphism is not required to quantify the sequence. Examples of non-polymorphism-based quantitative methods include, but are not limited to, T-PC , digital PCR, array-based methods, sequencing methods, nanopore-based methods, nucleic acid- bound bead-based counting methods and competitor-based methods wherein one or more competitors are introduced at a known concentration(s) to determine the amount of one or more analytes. In some embodiments, some of the above exemplary methods (for example, sequencing) may need to be actively modified or designed such that one or more polymorphisms are not interrogated.

The terms "a bsolute amount" or "copy number" as used herein refers to the amount or quantity of an analyte (e.g., total nucleic acid or fetal nucleic acid). The present invention provides compositions and processes for determining the absolute amount of fetal nucleic acid in a mixed maternal sample.

Absolute amount or copy number represents the number of molecules available for detection, and may be expressed as the genomic equivalents per unit. The term "concentration" refers to the amount or proportion of a substance in a mixture or solution (e.g., the amount of fetal nucleic acid in a maternal sample that comprises a mixture of maternal and fetal nucleic acid). The concentration may be expressed as a percentage, which is used to express how large/small one quantity is, relative to another quantity as a fraction of 100. Platforms for determining the quantity or amount of an analyte (e.g., target nucleic acid) include, but are not limited to, mass spectrometery, digital PCR, sequencing by synthesis platforms (e.g., pyrosequencing), fluorescence spectroscopy and flow cytometry.

The term "sample" as used herein refers to a specimen containing nucleic acid. Examples of samples include, but are not limited to, tissue, bodily fluid (for example, blood, serum, plasma, saliva, urine, tears, peritoneal fluid, ascitic fluid, vaginal secretion, breast fluid, breast milk, lymph fluid, cerebrospinal fluid or mucosa secretion), umbilical cord blood, chorionic villi, amniotic fluid, an embryo, a two-celled embryo, a four-celled embryo, an eight-celled embryo, a 16-celled embryo, a 32-celled embryo, a 64- celled embryo, a 128-celled embryo, a 256-celled embryo, a 512-celled embryo, a 1024-celled embryo, embryonic tissues, lymph fluid, cerebrospinal fluid, mucosa secretion, or other body exudate, fecal matter, an individual cell or extract of the such sources that contain the nucleic acid of the same, and subcellular structures such as mitochondria, using protocols well established within the art.

Fetal DNA can be obtained from sources including but not limited to maternal blood, maternal serum, maternal plasma, fetal cells, umbilical cord blood, chorionic villi, amniotic fluid, urine, saliva, lung lavage, cells or tissues.

The term "blood" as used herein refers to a blood sample or preparation from a pregnant woman or a woman being tested for possible pregnancy. The term encompasses whole blood or any fractions of blood, such as serum and plasma as conventionally defined.

The term "bisulfite" as used herein encompasses all types of bisulfites, such as sodium bisulfite, that are capable of chemically converting a cytosine (C) to a uracil (U) without chemically modifying a methylated cytosine and therefore can be used to differentially modify a DNA sequence based on the methylation status of the DNA.

As used herein, a reagent that "differentially modifies" methylated or non-methylated DNA

encompasses any reagent that modifies methylated and/or unmethylated DNA in a process through which distinguishable products result from methylated and non-methylated DNA, thereby allowing the identification of the DNA methylation status. Such processes may include, but are not limited to, chemical reactions (such as a C.fwdarw.U conversion by bisulfite) and enzymatic treatment (such as cleavage by a methylation-dependent endonuclease). Thus, an enzyme that preferentially cleaves or digests methylated DNA is one capable of cleaving or digesting a DNA molecule at a much higher efficiency when the DNA is methylated, whereas an enzyme that preferentially cleaves or digests unmethylated DNA exhibits a significantly higher efficiency when the DNA is not methylated.

The terms "non-bisulfite-based method" and "non-bisulfite-based quantitative method" as used herein refer to any method for quantifying methylated or non-methylated nucleic acid that does not require the use of bisulfite. The terms also refer to methods for preparing a nucleic acid to be quantified that do not require bisulfite treatment. Examples of non-bisulfite-based methods include, but are not limited to, methods for digesting nucleic acid using one or more methylation sensitive enzymes and methods for separating nucleic acid using agents that bind nucleic acid based on methylation status.

The terms "methyl-sensitive enzymes" and "methylation sensitive restriction enzymes" are DNA restriction endonucleases that are dependent on the methylation state of their DNA recognition site for activity. For example, there are methyl-sensitive enzymes that cleave or digest at their DNA recognition sequence only if it is not methylated. Thus, an unmethylated DNA sample will be cut into smaller fragments than a methylated DNA sample. Similarly, a hypermethylated DNA sample will not be cleaved. In contrast, there are methyl-sensitive enzymes that cleave at their DNA recognition sequence only if it is methylated. As used herein, the terms "cleave", "cut" and "digest" are used interchangeably. The term "target nucleic acid" as used herein refers to a nucleic acid examined using the methods disclosed herein to determine if the nucleic acid is part of a pregnancy-related disorder or chromosomal abnormality. For example, a target nucleic acid from chromosome 21 could be examined using the methods of the invention to detect Down's Syndrome.

The term "control nucleic acid" as used herein refers to a nucleic acid used as a reference nucleic acid according to the methods disclosed herein to determine if the nucleic acid is part of a chromosomal abnormality. For example, a control nucleic acid from a chromosome other than chromosome 21 (herein referred to as a "reference chromosome") could be as a reference sequence to detect Down's Syndrome. In some embodiments, the control sequence has a known or predetermined quantity.

The term "sequence-specific" or "locus-specific method" as used herein refers to a method that interrogates (for example, quantifies) nucleic acid at a specific location (or locus) in the genome based on the sequence composition. Sequence-specific or locus-specific methods allow for the quantification of specific regions or chromosomes.

The term "gene" means the segment of DNA involved in producing a polypeptide chain; it includes regions preceding and following the coding region (leader and trailer) involved in the

transcription/translation of the gene product and the regulation of the transcription/translation, as well as intervening sequences (introns) between individual coding segments (exons).

In this application, the terms "polypeptide," "peptide," and "protein" are used interchangeably herein to refer to a polymer of amino acid residues. The terms apply to amino acid polymers in which one or more amino acid residue is an artificial chemical mimetic of a corresponding naturally occurring amino acid, as well as to naturally occurring amino acid polymers and non-naturally occurring amino acid polymers. As used herein, the terms encompass amino acid chains of any length, including full-length proteins (i.e., antigens), wherein the amino acid residues are linked by covalent peptide bonds.

The term "amino acid" refers to naturally occurring and synthetic amino acids, as well as amino acid analogs and amino acid mimetics that function in a manner similar to the naturally occurring amino acids. Naturally occurring amino acids are those encoded by the genetic code, as well as those amino acids that are later modified, e.g., hydroxyproline, . gamma. -carboxyglutamate, and O-phosphoserine.

Amino acids may be referred to herein by either the commonly known three letter symbols or by the one-letter symbols recommended by the lUPAC-IUB Biochemical Nomenclature Commission.

Nucleotides, likewise, may be referred to by their commonly accepted single-letter codes.

"Primers" as used herein refer to oligonucleotides that can be used in an amplification method, such as a polymerase chain reaction (PC ), to amplify a nucleotide sequence based on the polynucleotide sequence corresponding to a particular genomic sequence, e.g., one located within the CpG island CGI137, PDE9A, or CGI009 on chromosome 21, in various methylation status. At least one of the PCR primers for amplification of a polynucleotide sequence is sequence-specific for the sequence.

The term "template" refers to any nucleic acid molecule that can be used for amplification in the invention. NA or DNA that is not naturally double stranded can be made into double stranded DNA so as to be used as template DNA. Any double stranded DNA or preparation containing multiple, different double stranded DNA molecules can be used as template DNA to amplify a locus or loci of interest contained in the template DNA.

The term "amplification reaction" as used herein refers to a process for copying nucleic acid one or more times. In embodiments, the method of amplification includes but is not limited to polymerase chain reaction, self-sustained sequence reaction, ligase chain reaction, rapid amplification of cDNA ends, polymerase chain reaction and ligase chain reaction, Q-beta phage amplification, strand displacement amplification, or splice overlap extension polymerase chain reaction. In some embodiments, a single molecule of nucleic acid is amplified, for example, by digital PCR.

The term "sensitivity" as used herein refers to the number of true positives divided by the number of true positives plus the number of false negatives, where sensitivity (sens) may be within the range of 0 < sens < 1. Ideally, method embodiments herein have the number of false negatives equaling zero or close to equaling zero, so that no subject is wrongly identified as not having at least one chromosome abnormality or other genetic disorder when they indeed have at least one chromosome abnormality or other genetic disorder. Conversely, an assessment often is made of the ability of a prediction algorithm to classify negatives correctly, a complementary measurement to sensitivity. The term "specificity" as used herein refers to the number of true negatives divided by the number of true negatives plus the number of false positives, where sensitivity (spec) may be within the range of 0 < spec < 1. Ideally, methods embodiments herein have the number of false positives equaling zero or close to equaling zero, so that no subject wrongly identified as having at least one chromosome abnormality other genetic disorder when they do not have the chromosome abnormality other genetic disorder being assessed. Hence, a method that has sensitivity and specificity equaling one, or 100%, sometimes is selected.

One or more prediction algorithms may be used to determine significance or give meaning to the detection data collected under variable conditions that may be weighed independently of or dependently on each other. The term "variable" as used herein refers to a factor, quantity, or function of an algorithm that has a value or set of values. For example, a variable may be the design of a set of amplified nucleic acid species, the number of sets of amplified nucleic acid species, percent fetal genetic contribution tested, percent maternal genetic contribution tested, type of chromosome abnormality assayed, type of genetic disorder assayed, type of sex-linked abnormalities assayed, the age of the mother and the like. The term "independent" as used herein refers to not being influenced or not being controlled by another. The term "dependent" as used herein refers to being influenced or controlled by another. For example, a particular chromosome and a trisomy event occurring for that particular chromosome that results in a viable being are variables that are dependent upon each other.

One of skill in the art may use any type of method or prediction algorithm to give significance to the data of the present invention within an acceptable sensitivity and/or specificity. For example, prediction algorithms such as Chi-squared test, z-test, t-test, ANOVA (analysis of variance), regression analysis, neural nets, fuzzy logic, Hidden Markov Models, multiple model state estimation, and the like may be used. One or more methods or prediction algorithms may be determined to give significance to the data having different independent and/or dependent varia bles of the present invention. And one or more methods or prediction algorithms may be determined not to give significance to the data having different independent and/or dependent varia bles of the present invention. One may design or change parameters of the different varia bles of methods described herein based on results of one or more prediction algorithms (e.g., num ber of sets analyzed, types of nucleotide species in each set). For example, applying the Chi-squared test to detection data may suggest that specific ranges of maternal age are correlated to a higher likelihood of having an offspring with a specific chromosome a bnormality, hence the varia ble of maternal age may be weighed d ifferently verses being weighed the same as other varia bles.

In certain em bodiments, several algorithms may be chosen to be tested. These algorithms can be trained with raw data. For each new raw data sample, the trained algorithms will assign a classification to that sample (i.e. trisomy or normal). Based on the classifications of the new raw data samples, the trained algorithms' performance may be assessed based on sensitivity and specificity. Finally, an algorithm with the highest sensitivity and/or specificity or com bination thereof may be identified.

DETAILED DESCRIPTION

Introduction

The presence of fetal nucleic acid in maternal plasma was first reported in 1997 and offers the possibility for non-invasive prenatal diagnosis simply through the analysis of a maternal blood sample (Lo et al., Lancet 350:485-487, 1997). To date, numerous potential clinical applications have been developed. In particular, quantitative abnormalities of fetal nucleic acid, for example DNA, concentrations in maternal plasma have been found to be associated with a num ber of pregnancy-associated disorders, including preecla mpsia, preterm la bor, antepartum hemorrhage, invasive placentation, fetal Down syndrome, and other fetal chromosomal aneuploidies. Hence, fetal nucleic acid analysis in maternal plasma represents a powerful mechanism for the monitoring of fetomaternal well-being.

However, fetal DNA co-exists with background maternal DNA in maternal plasma. Hence, most reported applications have relied on the detection of Y-chromosome sequences as these are most conveniently distinguisha ble from maternal DNA. Such an approach limits the applica bility of the existing assays to only 50% of all pregnancies, namely those with male fetuses. Thus, there is much need for the development of sex-independent compositions and methods for enriching and analyzing fetal nucleic acid from a maternal sample. Also, methods that rely on polymorphic markers to quantify fetal nucleic acid may be susceptible to varying heterozygosity rates across different ethnicities thereby limiting their applica bility (e.g., by increasing the number of markers that are needed).

It was previously demonstrated that fetal and maternal DNA can be distinguished by their differences in methylation status (U.S. Patent No. 6,927,028, which is hereby incorporated by reference). Methylation is an epigenetic phenomenon, which refers to processes that alter a phenotype without involving changes in the DNA sequence. By exploiting the difference in the DNA methylation status between mother and fetus, one can successfully detect and analyze fetal nucleic acid in a background of maternal nucleic acid.

The present inventors provides novel genomic polynucleotides that are differentially methylated between the fetal DNA from the fetus (e.g., from the placenta) and the maternal DNA from the mother, for example from peripheral blood cells. This discovery thus provides a new approach for distinguishing fetal and maternal genomic DNA and new methods for accurately quantifying fetal nucleic which may be used for non-invasive prenatal diagnosis.

Methodology

Practicing the invention utilizes routine techniques in the field of molecular biology. Basic texts disclosing the general methods of use in the invention include Sambrook and Russell, Molecular Cloning, A Laboratory Manual (3rd ed. 2001); Kriegler, Gene Transfer and Expression: A Laboratory Manual (1990); and Current Protocols in Molecular Biology (Ausubel et al., eds., 1994)).

For nucleic acids, sizes are given in either kilobases (kb) or base pairs (bp). These are estimates derived from agarose or acrylamide gel electrophoresis, from sequenced nucleic acids, or from published DNA sequences. For proteins, sizes are given in kilodaltons (kDa) or amino acid residue numbers. Protein sizes are estimated from gel electrophoresis, from sequenced proteins, from derived amino acid sequences, or from published protein sequences.

Oligonucleotides that are not commercially available can be chemically synthesized, e.g., according to the solid phase phosphoramidite triester method first described by Beaucage & Caruthers, Tetrahedron Lett. 22: 1859-1862 (1981), using an automated synthesizer, as described in Van Devanter et. al., Nucleic Acids Res. 12: 6159-6168 (1984). Purification of oligonucleotides is performed using any art-recognized strategy, e.g., native acrylamide gel electrophoresis or anion-exchange high performance liquid chromatography (HPLC) as described in Pearson & Reanier, J. Chrom. 255: 137-149 (1983).

Acquisition of Blood Samples and Extraction of DNA

The present invention relates to separating, enriching and analyzing fetal DNA found in maternal blood as a non-invasive means to detect the presence and/or to monitor the progress of a pregnancy- associated condition or disorder. Thus, the first steps of practicing the invention are to obtain a blood sample from a pregnant woman and extract DNA from the sample.

A. Acquisition of Blood Samples

A blood sample is obtained from a pregnant woman at a gestational age suitable for testing using a method of the present invention. The suitable gestational age may vary depending on the disorder tested, as discussed below. Collection of blood from a woman is performed in accordance with the standard protocol hospitals or clinics generally follow. An appropriate amount of peripheral blood, e.g., typically between 5-50 ml, is collected and may be stored according to standard procedure prior to further preparation. Blood samples may be collected, stored or transported in a manner known to the person of ordinary skill in the art to minimize degradation or the quality of nucleic acid present in the sample.

B. Preparation of Blood Samples

The analysis of fetal DNA found in maternal blood according to the present invention may be performed using, e.g., the whole blood, serum, or plasma. The methods for preparing serum or plasma from maternal blood are well known among those of skill in the art. For example, a pregnant woman's blood can be placed in a tu be containing EDTA or a specialized commercial product such as Vacutainer SST (Becton Dickinson, Franklin Lakes, N.J.) to prevent blood clotting, and plasma can then be obtained from whole blood through centrifugation. On the other hand, serum may be obtained with or without centrifugation-following blood clotting. If centrifugation is used then it is typically, though not exclusively, conducted at an appropriate speed, e.g., 1,500-3,000 times g. Plasma or serum may be subjected to additional centrifugation steps before being transferred to a fresh tube for DNA extraction.

In addition to the acellular portion of the whole blood, DNA may also be recovered from the cellular fraction, enriched in the buffy coat portion, which can be obtained following centrifugation of a whole blood sample from the woman and removal of the plasma.

C. Extraction of DNA

There are numerous known methods for extracting DNA from a biological sample including blood. The general methods of DNA preparation (e.g., described by Sambrook and Russell, Molecular Cloning: A Laboratory Manual 3d ed., 2001) can be followed; various commercially available reagents or kits, such as Ojagen's OJAamp Circulating Nucleic Acid Kit, QiaAmp DNA Mini Kit or QiaAmp DNA Blood Mini Kit (Qiagen, Hilden, Germany), GenomicPrep™ Blood DNA Isolation Kit (Promega, Madison, Wis.), and GFX™ Genomic Blood DNA Purification Kit (Amersham, Piscataway, N.J.), may also be used to obtain DNA from a blood sample from a pregnant woman. Combinations of more than one of these methods may also be used.

In some embodiments, the sample may first be enriched or relatively enriched for fetal nucleic acid by one or more methods. For example, the discrimination of fetal and maternal DNA can be performed using the compositions and processes of the present invention alone or in combination with other discriminating factors. Examples of these factors include, but are not limited to, single nucleotide differences between chromosome X and Y, chromosome Y-specific sequences, polymorphisms located elsewhere in the genome, size differences between fetal and maternal DNA and differences in methylation pattern between maternal and fetal tissues. Other methods for enriching a sample for a particular species of nucleic acid are described in PCT Patent Application Number PCT/US07/69991, filed May 30, 2007, PCT Patent Application Number

PCT/US2007/071232, filed June 15, 2007, US Provisional Application Numbers 60/968,876 and

60/968,878 (assigned to the Applicant), (PCT Patent Application Number PCT/EP05/012707, filed November 28, 2005) which are all hereby incorporated by reference. In certain embodiments, maternal nucleic acid is selectively removed (either partially, substantially, almost completely or completely) from the sample.

Methylation Specific Separation of Nucleic Acid

The methods provided herein offer an alternative approach for the enrichment of fetal DNA based on the methylation-specific separation of differentially methylated DNA. It has recently been discovered that many genes involved in developmental regulation are controlled through epigenetics in embryonic stem cells. Consequently, multiple genes can be expected to show differential DNA methylation between nucleic acid of fetal origin and maternal origin. Once these regions are identified, a technique to capture methylated DNA can be used to specifically enrich fetal DNA. For identification of differentially methylated regions, a novel approach was used to capture methylated DNA. This approach uses a protein, in which the methyl binding domain of MBD2 is fused to the Fc fragment of an antibody (MBD-FC) (Gebhard C, Schwarzfischer L, Pham TH, Schilling E, Klug M, Andreesen , Rehli M (2006) Genomewide profiling of CpG methylation identifies novel targets of aberrant hypermethylation in myeloid leukemia. Cancer Res 66:6118-6128). This fusion protein has several advantages over conventional methylation specific antibodies. The MBD-FC has a higher affinity to methylated DNA and it binds double stranded DNA. Most importantly the two proteins differ in the way they bind DNA. Methylation specific antibodies bind DNA stochastically, which means that only a binary answer can be obtained. The methyl binding domain of MBD-FC on the other hand binds all DNA molecules regardless of their methylation status. The strength of this protein - DNA interaction is defined by the level of DNA methylation. After binding genomic DNA, eluate solutions of increasing salt concentrations can be used to fractionate non-methylated and methylated DNA allowing for a more controlled separation (Gebhard C, Schwarzfischer L, Pham TH, Andreesen R, Mackensen A, Rehli M (2006) Rapid and sensitive detection of CpG-methylation using methyl-binding (MB)-PCR. Nucleic Acids Res 34:e82). Consequently this method, called Methyl-CpG immunoprecipitation (MCIP), cannot only enrich, but also fractionate genomic DNA according to methylation level, which is particularly helpful when the unmethylated DNA fraction should be investigated as well.

Methylation Sensitive Restriction Enzyme Digestion

The invention also provides compositions and processes for determining the amount of fetal nucleic acid from a maternal sample. The invention allows for the enrichment of fetal nucleic acid regions in a maternal sample by selectively digesting nucleic acid from said maternal sample with an enzyme that selectively and completely or substantially digests the maternal nucleic acid to enrich the sample for at least one fetal nucleic acid region. Preferably, the digestion efficiency is greater than about 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99%. Following enrichment, the amount of fetal nucleic acid can be determined by quantitative methods that do not require polymorphic sequences or bisulfite treatment, thereby, offering a solution that works equally well for female fetuses and across different ethnicities and preserves the low copy number fetal nucleic acid present in the sample.

For example, there are methyl-sensitive enzymes that preferentially or substantially cleave or digest at their DNA recognition sequence if it is non-methylated. Thus, an unmethylated DNA sample will be cut into smaller fragments than a methylated DNA sample. Similarly, a hypermethylated DNA sample will not be cleaved. In contrast, there are methyl-sensitive enzymes that cleave at their DNA recognition sequence only if it is methylated.

Methyl-sensitive enzymes that digest unmethylated DNA suitable for use in methods of the invention include, but are not limited to, Hpall, Hhal, Maell, BstUI and Acil. An enzyme that can be used is Hpall that cuts only the unmethylated sequence CCGG. Another enzyme that can be used is Hhal that cuts only the unmethylated sequence GCGC. Both enzymes are available from New England BioLabs ® , Inc. Combinations of two or more methyl-sensitive enzymes that digest only unmethylated DNA can also be used. Suitable enzymes that digest only methylated DNA include, but are not limited to, Dpnl, which cuts at a recognition sequence GATC, and McrBC, which belongs to the family of AAA.sup.+ proteins and cuts DNA containing modified cytosines and cuts at recognition site 5' . . . Pu.sup.mC(N.sub.40-3000) Pu.sup.mC . . . 3' (New England BioLabs, Inc., Beverly, Mass.).

Cleavage methods and procedures for selected restriction enzymes for cutting DNA at specific sites are well known to the skilled artisan. For example, many suppliers of restriction enzymes provide information on conditions and types of DNA sequences cut by specific restriction enzymes, including New England BioLabs, Pro-Mega Biochems, Boehringer-Mannheim, and the like. Sambrook et al. (See Sambrook et al., Molecular Biology: A laboratory Approach, Cold Spring Harbor, N.Y. 1989) provide a general description of methods for using restriction enzymes and other enzymes. Enzymes often are used under conditions that will enable cleavage of the maternal DNA with about 95%-100% efficiency, preferably with about 98%-100% efficiency.

Other Methods for Methylation Analysis

Various methylation analysis procedures are known in the art, and can be used in conjunction with the present invention. These assays allow for determination of the methylation state of one or a plurality of CpG islands within a DNA sequence. In addition, the methods maybe used to quantify methylated nucleic acid. Such assays involve, among other techniques, DNA sequencing of bisulfite-treated DNA, PC (for sequence-specific amplification), Southern blot analysis, and use of methylation-sensitive restriction enzymes.

Genomic sequencing is a technique that has been simplified for analysis of DNA methylation patterns and 5-methylcytosine distribution by using bisulfite treatment (Frommer et al., Proc. Natl. Acad. Sci. USA 89:1827-1831, 1992). Additionally, restriction enzyme digestion of PCR products amplified from bisulfite-converted DNA may be used, e.g., the method described by Sadri & Hornsby (Nucl. Acids Res. 24:5058-5059, 1996), or COBRA (Combined Bisulfite Restriction Analysis) (Xiong & Laird, Nucleic Acids Res. 25:2532-2534, 1997). COBRA analysis is a quantitative methylation assay useful for determining DNA methylation levels at specific gene loci in small amounts of genomic DNA (Xiong & Laird, Nucleic Acids Res. 25:2532-2534, 1997). Briefly, restriction enzyme digestion is used to reveal methylation-dependent sequence differences in PCR products of sodium bisulfite-treated DNA. Methylation-dependent sequence differences are first introduced into the genomic DNA by standard bisulfite treatment according to the procedure described by Frommer et al. (Proc. Natl. Acad. Sci. USA 89:1827-1831, 1992). PCR

amplification of the bisulfite converted DNA is then performed using primers specific for the interested CpG islands, followed by restriction endonuclease digestion, gel electrophoresis, and detection using specific, labeled hybridization probes. Methylation levels in the original DNA sample are represented by the relative amounts of digested and undigested PCR product in a linearly quantitative fashion across a wide spectrum of DNA methylation levels. In addition, this technique can be reliably applied to DNA obtained from microdissected paraffin-embedded tissue samples. Typical reagents (e.g., as might be found in a typical COBRA-based kit) for COBRA analysis may include, but are not limited to: PCR primers for specific gene (or methylation-altered DNA sequence or CpG island); restriction enzyme and appropriate buffer; gene-hybridization oligo; control hybridization oligo; kinase labeling kit for oligo probe; and radioactive nucleotides. Additionally, bisulfite conversion reagents may include: DNA denaturation buffer; sulfonation buffer; DNA recovery reagents or kits (e.g., precipitation, ultrafiltration, affinity column); desulfonation buffer; and DNA recovery components.

The MethyLight™ assay is a high-throughput quantitative methylation assay that utilizes fluorescence- based real-time PCR (TaqMan.RTM.) technology that requires no further manipulations after the PCR step (Eads et al., Cancer Res. 59:2302-2306, 1999). Briefly, the MethyLight.TM. process begins with a mixed sample of genomic DNA that is converted, in a sodium bisulfite reaction, to a mixed pool of methylation-dependent sequence differences according to standard procedures (the bisulfite process converts unmethylated cytosine residues to uracil). Fluorescence-based PCR is then performed either in an "unbiased" (with primers that do not overlap known CpG methylation sites) PCR reaction, or in a "biased" (with PCR primers that overlap known CpG dinucleotides) reaction. Sequence discrimination can occur either at the level of the amplification process or at the level of the fluorescence detection process, or both.

The MethyLight assay may be used as a quantitative test for methylation patterns in the genomic DNA sample, wherein sequence discrimination occurs at the level of probe hybridization. In this quantitative version, the PCR reaction provides for unbiased amplification in the presence of a fluorescent probe that overlaps a particular putative methylation site. An unbiased control for the amount of input DNA is provided by a reaction in which neither the primers, nor the probe overlie any CpG dinucleotides.

Alternatively, a qualitative test for genomic methylation is achieved by probing of the biased PCR pool with either control oligonucleotides that do not "cover" known methylation sites (a fluorescence-based version of the "MSP" technique), or with oligonucleotides covering potential methylation sites.

The MethyLight process can by used with a "TaqMan" probe in the amplification process. For example, double-stranded genomic DNA is treated with sodium bisulfite and subjected to one of two sets of PCR reactions using TaqMan.RTM. probes; e.g., with either biased primers and TaqMan.RTM. probe, or unbiased primers and TaqMan.RTM. probe. The TaqMan.RTM. probe is dual-labeled with fluorescent "reporter" and "quencher" molecules, and is designed to be specific for a relatively high GC content region so that it melts out at about 10. degree. C. higher temperature in the PCR cycle than the forward or reverse primers. This allows the TaqMan.RTM. probe to remain fully hybridized during the PCR annealing/extension step. As the Taq polymerase enzymatically synthesizes a new strand during PCR, it will eventually reach the annealed TaqMan.RTM. probe. The Taq polymerase 5' to 3' endonuclease activity will then displace the TaqMan.RTM. probe by digesting it to release the fluorescent reporter molecule for quantitative detection of its now unquenched signal using a real-time fluorescent detection system.

Typical reagents (e.g., as might be found in a typical MethyLight.TM. -based kit) for MethyLight.TM. analysis may include, but are not limited to: PCR primers for specific gene (or methylation-altered DNA sequence or CpG island); TaqMan.RTM. probes; optimized PCR buffers and deoxynucleotides; and Taq polymerase.

The Ms-SNuPE technique is a quantitative method for assessing methylation differences at specific CpG sites based on bisulfite treatment of DNA, followed by single-nucleotide primer extension (Gonzalgo & Jones, Nucleic Acids Res. 25:2529-2531, 1997).

Briefly, genomic DNA is reacted with sodium bisulfite to convert unmethylated cytosine to uracil while leaving 5-methylcytosine unchanged. Amplification of the desired target sequence is then performed using PCR primers specific for bisulfite-converted DNA, and the resulting product is isolated and used as a template for methylation analysis at the CpG site(s) of interest.

Small amounts of DNA can be analyzed (e.g., microdissected pathology sections), and it avoids utilization of restriction enzymes for determining the methylation status at CpG sites.

Typical reagents (e.g., as might be found in a typical Ms-SNuPE-based kit) for Ms-SNuPE analysis may include, but are not limited to: PCR primers for specific gene (or methylation-altered DNA sequence or CpG island); optimized PCR buffers and deoxynucleotides; gel extraction kit; positive control primers; Ms-SNuPE primers for specific gene; reaction buffer (for the Ms-SNuPE reaction); and radioactive nucleotides. Additionally, bisulfite conversion reagents may include: DNA denaturation buffer;

sulfonation buffer; DNA recovery regents or kit (e.g., precipitation, ultrafiltration, affinity column); desulfonation buffer; and DNA recovery components.

MSP (methylation-specific PCR) allows for assessing the methylation status of virtually any group of CpG sites within a CpG island, independent of the use of methylation-sensitive restriction enzymes (Herman et al. Proc. Nat. Acad. Sci. USA 93:9821-9826, 1996; U.S. Pat. No. 5,786,146). Briefly, DNA is modified by sodium bisulfite converting all unmethylated, but not methylated cytosines to uracil, and subsequently amplified with primers specific for methylated versus umnethylated DNA. MSP requires only small quantities of DNA, is sensitive to 0.1% methylated alleles of a given CpG island locus, and can be performed on DNA extracted from paraffin-embedded samples. Typical reagents (e.g., as might be found in a typical MSP-based kit) for MSP analysis may include, but are not limited to: methylated and unmethylated PCR primers for specific gene (or methylation-altered DNA sequence or CpG island), optimized PCR buffers and deoxynucleotides, and specific probes. The MCA technique is a method that can be used to screen for altered methylation patterns in genomic DNA, and to isolate specific sequences associated with these changes (Toyota et al., Cancer Res.

59:2307-12, 1999). Briefly, restriction enzymes with different sensitivities to cytosine methylation in their recognition sites are used to digest genomic DNAs from primary tumors, cell lines, and normal tissues prior to arbitrarily primed PCR amplification. Fragments that show differential methylation are cloned and sequenced after resolving the PCR products on high-resolution polyacrylamide gels. The cloned fragments are then used as probes for Southern analysis to confirm differential methylation of these regions. Typical reagents (e.g., as might be found in a typical MCA-based kit) for MCA analysis may include, but are not limited to: PCR primers for arbitrary priming Genomic DNA; PCR buffers and nucleotides, restriction enzymes and appropriate buffers; gene-hybridization oligos or probes; control hybridization oligos or probes.

Another method for analyzing methylation sites is a primer extension assay, including an optimized PCR amplification reaction that produces amplified targets for subsequent primer extension genotyping analysis using mass spectrometry. The assay can also be done in multiplex. This method (particularly as it relates to genotyping single nucleotide polymorphisms) is described in detail in PCT publication WO05012578A1 and US publication US20050079521A1. For methylation analysis, the assay can be adopted to detect bisulfite introduced methylation dependent C to T sequence changes. These methods are particularly useful for performing multiplexed amplification reactions and multiplexed primer extension reactions (e.g., multiplexed homogeneous primer mass extension (hME) assays) in a single well to further increase the throughput and reduce the cost per reaction for primer extension reactions.

Four additional methods for DNA methylation analysis include restriction landmark genomic scanning (RLGS, Costello et al., 2000), methylation-sensitive-representational difference analysis (MS-RDA), methylation-specific AP-PCR (MS-AP-PCR) and methyl-CpG binding domain column/segregation of partly melted molecules (MBD/SPM).

Additional methylation analysis methods that may be used in conjunction with the present invention are described in the following papers: Laird, P.W. Nature Reviews Cancer 3, 253-266 (2003); Biotechniques; Uhlmann, K. et al. Electrophoresis 23:4072-4079 (2002) - PyroMeth; Colella et al. Biotechniques. 2003 Jul;35(l):146-50; Dupont JM, Tost J, Jammes H, and Gut IG. Anal Biochem, Oct 2004; 333(1): 119-27; and Tooke N and Pettersson M. IVDT. Nov 2004; 41.

Polynucleotide Sequence Amplification and Determination

Following separation of nucleic acid in a methylation-differential manner, the nucleic acid may be subjected to sequence-based analysis. Furthermore, once it is determined that one particular genomic sequence of fetal origin is hypermethylated or hypomethylated compared to the maternal counterpart, the amount of this fetal genomic sequence can be determined. Subsequently, this amount can be compared to a standard control value and serve as an indication for the potential of certain pregnancy- associated disorder. A. Amplification of Nucleotide Sequences

In many instances, it is desirable to amplify a nucleic acid sequence of the invention using any of several nucleic acid amplification procedures which are well known in the art (listed above and described in greater detail below). Specifically, nucleic acid amplification is the enzymatic synthesis of nucleic acid amplicons (copies) which contain a sequence that is complementary to a nucleic acid sequence being amplified. Nucleic acid amplification is especially beneficial when the amount of target sequence present in a sample is very low. By amplifying the target sequences and detecting the amplicon synthesized, the sensitivity of an assay can be vastly improved, since fewer target sequences are needed at the beginning of the assay to better ensure detection of nucleic acid in the sample belonging to the organism or virus of interest.

A variety of polynucleotide amplification methods are well established and frequently used in research. For instance, the general methods of polymerase chain reaction (PCR) for polynucleotide sequence amplification are well known in the art and are thus not described in detail herein. For a review of PCR methods, protocols, and principles in designing primers, see, e.g., Innis, et al., PCR Protocols: A Guide to Methods and Applications, Academic Press, Inc. N.Y., 1990. PCR reagents and protocols are also available from commercial vendors, such as Roche Molecular Systems.

PCR is most usually carried out as an automated process with a thermostable enzyme. In this process, the temperature of the reaction mixture is cycled through a denaturing region, a primer annealing region, and an extension reaction region automatically. Machines specifically adapted for this purpose are commercially available.

Although PCR amplification of a polynucleotide sequence is typically used in practicing the present invention, one of skill in the art will recognize that the amplification of a genomic sequence found in a maternal blood sample may be accomplished by any known method, such as ligase chain reaction (LCR), transcription-mediated amplification, and self-sustained sequence replication or nucleic acid sequence- based amplification (NASBA), each of which provides sufficient amplification. More recently developed branched-DNA technology may also be used to qualitatively demonstrate the presence of a particular genomic sequence of the invention, which represents a particular methylation pattern, or to quantitatively determine the amount of this particular genomic sequence in the maternal blood. For a review of branched-DNA signal amplification for direct quantitation of nucleic acid sequences in clinical samples, see Nolte, Adv. Clin. Chem. 33:201-235, 1998.

The compositions and processes of the invention are also particularly useful when practiced with digital PCR. Digital PCR was first developed by Kalinina and colleagues (Kalinina et al., "Nanoliter scale PCR with TaqMan detection." Nucleic Acids Research. 25; 1999-2004, (1997)) and further developed by Vogelstein and Kinzler (Digital PCR. Proc Natl Acad Sci U S A. 96; 9236-41, (1999)). The application of digital PCR for use with fetal diagnostics was first described by Cantor et al. (PCT Patent Publication No. WO05023091A2) and subsequently described by Quake et al. (US Patent Publication No. US

20070202525), which are both hereby incorporated by reference. Digital PCR takes advantage of nucleic acid (DNA, cDNA or NA) amplification on a single molecule level, and offers a highly sensitive method for quantifying low copy number nucleic acid. Fluidigm ® Corporation offers systems for the digital analysis of nucleic acids.

B. Determination of Polynucleotide Sequences

Techniques for polynucleotide sequence determination are also well established and widely practiced in the relevant research field. For instance, the basic principles and general techniques for polynucleotide sequencing are described in various research reports and treatises on molecular biology and recombinant genetics, such as Wallace et al., supra; Sambrook and Russell, supra, and Ausu bel et al., supra. DNA sequencing methods routinely practiced in research laboratories, either manual or automated, can be used for practicing the present invention. Additional means suitable for detecting changes in a polynucleotide sequence for practicing the methods of the present invention include but are not limited to mass spectrometry, primer extension, polynucleotide hybridization, real-time PCR, and electrophoresis.

Use of a primer extension reaction also can be applied in methods of the invention. A primer extension reaction operates, for example, by discriminating the SNP alleles by the incorporation of

deoxynucleotides and/or dideoxynucleotides to a primer extension primer which hybridizes to a region adjacent to the SNP site. The primer is extended with a polymerase. The primer extended SNP can be detected physically by mass spectrometry or by a tagging moiety such as biotin. As the SNP site is only extended by a complementary deoxynucleotide or dideoxynucleotide that is either tagged by a specific label or generates a primer extension product with a specific mass, the SNP alleles can be discriminated and quantified.

Reverse transcribed and amplified nucleic acids may be modified nucleic acids. Modified nucleic acids can include nucleotide analogs, and in certain embodiments include a detectable label and/or a capture agent. Examples of detectable labels include without limitation fluorophores, radioisotopes, colormetric agents, light emitting agents, chemiluminescent agents, light scattering agents, enzymes and the like. Examples of capture agents include without limitation an agent from a binding pair selected from antibody/antigen, antibody/antibody, antibody/antibody fragment, antibody/antibody receptor, antibody/protein A or protein G, hapten/anti-hapten, biotin/avidin, biotin/streptavidin, folic acid/folate binding protein, vitamin B12/intrinsic factor, chemical reactive group/complementary chemical reactive group (e.g., sulfhydryl/maleimide, sulfhydryl/haloacetyl derivative, amine/isotriocyanate,

amine/succinimidyl ester, and amine/sulfonyl halides) pairs, and the like. Modified nucleic acids having a capture agent can be immobilized to a solid support in certain embodiments

Mass spectrometry is a particularly effective method for the detection of a polynucleotide of the invention, for example a PCR amplicon, a primer extension product or a detector probe that is cleaved from a target nucleic acid. The presence of the polynucleotide sequence is verified by comparing the mass of the detected signal with the expected mass of the polynucleotide of interest. The relative signal strength, e.g., mass peak on a spectra, for a particular polynucleotide sequence indicates the relative population of a specific allele, thus enabling calculation of the allele ratio directly from the data. For a review of genotyping methods using Sequenom ® standard iPLEX™ assay and MassARRAY ® technology, see Jurinke, C, Oeth, P., van den Boom, D., "MALDI-TOF mass spectrometry: a versatile tool for high- performance DNA analysis." Mol. Biotechnol. 26, 147-164 (2004); and Oeth, P. et al., "iPLEX™ Assay: Increased Plexing Efficiency and Flexibility for MassARRAY ® System through single base primer extension with mass-modified Terminators." SEQUENOM Application Note (2005), both of which are hereby incorporated by reference. For a review of detecting and quantifying target nucleic using cleavable detector probes that are cleaved during the amplification process and detected by mass spectrometry, see US Patent Application Number 11/950,395, which was filed December 4, 2007, and is hereby incorporated by reference.

Sequencing technologies are improving in terms of throughput and cost. Sequencing technologies, such as that achievable on the 454 platform (Roche) (Margulies, M. et al. 2005 Nature 437, 376-380), lllumina Genome Analyzer (or Solexa platform) or SOLiD System (Applied Biosystems) or the Helicos True Single Molecule DNA sequencing technology (Harris T D et al. 2008 Science, 320, 106-109), the single molecule, real-time (SMRT.TM.) technology of Pacific Biosciences, and nanopore sequencing (Soni GV and Meller A. 2007 Clin Chem 53: 1996-2001), allow the sequencing of many nucleic acid molecules isolated from a specimen at high orders of multiplexing in a parallel fashion (Dear Brief Funct Genomic Proteomic 2003; 1: 397-416).

Each of these platforms allow sequencing of clonally expanded or non-amplified single molecules of nucleic acid fragments. Certain platforms involve, for example, (i) sequencing by ligation of dye- modified probes (including cyclic ligation and cleavage), (ii) pyrosequencing, and (iii) single-molecule sequencing. Nucleotide sequence species, amplification nucleic acid species and detectable products generated there from can be considered a "study nucleic acid" for purposes of analyzing a nucleotide sequence by such sequence analysis platforms.

Sequencing by ligation is a nucleic acid sequencing method that relies on the sensitivity of DNA ligase to base-pairing mismatch. DNA ligase joins together ends of DNA that are correctly base paired. Combining the ability of DNA ligase to join together only correctly base paired DNA ends, with mixed pools of fluorescently labeled oligonucleotides or primers, enables sequence determination by fluorescence detection. Longer sequence reads may be obtained by including primers containing cleavable linkages that can be cleaved after label identification. Cleavage at the linker removes the label and regenerates the 5' phosphate on the end of the ligated primer, preparing the primer for another round of ligation. In some embodiments primers may be labeled with more than one fluorescent label (e.g., 1 fluorescent label, 2, 3, or 4 fluorescent labels).

An example of a system that can be used by a person of ordinary skill based on sequencing by ligation generally involves the following steps. Clonal bead populations can be prepared in emulsion microreactors containing study nucleic acid ("template"), amplification reaction components, beads and primers. After amplification, templates are denatured and bead enrichment is performed to separate beads with extended templates from undesired beads (e.g., beads with no extended templates). The template on the selected beads undergoes a 3' modification to allow covalent bonding to the slide, and modified beads can be deposited onto a glass slide. Deposition chambers offer the ability to segment a slide into one, four or eight chambers during the bead loading process. For sequence analysis, primers hybridize to the adapter sequence. A set of four color dye-labeled probes competes for ligation to the sequencing primer. Specificity of probe ligation is achieved by interrogating every 4th and 5th base during the ligation series. Five to seven rounds of ligation, detection and cleavage record the color at every 5th position with the number of rounds determined by the type of library used. Following each round of ligation, a new complimentary primer offset by one base in the 5' direction is laid down for another series of ligations. Primer reset and ligation rounds (5-7 ligation cycles per round) are repeated sequentially five times to generate 25-35 base pairs of sequence for a single tag. With mate-paired sequencing, this process is repeated for a second tag. Such a system can be used to exponentially amplify amplification products generated by a process described herein, e.g., by ligating a heterologous nucleic acid to the first amplification product generated by a process described herein and performing emulsion amplification using the same or a different solid support originally used to generate the first amplification product. Such a system also may be used to analyze amplification products directly generated by a process described herein by bypassing an exponential amplification process and directly sorting the solid supports described herein on the glass slide.

Pyrosequencing is a nucleic acid sequencing method based on sequencing by synthesis, which relies on detection of a pyrophosphate released on nucleotide incorporation. Generally, sequencing by synthesis involves synthesizing, one nucleotide at a time, a DNA strand complimentary to the strand whose sequence is being sought. Study nucleic acids may be immobilized to a solid support, hybridized with a sequencing primer, incubated with DNA polymerase, ATP sulfurylase, luciferase, apyrase, adenosine 5' phosphsulfate and luciferin. Nucleotide solutions are sequentially added and removed. Correct incorporation of a nucleotide releases a pyrophosphate, which interacts with ATP sulfurylase and produces ATP in the presence of adenosine 5' phosphsulfate, fueling the luciferin reaction, which produces a chemiluminescent signal allowing sequence determination.

An example of a system that can be used by a person of ordinary skill based on pyrosequencing generally involves the following steps: ligating an adaptor nucleic acid to a study nucleic acid and hybridizing the study nucleic acid to a bead; amplifying a nucleotide sequence in the study nucleic acid in an emulsion; sorting beads using a picoliter multiwell solid support; and sequencing amplified nucleotide sequences by pyrosequencing methodology (e.g., Nakano et al., "Single-molecule PC using water-in-oil emulsion;" Journal of Biotechnology 102: 117-124 (2003)). Such a system can be used to exponentially amplify amplification products generated by a process described herein, e.g., by ligating a heterologous nucleic acid to the first amplification product generated by a process described herein.

Certain single-molecule sequencing embodiments are based on the principal of sequencing by synthesis, and utilize single-pair Fluorescence Resonance Energy Transfer (single pair FRET) as a mechanism by which photons are emitted as a result of successful nucleotide incorporation. The emitted photons often are detected using intensified or high sensitivity cooled charge-couple-devices in conjunction with total internal reflection microscopy (TIRM). Photons are only emitted when the introduced reaction solution contains the correct nucleotide for incorporation into the growing nucleic acid chain that is synthesized as a result of the sequencing process. In FRET based single-molecule sequencing, energy is transferred between two fluorescent dyes, sometimes polymethine cyanine dyes Cy3 and Cy5, through long-range dipole interactions. The donor is excited at its specific excitation wavelength and the excited state energy is transferred, non-radiatively to the acceptor dye, which in turn becomes excited. The acceptor dye eventually returns to the ground state by radiative emission of a photon. The two dyes used in the energy transfer process represent the "single pair", in single pair FRET. Cy3 often is used as the donor fluorophore and often is incorporated as the first labeled nucleotide. Cy5 often is used as the acceptor fluorophore and is used as the nucleotide label for successive nucleotide additions after incorporation of a first Cy3 labeled nucleotide. The fluorophores generally are within 10 nanometers of each for energy transfer to occur successfully.

An example of a system that can be used based on single-molecule sequencing generally involves hybridizing a primer to a study nucleic acid to generate a complex; associating the complex with a solid phase; iteratively extending the primer by a nucleotide tagged with a fluorescent molecule; and capturing an image of fluorescence resonance energy transfer signals after each iteration (e.g., U.S. Patent No. 7,169,314; Braslavsky et al., PNAS 100(7): 3960-3964 (2003)). Such a system can be used to directly sequence amplification products generated by processes described herein. In some

embodiments the released linear amplification product can be hybridized to a primer that contains sequences complementary to immobilized capture sequences present on a solid support, a bead or glass slide for example. Hybridization of the primer-released linear amplification product complexes with the immobilized capture sequences, immobilizes released linear amplification products to solid supports for single pair FRET based sequencing by synthesis. The primer often is fluorescent, so that an initial reference image of the surface of the slide with immobilized nucleic acids can be generated. The initial reference image is useful for determining locations at which true nucleotide incorporation is occurring. Fluorescence signals detected in array locations not initially identified in the "primer only" reference image are discarded as non-specific fluorescence. Following immobilization of the primer-released linear amplification product complexes, the bound nucleic acids often are sequenced in parallel by the iterative steps of, a) polymerase extension in the presence of one fluorescently labeled nucleotide, b) detection of fluorescence using appropriate microscopy, TIRM for example, c) removal of fluorescent nucleotide, and d) return to step a with a different fluorescently labeled nucleotide.

In some embodiments, nucleotide sequencing may be by solid phase single nucleotide sequencing methods and processes. Solid phase single nucleotide sequencing methods involve contacting sample nucleic acid and solid support under conditions in which a single molecule of sample nucleic acid hybridizes to a single molecule of a solid support. Such conditions can include providing the solid support molecules and a single molecule of sample nucleic acid in a "microreactor." Such conditions also can include providing a mixture in which the sample nucleic acid molecule can hybridize to solid phase nucleic acid on the solid support. Single nucleotide sequencing methods useful in the

embodiments described herein are described in United States Provisional Patent Application Serial Number 61/021,871 filed January 17, 2008.

In certain embodiments, nanopore sequencing detection methods include (a) contacting a nucleic acid for sequencing ("base nucleic acid," e.g., linked probe molecule) with sequence-specific detectors, under conditions in which the detectors specifically hybridize to substantially complementary subsequences of the base nucleic acid; (b) detecting signals from the detectors and (c) determining the sequence of the base nucleic acid according to the signals detected. In certain embodiments, the detectors hybridized to the base nucleic acid are disassociated from the base nucleic acid (e.g., sequentially dissociated) when the detectors interfere with a nanopore structure as the base nucleic acid passes through a pore, and the detectors disassociated from the base sequence are detected. In some embodiments, a detector disassociated from a base nucleic acid emits a detectable signal, and the detector hybridized to the base nucleic acid emits a different detectable signal or no detectable signal. In certain embodiments, nucleotides in a nucleic acid (e.g., linked probe molecule) are substituted with specific nucleotide sequences corresponding to specific nucleotides ("nucleotide representatives"), thereby giving rise to an expanded nucleic acid (e.g., U.S. Patent No. 6,723,513), and the detectors hybridize to the nucleotide representatives in the expanded nucleic acid, which serves as a base nucleic acid. In such embodiments, nucleotide representatives may be arranged in a binary or higher order arrangement (e.g., Soni and Meller, Clinical Chemistry 53(11): 1996-2001 (2007)). In some embodiments, a nucleic acid is not expanded, does not give rise to an expanded nucleic acid, and directly serves a base nucleic acid (e.g., a linked probe molecule serves as a non-expanded base nucleic acid), and detectors are directly contacted with the base nucleic acid. For example, a first detector may hybridize to a first subsequence and a second detector may hybridize to a second subsequence, where the first detector and second detector each have detectable labels that can be distinguished from one another, and where the signals from the first detector and second detector can be distinguished from one another when the detectors are disassociated from the base nucleic acid. In certain embodiments, detectors include a region that hybridizes to the base nucleic acid (e.g., two regions), which can be about 3 to about 100 nucleotides in length (e.g., about 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 25, 30, 35, 40, 50, 55, 60, 65, 70, 75, 80, 85, 90, or 95 nucleotides in length). A detector also may include one or more regions of nucleotides that do not hybridize to the base nucleic acid. In some embodiments, a detector is a molecular beacon. A detector often comprises one or more detectable labels independently selected from those described herein. Each detectable label can be detected by any convenient detection process capable of detecting a signal generated by each label (e.g., magnetic, electric, chemical, optical and the like). For example, a CD camera can be used to detect signals from one or more distinguishable quantum dots linked to a detector.

In certain sequence analysis embodiments, reads may be used to construct a larger nucleotide sequence, which can be facilitated by identifying overlapping sequences in different reads and by using identification sequences in the reads. Such sequence analysis methods and software for constructing larger sequences from reads are known to the person of ordinary skill (e.g., Venter et al., Science 291: 1304-1351 (2001)). Specific reads, partial nucleotide sequence constructs, and full nucleotide sequence constructs may be compared between nucleotide sequences within a sample nucleic acid (i.e., internal comparison) or may be compared with a reference sequence (i.e., reference comparison) in certain sequence analysis embodiments. Internal comparisons sometimes are performed in situations where a sample nucleic acid is prepared from multiple samples or from a single sample source that contains sequence variations. Reference comparisons sometimes are performed when a reference nucleotide sequence is known and an objective is to determine whether a sample nucleic acid contains a nucleotide sequence that is substantially similar or the same, or different, than a reference nucleotide sequence. Sequence analysis is facilitated by sequence analysis apparatus and components known to the person of ordinary skill in the art.

Methods provided herein allow for high-throughput detection of nucleic acid species in a plurality of nucleic acids (e.g., nucleotide sequence species, amplified nucleic acid species and detectable products generated from the foregoing). Multiplexing refers to the simultaneous detection of more than one nucleic acid species. General methods for performing multiplexed reactions in conjunction with mass spectrometry, are known (see, e.g., U.S. Pat. Nos. 6,043,031, 5,547,835 and International PCT application No. WO 97/37041). Multiplexing provides an advantage that a plurality of nucleic acid species (e.g., some having different sequence variations) can be identified in as few as a single mass spectrum, as compared to having to perform a separate mass spectrometry analysis for each individual target nucleic acid species. Methods provided herein lend themselves to high-throughput, highly- automated processes for analyzing sequence variations with high speed and accuracy, in some embodiments. In some embodiments, methods herein may be multiplexed at high levels in a single reaction.

In certain embodiments, the number of nucleic acid species multiplexed include, without limitation, about 1 to about 500 (e.g., about 1-3, 3-5, 5-7, 7-9, 9-11, 11-13, 13-15, 15-17, 17-19, 19-21, 21-23, 23- 25, 25-27, 27-29, 29-31, 31-33, 33-35, 35-37, 37-39, 39-41, 41-43, 43-45, 45-47, 47-49, 49-51, 51-53, 53- 55, 55-57, 57-59, 59-61, 61-63, 63-65, 65-67, 67-69, 69-71, 71-73, 73-75, 75-77, 77-79, 79-81, 81-83, 83- 85, 85-87, 87-89, 89-91, 91-93, 93-95, 95-97, 97-101, 101-103, 103-105, 105-107, 107-109, 109-111, 111-113, 113-115, 115-117, 117-119, 121-123, 123-125, 125-127, 127-129, 129-131, 131-133, 133-135, 135-137, 137-139, 139-141, 141-143, 143-145, 145-147, 147-149, 149-151, 151-153, 153-155, 155-157, 157-159, 159-161, 161-163, 163-165, 165-167, 167-169, 169-171, 171-173, 173-175, 175-177, 177-179, 179-181, 181-183, 183-185, 185-187, 187-189, 189-191, 191-193, 193-195, 195-197, 197-199, 199-201, 201-203, 203-205, 205-207, 207-209, 209-211, 211-213, 213-215, 215-217, 217-219, 219-221, 221-223, 223-225, 225-227, 227-229, 229-231, 231-233, 233-235, 235-237, 237-239, 239-241, 241-243, 243-245, 245-247, 247-249, 249-251, 251-253, 253-255, 255-257, 257-259, 259-261, 261-263, 263-265, 265-267, 267-269, 269-271, 271-273, 273-275, 275-277, 277-279, 279-281, 281-283, 283-285, 285-287, 287-289, 289-291, 291-293, 293-295, 295-297, 297-299, 299-301, 301- 303, 303- 305, 305- 307, 307- 309, 309- 311, 311- 313, 313- 315, 315- 317, 317- 319, 319-321, 321-323, 323-325, 325-327, 327-329, 329-331, 331-333, 333- 335, 335-337, 337-339, 339-341, 341-343, 343-345, 345-347, 347-349, 349-351, 351-353, 353-355, 355-357, 357-359, 359-361, 361-363, 363-365, 365-367, 367-369, 369-371, 371-373, 373-375, 375-377, 377-379, 379-381, 381-383, 383-385, 385-387, 387-389, 389-391, 391-393, 393-395, 395-397, 397-401, 401- 403, 403- 405, 405- 407, 407- 409, 409- 411, 411- 413, 413- 415, 415- 417, 417- 419, 419- 421, 421-423, 423-425, 425-427, 427-429, 429-431, 431-433, 433- 435, 435-437, 437-439, 439-441, 441- 443, 443-445, 445-447, 447-449, 449-451, 451-453, 453-455, 455-457, 457-459, 459-461, 461-463, 463- 465, 465-467, 467-469, 469-471, 471-473, 473-475, 475-477, 477-479, 479-481, 481-483, 483-485, 485- 487, 487-489, 489-491, 491-493, 493-495, 495-497, 497-501).

Design methods for achieving resolved mass spectra with multiplexed assays can include primer and oligonucleotide design methods and reaction design methods. See, for example, the multiplex schemes provided in Tables X and Y. For primer and oligonucleotide design in multiplexed assays, the same general guidelines for primer design applies for uniplexed reactions, such as avoiding false priming and primer dimers, only more primers are involved for multiplex reactions. For mass spectrometry applications, analyte peaks in the mass spectra for one assay are sufficiently resolved from a product of any assay with which that assay is multiplexed, including pausing peaks and any other by-product peaks. Also, analyte peaks optimally fall within a user-specified mass window, for example, within a range of 5,000-8,500 Da. In some embodiments multiplex analysis may be adapted to mass spectrometric detection of chromosome abnormalities, for example. In certain embodiments multiplex analysis may be adapted to various single nucleotide or nanopore based sequencing methods described herein. Commercially produced micro-reaction chambers or devices or arrays or chips may be used to facilitate multiplex analysis, and are commercially available.

Detection of Fetal Aneuploidy

For the detection of fetal aneuploidies, some methods rely on measuring the ratio between maternally and paternally inherited alleles. However, the ability to quantify chromosomal changes is impaired by the maternal contribution of cell free nucleic acids, which makes it necessary to deplete the sample from maternal DNA prior to measurement. Promising approaches take advantage of the different size distribution of fetal and maternal DNA or measure RNA that is exclusively expressed by the fetus (see for example, US Patent Application No. 11/384128, which pu blished as US20060252071 and is hereby incorporated by reference). Assuming fetal DNA makes up only about 5% of all cell free DNA in the maternal plasma, there is a decrease of the ratio difference from 1.6% to only about 1.2% between a trisomy sample and a healthy control. Consequently, reliable detection of allele ratio changes requires enriching the fetal fraction of cell free DNA, for example, using the compositions and methods of the present invention.

Some methods rely on measuring the ratio of maternal to paternally inherited alleles to detect fetal chromosomal aneuploidies from maternal plasma. A diploid set yields a 1:1 ratio while trisomies can be detected as a 2:1 ratio. Detection of this difference is impaired by statistical sampling due to the low abundance of fetal DNA, presence of excess maternal DNA in the plasma sample and variability of the measurement technique. The latter is addressed by using methods with high measurement precision, like digital PCR or mass spectrometry. Enriching the fetal fraction of cell free DNA in a sample is currently achieved by either depleting maternal DNA through size exclusion or focusing on fetal-specific nucleic acids, like fetal-expressed RNA. Another differentiating feature of fetal DNA is its DNA methylation pattern. Thus, provided herein are novel compositions and methods for accurately quantifying fetal nucleic acid based on differential methylation between a fetus and mother. The methods rely on sensitive absolute copy number analysis to quantify the fetal nucleic acid portion of a maternal sample, thereby allowing for the prenatal detection of fetal traits. The methods of the invention have identified approximately 3000 CpG rich regions in the genome that are differentially methylated between maternal and fetal DNA. The selected regions showed highly conserved differential methylation across all measured samples. In addition the set of regions is enriched for genes important in developmental regulation, indicating that epigenetic regulation of these areas is a biologically relevant and consistent process (see Table 3). Enrichment of fetal DNA can now be achieved by using our MBD-FC protein to capture all cell free DNA and then elute the highly methylated DNA fraction with high salt concentrations. Using the low salt eluate fractions, the MBD-FC is equally capable of enriching non-methylated fetal DNA.

The present invention provides 63 confirmed genomic regions on chromosomes 13, 18 and 21 with low maternal and high fetal methylation levels. After capturing these regions, SNPs can be used to determine the aforementioned allele ratios. When high frequency SNPs are used around 10 markers have to be measured to achieve a high confidence of finding at least one SNP where the parents have opposite homozygote genotypes and the child has a heterozygote genotype.

In an embodiment, a method for chromosomal abnormality detection is provided that utilizes absolute copy number quantification. A diploid chromosome set will show the same number of copies for differentially methylated regions across all chromosomes, but, for example, a trisomy 21 sample would show 1.5 times more copies for differentially methylated regions on chromosome 21. Normalization of the genomic DNA amounts for a diploid chromosome set can be achieved by using unaltered autosomes as reference (also provided herein - see Table IB). Comparable to other approaches, a single marker is less likely to be sufficient for detection of this difference, because the overall copy numbers are low. Typically there are approximately 100 to 200 copies of fetal DNA from 1 ml of maternal plasma at 10 to 12 weeks of gestation. However, the methods of the present invention offer a redundancy of detectable markers that enables highly reliable discrimination of diploid versus aneuploid chromosome sets.

Data Processing and Identifying Presence or Absence of a Chromosome Abnormality

The term "detection" of a chromosome abnormality as used herein refers to identification of an imbalance of chromosomes by processing data arising from detecting sets of amplified nucleic acid species, nucleotide sequence species, or a detectable product generated from the foregoing (collectively "detectable product"). Any suitable detection device and method can be used to distinguish one or more sets of detectable products, as addressed herein. An outcome pertaining to the presence or absence of a chromosome abnormality can be expressed in any suitable form, including, without limitation, probability (e.g., odds ratio, p-value), likelihood, percentage, value over a threshold, or risk factor, associated with the presence of a chromosome abnormality for a subject or sample. An outcome may be provided with one or more of sensitivity, specificity, standard deviation, coefficient of variation (CV) and/or confidence level, or combinations of the foregoing, in certain embodiments.

Detection of a chromosome abnormality based on one or more sets of detectable products may be identified based on one or more calculated variables, including, but not limited to, sensitivity, specificity, standard deviation, coefficient of variation (CV), a threshold, confidence level, score, probability and/or a combination thereof. In some embodiments, (i) the number of sets selected for a diagnostic method, and/or (ii) the particular nucleotide sequence species of each set selected for a diagnostic method, is determined in part or in full according to one or more of such calculated variables.

In certain embodiments, one or more of sensitivity, specificity and/or confidence level are expressed as a percentage. In some embodiments, the percentage, independently for each variable, is greater than about 90% (e.g., about 90, 91, 92, 93, 94, 95, 96, 97, 98 or 99%, or greater than 99% (e.g., about 99.5%, or greater, a bout 99.9% or greater, about 99.95% or greater, about 99.99% or greater)). Coefficient of variation (CV) in some embodiments is expressed as a percentage, and sometimes the percentage is about 10% or less (e.g., a bout 10, 9, 8, 7, 6, 5, 4, 3, 2 or 1%, or less than 1% (e.g., about 0.5% or less, about 0.1% or less, about 0.05% or less, about 0.01% or less)). A probability (e.g., that a particular outcome determined by an algorithm is not due to chance) in certain embodiments is expressed as a p- value, and sometimes the p-value is about 0.05 or less (e.g., about 0.05, 0.04, 0.03, 0.02 or 0.01, or less than 0.01 (e.g., about 0.001 or less, about 0.0001 or less, about 0.00001 or less, about 0.000001 or less)).

For example, scoring or a score may refer to calculating the probability that a particular chromosome abnormality is actually present or a bsent in a subject/sample. The value of a score may be used to determine for example the variation, difference, or ratio of amplified nucleic detectable product that may correspond to the actual chromosome abnormality. For example, calculating a positive score from detectable products can lead to an identification of a chromosome abnormality, which is particularly relevant to analysis of single samples.

In certain embodiments, simulated (or simulation) data can aid data processing for example by training an algorithm or testing an algorithm. Simulated data may for instance involve hypothetical various samples of different concentrations of fetal and maternal nucleic acid in serum, plasma and the like. Simulated data may be based on what might be expected from a real population or may be skewed to test an algorithm and/or to assign a correct classification based on a simulated data set. Simulated data also is referred to herein as "virtual" data. Fetal/maternal contributions within a sample can be simulated as a table or array of numbers (for example, as a list of peaks corresponding to the mass signals of cleavage products of a reference biomolecule or amplified nucleic acid sequence), as a mass spectrum, as a pattern of bands on a gel, or as a representation of any technique that measures mass distribution. Simulations can be performed in most instances by a computer program. One possible step in using a simulated data set is to evaluate the confidence of the identified results, i.e. how well the selected positives/negatives match the sample and whether there are additional variations. A common approach is to calculate the probability value (p-value) which estimates the probability of a random sample having better score than the selected one. As p-value calculations can be prohibitive in certain circumstances, an empirical model may be assessed, in which it is assumed that at least one sample matches a reference sample (with or without resolved variations). Alternatively other distributions such as Poisson distribution can be used to describe the probability distribution.

In certain embodiments, an algorithm can assign a confidence value to the true positives, true negatives, false positives and false negatives calculated. The assignment of a likelihood of the occurrence of a chromosome abnormality can also be based on a certain probability model.

Simulated data often is generated in an in silico process. As used herein, the term "in silico" refers to research and experiments performed using a computer. In silico methods include, but are not limited to, molecular modeling studies, karyotyping, genetic calculations, biomolecular docking experiments, and virtual representations of molecular structures and/or processes, such as molecular interactions. As used herein, a "data processing routine" refers to a process, that can be embodied in software, that determines the biological significance of acquired data (i.e., the ultimate results of an assay). For example, a data processing routine can determine the amount of each nucleotide sequence species based upon the data collected. A data processing routine also may control an instrument and/or a data collection routine based upon results determined. A data processing routine and a data collection routine often are integrated and provide feed back to operate data acquisition by the instrument, and hence provide assay-based judging methods provided herein.

As used herein, software refers to computer readable program instructions that, when executed by a computer, perform computer operations. Typically, software is provided on a program product containing program instructions recorded on a computer readable medium, including, but not limited to, magnetic media including floppy disks, hard disks, and magnetic tape; and optical media including CD-ROM discs, DVD discs, magneto-optical discs, and other such media on which the program instructions can be recorded.

Different methods of predicting abnormality or normality can produce different types of results. For any given prediction, there are four possible types of outcomes: true positive, true negative, false positive, or false negative. The term "true positive" as used herein refers to a subject correctly diagnosed as having a chromosome abnormality. The term "false positive" as used herein refers to a subject wrongly identified as having a chromosome abnormality. The term "true negative" as used herein refers to a subject correctly identified as not having a chromosome abnormality. The term "false negative" as used herein refers to a subject wrongly identified as not having a chromosome abnormality. Two measures of performance for any given method can be calculated based on the ratios of these occurrences: (i) a sensitivity value, the fraction of predicted positives that are correctly identified as being positives (e.g., the fraction of nucleotide sequence sets correctly identified by level comparison

detection/determination as indicative of chromosome abnormality, relative to all nucleotide sequence sets identified as such, correctly or incorrectly), thereby reflecting the accuracy of the results in detecting the chromosome abnormality; and (ii) a specificity value, the fraction of predicted negatives correctly identified as being negative (the fraction of nucleotide sequence sets correctly identified by level comparison detection/determination as indicative of chromosomal normality, relative to all nucleotide sequence sets identified as such, correctly or incorrectly), thereby reflecting accuracy of the results in detecting the chromosome abnormality.

EXAMPLES

The following examples are provided by way of illustration only and not by way of limitation. Those of skill in the art will readily recognize a variety of non-critical parameters that could be changed or modified to yield essentially the same or similar results.

In Example 1 below, the Applicants used a new fusion protein that captures methylated DNA in combination with CpG Island array to identify genomic regions that are differentially methylated between fetal placenta tissue and maternal blood. A stringent statistical approach was used to only select regions which show little variation between the samples, and hence suggest an underlying biological mechanism. Eighty-five differentially methylated genomic regions predominantly located on chromosomes 13, 18 and 21 were validated. For this validation, a quantitative mass spectrometry based approach was used that interrogated 261 PC amplicons covering these 85 regions. The results are in very good concordance (95% confirmation), proving the feasibility of the approach.

Next, the Applicants provide an innovative approach for aneuploidy testing, which relies on the measurement of absolute copy numbers rather than allele ratios.

Example 1

In the below Example, ten paired maternal and placental DNA samples were used to identify differentially methylated regions. These results were validated using a mass spectrometry-based quantitative methylation assay. First, genomic DNA from maternal buffy coat and corresponding placental tissue was first extracted. Next the M BD-FC was used to capture the methylated fraction of each DNA sample. See Figures 1-3. The two tissue fractions were labeled with different fluorescent dyes and hybridized to an Agilent ® CpG Island microarray. See Figure 4. This was done to identify differentially methylated regions that could be utilized for prenatal diagnoses. Therefore, two criteria were employed to select genomic regions as potential enrichment markers: the observed methylation difference had to be present in all tested sample pairs, and the region had to be more than 200 bp in length.

DNA preparation and fragmentation

Genomic DNA (gDNA) from maternal buffy coat and placental tissue was prepared using the QIAamp DNA Mini Kit™ and QIAamp DNA Blood Mini Kit™, respectively, from Qiagen ® (Hilden, Germany). For MClp, gDNA was quantified using the NanoDrop ND 1000™ spectrophotometer (Thermo Fisher ® , Waltham, MA,USA). Ultrasonication of 2.5 μg DNA in 500 μΙ TE buffer to a mean fragment size of 300- 500 bp was carried out with the Branson Digital Sonifier 450™ (Danbury, CT, USA) using the following settings: amplitude 20%, sonication time 110 seconds, pulse on/pulse off time 1.4/0.6 seconds.

Fragment range was monitored using gel electrophoresis.

Methyl-CpG Immunoprecipitation

Per sample, 56 μg purified MBD-Fc protein and 150 μΙ of Protein A Sepharose 4 Fast Flow beads (Amersham Biosciences ® , Piscataway, NJ, USA) were rotated in 15 ml TBS overnight at 4°C. Then, theMBD-Fc beads (150 μΙ/assay) were transferred and dispersed in to 2 ml Ultrafree-CL centrifugal filter devices (Millipore ® , Billerica, MA, USA) and spin-washed three times with Buffer A (20 mM Tris-HCI, pH8.0, 2 mM MgCI2, 0.5 mM EDTA 300 mM NaCI, 0.1% NP-40). Sonicated DNA (2 μg) was added to the washed MBD-Fc beads in 2 ml Buffer A and rotated for 3 hours at 4°C. Beads were centrifuged to recover unbound DNA fragments (300 mM fraction) and subsequently washed twice with 600 μΙ of buffers containing increasing NaCI concentrations (400, 500, 550, 600, and 1000 mM). The flow through of each wash step was collected in separate tubes and desalted using a MinElute PCR Purification Kit™ (Qiagen ® ). In parallel, 200 ng sonicated input DNA was processed as a control using the MinElute PC Purification Kit™ (Qiagen ® ).

Microarray handling and analysis

To generate fluorescently labeled DNA for microarray hybridization, the 600 mM and 1M NaCI fractions (enriched methylated DNA) for each sample were combined and labeled with either Alexa Fluor 555- aha-dCTP (maternal) or Alexa Fluor 647-aha-dCTP (placental) using the BioPrime Total Genomic Labeling System™ (Invitrogen ® , Carlsbad, CA, USA). The labeling reaction was carried out according to the manufacturer's manual. The differently labeled genomic DNA fragments of matched

maternal/placental pairs were combined to a final volume of 80 μΙ, supplemented with 50 μg Cot-1 DNA (Invitrogen ® ), 52 μΙ of Agilent 10X blocking reagent (Agilent Technologies ® , Santa Clara, CA, USA), 78 μΙ of deionized formamide, and 260 μΙ Agilent 2X hybridization buffer. The samples were heated to 95°C for 3 min, mixed, and subsequently incubated at 37°C for 30 min. Hybridization on Agilent CpG Island Microarray Kit™ was then carried out at 67°C for 40 hours using an Agilent SureHyb™ chamber and an Agilent hybridization oven. Slides were washed in Wash I (6X SSPE, 0.005% N-lauroylsarcosine) at room temperature for 5 min and in Wash II (0.06X SSPE) at 37°C for an additional 5 min. Next, the slides were submerged in acetonitrile and Agilent Ozone Protection Solution™, respectively, for 30 seconds. Images were scanned immediately and analyzed using an Agilent DNA Microarray Scanner™. Microarray images were processed using Feature Extraction Software v9.5 and the standard CGH protocol.

Bisulfite Treatment

Genomic DNA sodium bisulfite conversion was performed using EZ-96 DNA Methylation Kit™

(ZymoResearch, Orange County, CA). The manufacturer's protocol was followed using lug of genomic DNA and the alternative conversion protocol (a two temperature DNA denaturation).

Quantitative Methylation Analysis

Sequenom's MassARRAY ® System was used to perform quantitative methylation analysis. This system utilizes matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry in combination with RNA base specific cleavage (Sequenom ® MassCLEAVE™). A detectable pattern is then analyzed for methylation status. PCR primers were designed using Sequenom ® EpiDESIGNER™

(www.epidesigner.com). A total of 261 amplicons, covering 85 target regions, were used for validation (median amplification length = 367 bp, min = 108, max = 500; median number of CpG's per amplicon =23, min = 4, max = 65). For each reverse primer, an additional T7 promoter tag for in-vivo transcription was added, as well as a lOmer tag on the forward primer to adjust for melting temperature differences. The MassCLEAVE(tm) biochemistry was performed as previously described (Ehrich M, et al. (2005) Quantitative high-throughput analysis of DNA methylation patterns by base specific cleavage and mass spectrometry. Proc Natl Acad Sci U S A 102:15785-15790). Mass spectra were acquired using a

MassARRAY™ Compact MALDI-TOF (Sequenom ® , San Diego) and methylation ratios were generated by the EpiTYPER™ software vl.O (Sequenom ® , San Diego). Statistical analysis

All statistical calculations were performed using the statistical software package (www.r-project.org). First, the array probes were grouped based on their genomic location. Subsequent probes that were less than 1000 bp apart were grouped together. To identify differentially methylated regions, a control sample was used as reference. In the control sample, the methylated fraction of a blood derived control DNA was hybridized against itself. Ideally this sample should show log ratios of the two color channels around 0. However because of the variability in hybridization behavior, the probes show a mean log ratio of 0.02 and a standard deviation of 0.18. Next the log ratios observed in our samples were compared to the control sample. A two way, paired t-test was used to test the NULL hypothesis that the groups are identical. Groups that contained less than 4 probes were excluded from the analysis. For groups including four or five probes, all probes were used in a paired t-test. For Groups with six or more probes, a sliding window test consisting of five probes at a time was used, whereby the window was moved by one probe increments. Each test sample was compared to the control sample and the p- values were recorded. Genomic regions were selected as being differentially methylated if eight out of ten samples showed a p value < 0.01, or if six out of ten samples showed a p value < 0.001. The genomic regions were classified as being not differentially methylated when the group showed less than eight samples with a p value < 0.01 and less than six samples with a p value < 0.001. Samples that didn't fall in either category were excluded from the analysis. For a subset of genomic regions that have been identified as differentially methylated, the results were confirmed using quantitative methylation analysis.

The Go analysis was performed using the online GOstat tool (http://gostat.wehi.edu.au/cgibin/- goStat.pl). P values were calculated using Fisher's exact test.

Microarray-based marker discovery results

To identify differentially methylated regions a standard sample was used, in which the methylated DNA fraction of monocytes was hybridized against itself. This standard provided a reference for the variability of fluorescent measurements in a genomic region. Differentially methylated regions were then identified by comparing the log ratios of each of the ten placental/maternal samples against this standard. Because the goal of this study was to identify markers that allow the reliable separation of maternal and fetal DNA, the target selection was limited to genes that showed a stable, consistent methylation difference over a contiguous stretch of genomic DNA. This focused the analysis on genomic regions where multiple probes indicated differential methylation. The selection was also limited to target regions where all samples showed differential methylation, excluding those with strong inter- individual differences. Two of the samples showed generally lower log ratios in the microarray analysis. Because a paired test was used for target selection, this did not negatively impact the results.

Based on these selection criteria, 3043 genomic regions were identified that were differentially methylated between maternal and fetal DNA. 21778 regions did not show a methylation difference. No inter-chromosomal bias in the distribution of differentially methylated regions was observed. The differentially methylated regions were located next to or within 2159 known genes. The majority of differentially methylated regions are located in the promoter area (18%) and inside the coding region (68%), while only few regions are located downstream of the gene (7%) or at the transition from promoter to coding region (7%). Regions that showed no differential methylation showed a similar distribution for promoter (13%) and downstream (5%) locations, but the fraction of regions located in the transition of promoter to coding region was higher (39%) and the fraction inside the coding region was lower (43%).

It has been shown in embryonic stem cells (ES) that genes targeted by the polycomb repressive complex2 (PRC2) are enriched for genes regulating development (Lee Tl, et al. (2006) Control of developmental regulators by Polycomb in human embryonic stem cells. Cell 125:301-313). It has also been shown that differentially methylated genes are enriched for genes targeted by PRC2 in many cancer types (Ehrich M, et al. (2008) Cytosine methylation profiling of cancer cell lines. Proc Natl Acad Sci U S A 105:4844-48). The set of genes identified as differentially methylated in this study is also enriched for genes targeted by PRC2 (p-value < 0.001, odds ratio = 3.6, 95% CI for odds ratio= 3.1 - 4.2). A GO analysis of the set of differentially methylated genes reveals that this set is significantly enriched for functions important during development. Six out of the ten most enriched functions include developmental or morphogenic processes [anatomical structure morphogenesis (GO:0009653, p value =0), developmental process (GO:0032502, p value = 0), multicellular organismal development

(GO:0007275, p value = 0), developmental of an organ (GO:0048513, p value = 0), system development (GO:0048731, p value = 0) and development of an anatomical structure (GO:0048856, p value = 0)].

Validation using Sequenom ® EpiTYPER™

To validate the microarray findings, 63 regions from chromosomes 13, 18 and 21 and an additional 26 regions from other autosomes were selected for confirmation by a different technology. Sequenom EpiTYPER™ technology was used to quantitatively measure DNA methylation in maternal and placental samples. For an explanation of the EpiTYPER™ methods, see Ehrich M, Nelson MR, Stanssens P, Zabeau M, Liloglou T, Xinarianos G, Cantor CR, Field JK, van den Boom D (2005) Quantitative high-throughput analysis of DNA methylation patterns by base specific cleavage and mass spectrometry. Proc Natl Acad Sci U S A 102:15785-15790). For each individual CpG site in a target region the average methylation value across all maternal DNA samples and across all placenta samples was calculated. The difference between average maternal and placenta methylation was then compared to the microarray results. The results from the two technologies were in good concordance (see Figure7). For 85 target regions the quantitative results confirm the microarray results (95% confirmation rate). For 4 target regions, all located on chromosome 18, the results could not be confirmed. The reason for this discrepancy is currently unclear.

In contrast to microarrays, which focus on identification of methylation differences, the quantitative measurement of DNA methylation allowed analysis of absolute methylation values. In the validation set of 85 confirmed differentially methylated regions, a subset of 26 regions is more methylated in the maternal DNA sample and 59 regions are more methylated in the placental sample (see Table 1A). Interestingly, genes that are hypomethylated in the placental samples tend to show larger methylation differences than genes that are hypermethylated in the placental sample (median methylation difference for hypomethylated genes = 39%, for hypermethylated genes = 20%).

Example 2

Example 2 describes a non-invasive approach for detecting the amount of fetal nucleic acid present in a maternal sample (herein referred to as the "Fetal Quantifier Method"), which may be used to detect or confirm fetal traits (e.g., fetal sex of hD compatibility), or diagnose chromosomal abnormalities such as Trisomy 21 (both of which are herein referred to as the "Methylation-Based Fetal Diagnostic Method"). Figure 10 shows one embodiment of the Fetal Quantifier Method, and Figure 11 shows one

embodiment of the Methylation-Based Fetal Diagnostic Method. Both processes use fetal DNA obtained from a maternal sample. The sample comprises maternal and fetal nucleic acid that is differentially methylated. For example, the sample may be maternal plasma or serum. Fetal DNA comprises approximately 2-30% of the total DNA in maternal plasma. The actual amount of fetal contribution to the total nucleic acid present in a sample varies from pregnancy to pregnancy and can change based on a number of factors, including, but not limited to, gestational age, the mother's health and the fetus' health.

As described herein, the technical challenge posed by analysis of fetal DNA in maternal plasma lies in the need to be able to discriminate the fetal DNA from the co-existing background maternal DNA. The methods of the present invention exploit such differences, for example, the differential methylation that is observed between fetal and maternal DNA, as a means to enrich for the relatively small percentage of fetal DNA present in a sample from the mother. The non-invasive nature of the approach provides a major advantage over conventional methods of prenatal diagnosis such as, amniocentesis, chronic villus sampling and cordocentesis, which are associated with a small but finite risk of fetal loss. Also, because the method is not dependent on fetal cells being in any particular cell phase, the method provides a rapid detection means to determine the presence and also the nature of the chromosomal abnormality. Further, the approach is sex-independent (i.e., does not require the presence of a Y-chromosome) and polymorphic-independent (i.e., an allelic ratio is not determined). Thus, the compositions and methods of the invention represent improved universal, noninvasive approaches for accurately determining the amount of fetal nucleic acid present in a maternal sample.

Assay design and advantages

There is a need for accurate detection and quantification of fetal DNA isolated noninvasively from a maternal sample. The present invention takes advantage of the presence of circulating, cell free fetal nucleic acid (ccfDNA) in maternal plasma or serum. In order to be commercially and clinically practical, the methods of the invention should only consume a small portion of the limited available fetal DNA. For example, less than 50%, 40%, 30%, 25%, 20%, 15%, 10%, 5% or less of the sample. Further, the approach should preferably be developed in a multiplex assay format in which one or more (preferably all) of the following assays are included: • Assays for the detection of total amount of genomic equivalents present in the sample, i.e., assays recognizing both maternal and fetal DNA species;

• Assays for the detection of fetal DNA isolated from a male pregnancy, i.e., sequences specific for chromosome Y;

• Assays specific for regions identified as differentially methylated between the fetus and mother; or

• Assays specific for regions known to be hypomethylated in all tissues to be investigated, which can serve as a control for restriction efficiency.

Other features of the assay may include one or more of the following:

• For each assay, a target-specific, competitor oligonucleotide that is identical, or substantially identical, to the target sequence apart from a distinguishable feature of the competitor, such as a difference in one or more nucleotides relative to the target sequence. This oligonucleotide when added into the PC reaction will be co-amplified with the target and a ratio obtained between these two PCR amplicons will indicate the number of target specific DNA sequences (e.g., fetal DNA from a specific locus) present in the maternal sample.

• The amplicon lengths should preferably be of similar length in order not to skew the

amplification towards the shorter fragments. However, as long as the amplification efficiency is about equal, different lengths may be used.

• Differentially methylated targets can be selected from Tables 1A-1C or from any other targets known to be differentially methylated between mother and fetus. These targets can be hypomethylated in DNA isolated from non-pregnant women and hypermethylated in samples obtained from fetal samples. These assays will serve as controls for the restriction efficiency.

• The results obtained from the different assays can be used to quantify one or more of the

following:

o Total number of amplifiable genomes present in the sample (total amount of genomic equivalents);

o The fetal fraction of the amplifiable genomes (fetal concentration or percentage); or o Differences in copy number between fetally-derived DNA sequences (for example, between fetal chromosome 21 and a reference chromosome such as chromosome 3).

Examples of assays used in the test

Below is an outline of the reaction steps used to perform a method of the invention, for example, as provided in Figure 10. This outline is not intended to limit the scope of the invention. Rather it provides one embodiment of the invention using the Sequenom ® MassARRAY ® technology. DNA isolation from plasma samples.

Digestion of the DNA targets using methylation sensitive restriction enzymes (for example, Hhal and Hpall).

For each reaction the available DNA was mixed with water to a final volume of 25 ul.

10 ul of a reaction mix consisting of 10 units Hhal, 10 units Hpall and a reaction buffer were added. The sample was incubated at an optimal temperature for the restriction enzymes. Hhal and Hpall digest non-methylated DNA (and will not digest hemi- or completely methylated DNA). Following digestion, the enzymes were denatured using a heating step.

Genomic Amplification- PCR was performed in a total volume of 50 ul by adding PCR reagents (Buffer, dNTPs, primers and polymerase). Exemplary PCR and extend primers are provided below. In addition, synthetic competitor oligonucleotide was added at known concentrations.

Replicates (optional) - Following PCR the 50 ul reaction was split into 5 ul parallel reactions (replicates) in order to minimize variation introduced during the post PCR steps of the test. Post PCR steps include SAP, primer extension (MassEXTEND ® technology), resin treatment, dispensing of spectrochip and MassARRAY.

Quantification of the Amplifiable Genomes - Sequenom MassARRAY ® technology was used to determine the amount of amplification product for each assay. Following PCR, a single base extension assay was used to interrogate the amplified regions (including the competitor oligonucleotides introduced in step 3). Specific extend primers designed to hybridize directly adjacent to the site of interest were introduced. See extend primers provided below. These DNA oligonucleotides are referred to as iPLEX ® MassEXTEND ® primers. In the extension reaction, the iPLEX primers were hybridized to the complementary DNA templates and extended with a DNA polymerase. Special termination mixtures that contain different combinations of deoxy- and dideoxynucleotide triphosphates along with enzyme and buffer, directed limited extension of the iPLEX primers. Primer extension occurs until a complementary

dideoxynucleotide is incorporated.

The extension reaction generated primer products of varying length, each with a unique molecular weight. As a result, the primer extension products can be simultaneously separated and detected using Matrix Assisted Laser Desorption/lonization, Time-Of-Flight (MALDI-TOF) mass spectrometry on the MassARRAY ® Analyzer Compact. Following this separation and detection, SEQUENOM's proprietary software automatically analyzes the data.

Calculating the amount and concentration of fetal nucleic acid - Methods for calculating the total amount of genomic equivalents present in the sample, the amount (and concentration) of fetal nucleic acid isolated from a male pregnancy, and the amount (and concentration) of fetal nucleic based on differentially methylated targets are provided below and in Figures 18 and 19. The above protocol can be used to perform one or more of the assays described below. In addition to the sequences provided immediately below, a multiplex scheme that interrogates multiple targets is provided in Table X below.

1) Assay for the quantification of the total number of amplifiable genomic equivalents in the sample.

Targets were selected in housekeeping genes not located on the chromosomes 13, 18, 21, X or Y. The targets should be in a single copy gene and not contain any recognition sites for the methylation sensitive restriction enzymes.

Underlined sequences are PCR primer sites, italic is the site for the single base extend primer and bold letter (C) is the nucleotide extended on human DNA

ApoE Chromosome 19:45409835-45409922 DNA target sequence with interrogated nucleotide C in bold. All of the chromosome positions provided in this section are from the February 2009 UCSC Genome Build.

GATTGACAGTTTCTCCTTCCCCAGACTGGCCAATCACAGGC4GG \ \G \rG \ \GGrrCTGTGGGCTGCGTTGCT GGTCACATTCCTGGC

ApoE Forward Primer: 5'-ACGTTGGATG-TTGACAGTTTCTCCTTCCCC (Primer contains a 5' 10 bp MassTag separated by a dash)

ApoE Reverse Primer: 5'-ACGTTGGATG-GAATGTGACCAGCAACGCAG (Primer contains a 5' 10 bp MassTag separated by a dash)

ApoE Extension Primer: 5'-GCAGGAAGATGAAGGTT [C/T] Primer extends C on human DNA targets and T on synthetic DNA targets

ApoE synthetic competitor oligonucleotide: 5'-

GATTGACAGTTTCTCCTTCCCCAGACTGGCCAATCACAGGCAGGAAGATGAAGGTTT TGTGGGCTGCGTTGCT GGTCACATTCCTGGC (Bold T at position 57 is different from human DNA)

2) Assay for the quantification of the total number of chromosome Y sequences in the sample.

Targets specific for the Y-chromosome were selected, with no similar or paralog sequences elsewhere in the genome. The targets should preferably be in a single copy gene and not contain any recognition sites for the methylation sensitive restriction enzyme(s).

Underlined sequences are PCR primer sites, and italic nucleotide(s) is the site for the single-base extend primer and bold letter (C) is the nucleotide extended on human DNA.

SRY on chrY:2655628-2655717 (reverse complement)

GAGTTTTGGATAGTAAAATAAGTTTCGAACTCTGGCACC TTTCAA TTTTGTCGCA C7 " CTCCTTGTTTTTGACAAT GCAATCATATGCTTC SRY Forward Primer: 5'-ACG-TGGATAGTAAAATAAGTTTCGAACTCTG (Primer contains a 5' 3 bp MassTag separated by a dash)

SRY Reverse Primer: 5'- GAAGCATATGATTGCATTGTCAAAAAC

SRY Extension Primer: 5'-aTTTCAATTTTGTCGCACT [C/T] Primer extends C on human DNA targets and T on synthetic DNA targets. 5' Lower case "a" is a non-complementary nucleotide

SRY synthetic competitor oligonucleotide: 5'-

GAGTTTTGGATAGTAAAATAAGTTTCGAACTCTGGCACCTTTCAATTTTGTCGCACT TTCCTTGTTTTTGACAAT GCAATCATATGCTTC

3) Assay for the quantification of fetal methylated DNA sequences present in the sample.

Targets were selected in regions known to be differentially methylated between maternal and fetal DNA. Sequences were selected to contain several restriction sites for methylation sensitive enzymes. For this study the Hhal (GCGC) and Hpall (CCGG) enzymes were used.

Underlined sequences are PCR primer sites, italic is the site for the single base extend primer and bold letter (C) is the nucleotide extended on human DNA, lower case letter are recognition sites for the methylation sensitive restriction enzymes.

TBX3 on chrl2:115124905-115125001

GAACTCCTCTTTGTCTCTGCGTGCccggcgcgcCCCCCrCccaarGGGrGAr \ \ \CCCACTCTGgcgccggCCATgcgc TGGGTGATTAATTTGCGA

TBX3 Forward Primer: 5'- ACGTTGGATG-TCTTTGTCTCTGCGTGCCC (Primer contains a 5' 10 bp MassTag separated by a dash)

TBX3 Reverse Primer: 5'- ACGTTGGATG-TTAATCACCCAGCGCATGGC (Primer contains a 5' 10 bp MassTag separated by a dash)

TBX3 Extension Primer: 5'- CCCCTCCCGGTGGGTGATAAA [C/T] Primer extends C on human DNA targets and T on synthetic DNA targets. 5' Lower case "a" is a non-complementary nucleotide

TBX3 synthetic competitor oligonucleotide: 5'-

GAACTCCTCTTTGTCTCTGCGTGCCCGGCGCGCCCCCCTCCCGGTGGGTGATAAATC CACTCTGGCGCCGGCC ATG CG CTG G GTG ATT AATTTG CG A

4) Control Assay for the enzyme restriction efficiency.

Targets were selected in regions known not to be methylated in any tissue to be investigated.

Sequences were selected to contain no more than one site for each restriction enzyme to be used.

Underlined sequences are PCR primer sites, italic nucleotide(s) represent the site for the single-base extend primer and bold letter (G) is the reverse nucleotide extended on human DNA, lower case letter are recognition sites for the methylation sensitive restriction enzymes. CACNA1G chrl7:48637892-48637977 (reverse complement)

CCATTGGCCGTCCGCCGTGGCAGTGCGGGCGGGAgcgcAGGG \G \G \ \CC4C4GCrGG \ \rCCGATTCCCAC CCCAAAACCCAGGA

Hhal Forward Primer: 5'- ACGTTGGATG-CCATTGGCCGTCCGCCGTG (Primer contains a 5' 10 bp MassTag separated by a dash)

Hhal Reverse Primer: 5'- ACGTTGGATG-TCCTGGGTTTTGGGGTGGGAA (Primer contains a 5' 10 bp MassTag separated by a dash)

Hhal Extension Primer: 5'- TTCCAGCTGTGGTTCTCTC

Hhal synthetic competitor oligonucleotide: 5'-

CCATTGGCCGTCCGCCGTGGCAGTGCGGGCGGGAGCGCAGAG>AG/ GAACCACAGCrGGAArCCGATTCCCA CCCCAAAACCCAGGA

Validation experiments

The sensitivity and accuracy of the present invention was measured using both a model system and clinical samples. In the different samples, a multiplex assay was run that contains 2 assays for total copy number quantification, 3 assays for methylation quantification, 1 assay specific for chromosome Y and 1 digestion control assay. See Table X. Another multiplex scheme with additional assays is provided in Table Y.

TABLE X: PC Primers and Extend Primers

TABLE X: Competitor Oligonucleotide Sequence

TABLE Y: PCR Primers and Extend Primers

TABLE Y: Competitor Oligonucleotide Sequence

T=Assay for Total Amount

M=Assay for Methylation quantification

Y= Y-Chromosome Specific Assay

D=Digestion control

Model system using genomic DNA

In order to determine the sensitivity and accuracy of the method when determining the total number of amplifiable genomic copies in a sample, a subset of different DNA samples isolated from the blood of non-pregnant women was tested. Each sample was diluted to contain approximately 2500, 1250, 625 or 313 copies per reaction. The total number of amplifiable genomic copies was obtained by taking the mean DNA/competitor ratio obtained from the three total copy number assays. The results from the four different samples are shown in Figure 12.

To optimize the reaction, a model system was developed to simulate DNA samples isolated from plasma. These samples contained a constant number of maternal non-methylated DNA and were spiked with different amounts of male placental methylated DNA. The samples were spiked with amounts ranging from approximately 0 to 25% relative to the maternal non-methylated DNA. The results are shown in Figures 13A and B. The fraction of placental DNA was calculated using the ratios obtained from the methylation assays (Figure 13A), the S Y markers (Figure 13B) and the total copy number assays. The primer sequences for the methylation assays (TBX), Y-chromosome assays (SRY) and total copy number (APOE) are provided above. The model system demonstrated that the methylation-based method performed equal to the Y-chromosome method (SRY markers), thus validating the methylation- based method as a sex-independent fetal quantifier.

Plasma samples

To investigate the sensitivity and accuracy of the methods in clinical samples, 33 plasma samples obtained from women pregnant with a male fetus were investigated using the multiplex scheme from Table X. For each reaction, a quarter of the DNA obtained from a 4ml extraction was used in order to meet the important requirement that only a portion of the total sample is used.

Total copy number quantification

The results from the total copy number quantification can be seen in Figures 14A and B. In Figure 14A, the copy number for each sample is shown. Two samples (nos. 25 and 26) have a significantly higher total copy number than all the other samples. In general, a mean of approximately 1300 amplifiable copies/ml plasma was obtained (range 766-2055). Figure 14B shows a box-and-whisker plot of the given values, summarizing the results.

Correlation between results obtained from the methylation markers and the Y-chromosome marker

In Figures 15A and B, the numbers of fetal copies for each sample are plotted. As all samples were from male pregnancies. The copy numbers obtained can be calculated using either the methylation or the Y- chromosome-specific markers. As can be seen in Figure 15B, the box-and-whisker plot of the given values indicated minimal difference between the two different measurements.

The results showing the correlation between results obtained from the methylation markers and the Y- chromosome marker (SRY) is shown in Figure 16. Again, the methylation-based method performed equal to the Y-chromosome method (SRY markers), further validating the methylation-based method as a sex-independent and polymorphism-independent fetal quantifier. The multiplexed assays disclosed in Table X were used to determine the amount fetal nucleic.

Finally, the digestion efficiency was determined by using the ratio of digestion for the control versus the competitor and comparing this value to the mean total copy number assays. See Figure 17. Apart from sample 26 all reactions indicate the efficiency to be above 99%.

Data Analysis

Mass spectra analysis was done using Typer 4 (a Sequenom software product). The peak height (signal over noise) for each individual DNA analyte and competitor assay was determined and exported for further analysis.

The total number of molecules present for each amplicon was calculated by dividing the DNA specific peak by the competitor specific peak to give a ratio. (The "DNA" Peak in Figures 18 and 19 can be thought of as the analyte peak for a given assay). Since the number of competitor molecules added into the reaction is known, the total number of DNA molecules can be determined by multiplying the ratio by the number of added competitor molecules.

The fetal DNA fraction (or concentration) in each sample was calculated using the Y-chromosome- specific markers for male pregnancies and the mean of the methylated fraction for all pregnancies. In brief, for chromosome Y, the ratio was obtained by dividing the analyte (DNA) peak by the competitor peak and multiplying this ratio by the number of competitor molecules added into the reaction. This value was divided by a similar ratio obtained from the total number of amplifiable genome equivalents determination (using the Assay(s) for Total Amount). See Figure 18. Since the total amount of nucleic acid present in a sample is a sum of maternal and fetal nucleic acid, the fetal contribution can be considered to be a fraction of the larger, background maternal contribution. Therefore, translating this into the equation shown in Figure 18, the fetal fraction (k) of the total nucleic acid present in the sample is equal to the equation: k=2xR/(l-2R), where R is the ratio between the Y-chromosome amount and the total amount. Since the Y-chromosome is haploid and Assays for the Total Amount are determined using diploid targets, this calculation is limited to a fetal fraction smaller than 50% of the maternal fraction.

In Figure 19, a similar calculation for the fetal concentration is shown by using the methylation specific markers (see Assays for Methylation Quantification). In contrast to Y-chromosome specific markers, these markers are from diploid targets, therefore, the limitations stated for the Y-Chromosome Specific Assay can be omitted. Thus, the fetal fraction (k) can be determined using the equation: k=R(l-R), where R is the ratio between the methylation assay and the total assay.

Simulation

A first simple power calculation was performed that assumes a measurement system that uses 20 markers from chromosome 21, and 20 markers from one or more other autosomes. Starting with 100 copies of fetal DNA, a measurement standard deviation of 25 copies and the probability for a type I error to be lower than 0.001, it was found that the methods of the invention will be able to differentiate a diploid from a triploid chromosome set in 99.5% of all cases. The practical implementation of such an approach could for example be achieved using mass spectrometry, a system that uses a competitive PCR approach for absolute copy number measurements. The method can run 20 assays in a single reaction and has been shown to have a standard deviation in repeated measurements of around 3 to 5%. This method was used in combination with known methods for differentiating methylated and non- methylated nucleic acid, for example, using methyl-binding agents to separate nucleic acid or using methylation-sensitive enzymes to digest maternal nucleic acid. Figure 8 shows the effectiveness of MBD- FC protein (a methyl-binding agent) for capturing and thereby separating methylated DNA in the presence of an excess of unmethylated DNA (see Figure 8).

A second statistical power analysis was performed to assess the predictive power of an embodiment of the Methylation-Based Fetal Diagnostic Method described herein. The simulation was designed to demonstrate the likelihood of differentiating a group of trisomic chromosome 21 specific markers from a group of reference markers (for example, autosomes excluding chromosome 21). Many parameters influence the ability to discriminate the two populations of markers reliably. For the present simulation, values were chosen for each parameter that have been shown to be the most likely to occur based on experimentation. The following parameters and respective values were used:

Copy Numbers

Maternal copy numbers = 2000

Fetal copy numbers for chromosomes other than 21, X and Y = 200

Fetal copy numbers for chromosome 21 in case of euploid fetus = 200

Fetal copy numbers for chromosome 21 in case of aneuploid T21 fetus = 300

Percent fetal DNA (before methylation-based enrichment) = 10% (see above)

Methylation Frequency

Average methylation percentage in a target region for maternal DNA = 10%

Average methylation percentage in a target region for fetal DNA = 80%

Average percentage of non-methylated and non-digested maternal DNA (i.e., a function of restriction efficiency (among other things) = 5%

Number of assays targeting chromosome 21 = 10

Number of assays targeting chromosomes other than 21, X and Y = 10 The results are displayed in Figure 20. Shown is the relationship between the coefficient of variation (CV) on the x-axis and the power to discriminate the assay populations using a simple t-test (y-axis). The data indicates that in 99% of all cases, one can discriminate the two population (euploid vs. aneuploid) on a significance level of 0.001 provided a CV of 5% or less. Based on this simulation, the method represents a powerful noninvasive diagnostic method for the prenatal detection of fetal aneuploidy that is sex-independent and will work in all ethnicities (i.e., no allelic bias).

Example 3 - Additional Differentially-Methylated Targets

Differentially-methylated targets not located on chromosome 21

Additional differentially-methylated targets were selected for further analysis based upon previous microarray analysis. See Example 1 for a description of the microarray analysis. During the microarray screen, differentially methylated regions (DM s) were defined between placenta tissue and PBMC. Regions were selected for EpiTYPER confirmation based upon being hypermethylated in placenta relative to PBMC. After directionality of the change was selected for, regions were chosen based upon statistical significance with regions designed beginning with the most significant and working downward in terms of significance. These studies were performed in eight paired samples of PBMC and placenta. Additional non-chromosome 21 targets are provided in Table IB, along with a representative genomic sequence from each target in Table 4B.

Differentially-methylated targets located on chromosome 21

The microarray screen uncovered only a subset of DMRs located on chromosome 21. The coverage of chromosome 21 by the microarray, however, was insufficient. Therefore a further analysis was completed to examine all 356 CpG islands on chromosome 21 using the standard settings of the UCSC genome browser. As shown in Table 1C below, some of these targets overlapped with those already examined in Table 1A. More specifically, CpG sites located on chromosome 21 including ~1000bp upstream and downstream of each CpG was investigated using Sequenom's EpiTYPER ® technology. See Example 1, "Validation using Sequenom 9 EpiTYPER™" for a description of Sequenom's EpiTYPER ® technology. These studies were performed in eight paired samples of PBMC and placenta. In addition, since DMRs may also be located outside of defined CpG islands, data mining was performed on publicly available microarray data to identify potential candidate regions with the following characteristics: hypermethylated in placenta relative to maternal blood, not located in a defined CpG island, contained greater than 4 CpG dinucleotides, and contained a recognition sequence for methylation sensitive restriction enzymes. Regions that met these criteria were then examined using Sequenom's EpiTYPER ® technology on eight paired PBMC and placenta samples. Additional chromosome 21 targets are provided in Table 1C, along with a representative genomic sequence from each target in Ta ble 4C. Tables IB and 1C provide a description of the different targets, including their location and whether they were analyzed during the different phases of analysis, namely microarray analysis, EpiTYPER 8 analysis and EpiTYPER 73 analysis. A "YES" indicates it was analyzed and a "NO" indicates it was not analyzed. The definition of each column in Table IB and 1C is listed below.

• Region Name: Each region is named by the gene(s) residing within the area defined or nearby.

Regions where no gene name is listed but rather only contain a locus have no refseq genes in near proximity.

• Gene Region: For those regions contained either in close proximity to or within a gene, the gene region further explains the relationship of this region to the nearby gene.

• Chrom: The chromosome on which the DMR is located using the hgl8 build of the UCSC genome browser.

• Start: The starting position of the DM R as designated by the hgl8 build of the UCSC genome browser.

• End: The ending position of the DM R as designated by the hgl8 build of the UCSC genome

browser.

• Microarray Analysis: Describes whether this region was also/initially determined to be

differentially methylated by microarray analysis. The methylated fraction of ten paired placenta and PBMC samples was isolated using the MBD-Fc protein. The two tissue fractions were then labeled with either Alexa Fluor 555-aha-dCTP (PBMC) or Alexa Fluor 647-aha-dCTP (placental) using the BioPrime Total Genomic Labeling System™ and hybridized to Agilent ® CpG Island microarrays. Many regions examined in these studies were not contained on the initial microarray.

• EpiTYPER 8 Samples: Describes whether this region was analyzed and determined to be

differentially methylated in eight paired samples of placenta and peripheral blood mononuclear cells (PBMC) using EpiTYPER technology. Regions that were chosen for examination were based on multiple criteria. First, regions were selected based on data from the Microarray Analysis. Secondly, a comprehensive examination of all CpG islands located on chromosome 21 was undertaken. Finally, selected regions on chromosome 21 which had lower CpG frequency than those located in CpG islands were examined.

• EpiTYPER 73 Samples: Describes whether this region was subsequently analyzed using EpiTYPER technology in a sample cohort consisting of 73 paired samples of placenta and PBMC. All regions selected for analysis in this second sample cohort were selected based on the results from the experimentation described in the EpiTYPER 8 column. More specifically, the regions in this additional cohort exhibited a methylation profile similar to that determined in the EpiTYPER 8 Samples analysis. For example, all of the regions listed in Tables 1B-1C exhibit different levels of DNA methylation in a significant portion of the examined CpG dinucleotides within the defined region. Differential DNA methylation of CpG sites was determined using a paired T Test with those sites considered differentially methylated if the p-value (when comparing placental tissue to PBMC) is p<0.05.

• Previously Validated EpiTYPER: Describes whether this region or a portion of this region was validated using EpiTYPER during previous experimentation. (See Examples 1 and 2).

• Relative Methylation Placenta to Maternal: Describes the direction of differential methylation.

Regions labeled as "hypermethylation" are more methylated within the designated region in placenta samples relative to PBMC and "hypomethylation" are more methylated within the designated region in PBMC samples.

TABLE 1A

MEAN MEAN MEAN METHY¬

RELATIVE LOG MATERNAL PLACENTA LATION METHYLATION

GENE NAME CHROM START END CpG ISLAND RATIO METHYMETHYDIFFERENCE

PLACENTA TO MICRO- LATION LATION PLACENTA- MATERNAL ARRAY EPITYPER EPITYPER MATERNAL

chr13: 19773518- chr13 group00016 chr13 19773745 19774050 0.19 0.22 0.32 0.1 HYPERMETHYLATION

19774214

chr13 group00005 chr13 19290394 19290768 :- -0.89 0.94 0.35 -0.59 HYPOMETHYLATION chr13: 19887007-

CRYL1 chr13 19887090 19887336 -0.63 0.74 0.21 -0.53 HYPOMETHYLATION

19887836

chr13:2019361 1 -

IL17D chr13 20193675 20193897 -1.01 0.53 0.13 -0.39 HYPOMETHYLATION

20194438

CENPJ chr13 24404023 24404359 :- 0.57 0.17 0.49 0.32 HYPERMETHYLATION chrl 3:25484287-

ATP8A2 chr13 25484475 25484614 0.81 0.16 0.43 0.27 HYPERMETHYLATION

25484761

chrl 3:27264549-

GSH1 chr13 27265542 27265834 0.57 0.13 0.19 0.05 HYPERMETHYLATION

27266505

chr13:27392001 -

PDX1 chr13 27393789 27393979 0.55 0.06 0.2 0.14 HYPERMETHYLATION

27394099

chrl 3:27400362-

27400744;

PDX1 chr13 27400459 27401 165 0.73 0.12 0.26 0.14 HYPERMETHYLATION chrl 3:27401057-

27401374

chrl 3:34947570-

MAB21 L1 chr13 34947737 34948062 0.66 0.1 1 0.17 0.06 HYPERMETHYLATION

34948159

chrl 3:47790636-

RB1 chr13 47790983 47791646 0.18 0.45 0.48 0.03 HYPERMETHYLATION

47791858

chrl 3:57104527-

PCDH17 chr13 57104856 57106841 0.46 0.15 0.21 0.06 HYPERMETHYLATION

57106931

chrl 3:69579733-

KLHL1 chr13 69579933 69580146 0.79 0.09 0.28 0.2 HYPERMETHYLATION

69580220

chrl 3:78079328-

78079615;

POU4F1 chr13 78079515 78081073 0.66 0.12 0.23 0.11 HYPERMETHYLATION chrl 3:78080860-

78081881

chrl 3:92677246-

GPC6 chr13 92677402 92678666 0.66 0.06 0.19 0.13 HYPERMETHYLATION

92678878

chrl 3:94152190-

SOX21 chr13 94152286 94153047 0.94 0.16 0.4 0.25 HYPERMETHYLATION

94153185

MEAN MEAN MEAN METHY¬

RELATIVE LOG MATERNAL PLACENTA LATION METHYLATION

GENE NAME CHROM START END CpG ISLAND RATIO METHYMETHYDIFFERENCE

PLACENTA TO MICRO- LATION LATION PLACENTA- MATERNAL ARRAY EPITYPER EPITYPER MATERNAL

chrl 3:99439335-

99440189;

ZIC2 chr13 99439660 99440858 0.89 0.13 0.35 0.22 HYPERMETHYLATION chrl 3:99440775-

99441095

chrl 3: 109232467-

IRS2 chr13 109232856 109235065 -0.17 0.73 0.38 -0.35 HYPOMETHYLATION

109238181

chrl 3: 109716325- chr13 group00350 chr13 109716455 109716604 -0.37 0.77 0.41 -0.36 HYPOMETHYLATION

109716726

chr13: 1 11595459- chr13 group00385 chr13 1 11595578 1 1 1595955 0.87 0.06 0.2 0.14 HYPERMETHYLATION

11 1596131

chr13: 1 11755805- chr13 group00390 chr13 1 11756337 1 1 1756593 0.71 0.12 0.34 0.22 HYPERMETHYLATION

11 1756697

chr13: 1 11757885- chr13 group00391 chr13 1 11759856 1 1 1760045 0.86 0.1 1 0.36 0.25 HYPERMETHYLATION

11 1760666

chr13: 1 11806599- 1 11808492;

chr13 group00395 chr13 1 11808255 1 1 1808962 0.96 0.13 0.35 0.22 HYPERMETHYLATION chr13: 1 11808866- 11 1809114

chr13: 1 12032967- chr13 group00399 chr13 1 12033503 1 12033685 0.38 0.26 0.43 0.18 HYPERMETHYLATION

112033734

chr13: 1 12724782- 1 12725121 ;

MCF2L chr13 1 12724910 1 12725742 -0.47 0.91 0.33 -0.58 HYPOMETHYLATION chr13: 1 12725628- 112725837

chr13: 1 12798487-

F7 chr13 1 12799123 1 12799379 -0.05 0.97 0.55 -0.41 HYPOMETHYLATION

112799566

chr13: 1 12855289-

PROZ chr13 1 12855566 1 12855745 0.29 0.15 0.3 0.16 HYPERMETHYLATION

112855866

chrl 8:6919450- chr18 group00039 chr18 6919797 6919981 -0.38 0.88 0.39 -0.49 HYPOMETHYLATION

6920088

chr18: 12244147-

CIDEA chr18 12244327 12244696 0.23 0.14 0.23 0.1 HYPERMETHYLATION

12245089

chr18: 12901024- chr18 group00091 chr18 12901467 12901643 0.16 0.15 0.43 0.29 HYPERMETHYLATION

12902704

chr18: 13126596- chr18 group00094 chr18 13126819 13126986 0.41 0.07 0.34 0.27 HYPERMETHYLATION

13127564

C18orf1 chr18 13377536 13377654 chrl 8:13377385- -0.12 0.95 0.69 -0.26 HYPOMETHYLATION

MEAN MEAN MEAN METHY¬

RELATIVE LOG MATERNAL PLACENTA LATION METHYLATION

GENE NAME CHROM START END CpG ISLAND RATIO METHYMETHYDIFFERENCE

PLACENTA TO MICRO- LATION LATION PLACENTA- MATERNAL ARRAY EPITYPER EPITYPER MATERNAL

13377686

chrl 8:28603688-

KLHL14 chr18 28603978 28605183 0.83 0.07 0.19 0.12 HYPERMETHYLATION

28606300

chr18:41671386-

CD33L3 chr18 41671477 4167301 1 -0.34 0.49 0.44 -0.05 HYPOMETHYLATION

41673101

chrl 8:53170705-

ST8SIA3 chr18 53171265 53171309 1.02 0.09 0.25 0.16 HYPERMETHYLATION

53172603

chrl 8:53254152-

ONECUT2 chr18 53254808 53259810 0.74 0.09 0.23 0.14 HYPERMETHYLATION

53259851

chrl 8:55085813-

RAX chr18 55086286 55086436 0.88 0.1 1 0.26 0.16 HYPERMETHYLATION

55087807

chr18:57151663- chr18 group00277 chr18 57151972 5715231 1 0.58 0.08 0.21 0.13 HYPERMETHYLATION

57152672

chrl 8:58202849-

TNFRSF11A chr18 58203013 58203282 -0.33 0.88 0.28 -0.6 HYPOMETHYLATION

58203367

chrl 8:68684945-

NET01 chr18 68685099 68687060 0.65 0.09 0.22 0.13 HYPERMETHYLATION

68687851

chrl 8:70133732- chr18 group00304 chr18 70133945 70134397 0.12 0.93 0.92 -0.01 NOT CONFIRMED

70134724

chr18:71 128638-

TSHZ1 chr18 71 128742 71 128974 0.23 0.95 0.92 -0.03 NOT CONFIRMED

71 129076

chrl 8:72662797-

ZNF236 chr18 72664454 72664736 -0.62 0.17 0.1 -0.07 HYPOMETHYLATION

72664893

chrl 8:72953137-

MBP chr18 72953150 72953464 0.6 0.44 0.72 0.28 HYPERMETHYLATION

72953402

chrl 8:74170210- chr18 group00342 chr18 74170347 74170489 -0.2 0.78 0.48 -0.3 HYPOMETHYLATION

74170687

chrl 8:75385279-

NFATC1 chr18 75385424 75386008 0.23 0.14 0.84 0.7 HYPERMETHYLATION

75386532

chrl 8:75596009-

CTDP1 chr18 75596358 75596579 0.07 0.97 0.96 -0.01 NOT CONFIRMED

75596899

chr18 group00430 chr18 75653272 75653621 :- 0.52 0.24 0.62 0.39 HYPERMETHYLATION chrl 8:75759900-

KCNG2 chr18 75760343 75760820 0.01 0.84 0.75 -0.09 NOT CONFIRMED

75760988

chr21 :33316998-

OLIG2 chr21 33317673 33321 183 0.66 0.1 1 0.2 0.09 HYPERMETHYLATION

333221 15

MEAN MEAN MEAN METHY¬

RELATIVE LOG MATERNAL PLACENTA LATION METHYLATION

GENE NAME CHROM START END CpG ISLAND RATIO METHYMETHYDIFFERENCE

PLACENTA TO MICRO- LATION LATION PLACENTA- MATERNAL ARRAY EPITYPER EPITYPER MATERNAL

chr21 :33327447-

OLIG2 chr21 33327593 33328334 -0.75 0.77 0.28 -0.49 HYPOMETHYLATION

33328408

chr21 :35180822- 35181342;

RUNX1 chr21 35180938 35185436 -0.68 0.14 0.07 -0.07 HYPOMETHYLATION chr21 :35182320- 35185557

chr21 :36990063-

SIM2 chr21 36994965 36995298 0.83 0.08 0.26 0.18 HYPERMETHYLATION

36995761

chr21 :36998632-

SIM2 chr21 36999025 36999410 0.87 0.06 0.24 0.18 HYPERMETHYLATION

36999555

chr21 :37299807-

DSCR6 chr21 37300407 37300512 0.22 0.04 0.14 0.11 HYPERMETHYLATION

37301307

chr21 :41 135380-

DSCAM chr21 41135559 41 135706 1.03 0.06 0.29 0.23 HYPERMETHYLATION

41 135816

chr21 :43643322- chr21 group00165 chr21 43643421 43643786 1.14 0.16 0.81 0.65 HYPERMETHYLATION

43643874

chr21 :44529856-

AIRE chr21 44529935 44530388 -0.55 0.62 0.27 -0.35 HYPOMETHYLATION

44530472

chr21 :45061 154-

SUM03 chr21 45061293 45061853 -0.41 0.55 0.46 -0.09 HYPOMETHYLATION

45063386

chr21 :45202706-

C21 orf70 chr21 45202815 45202972 -0.46 0.96 0.51 -0.46 HYPOMETHYLATION

45203073

chr21 :45671933-

C21 orf123 chr21 45671984 45672098 -0.63 0.92 0.43 -0.49 HYPOMETHYLATION

45672201

chr21 :45753653-

COL18A1 chr21 45754383 45754487 -0.18 0.97 0.72 -0.25 HYPOMETHYLATION

45754639

chr21 :46911628-

PRMT2 chr21 4691 1967 46912385 1.08 0.04 0.25 0.21 HYPERMETHYLATION

46912534

chr2:45081 148-

SIX2 chr2 45081223 45082129 1.15 0.08 0.36 0.28 HYPERMETHYLATION

45082287

chr2:45084715- 45084986;

SIX2 chr2 45084851 4508571 1 1.21 0.07 0.35 0.28 HYPERMETHYLATION chr2:45085285- 45086054

chr3:138971738-

SOX14 chr3 138971870 138972322 138972096; 1.35 0.08 0.33 0.25 HYPERMETHYLATION chr3:138972281 -

MEAN MEAN MEAN METHY¬

RELATIVE LOG MATERNAL PLACENTA LATION METHYLATION

GENE NAME CHROM START END CpG ISLAND RATIO METHYMETHYDIFFERENCE

PLACENTA TO MICRO- LATION LATION PLACENTA- MATERNAL ARRAY EPITYPER EPITYPER MATERNAL

138973691 chr5:170674208- 170675356;

TLX3 chr5 170674439 170676431 0.91 0.1 1 0.35 0.24 HYPERMETHYLATION chr5:170675783- 170676712

chr6:41621630-

FOXP4 chr6 41623666 41624114 1.1 0.07 0.27 0.2 HYPERMETHYLATION

41624167

chr6:41636244-

FOXP4 chr6 41636384 41636779 1.32 0.04 0.33 0.29 HYPERMETHYLATION

41636878

chr7:12576690- chr7 group00267 chr7 12576755 12577246 0.94 0.08 0.26 0.17 HYPERMETHYLATION

12577359

chr7:24290083-

NPY chr7 24290224 24291508 0.93 0.09 0.3 0.21 HYPERMETHYLATION

24291605

chr7: 155288453-

SHH chr7 155291537 155292091 0.98 0.19 0.52 0.33 HYPERMETHYLATION

155292175

chr8:100029673-

OSR2 chr8 100029764 100030536 1.21 0.08 0.43 0.35 HYPERMETHYLATION

100030614

chr9:4287817-

GLIS3 chr9 4288283 4289645 1.24 0.06 0.24 0.18 HYPERMETHYLATION

4290182

chrl 2:3470227-

PRMT8 chr12 3472714 3473190 0.86 0.07 0.23 0.16 HYPERMETHYLATION

3473269

chr12: 1 136091 12-

TBX3 chr12 1 13609153 1 13609453 1.45 0.09 0.56 0.48 HYPERMETHYLATION

113609535

chr12: 1 18515877- chr12 group00801 chr12 1 18516189 1 18517435 1.1 0.06 0.25 0.19 HYPERMETHYLATION

118517595

chr14:36200932-

PAX9 chr14 36201402 36202386 0.89 0.1 1 0.32 0.21 HYPERMETHYLATION

36202536

chr14:60178707-

SIX1 chr14 60178801 60179346 0.95 0.1 0.33 0.22 HYPERMETHYLATION

60179539

chr15:74419317-

ISL2 chr15 74420013 74421546 1.08 0.08 0.27 0.19 HYPERMETHYLATION

74422570

chrl 7:45396281 -

DLX4 chr17 45397228 45397930 1.25 0.1 0.32 0.22 HYPERMETHYLATION

45398063

chrl 7:75427586-

CBX4 chr17 75428613 75431793 1 0.07 0.27 0.21 HYPERMETHYLATION

75433676

Information in Table 1A based on the March 2006 human reference sequence (NCBI Build 36.1), which was produced by the International Human Genome Sequencing Consortium.

Table IB: Non-Chromosome 21 differentially methylated regions

Previously

Microarray EpiTYPER EpiTYPER Validated Relative Methylation

Region Name Gene Region Chrom Start End Analysis 8 Samples 73 Samples EpiTYPER Placenta to Maternal

TFAP2E Intron chrl 35815000 35816200 YES YES NO NO Hypermethylation

LRRC8D Intron/Exon chrl 90081350 90082250 YES YES NO NO Hypermethylation

TBX15 Promoter chrl 1 19333500 1 19333700 YES YES NO NO Hypermethylation

C1orf51 Upstream chrl 148520900 148521300 YES YES NO NO Hypermethylation chrl : 179553900-179554600 Intergenic chrl 179553900 179554600 YES YES NO NO Hypermethylation

ZFP36L2 Exon chr2 43304900 43305100 YES YES NO NO Hypermethylation

SIX2 Downstream chr2 45081000 45086000 YES YES NO YES Hypermethylation

Table 1C: Chromosome 21 differentially methylated regions

Previously

Microarray EpiTYPER EpiTYPER Validated Relative Methylation

Region Name Gene Region Chrom Start End Analysis 8 Samples 73 Samples EpiTYPER Placenta to Maternal chr21 14056400-14058100 Intergenic chr21 14056400 14058100 NO YES NO NO Hypomethylation chr21 14070250-14070550 Intergenic chr21 14070250 14070550 NO YES NO NO Hypomethylation chr21 141 19800-14120400 Intergenic chr21 141 19800 14120400 NO YES NO NO Hypomethylation chr21 14304800-14306100 Intergenic chr21 14304800 14306100 NO YES NO NO Hypomethylation chr21 15649340-15649450 Intergenic chr21 15649340 15649450 NO YES YES NO Hypermethylation

C21 orf34 Intron chr21 16881500 16883000 NO YES NO NO Hypomethylation

BTG3 Intron chr21 17905300 17905500 NO YES NO NO Hypomethylation

CHODL Promoter chr21 18539000 18539800 NO YES YES NO Hypermethylation

NCAM2 Upstream chr21 21291500 21292100 NO YES NO NO Hypermethylation chr21 :23574000-23574600 Intergenic chr21 23574000 23574600 NO YES NO NO Hypomethylation chr21 :24366920-24367060 Intergenic chr21 24366920 24367060 NO YES NO NO Hypomethylation chr21 :25656000-25656900 Intergenic chr21 25656000 25656900 NO YES NO NO Hypomethylation

MIR155HG Promoter chr21 25855800 25857200 NO YES YES NO Hypermethylation

CYYR1 Intron chr21 26830750 26830950 NO YES NO NO Hypomethylation chr21 :26938800-26939200 Intergenic chr21 26938800 26939200 NO YES NO NO Hypomethylation

GRIK1 Intron chr21 30176500 30176750 NO YES NO NO Hypomethylation chr21 :30741350-30741600 Intergenic chr21 30741350 30741600 NO YES NO NO Hypermethylation

TIAM1 Intron chr21 31426800 31427300 NO YES YES NO Hypermethylation

TIAM1 Intron chr21 31475300 31475450 NO YES NO NO Hypermethylation

TIAM1 Intron chr21 31621050 31621350 NO YES YES NO Hypermethylation

SOD1 Intron chr21 31955000 31955300 NO YES NO NO Hypomethylation

HUNK Intron/Exon chr21 32268700 32269100 NO YES YES NO Hypermethylation chr21 :33272200-33273300 Intergenic chr21 33272200 33273300 NO YES NO NO Hypomethylation

OLIG2 Promoter chr21 33314000 33324000 YES YES NO YES Hypermethylation

OLIG2 Downstream chr21 33328000 33328500 YES YES NO NO Hypomethylation

RUNX1 Intron chr21 35185000 35186000 NO YES NO NO Hypomethylation

RUNX1 Intron chr21 35320300 35320400 NO YES NO NO Hypermethylation

RUNX1 Intron chr21 35321200 35321600 NO YES NO NO Hypermethylation

Previously

Microarray EpiTYPER EpiTYPER Validated Relative Methylation

Region Name Gene Region Chrom Start End Analysis 8 Samples 73 Samples EpiTYPER Placenta to Maternal

RUNX1 Intron/Exon chr21 35340000 35345000 NO YES YES NO Hypermethylation chr21 :35499200-35499700 Intergenic chr21 35499200 35499700 NO YES YES NO Hypermethylation chr21 :35822800-35823500 Intergenic chr21 35822800 35823500 NO YES YES NO Hypermethylation

CBR1 Promoter chr21 36364000 36364500 NO YES NO NO Hypermethylation

DOPEY2 Downstream chr21 36589000 36590500 NO YES NO NO Hypomethylation

SIM2 Promoter chr21 36988000 37005000 YES YES YES YES Hypermethylation

HLCS Intron chr21 37274000 37275500 YES YES YES NO Hypermethylation

DSCR6 Upstream chr21 37300200 37300400 YES YES NO YES Hypermethylation

DSCR3 Intron chr21 37551000 37553000 YES YES YES NO Hypermethylation chr21 :37841 100-37841800 Intergenic chr21 37841 100 37841800 NO YES YES NO Hypermethylation

ERG Intron chr21 38791400 38792000 NO YES YES NO Hypermethylation chr21 :39278700-39279800 Intergenic chr21 39278700 39279800 NO YES YES NO Hypermethylation

C21 orf129 Exon chr21 42006000 42006250 NO YES YES NO Hypermethylation

C2CD2 Intron chr21 42188900 42189500 NO YES YES NO Hypermethylation

UMODL1 Upstream chr21 42355500 42357500 NO YES YES NO Hypermethylation

UMODL1/C21 orf128 Intron chr21 42399200 42399900 NO YES NO NO Hypomethylation

ABCG1 Intron chr21 42528400 42528600 YES YES NO NO Hypomethylation chr21 :42598300-42599600 Intergenic chr21 42598300 42599600 YES YES NO NO Hypomethylation chr21 :42910000-4291 1000 Intergenic chr21 42910000 42911000 NO YES NO NO Hypomethylation

PDE9A Upstream chr21 42945500 42946000 NO YES NO NO Hypomethylation

PDE9A Intron chr21 42961400 42962700 NO YES NO NO Hypomethylation

PDE9A Intron chr21 42977400 42977600 NO YES NO NO Hypermethylation

PDE9A Intron/Exon chr21 42978200 42979800 YES YES NO NO Hypomethylation

PDE9A Intron chr21 43039800 43040200 NO YES YES NO Hypermethylation chr21 :43130800-43131500 Intergenic chr21 43130800 43131500 NO YES NO NO Hypomethylation

U2AF1 Intron chr21 43395500 43395800 NO YES NO NO Hypermethylation

U2AF1 Intron chr21 43398000 43398450 NO YES YES NO Hypermethylation chr21 :43446600-43447600 Intergenic chr21 43446600 43447600 NO YES NO NO Hypomethylation

Previously

Microarray EpiTYPER EpiTYPER Validated Relative Methylation

Region Name Gene Region Chrom Start End Analysis 8 Samples 73 Samples EpiTYPER Placenta to Maternal

CRYAA Intron/Exon chr21 43463000 43466100 NO YES NO NO Hypomethylation chr21 :43545000-43546000 Intergenic chr21 43545000 43546000 YES YES NO NO Hypomethylation chr21 :43606000-43606500 Intergenic chr21 43606000 43606500 NO YES NO NO Hypomethylation chr21 :43643000-43644300 Intergenic chr21 43643000 43644300 YES YES YES YES Hypermethylation

C21 orf125 Upstream chr21 43689100 43689300 NO YES NO NO Hypermethylation

C21 orf125 Downstream chr21 43700700 43701700 NO YES NO NO Hypermethylation

HSF2BP Intron/Exon chr21 43902500 43903800 YES YES NO NO Hypomethylation

AG PAT 3 Intron chr21 44161 100 44161400 NO YES YES NO Hypermethylation chr21 :44446500-44447500 Intergenic chr21 44446500 44447500 NO YES NO NO Hypomethylation

TRPM2 Intron chr21 44614500 44615000 NO YES NO NO Hypomethylation

C21 orf29 Intron chr21 44750400 44751000 NO YES NO NO Hypomethylation

C21 orf29 Intron chr21 44950000 44955000 NO YES YES NO Hypermethylation

ITGB2 Intron/Exon chr21 45145500 45146100 NO YES NO NO Hypomethylation

POFUT2 Downstream chr21 45501000 45503000 NO YES NO NO Hypomethylation chr21 :45571500-45573700 Intergenic chr21 45571500 45573700 NO YES NO NO Hypomethylation chr21 :45609000-45610600 Intergenic chr21 45609000 45610600 NO YES NO NO Hypomethylation

COL18A1 Intron chr21 45670000 45677000 YES YES NO YES Hypomethylation

COL18A1 Intron/Exon chr21 45700500 45702000 NO YES NO NO Hypomethylation

COL18A1 Intron/Exon chr21 45753000 45755000 YES YES NO YES Hypomethylation chr21 :45885000-45887000 Intergenic chr21 45885000 45887000 NO YES NO NO Hypomethylation

PCBP3 Intron chr21 461 11000 461 14000 NO YES NO NO Hypomethylation

PCBP3 Intron/Exon chr21 46142000 46144500 NO YES NO NO Hypomethylation

COL6A1 Intron/Exon chr21 46227000 46233000 NO YES NO NO Hypomethylation

COL6A1 Intron/Exon chr21 46245000 46252000 NO YES NO NO Hypomethylation chr21 :46280500-46283000 Intergenic chr21 46280500 46283000 NO YES NO NO Hypomethylation

COL6A2 Intron chr21 46343500 46344200 NO YES NO NO Hypomethylation

COL6A2 Intron/Exon chr21 46368000 46378000 NO YES NO NO Hypomethylation

C21 orf56 Intron/Exon chr21 46426700 46427500 NO YES NO NO Hypomethylation

GENE

NAME CHROM START END SNPs

chr13

group00016 chr13 19773745 19774050 rs7996310; rs12870878

chr13

group00005 chr13 19290394 19290768 rs1 1304938

CENPJ chr13 24404023 24404359 rs7326661

ATP8A2 chr13 25484475 25484614 rs61947088

PDX1 chr13 27400459 27401 165 rs58173592; rs55836809; rs6194401 1

RB1 chr13 47790983 47791646 rs2804094; rs4151432; rs4151433; rs4151434; rs4151435

rs35287822; rs34642962; rs41292834; rs45500496; rs45571031 ; rs41292836; rs28374395;

PCDH17 chr13 57104856 57106841 rs41292838

KLHL1 chr13 69579933 69580146 rs3751429

POU4F1 chr13 78079515 78081073 rs1 1620410; rs35794447; rs2765065

GPC6 chr13 92677402 92678666 rs35689696; rs1 1839555; rs55695812; rs35259892

SOX21 chr13 94152286 94153047 rs41277652; rs41277654; rs35276096; rs5805873; rs35109406

ZIC2 chr13 99439660 99440858 rs9585309; rs35501321 ; rs9585310; rs7991728; rs136851 1

rs61747993; rs1805097; rs9583424; rs35927012; rs1056077; rs1056078; rs34889228; rs1056080; rs1056081 ; rs12853546; rs4773092; rs35223808; rs35894564; rs3742210;

IRS2 chr13 109232856 109235065 rs34412495; rs61962699; rs45545638; rs61743905

chr13

group00395 chr13 1 11808255 11 1808962 rs930346

MCF2L chr13 1 12724910 112725742 rs356611 10; rs2993304; rs1320519; rs7320418; rs58416100

F7 chr13 1 12799123 112799379 rs2480951 ; rs2476320

CIDEA chr18 12244327 12244696 rs60132277

chr18

group00091 chr18 12901467 12901643 rs34568924; rs8094284; rs8094285

C18orf1 chr18 13377536 13377654 rs9957861

KLHL14 chr18 28603978 28605183 rs61737323; rs61737324; rs12960414

CD33L3 chr18 41671477 4167301 1 rs62095363; rs2919643

rs35685953; rs61735644; rs8084084; rs35937482; rs35427632; rs7232930; rs3786486; rs34286480; rs3786485; rs28655657; rs4940717; rs4940719; rs3786484; rs34040569;

ONECUT2 chr18 53254808 53259810 rs35542747; rs33946478; rs35848049; rs7231349; rs7231354; rs34481218; rs12962172;

GENE

NAME CHROM START END SNPs

rs391 1641

RAX chr18 55086286 55086436 rs58797899; rs45501496

chr18

group00277 chr18 57151972 57152311 rs17062547

TNFRSF11A chr18 58203013 58203282 rs351 14461

rs4433898; rs34497518; rs35135773; rs6566677; rs57425572; rs36026929; rs34666288; rs10627137; rs35943684; rs9964226; rs4892054; rs9964397; rs4606820; rs12966677;

NET01 chr18 68685099 68687060 rs8095606

chr18

group00304 chr18 70133945 70134397 rs8086706; rs8086587; rs8090367; rs999332; rs17806420; rs5881 1 193

TSHZ1 chr18 71128742 71128974 rs61732783; rs3744910; rs1802180

chr18

group00342 chr18 74170347 74170489 rs7226678

NFATC1 chr18 75385424 75386008 rs28446281 ; rs56384153; rs4531815; rs3894049

chr18

group00430 chr18 75653272 75653621 rs34967079; rs35465647

KCNG2 chr18 75760343 75760820 rs3744887; rs3744886

rs2236618; rs1 1908971 ; rs9975039; rs6517135; rs2009130; rs1005573; rs1122807; rs10653491 ; rs10653077; rs35086972; rs28588289; rs7509766; rs622161 14; rs35561747;

OLIG2 chr21 33317673 33321 183 rs7509885; rs1 1547332

rs7276788; rs7275842; rs7275962; rs7276232; rs16990069; rs13051692; rs56231743;

OLIG2 chr21 33327593 33328334 rs35931056

rs2843956; rs55941652; rs56020428; rs56251824; rs13051109; rs13051 1 1 1 ; rs3833348; rs7510136; rs743289; rs5843690; rs33915227; rs11402829; rs2843723; rs8128138;

RUNX1 chr21 35180938 35185436 rs8131386; rs2843957; rs57537540; rs13048584; rs7281361 ; rs2843965; rs2843958

SIM2 chr21 36994965 36995298 rs2252821

SIM2 chr21 36999025 36999410 rs58347144; rs737380

DSCAM chr21 41 135559 41 135706 rs35298822

AIRE chr21 44529935 44530388 rs351 10251 ; rs751032; rs9978641

SUM03 chr21 45061293 45061853 rs9979741 ; rs235337; rs7282882

C21 orf70 chr21 45202815 45202972 rs61 103857; rs9979028; rs881318; rs881317

COL18A1 chr21 45754383 45754487 rs35102708; rs9980939

PRMT2 chr21 4691 1967 46912385 rs35481242; rs61743122; rs8131044; rs2839379

SIX2 chr2 45081223 45082129 rs62130902

SIX2 chr2 45084851 45085711 rs35417092; rs57340219

TABLE 3 C YL1 HYPOMETHYLATION TRUE

IL17D HYPOMETHYLATION TRUE

GSH1 HYPERMETHYLATION TRUE MAB21L1 HYPERMETHYLATION TRUE

TABLE 4A

SEQ

GENE

ID SEQUENCE NAME

NO

chrl3 CAGCAGGCGCGCTCCCGGCGAATCTGCCTGAATCGCCGTGAATGCGGTGGGGTGCAGGGC AGGGGCTGGTTTTCTCAGCCGGTCTTGGCTTTTCTCTTTCTCT

1 group- CTGCTCCACCAGCAGCCCCTCCGCGGGTCCCATGGGCTCCGCGCTCAGAACAGCCCGGAA CCAGGCGCCGCTCGCCGCTCGCTGGGGGCCACCCGCCTCTCCC

00016 GGAACAGCCTCCCGCGGGCCTCTTGGCCTCGCACTGGCGCCCTCACCCACACATCGTCCC TTTATCCGCTCAGACGCTGCAAAGGGCCTTCTGTCTC

GCTTTGGATTTATCCTCA GGCTAAATCCCTCCTGAAACATGAAACTGAAACAAAGCCCTGAACCCCCTCAGGCTGAAA AGACAAACCCCGCCTGAGGCCGG TCCCGCTCCCCACCTGGAGGGACCCAATTCTGGGCGCCTTCTGGCGACGGTCCCTGCTAG GGACGCTGCGCTCTCCGAGTGCGAGTTTTCGCCAAACTGATAA

2 CEN PJ

GC AC GC AGAAC CGCAATCCC C AAAC AAC AC T GAAC C C GGAC CCGCGATCCC C AAAC T GAC AAGGGAC C C GGAAC AGC GAC C C C C AAAC C GAC AC GGGAC T C G GAACCGCTATCTCCAAAGGGCAGC

ATP8A TTTCCACAACAGGGAGCCAGCATTGAGGCGCCCAGATGGCATCTGCTGGAAATCACGGGC CGCTGGTGAAGCACCACGCCTTACCCGACGTGGGGAGGTGATC

3

2 CCCACCTCATCCCACCCCCTTCTGTCTGTCTCCTT

GCTGGACAAGGAGCGCTCACTGTAGCTCTGCTGTGGATTGTGTTGGGGCGAAGAGATGGG TAAGAGGTCAAAGTCGTAGGATTCTGGCGACCGCCTACCAAGG

4 GSH 1

ATTGGGTCCACAGCACAGAGGTCTGATCGCTTCCTTCTCTGCTCTGCCACCTCCAGACAG CAGCTCTAACCAGCTGCCCAGCAGCAAGAGGATGCGCACGGCT

SEQ

GENE

ID SEQUENCE NAME

NO

TCACCAGCACGCAGCTGCTAGAGCTGGAGCGCGAGTTCGCTTCTAATATGTACCTGT CCCGCCTACGTCGCATCGAGATCGCGA

TGCCTGACACTGACCCCAGGCGCAGCCAGGAGGGGCTTTGTGCGGGAGAGGGAGGGG GACCCCAGCTTGCCTGGGGTCCACGGGACTCTCTTCTTCCTAGTTC

5 PDX1

CTTTCTTGC TAAGGC GAAGGTC C GAGGC AGGAC GAGGGC GAAC TGCGCTGCAATCGTCCCCACCTCCAGC GAAAC C C AGT GAC

T C GGC GGAGAGAC C T C GAGGAGAGT AT GGGGAAAGGAAT GAAT GC T GC GGAGC GCCCCTCTGGGCTCCACC CAAGC C T C GGAGGC GGGAC GGTGGGCTCCGTC C GAC CCCTTAGGCAGCT GGAC CGATACCTCCTGGAT C AGAC C C C AC AGGAAGAC TCGCGTGGGGCCCGATATGTGTACTT C AAAC T C T GAGC GGCCACCCTCA CCAACTGGCCAGTGGATGCGAATCGTGGGCCCTGAGGGGCGAGGGCGCTCGGAACTGCAT GCCTGTGCACGGTGCCGGGCTCTCCAGAGTGAGGGGGCCGTAA

6 PDX1 GAGATCTCCAAGGAAGCCGAAAAAAGCAGCCAGTTGGGCTTCGGGAAAGACTTTTCTGCA AAGGAAGTGATCTGGTCCCAGAACTCCAGGGTTGACCCCAGTA

CTGACTTCTCCGGGAGCTGTCAGCTCTCCTCTGTTCTTCGGGCTTGGCGCGCTCCTTTCA TAATGGACAGACACCAGTGGCCTTCAAAAGGTCTGGGGTGGGG AAC GGAGGAAGT GGC C T T GGGT GC AGAGGAAGAGC AGAGC T C C T GC C AAAGC T GAAC GC AGT T AGC C C T AC C C AAGT GC GC GC T GGC T C GGC AT AT GC GC T C C GAGC C GGC AGGAC AGC CCGGCCCTGCTCACCCC GAGGAGAAAT C C AAC AGC GCAGCCTCCTGCACCTCCTTGCCC CAGAGAC

AGATCCCGGTGCATTTAAAGGCCGGCGTGATCTGCACCACGTACCTATCTCGGATTC TCAGTTTCACTTCGCTGGTGTCTGCCACCATCTTTACCACATCCCG

MAB21 TAGCTACATTTGTCTACCGCTT GAGC CACCAGCGTCT GAAAC C T GGAC CGGATTTTGCGCGCC GAGAGGT AGC C GGAGGC GGT AAT GAAT T C C AC C C AGAGGG

7

LI CATGCTCCTCTTGCGCCCGTCGCTCAACTTCAGCACCGCGCAGCCGGGCAGTGAGCCATC GTCCACGAAGTTGAACACCCCCATTTGGTTGAGATAAAGCACC CTTCAAATTCGGT

ACTATGCCTTGAGGGTCAAAACGTCTGGATTTCCTGATCGATGCTGTCGTCGCTGTC CACGGAGCTACTGTCGCCGTCAGAGCGGGAAGGCACGTTCAGGGAG AGAAGCGTGGGCTTGCAGAAAGGGACCTGTTGCTGCCTTACATGGGGGCCGGCAGGGTAG TCTTGGAAATGCCCAAGATTGCTTCCGCGCGCGTCAGTTCAGC GACGTGTCTGCCTGGCACGAGGACCGTTCTACAAACTCGTTCCTGGAAGCCGGGCTCGCT GGAGGCGGAGCTTTGGTTTCCTTCGGGAGCTTGTGGGGAATGG

8 RBI CAGCGTCTAGGCACCCCGGGCAAGGGTCTGTGGCCTTGGTGGCCACTGGCTTCCTCTAGC TGGGTGTTTTCCTGTGGGTCTCGCGCAAGGCACTTTTTTGTGG

GCTGCTTGTGCTGTGTGCGGGGTCAGGCGTCCTCTCTCCTCCCGGCGCTGGGCCCTCTGG GGCAGGTCCCCGTTGGCCTCCTTGCGTGTTTGCCGCAGCTAGT CACCTGGATGGCCTCCTCAGTGCCGTCGTTGCTGCTGGAGTCTGACGCCTCGGGCGCCTG CGCCGCACTTGTGACTTGCTTTCCCCTTCTCAGGGCGCCAGCG TCCTCTTGACCCCGCTTTTATTCTGTGGTGCTTCTGAAG

GCAAGTCGGGTAGCTACCGGGTGCTGGAGAACTCCGCACCGCACCTGCTGGACGTGG ACGCAGACAGCGGGCTCCTCTACACCAAGCAGCGCATCGACCGCGA TCCCTGTGCCGCCACAATGCCAAGTGCCAGCTGTCCCTCGAGGTGTTCGCCAACGACAAG GAGATCTGCATGATCAAGGTAGAGATCCAGGACATCAACGACA CGCGCCCTCCTTCTCCTCGGACCAGATCGAAATGGACATCTCGGAGAACGCTGCTCCGGG CACCCGCTTCCCCCTCACCAGCGCACATGACCCCGACGCCGGC AGAATGGGCTCCGCACCTACCTGCTCACGCGCGACGATCACGGCCTCTTTGGACTGGACG TTAAGTCCCGCGGCGACGGCACCAAGTTCCCAGAACTGGTCAT CAGAAGGCTCTGGACCGCGAGCAACAGAATCACCATACGCTCGTGCTGACTGCCCTGGAC GGTGGCGAGCCTCCACGTTCCGCCACCGTACAGATCAACGTGA

PCDH1

9 GGTGATTGACTCCAACGACAACAGCCCGGTCTTCGAGGCGCCATCCTACTTGGTGGAACT GCCCGAGAACGCTCCGCTGGGTACAGTGGTCATCGATCTGAAC 7

CCACCGACGCCGATGAAGGTCCCAATGGTGAAGTGCTCTACTCTTTCAGCAGCTACGTGC CTGACCGCGTGCGGGAGCTCTTCTCCATCGACCCCAAGACCGG C T AAT C C GT GT GAAGGGC AAT C T GGAC TAT GAGGAAAAC GGGAT GC T GGAGAT T GAC GT GC AGGC C C GAGAC CTGGGGCC T AAC CCTATCCCAGCCCACTGCA AGTCACGGTCAAGCTCATCGACCGCAACGACAATGCGCCGTCCATCGGTTTCGTCTCCGT GCGCCAGGGGGCGCTGAGCGAGGCCGCCCCTCCCGGCACCGTC TCGCCCTGGTGCGGGTCACTGACCGGGACTCTGGCAAGAACGGACAGCTGCAGTGTCGGG TCCTAGGCGGAGGAGGGACGGGCGGCGGCGGGGGCCTGGGCGG CCCGGGGGTTCCGTCCCCTTCAAGCTTGAGGAGAACTACGACAACTTCTACACGGTGGTG ACTGACCGCCCGCTGGACCGCGAGACACAAGACGAGTACAACG

SEQ

GENE

ID SEQUENCE NAME

NO

ACCTCCTCCACCGTGTCCAGGGACAGGGTCACGTTGGCCGTGTAGAGGTACTCGAGC ACCAGGCGCAGCCCGATGGACGAGCAGCCCTGCAGCACCAGGTTGT GATGGCCCGGGGGCTGGTCAGCAGCTTGTCGTCGGGGGAGGAAGAAGGAGTCCCGGGCTC CTCCTGCGGCGGCGGCTGCTGCTGCTGTGACGGCTGCTGCTGC GCGGCTGCTGCTGGTCCTTGGGGGCCCCCAGGCCGTCCTGGCCGCCGACCCCTCCCCCGA GAGGGGGGTGGCTGGAGAAGAGCGATCGGAAGTACTGCGAGCA GAGGCCAGCACGGCCTTGTGGCAATGGAACTGCTGGCCCTGGGCCGTCAGGGTCACGTCG CAAAACAGCTGCTTCCTCCACAGCAGGTTGAGGCCGTGCAGCA GTTGTCGCTGTGGCTGGGGTCGAAGGTGGAGGTCCTGTCCCCGGATCTGGACATGGCGAG CTGACTCGGTGCACCTGGCTTTAAACCCTCCTCCAACCTGGCA ACAGGGGTGGGGGATGGGAGGGAGGGGAGCAGGGTGGTGGAGCGGGTGGGGTGTGGTCGG GGTGGGGAAGGGTGTGGAGGGGAGGGGAGGGCGAAGAACAAGA TCAAGGCTCAGCTTGACTCCCTCCTGGCGCGCTCCGGACCCCGACCCTAGGAGGAAAGTC CGAAGACGCTGGATCCGTGAGCGCCACCAGAAGGGCCCTGTCT GGGTCCCGGCGCCGGTTCTGCGCCCTGCGGCTCCTCTCGCCACCTCCCACACACTTCGTC CCTCACTTTCCTAAAACCAACCACCTCAGCTCGGCTGTTGGCA CAACAGCAGTGGCAGCAGCGACGGCAAAGTGGCGGCTGAGGCCGAGGCACCTCGTGGGCT CGTGTCCATGCCGGGCCAGATGAAGGGAAAGGCCGGGAAGTGG GAGCCGGGGGTGCCCTGAAAGCTCAGAGGCGACCGACGGCGAAGGTTCCAGGTCAACTTG TGCCCGAAGCTTTGCTTTTCGCAGTTGGCCCAGTTTGGGGGAG GGGTAGGAACAGGGGCCCGACCAGCGTGCGGGGTGTGCGAATCTTAGCTCTCCAAAAGCT G

ST8SIA

25 CCTCTGTGTTAGTGCCCTCGGGAATTTGGTTGATGGGGTGTTTG

3

TGATGTCGCACCTGAACGGCCTGCACCACCCGGGCCACACTCAGTCTCACGGGCCGGTGC TGGCACCCAGTCGCGAGCGGCCACCCTCGTCCTCATCGGGCTC CAGGTGGCCACGTCGGGCCAGCTGGAAGAAATCAACACCAAAGAGGTGGCCCAGCGCATC ACAGCGGAGCTGAAGCGCTACAGTATCCCCCAGGCGATCTTTG GCAGAGGGTGCTGTGCCGGTCTCAGGGGACTCTCTCCGACCTGCTCCGGAATCCAAAACC GTGGAGTAAACTCAAATCTGGCAGGGAGACCTTCCGCAGGATG GGAAGTGGCTTCAGGAGCCCGAGTTCCAGCGCATGTCCGCCTTACGCCTGGCAGGTAAGG CCGGGGCTAGCCAGGGGCCAGGCTGCTGGGAAGAGGGCTCCGG TCCGGTGCTTGTGGCCCAAGTCTGCGCGCCGAGTCACTTCTCTTGATTCTTTCCTTCTCT TTCCTATACACGTCCTCTTTCTTCTCGTTTTTATTTCTTCTTC ATTTTCTCTTTCTCTTCCGCTCTTCCCCTACTTTCCCTTCTCCCTTTTCTTTTTCTTTCT TACTCTCTCCTTGTCCCTGAGCTTTCATTGACCGACCCCCCCC ATTTCATTCGCCCTCCCCTCAATGTGCCAACCTTTGCCCTATTTCCGATCTTCCCAGGTA CTGGGAGGCGGGATGGGGGTGTGCGTTTTCCTCTAGGAGCCCT TCTTTCCAAGACCCACAGAAACCAGGACCTGCCCTTATTCAAAACCCCATGCACTTCAAG TCTCTTTTAGACAACACATTTCAATTTTCCGGGCTGACTAGTC C C C T GT GC AGAGGC AGT T GAGAGGC T T T GC T C T GC AGAGGGAAAAGAGC T C T C T AC T C T C C C AC C C AC C AT AT AGGC AAAC T T AT T T GGT C AT T GGC T GAAGG

ON ECU

26 ACAGCCTTGCCCCCGCGGGGAACCGGCGGCCAGGATACAACAGCGCTCCTGGAGCCCATC TCTGGCCTTGGCGTTGGCGCAGGGACTTTCTGACCGGGCTTGA T2

GGGCTCGGGCCAGCTCCAATGTCACTACCTACAGCGAGGGCAGGGTGTAAGGTTGAGAAG GTCACATTCACCGCTTTGGGAGGACGTGGGAGAAGAGACTGAG TGGAAAGCGCTTTGCCTTGCTCACCGGCCGTCCTTGCCCCGGTCCCAGCGTTTGCTGGGA TTTGCCAGGATTTGCCGGGGCTCCGGGAGACCCTGAGCACTCG AGGAAGAGGTGCTGAGAAATTAAAAATTCAGGTTAGTTAATGCATCCCTGCCGCCGGCTG CAGGCTCCGCCTTTGCATTAAGCGGGCGCTGATTGTGCGCGCC GGCGACCGCGGGGAGGACTGGCGGCCCGCGGGAGGGGACGGGTAGAGGCGCGGGTTACAT TGTTCTGGAGCCGGCTCGGCTCTTTGTGCCTCCTCTAGCGGCC AGCTGCGAGGTACAGCCCTCTATTGTTCTAGGAGCACAGAAACCTCCTGTGTGGGCGGCG GGTGCGCGAGCTAGAGGGAAAGATGCAGTAGTTACTGCGACTG CACGCAGTTGCGCGCTTTTGTGCGCACGGACCCCGCGCGGTGTGCGTGGCGACTGCGCTG CCCCTAGGAGCAAGCCACGGGCCCAGAGGGGCAAAATGTCCAG TCCCCCGCTGGGAAGGACACACTATACCCTATGGCAAGCCAGGGTGGGCGACTTCCCATG GATCGGGTGGAGGGGGGTATCTTTCAGGATCGGCGGGCGGTCT GGGGAACAATTCGTGGTGGCGATGATTTGCATAGCGCGGGTCTTGGGATGCGCGCGGTTC CGAGCCAGCCTCGCACAGCTCGCTTCCGGAGCTGCGAGCTCAG TTTCCACCCCCGATCCCCCGGGCTTTCCTCGCACCGCTGAGCCCAGCTTGTGGGGTGCAC TCGACCAACGCCCGACAGGGCTGGGGAATGTGACAGGCAGCAG

SEQ

GENE

ID SEQUENCE NAME

NO

GGCTGGGCATGCGAGGGCCCGGGGACTGCCTGGCCCGGGCCGTCGAGGCTCACTCCG GAGCTTCCACCACCGACAGCTCTCTGAGGCCAAGGGACAGCTTTC

TAGTAAGGCACCGAGGGGTGGCTCCTCTCCCTGCAGCGGCTGTCGCTTACCATCCTG TAGACCGTGACCTCCTCACACAGCGCCAGGACGAGGATCGCGGTGA

chrl3

CCAGCAGGTGACTGCGATCCTGGAGCTGGTCGCAGCAGGCCATCCTGCACGCGGTGGAGG CGCCCCCTGCAGGCCGCAGCGCATCCCCAGCTTCTGGACGCAC

60 group- GTGAGCGGTTATGCAGCAGCACGCTCATATGAGATGCCCCGCAGGGTGCTATGCAGGCCC ACGTCCCCACAAAGCCCATGGCAGGCGCCCGGGTGCCGGAGCA

00005 GCACTTGGCCCCATGGATCTCTGTGCCCAGGGCTCAGCCAGGCATCTGGCCGCTAAAGGT TT

TCTCATCTGAGCGCTGTCTTTCACCAGAGCTCTGTAGGACTGAGGCAGTAGCGCTGGCCC GCCTGCGAGAGCCCGACCGTGGACGATGCGTCGCGCCCTTCCC

61 C YL1 TCGCGGCCTGGGCGGGCCCGCCTGCCCTCGGCTGAGCCCGGTTTCCCTACCCCGGGGCAC CTCCCCTCGCCCGCACCCGGCCCCAGTCCCTCCCAGGCTTGCG

GTAGAGCCTGTCTTTGCCCAGAAGGCCGTCTCCAAGCT

CAGTCCCCGAGGCCCTCCCCGGTGACTCTAACCAGGGATTTCAGCGCGCGGCGCGGG GCTGCCCCCAGGCGTGACCTCACCCGTGCTCTCTCCCTGCAGAATC

62 I L17D CCTACGACCCGGCGAGGTACCCCAGGTACCTGCCTGAAGCCTACTGCCTGTGCCGGGGCT GCCTGACCGGGCTGTTCGGCGAGGAGGACGTGCGCTTCCGCAG

GCCCCTGTCTACAT

AGAGAGACATTTTCCACGGAGGCCGAGTTGTGGCGCTTGGGGTTGTGGGCGAAGGAC GGGGACACGGGGGTGACCGTCGTGGTGGAGGAGAAGGTCTCGGAAC GTGGCGGCGGCGGCCCCCCTGCGGGTCTGCGCGGATGACCTTGGCGCCGCGGTGGGGGTC CGGGGGCTGGCTGGCCTGCAGGAAGGCCTCGACTCCCGACACC GCTCCATGAGGCTCAGCCTCTTCACGCCCGACGTCGGGCTGGCCACGCGGGCAGCTTCTG GCTTCGGGGGGGCCGCGATAGGTTGCGGCGGGGTGGCGGCCAC CCAAAAGCCATCTCGGTGTAGTCACCATTGTCCCCGGTGTCCGAGGACAACGATGAGGCG GCGCCCGGGCCCTGGGCGGTGGCAACGGCCGAGGCGGGGGGCA GCGGTACAGCTCCCCCGGGGCCGGCGGCGGTGGCGGCGGCTGCAGAGACGACGACGGGGA CGCGGACGGACGCGGGGGCAACGGCGGATACGGGGAGGAGGCC CGGGGGACAGGAGGCCGTCCAAGGAGCCCACGGGGTGGCCGCTCGGGGCGCCCGGCTTAG GAGACTTGGGGGAGCTGAAGTCGAGGTTCATGTAGTCGGAGAG GGAGAC CGCTGCCGGCTGTCGCTGCTGGTGCCCGGGGTGCCT GAGC CCAGC GAC GAGGC CGGGCTGCTGGC GGAC AAGAGC GAGGAGGAC GAGGC C GC C GAC G CAGCAGGGGAGGCGCGGGCGGCGACAGGCGGGCCCCGGGCTCGCCAAAGTCGATGTTGAT GTACTCGCCGGGGCTCTTGGGCTCCGGTGGCAGTGGGTACTCG GCATGCTGGGCAGGCTGGGCAGCCCCTCCAGGGACAGGCGCGTGGGCCTCACCGCCCGGC CGCGCTGGCCCAAGAAGCCCTCCGGGCGGCCGCCGCTAGGCCG ACGGGCGAAGGCACTACAGGGTGAGGGGGCTGCGTGGGGCCGGCCCCGAAGGCGCTGGCC GCCTGGCTGGGCCCTGGCGTGGCCTGAGGCTCCAGACGCTCCT

63 I RS2 CTCCAGGATGCGCCCCACGGGGGAGCTCATGAGCACGTACTGGTCGCTGTCCCCGCCACA GGTGTAGGGGGCCTTGTAGGAGCGGGGCAAGGAGCTGTAGCAG

AGCCGGGAACGCCCCTGAGCGGCTCCCCGCCGGGGTGCAGGGCTGCGGAGAAGAAGTCGG GCGGGGTGCCCGTGGTGACCGCGTCGCTGGGGGACACGTTGAG TAGTCCCCGTTGGGCAGCAGCTTGCCATCTGCATGCTCCATGGACAGCTTGGAACCGCAC CACATGCGCATGTACCCACTGTCCTCGGGGGAGCTCTCGGCGG CGAGCTGGCCTTGTAGCCGCCCCCGCTCGCCGGGAATGTCCTGCCCGCCGCAGAGGTGGG TGCTGGCCCCGCAGGCCCCGCAGAAGGCACGGCGGCGGCGGCG CGGCGGCGGCCCTGGGCTGCAAGATCTGCTTGGGGGCGGACACGCTGGCGGGGCTCATGG GCATGTAGTCGTCGCTCCTGCAGCTGCCGCTCCCACTGCCCGC AGGGCCGCGCCGGGCGTCATGGGCATGTAGCCGTCGTCTGCCCCCAGGTTGCTGCTGGAG CTCCTGTGGGAGCCGATCTCGATGTCTCCGTAGTCCTCTGGGT GGGGTGGTAGGCCACCTTGGGAGAGGACGCGGGGCAGGACGGGCAGAGGCGGCCCGCGCT GCCCGAGAAGGTGGCCCGCATCAGGGTGTATTCATCCAGCGAG CAGAGGAGGGCTGGGGCACCGGCCGCTGCCGGGCTGGCGTGGTCAGGGAGTAGGTCCTCT TGCGCAGCCCTCGGTCCAGGTCCTGGGCCGCGTCCCCCGAGAC CGGCGGTAGGAGCGGCCACAGTGGCTCAGGGGCCTGTCCATGGTCATGTACCCGTAGAAC TCACCGCCGCCGCCGCCGTCTCGGGCCGGGGGCGTCTCCGCGA GGACTCGGGCGTGTTGCTTCGGTGGCTGCAGAAGGCGCGCAGGTCGCCTGGGCTGGAGCC GTACTCGTCCAGGGACATGAAGCCGGGGTCGCTGGGGGAGCCC AGGCGGAGGCGCTGCCGCTGGAGGGCCGCTGGCCGGGGCCGTGGTGCAGCGGATGCGGCA GAGGCGGGTGCGGGCCGGGCGGCGGCGGGTAGGAGCCCGAGCC

SEQ

GENE

ID SEQUENCE NAME

NO

TGGCCGCTGCT GGAC GAC AGGGAGC

chrl3

AAC C AAAGAAT GAAGT C AT GCCCCGGCCTGCACCC GGGAAAC T GC AC AC AGC G AAAGAT C GC C AC T GAGAT AAAGAGC T GAAAGC TATTCCCCAATTCAGC

64 group- GTTTCAGCCGTGCGGTCTCACAATGGGCTCACAGACGGCAGCATC

00350

GTTTCCACAATCCACCTCGTAGCTGGGGCGTGCCGCTTGCCTCGGCTTGTCCCGGCAGAA CACTCTTACCTTTAATGGCGACTGAAAAGTTGCCACGAGTTCC GATCATTGTGGTAGGTGCTGCGTGAAGCTGAGACGTGCGTGAGCCACATCCCAGGGGGCT TTGAGCCCCCACCGCGGCGGCGGCTGAGGGGAGGCTTGTCGTA T C GC AC AGGAGGAC AC AGGGC TGCAGTGTTCACTCCAGGGCCTCTTATCATTGGGATCT GAGGAAT T T T C C GAGAGGAAGT GC GAAT T AAC AAT GAT GAAAGG TTGTGAGTGAGTGACAGGCACGTTCTATTGAGCACTGCATGGGGCATTATGTGCCACCAG AGACGGGGGCAGAGGTCAAGAGCCCTCGAGGGCTGGGAGAGTT

65 MCF2L

GGAGGAT AGAAGT C AT C AGAGC AC AAT GAAGC C AGAC CCTGCAGCCGCCTTCCCCTTCGGGGGCTTCCT TAGAAT GCAGCATTGC GGGGAC T GAGC T GT C C C A GTGAAGGGGGGCCGTCACGGTGTGTGGACGCCCCTCGGCTCAGCCCTCTAAGAGACTCGG CAGCCAGGATGGGCTCAAGGCATGAGCCCTCAAAGGAGGTTAG AAGGAGCGAGGGAGAAAAGATATGCTTGTGTGACGTCCTGGCCGAAGTGAGAACAATTGT ATCAGATAATGAGTCATGTCCCATTGAGGGGTGCCGACAAGGA TCGGGAGGAGGCCACGGAGCCCTGTACTGAGGAGACGCCCACAGGGAGCCTCGGGGGCCC AGCGTCCCGGGATCACTGGATGGTAAAGCCGCCCTGCCTGGCG

TCCAGCTGCAGCGAGGGCGGCCAGGCCCCCTTCTCCGACCTGCAGGGGTAGCGCGGC CTCGGCGCCGGAGACCCGCGCGCTGTCTGGGGCTGCGGTGGCGTGG

66 F7 GAGGGCGCGGCCCCCGGACGCCCCGAGGAAGGGGCACCTCACCGCCCCCACCCAGAGCGC CTGGCCGTGCGGGCTGCAGAGGACCCCTCCGGGGCAGAGGCAG

T T C C AC GGAAGAC CCCGGCCCGCTGGGGCTTCCCC GGAGAC T C C AGAG

chrl8

AC T T AC T GC T T C C AAAAGC GC T GGGC AC AGC C T T AT AT GAC T GAC C C C GC C C C C GAGT C C C AGGC C GC C C C AT GC AAC C GC C C AAC C GC C C AAC C GC C AC T C C

67 group- AAGGTCACCAACCACTGCTCCAGGCCACGGGCTGCCTCTCCCCACGGCTCTAGGGCCCTT CCCCTCCACCGCAGGCTGAC

00039

C18orf TGCCACACCCAGGTACCGCCCGCCCGCGCGAGAGCCGGGCAGGTGGGCCGCGGATGCTCC CAGAGGCCGGCCCAGCAGAGCGATGGACTTGGACAGGCTAAGA

68

1 GGAAGTGACCTGAG

TCGCCAGCGCAGCGCTGGTCCATGCAGGTGCCACCCGAGGTGAGCGCGGAGGCAGGCGAC GCGGCAGTGCTGCCCTGCACCTTCACGCACCCGCACCGCCACT CGACGGGCCGCTGACGGCCATCTGGCGCGCGGGCGAGCCCTATGCGGGCCCGCAGGTGTT CCGCTGCGCTGCGGCGCGGGGCAGCGAGCTCTGCCAGACGGCG TGAGCCTGCACGGCCGCTTCCGGCTGCTGGGCAACCCGCGCCGCAACGACCTCTCGCTGC GCGTCGAGCGCCTCGCCCTGGCTGACGACCGCCGCTACTTCTG CGCGTCGAGTTCGCCGGCGACGTCCATGACCGCTACGAGAGCCGCCACGGCGTCCGGCTG CACGTGACAGGCGAGGCGGCGTGGGAGCGGGTCCCCGGCCTCC TTCCCGCCCTCCCGCCTGCCCCGCCCCAAGGGCTACGTGGGTGCCAGGCGCTGTGCTGAG CCAGGAAGGGCAACGAGACCCAGCCCTCTCCTCTACCCCAGGG

69 CD33L3 TCTCACACCTGGGGGTAGTTTAGGACCACCTGGGAGCTTGACACAAATGCAGAATCCAGG TCCCAGGAAGGGCTGAGGTGGGCCCGGGAATAGGCATTGCCGT

ACTCTCGTAGAGTGACTGTCCCCAGTGGCTCTCAGACGAAGAGGCGAGAAAGACAAGTGA ATGGCAATCCTAAATATGCCAAGAGGTGCAATGTGGTGTGTGC AC C AGC C C GGAAAGAC AC T C GC AGC C C C T C T AC C C AGGGGT GC AC AGAC AGC C C AC C AAGT AGT GC C T AGC AC T T T GC C AGAC C C T GAT AT AC AAAGAT GC C T AACCAGGGTCCCGTCCCTAGAGCAGTGGCTCTCCACTCTAGCCCCCACCCTGCTCTGCGA CAATAATGGCCACTTAGCATTTGCTAGGGAGCCGGGACCTAGT C AAGC AC C C AC AAGC AT GAAT T T GC C AAAT C T T T T C AGC AAC C T C T T AAGGC AAC TGCTATCATGATCCTCACTTTACACAT GGAGAAGC AGAAGC AGAGAT G TAGAATCTTTCGCCCAAGGCCACATCTGTATTGGGACGGGGGCAGCCTGGCACCCAAGTG CCCATTCCTCCCTTCTGACCAGCCCCCACCCCTCCGGCTCTGG

SEQ

GENE

ID SEQUENCE NAME

NO

GTCCAAAGGGCTAAGGGGAGGGGTGCCCTTGTGACAGTCACCCGCCTTCTCCCCTGC AGCCGCGCCGCGGATCGTCAACATCTCGGTGCTGCCCAGTCCGGCT ACGCCTTCCGCGCGCTCTGCACTGCCGAAGGGGAGCCGCCGCCCGCCCTCGCCTGGTCCG GCCCGGCCCTGGGCAACAGCTTGGCAGCCGTGCGGAGCCCGCG GAGGGTCACGGCCACCTAGTGACCGCCGAACTGCCCGCACTGACCCATGACGGCCGCTAC ACGTGTACGGCCGCCAACAGCCTGGGCCGCTCCGAGGCCAGCG CTACCTGTTCCGCTTCCATGGCGCCAGCGGGGCCTCGACGGTCGCCCTCCTGCTCGGCGC TCTCGGCTTCAAGGCGCT

ATGAACTTCAAGGGCGACATCATCGTGGTCTACGTCAGCCAGACCTCGCAGGAGGGC GCGGCGGCGGCTGCGGAGCCCATGGGCCGCCCGGTGCAGGAGGAGA

TNF SF

70 CCTGGCGCGCCGAGACTCCTTCGCGGGGAACGGCCCGCGCTTCCCGGACCCGTGCGGCGG CCCCGAGGGGCTGCGGGAGCCGGAGAAGGCCTCGAGGCCGGTG 11A

AGGAGC AAGGC GGGGC C AAGGC T T GAGC GC C C C C C AT GGC T GGGAGC C C GAAGC T C GGAGC

TCAGTGTTATGTGGGGAGCGCTAGATCGTGCACACAGTAGGCGTCAGGAAGTGTTTT CCCCAGTAATTTATTCTCCATGGTACTTTGCTAAAGTCATGAAATA

71 ZNF236 C T C AGAT TTTGTTTTC C AAGGAAGGAGAAAGGC C CAGAAT T T AAGAGC AGGC AGAC AC AC AAC CGGGCACCCC C AGAC CCTGGCCCTTC C AGC AGT C AGGAAT

GAC TTGCCTTC CAAAGC C C C AGC C C GGAGC T T GAGGAAC GGAC TTTCCTGCGCAGGGGGATCGGGGCGCACTCG

chrl8

GTGGAAACACAACCTGCCTTCCATTGTCTGCGCCTCCAAAACACACCCCCCGCGCATCCG TGAAGCTGTGTGTTTCTGTGTTACTACAGGGGCCGGCTGTGGA

72 group- ATCCCACGCTCCAGACCGCGTGCCGGGCAGGCCCAGCC

00342

TCCACACCTCGGGCAGTCACTAGGAAAAGGGTCGCCAACTGAAAGGCCTGCAGGAACCAG GATGATACCTGCGTCAGTCCCGCGGCTGCTGCGAGTGCGCGCT T C C T GC C AGGGGGAC C T C AGAC C C T C C T T T AC AGC AC AC C GAGGGC C C T GC AGAC AC GC GAGC GGGC C T T C AGT T T GC AAAC C C T GAAAGC GGGC GC GGT C C A CAGGACGATCTGGCAGGGCTCTGGGTGAGGAGGCCGCGTCTTTATTTGGGGTCCTCGGGC AGCCACGTTGCAGCTCTGGGGGAAGACTGCTTAAGGAACCCGC CTGAACTGCGCGCTGGTGTCCTCTCCGGCCCTCGCTTCCCCGACCCCGCACAGGCTAACG GGAGACGCGCAGGCCCACCCCACCGGCTGGAGACCCCGGCACG

73 OLIG2

CCCGCATCCGCCAGGATTGAAGCAGCTGGCTTGGACGCGCGCAGTTTTCCTTTGGCGACA TTGCAGCGTCGGTGCGGCCACAATCCGTCCACTGGTTGTGGGA C GGT T GGAGGT C C C C C AAGAAGGAGAC AC GC AGAGC T C T C C AGAAC C GC C T AC AT GC GC AT GGGGC C C AAAC AGC C T C C C AAGGAGC AC C C AGGT C C AT GC AC C GAGC C C AAAAT C AC AGAC C C GC T AC GGGC T T T T GC AC AT C AGC T C C AAAC AC C T GAGT C C AC GT GC AC AGGC T C T C GC AC AGGGGAC T C AC GC AC C T GAGT T GC GC T C AC AGAT C

CTGCCCTCGCGGATCTCCCCCGGCCTCGCCGGCCTCCGCCTGTCCTCCCACCACCCT CTCCGGGCCAGTACCTTGAAAGCGATGGGCAGGGTCTTGTTGCAGC CCAGTGCGTAGGCAGCACGGAGCAGAGGAAGTTGGGGCTGTCGGTGCGCACCAGCTCGCC CGGGTGGTCGGCCAGCACCTCCACCATGCTGCGGTCGCCGCTC TCAGCTTGCCGGCCAGGGCAGCGCCGGCGTCCGGGGCGCCCAGCGGCAACGCCTCGCTCA TCTTGCCTGGGCTCAGCGCGGTGGAAGGCGGCGTGAAGCGGCG C T C GT GC T GGC AT C T AC GGGGAT AC GC AT C AC AAC AAGC C GAT T GAGT T AGGAC C C T GC AAAC AGC T C C T AC C AGAC GGC GAC AGGGGC GC GGAT C T T C AGC A GCAGCTCCCGGGAGACCAACATACACGTTCAGGGGCCTTTATTACTGCGGGGGGTGGGGG GGGGCGGGGGTGGTTAGGGGAGGAGGGAGACTAAGTTACTAAC

74 RU NX1 GTCCAGGAGGGGAAAACGTTCTGGTTCTGCGGATCGGCCTCTGACCCAGGATGGGCTCCT AGCAACCGATTGCTTAGTGCATTAAAAAGTGGAGACTATCTTC

ACGAATCTTGCTTGCAGAGGTTAAGTTCTGTCTTTGGCTGTTAGAAAAGTTCCTGAAGGC AAAATTCTCATACACTTCCTAAAATATTTATGCGAAGAGTAAA CGATCAGCAAACACATTATTTGGAAGTTCCAGTAGTTAATGCCTGTCAGTTTTTTGCAGG TGAGTTTTGTCTAAAGTCCCAACAGAACACAATTATCTCCCGT ACAAGGCCACTTTTATCATGCAAAACTGGCTTCAGTCCCGAAAAGCAAGAGCTGAGACTT CCAAAGGTAGTGCTACTAATGTATGTGCACGTATATATAAATA ATACATATGCTCTACTTCATAAAATATTTACAATACAATCTGTGGAGAATTTAAACACAA CAGAAATCCATTAATGTACGCTGCAGATTTTTTTAAGTAGCCT GAAAATCAGCTTCAGTAGTTGGAGCAGTGCTGAGCTAGAAGTACTTGTCATGTTCTCTGT TCTCTCAATGAATTCTGTCAAAACGCTCAGTGCAGAAAATTCA

SEQ

GENE

ID SEQUENCE NAME

NO

CGTTTCAGAGATCTTCAGCTAATCTTAAAACAACAATCATAAGAAGGCCCAGTCGAT GACACTCAGGGTTCTACAGCTCTCCCACATCTGTGAACTCGGGTTT GGGATGTTGGTTAAGTTTGTGGCTGGTCCTCTGGTTTGTTGGGAGTTGAGCAGCCGCAGA GTCACACACATGCAAACACGCACTCTTCGGAAGGCAGCCACTG CTACATCAGCTGGGTGACTCAGCCCTGACTCGGGCAGCAGCGAGACGATACTCCTCCACC GTCGCCCAGCACCCGCCGGTTAGCTGCTCCGAGGCACGAACAC CACGAGCGCCGCGTAACCGCAGCAGGTGGAGCGGGCCTTGAGGGAGGGCTCCGCGGCGCA GATCGAAACAGATCGGGCGGCTCGGGTTACACACGCACGCACA CCTGCCACGCACACTGCCACGCACACGCAACTTCACGGCTCGCCTCGGACCACAGAGCAC TTTCTCCCCCTGTTGTAAAAGGAAAACAATTGGGGAAAAGTTC C AGC C AGGAAAGAAGT T GAAAAC AT C C AGC C AAGAAGC C AGT T AAT T C AAAAGGAAGAAAGGGGAAAAAC AAAAAAAAAC AAC AAAAAAAGGAAGGT C C AAC G AGGCCAAGGAGAAGCAGCAGAGGTTGACTTCCTTCTGGCGTCCCTAGGAGCCCCGGAAAG AAGTGCCTGGCGGCGCAGGGCCGGGCAGCGTGGTGCCCTGGCT GGTCCGGCCGCGGGGCGCCCGTCCCGCCCGCGCCCGCTGGCTCTATGAATGAGAGTGCCT GGAAATGAACGTGCTTTTACTGTAAGCCCGGCCGGAGGAATTC ATTCCCTCAGCTCGTTTGCATAGGGGCGGCCGGCGGCCAATCACAGGCCTTTCCGGTATC AGCCAGGGCGCGGCTCGCCGCCGCCGGCTCCTGGAATTGGCCC CGCGCCCCCGCCGCCGCGCCGCGCGCTACTGTACGCAGCCCGGGCGGGGAGTCGGAGGCC ACCCCCGCGCCCCGCATCCAAGCCTGCATGCTGGCCCGGGGCC CGCCCGCGTGCGGACCCCTTTCCGCAGCCACACGCAGGCTTGTGCGGCTCCGCGAGTGGC CACGGTCCGGAGACCTGGAAAAAGAAAGCAGGCCCCGCCGGCC GAGGAGGACCCGGCCGGCGCGCCGCACCCGGAGAGGCCCGGCCCCGCGAGCCGCTGCAGG CAGGCGCAGTGGCCGCCACGAGGCTCCCGAACCGGGCTGCAGC CGCGGACGGCCCCAGATCCTGCGCGGCCGCCCAGGGCCAGGCCTCCGCTTCCAGGGCGGG GGTGCGATTTGGCCGCGGGGCCCGGGGGAGCCACTCCGCGCTC TGCACCGTCCGGCTGGCAGCTGCGGCGAAGCGGCGCTGATTCCTTGCATGAGGCCGGACG GCGTCCGCGCGTGCCGTTTGCTCTCAGCGTCTTCCCTTGGGTC GTTTCTGTAATGGGTGTTTTTTACCGCTGCGCCCGGGCCGCGGCTCGATCCCTCCGCGCG TCTCACTTGCTGCGTGCGTCAGCGGCCAGCGAAGAGTTTCCTA T C AGGAAAGAC C C C AAGAAC GC GC GGC T GGAAGGAAAGT T GAAAGC AGC C AC GC GGC T T GC T C C C GGGC C T T GT AGC GC C GGC AC C C GC AGC AGC C GGAC AGC TGCCCGGGCCCCGCGTCTCCCCTCCGGCTCCCCGGAAGCGGCCCCCGCTCCTCTCCCCGC CCCCGTGCGCTCGAGCGGCCCCAGGTGCGGAACCCACCCCGGC TCGCGTGCGGGCGGCCGCTTCCCCCTGCGCCGGTCCCCGCGGTGCTGCGGGCATTTTCGC GGAGCTCGGAGGGCCCCGCCCCCGGTCCGGCGTGCGCTGCCAA TCCGACCCCGCCCGGCGGGGCTCCCTCCCAGCGGAGGCTGCTCCCGTCACCATGAGTCCC TCCACGCCCTCCCTGCCGGGCCCTGCACCTCCCGGGGCCTCTC TCCACCCCGGGGCTGCAACCCAGTCCCCGGATCCCGGCCCCGTTCCACCGCGGGCTGCTT TGTGGTCCCCGCGGAGCCCCTCAATTAAGCTCCCCGGCGCGGG GTCCCTCGCCGACCTCACGGGGCCCCTGACGCCCGCTCCTCCCTCCCCCAGGGCTAGGGT GCTGTGGCCGCTGCCGCGCAGGGACTGTCCCCGGGCGTTGCCG GGGCCCGGACGCAGGAGGGGGCCGGGGTTGACTGGCGTGGAGGCCTTTCCCGGGCGGGCC CGGACTGCGCGGAGCTGTCGGGACGCGCCGCGGGCTCTGGCGG CGCCAGGGGGCAGCAGCCGCCCTCCCTGGACGCCGCGCGCAGTCCCCGGAGCTCCCGGAA CGCCCCCGACGGCGCGGGGCTGTGCGGCCCGCCTCGTGGCCTT GGGTCGCCC GGGAAGAAC T AGC GT T C GAGGAT AAAAGAC AGGAAGC C GC C C C AGAGC C C AC T T GAGC T GGAAC GGC C AAGGC GCGTTTCC GAGGT T C C AAT AT GAGTCGCAGCCGGCCAGGTGGGGACTCTCGGACCAGGCCTCCCCGCTGTGCGGCCCGGTC GGGGTCTCTTCCCGAAGCCCCTGTTCCTGGGGCTTGACTCGGG CGCTCTTGGCTATCTGTGCTTCAGGAGCCCGGGCTTCCGGGGGGCTAAGGCGGGCGGCCC GCGGCCTCAACCCTCTCCGCCTCCGCTCCCCCTGGGCACTGCC GCACCCGAGTTCAGTTTTGTTTTAATGGACCTGGGGTCTCGGAAAGAAAACTTACTACAT TTTTCTTTTAAAATGATTTTTTTAAGCCTAATTCCAGTTGTAA TCCCCCCCTCCCCCCGCCCAAACGTCCACTTTCTAACTCTGTCCCTGAGAAGAGTGCATC GCGCGCGCCCGCCCGCCCGCAGGGGCCGCAGCGCCTTTGCCTG GGGTTCGGACGCGGCCCGCTCTAGAGGCAAGTTCTGGGCAAGGGAAACCTTTTCGCCTGG TCTCCAATGCATTTCCCCGAGATCCCACCCAGGGCTCCTGGGG C AC C C C C AC GT GC AT C C C C C GGAAC C C C C GAGAT GC GGGAGGGAGC AC GAGGGT GT GGC GGC T C C AAAAGT AGGC T T T T GAC T C C AGGGGAAAT AGC AGAC T C GGTGATTTGCCCCTCGGAAAGGTCCAGGGAGGCTCCTCTGGGTCTCGGGCCGCTTGCCTA AAACCCTAAACCCCGCGACGGGGGCTGCGAGTCGGACTCGGGC GCGGTCTCCCAGGAGGGAGTCAAGTTCCTTTATCGAGTAAGGAAAGTTGGTCCCAGCCTT GCATGCACCGAGTTTAGCCGTCAGAGGCAGCGTCGTGGGAGCT C T C AGC TAGGAGTT T C AAC C GAT AAA

SEQ

GENE

ID SEQUENCE NAME

NO

TTCGGAAGTGAGAGTTCTCTGAGTCCCGCACAGAGCGAGTCTCTGTCCCCAGCCCCC AAGGCAGCTGCCCTGGTGGGTGAGTCAGGCCAGGCCCGGAGACTTC CGAGAGCGAGGGAGGGACAGCAGCGCCTCCATCACAGGGAAGTGTCCCTGCGGGAGGCCC TGGCCCTGATTGGGCGCCGGGGCGGAGCGGCCTTTGCTCTTTG

75 AIRE GTGGTCGCGGGGGTATAACAGCGGCGCGCGTGGCTCGCAGACCGGGGAGACGGGCGGGCG CACAGCCGGCGCGGAGGCCCCACAGCCCCGCCGGGACCCGAGG

CAAGCGAGGGGCTGCCAGTGTCCCGGGACCCACCGCGTCCGCCCCAGCCCCGGGTCCCCG CGCCCACCCCATGGCGACGGACGCGGCGCTACGCCGGCTTCTG GGCTGCACCGCACGGAGATCGCGGTGGCCGTGGACAG

ACGCACACTGGGGGTGTGATGGAAAGGGGGACGCGATGGATAGGGGTGGGCGCACAC TGGGGGACGCGACGGGGAGGGGTGAGCACACACTGGGGGTGTGATG AGAGGGCGACGCAATAGGGAGGGGTGGGCGCACACCAGGGACGCGATGATGGGGACGGGT GGGCGCACACCAGGTGGCATGATGGGGAGGAGTGGGTACACAC

SU MO ATGGGGGGCGTGATGGGGAGGCGTGGGCGTACACCGGGGGGCGCGATGGGGAGGGGTGGG CGCACACCGGGGGACGCGATGGAGGCGGTGGGTGCACACGGGG

76

3 GC GAT GGGT GGGAGT AGGT GC AC AC T GAGGGC AC GAT T GGGGAGAC AC GAAGGAGAGGGGT GGGC GC AC AC T GGGGGAC GCGATGGCC GGGAC AC GAT GC GGA

AAGTGGGTGAATACCGGGGTCGCGATGGGCGCCCTGGAAGGACGGCAGTGCTGCTCACAG GGGCCAGGCCCCTCAGAGCGCGCCCCTTGGGGGTAACCCCAGA GCTTGTTCCCGAGCCGACTCCGTGCACTCGACACAGGATC

C21orf CCACAGGGTGGGGTGCGCCCACCTGCCCTGTCCATGTGGCCTTGGGCCTGCGGGGGAGAG GGAATCAGGACCCACAGGGCGAGCCCCCTCCGTAGCCCGCGGC

77

70 C C GAC TGGATCT C AGT GAAC AC CCGTCAGCCCATC CAGAGGC T AGAAGGGGGA

C21orf TTGAGGTCTCTGTGCATGCTTGTGCGTACCCTGGACTTTGCCGTGAGGGGTGGCCAGTGC TCTGGGTGCCTTTGCCAGACAACTGGTCTGCCGGGCCGAGCAT

78

123 CATGCTGGTC

COL18

79 TGACGCGCCCCTCTCCCCGCAGCTCCACCTGGTTGCGCTCAACAGCCCCCTGTCAGGCGG CATGCGGGGCATCCGCGGGGCCGACTTCCAGTGCTTCCAGCAG Al

AACACACTGTCTCGCACTAGGTGCTCGCGGAAGAGCGCGGCGTCGATGCTGCGGCTCAGG TTGATGGGCGATGGCGGCCGCAGATCCAGCTCGCTCAGCGATG CGCCGGTCCCACACCGTTGCGGGACAGTCCCGGGCCACCCTGGGGTCCGCGACCCAACGA CGCAGCCGAGCCCCAGGCGCCTGAACTGGGCGTGGCCAGCTGC CACTCTCCGCCGGGTTGCGGATGAGGCTCTTGCTGATGTCCAAGCTGCCTGCACCAACGT TGCTGGGCCCTGCATAGCAGTTATTGGGTCGCTCCGGCACCTC

80 P T3 CTCTTTCCTGACGGCGCCGGGCACGCCAGACGCATCAGCTTAGCCCAGCAAGCGTGCTCC GTGGGCGGCCTGGGTCTCGCGGCAGCCACCGCGGCCAACGCCA

GGCGAGCGCCCATGTCAGCTCCAGGAGGCGCAGCCAGAAGTGGACACCCCACCAGGCCCA CGAGAAGCGGCCCACGCGGCCTGGGCCCGGGTACAGCCAGAGC CAGCCGCCAGCTGCAAGCCGCTAGCCAGCAGCCCCAGCGCGCCCGCCACAGCCAACAGCC GAGGGCCCGGGCTGGCATCCCAGCCCCGTGGGCCGTCCAGCAG CGGC GAC GGC AC AGGC AGAGC GT GC C CAGAGC C AC

GTCTGCACGAAGCCCGCGGCGGCCTGCAGGGGGCCCAGCGACTCGTCCAGGGAACCG GTGCGCAGGAGCAGCCGGGGGCGCGGCGCGCCGGCCGCCCTTGGGG ACTCTGGGGCCGGGGGCGCAGCTCGATCTGACGCTTGGGCACTGTCCGGGGCCTGGCGGG CGCGGCGCCCTCCTCCAGAGCCACCTCCACACACTCGAACTGC CTGGGGCGGCAGGACTTGGCCCACGGGGCCGCAGCTCTAGGTAGGTGGCCCAGCGGGAGC CACCATCGGGGACCTGGGACTGGCGTGGGACCGCGGCGGGAGA

MGC29

81 GCTGGCCCCGGCGGCAAGGGGCTGATGAAGGCCGGCTCCGTGAACTGTTGTTGCGCCTCG CGATCGTCTGCGCCGGAGCAGCCGAACAGGGGTCCGACGCCGA 506

GATGACTTCCATCTCCCCCGACGGCAGCGTGCGCAGCTGGGGCTGGGGTGGCCGTGGGCC GGAACCTGGGCCTCGCGGGAAACCCGAGCCGGGCCCGTGCCGC GGCGGCTATTCTGGGCGCTGACGGACAGGCGAGGCTGCGCGCCCGCCCCCCGCCCAGGAG CCACCCAGGGCCAATTCGCTGGGCCTTTCGCGTCCGGCCCAAC TCCGGGGGCTCCGGAGAACCTGGAGCCGTGTAGTAGGAGCCTGACGAACCGGAGGAGTCC TGGCGCCGCGCGGGGGCCGTGGGCAGCTGCCTCGGGATCCCAG

SEQ

GENE

ID SEQUENCE NAME

NO

CAGGGCTGGCGGGGCGAGCGCGGTCAGCATGGTGGGGCCGGACGCCGTGCACTATCT CCCTCGCATTCGCCTCCGCTGGTGGCGC

CTGGAGAGAACTATACGGGCTGTGGGAGTCACCGGGCGACTATCACCGGGCCTCCTT TCCACATCCTCCTCCGGGAAGGGACCCCGTTCCGGGCCTCGACCGG GCAGACTGGGCTGACCCACTTTCTTGGGCCCACTGAGTCACCTCGAAACCTCCAGGCCGG TAGCGGGGAGGAGAGGAGGAGCAGGCGGGGGTGCCAAGGTGTG

82 TEAD3 GCTGCGCCCTGGTTAGGGGGCGAGCCCGGCTTGTTTATGAGGAGGAGCGCGGAGGAGGAT CCAGACACACAGGCTTGCGCGCCCAGACTCGCCCGGCCAGCGG

TGGCGGCCTCCGACGTCACCAAACCGGTTGGGTGAGAGGGCAGAGAGCAGGGGGAAGGGC CGCAGTCCCGCCCGCGCCCCCCGGCACGCACCGTACATCTTGC CTCGTCTGACAGGATGATCTTCCG

chrl2 GAGTGCGGAGTGAAGGGGTGCACTGGGCACTCAGCGCGGCCCTTGGGAGGCAGGGCCGCC CCAGCCTGCCCTCCTGTCTGGGAAGGCCGTCCAGAAGCAGGAG

83 group- CCCGGGGAAAACAACTGGCTGGACGGGGCGGCCTTCAGTGTCTCTCCCAGCCTGAGAGTC GCTTCCCACCACCTGGGCACGAACCTGCTCTGCGATCTCCGGC

00022 AGTTCCTGCGCCTCCTGTCGGTAAAATGCAGATCGTGGCGTCTT

TCTTCTTTCCGCCCCTAGGGGGCACAAGCGGGCATGTCCAAGCGCCTAGGAGCCCGTACC GCTGGGGACCTCCCCTTCCGCGAACCCCGAGCGGGTAGACCCA AGCAATCCGAGTGTGGAAACAATGGAGAGGGGGCGTGTTGAGCTGGGGTCTCCATGCCTC GTTGGGGAGAGGGAGGTGAGTTTGTGTCTTCTGGAAGGCGTGG GGCTGTGCCCTCGTGGGGGTAGGAAGTGCTCCCGTGGGGCGGGGTGCGGATCGGAGAGGT GAGTGGGTGCGTCTGTCCAGCGGTCCGCCCGGTGTGGTCGTGC CGGCCCGCGTGGGGATGGGGGTGTCTCTCCCGCTGGGCAACTATACCAGCGCAACCGGGG CGTCGGCGCGGCCCACGCTAGCGGCGCTGCTCCGGCGGCGGGG CTGGGCGTGGCGGTGATGCTGGGCGTGGTGGCCGCGCTGGGCGTGGTGGCCGCGCTGCCG CCCTCACCCGGGCAGCCGTGCTGGAGAAGGATGTCGGCGCACA CTGGCTTCCAGCCTGGCGGGCGTAGAACAGCGCCGTGCGGCCCTGGGCGTCACGGGCCGC CACGTCCGCGCCGTACTAGAGGGCGGAAACGGCCGCGTGACCG GCGTCCCCAGGGCGCCCACACCCGGCGCCGCCTCCCCCACATGGCCAAGCCTACTTCCGG GGTCCCTCTGGGAATTTCGGGCTTTCCCGCGCCAGGCGTTTTC

CENTG

84 GAGATGAAGCCTCAAAGACCCCCTTTCCTCCCCCCAGCTCACGTACCCACAGCAGCAGTT GCGTGATGACGACGTGGGCGAGCTCGGCCGCCAGGTGGAGTGG 1

GAGCGCAGCTGTGGGTCCTCTACGCTGGTGTCGAGCGGCCCGTGTCGCGCATGGGCCAAA AGCAGGAGAACGGTAGCCACGTCCTGGGCCTGCACGGCGGCCC CAGCTGGCGGCCCAGCGGCTCCTCCGAGGTGCTCAGCGGCGCCAGGAACAGTAGCTGCTC GTACTTGGCGCGAATCCACGACTCGCGCTCCTCCCTGCAAGAC AGGGAT C AAC GGAAAAGGC T C T AGGGAC C C C CAGC C AGGAC T T C T GC C C C T AC C C AC GGGAC C GT C T C AGGT T C GC AC AC C C T CAGC AAC C C T C C C C C C GC T C GTTCCCTCACGCTTACCGCGAAGAGTCCCGCGAGGGCTTGGCACGGCCTCGCGTGTCGCT TTCCCACACGCGGTTGGCCGTGTCGTTGCCAATAGCCGTCAGC CCAGGGTCAGCTCCCGTGGCCAGTCGTCCAAGTCCAGCGAGCGAACGCGGGACAGGTGTG TGCCCAGGTTGCGGTGGATGCCAGAACACTCGATGCAGATGAG GCGCCCAGGTTCAAGCTGGCCCACGTGGGGTCTGCGGAAGGAGCGTAGAGGTCGGCTCCC AGCCGGGCAGCACAGGCACCCCGGCATTCACTACACTCCCTAG CCCTCCGCTGCCTCCTGGCACTCACTGGGGGCCCCGCAGTCCACGCAGATTGAATTCCCC TTGGCGTTCCGGATCGCCTGGAT

AGCCAGGTCCAGCCCCCGCGCCTGACACCGGCCGGACGTTCCCGGGGCGCCGCAGCT GCGGCGGGAACTCTGGGATCCGGAGCCATCTGCTCCCACCCGCTCC GAGCCAAACCCCGGGGGCCGCCTCCGCTCCCGGACCCGCCTCCTCTCCCGGGAGTGTGAG CCGAACCAAGAGTCTCCTGCCTATCTCCTCCAGTAGGAAAATA TAATAATAATAGACACCCTGCCCCCGTAAAAAACACTACCTTCCCCGTACCGCCTCCCAA GTCTCCCGGGGTACGGATTGCCTTTGCAGCAGTTCCGCCCCAC

CENTG TGACTCACTCCAGGGTCAGCCCCGGGTGGGTTTCAATGCGGCTCTGGGGAGGGGGTGGGC AGTGGGGGAAGTGAGGCTTCCTATCCGCCCCCTCTCACTTCAC

85

1 T T T AAAT AT T C T GC AC GT T C C AGC C C C C GC GGAC T C GC GT AC C GC C C AAT C C GC C T T C AC C GC AC GAAAAAC AT C AC T AGC C T GC T C T C AGC C C AGGGGAC GA

TAGTCCCTGGCGAGAAGCTGCCTGCAAGGTCACTGTCATGCCACCTGCCCCAAGTGCTCA GGGGAAACTGAGGCTTCCTCATCCCCTTCACCTTCAACGTCGC CTAAACACGGCAAAGCCCCGTTTCCATGCTCCCAGAGTTCAGCTGAGGCTGGAAGTGGGG TCCTGGGCTTCTCTGGGAGCAATTTTCTAGTCACTCTGATCAA GACGTTACTTTCCCAGAAAGCTCTGAGGCTGAGTCCCTCTGAAATCAAGTCCTTTCTCCT GTCGCACAATGTAGCTACTCGCCCCGCTTCAGGACTCCTATTC

Table 4B

SEQ

GENE

ID SEQUENCE NAME

NO

TCTCGGTTGCAATCCCCACCCTCCTCACCCAGCAGGGCAGGAGGCACCCAACTTGGA GGAGAAAGGGGTGGGGGAGGTGAAACAGAGACCGGAGAGTCACGAG GCTGGGCCGCCGAGAGCAGGAGAATATACCGTGTCACACACCTCCATTCTCTCACACACG TTGCAGACACAAATCACTGACGGTTTCCACGTGCTGCGCTCGT

93 Clorf51

AGCGGAGGTGTTCAAAGAGGGGGCAGATGAGTTACTTCCCGAGACGGAACCGGGGGTCCC ACGTCCGCCGCCTTCAGTAGCACAACCAATCTCTGAACACTCA ACCGCGCATCTCTGGCGCATCACCATCCTATTTAAGGCCACGGGCTCCGCCCTTTTCCTC CCCTCCCTTCTTTTCCACTCTTTTTCCA

CTGCCAGAGATGTGTCTGTCTTGCGCCCCGCATGCACTGCCTGCGGGGCTGCGCTGC ACTCCCCGGCGGCGCCACGGGTCTGGCCCCCGCGCTTCTACGTGTT

chrl:17 GGGGGATGCATGGACCTTGGAGATCCGTAGTTGGCCCTAACCTTCTCGGAATCTCCTCTG CACGCGCTGCCTGTTCCTCCTCTGCACGCTCTGTCCGTTCCTT 955390 GCAACTTCTGTGGGAATTGTCCTGGCGTGGGAAACGCCCCCGCGCTCTTTGGCACTTAGG GTGTGAGTGTTGCGCCCCTTGCCGCAGCGCTCAGGGCAGCATC

94 0- CGCTCGAGGATGCAGGGTTCTCACCAAGCAGTGAGGGGGACTCACGCGCCGCCGGGGAGC GGAGCCAGGCTCCGAGAAGGGAGCAGGCTCGAGCCGCTGGGTT

179554 TCGCAAGCCTTGGGGCCTCTGGCCGCCCTTCCATGCCTCCGGGCGCGGGCGGCTCAGCAG GTCCCCGGCTTCGGGAAGTTTTGTGCGCGGATCGCTGGTGGGG 600 GGGCGCGCGGGCCAGTGGCTGAGCTTGCAGCGAAGTTTCCGTGAAGGAAACTGCATGTGC CTTTGGAGGCGACTCGGGACTGCTGTAGGGTGGACTGGGTGTC

ATGGAGTTGCGGGTCAGAGCGAGTAGGGTGGGTCCTTTCCTGGGACAGGACTGGGAATTG GGGCTCGAAGTAGGGG

AGGGGTGTCCTCCAACATCTCTGAACCGCCTTCCCTTCCTCCTCACTGGCGCCCTCT TGCCTCAGTCGTCGGAGATGGAGAGGCGGCTGAAGATTGGCAGGCG

95 ZFP36L2

CGGCCAGGGTCGAGGCTGGGAGACTCAGAGCCGCTGAGGCTGCCGGAGCTCAGGGAGCCG CTTAGGTAGCTGTCGCGGTCCGACAGCGAGTCCGGG

TCTGACTCTCGGGCTGGAGCAGCCGAGACAGCGCTCCCCAGCGGGACTACAGAATCC CGGGTGTCGGCCTGGGGGCCCTGGATTGGCAGTGGTGGAGTCTTCT AGCCTAACAGCTACTAGGAATGACAGAGTTGCAGATGGCTTTGTCGCCCGCGGGGCGGCT CAAGCGTCCTGGGTCCCAGGCCTCTGTCCTACGGCCAGGCCGC GGCTCAACGGGCCGAAGGGAATCGGGCTGACCAGTCCTAAGGTCCCACGCTCCCCTGACC TCAGGGCCCAGAGCCTCGCATTACCCCGAGCAGTGCGTTGGTT CTCTCCCTGGAAAGCCGCCCCCGCCGGGGCAAGTGGGAGTTGCTGCACTGCGGTCTTTGG AGGCCTAGGTCGCCCAGAGTAGGCGGAGCCCTGTATCCCTCCT GAGCCGGCCTGCGGTGAGGTCGGTACCCAGTACTTAGGGAGGGAGGACGCGCTTGGTGCT CAGGGTAGGCTGGGCCGCTGCTAGCTCTTGATTTAGTCTCATG CCGCCTTTGTGCCGGCCTCTCCGATTTGTGGGTCCTTCCAAGAAAGAGTCCTCTAGGGCA GCTAGGGTCGTCTCTTGGGTCTGGCGAGGCGGCAGGCCTTCTT GGACCTATCCCCAGAGGTGTAACGGAGACTTTCTCCACTGCAGGGCGGCCTGGGGCGGGC ATCTGCCAGGCGAGGGAGCTGCCCTGCCGCCGAGATTGTGGGG AACGGCGTGGAAGACACCCCATCGGAGGGCACCCAATCTGCCTCTGCACTCGATTCCATC CTGCAACCCAGGAGAAACCATTTCCGAGTTCCAGCCGCAGAGG ACCCGCGGAGTTGCCAAAAGAGACTCCCGCGAGGTCGCTCGGAACCTTGACCCTGACACC TGGACGCGAGGTCTTTCAGGACCAGTCTCGGCTCGGTAGCCTG TCCCCGACCACCGCGACCAGGAGTTCCTTCTTCCCTTCCTGCTCACCAGCCGGCCGCCGG CAGCGGCTCCAGGAAGGAGCACCAACCCGCGCTGGGGGCGGAG

96 SIX2

TTCAGGCGGCAGGAATGGAGAGGCTGATCCTCCTCTAGCCCCGGCGCATTCACTTAGGTG CGGGAGCCCTGAGGTTCAGCCTGACTTTCCCGACTCCGCCGGG GCTTGGTGGGCTCCTGGGCTTCTGGGCTCACCCTTACACCTGTGTACTAAAGGGCTGCTA CCCTCCCGAGGTGTACGTCCGCCGCCTCGGCGCTCATCGGGGT TTTTTTCACCCTCTCGCGGTGCACGCTTTTTCTCTCACGTCAGCTCACATCTTTCAGTAC ACAGCCACTGGGTCTCCCTGCCCCTCCAGCCTTTCCTAGGCAG TTTGAGGGCCCAGACGACTGAAGTCTTACTGCTAGGATGGGAACACGATGAAAAAGGAAG GGGCCCAGTCAAAAGTCCTCTCCTCTTCGGTTTTTCTTCAACT TCCTTCACAAAAACATTTATTTCTGTCCCAGCGCCCTGGCGGATTTCGGCAGATGGGCCC TAGGGGGTTGTGGAGGCCAAATTCCCAGGATGCTGGTCCTGCC TTTTCATTGGCCAAAACTGTATTTCCTACAACGACTAAAGATAACCAAGAACTGAGTAGA CCCTGTTCTCTCACCAGATCTCCCTGGCTCTGTTTAACTTTTC TGGTGCAATGCGATGGCACCACCAGCTCCCCAGGCAGGCACCACTCCCTCAAGATACCAT TTGGGGTAGGGATTTGAGTCCTGGAGAGGGTCAGCGGGGCGCC GGGTGGGGGTGGGAAGGAGACTGACAGGGACACACCGCGAGCTCCGCATACTCTCCTCTG CCCCCTGTAGCCCGGGGCTTTAATGACCCCAAGCAGATTTCCT TCTCTGGTCTAGCCAGCTGCCCCTAGGGCTGGATTTTATTTCTTCATGGGGTTTCACCCT AAAGGGCCCCCTGGTCATGGGACCTGGTTGGGAACAAATGAAA ATGTCTTGTAGCAAATGCTTTCAGGGGAGCAGAAAAGAAGATTGGGCACTTCCAGTCACT TGGTCACTTTAGGTGGCTGGAACAAAACTGGTGACTTTCACGA

SEQ

GENE

ID SEQUENCE NAME

NO

TGCTACAGGGTGAGGGGGTGAAGGGTGGCAGAGAGGTGACAAGCCACTGGGAATCCT ATTCAGTGGGGATGCCGACAGGGAGTGGCTGTAATCAACTGAGCAA ATCTGTGTGAATGTTATTCACAGGTCAGGACAGCAGCTTGGTCTTCCCAGGTGAGGAACT GAGGACTGGCCTGCATAGATTTGTGCAGTAGGTGAGTAGCTTC AAATTTATTTTCAGAACTTCCATGTAGTACCTGCCTCTCCATTTAAATATTTTTTAAAAT TTTATTTATTTAAATATTTTCTTGGTTAGCTTTCCAAGAGGGA GAAAAGAGGGGAGTTGCAACAAGTAGTGCCCCTATGCTGGGATTCATTTTCCAGAGTAAA GCCTGGGACTGGCACCCTGACCCCTACCGGCAGGTGAAAACTC AGGCAAACTGCTGAGATCCCACCTGGGCTGGCTGAGATAGTGCCTGGGGTGCATCCCTCA GCAGCTGCCACCTGGGCCCTGGGGCCATCTCTTTCTCTGGCAT AAGCAGCCAGGTGTCAAGGCCTTCCCAGCAATCCATGCTGCATGGCTGGGTCTTGTTCTA GCAGGTCGATGGGCAGGGACTGGTAGCTTAGCCAGGGCACCAG GCGTGGCTGTGGGTTTGTGTGCTTCTGTGGAGAAGCATGATGTGTATGTGTGTGTGTGGG CACAGGCATGAGGAAGGGTTCATTTGTGCAGGTATCTCCCATG ATATCAGTGTGGGAGAGTGCCTGAGGATGTGTTTGTGTGTCTGAAAATGGGCGGAGGGTC TGTTGTGCTAATGTGTGCAGGGGTGAACATGTGTGTGACAGTC GTGTGTTTCCCTGAGTGGTGGCTGCGTGAGAGGGTGAGGGGATTTGGTGTTGTCTACCAT GCCCGGCACATAGCAGGCTCTTAATAATCTTGAATTTAATTAA GTTAAATGTGTATGTTCCCATCCTTGTGGAAGTTGGTATAGAGCCTGTTTTCCTGTGATT GTGAGACTGGAAAATGGGGGACGGGCAGGGGCGAGACAGGATA AGAGGCTACTGTTTTCTTCCTCCCTAGAAGTAAGTACATAGAAGAGTGGGCTCTGGCACC TCACGGGACATCACCAAGTCCTGTGTGGCTGGCTAGGCTGTCC AAGGTGGCTTCAGGCATCACTTGAATCTTTTGAGACCTTCAGGCAGTAGCCTGCCATTCA CCCTGTCAGTCAGCAGAAGTTGGGCCCACACAGGCCATAGAAA ACAGAGCAGTTCCCGGGAGGACCTGAGCTGTCCCTGAGAGCAGAGCTTCCAGGAGAGGCC GCAGGAACTGCCTTGACCGGAATTCCTCTTGGGGTGCAAAGGT GAGGGACACATGGTGCGACCCCAGGCAGAGGACTGCAGCCACTCCGTGCAGTCCCAGCCT CTGGGGTAGCCCCTTGACCTCCAGGCCTGCACAGATCCAAGGC GAGGTCCAGGCTCCAGCGCCAAATTAGCTGGCCTAGCAGCCTGCAGCCGCTCTAATCTCA ACTAGGAAGGAATCCTTGCGCTTAGAAAGTCCAAGCGAAAGGG ATTCTGATTTTATCCCGGTTTTACCAGAAAATGCTGAAAGGAAAAGCCCCGAGAGGACAC AGTGCTCTAGGAACTCGGGGCGCCACGAGCGCCTCATCCCCTC CTTCCGCCCGGCCGCGGTGCCCTGGTCGCTGAGGGACGCGGTCAGTACCTACCGCCACTG CGACCCGAGAAGGGAAAGCCTCAACTTCTTCCTCTCGGAGTCC GCCCACTACGGATCTGCCTGGACTGGTTCAGATGCGTCGTTTAAAGGGGGGGGCTGGCAC TCCAGAGAGGAGGGGGCGCTGCAGGTTAATTGATAGCCACGGA GCACCTAGGCGCCCCATGCGCGGAGCCGGAGCCGCCAGCTCAGTCTGACCCCTGTCTTTT CTCTCCTCTTCCCTCTCCCACCCCTCACTCCGGGAAAGCGAGG CCGAGGTAGGGGCAGATAGATCACCAGACAGGCGGAGAAGGACAGGAGTACAGATGGAGG GACCAGGACACAGAATGCAAAAGACTGGCAGGTGAGAAGAAGG AGAAACAGAGGGAGAGAGAAAGGGAGAAACAGAGCAGAGGCGGCCGCCGGCCCGGCCGCC CTGAGTCCGATTTCCCTCCTTCCCTGACCCTTCAGTTTCACTG AAATCCACAGAAGCAGGTTTGCGAGCTCGAATACCTTTGCTCCACTGCCACACGCAGCAC CGGGACTGGGCGTCTGGAGCTTAAGTCTGGGGGTCTGAGCCTG GACCGGCAAATCCGCGCAGCGCATCGCGCCCAGTCTCGGAGACTGCAACCACCGCCAAGG AGTACGCGCGGCAGGAAACTTCTGCGGCCCAATTTCTTCCCCA CTTTGGCATCTCCGAAGGCACGTACCCGCCCTCGGCACAAGCTCTCTCGTCTTCCACTTC GACCTCGAGGTGGAGAAAGAGGCTGGCAAGGGCTGTGCGCGTC CTGGTGTGGGGAGGGCAGCAGGCTGCCCCTCCCCGCTTCTGCAGCGAGTTTTCCCAGCCA GGAAAAGGGAGGGAGCTGTTTCAGGAATTTCAGTGCCTTCACC AGCGACTGACACAAGTCGTGTGTATAGGAAGGCGTCTGGCTGTTTCGGGACTCACCAGAG AGCATCGCCAACCAGAACGGCCCACCCGGGGTGTCGAGTCTTG TAGGGAAATCAGACACAGCTGCACTCCCGGCCCGCGGGCCTTGTGGCATATAACCATTTA TATATTTATGATTTCTAATTTTATTATAAAATAAAAGCAGAAA ATTTCCCGAAGAACATTCACATGAGGGCATTACGGGGAGACGGCAAGTCGGCGGCTCGGG GGGCGCGCTCAGCCGGGAGCGCTGTAGTCACAGTCCCGGGAGG AGAGCGCG

chr2:13 TGGAACAAGTGTCAGAGAGTAAGCAAACGACTTTCTGAGCTGTGACTCTGCTCCTCGACT GCCCACGTGCTCTCCGCTGTCTGCACTCCTGCCTCACCTGGGC 723850 GACTCGGACTCTCCACCTCCTTTGCTGCTTCCGGCATGAGCTACCCAGGAGCCTAAGGCG CTCCTTCCCGCAACTCCGGTCCCCGCGCCCCGGGACTGCAAAT

97

0- CTTTAAACAGAGGCCCCAGAGCTAGGGGTTTTCCCAGGCTCTGGTGGGCGTGGGCTGACA GTCGCTGGGAGCCCCGCAACAGGGGGGATGTCCAGGCAGGTAT

137240 CACCCAGCTCCCGGCGTTTCCCGGAGTCACCACAATGTTTCCCTTTCTCTCTCCCCCACG TATGCTGCTAGGGGTACTCCCCAGATAGGATTTTCTTTGTCTT

SEQ

GENE

ID SEQUENCE NAME

NO

GGTGGAGGAGGGCGTTCCCGCGTCCTCCTCTTCAATCCAGAGCAGCTCAACGACGTG GCTCCCTTTCTATGTATCCCTCAAAGCCTTCGCGT

TAGGCTCTAGTGGACCTAGCAGTGGGAGAGCTACTTGGGCTGGTTTCTTTCCTGACG CTGCAGGGATGGGCATCGGCCTGGAACCAGAAGCGCAGGAGCTGGG

chr3:13

CACGGCAGAGTAATTAAGAAAATAATGAAATTGATGGCGGATGGGGGCGCTAGAAATCCT GGGGCGTCTACTTAAAACCAGAGATTCGCGGTCGGCCCCACGG

897160

ATCCCGGCTCTGTGTGCGCCCAGGTTCCGGGGCTTGGGCGTTGCCGGTTCTCACACTAGG AAGGAGCCTGAAGTCAGAAAAGATGGGGCCTCGTTACTCACTT

103 0- CTAGCCCAGCCCCTGGCCCTGGGTCCCGCAGAGCCGTCATCGCAGGCTCCTGCCCAGCCT CTGGGGTCGGGTGAGCAAGGTGTTCTCTTCGGAAGCGGGAAGG

138972 CTGCGGGTCGGGGACGTCCCTTGGCTGCCACCCCTGATTCTGCATCCTTTTCGCTCGAAT CCCTGCGCTAGGCATCCTCCCCGATCCCCCAAAAGCCCAAGCA 200 TGGGTCTGGGTTGAGGAAGGGAACGGGTGCCCAGGCCGGACAGAGGCTGAAAGGAGGCCT CAAGGTTCCTCTTTGCTACA

GAGGTTGCTGACTCAGGAGCCAGGAGCTGAGAAACTCCTAGGCTAGCAGCCGTTGAGCCT AATTTTATTTTCTGGCTTTCTCCGAAATGTCTCGTTTCCCTCA CTTTCTGGTCCTTTTCGTCTCTCTTATTTTCCCCAAAACGTCTACCTCACTTCGTCTTCC TTTCTCCTCCCCTCCCCCTCTCTTTCCTCTATACTCTCTTCCC TTTAGCCTTGCAGGCCCCTCCTCCCCGGTGTTGGAGAGCTCAAAGACGCGCGAAACTCAA GGATCTGGCCCTGACCAGGGACGGGATTAGGCGGGAAGTGGTG CGGCCTGAAAAGGCTGGGCTCGAACCCGTGCCTTCCTGAAAGGACTCTCCCCGCCACAAG TCACACCCACCCGCAGGCCTGCTGGCCAAAGAAACAAAGGAGT

104 ZIC4 GGGCGTGGATCCAGGAGAAACAGGTTTTCGCTCTCGGATCTCCCTGGGCAAATCAGGGAT CCTGAGCGCTATACCCCGCAGTCGTACGGAGCCTCTGGGAAAG

GGATTTAAGGGTGACTTCCACTTTCAGCTTCGGCTACTTGTTGCCTGCGGTCCAAGCCTT CTCTGCTTCCTCCTACCTCGTCTTAGGCCTCTGTAGAAAGTGC CGCCGCGTTTCCCCTTCCAGGCTCTGAGAGGGCCTGCAGGCCCGTGGCCGCCTCCGACAA GATGCCTTCCAGTGCTAGGGGGGCCACTTTGGCGGGATGGGGG CGGTTGGTTAAAAAAAACTTAAGTTCTGGCTCAGTCGAGTGTGGCAAAAGCCGAGGGTCG GGGGTTGGGGGG

TACTGACCTGGTCTCCGCCTCACCGGCCTCTTGCGGCCGCTGCAGAAGCGCACTTTG CTGAACACCCCGAGGACGTGCCTCTCGCACAGGGAGCGCCCGTCTT GCTGGGGCTGGAGCGGCGCTTGGAGGCCGACACTCGGTCGCTGTTGGACTCCCTCGCCTG CCGCTTCTGCCGGATCAAGGAGCTGGCTATCGCCGCAGCCATA CTGCTCAGCGAGGGCCTCAGGCCCCAGCCTCTACTGCGCCCTCCGGCTTGCGCTCCGCCG GGGCGAGGGCAGGACCTGGGCGGCCAGGGAAAGGGCAGTCGCG GGAGGCAGTGCTAAAATTTGAGGAGGCTGCAGTATCGAAAACCCGGCGCTCACAAGGTTA GTCAAAGTCTGGGCAGTGGCGACAAAATGTGTGAAAATCCAGA GTAAACTTCCCCAACCTCTGGCGGCCGGGGGGCGGGGCGGGGCGGTCCCAGGCCCTCTTG CGAAGTAGACGTTTGCACCCCAAACTTGCACCCCAAGGCGATC GCGTCCAAGGGGCAGTGGGGAGTTTAGTCACACTGCGTTCGGGGTACCAAGTGGAAGGGG AAGAACGATGCCCAAAATAACAAGACGTGCCTCTGTTGGAGAG CGCAAGCGTTGTAAGGTGTCCAAAGTATACCTACACATACATACATAGAAAACCCGTTTA CAAAGCAGAGTCTGGACCCAGGCGGGTAGCGCGCCCCCGGTAG AAATACTAAAAAGTGAATAAAACGTTCCTTTAGAAAACAAGCCACCAACCGCACGAGAGA AGGAGAGGAAGGCAGCAATTTAACTCCCTGCGGCCCGCGGTTC GAAGATTAGGAGGTCCGTCCCAGCAGGGTGAGGTCTACAGAATGCATCGCGCCGGCTGCG GCTTTCCAGGGGCCGGCCACCCGAGTTCTGGAATTCCGAGAGG

105 FGF12

GCGAAGTGGGAGCGGTTACCCGGAGTCTGGGTAGGGGCGCGGGGCGGGGGCAGCTGTTTC CAGCTGCGGTGAGAGCAACTCCCGGCCAGCAGCACTGCAAAGA AGCGGGAGGCGAGGGAGGGGGGAGGGCGCGAGGGAGGGAGGGAGATCCTCGAGGGCCAAG CACCCCTCGGGGAGAAACCAGCGAGAGGCGATCTGCGGGGTCC AAGAGTGGGCGCTCTTTCTCTTTCCGCTTGCTTTCCGGCACGAGACGGGCACAGTTGGTG ATTATTTAGGGAATCCTAAATCTGGAATGACTCAGTAGTTTAA TAAGCCCCCTCAAAAGGCAGCGATGCCGAAGGTGTCCTCTCCAGCTCGGCGCCCACACGC CTTTAACTGGAGCTCCCCGCCATGGTCCACCCGGGGCCGCCGC CCGAGCTGGTCTCCGCACAGGCTCAGAGGGAGCGAGGGAAGGGAGGGAAGGAAGGGGCGC CCTGGCGGGCTCGGGATCAGGTCATCGCCGCGCTGCTGCCCGT CCCCCTAGGCTCGCGCGCCCCGGCAGTCAGCAGCTCACAGGCAGCAGATCAGATGGGGAT TACCCGCCGGACGCAAGGCCGATCACTCAGTCCCGCGCCGCCC TCCCGGCCGAGGAAGGAAGTGACCCGCGCGCTGCGAATACCCGCGCGTCCGCTCGGGTGG GGCGGGGGCTGGCTGCAGGCGATGTTGGCTCGCGGCGGCTGAG CTCCTGGCCGGAGCTGCCCACCATGGTCTGGCGCCAGGGGCGCAGGCGGGGCCCCTAGGC CTCCTGGGGCTACCTCGCGAGGCAGCCGAGGGCGCAACCCGGG GCTTGGGGCCGGAGGCGGAATCAGGGGCCGGGGCCAGGAGGCAGGTGCAGGCGGCTGCCA ACTCGCCCAACTTGCTGCGCGGGTGGCCGCTCAGAGCCGCGGG

SEQ

GENE

ID SEQUENCE NAME

NO

TTGCGGGGCGCCCCCCGCCGCCGCGCCGCCGCCTCCCCAGGCCCGGGAGGGGGCGCT CAGGGTGGAGTCCCATTCATGGGCTGAGGCTCTGGGCGCGCGGAGC GCCGCCGCCCCTCCGGCTGGCTCA

GGGGGACACAGAGAGGAGGGGTTGCGGGCCTGTGAGAATGAAGAGCACAGAGCGGAG AGGGGGAGGAGGAGGGAAAGGAAGGCGTGGCAGTGAGAGAGAAGAG AAGAAGAGAGGAGGAGTGGGGAGGGGAGGGAGAGCAAGACAGCAGCGGGTCTGGATTCCC CTCCGAGCCACATCTGGTCAGGTTCTAAGTAATTAGAAGATTT CCCATTGGTTTACCCAAGGGCTCTCTCTCTGATTAATTTTCGAAAGAGTTGGCCAATTTT AATCATAGCAAACACGATGATCACGGTGATCATGGCCTGAACA CTAAAAGCAGAAAATAAAACCCCCAGAACGGACTATGATCTTGACCTTTGCCCGTGGTCA CCGGCTGGGCCCACACCCAGGGTTCTGAGCTGTTGGGAGCCAA

106 GP5

GCTGGGTGGACAGGGGCTTCCGAGGAGCTGTCCGCAGCGGGGCGGGGAGGCGGGCCCCGG GGGCCCGGGCACTCCGCGTCACCCCCCGGCAGGGCCCAGAGCG CAGGCCGGCGTGCGCCCCAGGGCCTGCGCACCGTGGGGGCTCTTCCCCGCCCACGAGGCC TAGGTGCTGCCGCAGCCACCCCAGGAAGGGCCCCAGGCCACAG CGCAGCGCCAGGAGTTGTGCCCCAACAGGACCTCCGTCAGCCGGGGCAGAGCCCCAAACA CGTCGCCAGGCAGGGTCTCCAGCTGGTTGTGGTCGAGCTGGAC CTCTCCAGGCTGCTGAGATTGCGGAAGAGGGCACGGGGCAGGGCGCGCAGCCTGTTGCGG CGCAGGGACACC

GCCCCGGTGCACCGCGCGTCCAGCCGGCCCAACTCGAGCTAGAAGCCCCAACCACTG CCCAGTGCCTGAGTTGCAGTCTTGGGTCCTTTAGAAACCTGGAGAT TGCGTAAAATTCAGATGCCGGTATTCCCGAACTTCCCCAGGCCTCAGCATATCTCGGCGG CCTGTGGACAGATGGGAGGCTACCAATCGCTCCGGCGTCCGCA CCCGACCCCTGCCGCCAGACCCCGGACGTCTTCCGGATAATAAAGTTCCCGCTCTAATTC ATTTTCCCTAATCTGGACGCCCCTAATCTACAGCTTTTATTGC

107 MSX1

CCCAGTTAAAAGTCGAGGGAATTCGCTGTCCCTCCGCGCTCGGATAATTACCCCTAAATG GCCACGGCAGCCCCTTGTGTTTCCTGGAGATTAGAACCCCGCA TCATCAATGGCAGGGCCGAGTGAGCCGCCAATCACCTCCGCTCACTCCCTGAGAGCCGCT GGCCTGGGCCGCAGGAGGAGAGGCCATAAAGCGACAGGCGCAG AAATGGCCAAGCCCCGACCCCGCTTCAGGC

AGGGTGCCTCTGTTCAAATTAGAAAAAGGCGCCCCCTCAGGGCAGACTCAGCCCAGC TGCCAGGGGACAAGTCCTGGCTAACGGGAGCTGGAGCTGGGTTTCA CTCCAGGTGCCTCCTTGGCGGGGCGCCCCGTGCAGGCTACAGCCTACAGCTGTCAGCGCC GGTCCGGAGCCGGAGCGCGGGAATCACTCGCTGCCTCAGCCCA GCGGGTTCACTGGGTGCCTGCGGCAGCTGCGCAGGTGGAGAGCGCCCAGCCTGGGAGGCA GTAGTACGGGTAATAGTAGGAGGGCTGCAGTGGCAGAAGCGAG GTGGCCGCAGCACTTCGCCGGGCAGGTATTGTCTCTGGTCGTCGCGCACCAGCACCTTTA CGGCCACCTTCTTGGCGGCGGGCGCCGAGGCCAGCAGGTCGGC GCCATCTGCCGGCGCTTTGTCTTGTAGCGACGGTTCTGGAACCAGATTTTCACCTGCGTC TCGGTGAGCTTCAGCGACGCGGCCAGGTCTGCGCGCTCGGGCC GGACAGGTAGCGCTGGTGGTTAAAGCGGCGCTCCAGCTCGAAGACCTGCGCGTGGGAGAA AGCGGCCCGCGAGCGCTTCTTGCGTGGCTTGGGCGCCGCCGGC CCTCCTCCTCCTCCGCGACGCCTGCCGGCCCGCTGCCGCCCCCGCCGCCGGCCCCGCTGC ACAGCGCGGACACGTGTGCACCTCTGGGGCCAACACCGTCGTC TCGGTCCTTGGGCTGCGGTCGCCTGCGGACCCCGGTGGGAACAGAAACAAGAGACTGTCA GCGCCACAGACGAGGTGAGGCCGGGCCTCAACTGCAGGGGTCA

108 NKX3-2 GGGAGTGGGGCGGAAATACACTTTGATCCCACTCAAGCGGAGCGGAGGTCTGGGAGGCCC TGGGCCCGGGAGACCAGTCTTAGACTCTTGCCCCACTGGGTAT

CCATCTAGGCCTCTTCTGGGGAGGGCGGCAGACTCAGCCGCTGTGTCAACGCTGTGTTGT CGAGACCAGCTCCCCACCCTCTCTGGGCCCCAGGCTCCCCTCA TAACTTGGGGCACTCGACCCGAGCATCCGCGAAAGCCCTCCCGGCTCTCAGCGTTGAGCA TTGGGATTCTAGACTGCATTTCCGTCTCTCTGCTTGGGTTCAC CGCCTCTCCACACTTAGTTCACACGCACACACGCGCGCGTCCTCGCAGCACACACTTGTC TGGTGCAGGTAAGGGAAGGTGGAGGCGGATCCTGGGGCCAAAG TATTTAGAATCTTTCACCCTCAGCCGCCTGGGATTGCTGTGAGAGACATGGAAACAGGCT GAGCCGAGGCCTTAGATGAGAGGATGGACTGGAGAGTAAAGAG GAGGGTTGCCCCTGCATCGAGTTTTTGGACCCTGATCCCACACCAGCTTCTCGGTCTCGT ACCCGCCCTTCCGAAGAACTCCAGCAGAAAGGTCCAGCGGTCC CTGTGCTTGAGGCCTACAGAAGCTTGTACCCAACTAGGGCAGGCACCCGGGTCTTCCAGA CCACAGGACAGGACAGGCCACGGCTGAGGAGGCCTCTCTCCTG CTCCAGGATGAACTAAAGACCCAATCCGGGATCTTCGGCCTAGGGCTGCTCTCCCAGACC TGGGGTCTGAGAAAGCCAAACCAGCCCTTTCCCCAAAGCTCTA TTCTGCAGATTCTCAGCTCTGGCCCACTCGGAGGTGTTCTTCACCACCTATCCACCTACT GTGGGGCCCGGCCCTGGGACCTTGAACTGGCAGGTCTCTGGTC

SEQ

GENE

ID SEQUENCE NAME

NO

AGAGCTAGGTCAC GGC ACCTGAGGTCTCTGAACCCCTCAC TTTCCGCTTCCC GATTTTGGGGATTTGGGGACAGACACGGCAGAAAGCACTGGCGACGA CTCAAAAACTCCCGAACGCAAGGGGCAGCGGTTCTCCCAACCCAGTCTAATGCACATTGG CCCAGGATGTCTCAGGCCTCACCCCAGGACGTAGGGCTCTGAG AGCTACTCCGGTCTCTCGCGGGCT

GAGAAGGGATGTGGCGGGGGGCTCCTCCGGCCCTGGACTCCCTGGGTGGACTAGAAA AGGGCAAAGAAGTGGTCACATCTGTGGGCCAGACTGGTGCGCGATC TTGGAGGCGCAGCAGCAAGGCCGCGCCAGGGCTGAGCCCAGACCGCCCACGAGGAGGCCC GCCAGGCCCGGAGCAGCGGCGCGTGCGGGGGCGTGCCGAGCGC GGCTCTAGGGCCCCTGCTTCGCCCCAGCTGGACCCCGCGGGCGGTCGGTGCAGCTCGAGC GTGTGGGCTGCGATGCCCTGCCTGAGACTTCGGGCTAGGGATG

chr4:ll

GGGCGGGAAGTGGGGGTGCGGCGGCAGCTGCAGATTAGATTCCTTTTTTTTTTGGCCGGA GGGACGTGCAAACTTCTAGTGCCCGGGCCAAGAGGGCGACCCC

175200

GAGGTGCGTAGGTGGCCCTCCGGGTTCCCGCTTCTCCTAGTGCCTCTGAAAATACCGTCA GGGTAAAGGGAGACAGGCAGTAAGTCTTACCACCACCGCCCTT

109 0- CCCCATGTCATTGGCCAAAAACTGAACATTAAGATAAAGCAGCTGTTTCAGTCAATGGAA AGCGGTAGGGCGAGGTTGTACCCAAAACCCGGTTTAGACGGCC

111753

ATGAAGTCCTAGGAAAAGCCGCCCCGGGGGCACGTTCAGGTGGAGCGGCTGCACCTCGGG TCGTTCTAAGGGATGGGCTGCGTGGTACCCACGGAATTCATGG

000 TCCAAAAGGTCCTGGTCACCTGTCCAAACATCCATCCCCTGGCGCATGGCGGTTGACAAG ATGGCCCGGCCACCCAGAGGAAGGAGGATCCGGGACGGGGAAC

TCGCGCCGGGAAGCTGTAGCCCAGAGCTGCAGCTCAGCATTCGCAAGAGATTCATCTTTT TTTTCTCTCGTGTTCGGAGAAACAGATAAACAAGACACCGCCT ATCAGATAAGAACGTCTCCTTCGATGTCACGGATTTCAAGAGGTAGCTGGAGAAACTGAC GTCA

CAGGTCAGGCAGAACTTCTGCCCTTCCCGCTACTGGCACCCCAAGCAGGGATGCACT GGGATGCGTGGCAGGGGCGGGATCTCCTGGGAGCGTCTCAGCCCAG AGGGAGTGGGGAAGCAAGAGGGAAGGCTTACCTTCCTCGGTGGCTGGCAGGAGGTGGTCG CTGCTAGCGAGGGGGATGCAAAGGTCGTTGTCCTGGGGGAAAC GTCGCACTCAAGCATGTCGGGCCAGGGGAAGCCGAAGGCGGACATGACCGGGGCGCAGCG GTCCTTCACCTGCACGCAGAGCGAGTGGCATGGCTGGATGGTC CGTCTAGGTCATCGAGGCAGACGGGGGCGAAGAGCGAGCACAGGAACTTCTTGGTGTCCG GGTGGCACTGCTTCATGACCAGCGGGATCCAAGCGCCGGCCTG TCCAGCACCTCCTTCATGGTCTCGTGGCCCAGCAGGTTGGGCAGCCGCATGTTCTGGTAT TCGATGCCGTGGCACAGCTGCAGGTTGGCAGGGATGGGCTTGC ATTGCTGCGCTTGTAGGAGAAGTCGGGCTGGCCAAAGAGGAAGAGCCCGCGCGCCGAGCC CAGGCAGCAGTGCGAGGCGAGGAAGAGCAGCAGCAGCGAGCCA

110 SF P2 GGCCCTGCAGCATCGTGGGCGCGCGACCCCGAGGGGGCAGAGGGAGCGGAGCCGGGGAAG GGCGAGGCGGCCGGAGTTCGAGCTTGTCCCGGGCCCGCTCTCT

CGCTGGGTGCGACTCGGGGCCCCGAAAAGCTGGCAGCCGGCGGCTGGGGCGCGGAGAAGC GGGACACCGGGAGGACAGCGCGGGCGAGGCGCTGCAAGCCCGC CGCAGCTCCGGGGGGCTCCGACCCGGGGGAGCAGAATGAGCCGTTGCTGGGGCACAGCCA GAGTTTTCTTGGCCTTTTTTATGCAAATCTGGAGGGTGGGGGG GCAAGGGAGGAGCCAATGAAGGGTAATCCGAGGAGGGCTGGTCACTACTTTCTGGGTCTG GTTTTGCGTTGAGAATGCCCCTCACGCGCTTGCTGGAAGGGAA TCTGGCTGCGCCCCCTCCCCTAGATGCCGCCGCTCGCCCGCCCTAGGATTTCTTTAAACA ACAAACAGAGAAGCCTGGCCGCTGCGCCCCCACAGTGAGCGAG AGGGCGCGGGCTGCGGGAGTGGGGGGCACGCAGGGCACCCCGCGAGCGGCCTCGCGACCA GGTACTGGCGGGAACGCGCCTAGCCCCGCGTGCCGCCGGGGCC GGGCTTGTTTTGCCCCAGTCCGAAGTTTCTGCTGGGTTGCCAGGCATGAGTG

chr4:17 TGCGATCATTAAAATCAGTTCCTTCCCTCCTGTCCTGAGGGTAGGGGCGGGCAGATTTTA TTACTTCTCTTTTCCTGATAGCAGAACTGAGGCGGGGTTGTGG 466430 GGAGCGACGGAGGACCACCTCTAACTTCCCTTCACTTCCTGGATTTGAAGCCTCAGGGCC ACCGGCCTCAGTCCTGTTACGGTGGCGGACTCGCGAGGTTTTC

111 0- AGCAGCTCATTCCGGGACGGCGGTGTCTAGTCCAGTCCAGGGTAACTGGGCTCTCTGAGA GTCCGACCTCCATCGGTCTGGGAGCGAGTGGTTCGAGTTCAGA

174664 GCTGGGAACCGTCGCTTCTCCCCGGCCGGGCTCGCTGTTTTCTCCTCCGCTCGCCGTCAT CAAGCCCGGCTATGAGCAGGGCTTTAAATCCTCCCTCCCTCAC 800 CGCAGGTTTACCGAGCAGCCCCGGAGCTCTCAGACATGCTGCGCTGCGGCGGCCAGAGGA GGGGTGGGGGCATTGCCCTCTGCA

chr4:17 GGGCTTGGGCCGCAGGCTTCCCTGGACTTCCGCAGTCCCCCTTCTCCCCATTCCAGAACC TGCCGAGCCCCTGCTGCATCTGGGACCCGCCTTCACCGTTTCC

112

467630 AATCCCAGCGGTTAGCCCCTGCGCCCCCTTTTTGGTCTCCACTTTGCCGTTCGAAAATGC CTAGGTTGGTGGATCGACCCTCCGCGGAGCAAAGACGGATGGC

SEQ

GENE

ID SEQUENCE NAME

NO

0- GGCAGGAGCAGGTTCAGGAGCTGGGCCAAGGTATTCTCTGCTTCCGCCTTTGTGTCCGCC CCCCCGCCCCCTGCTCCCCGCTTCCCGCCAGCATCTCTCCTTT

174676 CTGCTCAGGAGTGTTTGGCCCGGCGGTCCACCCCGGCTTCCCGAGATACGCTAGAGTTGC CCCCACGTCCTGTCCGCCGCGCCCCTACCCACCGGGTTGCCTT 800 GGGGCCCTTCGGTGCTGTGTAGTCGGCGTGGCGCTGTGAGCTAGGCGAACAGGAACCCCC AGGCCCGCCACGTCTACGCTATTA

TTCTGGGGCCTGGATGGGTGCGAGCGGGACCCGGGGGAGTGGGAGTCGCCAGGCTCTGAG CAAGCAAGGGCTGCACCTGCACCTCTGCCGGGCATGAAGAAAG TAAGGAAGGAAGGAGCTCACCCGGGTGGGAGACAGAGCCGGGGCGCGCGAGCTTGGTGTG GGGGCGCCACTCCGGGGCGGAGGGGAGGGGCTACCAGTGACTT TCCGAGTCGGGAGCTAGAAAGAGGCTTCCGGCCAGGTTCCCTTGGAACAGGTGTCGGAGT TGTTGGGAGAGGGGGCTGCAAGAAAGAGGGGTGCAGAAACTGG

113 SO BS2

TCATTAGATGGAGGCTCTGGGCGGAACCGCGAGGACACCCTGGCAGCGCGCTGTGCCTGC GTTAGGCCGGGAGGGGAGAGGCCTCCGGACGGCGAAGTGTCCC AGGGACCCAGACGCCTCGGGAGCGATCCGGGCCGCTGCGAAGCCCTGCCCACCAGGAGTG GATCCCCAGGATTCACCTCCCGGCTGCCTGCTCTGAGCTGAGA GGGGATCTGGTTCTTCACAATACCGTGGATGGCGGGGAAGGGGAGGGAGCCTGGGGTAAA ATCCCATCTTGGTTTCCTCG

TGTCACAGAAACCCCAGCAGCGCAGCCACCGGACTGGGTTCTGGAGGCCGAGCCGCA GTCCGTGCGGCGGCGCTGGGAAGAGAAGGCGCCCCGGCAGCTCCCC GCCACCGGCCCCGAGGAGCGGCTGGCTCCCCCAGCCCAGCGCCGCCGCCGCCCGGTAACT CCAGGCGCAACTGGGCGCAACTGGGGCAGCTGCGACACCGAAT CCTCACATCTGCAACCTGGGTGCTGCGGCCACTGAGAAAATGGAGGCGCAGACCAACGAG CGGTGCCGCGACCGAGAGACCTCGGCTGGCGAAATGGTGGTGC GGGAGCCTGCGAGTGACGCCAGCCGGCGGGGTTGTCAAGGACAACATTCGTTTTGACGCA GCCAATGGCGCCGTCACCAAGAAACCATCGACTCTGAGAAAAA GAGAGGTTCGGCCACCGAGAAACTCCGTACGACAAGTGCTGTGGCAGAAAAACCGCCTAC TCCGCGCCACAGGCAAAACAGCCAATGGAAACCCCAGGTGCTG

chr5:42

GACCGTGACACCGGCACTAGAGGGTCTCGGATGGAGAAAGCGGCGCACGGAGACCAGGAA ACTATGTGTAGCACAACTAGCAGAAAACCGTCTGGTCGGCCAT

986900-

114 CGGGAGAAAGCGCGGATCAGAAACAAGCGACTTCGATGCAGGGAACCGCGCAGCCACTGA AGAAAGTGACCCACGTGGCAGTGGTGCCAGCGAAACACTGCAG

429882

TTGGACGGCAGCTGTGGGGATGCCACAGAGAAACATGCACTGCCACTGAAGTACATCCAG CTCCGCGGAGCTAGTGTTCATATGATCAAGAAACCGCCAGTTG

00 GCTCTGCTAGAAACTTTTAGTCCTCCCTTAACGGCTATCCTACCCACAACAGACAATGCC TTTACCCAGCACCTAGCGGTGCTGAGACCCGCCTGGGCCAGCA

AGAGCGCAGAGCAGTACGGGTACGGAGAAACGCCGGACTCAGTGAAACCAGCCTTGCCTC CAGCGGATTCCCCGGCTTCGCCGGACGCCACAGGCAGAGTGCC CGGGGAAACCTCTGGCTCCCTAAACCGATTAGATTGTGGGAGTGGGGGGGACACTCACAA GTTGTGTGGAAGGGAACCAGCGGCAATGGGACCCGGCGAGCAC TGCCCGCAGCAAATGCCTGCGCTGCTGCAAAAAAAACAACTTTTGGCGCAAAGAATGTTG CGGCCAGAGAGCATCCGCTGTCGCTGACAAAGGAGTAGCAATG CAATGAGAAACCGCCGGCGCCACGGCCGACCGCGGCGGCTCACGCCTATGAT

CAAACGCTGAGAGACAAAAAGACACCAACACCCACCAGGACTGCGTCCTGCCAGCTC TTCACTCCGCTGACCTGACCTTCCACGCCCCTAGTCCTCGAGCGGA TTGACCTGTGGGGGAGTACCGAACCGTCCCCATGAGGCCCTCCAAGCGGCCAGGTGGCCT CCGCCACTCTCTCCACCCCCACCTCCTCCACCCCCCAGCCCAT GGTCCATCTTCGATCTGCAAAACACGCCGGGTCAGCGACGCATCGGTCCCAGGCTTGTGA CCACCTCTTTCTCTGTTACTTGGGGAGCCAGGCCCACCGCTCA GATCACAGTGAGGAGAAAAAAGACACAAACGCCAGGACAGGGCGGCTGGGGAAGGAAACT GCTAGGGACCGCTCATTGTCAGCCTGGCGTGTCCCACGGATCG

chr5:72

AGGACCCGTCGAGGCTTTGCTCTCTGCGACCCGAATACTCCTGGGCCTCTCGACCTCCTC CTCGGACTCAGGCGTCCGCGTCTCCGGTCATCACGGGAGACCA

712000-

115 TTGGTTTACAAATAGTGATGATAAACCTGGGACCGACCTTGGGGCTGTGTAAAAGTCTAC TGACAGATGTAATGGAGGGTTGTTAGCAGTCACAAAGCCTGTC

727141

GACCCGTAGCATTAGTTCAAGAGACTATTTTCGTGTCGCACCAAAATTACTGCGCGTGTA AACCAATTTCCCCGACGGAAGAATAAACAGAGATTCGTTTGAA

00 CGCGAGATGAAAACAGATGGGGTATCGCAAACAGTTCCCCAAAATACAACAGACTTCTGG GCCAATTACACGTGGTTAGCTCTGAATGGCAGAGGAAATAGTT

TCTTTGCTGCTAAATGTCACAAAAGTCACCTAAAGGCACAGAGGAGGCCGCTCTGTTTTT GCGAAACTTGCTAAAATTAATCTGCGCTGGGCCACTTGCAGAA GCAGAACCACCTCCCGCCCCCACCTCGCCTCCAGCCGCCGGGGTTCAGGCGTTTGTGAAA GACAGAACCTTTGGGCTAGGGACCCGGGCACTGGTGCTTCGAA TCCGAATCCGCCGGCCGAGAAAACGACAAGAGAAAGAAAATCCAGCGGGCGCTCTCTCCA GCGCCAGGCCGGTGTAGGAGGGCGCTGGGGCTCGGCCTGCCAC

SEQ

GENE

ID SEQUENCE NAME

NO

CCTACCCGACATTGGGAAGCAGCCCCTGCGCTCCCGCGGCGCCTCAGCCTCCGGTCC CCGCCCCGAGGTGCGCGTTCCTCCTCCCGCATGCCCGTCTCGGGCC CACGGAGCAAGAAGA AGACGATGACGAGGCGCGCCCATCCATCCGGGCCGACGAGGTCAGGCCCGCGCCACAGGC AAAAATTGCGCAAGCCCGGCCGCAGGG TTTCGCGGGCGCCTGGGTCCCAGGTGCGCGGCCGAAATCCTCAGGGAAAATCCCGAGGGG CCAACGGTCTAGGCCACAGGGCTGCTGGGCCCGGGCCTGGCTC GAGCGCATTCGGGCGGGGAGGCCGCACGCCGCACCCGGGCCTCTCCTCCGAGCCCGAGGC AGGCACTGAGCTCCGGGCCAGCCAGGTGCCTCCCGGCTGGTGC AGACCCCGGGCCTGCTGGGAGGCGTGGGCAGGGCAGGGCAGGGCTGAACCCCAGCGACTG AATCTCGAAGGCAGGAGGCCTCGGAGGTCATCGGCCCAGCTCG CTGAAACTGTCCCTGCTCGTGCCAGGGCGCGGGCAGAGGAGAAAGGACAGGGCGGAGCAA GCCCACTGCAGAACTGCGGTCGGTGGCTGCGAAGGGTCCGGGT ACCGCGCTCCCGGACGCCGGAAGCCGCGCTGGCGGGGCCGCGGGGAGGGAGGCTGGGTAC CGGGGCCGTCCGGCCGGAGGAAGCGGCTCCGGCCGCGCTGTCC CGCTTGGGAGCCGCGTGCAGGGTTCAGCCGTGTTTCAGTTGCCCTCTGACCTGACCCCGG GCGCACAAAGGCCTCCCGGGTGCGCCGCCATGGCCCAGTCTTC AGTCGCTGCCAAATTAATGAGCCCACGTCAGGTTGGGTTTACAGCTCGGCCGGGAAGCAG CCGAGTGGAAAATGAGCTCGGGGCCGCTCCAGAGGCTCCCGCA AACTGCAGAGGCTGCCCGCG

chr5:72

TTTCCAAGACAGAAGGAGGGAACTAGGCGCCTTTTTTCCACTCCGCTGACCCCAACGTCT GGGCTGTGCGTTGTAACGCAGTTGGCGGGGCCTTCAGCTTGGG

767550-

116 TGAGGGCGAAGGGGCTCGGGATGGGTGGGAAAGCAAGGACCGGGCAACAGGTGGGGAGGT GGCGGACTTTTGTCTCGGGGAAGGAAATCGGCTGTGCTGAAAG

727678

GCGGAAAGCAGTAGCGCACAGAACTAGTGTCTGCGGGGTCCC

00

CCCTCCTGTGGCTGCTTGGGCAGACGCCTGTGGCCTGTCGGATGCGGCCCACATCGAGAG CCTGCAGGAGAAGTCGCAGTGCGCACTGGAGGAGTACGTGAGG

117 N 2F1 GCCAGTACCCCAACCAGCCCAGCCGTTTTGGCAAACTGCTGCTGCGACTGCCCTCGCTGC GCACCGTGTCCTCCTCCGTCATCGAGCAGCTCTTCTTCGTCCG

TTGGTAGGTAAAACCCCCATCGAAACTCTCATCCGCGATATG

TCCTCCTTTGTGTATGTCAACCCAGAGGATGGACGGATCTTTGCCCAGCGTACCTTT GACTATGAATTGCTGCAGATGCTGCAGATTGTGGTGGGGGTTCGAG CTCCGGCTCTCCCCCATTGCATGCCAACACATCTCTGCATGTGTTTGTCCTAGACGAGAA TGATAATGCCCCAGCTGTGCTGCACCCACGGCCAGACTGGGAA ACTCAGCCCCCCAGCGTCTCCCTCGCTCTGCTCCTCCTGGCTCCTTGGTCACCAAGGTGA CAGCCGTGGATGCTGATGCAGGCCACAATGCGTGGCTCTCCTA TCACTGTTGCCACAGTCCACAGCCCCAGGACTGTTCCTCGTGTCTACACACACTGGTGAG GTGCGCACAGCCCGGGCCTTACTGGAGGATGACTCTGACACCC GCAGGTGGTGGTCCTGGTGAGGGACAATGGTGACCCTTCACTCTCCTCCACAGCCACAGT GCTGCTGGTTCTGGAGGATGAGGACCCTGAGGAAATGCCCAAA CCAGTGACTTCCTCATACACCCTCCTGAGCGTTCAGACCTTACCCTTTACCTCATTGTGG CTCTAGCGACCGTCAGTCTCTTATCCCTAGTCACCTTCACCTT CTGTCAGCGAAGTGCCTTCAGGGAAACGCAGACGGGGACGGGGGTGGAGGGCAGTGCTGC AGGCGCCAGGACTCACCCTCCCCGGACTTCTATAAGCAGTCCA

PCDHG CCCCAACCTGCAGGTGAGCTCGGACGGCACGCTCAAGTACATGGAGGTGACGCTGCGGCC CACAGACTCGCAGAGCCACTGCTACAGGACGTGCTTTTCACCG

118

Al CCTCGGACGGCAGTGACTTCACTTTTCTAAGACCCCTCAGCGTTCAGCAGCCCACAGCTC TGGCGCTGGAGCCTGACGCCATCCGGTCCCGCTCTAATACGCT

CGGGAGCGGAGCCAGGTGAGGGGCTCGGCGCCGCCCCGGGCGACCCCTGGGGGCGGCACT GGAGAAGCCGCCCGTCCTCATAAGGGATTGAACTTGCATCCAC CCTCTCCGGCCGGCTTGGTCGCTGGCTGCGCTCCACCCGATTCTCGGGATCATTGGACCG TTTGCGCGAAACCAGAGTGGCCGATTAAGGGATGGGGCTCCGA CACCGGGGGTGGTGGCGACTGTGGGCGAGGGGAGGTGGGACCGACCCCCACCCCTACACT CAAAAAAGGCCGGGGCCTCCTTCGAGCTTCCGGTGAATTTCGG CGATTTCCGCGGGTGTCGGGGGTCCCGGGAGGAGGCAGTCACAGATCCACCCCTGCAGCC AGCCTCCTAGGCGCCGGCTCCGGCACGCTTCGCCGGTCTGTAG TTTCCTCTTCGATTTCTCCCCAGCTCCCAGCATCTGTGACTTCACTGTTACCCTCCCTAT CCCCGCATCACCCAACCGCACCTGTCTGCGGGACTTAGGTGTG GCGCGGGGCTCATGCGTGTCCTCCCTGCTGGCCACCCCCACGGCCCACACAAGTTGCACG GGCTCGCCACGCCCCGCCAACACGTGCGCGGACGCACGCACGC CTCCTCGCACGTGGGCTTACGCGAATACCAGCTTTCACTGCCACTCGCTCGCGGCCAGAT TCACAGGCCTGTTCCGGTCCACTCGCAGCTCCCCTCTGCCGCT

SEQ

GENE

ID SEQUENCE NAME

NO

CCTCCGCCGGGCTCAGGAGTACTCGTAGCTGATTGTGCGCGCCTGAGGGTCCCAGAT CGCGGCCGCCCAGGACCAGGCGAGGACTCCGGAGCCTCCTCTCACC CTCCCACCTGCGCCCCGGGCTGGGCCGGGTCGCCTGGGGGGCGGCCTGAGCGAGGCGCGG GGCCAGGAGCGCTGGAGCGACTGCCGCTCTAAGTGCCGGGCGG C AGGAC TC ACGATCCTTGGGC C AGAGGT C CGGATGGTCCC GGGAC T C C GT C T C AAGGGT C GGC GAC C C C T C AAC C C AGAAGC C T C GAGC AGGC GGAC AGGC A AGCTGCCCAGTGGCCGAGGCGCGG

ATTTGTCGTTGTGCCATTGCTGCCACTGTTGTTCTTGTCCAGGGAAACACCGGTGGC CAACCCAGATCGGATACAATGGTGCGGCTCTGGACTGAGCCTCCAA CACATTAGCCATGGGCAGCATTGTTGCTGCCGCTGCTGTTATTTTAATTATGATTGTACG TTAACCACCACCTTCCTTCCTCTGCCTCCCTTCAGCTGCAATG TGTATGTTACTTTTTGGTAACTGGATTTCATTAACATTTATGAACTCTCATAAAGTAGTA GAAAAAGCAATTTGTGTGGAAGAATTTTCCACCTCATTAAACA TGTTCTTTTGGGGGTCAAGCTGATATTTTTTTTGTTGTTAGATTTTTTTTATAGGTCCTT TGTCCTTCCCTAAGCCCTGGGGGATGAAAGGAGAGCCGTCCAC

chr6:10

CAGCGAGGGGCTTGTGTGCCCTAGAGGGCGCTGGGCCCCGCGCGCTTTCCTGGCTGTCCC CGCCGGCTTTCCACCCTCCCCAAAGCCCAGGTGCCCACCGTGG

489100-

119 TCGCTGCGGCCTTTCCCCTTCTTGGCCAAATCCGATTACTTCGCAGCCTGCAGATGGCAT CGCCGGCTAAGGGCAGCCTGCGGCAGGTCCCCGAGCCTGAGCA

104902 TCCTCCTATCTGGGGCCTGAGAGGACGCTCTGGGCTTTTTCCCAGGCCCAGGGTGCGCGG CCTGCTAGCGCCTTTCGAGGCACAGTCCCAAGATAGGCTCTTG 00 C C T T C GAC GC C C C C T T GGC AC AAGC GC AC T GGC GC C C T C C GC T C AAC C C AC C T T GC C T T T GGGGC GGGC T T C AAC C C T GGGAAGAC AGGC C T GGGGGAAGC GA

AGGAGAGGCCCGAATAGAGGTTCCGGCTCAATCTTTCCCAGACGGAGGCCTGGTGTTTCC AGCTCAGTTGCATCTTCCAGCCGCGGGCTCCTGGCCCAAACAG ATGTGTTTGCTTTCACACCGGGACGGCAAGCGGAGTCCGCCTCAGTGAGCAGCGAGCTGC GCAGTCCGGACGGGTGTCGCCCCCAGAGACTCGCCAGCCGCCC CAGACACTCGCCAGCCGTCCCCATCTCTAATCCACCGTCCAGGCCCGGGCCCTGGGAAGA

CCGTGTCTCCCTTAAGAACTGGGGCCTCATCTCCACTCCAGCTGCGCGTGCACGTGT GCTCCCGGCAGGACGCGCGCCCAGGAGCGCGCTGGGGGCTGCCCCG CCCTCTCTCCCTCCCCCGCGGGTAAACTCCGGGCATCCATCAGTCTGTTAATTGCACTAA TTAGAGATCGCAGAGGTGTTAATTGGAAAACCCTGGTATTGTG CTGTTTGGGGGAAGAAAACGTCAATAAAAATTAATTGATGAGTTGGCAGGGCGGGCGGTG CGGGTTCGCGGCGAGGCGCAGGGTGTCATGGCAAATGTTACGG TCAGATTAAGCGATTGTTAATTAAAAAGCGACGGTAATTAATACTCGCTACGCCATATGG GCCCGTGAAAAGGCACAAAAGGTTTCTCCGCATGTGGGGTTCC

120 FOXP4 CTTCTCTTTTCTCCTTCCACAAAAGCACCCCAGCCCGTGGGTCCCCCCTTTGGCCCCAAG GTAGGTGGAACTCGTCACTTCCGGCCAGGGAGGGGATGGGGCG

TCTCCGGCGAGTTCCAAGGGCGTCCCTCGTTGCGCACTCGCCCGCCCAGGTTCTTTGAAG AGCCAGGAGCCTCCGGGGAAGTGGGAGCCCCCAGCGGCCCGCA AC T GC C T CAGAGC GGAAGAGGC AGC CGCGGCTTT GAC CCAGCTTCCTTCC GAC GGC AT C T GC AGGAGC CTCTAGGCCT GAC AT AGGC T C C GAGGT GC C C T GGC CCCCCACGGGGAATGCTGAGGGTTGGGCCACTAGGTCCTGCCTAAGTGCAGGACCTGAGC CTCAGACAAATC

chr7:19

GGGATTGCCGGCTTTGAGAAAATATGAAGAAACCGATTTCTCCTTCCACTTTGCCAGTGC ACTTTCCTTCCACTTTCACTGGTGCTGGGGGCGGCGCACTCTT

118400-

121 ACGACATATAAGCGGAAAATTCTGCAAAAGTGGCCCCCGGGGATCCCCGCCCGACCCCTG TCTGTCGCTAATGTGGGCCTGTCTCCGGAAATTCGAGGTTGGG

191187 CTTTGCCTGAATCTGTTGCTATTGCTCCCCTTGCTACCGCTGACACTTGGCACCGCCGCC TCCTAGCAGCGGCCAGACGCGGGGCTGGGGGC

00

chr7:27 GTTGCGAGCGCGGCACAGGTTGCTGGTAGCTTCTGGACTCTGGAGGCTTGGCCTTCCTTC TAAGCCGATGGCGGGGAAAGAACCTCGTTTCCACAGCTTCCCC 258000- ACCCCCGCCGCTTGCCATTTGGGGACGGGAAGCGCGCCCGGGTCGCTTCACGTCCCTCTG GGCCGGAGCCCTTTCCATGGCTGGCTCCTCTGGGGGCCCTTGG

122

272584 CCTGTGAGCAGCGTCTACTTCCCTCAGAGAAGAATCCTTTCCTTCCCCCATCGAAGTGTC CCTTTCTGTATCCTGAAATAACCCCTCCTGGGTGAGGCCAGTT 00 CCCTCTGTCGCCCTCCTCCCGCAGGCGTCCGGGAGCCTCGTGAGGACCCCGTGCAGTTGA GTCCAGGCGACAGGTGCCTCCCCAGGTG

CAGTGCGCCCCTTACCGGAGCACCCATGGCCTCCCGCGTTACCCCAAATTTTGTAGGCAG ACTGTCAGAGTTCGAAGCCAGCTGTGTCCTCTGCGGGCCGTGT

123 TBX20 ACCCTAGGCTATCTGGGCTGCTCGGAGCCTTAGTTTCCCTAGTTGTGAAGAGGGAGGGTG TGACCATGGCCCGGAGCTCTCCGAAAGGCTGTGCGGATTGCTC

SEQ

GENE

ID SEQUENCE NAME

NO

GTGGCGGGATGTGGAGCGCGTCTTCTATGATGCCAGGTGCTGGCCAAGCGCTCGATG CAGGCTGCTCCAGTTAGGTCGATGCGATGGCGGGAAGCACTTTCCT TGCAATGGAGAGACGCCGACACCCCGAGCCCGAAGGCTTGCAAGGCGCGCTCTCGCCACT GGGGTCGGGGATCCGTGGGTTCTCTATCCCGCTTACCCACTCC TCCTTAGCAGCTGTCGTCGGTCCCAGACCTCTACCTTGGAGAGACCAAGGCGGCCCAGAG CCCAGGAGACTACTGCGCGGTACGCCAGGATCCAGAAGTGGAT CTGACTTCTAAAGACCCCTCCCAAGCCAACGCTATCAGGGTCCCTGCAAGCGGTTGACTG TGGCGGAGGCAGAACCAAAACCTTTGCTCTGCCCGCGGCGCTC AGCCTCTCACCCAGGACAGTGCTCTGGGCTCCAGCCGCTGCAGTGGGGTCGGGACACAGA CGCCGAGTTAGAAGCCCCGCCGCTGCAGGTCCCTGCTTGGTCG CGCGGTGACGGTGTCGCTGGCGGCGGCGGGGGCCTTCCTTTGGCTGCCCGGCCATTTAAT CAGAGCTATTAT

TTTAGTATTTAAGGAGAAAAGCCTCATTTTCCAGAATCGAATAAGCGAATTAATCGC ACAATTGTGTAGAATGGAACTCAGTCTGTAAAAAATCAAGACCAAC TACTTTTTAATATTCTAACATCTCCAAGTAGTAGTTACAAGTATTGTACCCATGAAGTCC AGGTAATTAATTTGTTCAATGTCACACTGTTAAAAGTCAGGTG GCTCCAAAGCACAGTCCTAACCAGCATGCTCTACTGCCTCCTCTGAGGCAACAGCCGAAG TGCAGACCACTGGGAATAAATAGCTGCCCGGTCTTCCCCACTC TAAATTCTCCCGACAGACCCCAAAGCCTCTCTGAGAGCCTCTCTGACCGCCCTGCGGCCC ACCCCGAGTTCCCGGCATCCTCTGGGATCCCTCTTCCTGGAGC AAAACCTACGCAGGCTCCTTTCCTCCGAGCTGGTTGCTAGGTGATCTCCGAAGGCTGTCC GAAGTCTCGCGAGGGCGGACCCGTTGCCTGATGACGAGAGTTG

124 AGBL3

GAGTGTGGCTGGGGCTGCGGATCTCCAGCAGTGGCGTTACTTCTAGCGGCTGGATACCGG GTTCTCCGCGAGATCGCGAGATCCCGAGATATTCTCCCCGCAC GAAGCGACGACTGGCCTGGCCAGAGGACTCGCGTGGGAGCGAGGTGCCGGCCCCGACAGG ACGGTGAGGTATGCAGAAGTAAGGCGGGGCGCCCCCTGCGGGA GCGAGCGCGCCCCGGAAAATGAGCGCCTCCCCACACCAAGGTGTCCAGGAGTGAGTGCGG GAAGGAACTCGGCCGCCCGGAGTTGTGGCCTCATCGTGCTTCC GCCAAAAACGCCTTGGTACTGTCGGGACGCGGCTAAGCGTGGACGCGCCCGCATCTGCCC CTCCTCCGCAGTGGTGGAAGACACCCGCGGAGCGCCGGTGGAT AGGGCCGTTTCCTGAGACCAGAGCTGTATCCGCAGCAGGTCAGCACTTCGTGCGCCCTGT GTGC

AGCGGCGCTGTTCCCGGGCTGGGTGCAGCTGCTAAGGACAAGGCCCCTGCTCCGAAG AACGCGGTGGCTCGGGGATACCCTGAAAGGGACGGCCATGGCGCAC

125 XP07 TGGGATGCCCTAGGGTTCGTGGGAGGGCATGCAGGCGCAGCCCCCGCAGGGGTTGGCCTG CCAGAGAAGGCAGGGGAGAGCACTCGGGGCTGCACAAATGGTG

GGCCGGAGGGAAGGTGCAGCCTTGTGTGTGTCTGGATGAGGGCTGGGCATAGGAGCTTGG TATTTGATCCTGAAAGCTCTGCGTTTCCAAAG

GAGTCATACTTGTAGTCACATCCTTTTCCTTTCTCCAACCCACTGGTTAATCATGAA AGGCTCTTCTGATTGGCTGCCTCCTGGCAGTAGTGCCTCAGCGCGA

chr8:41 GGTTCGGGAGCAAATAAATAATTCCCGCTGGGAAGCTGTTTCTCAGACAGGAGCAGCGAC ACCCCTGCCACGCCTGCCGCCTGGAGTTGAGTGGGGTAAGCAC 543400- CCGGCCTCCAGGAATCGACGGTGCCACGTGGTTCTTCTTGCACTTCTCTTCTTCTCCAGT TTCAGGGGACACCGTGGGGTGTGCGAGCCCGGGGGAGCGCAGG

126

415440 AAGGGCGGGTTGGGCTGCAGGTGGGAATGTGCGGTCCTTCTGCGCCCTCAACAGAGCTTC CTTCCTTTTTGCCAAGGTCCCCGTGCCGCCTTCAGCGCGCCTC 00 TTATGCACCTCTACCTCTGCTGCAGCGTACCTCTTCCGCAGCCCTAGCGGCCTCCCCGAG GGGCGCCGCGGCCTCGGCTGTCCCTCCCCTGCCTGGCACGACC

CCTGACCCCCAGCGACCCAAGAAGCAAGTTGTGTTTGCAGACGCAAAGGGGCTGTCGTTG GTATCGGTGCACTGGTTTGA

ACACTTTCTGTGTGGGAGGGCACAAGACATGGGCTATGACATGGCCAGAGACCCCAC CTTCTTTACACATGTAAAAACCAACCAAATCAAGATGCGTCAACGG GATTCTTCCTCCCACATTGTTTCCCTTTTTAAACTGTTATTTTTTCAATCCATGGAGCAG TTGAGAAACGGGTATGCATCTCTCCTCCCCTCCCCTTCTATCA AGCCTGTAAGACACATAAGGAAATCCAAAGCCACAGTAATAGAGAGAGAGAGAGAGAGAG AGAGAGAGAGAGAGAGAGAGAGAGAGAAAACAGAACAAAAGAA TCCTCCTTGGCTTGTTTTTCCAGGGTGGCCAGGCAAGGTGTGAAAATCCATATTTCCCTC TGGGCTGGCAGGTAGAAGTTACTGGGAAGGCTGCGCTCCCTTC

127 GDF6

CTCCCACCGGCTCTCACATCCAGGCTGTTCCCTCACCCTCAGCCTCCCCCAGCGCCAGCT TCCTCCTCCGCCTCTCTGCAGCCAGGCCTCCCCTGCAAGGCGG CCTTGGCCCACCTTGGTTCCGGGCCAAGGCGGCGGGAAAGGCACCGCTACCTGCAGCCGC ACGACTCCACCACCATGTCCTCGTACTGCTTGTAGACCACATT TTGCCCGCGTCGATGTATAGAATGCTGATGGGAGTCAATTTGGTGGGCACGCAGCAGCTG GGCGGGGTGGAGCCGGGGTCCATGGAGTTCATCAGCGTCTGGA GATGGCGTGGTTGGTGGGCTCCAGGTGCGAGCGCAGCGGGAAGTCGCATACACCCTCGCA GTGATAGGCCTCGTACTCCAGGGGCGCGATAATCCAGTCGTCC

SEQ

GENE

ID SEQUENCE NAME

NO

AGCCCAGCTCCTTGAAGTTCACGTGCAGGGGCTTCTTGCTGCAGCGTAGCCTGGACT TCTTGCCGTGCCGCTTGCCATGGCGACTGGCGAAGGCCGTGCGCCG CGCCGGCGGCCGGGCGAGGGCAGCCAAGGCCTGGCATCCGGGGCGCCCGACGGCGGCGGC CACGACCCCTCGGCGCCCGCGCCCGGGCCCGCAGCCTCGGCCG GCCCAGCTGCTCGCGCATCTCTGCGAACAGGTTCTTGCGCTGGGATCTGGTGAATACCAC CAGCAGGGCCCGCTCCTGGGGAGGCCGCACCCTCCGGCCGAAG CCAGACTCCGCAGGTCCGGGGGCGGCGGTTGCTGGGGTCCCCGCGCGCGCGCCTCGGCCT CCCCGGCGTCCAGCTCGCCCCATGCGGCCCGCAGCTCCAAGCA AGCTGCTTCCAGGGCTGGTGGCGCAGGCCCTGCCACACGTCGAAGACTTCCCAGCCGGCC GGCGGCGCCCCCTGCGGGTCCAGGGTCCGCGCGTCCAGCAGTA GGGCGAAAGGCAAGGGAAGAGCTGCACGTGGAGCGGCCCGGCTGGTGGCCCCCAGGGCGC TGAGGGCGCCTGGCGAAAGAGCCGCAGCTCCGCGCCCACCAGC CTTCTTTGTCTGAGAGCATGGACACATCAAACAAATACTTCTGTCTCCGGAGAGGAGTGT GCGAGAGATCGTCTGCGAGATAAAAAATAATTACAGTCAGTTT ACTTAAGGGGGAGATCAGCCCGGTGCTCTTCGGCCGCCCCGGGAGGAAAAGGGCGGGGAG TGGGGGCAGGTCGGCCGGGCAGTCCAGCTTGCCCGGCCCAGGG CTGACCACCCCGGCTCCCCATCTGGCTGGTGCATGG

GCCCGCTGTGAATGTAGGTGAGGTGATCCCGGGAACCTGGGTCTGAAATCAGACCTG TGTTGCCATTGGGAGCACGGAGAGAGGGGAAGCGCCCTGCTTAGGC CAGGCCGGGCGTCCTGGTGGTGGGACCGCAGCCGCACTCACCTCCAGGCCAACGGACAAG GTTCCTGCAAGCCAGCAGGGCCACTCTGTGCTTGGCCTACTGC GCTCCCCTGCAGCTCCTTTCCTCTCCCTCCCCGGAGCGCTCTCCTCTCTCCTCTCCCCTC TCTTCTCTCTCCTCTCTCGTCTCCTGGGGCATCCCGGGTGGAG GATGTAGGGGTCGCTCCTCGGTGCCAGGCCGGGAAGCAGCTCAGGCCTCCCAAGAGCTTG GCGCTCAGTCTGGGAAAAGGGGTTCCTCTGGCCTCAGGGACGT CTCCGCCCCCACCCCACCCCCTGGGAGCCTGAACCATCTGGAAGGGATCTTAGTCGGGGG TTGGGAGGAGAGCCCGTGGATAGGAGGAGGGGGCGATTCTAGG CGAATCCAGCCCCTGAGGTGTCACTTTTCTTTCCTGCGGCCCGTCACCGCTGATAGATGG GGCTGAGGGCAGAGGAAGGAAAAAGAAAACCTCCGAGGTCAGT CGGGGCGAGGTGAGCCCCTCCCAGGGCCCTCTGGCCCAGGAGGATGAAGCGCGCCGGCTT CGCTCTTGCACGCCGGCTTGCCATCCGGGTAAGCGCGGGAAAG CGGCCACAGGGCGCGGCGGCAGCGCAGCGCGTGGGATCTCACGACCCATCCGTTAACCCA CCGTTCCCAGGAGCTCCGAGGCGCAGCGGCGACAGAGGTTCGC CCGGCCTGCTAGCATTGGCATTGCGGTTGACTGAGCTTCGCCTAACAGGCTTGGGGAGGG TGGGCTGGGCTGGGCTGGGCTGGGCTGGGTGCTGCCCGGCTGT CGCCTTTCGTTTTCCTGGGACCGAGGAGTCTTCCGCTCCGTATCTGCCTAGAGTCTGAAT CCGACTTTCTTTCCTTTGGGCACGCGCTCGCCAGTGGAGCACT

128 OS 2

CTTGTTCTGGCCCCGGGCTGATCTGCACGCGGACTTGAGCAGGTGCCAAGGTGCCACGCA GTCCCCTCACGGCTTTCGGGGGGTCTTGGAGTCGGGTGGGGAG GAGACTTAGGTGTGGTAACCTGCGCAGGTGCCAAAGGGCAGAAGGAGCAGCCTTGGATTA TAGTCACGGTCTCTCCCTCTCTTCCCTGCCATTTTTAGGGCTT CTCTACGTGCTGTTGTCTCACTGGGTTTTTGTCGGAGCCCCACGCCCTCCGGCCTCTGAT TCCTGGAAGAAAGGGTTGGTCCCCTCAGCACCCCCAGCATCCC GAAAATGGGGAGCAAGGCTCTGCCAGCGCCCATCCCGCTCCACCCGTCGCTGCAGCTCAC CAATTACTCCTTCCTGCAGGCCGTGAACACCTTCCCGGCCACG TGGACCACCTGCAGGGCCTGTACGGTCTCAGCGCGGTACAGACCATGCACATGAACCACT GGACGCTGGGGTATCCCAATGTGCACGAGATCACCCGCTCCAC ATCACGGAGATGGCGGCGGCGCAGGGCCTCGTGGACGCGCGCTTCCCCTTCCCGGCCCTG CCTTTTACCACCCACCTATTCCACCCCAAGCAGGGGGCCATTG CCACGTCCTCCCAGCCCTGCACAAGGACCGGCCCCGTTTTGACTTTGCCAATTTGGCGGT GGCTGCCACGCAAGAGGATCCGCCTAAGATGGGAGACCTGAGC AGCTGAGCCCAGGACTGGGTAGCCCCATCTCGGGCCTCAGTAAATTGACTCCGGACAGAA AGCCCTCTCGAGGAAGGTTGCCCTCCAAAACGAAAAAAGAGTT ATCTGCAAGTTTTGCGGCAGACACTTTACCAAATCCTACAATTTGCTCATCCATGAGAGG ACCCACACGGACGAGAGGCCGTACACGTGTGACATCTGCCACA GGCCTTCCGGAGGCAAGATCACCT

CACTCCCCCGCCGCCTCCGCCCCTAACCCTCGGCCCCGTGCGCGAGCGAGCGAGGGA GCGAACGCAGCGCAACAAAACAAACTAGTGCCGGCTTCCTGTTGTG AACTCGCTCCTGAGTGAGTCGGGGGCCGAAAGGGTGCTGCGGCTGGGAAGCCCGGGCGCC GGGGACCTGCGCGCGCTGCCCGGCCTGGCCGGAGCCTGTAGCC

129 GLIS3

GGGGGCGCCACGGCCGGGCTCGCAGTCCCCCCACGCCGGCCCCCCGGTCCCCGCCGAGCC AGTGTCCTCACCCTGTGGTTTCCTTTCGCTTCTCGCCTCCCAA CACCTCCAGCAAGTCGGAGGGCGCGAACGCGGAGCCAGAAACCCTTCCCCAAAGTTTCTC CCGCCAGGTACCTAATTGAATCATCCATAGGATGACAAATCAG

SEQ

GENE

ID SEQUENCE NAME

NO

CAGGGCCAAGATTTCCAGACACTTGAGTGACTTCCCGGTCCCCGAGGTGACTTGTCA GCTCCAGTGAGTAACTTGGAACTGTCGCTCGGGGCAAGGTGTGTGT AGGAGAGAGCCGGCGGCTCAC CACGCTTTCCAGAGAGCGACCCGGGCCGACTTCAAAATACACACAGGGTCATTTATAGGG ACTGGAGCCGCGCGCAGGAC ACGTCTCCGAGACTGAGACATTTTCCAAACAGTGCTGACATTTTGTCGGGCCCCATAAAA AATGTAAACGCGAGGTGACGAACCCGGCGGGGAGGGTTCGTGT TGGCTGTGTCTGCGTCCTGGCGGCGTGGGAGGTTATAGTTCCAGACCTGGCGGCTGCGGA TCGCCGGGCCGGTACCCGCGAGGAGTGTAGGTACCCTCAGCCC ACCACCTCCCGCAATCATGGGGACACCGGCTTGGATGAGACACAGGCGTGGAAAACAGCC TTCGTGAAACTCCACAAACACGTGGAACTTGAAAAGACAACTA AGCCCCGCGTGTGCGCGAGAGACCTCACGTCACCCCATCAGTTCCCACTTCGCCAAAGTT TCCCTTCAGTGGGGACTCCAGAGTGGTGCGCCCCATGCCCGTG GTCCTGTAACGTGCCCTGATTGTGTACCCCTCTGCCCGCTCTACTTGAAATGAAAACACA AAAACTGTTCCGAATTAGCGCAACTTTAAAGCCCCGTTATCTG CTTCTACACTGGGCGCTCTTAGGCCACTGACAGAAACATGGTTTGAACCCTAATTGTTGC TATCAGTCTCAGTCAGCGCAGGTCTCTCAGTGACCTGTGACGC GGGAGTTGAGGTGCGCGTATCCTTAAACCCGCGCGAACGCCACCGGCTCAGCGTAGAAAA CTATTTGTAATCCCTAGTTTGCGTCTCTGAGCTTTAACTCCCC ACACTCTCAAGCGCCCGGTTTCTCCTCGTCTCTCGCCTGCGAGCAAAGTTCCTATGGCAT CCACTTACCAGGTAACCGGGATTTCCACAACAAAGCCCGGCGT CGGGTCCCTTCCCCCGGCCGGCCAGCGCGAGTGACAGCGGGCGGCCGGCGCTGGCGAGGA GTAACTTGGGGCTCCAGCCCTTCAGAGCGCTCCGCGGGCTGTG CTCCTTCGGAAATGAAAACCCCCATCCAAACGGGGGGACGGAGCGCGGAAACCCGGCCCA AGTGCCGTGTGTGCGCGCGCGTCTGCGAGGGCAGCGGCGGCAG GGGAGGAGGAGGCAGAGGCGGGGTGGCTGGACCCTCGGCATCAGCTCATTCTCCCCTGCT ACACACATACACACACAAATAATGTTTCTAAAAAGTTCAGTTG GACTTTGTGCCTCGCCTGTCCTGTTCATCCTCGTCCTGGGCCGGGGAATGCTTCTGGGGG CCGACCCCGGGATGCTGGCTAATTGCTGCCGGCGGGTTCCGTC CCGGTGTGACCCTGGACGGCGCGGACGGCGTACAGGGGGTCCCGGGAGGGGCAGTGGCCG CGGCACTCGCCGCCGGTGCCCGTGCGCGCCGCGCTCTGGGCTG CCGGGCGGCGCAGTGTGGACGCGG

CTGAAAAGCCGTCAGGGAAACCACACATGTTCAACCCCTGGCGGCTCCCCCAAACCT CTCATTTCCAGTAACTGTGTGTTTCCGCTCGTCAACAGCTGAAACC AGCGGAACTTGGGGGGCCCCACCACGCGGCCCTGCTGTGCGGCACGGGGCTCATCTGTCC CCCGGCTGCGGGGAGTCAGCTCTCACCGCCCACCTCCTTCCCA ATAGTCTCTGTGCCCACTCGACGGCCCGGCAAGCCCAGCCCCTGCCTGCCACGGCCACAG CAGCCTCAGAGAGCTGCCCTCTCTGGCCAGGGTCAGGGCCTGA

NOTCH CTGCTGCCTCCCGCAGGGTCGAGGGCAGGACACTTGTCTGAGGCTTGGGTGGGGCAATGG CACCTCCTCAGGGCCTCAGCCCCCGGGCAGGCTCGGTGACCAT

130

1 GGCCTACAGCAGGGAAAATTCTGGGCCAAAAGCTCCAGCCTCCTACTAGGGCATCTGTCT GCAAATGCACCTTAACCTGACCGCTTGGGCTGTGGGGGAGCCT

TTTCAGGGAAAGTGAGGGACGCGCCAGTTTCCTCCTTTGGACTTGATGAGGCACGAACGC ATCTCTAATAAAGCCAGGTCTCCCCGCCGTGGCTCCCTGGGCG GTGCCTGTGGCTCGGGCCATGAGTCACGCTGGGTAACCCCACTACGGGGAAGAGGGCAGG AAGCTGGGAGCCACCGCCTCTGTGCCCGGTTGTCATCTCGGCA GAGGGCGACCGTCGGCTTCGTCCTGCCCTCATGGCTGAGGGCTTTTGGGATGTGGCGGGA GACGGGGGAGTC

AAATCATCAGAATGGCTAAAATGAAAAAGACAGACAACAGCAAGTGCTGACAAGGGT GTGGGGCGGCCAAATGCTCCTGCACTGCTGGCAGGGGACCTGAGAA TGCAGGGCATTCCCTGGCTTCCTGCCCCTCCTGGGACTGGGGACCCCCCAGGGACAGCCT AAGGGAACTGCATTTATCTTCACGTCTGCCAAAAGATAACACG

131 EGFL7 AGATGTTCAAAGCTAAGCCCCCAGGCTGGTAAGAGCTCCAAGGCACCAGCAGTGTGTGCA GAACTGGGGGGAGTCTGTTCTCCCAGGGATGCTCCCATCACCT

CTGCCAGCAGTGGGGCATGCCGGTCCCCTGGGGTGTGGCCAAGGGGCTGTGTCTCCTGCC CGGGCTGCCGGCCCCTCTCAGGTTCACTTTCCCATCTCTAAGC CACGTCTCGCTGCAGTTCAAGTTTGCCAGGCCACCAACGGGTGACACGCCCGGCGCAGTG GGGGACTCCGCACTTTCTGCGCAC

ACCCTTTGTGCCTGGGTCCCATAAACAATGTGCTTTTTAAAGGGGAGCCCCCTCCCA GCTCCGGCCTTTTTCTCCAGCGTGGGCAGCCAATCAGCTGCGCAGA CTGCATAGCTGGACCGCTTTCCATTCTGAGTAGCAACAACGTACTAATTTGATGCACACA TGGATGCCTCGCGCACTCTGCAAATTCATCACCCGCATCTTGC

132 CELF2

TTAGTCATCTGACGGACTGCCAAGTGTTTCATTTTCTTTCCATGTGACTTTATTATTACC ACCTCTCTCCTCTCTTCCAAAAACCTCCCAAAAAGGGCGGTGG GCGGGGGGCGGGGCAGGGAGAGGGAGAGAAATCCAGCAGACATCTAGCTCTGCCTTTCTT TCCCAGCCACAGCCAGGGTAGGGCTGATAAGGCGCTGATGCGT

SEQ

GENE

ID SEQUENCE NAME

NO

GATGGCAGCCTTGCAGAGCTAGACCTGCACTTAACTTGCAGCTGCCTCCCGAGCCTC CAAGATGTCCACGCCCTGGGTGACAGGCGGCAGGGCGCTGCCCCGT CTCCCCCGGCTCTGCTCGACAGCAGCACGCAGTGAGAGCCTCGCCGCCGCCGAGGAGCAA CTCATGGTGCCTCCGCTTTGTTTTAGTTCATCAAATTTCTACG CTCATTAGGCACTTTGCCACTGCTCTTCTTCCTCCTCCTTCCGCCTCCCCGCTCCCCCAC CCCCACTATTTTTTCTTCCTGTCCCTCATCGTGCCGCCCTAAC CTGGCTCCCGGTTCCGTTTTTGACAGTAACGGCACAGCCAACAAGATGAACGGAGCTTTG GATCACTCAGACCAACCAGACCCAGATGCCATTAAGATGTTTG CGGACAGATCCCCCGGTCATGGTCGGAAAAGGAGCTGAAAGAACTTTTTGAGCCTTACGG AGCCGTCTACCAGATCAACGTCCTCCGGGACCGGAGTCAGAAC CTCCGCAGAGTAAAGGTACAGAGCGCGGGGCGGGGGTCGCCAGGCGTCCAGGTGGGCGTC GCGGGGCACTGGGGCTGTCCGAGCCCCCAGCCTGCAGGAGGAA GGCGGGTAGGCAGGAGGGCTGGAAGCAGCCGGTGCTGGCGGCCCCTGTGCTCCAGGGGCT GCTCCCGACTCCTCCCCGCACCCCCGCCCGCCTGCCCGCCGGG CAGGTTGGAGGCGGGAGAGAGGGACCGAGGCAGGGCGGGAGCGCAGAGGCTCGGTC

TAACAAATAAGCCGCCCGTGGTCCGCGCTGTGGGTGACCCTTGGCGCCTTCGAGGTC TGGAGCCCTAGGGTAAATAAGGAAACGGGGCGCCTCTAGAGTTTTA ATGAACTCTGTTATTGGAAGCTTCAGTAGGGACCCTGAAAACAATTAACGTCTTAATTAG CATTTTAATGTCTCCATTATTACGGCGCGGGCTCTAGCTCAGC CTTTACCTTACCTTCTCACCGTTAACAGGGGAGGGGGATTGTATTTTTAGTTCATCTTTT TATGTTTTTGAGTTGTTATCCTGTCTGTCTGATTCCAGCCTCG GGGTTTGATGATGCGGCCCGAGCCTGGCTGTGGTCGCCTGTCGGGGCTGGAGCGGGACCC TCAGCCGGGCCGGGCCTGGGGGCTAACGTTTTCACAGTGCGCC

133 HH EX

TGAGTTTCCTTGGGTTACTGCTGGGACCGCGCAGGAGGAAGCAAAGAGTTTTTCGAGCTA GACCAACAGGAAACACATTGACGGAAATGTTGCCATAGCCCAT GGGTGGCTTTAACTGGCCGCCCCCGCGGGCTGGGTGTGAAATCAGAGGAGGCCGCGGCTC CCCCGGCCAGGATTGGAGGCTCCTCGCGCAACCTAATGCGGGT TCCGGGCCCGAGCGCTTCCCGCGCAGCCAGGCCTTGTCGGTGCAGCAGCCCCGCTCCTCC CCAACACGCACACACCCGGTGTTCGCAAGTGCGGCTCACCAAG GAGATCCAAGGGGGCAAAAAGTTATGTATAAATCCGAGAGCCACTGGGGAAAGAGGGTCG TGGTATTGTAAG

CTACCCTGTGCTATCCTGAGCTGTAGTCTTCTGAAATGATCGTTTGGCTTCCCAGCC AAGGCAGGGCTCCCCCAAAGTTCATTCCCACTCTTGCAGTTTCACC

DOCK1/ CGGGATGCTTCCGCAGAATTTCAGCGCCTAAGCAGACAAGGTCAAAGTAAACCGCTTCAC CGCTGCTTCTGGCGCAGGGGCCCAGAGCGCGTGCAGCTCCCCA

134 FAM 19 CACAGACCAACAGCAGGAGAGGGGTCCGGGCGGGAGCCCTGGGCTGTAGATAAGCAAAAC GCACCCATTTTCTCTCCTATTTACTCCAGAGGCACCTCTCCTC

6A CCCACTCCTGGCATCTCTTTATCACTGGCTCCCTCTCCCTGTGGCATATTTTTGGGTAGT AGAATGCTGAGGTCACAGGGAGCGGCTCTTTATCCAAGCAGTG

GGACATCAGCCTGGAGCCCTGAGCATGAACCAGCAAGATGCAGACTCTCGCTCTTGACTT TGGGCTCCAGGAGCTGCCCCGACC

CAGTGCTCCGCTCCGGGAAATTGCATCGTCACGACAAACGGGACCGTGATAAAACGA CCCTTTCCGTCCTTATTTGTAGATCACTCAGACGAGATTGAACTGC CTTGTTTCCCCTTCGAGGGGAGCCGCGTTTTCAGGGTAGCCGAAGGCTTGGGGCTGAGGG GGGGCCCTCACCAAGGCGCGGGTGGGGGCCGGAGCCTCAACTC ATGAGAAGTGACAGGCGTTTGGGGGATCTGGGCTCCGGCCGGGACCAGCGCAAGCAGGGA CTTTGCGGGGACACCGCTTCTCCAACAGAGCAAGGCCTGGCCC CGTTTCCGGTTTCTCCTAACTTCCTTTTATTGCCTTCCTTTGCTTCGCAAGTTCCATCTA CCCCTCCAGCTACAGAGCCCCACCTCTAGGCACAGGAAGCTTC CGGAAAAAGAAAGGCTGTCCCAGAAAGAGACCGAGAGAGACTTTCCAAACTTCGGGCATA GCCACGGCAATTCCCAGTCTGCTAATGCCAAGGCGGGCGCGTA

135 PAX6 GGCCGCCTAAATCTAGACCTCCCTCCTCACTCATTTCAAAAAATAACAACGTGCCAGCCA CCTCCGCAGATACCGCCGGCTGGTGCTTGCCCAGGAGACGCCA

GGCCAGAGCGCCACTCCCAGCATCGAAATGGCAGAGAGAAAGCGCAGCTCCAAATTCCCC TTCAGAGGTTAAGCCTCAATCATTGTGTCCCTTCCCTAGGGAC GCTGGCGCTCTCGCCCACTGGCGATGATTATGCGCCTAGAACTCGACCGCGAAGCAACTA ATAGGAAAACATATGGTGTCAATTTGGATGCTCCGCGCCTCGC CACACCCGGGAACGAGCGGCACAAAGCCCTGCCGGCCGGCCCGCGACCCCGCGCCCCTCG GGGCCTGCCAGCCGGGCCGCAGCGACAAACGCTCAGGGCTGCG GCCCTGGCTGGGGCCCGCCCGAGAGACAGCCTGCGGCTGGGGAGTCTGAGCTCCAAGGGG AGAGCCCAGCCGCCGAAGGCGAGCCTACCGGCCAAGCCCTGGG TCCGGCAGGTTCTGCACAACTACTCCCGCAAAGCTCGCCACCTTTGTGCCCTTTCCTCAG

136 FE MT3 GGGCCCTCGCGGCTCAAGCGCCAGCGCTGGAGAGAGAGTCTGAGGGTACCACGGGCGTGC TGGCCTGGGTGCTCACTCCCGCCCTCCTTCATGAGCGGCTTTC

SEQ

GENE

ID SEQUENCE NAME

NO

TCTGGGTGTGTCCAGGGCATCACAGAGCTCTTCTGCCCAAACCCGGAGGCCTACCAG GGCCTGCCCACCTTGCCTCCTTCCACACTCTCTGTAGCAGCAGCCG AGCCATGGCGGGGATGAAGACAGCCTCCGGGGACTACATCGACTCGTCATGGGAGCTGCG GGTGTTTGTGGGAGAGGAGGACCCAGAGGCCGAGTCGGTCACC TGCGGGTCACTGGGGAGTCGCACATCGGCGGGGTGCTCCTGAAGATTGTGGAGCAGATCA GTGAGTGTCCGCTGCCCGCTTGCTGAACTCGGCACCATGGGCG CCGCCACGGGTGTCTCTGGGCACTTCCGGGCCATCCCTGCTGCTCAGCTCCCGATAATGG TGTCACGGTGACTCAGGCATTAGC

TGTTTACGGAATCGGGATCGAGGGGCCGATAAGTAGTTTACACGCCGGCCAGAGCAG AGGGCTGGAGGTCGGAGTTGGGGGCTGGAGGAACGGGTGGCGTTTT AGGATTCAGTAACAGGATCACAGCTTTTTCTTGTGGTGGAAGCTATTGGAATTTGGGGAG GGTAGCACGAGGGGTCCTGCAGCTCCGCGTGTGAAAAAGCGTT AGGTAGGCGATGAAAGTAGTTGATCTGAGCCATGGCAGGCGAGCCCCGAATTTTTGCTGC TTCCCCCTGAAAGTGTTTCTTTAGGAGGAGAGGACTTGGGCCA

137 PKNOX2

ACAGGACCCGGTCC AAGAGAGCGATTCCGGGAAGCGGACAGATCGAAGAGACCTTCTGGGCGAAGCGGCAGGGC AGCCTCGCGGGGCTGGGAGTGGATCTGA GTCCCGACCCAGGCGGCTCGGAGTGCTCCAGGAGCCACCTGGGTCTGCGGGCGCAGCGCG GCGGGGCGGGAGCGGTGGCCCGCAGGGGCCGCGGCCTGCGATG AGGCCGGGGGGCAGCGCTAGCAGCGAGGTGCCACAGTGGGCCGAGGAGTCTGGGCTGTGG CCCAGGGTAGGACCGGCTCA

ACCTAAACCAAGCTCTCCCTCCCTGCCGTCTCCTTCCCTGGCCTGGGTCTGAAGGAG AGGAGGTGCCCAGAAGTTCAGAGCGGCATAACCACAGAGATACTAC

138 KI EL3

TAATTAACATACCAGAAGCATAAAGAACTCATTTGCATTGGAGAGT

ATAACTACGGGGGTGGGGGTGGGGAAGGAAGAGATCCAAGGAGGCAGAAGGCTGCGG TCAAAATATTTTGGGGTGGCAGAGTCACGTAGGATGTGGCTGTGGG TCTGGCAGCCCAGAGATTCAGCTCCCGCCTCCTCCCTCAGAGCGAGTCCATAGCTACCCT CACGTCCCCCGTGGCGGTCCTCGCCACGCTCCGGAGCGGGTTA CCATGAGGGTGCTAGACCTGGGCAGCGGGAACCTCGAAGAGGTGGAGATTGCAGGCTGGG ACTCCAGATTTCGGGCAGGGATGCGGGGAAGGGAAGACGCCTC CTGGAGGCGGAATGGAGGGCAAGGCGAAGGAGGATGGTGCAGGAAACGGCGACAAGGCGC CCGGCCAGGCCCGCGAGCTACCGAGACCCGGGTTCCAATCCTC

139 BCAT1 CCCCTTCCGCAAACGCCCGGGTTCGAGGTACCTGGCGGGCAAGGGCCGCAGCGGAGCGAA GCGGGCTGGCCATGGGGAGGCTGCGGGGACGCGGGGCTGCAGA

AGCGGCAGTGGCACGGAGCGCGCGGCTGGAAGCGAAAGCAGGCGGTGTGGCCAAGCCCCG GCGCACGGCCCATAGGGCGCTGGGTACCACGACCTGGGGCCGC CGCCAGGGCCAGGCGCAGGGTACGACGCAACCCCTCCAGCATCCCTTGGGGAGGAGCCTC CAACCGTCTCGTCCCAGTCTGTCTGCAGTCGCTAAAACCGAAG GGTTGTCCCTGTCACCGGGGTCGCTTGCGGAGGCCCGAGAATGCGCGCCACGAACGAGCG CCTTTCCAAGCGCAGATATTTCGCGAGCATCCTTGTTTATTAA CAACCTCTAGGTGAATGGCCGGGAAGCGCCCCTCGGTCAAGGCTAAGGAAACCTCGGAGA AACTACAT

CAGTCCAGCCGCTTGCCTCACTTCTTCCCGCTTGCCTTATCTCCCCGCAGACGTGGT TCCCCTGCAGCCCGAGGTGAGCAGCTACCGGCGCGGGCGCAAGAAA GCGTGCCCTACACTAAGGTGCAGCTGAAGGAGCTAGAGAAGGAATACGCGGCTAGCAAGT TCATCACCAAAGAGAAGCGCCGGCGCATCTCCGCCACCACGAA CTCTCTGAGCGCCAGGTAACCATCTGGTTCCAGAACCGGCGGGTCAAAGAGAAGAAGGTG GTCAGCAAATCGAAAGCGCCTCATCTCCACTCCACCTGACCAC

140 HOXC13

CACCCGCTGCTTGCCCCATCTATTTATGTCTCCGCTTTGTACCATAACCGAACCCACGGA AAGACGCTGCGCGGGTGCAGAAGAGTATTTAATGTTAAGGAAA AGAAGAACCGCGCCGCCCGGAGGCAGAGAGGCTCCATGGCCGTGCTGCTGGGCCATCCCC AACTCCCTATCCCATCCCCAGCCTCCACCCCCATCCAGATGGG CTCACGTGGCTTCAACAGCTTTGGAAATGGGTCCCGAGTGGGCCGTGCGAGGAAGGCTGT CGACCTCTACTCCTCCTTGC

CAAGATCGACTTTCTTAGGAAGGGGGAGAGGAGGGAACTCTTCACGAAGGGAGGTGG GAGTCCACCTCAGACCTCTATTGGAAGGAAATCGAGTTGTTCCGGG GACTGAGGTCTCTTGCATAAGGCATGGGATCCTTATTATTATTATTATTATTTTTAAATC CCCCGCGGAGGAGCTCTGGGCAAATGAATACCGAGGCGCCGCT TAGCTGGTTAGGCTTGGGATGCGATAACTCAGTGCCCTCTTGCAGACTTGCATAGAAATA ATTACTGGGTTGTCGTGGAGGGGACACGAGACAGAGGGAGTTC

141 TBX5

CCGTAATGTGCCTTGCGGAGAGAAAGGTCCAAGAATGCAATTCGTCCCAGAGTGGCCCGG CAGGGGCGGGGTGCGAGTGGGTGGTGGAGTAGGGGTGGGAGTG AGAGAGGTGGTTTCTGTAGAGAATAATTATTGTACCAGGGCCCGCCGAGGCACGAGGCAC TCTATTTTGTTTTGTAATCACGACGACTATTATTTTTAGTCTG TCAATGGGCACAATTTCTAAGCAGCGCAGTGGTGGATGCTCGCAAACTTTTGCGCACCGC TGGAAACCCACTAGGTTGAGTTGCAAAACGTACCGCGTAGACG

SEQ

GENE

ID SEQUENCE NAME

NO

CCCTGGTGGCGCCGAGAGAAGAGCTAGGCCTGCCCAGCACAGAGCCGGAGAGCGTCG GGCCTTCCGGAAGGGTAAGTTCTCCGCCAAGGGGTCCCGAGGGAGC GGACGTCTGAATCTGGACTTGCCCCCAGCTTCGGGGTTCGATTCTGGGTTTTGCGCGTCC CCAACCCCCAGGGCTTTCCGAAGCATGGCCTGGCTCCAGGCCC GTCCTGTAAGGACTGGAACGGCAGCAAAATGTGCAGGGAGGCAGTCGGCCGGCAGAGCTG CGGCGGGAGCCAAGGTCAGGCCCGCGGGGAGAGCGGGCAGCTT CAGCGCCGGCCACAAGCTCCCAGGCCAGCTGGGCCGCAGACCCCTTTGCTTCCAGAGAGC ACAACCCGCGTCCTTTCTCTCAGCCAGGCTGCAGTGGCTGCCC GAGCTTCGCTTTCGTTTCCCAAGCTGTTAATAACGATATGTCCCCAAATCCGAGGCTCGT GTTTGCTCCCAGATGCCAAGAACGCAACCCGAAATCCTTCTCC AAACCC AGGTCGACGAGATGAG CC ACT GACC C GAGCCGAGG GGGCCGGAAACCGAGGCCTAGGCCCCGCCGGGGC GCAAGGAAAAGGGGAAAC CGAGCGTAGCGTCTTTTCCTTGTGGTTCCTTTCTCCGGCATCCCGGACTGCGGGCCCTGC AGCCACCTGGACCGGCATTCAAAGGATTCTGCAAGTCCAGCTT ACAGACTGGCTTTCCCAGACGCTCCGAAGCCCGCACCACGAACAGAATAAAGGAGAGACG AGAGATCGCAACTAGATTTGAGAATCCTCGTTCTTTTCCCCAA CGTTCGGGCAGTAAACTCCGGAGCCGGCTACAGCGCGCATCCTC

ACTGTCCTCCTCCCTCAATTGCCTATTTTTTGCCCATAGCTCTAACTTAACCCTGTG ATCACCCCAGATCGCTACTTCTGACCCCCATCTCCTCTCCCACACC ACCTCCAGCGCGCGAAGCAGAGAACGAGAGGAAAGTTTGCGGGGTTCGAATCGAAAATGT CGACATCTTGCTAATGGTCTGCAAACTTCCGCCAATTATGACT

142 TBX3 ACCTCCCAGACTCGGCCCCAGGAGGCTCGTATTAGGCAGGGAGGCCGCCGTAATTCTGGG ATCAAAAGCGGGAAGGTGCGAACTCCTCTTTGTCTCTGCGTGC

CGGCGCGCCCCCCTCCCGGTGGGTGATAAACCCACTCTGGCGCCGGCCATGCGCTGGGTG ATTAATTTGCGAACAAACAAAAGCGGCCTGGTGGCCACTGCAT CGGGTTAAACATTGGCCAGCGTGTTCCGAAGGCTTGTGCTGGGCCTGGCCTCCAGGAGAA CCCACGAGGCCAGCGCTCCCCGGA

CTCAGGGAATCACATGTCCGCCTGGCCTGGCCTGGTACCAAATGTTTATAGACAGGA CGAGGGTCGCTGGAATCGCCTCGCTCCTTTCAGCTTGGCGCTAAGG GCGAATCTCGATCCTCCTAGTATTTCTCTGGCGTCTGTCTCTATCTCAGTCTCTGCTTTT GTCTCTTTCTCCCTCCCTCCGCCCCAGTCTTTCCGTCTCTTTT

chrl2:l CCTCGAATGCACGTGGAATTCGGAATTGAAAATTGAGGTCAGAATCTCCCTTTTTCTTCC AGTTATCCGCGCCGCTGCCCCACGCCTAGCGGCTTGGATCTGC 136221 TAGACATCTATCTACCCGCAACAAGATCCGAGCTGCAGAAGCAAACCTAATCTGTCTCCG CACCATCCCCTGCTCTGTAGACCCACTGCCCCATCCCACGCCA

143 00- ATCCTTGAGGTTCAAGTAGCGACTCCAGCGGATGATTCGGAGAATGCCCTGCTTTCCAAA GGCCCCAACCCGTGTTTTTATTTTCTTTTTCCTTTGCCCGCTT

113623 ACCAACTTTGGTTTCTTTCAGGGCCCGGAGGTGCCTGCGCCGCGCTTGGCTTTGCTTTCC GCCGCCCCAGGAGACCCGGGACTGTGGTTTCCGCTCGCCACAT 000 CCAGCCTGGTGCGCACACAAGAGCCTGGCGAGCTTCCCTCGCGCGCTTACAGTCAACTAC TTTGGGCCTCGGTTTCCCTGCTCCTTGTAGATCAGAGAAGGGA

GGGCGAAATGCCTGCGAGGGAGGGTTGGCGAATGGGTTGGTTGGTGGCAAGACTGCAGTT CTTGTACATGGACGGGGGTTGGGGGGTCAACACTGGAAGAACT CTGCCTGACGCCAAGAGCCACCCGCTTTCCAGCTCGTCCCACTCCGCGGATGTTTACCCA CCTTCATG

chrl2:l TTTGGGGCACCCAACCCTTCCCAAGCCTCGGTTTTCCCGATCTTGTGGGATCCTTGCGGC GCGAATGGGGTTGGAAGCACCTTGGAAGCTACAGAGTACCGGG 136578 CGGGACAATTTCCGGCACTGCCCCAGTTCAGTGGTTTATAGAAAATTTCTTTCTCTCTCT CAGGTCCACTAAGACCGAGAGAGAGAGAGAAGTCGACTCTGGC

144 00- CACCCGGGCGAGGGGCTGCCGGGATTCGGGAGCTGGCGCGGTTGATTTTTTCCGAGAATC CTCCACTTGGGGTGACGTCGGGCAGCGCGCGCGGGCCGTGAGG

113658 TAATGCCCAGGCTTTTCTCTAAAGCGTCCGGGAATGATCCGGCGAATAAAACGGGTGTCT GCAAAGTTAATGAATTGTACAAGGAGGCTGAGGGTGGGGACTT 300 GACCCGGGGAGCCAGAGGCGGTTCTGGTGGACGCTTCCCCGTGCGCCTAGGGGTGCGCTG GGCTTTCCCAGCCGAGGTCTGCAG

CCAGACAGTTAAGGTAAAACGTTGAAGTCAAGAGGAAGTAGTGAGTCTGTTGCCAACTGG ATAGGGTTGGTCCTGTCCCATCTAAATGTATTAGAATTAAGTG CTTTTAAAAATGAGCTGGTCATCTTCAGCCCACGGGCTGGCCAATTTGGAACTTAATGGG CCTTTGCGTCCTCCTTCCCTGAGCCTCCTTTTATTCCAGACTT

THEM2

145 TCAGTGTGAGTCTGTGCGTCCCTCCGACGATCTCAGGGAGTGGGGTGCCTTCATCTGCCT GTTCCCTGTTCCTCAGGCTGACGCTCCCGCTGTCCTCCCCGCC

33

CCCCTCACTCCTTTTCTCCCTCCCTTCCTCCTTGTGGGGAGGCTCTTGGCCAGGGTCCCT GAGCCCGGGCGGGTGCTGGCAGAGGACGCAGAAGGGGTGAGGT ACGTCTCCCTTGAGCCCCGAGCCGCTGGCTTTTCAGAGCCTCGCCACAAGCCGGCGGCCA GAGCCCCAGACCACACAGACCGTGCGCTCCTCCGCCCTCCCGG

SEQ

GENE

ID SEQUENCE NAME

NO

GCCGCCGGCCTCGCCCATGTCTCAG ACGCCCCTAGCCCGGACTTCAAGAGGGCTTTGGACAGCAGTCCCGAGGCCAACACTGAAG ATGACAAGACCGAGGAG ACGTGCCCATGCCCAAGAACTACCTGTGGCTCACCATCGTCTCGTGTTTTTGCCCTGCGT ACCCCATCAACATCGTGGCTTTGGTCTTTTCCATCATGGTGAG GAATCACGGCCAGAGGCAGCCTGGGAGGAGAGACCCGGGCGGCTTTGAGCCCCTGCAGGG GAGTCCGCGCGCTCTCTGCGGCTCCCTTCCTCACGGCCCGGCC GCGCTAGGTGTTCTTTGTCCTCGCACCTCCTCCTCACCTTTCTCGGGCTCTCAGAGCTCT CCCCGCAATCATCAGCACCTCCTCTGCACTCCTCGTGGTACTC GAGCCCTGATCAAGCTTCCCCCAGGCTAGCTTTCCTCTTCTTTCCAGCTCCCAGGGTGCG TTTCCTCTCCAACCCGGGGAAGTTCTTCCGTGGACTTTGCTGA TCCTCTGACCTTCCTAGGCACTTGCCCGGGGCTTCTCAACCCTCTTTTCTAGAGCCCCAG TGCGCGCCACCCTAGCGAGCGCAGTAAGCTCATACCCCGAGCA GCAGGCTCTACGTTCCTTTCCCTGCCGCTCCGGGGGCTCCTGCTCTCCAGCGCCCAGGAC TGTCTCTATCTCAGCCTGTGCTCCCTTCTCTCTTTGCTGCGCC AAGGGCACCGCTTCCGCCACTCTCCGGGGGGTCCCCAGGCGATTCCTGATGCCCCCTCCT TGATCCCGTTTCCGCGCTTTGGCACGGCACGCTCTGTCCAGGC ACAGTTTCCTCTCGCTTCTTCCTACACCCAACTTCCTCTCCTTGCCTCCCTCCGGCGCCC CCTTTTTAACGCGCCCGAGGCTGGCTCACACCCACTACCTCTT AGGCCTTTCTTAGGCTCCCCGTGTGCCCCCCTCACCAGCAAAGTGGGTGCGCCTCTCTTA CTCTTTCTACCCAGCGCGTCGTAGTTCCTCCCCGTTTGCTGCG ACTGGCCCTAACCTCTCTTCTCTTGGTGTCCCCCAGAGCTCCCAGGCGCCCCTCCACCGC TCTGTCCTGCGCCCGGGGCTCTCCCGGGAATGAACTAGGGGAT CCACGCAACGTGCGGCTCCGCCCGCCCTCTGCGCTCAGACCTCCCGAGCTGCCCGCCTCT CTAGGAGTGGCCGCTGGGGCCTCTAGTCCGCCCTTCCGGAGCT AGCTCCCTAGCCCTCTTCAACCCTGGTAGGAACACCCGAGCGAACCCCACCAGGAGGGCG ACGAGCGCCTGCTAGGCCCTCGCCTTATTGACTGCAGCAGCTG CCCGGGGGTGGCGGCGGGGTGAGGTTCGTACCGGCACTGTCCCGGGACAACCCTTGCAGT TGCGCTCCCTCCCCCACCGGCTCACCTCGCCTGCAGCTGGGCC CGGAACTCCCCGGCCACAGACGCA

CTCTCTGGGCCTTAGGAAAATGGAAATGACACCTGTACCTGCCCTTCCAGGACTGAC AGGAGGGGCTGCTCCATGAAACCTCACTGCTGCGGTCATAATGTCA TATCTTTTGCCTTAAAGGGATTTCTTCTGCACCAGCACCTAAAGTGGCAGCCCCTTACCC TTGGCCATCAGCTGGACCCTGGTGCTCTCCTGGAGCCCAAAAC TCTGTTTTGTGTTGCATCCTGCTGACCAGCCACAGTCCACACCCATCTGAGTGTCTGAGC AGAACAGCCCAGAGGCCACACCAGGATGGCTTTCCACCGGTCA

146 NCO 2

CTTCCCCCACCCACTCATAAACCCTGCGTCTCTGGGGGAGAGGGTGGCGAGGTCCCCTCC CCACATAGATGGAAACACTGAGGCCTGATTCATGGTGCCCCCT TGAAGCGCCTCATGGCCAGCACCGGGGGGCAGCAGGCCAGGGCGGGGACACATACCCGGT TCTCGTCGTAGATGATCTGCACCAGGCTGCGGTGCTTCGACTC ATGGGCGGCGGTGACACGGGCTTCTCAGGCTCGGGCGGCTTGGCAGCCTCCTCCTCCAGC TGTTGCTGTGGGGAGAGGCA

CTTGAAAACTCCCAGCCCCCTTTGTCCAGATGGGGATGGAGGTGGCCAGGCTGCCCC GTTGATTGTGTGCCGAGGAGCCCTCCCCGGGAAGGCTGTGATTTAT

TH EM 1 CGCGCAGGCTTGTCACGGGGTGAAAGGAAGGGCCACTTTTTCATTTTGATCCAATGTTAG GTTTGAAAGCCACCCACTGCTGTAAACTCAGCTGGATCCGCGG

147

32C CCGTGATTAAACACATTGCCCGCTTTGTTGCCGAGATGGTGTTTCGGAAGGCGCTGTGAA TGCACTTCCCTTTGCGGGGCTCACACAGACAAGATGTGTGTTG

AAGGATGAGGCGCCTGCTCGGCCTCCAGCCCAGGGCCGGGAAGGGAGAAGGTGCTGTGCG TCGCTGCCTGTGTCGCCCGCGGCTCTCC

CGCGTCAGGGCCGAGCTCTTCACTGGCCTGCTCCGCGCTCTTCAATGCCAGCGCCAG GCGCTCACCCTGCAGAGCGTCCCGCCTCTCAAAGAGGGGTGTGACC GCGAGTTTAGATAGGAGGTTCCTGCCGTGGGGAACACCCCGCCGCCCTCGGAGCTTTTTC TGTGGCGCAGCTTCTCCGCCCGAGCCGCGCGCGGAGCTGCCGG GGCTCCTTAGCACCCGGGCGCCGGGGCCCTCGCCCTTCCGCAGCCTTCACTCCAGCCCTC TGCTCCCGCACGCCATGAAGTCGCCGTTCTACCGCTGCCAGAA ACCACCTCTGTGGAAAAAGGCAACTCGGCGGTGATGGGCGGGGTGCTCTTCAGCACCGGC CTCCTGGGCAACCTGCTGGCCCTGGGGCTGCTGGCGCGCTCGG

148 PTGDR

GCTGGGGTGGTGCTCGCGGCGTCCACTGCGCCCGCTGCCCTCGGTCTTCTACATGCTGGT GTGTGGCCTGACGGTCACCGACTTGCTGGGCAAGTGCCTCCTA GCCCGGTGGTGCTGGCTGCCTACGCTCAGAACCGGAGTCTGCGGGTGCTTGCGCCCGCAT TGGACAACTCGTTGTGCCAAGCCTTCGCCTTCTTCATGTCCTT TTTGGGCTCTCCTCGACACTGCAACTCCTGGCCATGGCACTGGAGTGCTGGCTCTCCCTA GGGCACCCTTTCTTCTACCGACGGCACATCACCCTGCGCCTGG CGCACTGGTGGCCCCGGTGGTGAGCGCCTTCTCCCTGGCTTTCTGCGCGCTACCTTTCAT GGGCTTCGGGAAGTTCGTGCAGTACTGCCCCGGCACCTGGTGC

SEQ

GENE

ID SEQUENCE NAME

NO

TTATCCAGATGGTCCACGAGGAGGGCTCGCTGTCGGTGCTGGGGTACTCTGTGCTCT ACTCCAGCCTCATGGCGCTGCTGGTCCTCGCCACCGTGCTGTGCAA CTCGGCGCCATGCGCAACCTCTATGCGATGCACCGGCGGCTGCAGCGGCACCCGCGCTCC TGCACCAGGGACTGTGCCGAGCCGCGCGCGGACGGGAGGGAAG GTCCCCTCAGCCCCTGGAGGAGCTGGATCACCTCCTGCTGCTGGCGCTGATGACCGTGCT CTTCACTATGTGTTCTCTGCCCGTAATTGTGAGTCCCCGGGCC CGAGGCAGCAGGGCACTGAGACTGTCCGGCCGCGGATGCGGGGCGGGAAGGGTGGA

CTTCCGCCGCGGTATCTGCGTGCCCTTTTCTGGGCGAGCCCTGGGAGATCCAGGGAG AACTGGGCGCTCCAGATGGTGTATGTCTGTACCTTCACAGCAAGGC TCCCTTGGATTTGAGGCTTCCTATTTTGTCTGGGATCGGGGTTTCTCCTTGTCCCAGTGG CAGCCCCGCGTTGCGGGTTCCGGGCGCTGCGCGGAGCCCAAGG TGCATGGCAGTGTGCAGCGCCCGCCAGTCGGGCTGGTGGGTTGTGCACTCCGTCGGCAGC TGCAGAAAGGTGGGAGTGCAGGTCTTGCCTTTCCTCACCGGGC GTTGGCTTCCAGCACCGAGGCTGACCTATCGTGGCAAGTTTGCGGCCCCCGCAGATCCCC AGTGGAGAAAGAGGGCTCTTCCGATGCGATCGAGTGTGCGCCT CCCGCAAAGCAATGCAGACCCTAAATCACTCAAGGCCTGGAGCTCCAGTCTCAAAGGTGG CAGAAAAGGCCAGACCTAACTCGAGCACCTACTGCCTTCTGCT GCCCCGCAGAGCCTTCAGGGACTGACTGGGACGCCCCTGGTGGCGGGCAGTCCCATCCGC CATGAGAACGCCGTGCAGGGCAGCGCAGTGGAGGTGCAGACGT CCAGCCGCCGTGGAAGGCGCTCAGCGAGTTTGCCCTCCAGAGCGACCTGGACCAACCCGC CTTCCAACAGCTGGTGAGGCCCTGCCCTACCCGCCCCGACCTC GGACTCTGCGGGTTGGGGATTTAGCCACTTAGCCTGGCAGAGAGGGGAGGGGGTGGCCTT GGGCTGAGGGGCTGGGTACAGCCCTAGGCGGTGGGGGAGGGGG ACAG GGCGGGC C GAAACC CACC CGGCCCA ACGCGCCC AAACCAGG C CCC GGA AAAG GC CACAAGAGAGG CGCAGGA AACCAACCC CTCCCCCGCCCTAATCCCCCCCTCGTGCGCCTGGGGACCTGGCCTCCTTCTCCGCAGGGC TTGCTCTCAGCTGGCGGCCGGTCCCCAAGGGACACTTTCCGAC

149 ISL2

CGGAGCACGCGGCCCTGGAGCACCAGCTCGCGTGCCTCTTCACCTGCCTCTTCCCGGTGT TTCCGCCGCCCCAGGTCTCCTTCTCCGAGTCCGGCTCCCTAGG AACTCCTCCGGCAGCGACGTGACCTCCCTGTCCTCGCAGCTCCCGGACACCCCCAACAGT ATGGTGCCGAGTCCCGTGGAGACGTGAGGGGGACCCCTCCCTG CAGCCCGCGGACCTCGCATGCTCCCTGCATGAGACTCACCCATGCTCAGGCCATTCCAGT TCCGAAAGCTCTCTCGCCTTCGTAATTATTCTATTGTTATTTA GAGAGAGTACCGAGAGACACGGTCTGGACAGCCCAAGGCGCCAGGATGCAACCTGCTTTC ACCAGACTGCAGACCCCTGCTCCGAGGACTCTTAGTTTTTCAA ACCAGAATCTGGGACTTACCAGGGTTAGCTCTGCCCTCTCCTCTCCTCTCTACGTGGCCG CCGCTCTGTCTCTCCACGCCCCACCTGTGTCCCCATCTCGGCC GCCCGGAGCTCGCCCACGCGGACCCCCGCCCTGCCCCAGCTCAGCGCTCCCTGGCGGCTT CGCCCGGGCTCCTAGCGGGGAAAAGGAAGGGGATAACTCAGAG AACAGACACTCAAACTCCCAAAGCGCATGATTGCTGGGAAACAGTAGAAACCAGACTTGC CTTGAAAGTGTTTAAGTTATTCGACGGAGGACAGAGTATGTGA CCTTTGCCGAACAAACAAACGTAAGTTATTGTTATTTATTGTGAGAACAGCCAGTTCATA GTGGGACTTGTATTTTGATCTTAATAAAAAATAATAACCCGGG CGACGCCACTCCTCTGTGCTGTTGGCGCGGCGGGAGGGCCGGCGGAGGCCAGTTCAGGGG TCAGGCTGGCGTCGGCTGCCGGGGCTCCGCGTGCTGCGGGCGG GCGGGCCCGGTGGGGATTGGGCGC

AGTTTGGGGAGCCTTTTCTCCATTTGAGAAAAAACAAACTTACAGCGAGGGGTGAGG GGTTAGGGTTTGGGATTGGGGAAAATGTGGGTGGGGAGCCCCCCCA GGAAGTGAGGAGGGGGCTGCAAGGATTACACCTGGGCATACGTTTCCCTAGAAATCACAT TCATTGTATTTTTATAATTTATTCTAAATCTTTCATGCGAAGA

chrl5:8 AGTCAGTAGTGAGTGTTAGTACTGGTGGCCCTCCTGATCACACTTGCATCTCTTGAGTGT GCCTTAAAGGTCTTGGGAATGGAAAATATAAAAACTGCTTCGT 775000 ATGCGTCATCTTTATCCCCCACTCCCCCACCCATTCCAATATATTTTCTACTTCCAGCCT AAATTCGGGGCCCCCTACCGAGGCCGGCCATGATCTTGAGGGC

150 0- GCATAGGGGAGGCCGCGCTCTGTCCACCCCAGCCTGGTGATGCCGTTCGCTTCTTGTGCC CGGTATTGTGGGCTACATGCCTTTCCGGCGTACGGAGCTGAGC

877510 TCCAGGCCAGTGCCCCTCAACCTCTCAGTAATGTTTACCCGAGGCCGTCGTGCAATGAGA CTATTCGCATGGCATTGTCAACGCGGCGGCGCGCGCGTCTCGG 00 CCTCCGCGGCTTGCCAGACTGTCCTGCAAACCACCTCACCCGTCTCTTTGGCGCAGGAGA CTCAGGCTGTAACCGGAGAAAACACTTCACCCTGGAACCCTAA

TCAGGTCCTGGCAAAAGATGCGAGAGGAAGACTTGCTCTCTTAATAAATCTCGGCCGCCC GCACATCTGGCCCCTAGACCTGCTCGGTAGAGGACTGGCTGGT GATGCGCGGTCCAGGCCGTGGGCACTCGACCCACCTCTATTTTCCTTCCCGAGGCGCCCC TGGATTACCACTTTCGGTTTGCGCTTACATCCGGGATGTCGAA

SEQ

GENE

ID SEQUENCE NAME

NO

TTCCCAGGGAATCATAATTATTTTATCTATAATTTATTCTAACCCCAAGGTTCCAAG AAAATCT

ACATTCCTTCTAAAATGTGGGCTTTCTGTGTACATGGGCGCGCATTCCCAGGACTCG GTTCCCTGGGTGGAATTCACCCAGGAATACAATCGATTTTCTGAAC TGCGTAAGGCCACAGGCAGCTCTGAAAATGAAAGCGTTTGCTAAGTGGGGGAGATCTCAC CGATCGAACGTTTAAAAATGGCTTTGTCTTCATTCAGCTCTCC GATTTATTCTGTGTTTTACAAATAGAAGCTCAGAGCTTCTGTCGCCCAGTCCTTGCATGA CTCATGGCGGTGGCCACACGGGTTTCAGGGATAACGGGATGTT

chrl5:8 AGAAAATCGCTGCATATCGGAGTTTCCTAGCACGTTCCATTTATACTGAACGCAGGCGGC CGCTGAAAATCCAGCCTCGACTCTTGCTAATGACTGGGTAGGA 775300 CCTCGGGGTCCTGCGACGGTGCTGGAGGGTGTTCCCGGCTCCGATGTGGGGAGGCCTGCG CGGGGACTAGGTTCTCGAGAGGCGAGCGGGCGCGCCAGAGAAC

151 0- CGAGACTGCTGCGGGGCCGGATGCGGGATCCCTGGGCTGCGGTTCTACGCAGAAACGCCA ATGGCCATGCCTCCCCAGCTCCTCCCAGCCCCAGTCACTAGGC

877541 GGCGCCTGGCCCGGAGATCCTCCCAGAGCCCTGGCGGTGCCATCATGCCGGAGAAGACAA GCTCGGCCCCGCTGGAATTCGCTCCAAACACAGATGCTCATTT 00 TGGAATATTCTAGAAAAATAACAAGATCTTGTTTGTCGTTATGATTCACGGGAGGTAACT GATGGGAGGGCCATTTACATGAGGGCAGACACTGTGGGGCGAA

GTGACTTCTGGACGTAGGCTTTAAAGTAGGAACGGCTCCAAATTCCCAATATCTCCGGCC TTACCGGTTGCAAATCGGACCCCTGCGGGAAAACCAGACACTT TGTTTCGTGGCTTTCGGGCTGCCTCCAGCCCACGCAGGCTCGTTTAGTCCCCGTGGAGTC AGCCCCGAGCCTTCCTAGTCCTGGAACAAGGGCTCCAGGTCGC GCCGCGGGAAGCCGCCAAGAGGGCGGGGAGTAGGGATTCCCTCCAGCTCCGCAGGGCATC

TCCTCCTCGGCCTCAGATGTCGTCCCACCTGCCCACGAGCAGGGAACCTGGAACCCA CTCTCCCGGCAGTCCCCAGCGGGTTCCGCCACCCGGCGGCCGCCCC GACACCGAGTGGGTGGGAGGAAGAGGCAGCTGGCGGGGATGGGCCATTGAGACCTCTTGA AAAATATTAAAAGACAGGATGGGTAGAGATTTCTCCGGGAGAA GTTCGAGGGTGCATCGGGTCGCGGCTGGGAGGAGTACCCGAAATGCCAGCAGGAGAAATG CAACCTGTTTAGGCCACACCTTCAATCCCCGAGGCTGTCTGGA AGACTGCGTGCGGGGGACTTGCCGGCGTTCCCACACCGCGCCTGCAATCCACTCCCGCGG CTGCCTGGCCTCTGCCACTCGCGGCTTGAAGCCAGTGGCTCTC AGCCCTCGGCCCCGCGGCGGCCCGCGCAGCCTTCACCCGGCGCCGGCACCACGAAGCCTG GCCGCAGTGGACTCCCCGCAGCTCGCTGCGCCCTGGCGTCTCC GTCGAGGAGGGAGGGACGGAGGCCTGAGCCGGGAGCTCCCTGGCGGTGGTCGGGCCGCCC CCCTTGAGGCCTGCTCCCCCCTCTCGGCCTCGCCAAATCCCTG AAGCCCAGTCCCCCTTCGTCACCCCGGGGGCTTCTAATCACTCGGTATCGATTTCCCTAA CTCTTTTCATCCTGTTGAAGACACATCTTAAAACACTCCAGCC

152 N 2F2 GGAGTGTGCTCTGGGCTTTATCCACACTAATAAAATGATTTACCCTTCTCTCCGCGCTCT CCTCACAGAGGAAAATCGTTCGAGCCCCGGCTATTTGTGTGTG

TCAGTAAATATTTAGTGCGCTGACATCCTTAGCTGGGCTTCGGATCGATTCGGGGCCCAC CGGGAGGTGCGCACGGTCCGGGCGGGGCCGCGCCGAGCTCGCC AGGGGGCTCCTCCCGCCCTCGCCGCCGGCCGCTGATTTACGGCCCCTGCAACCAGCTAAG GGGGGCGAAAGCGCGCCTGGAAAATTGGCTTTTCAACCTTTTA TTTTGACATTCAGCCACTTCCCCAGGCTCTAATTCTCGCCCGCACTCCTCCCTCCCGCCC TACTAAGGGTTGCCCTGTGCGCCCTGCGAGCCCTTCCAGCAGC ACGCGCGGCGCTCGCGCCCCCTCGGCCCGGGGACCACCTATCACAGCCCTGAGCCGCGAC GCGGGGAGGCCCCGGCCCCTGCTATGGGGGTCGCCTCCTTCGA GAGAGATGCTCTCCGCCCGCCCACACCTCTGAGGGAGGAGAGGGGGTGGAGAAGCCCAGA GCTGCATCTGCTGGATGACGAGCCGCTCTCCCTGCTACCCTTT TCCGACCCGTCGGCCTTTCTCCTACTCTGGAGACTGATCCTCGACGTCCATCGGGCCGGA TGGCGTCGGGTGGAAGCGTTACTTTCCTCGCAGAAAAACTCCT CTCTTTCCTAAGATCAGAAAAAGCGCTTAGCTTGGAATTGTTAG

CCTAGGCATTCTCAGCCCGTTTTGCTGGAGGGGGCATTTGAGGCCTGGCCAGCTTAG CCAGCCTACAAGGAGTGTTACTGGGGTGAAAACAGCCAGCGGGGAC

chrl6:l

AGTCTGCTTGTGGCCCGCCAGGTGCCTGGGATGGGGAAGCAGCAAATGCCCACCTTCCTG CCCAACCCCCTCCTCCCTCTTCATGGGGGGAACTGGGGGTGGC

123430

GCGGCTGCCGGGTGCGAGCGGGCTCAGGCCTGTGGCCCTGCCTGACGTTGGTCCCCATCA AGCCATGTGACGAGACCAGGCCACAAGAAAGAGGTTTCAACAA

153 0- CGTTATCGTTTCCTGGAACTCCAACTCGGCGACTTCCCCGAAGACCGGCTGTGCCTGGCG GGCGGGCTGCGCACAGCGGGGACAAGGCTGCCCCCTTCCTCCT

112349

CGCTGCCTCCGCGGCCGCGTCTATCTCAGTCTGACTACCTGGAAGCAGCACTCCACCCTC CAGCCCAGCGGCCCTCGGCTCAGCTGCCAGGTCACCGGCAACC

00 CGGGAGCGGTGGGGCAGGGGCTGCTCCGCCAGCCTCTGTGATGTTCAGGCCGGGCTGCAC CAGCCCGGGACCCCTAGGTG

SEQ

GENE

ID SEQUENCE NAME

NO

GCGCGGGGGGCCGGAGGATGGCGGCCTGGGGGCCCTGCGGGGGCTGTCGGTGGCCGC CAGCTGCCTGGTGGTGCTGGAGAACTTGCTGGTGCTGGCGGCCATC CCAGCCACATGCGGTCGCGACGCTGGGTCTACTATTGCCTGGTGAACATCACGCTGAGTG ACCTGCTCACGGGCGCGGCCTACCTGGCCAACGTGCTGCTGTC GGGGCCCGCACCTTCCGTCTGGCGCCCGCCCAGTGGTTCCTACGGGAGGGCCTGCTCTTC ACCGCCCTGGCCGCCTCCACCTTCAGCCTGCTCTTCACTGCAG GGAGCGCTTTGCCACCATGGTGCGGCCGGTGGCCGAGAGCGGGGCCACCAAGACCAGCCG CGTCTACGGCTTCATCGGCCTCTGCTGGCTGCTGGCCGCGCTG TGGGGATGCTGCCTTTGCTGGGCTGGAACTGCCTGTGCGCCTTTGACCGCTGCTCCAGCC TTCTGCCCCTCTACTCCAAGCGCTACATCCTCTTCTGCCTGGT ATCTTCGCCGGCGTCCTGGCCACCATCATGGGCCTCTATGGGGCCATCTTCCGCCTGGTG CAGGCCAGCGGGCAGAAGGCCCCACGCCCAGCGGCCCGCCGCA

159 S1P 4 GGCCCGCCGCCTGCTGAAGACGGTGCTGATGATCCTGCTGGCCTTCCTGGTGTGCTGGGG CCCACTCTTCGGGCTGCTGCTGGCCGACGTCTTTGGCTCCAAC

TCTGGGCCCAGGAGTACCTGCGGGGCATGGACTGGATCCTGGCCCTGGCCGTCCTCAACT CGGCGGTCAACCCCATCATCTACTCCTTCCGCAGCAGGGAGGT TGCAGAGCCGTGCTCAGCTTCCTCTGCTGCGGGTGTCTCCGGCTGGGCATGCGAGGGCCC GGGGACTGCCTGGCCCGGGCCGTCGAGGCTCACTCCGGAGCTT CACCACCGACAGCTCTCTGAGGCCAAGGGACAGCTTTCGCGGCTCCCGCTCGCTCAGCTT TCGGATGCGGGAGCCCCTGTCCAGCATCTCCAGCGTGCGGAGC TCTGAAGTTGCAGTCTTGCGTGTGGATGGTGCAGCCACCGGGTGCGTGCCAGGCAGGCCC TCCTGGGGTACAGGAAGCTGTGTGCACGCAGCCTCGCCTGTAT GGGAGCAGGGAACGGGACAGGCCCCCATGGTCTTCCCGGTGGCCTCTCGGGGCTTC

GGGCGGGTTGCCACAC GTCCCCTTTCTGCAT GGGAGGAAGGGGGC T C GAGAAC T GAGTCAGC C AC AC AAAAC GAGGAT GGAC AGAAC T C C T GAGTAGC GAGG TGCCTGCCGGGCGC GAGGAGGAGGGGGAAGAC GAGGAAGAC GAGGAGGAGGAA AGGGAGC AC C AC AT GAC AGAGGGGC T GC C T CAGAC C AC AAAGC GC T T C C

MAP2K CATCCTTTCCTCGCCCTTTGATGCCGCCGGCAACGTGACTCTGCGAGCAGCGGGGCAGAC GCCAGGTCTCCCTCGCAGGCGGGAAAGGGGCTCCAAGGCGGGT

160

2 CTGCCTTGCTCGGGTCACATGGCTACGTGGGGGCCTTGCTCAAATTCACTTCCTGCCTTC ATTACAAAACTGTCAAAGGGGATCGCACGTTTGCAGGGTGTCA

CCAAGCATTCTGGTTTTGCAAACGACGCTGTGCGGCAGGCGGTCTGATACCTGATGAGCT CGGTGTGGCGGGGTCGGCAGCATTTCCTCCGGGGTTTTGAGCT TGGCCACTTCTCCTTTTGTTCCACCCAATCTCACCCACTTCTGGGCTTCGAGGCCAGAGT GTCTTAACAAGGGGGCACGT

GAGC GAGAC T T T GT C T C AAAAAAAAAAAAAAC C AAAT AAAT T GAAAGC T GAGAAAT T C AGAGC AC AAGAAGAC AAGC GCGCCCCCTCTTTTAGC T GT C AAC AT GCGGAGCCGTCCCTGGTGACGCAGCCTCCAAAGGCCTCCCTGTGCCCTCCTGAGACCGCA AGAGGGAAAGTGGCAGCGACAGTGATCGTGGTGTCTTTGTGGC

161 UHRF1 GTTGTGTTGACCTCACTGACCCCCGAAGTGCCGCTCTAGGGTCTGTCCTCAGCGGTGACC CGGCCGGGTCGAAGGGCAGAGTTCCGCTGTCACTAGCCCTCCA

CCGTCCTGTGTGCTGGGATGCCCTCGCGGCGCCGTCCACGCCACCGCCGCCCCCTCTTGT GGGTTCTGTCTCCTCCGTGTCTAGGATCCTCCTGCATCCGTTT TCCTTCCTCCCTTCTCTCCCTCCGTCTGTCTTGCCCGCACCTGAGGTTGTCGCAGAGGCG CTGAGACGGGCCAGCAGGAGCTGT

TGCTGTCCCGGTCCTGTCGCAGTCCTCAAAGATGCTAGAGTGACAGTCCTCTAGGGG TAGAGATGGTCGTCCTCCCAGGAGAAGGTGGCCCGGAGACTTGGAG TGGGATCAATCCTGCCAGTCCTGGATCAGGAGGCCTCTGTCGGGCGCCGCCCCCCTTCCT CCTCCATCAGCAACAGGCGGCGCCGGCCAGCCTCATAGTCAGC TCATCCACACTGACCAGCAGGCGAACAGCCTCCCGGCCCACAGCCTCTCGCAGGGCCTCA GTCAGGAACACGCCCCGCAGGGCCTGCAGCAGGGCGCCACTCA

162 DEDD2 GTAGTCGCCCCAGAAGGCGTCCAGATAGGAGAGCTCTGAGAACTTGATGTCACAAACCAC AGAGCCCAGGTCCCTTGAGCGCAGCACTGCGGTGGCCTGCCCA

ACACGTCCAGCTGCCGCGCCAGCGCCTGGGGCCGCCGGGATGCCACGCCCTGCTCCAAGG CTGGCCCATGCTCGCAGTACTCTGCTCGAACCCGGAGCCGGAT T C T GC AGGGGAAGGAGGGAT T T GT C AGGGAGGGGGC C AAC AC T AGAC AC AC T T AT GGGGAAC GC C AC C C T T C C T C C C T C C

TGATGCCCGGCCCCCAGGGGGGCAGAGGCGCCGCCACCATGAGCCTGGGCAAGCTCT CGCCTGTGGGCTGGGTGTCCAGTTCACAGGGAAAGAGGCGGCTGAC

CDC42E GCAGACATGATCAGCCACCCACTCGGGGACTTCCGCCACACCATGCATGTGGGCCGTGGC GGGGATGTCTTCGGGGACACGTCCTTCCTCAGCAACCACGGTG

163

PI CAGCTCCGGGAGCACCCATCGCTCACCCCGCAGCTTCCTGGCCAAGAAGCTGCAGCTGGT GCGGAGGGTGGGGGCGCCCCCCCGGAGGATGGCATCTCCCCCT CACCCTCCCCGGCTCCACCGGCCATCTCCCCCATCATCAAGAACGCCATCTCCCTGCCCC AGCTCAACCAGGCCGCCTACGACAGCCTCGTGGTTGGCAAGCT

GTGGGTGCAGCGCACCAGCATGTCACACGTTTACATATGTAACTAACCTGCACATTG TGCACATGTACCCTAAAACTTAAAGTATAATAAAAAAAATACTGTT CTGCCATACATACAGATACTCATTAAAGATGAGGGAGAAGGGCATGGGGTGGGGGAGAAT GTACCAAAACCAAAGACCACAGGATAATAACCTCAGAGCAGA ACTATCTCTCTAGTTATTTTTTCTTTTGTATGTAATGGAGAGGATTATTATTTACTCTGA TGAAGAAGTTTACATCAAGTGTTCAGCTTCCTTTGTGGGTTAC AGAGAATAACCAGAGGGCTCAGTTATGCTCTCTGAATAACTATGTTTGCTTAGTGTTTTC TAAACAATATTAAATTTCACTAAAATAGACAAGGTTGATAGG CTTGGGGGCATAACTCATTGACTCAAGCTATCATTTTATAGGATTGTGAGAAAACAAATA GATGAACATTTAAAATACACTCATATTCTCGCTAGAAAAGAG ATTTTGAATATTCTTACATCAAAGACATGGTAAATGTTTAAGGCAATGAATATGCTAATT ACCATGATTTGATCATTATGCAATGTAAAATGTACTGAAACAT CACATTGTACCTCATAAATATGTACAATTTATTATGTGCGAATTAAAATTTTGAGTATAA GAAAAAATAAACTTCAATTGTAAGAAAACAACCCAACTTTTA AAAACGGGCAAAATACGTGAACAGATACTTCACTAATAGAGATTTGCAACTGGCAAATAA GCAAATGAAAAACTGGTCATCATCACTATCTATTAGAGAAAT CAGATTAAAACTACAATAAGAAACAATGCTGCCCGTCCAGACGCATTGTTTTGACCGTTT CCAACTTGTCCCAGCCCTTCCCGGGGCATCGCTGGGGACCCT CGCCGACGTCCCCCCTCCGCCCGCGCCCCAAGGGCCGACTGGGCAAATTGGGAGACCCGC CCCGCGGGGCGACCCAACTTTTCGGAACAGCACCCCACCGCCC ACCCCCGCAGACCCCCGGACCCCCGCTCCCGGCGGAGACTCAGGGAACCCCGCACCCCAA GCCCTTCTAAATCGTGCAGCGTGAGTGTGACGGCCAAGAGCG ATGCAGCCCGGGATCGCCCGCACCTTCCCGTGGGCGGAAGCGCAGGAGCCAGCTGGGGAG GGGGCGCCCTAGAGGAGCGGCTAGAAAGCAGACACGGGGAACT CAGGTCATCCTGGGGGGGGACAAGACAACGAGAGCCGGGCGCCTCGGGGGCGGCGCGGGA GCCTCCGCAGGACCGGGCGGGCGCCCCGGCTGGCGCGGGCGG GGGCGCGCCCCCTTTACCTGCGGCTCCGGCTCCTAGGCCATTTCCTCACGCGGCGGCGGC CGGGACTGAGCTAACACCACTCAGGCCGGCCGGGTTTGAATG GGAGGAGCGGGCGCGGAGAGGAGGGGACGGGGAGGGCGGAGGGAGGGAGGGAGGCGTCGC GGAGTTTTTCTCGGCCTTTTGTGCGGACACCTCCCGGATTCC CGCCCGCACCCGGCCCCCCAAAAGACACGGGGAGCCGCGGGCGAGGGGTTCAGCCATCCG CCGAGGCGCCTAGTGCCTTCGCGCCTCCAAGACCCCCCCCCA CAAAAAGGAGCGTCCCCCACCCCTACCCCCGCCCGGAGGACTTAGGGCCTGGGCTCACCT CGGGCGCGGAGCTAAGTGTAGGCGCCGGGGGTCCCTAGAGCC CCGGGGCGCAGCGAGTCCGGCGCTGGGTAACTGTTGGGTCAGAAACTGTTCAGGTAGCAG CTGTTGTGCCCTCCCTTGGCCCCGCCGCTCGGAGACGCCCCGC CCCCTGCCTTGAACGGCCGCCCGGCCCCGCCCCAGCGCCCACGTGACTAGCATAGGCGCG CCCCCGTTCCGCCCGCCGCCGCAGACTCCGCCTCCGGGACGC AGCGAGCGGCGAGCGCGCGCACTACCAGTTCTTGCTCGGCGACTCCCGCGCACGCGCGCG CCGTGCCACCCTCCCCGCACCCCTCCTCCCGCCATCCGGCTT ACGTGGCGGGCGCGCGCCGCGGCAGTAGCCGTGACAGGTACCCGGCGGGGCGGGGGGGGA GGGGGTTGGCCCGCGAGGGTGTGCGCAGGCACAGACCCGGGTC CTGTCCCCGCCGCCCCCTCCTCTGCAAGGTGTGCCTGGGCGAGGGGAGGGGCCCGCGGCC CGAACCCCTGGGTCACCCCCGAATTACAAACAAAAACCTTAAC GCCATTGCTCGCGGGTTAGAAGGCAGCTGTGCGTGCTCAGGAAAAGAAGCCACGCACAAG AGACCGCACGCGGCGTGGATACAGTGACACGAAACACCCAAA TCTCTTTTGAAAGGGAAACCAGGCACAGTGGCTCATGCCTATAATCCCAGCACTTTCGGG GGCCAAGGCGCTCACCTAAACCCGAGAGTTCAAGACCAGCCT GGCAATACAGCGAAACCCTGTCTCTACGAAAAATATAAAAATTAGCTGGGCATAGGGCTG GGCACGGTGGCTCACGCCTGTAATCCCAGCATTTTGGAGGCC AGGCGGGCGGATCACGAGGTCAGGAGTTCCAGACCATCCTGGCTAACACAGTGAAACCTT CTCTCTACTAAAAATACAAAAAAAATTAGCCGGGCGTGGTGGC AGGTGCCTGTAGTCCTAGCTACTTGGGAGGTTGAGGCAGGAGAATGGCATGAATCAGGGA GCGGAGGCTGCAGTGAGCTGAGATTGCGCCACTGCACTCCAGC CTGGGGGACAGAGTGAGACTCCGTCTCAAAAAAAAAAATAATAATTAGCTGGGCATGGTG GCTGGCACACATGGTCCCAGCTACTCAGGAGGCTGAGGTGGA GGATCTCTTGATCCCGGGGAGGTCAAGGCTGCAGTGAGCCAAGATGGCATCACCGCACTC CAGCCTGGGCCACAGACCCTGTCTCAAAAAAAAAAGAGAAAGT GGGGAAGAAAATGTAATACAAATTAATATACCAACAGCAATTAGTGAGTACTTTTTCCAT GGAGCTGGGAGAGGGAATAAATGTTTGTAAAATTAAAATGTTC TACGCTAGAAATCAACTTTCCTTCTATGCTTTCTTTACTTCACCCCTTATAGCTACTTAG TAAATCTCACAAATCCTATCCTTCTGATCTCTCTGAAATGTAT GTACCCTTTCCCTTCTATTCTCACCACCCATGTTTCTTTGTTTCCTTCTAGCCTGTGTAA TAATCTCATAATCGCACCTCCTGTACCTGCCTTCTTTCTAGTC CAGAATACGTTTTCCTAAATTCCACCAATAACCATCCTGCTACTGCTTTGTGTGAAATTC TCCAAAAAAAATTTTACTTTTCCAAAATAAGTCAGGCTCCCTC TCTTAGGATACAAAACCACACCATGGTCCCAGCCAATCTTTCAGCCTGATTCACTCAGTA TATATTTATTGACCTCTCCTTTCTCCCAAGCACTTGGCTAGAT AATAATTAAAGAGTGCGGCACAAAACAAATTGGATTCCTCCCCTCATGGAGCTTGTATTT TCACAGGAAGCACAGACATTAAATAAATTAAAACACAAAAAA TAGACAAGCATATAATTACAGTATGTATCCTAGAGAAATATCACTCATGCAGAAAGCATA CACAAGGATGCAGCACTGTTTCCAATAGCGAAAAGCTAGAAAC

AACCTACATGTTCACCAAAAGAAAATGGCCACATAAACTATACCATATCCAAATTAT CCAAATTTTAGAATATAGACAACAGGTTGGGCGCGGTGGCTCACAC CTGTAATCCCAGCACTTTGGGAAGCCGAGGCGGGTGGATCACAAGGTCAGGAGTTCAAGA CCAGCCTGGCCAACATGGTGAAACCCCGTCTCCTCTAAAAAA C AAAAAAAT CAGCTGGGCAC T GT GGC AGGAGC CTGTAATCCCAGCTACT GAGGAGAC T GAGGC AGGAGAAT C GC T T GAAC C C T GGAGGC AGAGGT T GC AGT G GC CAAGAT CGCGCCACTGCACTCTAGCCT GGGT GAC AGAGC AAGAC TCCATCTCAG

TGTAGGAGTCCTCCGGTGCTGGAGTCCAGAGCACAGTGAGGCTGGGTCCTCCCGTGC CATAGTGTAGGGCATGGCGGGACAGGGATCCTGCCCTGCGATAGTC CAGTGCTTGAGTCCGCAGTAAGGCAATGGTCCTCCAATGCTGGAGTTCACGGCGTTGTGG GGTCGGGGTCCTTTGGTGACTTAGTCCAGGGCGTACCAGGGC GGGGTCCACAGTTGCCATAGTGAGGATCTTGGAGGAAGGTGGTTCCTGCCTTGCTGTAGT CCGGGGAGCAGGGGGCAGGGGTCCTCTCTTGTCAGAGTCTCT GCGCGGGGTGGGGGTGGAGGTGGGGGTTTTCCTATGCGATAGCCCACGGGTCGGTGAAGC CGGGTCCTCCCGTGCCTTTGTCCAGGGCGCAGGGGGGCGAGG TCTTCGGTGGTGGAGTCCGCGGAGCGGCAGGACGGGGGTCCTCCAGTGCCATATTCCAGG GCGCGGCGGAGTGGGGGACCTGTCCTGCAGTGGTCCAGGGCAT

chr21:l GTGGGAGTGGTGGTCCTGCTGTGCCTCAGTCCAGTGCGCGGTGGGACGGCGGTCCTGCTG TGCTGTAGTGCAGGACGCGGTGGCGCAGGGGTAGTCCAGAGA 397450 CGCCGTGGCAGGGGGTCCTCCAGTGCTGGAATCCAGTGCAAGGCGGGTCAGGGGTCTTAC CGTGCCGAAGTCGGTGGCAAGGGTCCTCCCGTGCCATAGTCT

168 0- GGGGGCGACGGGGCAGGGTTCTCTAGTGCAGGTGTCCAGGGTGTGGCAGGGCAGGAGTCC TCTTGTGCAGGAGTCCAGGACGTAGCCGAGGAGTCCTCCAAT

139760 TCAGAGTCCAGGGCTCTGCGGGGCCGGGTTCCCCCATGCCAGAGTGTAGGGCGCGTTCAG GTGAGGGTCTTGGCGTGCAGTAATCCAGGGTGCGGTGGGGCA 00 GGGTAGTCCAGACCTCCATGGCGGGCGTCCCTCTGTGCAGGAGCCCAGTGCCTGGCGGAT CGGGGGTCCTTCTGTGCTGTAGTCCAGGGCACCGCAAGGTGT

GGTCCTCTGGTGCCCTAGTCCAGGGGGCGGCGAGTCAGAGGTTCTCCCGTGTCTCAGTCT AGGGCCTGGTAGGACTGGGGTCCTGGAGTCCACGTGGTAGCCC AAGTTGCCGCAGGACCAGGTACTCTGGAACCACAGTCCAGGGCGCTGAGGGGCAGGAGTA GTTCAGGGCGAGCCGGGGCCCAGGTCCTCGGGAGCCAGAGTCC AGGGTGTGGAGGGGTGGGGGTTCTGCAGTGGCACAGTCCAGGACACCGCGGGGCGGGACA GGGCGGGGATCCTCCCGTGCCTTAGTCCAGGGCTGAGCCGCG GAGAGGTCCTTCAGTAGCACAGTCTAGCGCACGGCGTTGCAGGTGTCCTCCAGTGCCTGA GGCCACGGCAGGTCGCGGGTCCCACTGTGCTCTAGTTCAGGGC GGAGTGGGTCTGAGGTCTTCTCCTGCCTCAGTCTAGGGCGCTGGAGAGCGGGGATCCT

GGGTTGGTCCTAGAAAGCGTGAGGATCGCCGAGTGCACTGCCCTCCCAGCCTAGGGT CCACTCTTCCTTGGCCCGAGCCCAGAGCTCGGGGTTTCAGGCGCT GGCCCTGTGCAGCTGCCCAGAATAGGCTGAGCGGCAGGTTCCCGCCCTGGCAAGGGATCC AGCAGTGGAATCCTCACTGCTGTTGGCTGCGGGCAAGGTCAGC GGGGTTTCCATCGCTGCTGGTGGGAGCCACCTGGCGGTGGTAGCTGCAAGTGAGCGCGTG GCAGAGACTGGCAGGGCTGGTCCCAGACACCCTGAGGGTCTCT GGGTGCATCGCCCTACCACCCTAGGGTCTGCTCTTCCTTAGCCTGCTCCCAGGACGCGGT GTACGAGGGCTAGACTCTGAGCAGCCTCCAGGATGGGGCTGA CAGCGGATTCCTGCCCTGCTGCAGCTACAGTCTGAATTAGGCGCCACCGCAGTATCTGGC CCTGGGGTACGTGCTACTGGGTGGCATGGACAGAGATGGGGGC T GC C AC AGC T GC T AT GGGGC T GAGC AGC C GAT T C T C GC C C T GC T GC AGC GGGC GAC C GC T GC AAT C C C C AGC GC T AT GGGAC C GAC C AC C T GAC T T AGAT GC C

chr21:l TTGGAGGCATCCGGTCCTGGGGTCTTGCTGCTGGTGTCTGCGGGCAGGGTCACGGCTGCC ACTACTACTGCTGTGCGCCATGGGCAGGTGCCAGCTGCAGCT 398950 AGTCCGAGGCAGATGCTGTCAGGGCTGGTCTGAGGTTGCCTAAGGGTGGCTGAGTGCACC ACGCTTCCACCCCAGGGTCCGTTATTCCTAGGCCGGCTCCCA

169 0- ATTGCAGGGTTGTGGGCGTTGGACACTGTGCAGCCATGAGGATCTGGTTGGGTGCAGATT CCCGCCCTCCTGCAGCTGAGAAGCCAATCTCATAACAGGCGCT

139920 GCAGTGACCTCTGGCTCTGCGGTCCGCGCTGCTGCTGGAGCTGGCAGAGAACAGAGCTGC CACCGCTGCTGCTTCCAGGAGTGTGCAGCTGGCAGCTGCAGCT 00 GAGCCCGTGGCGGAGGCTGGAAGGCCTTATTCCAGAAGCCTTGAGGGTCCCCGAATGCAC CGCCCTCCCACCCTAAGGTCCAGTCTTCCTTGCCCGCGCCCA

AGAGTTGGATTGCAGGCGCTGAGCACAGTGCAGGTGCTGGGATGGGGCTAAGCTGAAAGT TTCCGCCCTCTGGCTGCTGCGGGGCCGACAGCCTGAGTTATGC GCCGCGGCGGCTTTTGGTCATGGGATCCGCACTGCCGGTGGCTTGCACAGGGTCGGGGGC TGCCACAGCTGCTATAGTTCACCGTGTGCACGTGGCAGCCGCC CCTGAGCCCACCGCTGAGGCTGCAGGGCTGGTCCGGTCCCAGACGGCCTGAGGGCCATTT GCCCGCGCCCAGATCCGGGTGGCTGCGCTGGGCACTGTGCAGC CTCCCGGAATCCGCTGAAGGGCACGTTCCCGCTCTCCTACAGCTGTGGGCCGACTGCCTG ATTTTGGCCACTAGGTGGAGTCTGGCTCTAGGGTTTCGAGGCC GCTGGTGTTGGTGGGCGGAGTCCGGGTTTGCCACCGCTGCGCTCCATGAGCAGGTAGCAG CTGCAGCGGAGCTTTAGACCGAGGCTGGCAGGGCTGGCCCCA ACGGCCTGAGGGTCAGGGAGTGCAGGGTCCTCCCACCCTAGGTCCGCTCTTCCTTTCCCC TTACCCAGAGCGGGTTGTGCGGGCTCTGGGCTCTGTGCCGGC

CTGGGCTCTGTGCAGCCGCCGAGATGGGGCTGAGCAGCGGATTTCCTCCCTGCTGCA GCTGGAGGACGATTACCTGCACTAGCCGCTGAGGCGGCATCTGGCC CTGGGTTACTGCAGCTGGTGACGCGGGCAGGGTCAGGGTTGGTTGCAGGTGGCAGCTGCT GCTAAACCCATTGCGAGCCTCAGGGTCACCAAGTTCACCGTCC TTTCATCATAGTATCTGATCTTTGGCCCGCGCCCAGAGTGCGGACTGGCCTGCGCTGGGG ACTGCATAGCTTCTGGGGGCCGGTCAGCGCCAGTTTCACGTCC TCCTGCAGCTGCGTGGCCTAAGGTCTTAGGCGCCGCGGCGCTATCTGGCCCTGCTGTCGA CGCTGCTGGTGGTGGGGACAGGGTCAAGGGTTGCCACTGCTGC TCCCGTGCGCCATCGGCAGGTGGCAGTTGCAGATGAGCCCACAATTGAGGCTGTTGGGGC TGCTCCCAGGTTGTTAGAGGGTCGCCGAGTTCACCGACATGCC ACCCTAGGTTACGCTCTTGGCCCGCACCCAGAGCGCCGGGTTACGGGTCCTGGGCCCTGT GCAGCCACGGGGATGGTGCTGAGTGCAGGTTCCCGTCTTCCT AGATGCGGGGCGACCACTGGAATTAGCCTCTGTGGTGGTATCTGACCCTAGGGTCCGAGC TGCTGGTGGCGTGGGCGGGGTCGAAGTCGCCTCTGTTGCTGC GCGTGCCATTTGCACCGTCCTCTGGTAC

AAATACTCTACTGAAAAAACAGAAATAGTAAATGAATACAGTAAAGTTTTAGAATAC AAAATCAGCATAGAAAAATCAGTCGCATTTCTATACCCAACAGCAT AC C AT C T GAAAAAGGAAT C AAGAAAC C AAT C C C AT T T AAAAT AGC T AT AAAAAAAT GC C T GGGAAT AAAC T AAGC C AAAT AAAT AT GT C T AAAATGAAAACT TAAAACATTGATAAAAATCAATTGAAAAAGATACAAATAAAGGGAAAGTTATCCCATTTT TATGAATTAGAAGTATTAATACTGTTAAAATGACCATCATACT CAAATCAGTCTATAGGTCCAATACAATCTCTAACAAATTTCCAATGTAATTCTTCAGAGA TGTTAAAAAAGGTTTTAAAAATCGTTCTGCGGATGTTAAAAG ATTTTTAAAACGCTTTTTTCGTTCTGCAGGCGAAGGCTGTGGCCGTGCTCCCGCCGGCCA GTTCCCAGCAGCAGCGCATTGCCCCTGCTCCACGCCTTCGCTC CAGGCCCGCAGGGGCGCAGCCCCGCGGGAATCAGCACTGAGCCGGTCCCGCCGCCGCCCC AGTGTCCGGGCTGCGACTGCGGGGAGCCGATCGCCCAGCGATT

chr21:l

GGAGGAGGGCGACGAGGCCTTCCGCCAGAGCGAGTACCAGAAAGCAGCCGGGCTCTTCCG CTCCACGCTGGCCCGGCTGGCGCAGCCCGACCGCGGTCAGTGC

399850

CTGAGGCTGGGGAACGCGCTGGCCCGCGCCGACCGCCTCCCGGTGGCCCTGGGCGCGTTC TGTGTCGCCCTGCGGCTCGAGGCGCTGCGGCCGGAGGAGCTG

170 0- GAGAGCTGGCAGAGCTGGCGGGCGGCCTGGTGTGCCCCGGCCTGCGCGAACGGCCACTGT TCACGGGGAAGCCGGGCGGCGAGCTTGAGGCGCCAGGCTAGG

140001 AGGGCCGGCCCTGGAGCCCGGCGCGCCCCGCGACCTGCTCGGCTGCCCGCGGCTGCTGCA CAAGCCGGTGACACTGCCCTGCGGGCTCACGGTCTGCAAGCGC 00 TGCGTGGAGCCGGGGCCGAGCGGCCACAGGCGCTGCGCGTGAACGTGGTGCTGAGCCGCA AGCTGGAGAGGTGCTTCCCGGCCAAGTGCCCGCTGCTCAGGCT

GGAGGGTCAGGCGCGGAGCCTGCAGCGCCAGCAGCAGCCCGAGGCCGCGCTGCTCAGGTG CGACCAGGCCCTGTAGCTGTGACTTGGCTGTGGGGCTGGCCC CCTCCCTGACCCCTGTCAGGCGGAGCAGCTGGAGCTGACCCACGGGCCTGGGCTTTCGAG CGCTTTGTCCAGGCGCTAATGATGGGAAGGTGAAAGGTGGGG TGGCCACACCCTGCAGTCAGGGTGGCAGGTGTCAGAGGCCACATGCAACCCACTGGTTTT GTCTTTTCCAGGATGCTGATAAGTTTCCCGCGGCCCCCGGAGC AGCTCTGTAAGGCCCTGTAATTGCCTTTCGTTCCCTTCTGCTCTATTGAGGAGTGGGAAG ATGACAAAGTGTTTTTGCTCAACCCGAAGGAAAATGCACATG GAGGAC AC AC CGGGTTACTATTT GAGT AGC C C AGAC AGGAGAGC AGC GGTCTGCT

TGGGTGGATTGCTTGAGCCCAGGAGTTCGAGACCAGCCTGGACAAAATGGCAGAAAC TCCATGTCTACAAAAAATACAAAAATTAGCCGGGCATGATGTTCT CGCCTGTAGTCCCAGCTACTCAGGAGGCTGAGGTGGGAGGATCGCTTGAGCCCAGGAGGC GGAGTTTGCAGTGAGCTGAGATGTCACTGCATTCCAGCCTGG AGAC AGAGC C AGAC T C T GT C T C AAAAGAAAAAAAGAAAAAAAAAAAAGAAAAGAAAAAAC GAAAT TGTATTCT GAAT AC AT C T T C T AAAAC AC T AC AT T T AC T TGCACTATATTAAACTGGTTTTATCCTGACCACAATTGCAGGTGAAAGATACCACTGTTG TTCTATTTTTCTGGTAAGTAGAGTGAGCCATGTCTTCCCCAG

chr21:l

GAAAGACGCCTCCTAAAAATTTGTAGGACCACCTTTGGTTTTCTTCCAGATATTTTTTTT GTCATCGCTTTTCCTGCGCCCAATTCCCATCTGTCTAGCCCTT

401700

CTGCCTCCGCTGGTCTTTTTCGCGAGCCTCTCCCCAGCCGCAGGTATTCGTCTGGGCTGC AGCCCCTCCCATCTCCTGGGGCGTGACCACCTGTCCAGGCCCC

171 0- GCCCCCGTCCAACCCGCGGAGACCCGCCCCCTTCCCCGGACACCGGGTTCAGCGCCCGAG CGTGCGAGCGCGTCCCCGCTCGTCGCCCGGCTCGGCGTCGGG

140185 GCGCGCTCTGTGTGGTCGCTGCTGCAGTGTTGTTGTGGCTGTGAGAAGGCGGCGGCGGCG GCGGAGCAGCAGCCGGACCAGACTCCCTAGTAGCTCAGGCGCT 00 GCCCTGCGCCGGCCCTGGCAGGGAGCCTGGTGAGATGGTGGAGGAGGAGGCTGTGCCGTG GCTGGCCTTGCTGTGTCCTGCTGCCTGGTTAGAACCCCATCCC

CGTCCCCCGTCTCCTCCGGGGGGTGAGGAGGAGCTGGAAGAGGGGCCGGCCTCTGTCCGG CCCGGCCAGGCGGCAGTCACCCTCTGAGGAGGCAGCGCCCGG GAGGGGCCTCCCAGGCGGCCGCCGCCGCCAGGGGGAGGCGCTGGGAGTGGGAGTGGGAGC GGGACCTCAGCTGCCAAGCTCGGCCCGGACCCTAGGTGCGGG GAGGCGGGGTCCCGGGCTCGGGCTGCCTGCCCGGACCTGGCGGGGATGGGCCCGTGCGGC TCCGGGTGTGGGACGTACCCTCAGAGCGCCCGGGGTTATTCCC

ACTGACTCCAGGGAGGTGAGTGTGCGCCCTTCGCTCCCTGCCGTGTCTGTGAGGGTC CATCGTTGCCGGAGACTGGAGGTCGGGGGCCATGGGAGCCCCGGG CGAACGGTGCGGACATGGGCCTTGTGGAAAGGAGGAGTGACCGCCTGAGCGTGCAGCAGG ACATCTTCCTGACCTGGTAATAATTAGGTGAGAAGGATGGTT GGGGCGGTCGGCGTAACTCAGGGAACACTGGTCAGGCTGCTCCCCAAACGATTACGGT

GTCTCTAGGACACCCTAAGATGGCGGCGAGGGAGACGGTGAAGGTTGGCTCCCGCCT GTCTGGGCTCTGATCCTCTGTCTCCCCCTCCCCCTGCGGCCGGCTC A GGC C GGC GGAGGC C C GAAC C AAAGAC C C C GC AC C GC C G G AC AAC GC C GC C C G GAC GGC AAGGGGGC AGC GC C C AGAAGC GC C AGC AGC C GG GCCGGGAGGAACTGGACGAGCTGACTGGCTAGGTGGCCGGCGGGGGGACGCCGCTGCTCA TCGCCGCCTGCTACGGCCACCTGGACGTGGTGGAGTACCTGGT GGACCCGTGCGGCGCGAGCGTGGAGGCCGGTGGCTCGGTGCACTTCGATGGCGAGACCAT GGAGGGTGCGCCGCCGCTGTGGGCGCGGACCACCTGGACGTG TGCGGAGCCTGCTGCGCCGCGGGGCCTCGGTGAACTGCACCACGCGCACCAACTCCACGC CCCTCCGCGCCGCCTGCTTCGAGGGCCTCCTGGAGGTGGTGC CTACCTGGTCGGCGAGCACCAGGCCAACCTGGAGGTGGCCAACCGGCACGGCCACATGTG CCTCATGATCTCGTGCTACAAGGGCCACCGTGAGATCGCCCGC

chr21:l T AC C T GC T GGAGC AGGGC GC C C AGGT GAAC T GGC GC AGC GC C AAGGGC AAC AC GGC C C T GC AC AAC T GT GC C GAGAC C AGC AGC C T GGAGAT C C T GC AGC T GC 405640 TGCTGGGGTGCAAGGCCAGCATGGAACGTGATAGCTACGGCATGACCCCGTTGCTCCCGG CCAGCGTGACGGGCCACACCAACATCGTGGAGTACCTCATCC

172 0- GGAGCAGCCCGGCCAGGAGCAGCTCATAGGGGTAGAGGCTCAGCTTAGGCTGCCCCAAGA AGGCTCCTCCACCAGCCAGGGGTGTGCGCAGCCTCAGGGGGCT

140581 C C GT GC T GC AT C T T C T C C C C T GAGGT AC T GAAC GGGGAAT C T T AC C AAAGC T GC T GT C C C AC C AGC C GGGAAGC T GC C AT GGAAGC C T T GGAAT T GC T GGGAT 00 C T AC C TAT GT GGAT AAGAAAC GAGAT C T GC T T GGGGC C C T T AAAC AC T GGAGGC GGGC CAT GGAGC T GC GT C AC C AGGGGGGT GAGT AC C T GC C C AAAC T GG

GCCCCCACAGCTGGTCCTGGCCTAT GAC T AT T C C AGGGAGGT C AAC AC C AC C GAGGAGC T GGAGGC GC T GAT C AC C GAC GC C GAT GAGAT GCGTATGCAGGCC TTGTTGATCCGGGAGCGCATCCTCAGTCCCTCGCACCCCGACACTTCCTATTGTATCCGT TACAGGGGCGCAGTGTACGCCGACTCGGGGAATATCGAGTGCT ACATCCGCTTGTGGAAGTACGCCCTGGACATGCAACAGAGCAACCTGGAGCCTCTGAGCC CCATGAGCGCCAGCAGCTTCCTCTCCTTCGCCGAACTCTTCTC CTACGTGCTGCAGGACCCGGCTGCCAAAGGCAGCCTGGGCACCCAGATCGGCTTTGCAGA CCTCATGGGGGTCCTCACCAAAGGGGTCCGGGAAGTGGAATG GCCCTGCAGCTGCTCAGGGAGCCTAGAGACTCGGCCCAGTTCAACAAGGCGCTGGCCATC ATCCTCCACCTGCTCTACCTGCTGGAGAAAGTGGAGTGCACCC C C AGC C AGGAGC AC C T GAAGC AC C AGAC C AT C T AT C GC C T GC T C AAGT GC GC

chr21:l

407025 T AAAAAT AAAT T GT AAT AAAT AT GCCGGCGGAT GGT AGAGAT GC C GAC C C T AC C GAGGAGC AGAT GGC AGAAAC AGAGAGAAAC GAC GAGGAGC AGT T C GAAT

173 0- GCCAGGAACGGCTCAAGTGCCAGGTGCAGGTGGGGGCCCCCGAGGAGGAGGAGGAGGACG CGGGCCTGGTGGCCAAGGCCGAGGCCGTGGCTGCAGGCTGGAT

140705 GCTCGATTTCCTCCGCTTCTCTCTTTGCCGAGCTTTCCGCGACGGCCGCTCGGAGGACTT CTGCAGGATCCGCAACAGGGCAGAGGCTATTATT

50

CGCCACCACGTGCGGGTAGCGCCGCATCGCCCCAGCCGTGTTCCTTGGTCTCCGTCTCCG CCGCGCCCGCCTGGTGAACTGGAGCACAGGGACCATAGTTCT

chr21:l

GAAATTTATCCTTTTTCTCTCCATGGATTCAGCAGCAGTGTCTAAAAGAAAAAAATTCAT CAATCATTTATGTATATTTTAATATAAAGGTAAAACACTGCG

411980

ACCAGTGGAACCGGATAGAAAGTAATTCAGTTTTACAGAACACAACTGTTTTTCAGGCTC TTTTATTAAATATAAAAGAGCCATATATATTTCTGTGGAATTC

174 0- CCCTTTTACTTAAGAATTCATTATCAGCGAATTAGTTTAAGGAGGCTGTTTTGTTAGAGG CTGTGGTTGCATTCAAAAATTGGAATAGGAACAATGACTTGT

141204 AAAATTCAACATTTTATTTTATTTTTGAGATGGAGTCTCGCTCTGTCGCCCAGGCTGTAG TGCAGTGGCGCGATCTCGGCTCACTGCAACCTCAGCCTCCCG 00 GTTTAAGGAATTCTCTGCTTCAGCCTCCTGAATAGCTGGGATTACAGGCGCATGCCACCA AGCCCAGCTAATTTTTTTTGTATTT

chr21:l CCCTGAACAGTCAGAGTTTACTGCCCACTTTTGCTGGAGGAGAAGCTCCTGAACAACTAG AGAGACTGTGGTTCCCAAAGAGCAGCCTGTAGGCCTGAGGACT 430480 GCTCTATGACCGGCGTCAGTCCCTGCCTCCCTCCCTCCGTCCCTCCTTCCCTCCTTCCTT CCCAGGCCTTCTCTGACTACCAGATCCAGCAGATGACGGCCA

175 0- CTTTGTGGATCAGTTTGGCTTCAATGATGAGGAGTTTGCAGACCATGACAACAACATCAA GTGAGTCCACTTGGATGCCCCCTGCACGAGGCACGACTCCCCC

143061 TCCTCGCTGCTGAAGTCCCATGGGGGCAGCTCCCTTAGTCCTTGCCGGGAGATAACAGGT GTTTCCAGTTGCATGAGGGTGCTGAGGCCCCCAGTGAGAACC 00 GGGGAGGAGC AC T GAGGC C T C AGAT GAGC AC C GGGGGAGGAGC C C T GAGGC C C C AGAT GAGC ACC AGGGGAGGAGC AC T GAGGC C C C AGAT GAGC AC C GGGG

AGGAGCGTTGAAGCCCCAGATGAGCACCAGAGGAGGAGAGCTGAGGCCCCAGATGAG CCCCGGGGGAGGAGCTCTGAGGCCCCAGACGAGCACCGGGGGAGG GCGCCGAGGCCCCAGATGAGCACCGGGGGAGGAGCGCCGAGGCCCCAGATGAGCAGTGGG GGAGGAGCCCCGAGGCCCCCAGATGAGCAGTGGGCGGGGCAG GAGCGCCGAGGCCATCCCCCTTGCTCTTGCAGCGCCCCATTTGACAGGATCGCGGAGATC AACTTCAACATCGACACTGACGAGGACAGTGTGAGCGAGCGG GCTGTGCGGGGTCATGCAGGCACCCTGTTCCCAGGCAGCTCAGGCCGCGCCCATGGCTCG GTCTGTGGTGGGCCTGTGCGGTGGGGCTGGGAGAGGCCCCTCT GTGGAGCTAGGAACAGTCGCTTTTCTTGACCCTCCCCATCATGCCCTCCAGCCCATGGCG CCCACATCCTGAACTAAGCCCCTCTGGGAGCCCTGTGGGGAG GCGCCTCCTGTCTCCCCCAGACCCTCTGGAAACTGACCTTGGCGTTTTACTCTGCAGCCC AGCGCGGCTCTGAGGCCTGCTGCAGCGACCGCATCCAGCACTT TGATGAGAACGAGGACATCTCGGAGGACAGCGACACTTGCTGTGCTGCCCAGGTGAAGGC CAGAGCCAGGTGCGGGGCCTGCCCATCCCCCCAAAGCCTCTGC CGAGGAGGTGCAGCCCCCAGAACACCCGTCAGATGCCCAGACGCCCTGCTGTTTGTTATG CCGG

chr21:l

564934

TTTGGGCCACGAGGCAAGTTCAAAGCGGGAGACTTTTGTTTTATAAAATGATGGTGAGCA GCTCCGGTTTTATGTCAAACATCAGGGTTTCGTGCAGGATAT

176 0- AACATTT

156494

50

ATTGCCGTACTTTGCTTCCCTTTGTATGTATTTCTTGTATGCTGCCGAGTCACTGATGGC TAGCTCTGTCTGGCAAGTAATTCAAAAATGCTGTTTATGTAG AAGGAAAGGTAGGGACTTTACCACACTCTGTCATTAAAGGGAGCAATTGAAGAACAAAGG AACTGAGTAAATACCTATATATTGCCTTTTGTGTTGCGAAAC CTGTAGCACAAACACATTTGTGTTCAGCCAAATGTTTTACTTCCTTTTGTAATAACGCAT ATAGTAGGTTGTCTCCACATATGTACAAGAATCCATATTTTAT TTAAACGTATATAGTCAATTGTTCATATTTATAGGCTGCAAACATTTCTCAATCTCAAAG ACTTTTACATATCCACTCCCACACAGCTATTTGTTATTATTTT AAAAGTTCTTAAATTAAAAAAAAAAATAAAATATACTAATATCTCTGTTGGTTGATTTTA TTAAGCAACTTAGGATTTCAACACAGTTTAAATCATATTGAT ACTCAGATCCTGGCAGGTCTTACAATTCCTGTGAAATGAGAGCACAGCTAATAAAAATAT TAAGCAATTACTTTTATTAAAATCATAGGGTTTTTTTCATTAT CACATAGAAATGATTGATCTATACAGATTGGTCTCACTCATGTGTCTTTTGGGCTGCTTG GGAGCTTCATGTAGAAGTGGAAAGTCCCCTTTGCTCTTCCTTC

C21orf3

177 GACCAAGGTGGGGAAAATGAAGGCATAGAATACAATCTAGGGCTATTAAAGAATTGCTGG CATTACTTCTCTCTATCACGTGTGAGCCTGGCTGCCTGCTTCC

4

TGAGGTAGGGGATCCAGGATGAGACTGTGCCGGAGCCTGTTTCCACAACTGCATTTGGAG ATCCGTCTTATTGATTAGCGGGGGAAAGGGGTGGGGATCAGG GTGTGAGGTGAGGGGAGGACCAACTGACGACTGGCTCAATGAAGCACAAGACATTTTCTT CCGGAAAGATGTCAAACAACTGAGAAACAGCCAGAGAGGAAGT AGAAAGGTGGAAAAATGAGGAGACCCTGGAAGAAATGAAGGCATTTCCTATGAGACAGCC TTGGGGCTTTTTTCTTTTCTTTCTTTTTTTTTGCTTCCATCAT CTGACCTGCAAAGGCTAGAGTGACAGCGTCATGCAAATGCTGCAGTCCAGCAGGTCTGGG AGAGGGTGGATGCTAGACTGTGAGTTAATGTTAATGATGAGC CAGTGAAAATACCAGCCGCTGCCACCCCCTGCTCACAGAAGCGCTCTGAGTCAGCATCAG ATGCTTTGCCTCGCCTCTCGCTGTGTATCTGTATGCCTGTGT CGCGCGCGTGCTCGCTCGGGCATCCGTGTCTAGCCGAGGGGAGGGGGTGGCGTGTGAGTG CGTGGAGGGTAAAAGCCAGTCAGTCAGTGAGAAGCAAAGGTAC GTTGGAGAGCAACTAAAATCTGACTGATTTCCATCTTTGGAGCATCAGATGTATTCCC

GCAGCCTCCTCCTGAAAAATGTAAGCCATTTCCACTTTGTAAAGCTACGTTTATATT CCACCACGATACGATGGAAAAGAAAACCCAAGGCAATTTAATATAC

178 BTG3

GGGTTGGGAAGAAAGTTTTGCTGATGGAACTACATTAGCCTCCACTCCAGCAAAGCAAAC AAGGAACCACACTAAAGAAATGTACTGAATCTTTTAA

TGCCTGAGCGCAGAGCGGCTGCTGCTGCTGTGATCCAGGACCAGGGCGCACCGGCTC AGCCTCTCACTTGTCAGAGGCCGGGGAAGAGAAGCAAAGCGCAAC GTGTGGTCCAAGCCGGGGCTTCTGCTTCGCCTCTAGGACATACACGGGACCCCCTAACTT CAGTCCCCCAAACGCGCACCCTCGAAGTCTTGAACTCCAGCCC CGCACATCCACGCGCGGCACAGGCGCGGCAGGCGGCAGGTCCCGGCCGAAGGCGATGCGC GCAGGGGGTCGGGCAGCTGGGCTCGGGCGGCGGGAGTAGGGCC

179 CHODL

CGGCAGGGAGGCAGGGAGGCTGCAGAGTCAGAGTCGCGGGCTGCGCCCTGGGCAGAGGCC GCCCTCGCTCCACGCAACACCTGCTGCTGCCACCGCGCCGCG TGAGCCGCGTGGTCTCGCTGCTGCTGGGCGCCGCGCTGCTCTGCGGCCACGGAGCCTTCT GCCGCCGCGTGGTCAGCGGTGAGTCAGGGGCCGTCTCCCCGA GAACGAGCGGGGAGAGGGGACCACGGGGCGCGGCGGGCAGCCTGTTCTCGGGCGGAGGCT CTCCGGGGCGTTGGAAACCTGCATGGTGTAAGGACCCGGGAG

AGGCGGGGAGAAATTGATTGTGCTGTTCTCCTCCCTCTCTTCTCTAACACACACGCA GAAAAGTTTAAATTTTTGTGAAGCGCTTGCTTACGTAGCTGCGGA CGAGCCTCTGCTTCAT ACGAGCGGCATAGCCTTTTTCAGGAGTGATTTCCACTTTCTTTGTGAGAGAGTTGACCAC AC

TTCAATTTACACTCGCACACGCGGGTACGTGGGTGTTCGGGGTAGGGCACTGATCTG GGGAAGGTCTCCCCCCCGCGACCCAACTCATCTTTGCACATTTGC GTCCTCCCTCGGTGCACTCCTGGCGGGGATCTGGCCAGTGCAGCGCACTGGGACCGAGGG CAGAGCCCGCGGAGTGAGGCCAGGAGAGACTTCAGGCCTCTA GGACACAGCTGAGGCTAAGGCTGAGTTGAACGCAGCCCCTCCCGCGGCTCGTCCCCTCTC CAGTGTCTCTCCCGTAAGGTGCCGCTCCCAACAGCAATGGGTC

180 NCAM2

GAGATGTAGAGGAAACACTCTGTACGTTATTTTTCCGCCCACCCTTTAGCGCCTGAGGAG ACAGACAGTGTAGACTTTAGGGTACAATTGCTTCCCCTCTGTC GCGGCGGGGTGGGGAGCGTGGGAAGGGGACAGCCGCGCAAGGGGCCAGCCTGCTCCAGGT TTGAGCGAGAGAGGGAGAAGGAGGTCCACGGAGAGACAAGAAT CTCCCTCCTCCCACGCCCAAAAGGAATAAGCTGCGGGGCACACCGCCCGCCTCCAGATCC CCCATTCACGTTGAGCCGGGGCGCG

TCATTATCCGATTGATTTTCCTGGTATCACATCACTTAAGTTTAAGTAGCTCTTATG TTACTTAGTAATGACTGCAAAACACGAGTTGTGATGCGGGCAATTT

chr21:2

GGATACAACAAAAAGAAGCCATTAAGTTTGTTCGTTAGTTAACAGGTGAAAGCTCTCAAG TTATTAAGGATAAAAATGCTAGTATATATATATATGGTTTGG

357400

ACTATACTGCGGATTTTGGATCATATCCGCCATGGATAAGGGAGGAATACTATAATCAGG TTTGTTTTAAATTCCATGTCTAATGACTTCGTTATCTAGATC

181 0- CCTGTAGAGCTGTTTTTATTGTAGGAGTTTTCCTTGGTTTTAATCTTTTGATTTGTTTTT CATGTTAATACTGAAATTTTTAAAAATTGCATATTGTACTTCC

235746

TATATGAAAATTTTACTATGTATTTTTATTTTTATTTTCCTTTTCCTTTAGGAAGAATTA GTTTGTTCCCTGACAGAGTTAGAGTAAGGGCAAATTACTTGTC

00 TCTATAAACAACTCAGATGTTTTGAGCCGGTGTTGTAGGGGTTATCTTTTTCTGGTTTTG CATTTTATTATAGGACATAGTGCTT

chr21:2

436692

AGAAAGAAGAAATCCGGTAAAAGGATGTGTTATTGAGTTTGCAGTTGGTGTTTGATCTTG CACAGATTTTCTCAGGGGCCTTAAGACCGGTGCCTTGGAACT

182 0- CCATCTGGGCATAGACAGAAGGGAGCATTTATACGCC

243670

60

CGAAGATGGCGGAGGTGCAGGTCCTGGTGCTCGATGGTCGAGGCCATCTCCTGGTCCGCC TGGCGGCCATCGTGGCTAAACAGGTACTGCTGGGCCGGAAAGT GGTGGTCGTACGCTGCGAAGGCATCAACATTTCTGGCAATTTCTACAGAAACAAGTTGAA GTACCTGGGTTTCCTCCGCAAGCGGATGAACACCCACCTTTCC

chr21:2 CGAGGTCCCTACCACTTCCGGGCCCCCCAGCCGCATCTTCTGGCGGACCGTGCGAGGTAT GCCGCCCCACAAGACCAAGCGAGGCCAGGCTTCTCTGGACCGC 565600 CTCAAGGTGTTTGACCGCATCCCACCGCCCTACGACAAGAAAAAGCGGATGGTGTTCCTG CTCCCTCAAGGTTGTGCGTCTGAAGCCTACAAGAAAGTTTGCC

183 0- TATCTGGGGCGCCTGGCTCACGAGGTTGGCTGGAAGTACCAGGCAGTGACAGCCACCCTG GAGGAGAAGAGGAAAGAGAAAGCCAAGATCCACTACCGGAAG

256569 AGAAACAGCTCATGAGGCTACGGAAACAGGCCGAGAAGAACATGGAGAAGAAAATTGACA AATACACAGAGGTCCTCAAGACCCACAGACTCCTGGTCTGAGC 00 CCAATAAAGACTGTTAATTCCTCATGCGTGGCCTGCCCTTCCTCCATCGTCGCCCTGGAA TGTACGGGACCCAGGGGCAGCAGCAGTCCAGGCGCCACAGGC

GCCTCGGACACAGGAAGCTGGGAGCAAGGAAAGGGTCTTAGTCACTGCCTCCCGAAGTTG CTTGAAAGCACTCGGAGAACTGTGCAGGTGTCATTTATCTAT ACCAATAGGAAGAGCAACCAGTTACTATTAGTGAAAGGGAGCCAGAAGACTGATTGGAGG GCCCTATCTTGTGAGC

GCCTGAAGACCATTTCTTCCTCTCTTAGGGACCTGCTGGTCTCCAGCTGATTCGGTC CAGGAGGAAAAACCTCCCACTTGCTCCTCTCGGGCTCCCTGCAAG AGAGAGTAGAGACACTCCTGCCACCCAGTTGCAAGAAGTCGCCACTTCCCCCTCCAGCCG ACTGAAAGTTCGGGCGACGTCTGGGCCGTCATTTGAAGGCGTT TCCTTTTCTTTAAGAACAAAGGTTGGAGCCCAAGCCTTGCGGCGCGGTGCAGGAAAGTAC ACGGCGTGTGTTGAGAGAAAAAAAATACACACACGCAATGACC

MI 155 CACGAGAAAGGGAAAGGGGAAAACACCAACTACCCGGGCGCTGGGCTTTTTCGACTTTTC CTTTAAAAAGAAAAAAGTTTTTCAAGCTGTAGGTTCCAAGAAC

184

HG AGGCAGGAGGGGGGAGAAGGGGGGGGGGGTTGCAGAAAAGGCGCCTGGTCGGTTATGAGT CACAAGTGAGTTATAAAAGGGTCGCACGTTCGCAGGCGCGGGC TTCCTGTGCGCGGCCGAGCCCGGGCCCAGCGCCGCCTGCAGCCTCGGGAAGGGAGCGGAT AGCGGAGCCCCGAGCCGCCCGCAGAGCAAGCGCGGGGAACCA GGAGACGCTCCTGGCACTGCAGGTACGCCGACTTCAGTCTCGCGCTCCCGCCCGCCTTTC CTCTCTTGAACGTGGCAGGGACGCCGGGGGACTTCGGTGCGA GGTCACCGCCGGGTTAACTGGCGAGGCAAGGCGGGGGCAGCGCGCACGTGGCCGTGGAGC CCGGCCTGGTCCCGCGCGCGCCTGCGGGTGCCCCCTGGGGACT

CAGCGACGTGATCAACACTGTGCTCTCCAACCGCGCCTGCCACATCCTGGCCATCTA CTTCCTCTTAAACAAGAAACTGGAGCGCTATTTGTCAGGGGTAAGT GCGACCCTAGAGGCGATCGTCTCTGCTGTCTGTGGAAAAAAGAGCTCCTACACCCAAAGT GCTTCTCAGTTGCTGACACTTGATCCAAGCTGCTAATTTAATC TAATGTGAGGCTGAGTTTTCTGAATGTGGGATAAAGTCGTAGCTAAACCTGCTTCTCAGG GAGTGCCTTTTATCTGCAATGTTTTTCAAAT

AAGTAACGGGATCAAATTAATTATTATTTTGGTGGCCGCCTCTCTTCTCCACCCCAA GCCAGGCAAGACTCACCCTCGGCCCTGCCCGCCCCAGCATTTCAA TGGAATACCTAGGTGGCCCAGGGGGACCCCTGACCCCTATATCCTGTTTCTTTCTGCCTG CTTTGCTACTTTTCTCCTTGATAAAAGGAGAGAGTGAGAGAT ATTAACAAAAAACATGGCCCCAGGACAATGAAACAACTGGCCTTGGCCGGCCAGAAATGT ATCCTGGTTTTCTAGGTGAACTTTCTCCCATCAATCTTTCCTT

chr21:3 AAC C T C T C T GT AGT GGAAGC AA AGGAAC AC CCCTCCCCTCCCCT GAGCAAA GCTTTCTTT GAC GGAAAC AAAAC AGGGGC TCGGC GAAGGC GAGGT 327220 GAAATCTGGGTGGCATGGGCGCCGCACAATGGGGCCGCTGTTCCCCGGCCCGGGCTTGTG TTTTACAACAGGGGAGGGGCGGGCGTGAATGGTCTGATGATT

194 0- GAAC AAT CCCCCCGATTCAGGCC T AC AAAC GCATCTTCTGTTCCACACC GAGGGGAC AGAAAGGAGAAAAGT GAC AAAGAAC GC GGGGC GGGGGGAAT T AAA

332733 CAAAATGCGCTCGACTAAAAAATCTCTCATATCCTGCATATTCCAGAAAGCGGCTCTATG GAGAGAGCCTTCAGGAGGCCTCAGCCATATCTGAATGGCTTTC 00 TCTGGCCTCTGATTTATTGAT GAAGC T GAAGC GAC T T GC T GGAGAAAGGC C T GGAGC CTTCTTTGTCTCC GAGAT GAAGT AC AAT AGGC C AC AGGGC GGAGAT

CTCTTGTGATGCTCTCGGGTCCTGCCTTTCTCTTGCCCTCTCCTCCCTGCAAATACCAGC AGCGGTGACAAACGATTGGTGGTGTGCCTGGGAGAGCCGGTG CAAGACTGGGCCACTTGAGGTCTCCTTAAGAGGGTATTATGGCCAGGGCGACGTTTGTGC TGTGAAGATGGCACACTCCATTTTGTCAATGGCTCTCATCGGC CCAGATAATCGCCCCCTGCCTGCCTGTCAGGGGCGCAGCCGGCCGATTCATGGCGCCCTC GGAGAAAGTA

GTCTTTCCCGCCCCCTTGTCTAAACTCAAAACCGAGTCCGGGCGCGCCTTGCAGGGC GCCCGAGCTCTGCAGCGGCGTTGCGGGCTGAACCCATCCGGCACA ACTGCGGGCCACTGGCCCCTCACACCTGGGAGTTTGCGGCGCTGGCCTGCAGCCCGGGGC CCACGTGGCGGAAGCTTTCCCGGGCGCGCGCTGCGCAGCCCC CGGGGCCGGGGAGACACCGCTCGGGAGTCCTCCGCTCGGCTGCAGAATCTTTATCAGCTG CACTTTACCGCAGCCCTGGCTAGGACGCTAGGCGGTGGAGCGC CCTATCCAGGTGCGCCGCCGCACCATGGATCACCGCGCCCGGTCCCGCAGTCCCGCCATG GCCTGGGGAGGCCCGAAGCCCGGGGACAGTGGCCGGCCCATCT CCGGCTCCGCGGACCCCCGGCTCAGGCGGGAGGGCAGGCGGGTCCCTGCAGGCCCCCAGG GAGCCCGGGAGCCTCTCTCTGGCGTCATTCAGTCCCGGGGCA CCTGAAGCGCGGTAGATATTGGAGAGGGGGCGTCTGTTGGGGGGACCTGGCGTCATTACT GATGGCTAGCAGGGAGGAGGGAACGGGTTGTCACCTCGGCCTC ATAAGGCCGTGAGTGAGTAGTCCAGGGCCTCTTCAGGCATTTTTGAAACTGGATTAACTA GGGGGGAAATTGTAGCACTGAAGCCACCGTGACTGTCTTTTGC GCTGTGTGGAAACTCCGGTAAAACTCTTTGGGCAACAGTCTTATCACCAGCTCTTCAACG TGTGCAGCCCTTCTGGTCCTGTCCCTGTTCTGGGCCCCAGGA T GC AAAGC AGGT C C AGGC AC T GT GAAGAC C C T GGC GGT GGAGGAAGAGGC TTCCCGGC T GT GGAGGAAGC CAGAC C C T T AC AAC AC AAGAC GAGAAC CAGAC C T GC GT GGGGGAGC T C T GGAT GC T AC AGGGGC T CAAGGAGGGGT GGAGGGGC C T T C C C AGGC C AAC C C C T GAAC GGC T T GGACAAGAT GC T CAGAT GGAC GGG GGAACGGCGTGTGGGATGGGGGAGCTGGAGGCGGGTGGGTGGGGGGGGGAGGATGGGGAA AGCGCTGGCCCACCCAGTGTGGGAGGGGTAGAGGAAAAGCCC

195 OLIG2

CAGGGGCCAGGTTGGGACCCCGTAGGCCGGGTTAGAGGGCTTGGACTTGATCCTGACAGG CGACAGGGAGACATATTGCTACTTATTATGTGCACAGTGGCC GATCTCTAAAGAAAACACCATCCCCCACCCCCACCCCCCATATAGTAAACCAGGTGGTCC GCCCAGTGCTCCCAGGGAGGTGATGGGAAATCCCACTCCATAC CCTGCGGTGAGGGGTTCCATGCCCTCCACGTGTGCAACTACTCCGGGCCCAGGGAAACAC TGGGCCCCATCCGGTAACCCCCGGCCCAGTCGGGTTTCCCAGT T C AC AT TAT AAC C AAAC GGTCTTGCCAGC T AGAC AGAC AGAC AC C C C T GAC CTGTTTACCCT GAT CCTCTGCTCTCAGGATTAAT C AC AAC T T GT C GAAGGG GTGGCTTCCAGTGGGGTGGACCGCTCTGTCAATGCCAGCGTGTGTCTAGCATCTCCTGGG GTGGGGGTGTGGGGAAGGGAGGTGTAGGATGAAGCCCTAGAA CCTCAGGCAATTGTGATCCGGTGGGCTGGATACTGAAGCCCACCCCTGCCTTGACCTCAA TTTTCAGTATCTTCATCTGTAAAATGGGAACAACCTGCCTTCC TCCTAGCCCTAAAGGGGCTGCTGTCAAGATTGGCTGAGATAGCTGTTTGCAAGCTGAGCT CAATGAAAGTTCATTGTGTCCCCCTCAGTCCTATCCCAATATC GTCTCACTGCAAAGGTGGGGGGCAGCTTAACTTCAAGGGCACTTCAAGGATAGCCAGGTG GCTGTCAGCCCAGCTTTCCAGGATGGGAGCAGGATCTTGACA AAGGGTTGACTGGGAGGGGCAGTTGCTGGTTTGGGCTTCGTTAGGTTGCATTTTTGTTTG TTGTCCTTTCATTTCCCTGGGGCAGCACCCCTTCCTGCAAGCT CCAGGCCTTCCTCTGGAATGCTCCTAGAGCCCAACCTCTGCTGGTGCCTGAGCTTAAGCC AGGCCAGCTAAGGGGATCCTGGATTCACACGGCCTCACAGTC CTCAGATTGTTAGCAGAAGACAAAAATTACAAGGGGAGGGCGTCATGTGATTCTTACACA CCCTCCAAATCCAGCAGACACCTTGGAAGCCACAGGTAGCTTC

AAGAAACCCATTT ACGGA GAGAACC GAGA GGAGAAAGGACAAC GGAGA C C GAG CTC GAGCCCACAC CCC ACCTCCCTGCACCTCCAGGCAC TCTGCTGGCAGGATCTTGGGCAAATGCCCACAGCTCTCTGAGAGTCAGTTTTCCTGTCTG TAAAATGGGAGTCATACCTTCCTCCTATGGCCGGTGAGAGACT AAATTAAACTATGTCTGTCAAGACACCTGAAACTCCTGGCACAATTTAGGTTGCCTTCAA GTGGTCACAGTTGTCATTAGGTGGAAGTCAACACCCCAATCAT TGTAAAGGTGCCCATATACCCCAAGATCCAGATTACAGCTCTCACAGTTTATTATATACA GCGAAAAAACACATAACACACCTTTGCCCACATTTACATGTAT TTTACGGACCATGTTTCACATCAGTCCGCATGCACATCTGCACGTGTGTGCATTCGGCAG TATTTACCAAGCACCTGCCAAGTGCCAGGGCCTGTCCTCCGC CCCGGCGTGAACTGTCCTGGACCAGTCCCGGGAGCCGCGGTTCTGACCAGCCGTGCTGAC CCTGGACGACTCCATGAGCTGTTTTGTGAGAAAGACACGCCAT TTGTTTGCAGAGTTCTGACTTCTGAGGGGTCATGTAGCACATGTTTGGTAGCCAAACGCT GTCATTCACGACCAGGAGCGATGGCTGCAATGCCTTTTTCTTT GCTTTGCTTTCCGGTGCCGGGAGCCTTGCCTCCCGCCGCCACCCCTGGTCAGCTCTGCGC AAGAACGTCGTTCTGTTTGGCAGCCAGGCCGAGACGCAGCCT AATGTGAGCAGGAACTCGGAGAAGGGAAGGGAGAGAATCAGAAAGAAGGCCCGGGAGGGA CCCGGGAAGCAGTGGGAGGTCTGCGCCCTGGAGCCCCGCGAG GCCCGCCGGTTTGGCACGGGCTCCTCCCGGGCCGCCCGGCGGTCCAACAAAGGCCGGCCC CGACACGCACCCGGTCTTTTGTGGGAGAGAAACACAAAGAAG GGGAAAAACACGGAGGAGGCCAACAGCACCAGGACGCGGGGGCCAACCAGGAACTCCCGG AGCCGGGGCCCATTAGCCTCTGCAAATGAGCACTCCATTCCCC AGGAAGGGGCCCCAGCTGCGCGCGCTGGTGGGAACCGCAGTGCCTGGGACCCGCCCAGGT CGCCCACCCCGGGCGCCGGGCGCAGGACCCGGACAAGTCCTG GGACGCCTCCAGGACGCACCAGGGCAAGCTTGGGCACCGGGATCTAATTTCTAGTTATTC CTGGGACGGGGTGGGGAGGCATAGGAGACACACCGAGAGGTAC TCAGCATCCGATTGGCACCAGGGCCAAGGGAGCCCAGGGGCGACACAGACCTCCCCGACC TCCCAAGCTACTCCGGCGACGGGAGGATGTTGAGGGAAGCCT CCAGGTGAAGAAGGGGCCAGCAGCAGCACAGAGCTTCCGACTTTGCCTTCCAGGCTCTAG ACTCGCGCCATGCCAAGACGGGCCCCTCGACTTTCACCCCTG CTCCCAACTCCAGCCACTGGACCGAGCGCGCAAAGAACCTGAGACCGCTTGCTCTCACCG CCGCAAGTCGGTCGCAGGACAGACACCAGTGGGCAGCAACAA AAAAGAAACCGGGTTCCGGGACACGTGCCGGCGGCTGGACTAACCTCAGCGGCTGCAACC AAGGAGCGCGCACGTTGCGCCTGCTGGTGTTTATTAGCTACAC TGGCAGGCGCACAACTCCGCGCCCCGACTGGTGGCCCCACAGCGCGCACCACACATGGCC TCGCTGCTGTTGGCGGGGTAGGCCCGAAGGAGGCATCTACAA TGCCCGAGCCCTTTCTGATCCCCACCCCCCCGCTCCCTGCGTCGTCCGAGTGACAGATTC TACTAATTGAACGGTTATGGGTCATCCTTGTAACCGTTGGAC ACATAACACCACGCTTCAGTTCTTCATGTTTTAAATACATATTTAACGGATGGCTGCAGA GCCAGCTGGGAAACACGCGGATTGAAAAATAATGCTCCAGAA GCACGAGACTGGGGCGAAGGCGAGAGCGGGCTGGGCTTCTAGCGGAGACCGCAGAGGGAG ACATATCTCAGAACTAGGGGCAATAACGTGGGTTTCTCTTTGT ATTTGTTTATTTTGTAACTTTGCTACTTGAAGACCAATTATTTACTATGCTAATTTGTTT GCTTGTTTTTAAAACCGTACTTGCACAGTAAAAGTTCCCCAAC AACGGAAGTAACCCGACGTTCCTCACACTCCCTAGGAGACTGTGTGCGTGTGTGCCCGCG CGTGCGCTCACAGTGTCAAGTGCTAGCATCCGAGATCTGCAG AACAAATGTCTGAATTCGAAATGTATGGGTGTGAGAAATTCAGCTCGGGGAAGAGATTAG GGACTGGGGGAGACAGGTGGCTGCCTGTACTATAAGGAACCGC CAACGCCAGCATCTGTAGTCCAAGCAGGGCTGCTCTGTAAAGGCTTAGCAATTTTTTCTG TAGGCTTGCTGCACACGGTCTCTGGCTTTTCCCATCTGTAAA TGGGTGAATGCATCCGTACCTCAGCTACCTCCGTGAGGTGCTTCTCCAGTTCGGGCTTAA TTCCTCATCGTCAAGAGTTTTCAGGTTTCAGAGCCAGCCTGC ATCGGTAAAACATGTCCCAACGCGGTCGCGAGTGGTTCCATCTCGCTGTCTGGCCCACAG CGTGGAGAAGCCTTGCCCAGGCCTGAAACTTCTCTTTGCAGTT CCAGAAAGCAGGCGACTGGGACGGAAGGCTCTTTGCTAACCTTTTACAGCGGAGCCCTGC TTGGACTACAGATGCCAGCGTTGCCCCTGCCCCAAGGCGTGT GTGATCACAAAGACGACACTGAAAATACTTACTATCATCCGGCTCCCCTGCTAATAAATG GAGGGGTGTTTAACTACAGGCACGACCCTGCCCTTGTGCTAGC GCGGTTACCGTGCGGAAATAACTCGTCCCTGTACCCACACCATCCTCAACCTAAAGGAGA GTTGTGAATTCTTTCAAAACACTCTTCTGGAGTCCGTCCCCTC CCTCCTTGCCCGCCCTCTACCCCTCAAGTCCCTGCCCCCAGCTGGGGGCGCTACCGGCTG CCGTCGGAGCTGCAGCCACGGCCATCTCCTAGACGCGCGAGT GAGCACCAAGATAGTGGGGACTTTGTGCCTGGGCATCGTTTACATTTGGGGCGCCAAATG CCCACGTGTTGATGAAACCAGTGAGATGGGAACAGGCGGCGG AAACCAGACAGAGGAAGAGCTAGGGAGGAGACCCCAGCCCCGGATCCTGGGTCGCCAGGG TTTTCCGCGCGCATCCCAAAAGGTGCGGCTGCGTGGGGCATC GGTTAGTTTGTTAGACTCTGCAGAGTCTCCAAACCATCCCATCCCCCAACCTGACTCTGT GGTGGCCGTATTTTTTACAGAAATTTGACCACGTTCCCTTTCT CCCTTGGTCCCAAGCGCGCTCAGCCCTCCCTCCATCCCCCTTGAGCCGCCCTTCTCCTCC CCCTCGCCTCCTCGGGTCCCTCCTCCAGTCCCTCCCCAAGAAT CTCCCGGCCACGGGCGCCCATTGGTTGTGCGCAGGGAGGAGGCGTGTGCCCGGCCTGGCG AGTTTCATTGAGCGGAATTAGCCCGGATGACATCAGCTTCCC

GCCCCCCGGCGGGCCCAGCTCATTGGCGAGGCAGCCCCTCCAGGACACGCACATTGT TCCCCGCCCCCGCCCCCGCCACCGCTGCCGCCGTCGCCGCTGCCAC CGGGCTATAAAAACCGGCCGAGCCCCTAAAGGTGCGGATGCTTATTATAGATCGACGCGA CACCAGCGCCCGGTGCCAGGTTCTCCCCTGAGGCTTTTCGGA CGAGCTCCTCAAATCGCATCCAGAGTAAGTGTCCCCGCCCCACAGCAGCCGCAGCCTAGA TCCCAGGGACAGACTCTCCTCAACTCGGCTGTGACCCAGAAT CTCCGATACAGGGGGTCTGGATCCCTACTCTGCGGGCCATTTCTCCAGAGCGACTTTGCT CTTCTGTCCTCCCCACACTCACCGCTGCATCTCCCTCACCAA AGCGAGAAGTCGGAGCGACAACAGCTCTTTCTGCCCAAGCCCCAGTCAGCTGGTGAGCTC CCCGTGGTCTCCAGATGCAGCACATGGACTCTGGGCCCCGCGC CGGCTCTGGGTGCATGTGCGTGTGCGTGTGTTTGCTGCGTGGTGTCGATGGAGATAAGGT GGATCCGTTTGAGGAACCAAATCATTAGTTCTCTATCTAGATC TCCATTCTCCCCAAAGAAAGGCCCTCACTTCCCACTCGTTTATTCCAGCCCGGGGGCTCA GTTTTCCCACACCTAACTGAAAGCCCGAAGCCTCTAGAATGCC ACCCGCACCCCGAGGGTCACCAACGCTCCCTGAAATAACCTGTTGCATGAGAGCAGAGGG GAGATAGAGAGAGCTTAATTATAGGTACCCGCGTGCAGCTAA AGGAGGGCCAGAGATAGTAGCGAGGGGGACGAGGAGCCACGGGCCACCTGTGCCGGGACC CCGCGCTGTGGTACTGCGGTGCAGGCGGGAGCAGCTTTTCTGT CTCTCACTGACTCACTCTCTCTCTCTCTCCCTCTCTCTCTCTCTCATTCTCTCTCTTTTC TCCTCCTCTCCTGGAAGTTTTCGGGTCCGAGGGAAGGAGGACC CTGCGAAAGCTGCGACGACTATCTTCCCCTGGGGCCATGGACTCGGACGCCAGCCTGGTG TCCAGCCGCCCGTCGTCGCCAGAGCCCGATGACCTTTTTCTGC CGGCCCGGAGTAAGGGCAGCAGCGGCAGCGCCTTCACTGGGGGCACCGTGTCCTCGTCCA CCCCGAGTGACTGCCCGCCGGAGCTGAGCGCCGAGCTGCGCG CGCTATGGGCTCTGCGGGCGCGCATCCTGGGGACAAGCTAGGAGGCAGTGGCTTCAAGTC ATCCTCGTCCAGCACCTCGTCGTCTACGTCGTCGGCGGCTGC TCGTCCACCAAGAAGGACAAGAAGCAAATGACAGAGCCGGAGCTGCAGCAGCTGCGTCTC AAGATCAACAGCCGCGAGCGCAAGCGCATGCACGACCTCAAC TCGCCATGGATGGCCTCCGCGAGGTCATGCCGTACGCACACGGCCCTTCGGTGCGCAAGC TTTCCAAGATCGCCACGCTGCTGCTGGCGCGCAACTACATCCT CATGCTCACCAACTCGCTGGAGGAGATGAAGCGACTGGTGAGCGAGATCTACGGGGGCCA CCACGCTGGCTTCCACCCGTCGGCCTGCGGCGGCCTGGCGCAC TCCGCGCCCCTGCCCGCCGCCACCGCGCACCCGGCAGCAGCAGCGCACGCCGCACATCAC CCCGCGGTGCACCACCCCATCCTGCCGCCCGCCGCCGCAGCG CTGCTGCCGCCGCTGCAGCCGCGGCTGTGTCCAGCGCCTCTCTGCCCGGATCCGGGCTGC CGTCGGTCGGCTCCATCCGTCCACCGCACGGCCTACTCAAGTC TCCGTCTGCTGCCGCGGCCGCCCCGCTGGGGGGCGGGGGCGGCGGCAGTGGGGCGAGCGG GGGCTTCCAGCACTGGGGCGGCATGCCCTGCCCCTGCAGCAT TGCCAGGTGCCGCCGCCGCACCACCACGTGTCGGCTATGGGCGCCGGCAGCCTGCCGCGC CTCACCTCCGACGCCAAGTGAGCCGACTGGCGCCGGCGCGTTC TGGCGACAGGGGAGCCAGGGGCCGCGGGGAAGCGAGGACTGGCCTGCGCTGGGCTCGGGA GCTCTGTCGCGAGGAGGGGCGCAGGACCATGGACTGGGGGTG GGCATGGTGGGGATTCCAGCATCTGCGAACCCAAGCAATGGGGGCGCCCACAGAGCAGTG GGGAGTGAGGGGATGTTCTCTCCGGGACCTGATCGAGCGCTGT CTGGCTTTAACCTGAGCTGGTCCAGTAGACATCGTTTTATGAAAAGGTACCGCTGTGTGC ATTCCTCACTAGAACTCATCCGACCCCCGACCCCCACCTCCG GAAAAGATTCTAAAAACTTCTTTCCCTGAGAGCGTGGCCTGACTTGCAGACTCGGCTTGG GCAGCACTTCGGGGGGGGAGGGGGTGTTATGGGAGGGGGACAC ATTGGGGCCTTGCTCCTCTTCCTCCTTTCTTGGCGGGTGGGAGACTCCGGGTAGCCGCAC TGCAGAAGCAACAGCCCGACCGCGCCCTCCAGGGTCGTCCCT GCCCAAGGCCAGGGGCCACAAGTTAGTTGGAAGCCGGCGTTCGGTATCAGAAGCGCTGAT GGTCATATCCAATCTCAATATCTGGGTCAATCCACACCCTCTT AGAACTGTGGCCGTTCCTCCCTGTCTCTCGTTGATTTGGGAGAATATGGTTTTCTAATAA ATCTGTGGATGTTCCTTCTTCAACAGTATGAGCAAGTTTATA ACATTCAGAGTAGAACCACTTGTGGATTGGAATAACCCAAAACTGCCGATTTCAGGGGCG GGTGCATTGTAGTTATTATTTTAAAATAGAAACTACCCCACC ACTCATCTTTCCTTCTCTAAGCACAAAGTGATTTGGTTATTTTGGTACCTGAGAACGTAA CAGAATTAAAAGGCAGTTGCTGTGGAAACAGTTTGGGTTATTT GGGGGTTCTGTTGGCTTTTTAAAATTTTCTTTTTTGGATGTGTAAATTTATCAATGATGA GGTAAGTGCGCAATGCTAAGCTGTTTGCTCACGTGACTGCCA CCCCATCGGAGTCTAAGCCGGCTTTCCTCTATTTTGGTTTATTTTTGCCACGTTTAACAC AAATGGTAAACTCCTCCACGTGCTTCCTGCGTTCCGTGCAAGC CGCCTCGGCGCTGCCTGCGTTGCAAACTGGGCTTTGTAGCGTCTGCCGTGTAACACCCTT CCTCTGATCGCACCGCCCCTCGCAGAGAGTGTATCATCTGTTT TATTTTTGTAAAAACAAAGTGCTAAATAATATTTATTACTTGTTTGGTTGCAAAAACGGA ATAAATGACTGAGTGTTGAGATTTTAAATAAAATTTAAAGTA AGTCGGGGGATTTCCATCCGTGTGCCACCCCGAAAAGGGGTTCAGGACGCGATACCTTGG GACCGGATTTGGGGATCGTTCCCCCAGTTTGGCACTAGAGAC CACATGCATTATCTTTCAAACATGTTCCGGGCAAATCCTCCGGGTCTTTTTCACAACTTG CTTGTCCTTATTTTTATTTTCTGACGCCTAACCCGGAACTGCC TTTCTCTTCAGTTGAGTATTGAGCTCCTTTATAAGCAGACATTTCCTTCCCGGAGCATCG GACTTTGGGACTTGCAGGGTGAGGGCTGCGCCTTTGGCTGGG

GTCTGGGCTCTCAGGAGTCCTCTACTGCTCGATTTTTAGATTTTTATTTCCTTTCTG CTCAGAGGCGGTCTCCCGTCACCACCTTCCCCCTGCGGGTTTCCTT GGCTTCAGCTGCGGACCTGGATTCTGCGGAGCCGTAGCGTTCCCAGCAAAGCGCTTGGGG AGTGCTTGGTGCAGAATCTACTAACCCTTCCATTCCTTTTCA CCATCTCCACTACCCTCCCCCAGCGGCCACCCCCGCCTTGAGCTGCAAAGGATCAGGTGC TCCGCACCTCTGGAGGAGCACTGGCAGCGCTTTGGCCTCTGT CTCTTTCCT

CCGGCACGGCCCGCATCCGCCAGGATTGAAGCAGCTGGCTTGGACGCGCGCAGTTTT CCTTTGGCGACATTGCAGCGTCGGTGCGGCCACAATCCGTCCACT GTTGTGGGAACGGTTGGAGGTCCCCCAAGAAGGAGACACGCAGAGCTCTCCAGAACCGCC TACATGCGCATGGGGCCCAAACAGCCTCCCAAGGAGCACCCA

196 OLIG2 GTCCATGCACCCGAGCCCAAAATCACAGACCCGCTACGGGCTTTTGCACATCAGCTCCAA ACACCTGAGTCCACGTGCACAGGCTCTCGCACAGGGGACTCAC

GCACCTGAGTTCGCGCTCACAGATCCACGCACACCGGTGCTTGCACACGCAAGGGCCTAG AACTGCAAAGCAGCGGCCTCTCTGGACCGCCTCCCTCCGGCCC TCCTGAGCCCTACTGAGCCCTGCTGAGTCCTGGAGGCCCTGTGACCCGGTGTCCTTGGAC CGCAAGCATCCTGGTTTACCATCCCTAC

GGACGCGGCCCGCTCTAGAGGCAAGTTCTGGGCAAGGGAAACCTTTTCGCCTGGTCT CCAATGCATTTCCCCGAGATCCCACCCAGGGCTCCTGGGGCCACCC CCACGTGCATCCCCCGGAACCCCCGAGATGCGGGAGGGAGCACGAGGGTGTGGCGGCTCC AAAAGTAGGCTTTTGACTCCAGGGGAAATAGCAGACTCGGGT ATTTGCCCCTCGGAAAGGTCCAGGGAGGCTCCTCTGGGTCTCGGGCCGCTTGCCTAAAAC CCTAAACCCCGCGACGGGGGCTGCGAGTCGGACTCGGGCTGC GTCTCCCAGGAGGGAGTCAAGTTCCTTTATCGAGTAAGGAAAGTTGGTCCCAGCCTTGCA TGCACCGAGTTTAGCCGTCAGAGGCAGCGTCGTGGGAGCTGCT CAGCTAGGAGTTTCAACCGATAAACCCCGAGTTTGAAGCCCGACAAAAAGCTGATAGCAA TCACAGCTTTTGCTCCTTGACTCGATGGGATCGCGGGACATTT

197 UNX1

GGGTTTCCCCGGAGCGGCGCAGGCTGTTAACTGCGCAGCGCGGTGCCCTCTTGAAAAGAA GAAACAGACCAACCTCTGCCCTTCCTTACTGAGGATCTAAAAT GAATGGAAAGAGGCAGGGGCTCCGGGGAAAGGGAACCCCTTAGTCGGCCGGGCATTTTAC GGAGCCTGCACTTTCAAGGACAGCCACAGCGTGTACGAAGTG GGAATTCCTTTCCACCAAGAGCGCTCATTTTAGCGACAATACAGAATTCCCCTTCCTTTG CCTAAGGGAGAAAGGAAAGGAAACATTACCAGGTTCATTCCC GTGTTTCCCTGGAGTAATGCTAGAATTTACTTTTGTCATAATGCAAAATTAAAAAAAAAA AAAATACAACGAAGCGATACGTTGGGCGGATGCTACGTGACA ATTTTTCCAAATTTTGTTGCGGGGAGAGGGAGGGAGGAGAATTGAAAACGGCTCACAACA GGAATGAAATGTA

198 RUNX1 TTTTTAATGCTCAGAGAAGTTCGTATTACTGATTCGGGAACACTGAGTTTTTCAGCTCCT GTAAAACTATTTTCAGGTTTATTTTCAAGTACATTCTTTA

CACCCTAGAGGCAAGGACGGGGTCTGTGTCAAGAGGCTTCCCAGAGAAGTGAAAACTCTG CAGGTGCAGCCGCTGGGAGAGCATCAAGAAGGGCAGGGTGGA GGGCAGGGGGCGAAGGGAGGGGGTGAAGCCCGCACCCTACCCCCACATGAAACTGATTCC ACTACCCCATCTCTGCAAGCGTCCAGAGGCAGAGAGGCCAAC

199 RUNX1

TTTCGGGGACAGCTTGGAGGCGGGAGATTTAGGCAGGGCTCCTTAAACTTTTATGTGCAT GAAAATCAGGCCAATCACGGGGCTCTTGAGCAAATGGGGACG TGATTCAGCAGGTCTGGGCTGAGGCCTCAGATTCTGCACTTCTAACAAGTTCCCAGGTGG TAGTGATGCTGCCAGTCCAAAGACCACACTG

TGCTTCAGTGGGGTAAACTTGAACCGCTGAGAAGACAAGCAGGGAGTCGGTCTCGCT GAGATTTTTACCTGTGGTTCTAGGAACGCAGAGGCATGTGAGTGTT CAGGCTTTGCATAGACCACTAAGCCACTTCTAAGAACAAGGCTACCTGAGCCATTTTGCA AAAATATGTACGTGCCGAGGCTTTTCCTCCCCACACCTACCTC AACTCTTTCTGCCGACACACTGCACTTTTCAAGGGAACCCAAGTTTGGGTTCGGCAAGAA TTGTACGTTGCACACCGTGTGTGATAATTCCAGGGAATTTCA TCGCATCTTGTCTTCCTTCCTAAGCAAATTCGGTGGGAACCTGGTGTGGTGTGATAGAAA AAGCCCCGAGTTCTCTGTGGTAGACCACATCAATTTCATGTGC CAGTCTCTCAGACTCCGGCTTGCCTCTCTCAAGGAAGGGAACAATGGTTTGCTTGGCTTC ACTCCTCTCTTTCCCCCCAATTTCCACATGGGTATCTGGCTA AAATGAGTTACAGGTTTCCTTCTGTGAGAATTGCATGGACTGATAAAGTACCATCCCAGG AAGAAAACAAAGATGCTGTCTTCCCTTTCGGCTCACAGTTGCC

200 RUNX1

GTTGGGGAGGGAACACACGCTGTAAATTATAGGCAGCCAGAAGTGACCGCATTGACCACT GCGAGTGGCCCAGCTATGGCAACAGGCTGAGAACTCTGGGGG GAGCCATTTGTTGGCAGGGATGGTGATTCTTCTAGCATCAAGCTCTAAGATGATGACCAA ACGGTATCAAAAGAAATGATATTTTGCTACCTCTCCGGCTTG GTGAATGATGTGGACAGTTAACCTGGACAATTTAAACCTTTATGTTGATGGATCACTTGG ATGAAATTAACCAGGAAATTGCCAAGATTTCACTTGGCCCTCT GACATCAAATCTCAATATTATATTACCAAATTAGAGATTCTAAAGAACCCTGAGTTCCTT TCACTGAAAGGAAGGAGTGGAAAAACCTTTCCAGATGATCCCT TTTGAGTCTTGGTGCGAGCTCAGGCCCTCCCTACACTGCCTCCGTGAAAGCTAACCGACC CTTGTTCCTAACCTAGCGCAGGTCAGCTGAGTGTCCATCGGGC ACAGGAGCCCTGGGCTTGTCCGGGAGATAGCCAGACTCCTGCTATTTCCTGATGTCTGCA TAGCTCAGCGTGTCCCTCACCATCTTTGCCGTTGGCCAGTAA

GAGAGCCCCAGGGGCCAGCAC GCACAC GAAACCCAACCTATTGCTCAATGGAATGCTTAAAAATTTCCTGAATCTGCCTTCCTGAGT TGATAAAATAGGA ACAATACACGTTCTGAGGGGGTACTGAAAGCAGAGTAAAGCCAGGAAGATCTTTTTTTTC TGTTATTCTATACAAATATTGCTTCCTCTGCTTGTTAGCAGCC CAGAGGAAATGCAGCCAGGGAGCCGTTTGCAGCTTTTCACCAGTGGCCGGTGTCTCTGTG TTACCAACCAAACGACGCTGCAAGACTAGTGACTAACGCACGT CTGCATGATTCAACTTCACTAAAATTCCCTCTGCTGCCAGTAAAGAAGCACTTGAAAACT CTTTAATTTGAAACTTGAGCTTGGTTAATGACTTGTTTTCTTC TCTTTCTCTTTAACTTCTCTCTTGCCATCTCCAACACACACACACACACACACACACACA CACACACACACACACACACACTCTCTCTCTCTCTCTCTCTCTC TCTCTCTCTCTCTCATCAAGTTTTTTAATTTCAGGGACCCGGAAACATACAGCCCCGTGC ATTCACAATAGCATTTGCTGTGATAAAGTGGCCGGCAAGCCCT CTGCATTCCCCTGCTCACTTAGCTGTATGAATAAATAATGAGTCACAGATACAATTTGGG TGCTCAAGAGAGTTTGTAGCCAGAAAATTAATTATTCTCCCAT CCCAGCCCACTCCATCTCAGCTTTGCCAAACCATCAAGATACACTTTGCAGGCACTGGTC AGAGTGCGTGCCCCGACGCACACGGCAATGCCTTTGAGACATT TTATGTTATTATTTTTGTTTGTTTAAGCACAGCCCTCTTTTACCACGAAAGATACACAAG ACGCACATGCACACACATACTCACACACTCACAGCTCAACCAC AGCTTTGTCCATTTCAAGAGGCTGGTTTCAAAAATGGAGACAGGTTTTCCACCCTGGCTG TTCCTATTCATAAGCCTGTAATCTAACGACTTAAGCTGCGAG ATGCTTAACTCGGGAAACTTCTCTATTGCCCTTTTCCAGAGAGACCTCGGTATGCCACAA TTTGCTTCCTTTCTCTCTTGAAAGATGCTGGTTGTCTCTTTGC ATTGAGGCTACAAGGAAAAACACAGCACAGCCCCATGCTGATGATTTTAACCTAACCAAG TCTGTCAGTCTCCTGTACTCTCTGCCTTATAGAGACAGCTGCC TTGCCACTTTGGCCCTGAAGTCCCCAGGCTGGTGCAAGGCTATCTGAGAGCCTCCGCCTC CTGCCCCACACTGGCACCAGCCCTCCTGGCTGGCTCTGTGCAT GTGCCTGCTAAGCCCCAGGGCAGGCTGCATTCTGGGCCACACAGCATGCCGAGTTAAGGA TAACTCAGACACAGGCATTCCGGGCAAGGGACAGCAAAATAA ACCCAGGGAGCTTCGTGCAAGCTTCATAATCTCTAAGCCTTTAAACAAGACCAGCACAAC TTACTCGCACTTGACAAAGTTCTCACGCACCGACTGAACACTC CAACAGCATAACTAAGTATTTATTAAAACATTTCTGAAGAGCTTCCATCTGATTAGTAAG TAATCCAATAGACTTGTAATCATATGCCTCAGTTTGAATTCCT CTCACAAACAAGACAGGGAACTGGCAGGCACCGAGGCATCTCTGCACCGAGGTGAAACAA GCTGCCATTTCATTACAGGCAAAGCTGAGCAAAAGTAGATATT ACAAGACCAGCATGTACTCACCTCTCATGAAGCACTGTGGGTACGAAGGAAATGACTCAA ATATGCTGTCTGAAGCCATCGCTTCCTCCTGAAAATGCACCCT CTTCTGAAGGCGGGGGACTCAATGATTTCTTTTACCTTCGGAGCGAAAACCAAGACAGGT CACTGTTTCAGCCTCACCCCTCTAGCCCTACATCTCTCTTTCT TCTCCCCTCTGCTGGATACCTCTGGGACTCCCCAAGCCCTATTAAAAAATGCACCTTTGT AAAAACAAATATTCAAATTGTTAAAGATTAAAAAAAAAAAAA AGCCAGCGCCGCCTTGGCTGTGGGTTGGTGATGCTCACCACGCTGCGAAACCCTGTGGTT TGCATTCAGTGTGATTCGTCCTGCCTGCTGACCACTATGCTG GTTCAGACTTCTGACACTGCCAGGCTACCCAACTTGTGGTTCTGTGGTTGTTTATGAGGC CCAAAGAAGTTTTCACACAACCCAAATTACAAATTTAACTGTT CCCCTTTCCACAGCCCATCTCAATTGGTTCTTGCCAATCATGTGACTTAAGTGATGTCAA TTTTTTTTTTTCTTTTCTGAGCAATGCCCTTCCTTCCCTCCAC CTGCCCTCCCCCAGGCTGTGCAAGAAAATAGCCGAGTAGACTTTGCAAGAGGGGGGGATG TAGAAAAAAGTGACTCAGTCACTTATTATATCTCAATGGTCTT TGCTGATTTAGTACAACTCGGCTCCTGTTGTTATTTGTGGTTTTTGGAACTACTGATTAT TTTGATAAAGATTTCATTGCTGCTTATTCAATAGTAATTCAAC GCTGGCATCAAGCCGCTGCTCCGACAGGATGTGGATCCCATCATTTAAAATGCTAGGCAT CAGCTCCGGGAGAGTTAAGTCCTTGGTAACGTCTATCATGGC TAAGTGAAACTATAAAAGGGAAAAATAAATAAAAAGAAATGTTTTGGTGAGAGTCTGACC CCTACAACGGGCTGGCAACTCACAGGTATTTTAAAGCCTGGG AAGGGAAAGAATTTTACTTTTGAAATAAAAGGACTGTTTTAATGAAACCAAAATTATGTG GTTTTATTCCCCCTAAATGGACAACTTTAGTATGTATCTCTTT CAGTAAAGAGATAAAATCATAGTACAGTCTTAACACACACACACACACACACACACACAC ACACACACACACAAATTAGGAAGCTAAAGGAAAACAAAGCAG GAGAATTTCTGTATTTGGGACAAAGCAGTGGTTACTCTGCAGATGTTTATTTGTATTGTC ACTTGGGAAAGCTCCCTGTATTGCCTTTCTCTAGTTCAATTC AATCAATAGGCTAATTTACACCTGTAGGTAAAACTACACTTTGAGCACATGAGGATGCCA CAATAGAAGGGGAACCAGGAGGAGACACTTCTCCTGGGGCTG CTAATGAATATTATATAGCGCGTCCTCTACCTTAGAAAGACATGCCTGTTTGAAGATGCT AAAAACAGGATAATTTTGTAAGTGGGCAAACCACTGTGGTCAC ACGTATTTCATTTTCCGGCCCCACTGGCTTTACCTGCTGACAACTAAAACGTCATTTTGT TTTGTAGTTCCAAGATGAAGAAAGGCTTATTTTCCTGATTTAC TACCTTATTCATTTGGCTCTGCTCTGCCTACATCCGCCATAGCACTCTGCGCACGTGAAA TTTCGACACATAGGGTCAAGAGAACCTGTGTGATGATGGGTT TAAATGCCAGTCCTGGATTCTAAGCTGCAGTAGCCAGCACAGGCACTTCAGAAAGGCTGA ACTCCCACAACACTCCCTCGGTTTTCCCTCATCCACTTAATTT CACACACACAAAGACCCACAACGATAGTAGCTTCCATGGCACAAGTCTTTCAAAAGGAAC AGACACAATTTTTACTTACTCCTGTTTTGACTAAAGCAGGAAT

TGAAACTCAACAGACCGCTTTCTCT ACAC G GAGAAGT AGCTGGCCACATGT

chr21:3 AGGGAAAAGAGATAACGAAAGAAAGAAAGAAAAAAAAAAGGGCCGGCAATTTCATGTACA TTTGTTTTGGCATTCGCTGAATTCTAGAGATGAAAACAATCTC 549920 CTGCTTTTAATTCAGTCCACGTGCAACAAAGTTGTACGTTGGGAGATCTGGCTTTTAATA AGAACGATTAACAAGCGTTTTTGATCACAGGAAGTTGAGAAG

201 0- GTCGCTGCTTCTAAGAATACAATAAACATTGACTAGCAGTTAGACGGTCCATCTTTCTCT ATCAGCCGTTTAGCAGCCTCTACTTTGATTTGGGGCAAATGC

354997 AGATGGGACCAGGAGAGAGCTCCCCACACCCCCACCACCACGTGGGCAGTGGTTCTGTTC CAGAGCGCCTTCCTTCCTGTCCAGGGAGGCAGGCTGCTGAGGC 00 CGTTTCTGGGCAAGAGGCCATTGTCGGGATATTTGCTTTAGATAGCTTGCAGCTGGGCTG AGTGGGTGTTTCATTCAGACTCAACACA

AGCCTGGCGCACCCGCCCTAATTTGAGTCAGGGACCCTAGGCGCCTGCAGCTCCGGTTCG GGTTGAGTGCCTCCTGTCAGGATGTGAAGCTGCTGTCCCCCCC

chr21:3 GGGGGCCTCCAGCACTGCTGAGGACTCAGCAGTCAGCCTCTCCTCCCACTTGGGCTCATT TACAGAGAGCATCTCCAGGAATCAGTCATGGGGAAAGGGGAA 582280 CGCGGAGTGACAACACAACACGTAGAAAGTTCTCTGCCGCCTTGGTCAGGCTTGTCAGCC TCACAGCCCATCCTGCTCCTGCGGGAGGAAAAGTGAGCAGAAC

202 0- TCAGCCCGGAGATGAGCCGCAGGCCGGCAGCCCCTGCCTCTGCCCTGCTTGTTGTGACTG CAATGCAAGGCTCTCTGTAGGTGCGGGGGATTCGGGTTAAAT

358235 GGTCTCCAGTGGTCCAGCGCTCCCAGCAAAGGCCGACCACAAGAATTAGCGGGCTAGTTA TTTACCATAACCATATACAAAACCACAAGCATCAGCGTTCCCT 00 CAAATACATCCGAGACGCTGTATATCTCTTTATTAAAGCCTGTCAGGGTTTGTTATTGCA CAGCTTGGCCTTGAACCCCAACTAAACCAGGCTGCTTGAGCA

AGAACCAAGCAATGCAAGCATTCAGGCAGGACCATTATAACCCTGAGGCCAAAGGCAGAA GCAGGGAGAGGAGACGTCTTCC

AGACCAGCCTCGGTCTTCGGCCTGCGGGTTCTGCAAAGTCAGGCTAGCTGGCTCTCC GCCTGCTCCGCACCCCGGCGAGGTTCCGGTGGGGAGGGGTAGGGAT GGTTCAGCCCCGCCCCGCTAGGGCGGGGCCTGCGCCTGCGCGCTCAGCGGCCGGGCGTGT AACCCACGGGTGCGCGCCCACGACCGCCAGACTCGAGCAGTCT

203 CB 1 CTGGAACACGCTGCGGGGCTCCCGGGCCTGAGCCAGGTCTGTTCTCCACGCAGGTGTTCC GCGCGCCCCGTTCAGCCATGTCGTCCGGCATCCATGTAGCGCT

GGTGACTGGAGGCAACAAGGGCATCGGCTTGGCCATCGTGCGCGACCTGTGCCGGCTGTT CTCGGGGGACGTGGTGCTCACGGCGCGGGACGTGACGCGGGGC CAGGCGGCCGTACAGCAGCTGCAGGCGGAGGGCCTGAGCCCGCGCTTCCACCAGCTGGAC ATCGACGATCTGCAGAGCATCCGCGCCC

AAACGTTTAAAATATATTTCTAAACAGAATGGGCCAATTCAGTCACAGTAACTGTTG ATCTCCATAGCAGAGCAACCCACAAAGACAGAACTGATTTTTTTCC CATAATCAGGGGTGAAAAATATACAACTTGTTTCTGAACCAAAACCACAATTTCTGCAGT TTAAAATGTTTCACTGCTAATATGGCCCTGGTAGAAATTATGT AGTTTCTTTTCTTCTTTAAAAAAAAAAAAAATTAAAAAAATTTCCTAAGACACTAAATGC TCCATCTGGAATGTAGATTCTGATCACAAAGCAGCTCAGTTA CCTAAAAAATAAAAAATTCCCATCACCTGTCTCAGTAGGGCCTGAGAGTAGTGTGGGGAA CCCCAGCTTTGGTATGGAGAGTCATGGCCCCTTGAACCAGAT GAGACCTTGAATAGCCATAGCTGGTGCTTCTCTCAGGATAAACTCTGATGTAGGAAGTAT CACCCTCATGAGAGTGGAATTTGGTCATCCAGTTGACGCAGG CATATTCCATGTCTTCTTTTCTGAGACACCCAACCATCCCCACTCCATCCTTCTGCACAT CCGTGTAACAGGCATCCCCAGCTTCTCGCGTGTGATCCTTCA GTCCTGCCAGCTGCCTGATGGAAGAAGTCCATTTCTTCCATAAATAGCATCCTCTGCATC TCGAGGGTCCTCGAAGCGCACGGAGGCGAAGGGCACAAGGCC

204 DOPEY2 TACCGGCTCTTGAGCTCGATCTCGCGGATGCGGCTGTACTTGTAGAACAGGTCCTGCGGC TCCTTCTCGCGCACGTGGGTCGGAAGGTTTCCCCACGTAGAT

CACCCGTCGCCCTCCCAGCCGCGCTCGTGTCCGCCCAGCCGGACAACCGCACCGCCCGAC GCTGCTGGCCAGCCGCAGCCCGCATCCGCCCGTATCGCCGCC CTGCCGCCTCAGCACGGCTGCCCCCGCAGCGTCTGTTTTGTTTTATTCTAACAGGGTCTC TCTCTGTCGCCCAGGCTGGAGTGCAGTGGCGTGATCTTGGCTC CCTGCAACCTCTGCCTCCCGGGTTCAAGCGATTCACCTGCCTCAGCCTCCCAAGTAGTGG GCATTATAGGTGCCAGCTAACCATGGCCGGCTAATTTTTTTTT TTTTTTTTTTTTTTTTTTGAGACAGAGTCTTGCTCTGTCACCCAGGCTGGAGTGCAGTGG CGCGATCTCGGCTCCCTGCAACCTCCGCCTCCTGGGTTCAAGC GATTCTCCTGCCTCAGCCTCCTGAGTAGCTGGGATTACAGCTATGTACAGCGATGTCTGC AAAGATAGGGATTTAACAGCACTCATATCTTCATGTTCATAA AAAGTCCTACACGCGTGATGTACGTCTAGATCTTTCCTTTTGTCACAGGATATAGCACGG TAGTTACGGATATAGTCTCCGCAGTGCCTGGGTTTGACTCAGC TTCCCCACGTACTGTCCTGCGCATATTTTGTGTCTCAGTTTCCTCATCTTTAAGGTAG

CACGCGCCCCGGCCTGGCTGGAGGGGCCAACCCAGCGGGGCCCGCCTGCCCGCCGGC CTTTCTGTAACTTTCTCTCTTTAAACTTCCAATGAATGAACGTGCC

205 SIM2 TCTTCTTACGGATTTGTTTAGATTAGGGAATAGATTCCTCGCTGATAGCGTTGCTTTGCA AATAAGACCTCCTATATTATTCAAACCAAACGAGTTTGTGTCT

TTAAAGGACTATAGCAGCCCCATTCTATGTTAAGGGTTGGCTATTACAATTATTATATGC TTAGGGAAAAAATGTAAGCCCCGTAGTTTGTGCTTTTCTTGAT

GTACAGAAAGGTTTATCTTAGGTGGATAGGTTTTGTTTTGTTTCTTAAATGGGATTT TTTTGGTTCGTGTCTTTGAAGGGCTGTTTCGCGACGTCATTAATG ACTAATCGGTTTTCAGATTTCAAGACGGTGTGTAATTGATGTAACCACTGAGGAATTTCA GTGCACACCAGACTAAGACTCTTCCAGCGCAGGGGATTCCAG TGCTTCTTGGGCCCTCTGGAAGCCATGGGGATGTTTCCAGACCGAAAGGAGGGCTT GC GGGGAGCAGA G GCTGCCTCTCCCCGACCCAGGATTT GAG CCATGTTTCCGTTAATCTGGACCGAGAGCCCTCTGGGAGAGGGAGGCAGGTCGTAGGGGG CGGGGGTGAGGGGGAGCGAGATGAGGTCGTCGCTGGACGCTG GCTCCCTTGTCGTTGTCCTTTTCCCCAGAATCCATGGTCAGGCCTAGGGAGCCACCCCTG GGTGCTCGAGATGAGTCCCCACCCTCACTGAAGGTCGGTCACT GGATGTTTGTGTGCATCGTAAGGGGCCCACCGAAGTCCCGAAGCCTTCTCAGGGACCAGC GAGAAAGAGGAGCAGGCTTGGGAGACAGGGAAGGAAAATGCA GGGAAAGGGCTCACCCCTCGACCCCAGGTAAAATTAGAAGGAACGTGTGGCAACCCAGGT GCAGCTTTGGTCGCTCGCTCAAGGACTTTGCTAGTCACTACC TTAATTAATTAATCACTATCATTAACTACCAAGGACACCGTTTTTATTCCCCTAAAAGCG TCACCTTGAGGGGAATGGAGAATTGGGCAGCAGCTATGCAAAT CCTGGGACAGGAGACACTGCCTGAGGACCCTCTCTCAC CCCAATCCCAGAACCCGAAGTTATCCCCGACAACCAAGTCCAAGCACATGAACCAAGACG ATC GCTTCAGGCAGCTCCTTACCCCCACAAGCGGCCCAGGAGGTGGGCATTATCCCCCACCCC TGGGATTTCTCCATCCCTCCCTCTTCTCTCCTGCGGGAGAGA AGCTGTGGTCACCCAGTTGGGCGCGATGGCTCTGGACTAATGGGGTCTCTAGACCCAGGG CACAAAGGCCAATCTGCCAGGGGTTACTGCATGTAATGAGAT ATCAGACATGTTGACCAACCTAAAAGAAAAGACTCTCCCAGGGAGTAACTCCCAGTGAAA TAATTTATTAAAAAAAGCAAAAAAGAGACATAAATTTCTCTCT ACTACTTGAGGAAACAGCAAACAGAACGAATTAGGGTCTTGGCCTCTGCAGGAATAAATT ATTTCCGACTTGGTCTGGATACCTGTAATTATTTGTAAGCTGT GGGTAGTAATACTGTAATTGTCCCCCGGTCCTTTCTGGAAGTAGCAATGACCCCAAGGAC AATTGGTGACGTCTCCACAGGGTTTACACATGGAAAGGAGTG AAAATCGAGGAATTCTTTCAGATAGCCCAGACCAAAAATCCTCTCAGCCATGAAAAGGTC ATATATGTGATGCTGGGCCAAGCGGACTTTTCTGGAGTAACC TATCATAACTGATTGCGGATGTAGACAAGAGCGTATAAACCAAATAGGCTTGAATCAACG CAGTCCTGGATTTTCTGTTGCCTCTGCTTGCTGGGGCAGTGG AGTTCTTAAACTCCACTTCAGAGGTTGGAAATTCTTCCCCCTCCCCCACCTCCTTAGTGA CAAGGTCTCTGATCTCCTGCTGCCACTGCAATAGCCTCTCCC TCCCGCGGGGAACGGCCGGAGTTCTTCCCTTGATCTCTCCCGAGTCGGCTTCCGCTGGGG ATGGATCGCAGGTAGGCGCCGGCGCGGCCTGGGGAAGAACAGT TGCGGAGCATCTGAAGCGGAAAATCCAAGCAGATGTGAGGCGATCCGGGCCCGCCTCGTT CCTCTTGGGGCCTGAATTTCTTCCAGATAAGTTTCCTAATGG ACATTTCTAAGAGGTGGGGTACGAGGCGGCTTGCTCGCACGCGCAGTGGGACAGACTGCG GGTGGGGACGTACTGAGAGGTCCGGACCTCAATGCGTCCGACC CGTCTCCACACCGCCCTTTTCCAGCCCCCAGTCTCCTTTCATTCCCTACTCTTCAGGCTC CTTTGGGGCCAGTGGGTGAACCGCCATTTAGAACGGTGCCTC GACTCGGGGGTCGTGCGCTCCATCTCTGCCTCCCCCCTGGGGCCCGCGAGGCTGGTCCGG GCTTTCTGAGCTGGGCGTTCGGCTTTAGGCCCAATACCTGGAC CAGGAATTTCTTCTCCCCGCGCCAGAAGGGAAAGACATAGGAGGTGTCCCAATCTGCGGT CACCGCCGATGCTCCTGACCACTCTAGTGAGCACCTGCCCGGT ACTTTTCCATTCCAACAGAGCTTCCAGCTTCATACTAACTATCCCACATACGGCCTGTGG GTATTAGCTCTAAGTGTCCTTTTCCGAGGGCCCGAGGCTCCCC CTCCAGCAGGGAGAGCTCCGGGACGGCCCCCACCAAGGGTTGGGTTTCTTCCTTCACAAT TCCACAGAGGCATCCCTGTCCTTCCTACCTGGGAAACCTCGA GTGCGGTGCCCGTGTACTTCTGGTACTTTGCGTGGTGCCATCAGGGACCCCAGAGCCACA GCTGCGTGTGTGTGTGGATGTGTGTGTGTGTGTGCGCGCGCGC GCGTGTACGGCGAAAGGATGTGCTTGGGGGAGCCGAGTACACAACGTCTGCTTGGGCAGC TGCTGGGCAGGCGTTGGGCCTGGAGGTATCTCACACCCACGT TCTTCCAGTCTTCAAACACGGCATTGCTCTGCCTCCCGTAGCGCGCTTCGAACCTGCCTC GCGGACACGTGAACAGAGGCTGTCCCTGGGAAGATAAGTGCGC TTTCCCGTAAAATCCGGGAAATTTGCCTTGAGGAAAGTTTCCGTTCTTGTTACTTGTCGG GTTTCTCCCACTTCCACTTAGCCATGTTTCTGCGATCTGGGT ATCCCTTTCAAGCCCAGGAGGAATTCTCCCGGGTCCATAATTGAGGGTCGGAAGCCGTGG GGGTGAGAAACGCATTAAATCCTCCCGAAGCCCAGGAGGTGCC AGAGCGGGCTCAGGGGGCCGCCTGCGGAAGCTGCGGCAGGGGCTGGGTCCGTAGCCTCTA ACCCCTTGGAGCTCCTTCTCCCAGAGGCCCGGAGCCGGCAGCT GTCAGCGCAGCCAGGAGCGGGATCCTGGGCGCGGAGGTGGGTCCGACTCGCCAGGCTTGG GCATTGGAGACCCGCGCCGCTAGCCCATGGCCCTCTGCTCAA CCGCTGCAACAGGAAAGCGCTCCTGGATCCGAAACCCCAAAGGAAAGCGCTGTTACTCTG TGCGTCCGGCTCGCGTGGCGTCGCGGTTTCGGAGCACCAAGCC TGCGAGCCCTGGCCACGATGTGGACTCCGCAAGGGGCTAGGGACAGGCAGGGGGAGAGCC CGGGTTTGCGCACACCTTCCAGCCCCTGGAGGGAGCCTGCTC GCTTCGAACGCCTTCGAACTTTTGACCTTCAAAGGAGTCCCTGGAAAAGGTCAGGAGCGC CTGCTGCAGGCACGGTTGCCGAAGGCCAGGCCTTCCTGGCGC GGGGAGGGCCAGGGGAGGGAAGCGGATACTCAGTCGCTGTCCGACGGCGAGTTTTCGGAG CAGCAGGCTCATGATCCCGGGCCAGTGGCGAGAGCAGTGACAC

CGAGAACCCAAATCTCCGCGCCCCCATCCGCGGCCCGGTGTCCTCCCGGCCCCTGCT GACCTCCAGGTCACGCACCCCACTGCTCCACGGCTCTGCAGCCTGT GGCACACGGCCGAGAGTCCCCACATGATCTCGACGCCAAGGTAAGGAATTGCCCTGCGTC CTCTGAGCCTGTCTCTGGCCTGGGGGGCCGGGAAAGCTGCACT CCTGGAAGAGGTGGGGTTATGTGACCGCCGCTGCAGGGGTGCGCGGAGGACTCCTGGGCC GCACACCCATTTCCAGGCTGCGGGAGCCGGACAGGGGAGGGC GAGGGGGGACAAAAGGACTCTTTAGGTCCAAAATGACCCTGAAGGAGAGTCCAGAATGCC CAGTGGCCGCGTCTGCAACGGAGTCTTCTTTCTCCAATTGCCT TCTGCCCCATCACCATGGGCCCCACCTGCGCCACCTGCGCCCACCCTGTGACCCTGGCTC AGCGACCTTGGCCCTTAATCGCCCAACGCCGATTCCTCAAAAT TCCGGCTGCGCTGAATCGGGCTGCTTTTGCCGCCGCCCCGGCAGTTGGGCCCTGTTTCCG CCGGCGCCCTGGGAGAGGCCTCACCACTCGGCTGGGCTCCCT GCCCCTCCCTTCCCCTGGCCTGAGCGCCCCTGCGGCCTCCCGCTCCTCCTGAGAAGGCGA CAATCTCTTTGCACCTTAGTGTTTCGAGGACAGAAAGGGCAG AGGGTCACTTCGGAGCCACTCGCGCCGTTTTCACGTGTGTGTGTAATGGGGGGAGGGGGG CTCCCGGCTTTCCCCTTTTCAGCTCTTGGACCTGCAACACCG GAGGGCGAGGACGCGGGACCAGCGCACCC CGGAAGGC CGA CC CCCCGGCAGGGCGCC GGCCAACGAG CGCGCCGCC CC C CGGCCGCGCC GC GTGACCTTCCCGAGAGCCACAGGGGCGGCCTCGGCACCCCTCCTTCCCTCGCCCTCCCTG CCGCCCATCCTAGCTCCGGGGTCCGGCGACCGGCGCTCAGGA CGGGTCCCCGCGGCGCGCCGTGTGCACTCACCGCGACTTCCCCGAACCCGGGAGCGCGCG GGTCTCTCCCGGGAGAGTCCCTGGAGGCAGCGACGCGGAGGC CGCCTGTGACTCCAGGGCCGCGGCGGGGTCGGAGGCAAGATTCGCCGCCCCCGCCCCCGC CGCGGTCCCTCCCCCCTCCCGCTCCCCCCTCCGGGACCCAGGC GGCCAGTGCTCCGCCCGAAGGCGGGTCTGCCATAAACAAACGCGGCTCGGCCGCACGTGG ACAGCGGAGGTGCTGCGCCTAGCCACACATCGCGGGCTCCGGC GCTGCGTCTCCAGGCACAGGGAGCCGCCAGGAAGGGCAGGAGAGCGCGCCCGGGCCAGGG CCCGGCCCCAGCCGCCTGCGACTCGCTCCCCTCCGCTGGGCTC CCGCTCCATGGCTCCGCGGCCACCGCCGCCCCTGTCGCCCTCCGGTCCGGAGGGGCCTTG CCGCAGCCGGTTCGAGCACTCGACGAAGGAGTAAGCAGCGCCT CCGCCTCCGCGCCGGCCGCCCCCACCCCCCAGGAAGGCCGAGGCAGGAGAGGCAGGAGGG AGGAAACAGGAGCGAGCAGGAACGGGGCTCCGGTTGCTGCAG ACGGTCCAGCCCGGAGGAGGCTGCGCTCCGGGCAGCGGCGGGCGGCGCCGCCGGGTTGCT CGGAGCTCAGGCCCGGCGGCTGCGGGGAGGCGTCTCGGAACCC CGGGAGGCCCCCCGCACCTGCCCGCGGCCCACTCCGCGGACTCACCTGGCTCCCGGCTCC CCCTTCCCCATCCCCGCCGCCGCAGCCCGAGCGGGGCTCCGC GGCCTGGAGCACGGCCGGGTCTAATATGCCCGGAGCCGAGGCGCGATGAAGGAGAAGTCC AAGAATGCGGCCAAGACCAGGAGGGAGAAGGAAAATGGCGAGT TTTACGAGCTTGCCAAGCTGCTCCCGCTGCCGTCGGCCATCACTTCGCAGCTGGACAAAG CGTCCATCATCCGCCTCACCACGAGCTACCTGAAGATGCGCGC CGTCTTCCCCGAAGGTGAGGCCTCAGGTGGGCGGCCGGGGACGCTGGGGAGCCCGGCGGC CCCGGCCCAGGCGGGAAGCGCAAGCCAGCCCGCCCAGAGGGGT TGCCGCGGCCTGGCGTCCAGAGCTGGGGCGTCTGAGGGAGGTTGCGTGAGGGTCTTCGGC TTCGGCGCTGGCTTGGGGCGAGGGGCCAGGGCCTTGGCGGCCC AGGCGACCAAACCCTCTCCTGGTCCAGGGCTGGGTGAGGGCGAATTACGAATTGTTCCAG GGGCAGGCAGTCCCCCAGCCCGCACGGCCAGCGAGTTCTTTCT GGTTTTGTTCTTTCTCCCTTTCCTCCTTCCTTCCTTCGCCAGTGCATTCTGGTTTGGTTT GGATTTTTTTCTCTCTTTCTTTCCTTTCTTTCTTTCTTTCTCT TTCTTTTTCTTTCTTTCTTCCTCTTTCTTTCATTCTCCCCTTCCTTCCTTCCTTGGCCCC CTCTCTCCCTCCCTCCTTCCTTCCTTCCTTTGCCAATGCATT GTTTGTTTTCTTTCCTTTTCTGCTTTCCTTCCTTTCTTTGGAAGTTCACTCTGGTTTTGC TTTCTTTCTTTCCCCATCCCTTCCTTTCTTTATCCCTCCTTCC CTTCCTCCTTTTCTTTCTACGATTCCCTTTATTTTTCCTTCATTCCTCCCTCTTTTTGTC TCTTCTGGAGGAGGTGAAGGAGGGTCAGCTTCAGGCGCTGCG GTCAGCGGGGATCACGGTGAGGCCCAAGCACTGCAGGCTGAGGCCACAGAGCGAACACTT GTGCTGAGCCGGGCCCTCTCGTGAGGCTGGGGTGCGGGAAGTC CGGGCAGGAGAGACCCGCCCCCGCCGTTGCTGAGCTGAGACCCGGCTGAAAGAGAGGGGT CCGATTAATTCGAAAATGGCAGACAGAGCTGAGCGCTGCCGTT CTTTTCAGGATTGAAAATGTGCCAGTGGGCCAGGGGCGCTGGGACCCGCGGTGCGGAAGA CTCGGAACAGGAAGAAATAGTGGCGCGCTGGGTGGGCTGCCCC GCCGCCCACGCCGGTTGCCGCTGGTGACAGTGGCTGCCCGGCCAGGCACCTCCGAGCAGC AGGTCTGAGCGTTTTTGGCGTCCCAAGCGTTCCGGGCCGCGTC TTCCAGAGCCTCTGCTCCCAGCGGGGTCGCTGCGGCCTGGCCCGAAGGATTTGACTCTTT GCTGGGAGGCGCGCTGCTCAGGGTTCTGGTGGGTCCTCTGGGC CCAGGAGCTGGGAGGGCTGCGCCGGCCTCTGGAGCCCCGGGAGCCAGTGCCGAGGTAGGG AGACAACTTCCGCCGCAGGGCGCCGGACGGTCGGGGCAGAGC GGCGACAGGTGTCCCTAGGCCGCAGGGCGCTTCCATAGCGCCATCCCCACCAGGCACTCT ACTCGAAATCGGAAAGCTCGACCTTTTGCGTTCGCCTCTGCC AGCCTGTTATTTGTGCTGGCCGCTGGGTCTGGAGCTGCGCTTCTCGGCCCCTCCCCGGTG GAGCGCAGAGGGCTGGTCTGCAAGCGCGGCCTCCAGCCCCGC GCTCCCCGGCCCAGGAGCCAGGCGCGGGCTGACCCGGGAGCACCCGGCAGCGGAGGGGGC TGGAAGCGGACCCTAGGCCTCTCCTGTGCCACCCGGCCCTACC

GCGCGGCCGCGGGGCGCTCTCCTCTCGGGCGCAGCGGTCCTTCAGCCCAGGGCAGGT TCCTCCCTTTCCTACTCGGAACGTGGCAAAGATACCCCAGTCCCA CCCCTCCAGCTGAGAGCTGTTGCCCAAGGTCGTCGCTACTTGTCCGCTCAATGGTGACCC CTTGGCAGAGAACTAGGGATGATTCCACTCCGGTTGATGTTTT AGGGGAAATTAAAAGAACATTCGGTTTTCTGAGTCTCCTTCCGGGGAGGCGTGGTGGTAA CTGGTTTGCTGGGAAGAGCCGTTCCTTAACCGCATGCAACAA GCAGGTGTGGAATCCGGACGAGAGGGCACTCACTGCCTTCTGCCCCCTTTGGAAATAGAA AAAGCCTTCGAAGCAGCAATCCAAAGATCAAATGATTTGCGGT CAATGATTTCAATTAAACCAGAAATTAGTAAGGGAGGGCCGAGAAGACACGGCTGCTCAG AAGCTGTTCGCTGTTTGAGGGATTTCCCGGAGAGCCTGTTAA AGATGCGAAGTGGTGGGTGTACCGCTCAGCCACCTTTAAACCGGCTCTGTGCGTTCTGGC TCTGGAAAGCAAGTCTCCAGGCATTTGGGCTCAGAATTGCTG GCCCCGAGTTTGGGCGGGGGTGGTCCTTCTGGGGGTCAGGCCTTGAGCAGCTTGCACTGG TGGCAGGTTTGGGAGCAGTTGAGGGGCTTCCTGTGTGTCTTTT GGAGGGGGTGACCCTGGAAGTTGGCACTCTGGAAGGGAGCTGTTTGGCCCTAGAGTTTTG GAAAGGGCCCTGAACCTGTTCGGTCCCCCTCGGAAAGGGAAG GAGCAGTGGCTTAGTCCCTCCCTCCTCCATTCGTGCAATGCCTGGGGTAGGGGTAGACCT GGAGCCGGTGGACTCATATCCTTGGAATTCGTCAGGACAGCT CTCCGGGGCCTTGGCCCTCAGTCAGTCTGGGGCTGAGGAGTAGGGAAGCTGGGAACTTGG GGCAGAGGAAGAAGATGCGTTTAGAAAGACCTCCATTATGCA ACTGGAGTCCATTTATGCAAACTGGTCACCCTTCCAGTAGCTCCAAAGAGTGGCAGTGGA GTGGCATCTTGATTGATTTAACCTCTTCTCAGGGGACCTGGGT CTGCGAGGGAGGATATGGCTGCGGGGTTGGAATAGGATCTGTCTGAGCTGCCAGGGTCAG GGTGGTGGCCCTAGGGAGGTTTTAGGGCCAGGGTGGTCCCGG CTGTGGCAGGGGCTCTCAGATCGCCTCGGGCTCTCAGCTGCAAGGTGAAAAATACCATGA GGAATTGATCTGCCAAGGGCGGTCTTGTCTCAAAGCAAGTGG TTGCTGGGGTAAAGAATCTAGAGACCAGCTTAGGACTCTGGGAGGAAGAAAAAAAAAAAA AGAATAGCATAGTCCTAAGGAACTGCAAGGATCACCAGATTA CCCTTCATACCTGGGGAAATTAAGGCCAGACATGACACAGGCCTTTCCCAAGGCTCTGTA GCAAGGGCAATAGCAGGCCAGTTGCTGCCACTGCGGTCCTGT GGGCATGTTCTCACTCCACTGCACCCAGGAGGCTGCCAGCCTCTGTTCCTTTTAACATAG ATCTCCTCAGTTGTTAAGACAGAAAGAGGAACTCAGAGGGGTC CCTGTGTGCAAGGCAGAGGGAGACCACCAGAACCAGGGTAAGCACCCCACTTGGTAGCCA GTTCAAGGACTTGGGGATGTTTTCAACATTTACAGCGAGGTTT GAGGCCCCATTGTCATGCAGCGCTACTCGGCCTTGGTCTCCTTATCTGTAAAATGGGCCC ATTAGCAATGCACAGGGTTGCTGTGATGAAGGGTGAGGTCCC CAAGCAAAAGCTGTGCAGTGAGGGGGGAATCCTAAGCATTGTTCCTATGCCATTCACCCC TTCCTGTGAGCTCCCCATATTCCCTGGCTCAAAGGAGTCTTG ATGGCAGGGATGGAGGACTCACTGCCTGGACTTTGAAGACCCCTGCTTTCTGGGTGACCA CCTTTTCTTCCCTTTGACAGTGAACTAATACATTGGAGGTAG TAGTGCTGGGAAGAGGACAGGAGACCACGGCTGACTTTGGACATGGGCTCGAAATTGATA ACTTGATGAGTCTTGGAGGGTGGTTAAGATAAGCTCGGGGCT GGGCAGCGCTGAGGTCTGATGGTCAGCCAGCCCTCCCCAAAGTGTGGCCCTCCGTTCTGG AGATAGGGGCTTTGGAAACTGCAAAAGCGTCCTGGCAGGCCA CTCTGGTTGCTCCCTGGCCATAGCTGCTCTGACTACAGGCAGCAGGACGCAGGTCGGCCT CTGCCCATCGGAGGTCAGAGGCAGGGCCTCCAGCACCAGACTC AGCAGTGCCACTGCAAACCTGGCACAACAGGCTGGTCCCAGGACTCAGCTCAGCAGTGAA GTTGGAAACCAAGGTTGAGTCTCCCCATCTCCCTTTCCCCAAC CCGAAAGACCCAAGATGGGTGTGGGTGAAAGAGGGAGAAAGAATTGCTACTCCAGAAACT GTCATTTGCCCACACGAAACGAGGTGGGGTTCAAGGTCTGAAC TCTTCCAGTGCCTGGGTGCCTTTGGGTTTAAATTCAGCTGCAGGTGCCCCCATCACCACT TCCACCTGAGCACACCACGAGAAGCCAGGTTATCTTAGAAACT GTTTCCCGGAATCAAAGCGACTTGATTTGGAGAGTTGGGTGAGGAGAAACTCACCCCTAT ACCCCTCAGGGCGTCAGAGATGTGAGGCAATTCTCTACCTCC CTGGAAAAAATGCAGATTTATTAAAGGTCGACTGTTTAGCAGAACAACGTAGATTTTTTA CAACGCTTTCCCCGTCTCTGCTTTGAAGCCTGCCAGGCTGCA CTGGGGATCCAGGAGGGAAAGCCCGCAGGCGCAGAGGGGACAATCCGGGAAGTGGTAAAG GGGACACCCGGGCACAGGGCCTGTGCTTTCGTTGCAGGCGAG AAGTGGAGCGCGCGCTGCAGATTCAGCGCGGGGCTAGAGGAGGGGACCTGGATCCCTGAA CCCCGGGGCGGAAAGGGAGCCTCCGGGCGGCTGTGGGTGCCGC GCTCCTCGGAGCCAGCAGCTGCTGGGGCGGCGTCCGAACTCCCCAGGTCTGCGCACGGCA ATGGGGGCACCGGGCCTTCTGTCTGTCCTCAGAATACGTAGG TACCCGCGGGCGACAAGCCGGGCCAGGCTAGGAGCCTCCTTCCCTGCCCCTCCCCATCGG CCGCGGGAGGCTTTCTTGGGGCGTCCCCACGACCACCCCCTTC TCACCCGGTCCCCAGTTTGGAAAAAGGCGCAAGAAGCGGGCTTTTCAGGGACCCCGGGGA GAACACGAGGGCTCCGACGCGGGAGAAGGATTGAAGCGTGCA AGGCGCCCCAAATTGCGACAATTTACTGGGATCCTTTTGTGGGGAAAGGAGGCTTAGAGG CTCAAGCTATAGGCTGTCCTAGAGCAACTAGGCGAGAACCTG CCCCAAACTCCCTCCTTACGCCCTGGCACAGGTTCCCGGCGACTGGTGTTCCCAAGGGAG CCCCCTGAGCCTACCGCCCTTGCAGGGGGTCGTGCTGCGGCTT CTGGGTCATAAACGCCGAGGTCGGGGGTGGCGGAGCTGTAGAGGCTGCCCGCGCAGAAAG CTCCAGGATCCCAATATGTGCTTGCGTGGAGCAGGGAGCGGA

GAGGCAGCCGGTCCTCACCCTCCTCTCCCGCCACGCACATATCCTTCTTGACTTCGA AGTGGTTTGCAATCCGAAAGTGAGACCTTGAGTCCTCAGATGGCC GCAACGCGCCGAGGTCACGCTCCCCAGAAACACCCCTCTCCCCTCCCCTACCCCAGCTCC CCCTGGGGCGGGTGGTAATTGGGGGAGGAGAGGCCGCAGGCA GGAAGGGGTGGGAAAGCCAGAGAGGGAGGCACAAAGTGATGGCAGCCCGGCAAACACTGG GGCTTCGGGCTGGGCCGCGCTCGTTTAATCCCACAAAAATCCC ATTTTGGAGGTGAGAAATAGAGGTTAGAGGTCGGGCCCTTCTGGAGATCAGACCGAGGAG ACGGGCCCAGCTGGCGTCTTAAAGCAAGGAGGGGGAGTCGGG GGAGGTGAGACCCCTGCACCCAGGTGGGGCTCCCAAACCGTTCTGGATTTACCACACTCC CAGGTCCGATTTTCCATGGAGGGCTGGGGTTAGGGACTGGCAC CTTCTTGTTGTTAACCGCATTTGATATTCACAAGAACCCTGTGAGGAGACTTTGTCACCG TTTTTAGATGCCTGAGGTTGCCGGAGGGGCAGTGAGAGAATC TCTAACCTGGTGTTCCTACCACAGTCCAGGCCCTGTGTCCTGGGCTGGACCCACAGCCCC TGCCACCACCCAGAGGAAGGCGCGAAGCTGGCTGCCTCCTTT CGGGTCTCCCTTAGGTGCCCTCATGAAGGGGGACGGCCACCTCACAGTGCAGGAACTATC TCCCCGTTTGCTCCCAAATAGTCTTCTTGGTGTGGTGCTGTCT ATGGTCTGTGACCTGCATCTGGAGTTACCCCCAGGACCAGCTTCGGAAGAGGAGGGATCG CTTGGAGGCCGTGCAGTGTGAGGAACGGCAGGCAGGGTGTGG ACCAACATGCACACACTCGCAGGTGCTGGGGCCAGGGAGGAATGAGGCGCTGGCTCCCTT TCCCTCCATTTCTCCCTGGGGGTCCCAGCAACCTGGCCATCCC TGACTTCCAACAGCACAGCGTCCCCACAGGTCCTGCAGTGCTCTGCAGGGGTGCAGGGAG CTCCCCTCCCCCCAGCCGCAACCTCACCTTCCTCACCCCCACC CCTCCGGCAGGAAACCACAGGCTGGGTTGGGGACCCCTGGTGCTCCAAGAGAGCAGTGAG TGCTGGGAGCCGCTAACCCCGAGGCGCCTAGCACAGACTCTTC TCACCCCTTATTTCTGAAATAAAGCCCTTCCTTAGGTCCAGATGAGGACCACGTGCTCAG TGCCTCACTTTCGTGGGAGTGTATATCACTTTACAGTATCAA ACAATTTTCTTTCGTTACAAATCTTTATTTAGTCTCTGCGTTTAGACCAAAGTAGATTTT TATGGGCTGAGTGAAAAAACCTCGCCCGCATTGGTTTCTGAT GAACAGCTGGCAGCGCCACGGCCCCGGGTGGGGTGGCCTAGAGGCAGGGGTGCTTGGGAG GAACATCTAGCACCCGACCACCTCCACCAGGTGGGAAAGGGAC GTTTGCACCAAATCTCCGCCGGCAAAGCAGAGGCTTTGGGGAATTACAGAAAAACTATAA TGATCTAAAAGAGAACAAGTTATCTTGAACTGTGCGGGTATTT GAATCATACAGAAAATTGTCCTGTGTGCCCAATGCACTTTTGCATGTAGAGCCAGGGCCT TCGAGGAAGCTTTCAGGAGATCCCGGGCAGCGGAGTCTGGTCT GGAGTTTCATTTCCGTAGGTGCAGATTTCTCCCCAAGTCTTCCCGCCATGGGCTTTGCAA GAAGCCAGGGCCCAGAGGCCACGCTCACCGTTAACACTGCAC GGGCAAAGGTGGCTCCAGGACAACTGCCCAACCCCAGGAACGACCCAGCAGCAGAGAAAA GGACAGCTGCCAGGGTGCCTTTGTCGCTTTTTGGAAATCAGA TTCCTGGGTCCTTAGTTAAGTCTTACTTCACCAAATCCCAGGACCTTCACATTTTGGTTC TTGCCATTGCTAACAGTTGTAAATGCTGCCGCCACGAGGCCT GGAGGAAGGACCCGCTGGTGAGAGCACAGGGAGTGCTGCTGTGATCACGGTGGTGATGCG GGGTGAGCGCGATTTCCCGGGATTAAAAAGCCACCGCTGCCCC CGTGGTGGAGGCTGGGGGCCCCCGAATAATGAGCTGTGATTGTATTCCCGGGATCGTGTA TGTGGAAATTAGCCACCTCCTCAGCCAGGATAAGCCCCTAATT CCTTGAGCCCAGGAGGAGAAATTAAAGGTCATCCCTTTTTAAATTGAGGAATAGTGGTTT TTTTTAACTTTTTTTTTTTTAGGTTTTTAGTTGCCGAATAGG AAGGGTTTGCGAAGCCGCTGCCCTGGGCCGAGGTGCATTTTACGCTTCCAGAGGTCGAGG CCTCCAGAGACCGCGATGCCCAGGGCGTTCCCGGGGAGGCTG GAGACCCAGGGTGCTCTGGGTGACTGCACGGCGACTCCTCGGGAACCCACTCGTGGCTGC CCGCTTGGAAGGGCTTTGCGGCCCCGGGAACGATCTCCAGGAT CTCCACGGCTGGTCAGGTTCCCCGTCCCTCGTATCCCGCGCTGCCCGGGGGCTCCTGCCT TTGGTTCAGTGCTCGCGGCACCACCGCACTCAGGACGGCAGT GGGGGCTGGGGCTGGGGCTGGGCCTGGCCCAGCGTGGGTTGGGGCGGGGGACGCGCCAGC AGCGCCCGCAGCTCGCTCCGCAGGGGTCGCAGCCAGGGGTCG GAGCTAGGCTCGTGGGCCGGGAGACGCCGGGCGCGTTGTCCTCCGGGGAGGTTGGGGTGC AGGCGGTGCACCGACCCTCGCCATCTGGCGCTGCAGCCACCA CCACGGCGCTTAGTGGAGGGTCTGCGGCCAGGCTCCCGGCGGAAAGATTCCGGGGAGGGC TCGGGGGTTGTCCCAGCCCGCGCTAAGCGCCGCAGCCTCGCCC GGCTTTCCTGCTTCCTCGGACTGTGCAGGGGAAGCCTGGGGTCTCGCGGGGCGCAGCAGT CAGGTCGAGGGTGCAGCAGGAGGGGAGTCCTGACGGGCAGGTC CCTCTTTCCCCTGGTGCGCAACACTGGTTGGTAGCTTTTGCGGAGGTGGTGAAGAAGGGC AGGAGGCCTGTTGAGCGGAGGAGTCCGGGGATCCCTAATTAT TGACAGGAGACCCTTTCCAGTTCGGCCTGTGGCCCATCCCTCTCTCACCGCCGGCAGATT GGAGTCTGCTCTCGGGGAGCCCCCAGGTAAACCCCTCACAGG AGAAGGTTTCGGATTGGAAGGAGGACCGCGCTCGTGGGGCGCCTGTGAGAGCTGGGAAGC CCAAGGGGTAGCGTGTAGGGGGTTTTTTATGCGGGAGGAGCT CCTCCTGGGCGGCGGGGACTTTCTGTCTCAGCCTGTCTGCCTTTGGGAAAACAAGGAGTT GCCGGAGAAGCAGGGAAAGAAAGGAGGGAGGGAAGGAGGGTCC TTGGGGGAATATTTGCGGGTCAAATCGATATCCCCGTTTGGCCACGAGAATGGCGATTTC AAAGCAGATTAGATTACTTTGTGGCATTTCAAATAAAACGGC ATTTCAGGGCCATGAGCACGTGGGCGACCCGCGGGAGCTGTGGGCCTGGCAGGCTCGCAC AGGCGCCCGGGCTGCCGGCCGCTGCGGGGATTTCTCCCCCAGC

CTTTTCTTTT AACAGAGGGCAAAGGGGCGACGGCGAGAGCACAGA GGCGGCTGCGGAGCCGGGGAGGCGGCGGGGAGACGCGCGGGAC CG GGGGAGGGC TGGCAGGGTGCAGGGGTTCCGCGTGACCTGCCCGGCTCCCAGGCATCGGGCTGGGCGCTG CAGTTTACCGATTTGCTTTCGTCCCTCGTCCAGGTTTAGGAG CGCGTGGGGACAGCCGAGCCGCGCCGGGCCCCTGGACGGCGTCGCCAAGGAGCTGGGATC GCACTTGCTGCAGGTAGAGCGGCCTCGCCGGGGGAGGAGCGC GCCGCCGCAGGCTCCCTTCCCACCCCGCCACCCCAGCCTCCAGGCGTCCCTTCCCCAGGA GCGCCAGGCAGATCCAGAGGCTGCCGGGGGCTGGGGATGGGGT GGTCCCCACTGCGGAGGGATGGACGCTTAGCATGTCGGATGCGGCCTGCGGCCAACCCTA CCCTAACCCTACGTCTGCCCCCACACCCCGCCGAAGGCCCCA GACTCCCCAGGCCACCTGAGACCTACGCCAGGGGCGCCTCCCGAGCGTGGTCAAGTGCTT TCCAATCTCACTTCCCTCAGCAGGTTCCACCCAGCGCTTGCTC TGTGCCAGGCGCCAGGGCTGGAGCAGCAGAAATGATTGGGCTGCTCTGAGCTCTGAAGCA TTCGGCCGCTGTGTGTGTGCAAGGGGCGCAAGGACGGAGAGAC AGCATCAATAATACAATATTAACAGGAGCACTTGTCCAGAGCTTACTGCAAGCCACATTC AGTTCCGGACCTTATTGACTTCCCCCTCCCATCTAGAGTGGAT TCTGGTTTTTCAATTTGTTTTGTTTTGTTTTTTGTTTGTTTGTTTGTTTTTGAGACGGAG TCTCACTCTGTGGCCCAGGCTAGAGTGCAATGGCGCGATCTC GCTCACTCCAACCTCCGCCTCCCGGGTTCAAGCGATTCTCCCGCTTCAGCCTCCCGAGTA GCCAGGATTGCAGGCACCCGCCATCATGCCTGGCTAATTTTT TAGAGACAGGGTTTCACCCAGGCTGGTCTCGATCTCCTGACCTCCGATGATCCGCCCACC TCAGCCTTCCAAAGTGTTGGGATTACAGGCGTGAGCCAACGC TCCTGCCTTGATTCTGTTTTTAACTCCATTTTTTAGAGGAGGAAATTGAGGCACAGAGAG GTTAAATAACATGTCTAAGGTCACACAGCAAGGGGTGGAGCG AGTTAGCCCACTGGCCTAGCTCTAGAGCCCACCCGGATAACCAGAACTTGGTGAGGCCTC CGGGCTCTTGCTTGGTTTGGAGCCAGGTGCTTAGCGCCCCGA CCCGGGGCCATTCACCCTGCAGGAGCTGCACGCGCCCCTGACCTCGGCTTTTCCCTGGCA GCAGAGGGGCTTTGCGGGTCGGCCGGGTAGCCCTGAGCACAGC TCGCCACTTCCAGGTGGGCTGTTGGCGCTGGCTGGGGACACATCCCGATCTTTCAAATGC CCTTTACAGAGCCTCATCAACGACCCGATTCATTCCCCCCTCC TGTCATTTGTCTCTGCCATCGAAAAATGCCTACCGAGAGCTGCTCTGCATTTCCGCCCTC TATTTTGTGTTTTACTTTAAAATAATAATAAAAAAAATGTTG CTGCAGGACGCCATGACTTAGGTCAGCGAGTCAGCCGCTAGCTCTGCATTTCCAAAAAGC AGATCTTTTCACAACTCTCTTGCCCCAAGTGCCCTGGTGTGGT TTATTTTTTAAAATGCATGCCTGCGGAAGAGAAGACCCGGGGAATATTCGAAACCCCGAG CTTTTACAACATAAAGCGCATGGTGTGGCCGCGGCGAGTAAT GCGCT

CAAATCACTTGAACTCAAGTTCAAGACCAGCCTGGGCAACATGGTGAAACCACATCT CTACAAAAGTAAAGAAAATTAGCCAGGCATGGTGCTGTGTGCCTGT AGTTCCAGCTACTCCTGGGGAGGTCGAGGCTGCAGTGAGCCGCAATCACGCCACTTGTAC TCCAGCCTGGGCGACAGAGCAAGTCCCCATCTCAAAAAAAAA AAAAAAAAAAAAAAAAAAGGCTGGGTGTGGTGGTCCCAGATACTCAGAGGCTGAAAAGGG AGGATTGCTTGAGCCCAGGAGTTCAAGGCTGCAGTGAGCTGC ATCACATCAATGCACTCCATCCAGCCTGAGCAATGGAGTGAGACCCTGACTATATTTAAA AAAAAAAAAAATAGGAAGAAACAACTCAACCACAGGGCTAGT TGT ACTCGGT A AAAATGATAAAGCCCTAAACAGAGAATTAGCCCGTTTCCAGAAGAGGCCAAGAACAGATG ATACAGCTGAACTGAACTCCTGCCTGTAC AGCTCGTTTTCTACAAGATTCCAGACCTGGAAGATGATGGCATCCAGCCCCCATTGAAGC ACCTCGAACAAGAAAAACGCCGAGTCCGAAGAGCCAGGCCTT AACACACGATTCCTGTCTATAAATAACTCCCCCTGGGGAATAAAAAGCAGGATCCAAGGC AGGAAACCCGAGCCGTGGAATCTGGTAAGTTCTTAGGAAACCC

206 HLCS ACTCACGGGCCTGAGTCCCCCGTGGAAGCGGCGACTTCGGCACCTGGACACCCGAGTCCC CAGAGCCCCGGGCGGCCGCGCGTCCCTACCTGCAGGCCTGAT

CCGGCCGCGGAGCGCTCCTGGCCCCGCTCCCGCCAGGCTCCGGGACCGCTGAAACGCACC CAGGGGGGTGAAGGCGTAGTCGCCAAGGACAGCGCAGATGGC GCGGAGGCATGGGAGCCGGAACCTACCGTGGCAAAGGGCCAGGTCGGGACGCCCCTCGGC GCAGCCCCAAATCCTGCCCGCGCCCCAGCCCCGCTCAGGCCGC GCCCCTGCCACCTCTGGCCACACGGGCTGAGACGTCTGGCTCCTGCACAGCGCACTTCCC GCTGCCCTTCTCCACTGGCTGCTCAGGCCCTGCCTCGCCAGC CGGCATCCGCGGGGGATCCCTACCTGTCCTTTAGGGCTTGCCTCATAGGTCAAACGTCAC CTCCCAGGGAGGTATGGCCTGCCCCCTGGCCAGGTGGGCCCCT TCCACGCTCGCCTGCAACACCACCCACCCACCTTGATAACTGCTTGTAAAGGTTGTACTG CTTTCCCCCTTGAGACTGCAAACCTTCAAGGGCAGGAAATGG TCTGTTTTCCTGGCAAAATAATGAAGTTGGCTTAAGGTTTTGCTGAATAAAATGAGTGAC AGACAAAAGTAGCCAAATTTGGCACTCCTGATGGGTTATTTG TGAAGGAGGTGCAATGTATGGGCTTAACTAGTTATTCTGGATTTCTTTCCCCATGTTA

CAAGGCCGGTGCACGCGGACCCGAGGATTCGGTAGATGTCCCCGAAGACCCGCTGCC GCTCTAAGGCGGTGGAAGCGAGATTCTCCGGAAACCCAGGGAATCC

207 DSC 6

GATGCTCGCACAGGACCAAAGCCCGAGGCCGCGGGGACCACAGAGGGACGGAGAAGCCGG GACTCCTCACATCCCACATCCGGCAGGGGAAGCCCAG

CTGATAATAAAGTTTTACCATTTTATAATTTAAAAATGTAAATATGGAGTTGGGCAT GGTGGTTGGGAGGCTGAGACCAGAAGATCGCTTGAGCCCAGGGGTT TGAGACCAGCCTGGGCAACATGCAGAAACCCTGTCTCTACAAATAAAAAATTAGCCAAGC GTGGTAGCACGCACCTGTAATCCCAGCTACTCGGGAGGCTGA GCAGGAGAATCGCTTGAGCCTGGGAGGTGGAGGCTGCAGTGAGCTGAGACTGTACCACTG CACTCCAGCCTGGGTGACAGAGTGAGGCTCTGTCTCAAAAAA CAAAACACAAAAAAACAAACAAAAAAAAGCAAATATATGTAAAAATAGGAAGTGCGGTTT CCCAAAATGAGGTCTGTAAACAACTGA

GAAAAAGTAAAAAAGGATCAGGATCTGAGGTCAACTGACCTCTCCCTGCGCTCTGGA CAGGCAAACAGGCAAGGTTCCCTCTGAGGCCGTAGCGGCTTCTCGT GGGCGAGTCCCTGTTCGCAGGTGACGTGTGGACCACGCTCTTCCGAAGCGTCTGGCCTGT GTGCTCTCGGGGAGGGGACGCAGGTCAGCCCACCTAGCCGAT GCTAACAAGTCAGTTTGTTTTCTGAACGGAAGCTTAAACCTAGAAAAGTAACTGGGTTGG GGTGGGGGTGTAGCCACATGCAGTAAAAGCACTGCCTGTCTGT ATAACAACGACCTGATGAAAAAAGGAACGCGTGAAATGGGGAGTGTTAGGGCGTCACAAA CTCCAGTGTGGTTGAAATGAAAGCAGAAAGCAAATGGCAAGCT GGCTTCCCCTTCCAGCTTTTCACAACCCTGCCTTGCTCATGGTCAGCCCCAAGCACGGGC GGAAGAAAGGACTGGAGGGGAGGGAAAGGGGTGGGGAGCGAG GTACCAGAGGCGTGGGAGGACGGGGACAAAGGGGCAGCAAGGGACCGGCGGAAAGGAAAG TCGGCGTTAGCTGGATTGGAAACAGTCCAGACAGAACGATGG

208 DSC 3

CTCTGCTGCCTCCGGGTGGGGCACCAAGCGGGGAGCGGGGCCACGAGGCAGGGGACAGTG AAGCACCATGCAGCGCCCACCAGCCGGCAGCGCCCACCAGCCT GCGCTGCGCTGCACATGGTACCCGCGGCCCCAGCTGGCCAGTGTGTGGCGGAGATGAGAC CCTCGTGAAGAGACTAAGCGGCCACAGCAGGGGGAAGGGTTGC TCACATAACCCCATACTGCTCACACTACGAGGTTAACTGCCGTGAGATCTGCCTGCAGCC AGCAGAAACCCGTTCTAGGAAAACGTTGCCCAGTGACTTCAGT GAGTGCCACTGACCCGGGCGCCTCCGCCCCGGCGTCCGGCAGCAGCACCGATTGCGCAGG AGGCACCTTGCAAACAACCTTTCCTGATCCGCGCTGCAGTTCC CAGGCCGGTTGCAGCCGTTTCACAGAGACTGCGCACACAAAGCGTCTCCGTGCCCTGCCA TTCACCTTTCGACACAGCCGCAACCCCTCTTTTCAGTGTTAA ACCTGGCGCCAAAAGGAACATGCGATGTGACGTGTTACCTCTGCGCATGCGCCGGGCATT CCCAGCGCCCCGAACCTGATGAACGCGCGGTGGGGACCCCAG CTTCCGTGCTTTCGTTTTCCTGGAAGCTACGTGTCCTCAGTCTACATATTGTTACCTGGA AAATAAAGTTTTCTCCTTTTTTCTTCCTTTGTTAACAGGCAG AGGTGTAGGCTGCAGGTTTCGGGCCTAAGAGAGGGCATGGCTGGCGACACGGAGTAGACT CCTAGATGACATAACGGAGGCGAGTCTGCACCGGGGACTCGGC ATTAGGAGGAGGCAGAGGAAAAGCCCACCACCGTGGCCGAGGGAGATCTAGCAAGCAGCT TGCAGGGGGTGAAGTGTGTGCAAAGCAGGCTGAGACCTGTCC GTATCGAAACACGCCGCGGTGGTCAAGCAGGCTTTACCATGCT

TGAGGCTCAAAACAGGTGTCTGTGAGCTTCACAGGCGGTAAGGCCGTGTCTACATGG CCGGGACATGCATCCCGGGGCTGCCCCTGCCGTGCTGCCCGAGTGC

chr21:3 ACGGGGGATGAGGACCTGACAAGGCCATTGATCTTGCGGGAGCTTCCTGAACTACTCCAG CGTGAAAATCTTCCAGAAGGATTCTCCACAGGGCAATGAGGC 784110 AGAAATTTACAGCTTAGCCTGATTAATGGGCCAGGCAGTTAAGAGTTCTTTGCCAAGCTA TGAGCATAATTTATAGTCATCACGGCAGGAGGAAAGGCCACAT

209 0- AACTCACATCCTTAAAGGGCCCTTAGAACAAGAGACACGCCGGATCATTGAAAACGTCTC CACTCCTGGCGCCAAAAGAGATCGGCACGTTTCTGGGTATTCT

378418 GGTCAAAGAACAGGGAGTCTGGATTAATATACACGGCAGAAAAAAGCGAAGAAAAGACAC ACAGGTCATATATTTCTGACTGATATTCCGTTTGTTGTTTTC 00 GAGGGACTTGGTATTTATTTAACCACATTCTCACTTGACACGCCCCCTCCCCACACCTTG TAAATGCCTTCCTCTTTAGCCGAGTCATTTTTCATCACATAG

ATTGAAATGTTGCCAGGAAGGCGGTTTATGAGATTGTAGAAATGGCACTAGAGAAAGCAG TGTGAAAAGAGGCCTAGAACGT

TCTCTACATGCTATCTACTAAAAACTTAGGCAAGGAAATGCATCAGACCAAACACCC CACAGCACAGAGAACCGACCGGCCATTGCTTTCCAATCTCCGCAA CCTAACCATTGCTGGAAGAAATCTTACTCACAGTGCACAGACAGTAGGTATTTTATTGAA GATAAACATATAGTGGAACAAACCAAATTACCCCCATTTGAGT TACGTGAGCACTCAGTTCTCAGCGTGGATGTCCCACAAATCAAGTCAACATTTGCGTCCC ATTACCAGCAGCCACTTGCCGAGTATCTCTTCGCTTCCACTG

210 ERG

GACTGCCTGGCATCCCTGATGCTAAGGAGCCACTGAAGAGCCTCCAAATGTCTGACATTC ACAAACGCATCTTTTGCTTTGACCCGACCCTTCAACCTCTCC AGTCTGCTGCCTTTTCTCAGACACACATCCAGGCACCGTTAGGGATAGTTAGAGAATCTG AAAATTCAGAAGCGCTCCGAAAAGCCTTTCCAAAAGTAATCC CAGCACTCAACAGTGAATTTAGAAACCCCAATTTTTTTCTGAGTTTGAAGTTTTTAAGCC TTGCGGATGGTTGGAGTAGGAAAAA

chr21:3 TCAGACAAGCTCTGTGCAGTCGGAATTTTTTAAAGATGCACTGTCACTTGAGGAAGACAG GTGATCTTCCTGCGGCACAAATAGAAGCAAAGAGATTTCTCTT

211 927870 CTTCTCTGTAGAGCAACACAATTGATAAATGGCCGATAATCTCCACCAAATTGGCAGCAG TAGGCTGCCCGAAGGCAGCAGGCATATTCGTCTTTGTGAATT 0- TTTTACTATGATGCTGTCACATTTCCAGGAATAAGACGGTTAAAATGATATATTGTTGTG GTTTGGCATTTGCAGCTTTGCTCTGACTTCCCTGGTAACTGCC

392798 AACATCTGCAAATTATTATGTGCTTAAAAAAAAAATCAACCGCCACCGCAGGCTGCCCCC ACGGTCCCTGGCTGGGCCAGGCCTCCTGCCAGGCCACAGGGC 00 GAG C GGACCAGGAGGCAGCAGGG CAAAACCCAGG GCC AGGAAGCCCCCAAAGACAG A GGA AGAGC GGGAGCCCGAAACACA GCGGCAGT

CTCTCAGTTTCCAGGTACCGGTTCTCACATCATCCATGCATGTGTTTGAGGAAAAACAAA AAAAAATTGATGGTTGCCAAAAACAAAAATGCTTCCATATCA AGTTTATCAGTGTCAATGTCAAGAGACTTCTGGTTCGTAGACTCATTTTGGCTTGAGGCC ACCAGAAGTGAACTCTGGTTTCTAAATGCAGAAGCAGAGGCAC TGGCCGATCATGGAAGATGCAGGGAACTGTTCAAGAGGCCCAAGCCTGGTGCTCAGAAAC TTGGCAGGATCAAGCATCTCGCCCAGGAATTCATCCCCTGCTT GTCTAAGCCGGCTGGCTCTCGTGACTGACTCGGAACAACAGAGCAGATGTTTGCGTGGGA GGCAAGCCTCACCCAACATCTGTCCTGCGGCGGGAAGGCCTG GTGTTCACAGATAGAGCTGGAGTTCCCCGGTGGGTGGCACAGACAATTAGCTGGGGCTGC CTCACATGTAATCTAATTACAGGGGAAACAGGCTCAAACACC GGTGATAAGCAGCGCAACTGTTTCGGGTGACTCTGTAATTTTTCCTCCATTAATTTTCTC CATAACGCAC

GTTGCCTGGGATATGCTTATATCAAAAACTTACGTGTCACTTACCTAGCATTTGCAT TTCACTGGGCCTCCTAAATTCTGTGTGGTAACCGACTGCCACCGG

C21orfl

212 CATGCTGTTTACTTCTCTATCCTCACGCAGCCAGTTGCCACATTCAACATAACACTGCAA ATATTGCCGGTGGATCCTGACTTCCTCGTGGACCCTACTGTGT

29

CGGGAAAAACAAACAAACGAACCCTGGAAGGAAACACCATGAGT

TCATAAATATTTCCAAATGTATTCCTATTTGTCTCTACAGAGTCTAACAGACATAAA TAGCGAATTGAAGGTTCTGTCTTAAAACCCAGCAGAAAGAAAAAC ATGACCAGAAAAAAAAAACAATTGTCTTTGGCTTCCCAAGAACAGCATCGGATTTCAACT GGAACCACAGATGGTCCGTTGATAGAAGCGACTACTTTTTAGC TCTGGAGGACGACAAAAGGAACCAGCTTCTTCCTGTGGGTGTCACAGCGAGGTCGCCTGG CCACATCAGGTACCAGAGCGAGCGCCCTCACCTGATAGGCCCT

213 C2CD2

GTACAACCTCAGCCACAGCACTGTCAGGAGGAACACGCGGAACTAGCAACCTAGGAGGGT AAAGGCGGAGTTGGGAGGGAACACGAGGCAGGCAGGTCGGCT GCTGCTGAGCTACAGGCTGCACTCCTAGGACGTCTACGTGTAATTGAGAAAAATAAGACA AAAATAACTTACTGTGCAGGCAATTAATTCTGGTTGGCATAGC GATCCTCTTAAGTTAAAGGGAATGAGCATGAGATGAAGAGAAGTAAGAGGCAGAAAGAAT TATGCAAGAGCAACATCAGAGTGGA

ACGCCGAGCCGCCTCTGCAGGGGAAACCGAAGCAGATGTGGTGAGATAATACATCCA ACCCTGAGTGCTACTCTAACCTGCCAGAGGCGGAGGGTTCTCAGT AGATGAAAGCATTACAGATGCGTTAGATCTAAGGGAGGGGCCTGCAGATGCGCAGCTGGC AGAGAAACCAGGGAGGGGCTGAACTGTCAGTCGCGACCACCA GGATCTGAATCAGTTCACCGACAGCCTTGGGGACATTCACCTTGGGCTCCACAACCTGTC AGAAATGCCCCCAAGCCCAAAGGCGTCGAGAGAATGGCCAGGT TGTTTCAGATTGACACATATCCTAATGTACAAGTCAGCCCACACACCCCACGTGCACTGA GCGTCTCTTGTTGTTCACCCCAAATAAACTCTGCCGGAACTG GGCGGGACTCGCAGGGGCGGAGAAGGGGGGAGACGGGCAGAGGGCAGAAGTGGATGGTGA GAAGAGCCAATGGAGGGGCCCCGTGAGAGTGAGCAAGGCTGC CCCCTAACCGACGTCCTGGGGCTACTGTACAAACAAAGAACCACAGGCTGGGAGGCTGAA CAACAGACCTGCACTCTCTCGCAGCTCGGAGGCTGCAGGTCT AAATCGAGGGGCTGACAGCGCTGGTTTCCTCTGGAGGCTGCGAGGGAGAAACCGTCCCCT GCCTCTCCCAGGCTCTGGGGTGAGCCCTTCCTGGCATCCCGG CTCATTGTAGATGGATCACTCCAATCTCCATGGCTTCTCAGGGCTTCCCTCCATGCACCT CAAATCTCTCTCTCCTTCCTTTTGTAAGGATGCCAGTCATTG ATTTAGGTTCACCTTAAATCCAGGATGATCTCATCTAAATTACATCTGCAAAAAGACCCT TTTTCCAAGTAAGTTGACATTCACAGGTACCTGGGGTTAGGAT

UMODL

214 TGGACATATCTTTTGCAGGGGTGCAGGGGGCTGCCACTGAGCCCGCTGCACAGGGTGACC TGGGCCAAGGGCCCTTCACTTTCACTTCCTCATTGGCAAGCT

1

CCCTGTGTTTGGACTGGGTCGAGGCTGTCAACCTTGCTGCCCCTCGGAGTCCCCCCTGGT GTCCCCCAAACAGATTCTAAGCTGCTTTCCTGGGGCTGGAGGC CAGGCATTGGGATTTTTTAAAGAGCTTCCCAGCAGGTGAGCAGCCTTTCATGGGTATCAG GAGACCTTCCTGGCAAATGTGGTGAAGGTCCTTCCTCCTGAGC GATGCCTTAGACCCAGGAGCCCAGGGAGGCTGCTCACCTGATCGTTAGGACAGGAGCAGT GGAAACCTCTGGCCTCAGACCCCCTGGAGGAATCCCTCCCTCT AAGACTCTGGGACTGGTGCACGCAAGGAGCTATCGTGAACATTGCTCCCAACTGGCCGCT TGCTTGTCCCCCGGCTCCCCTTGGCCCCAGTGGCGGCTTTGCC TGAATTAGAGGGCGTGAGAGCCACCTGTGTCTCAGCACTGCAATTAAAGCAGGAAGCCCT TTCGGAAGCAGCCGTGTGCACCAGCCTCCCATGGGTGGAGCA AGCAAACCACCCACTTCTGCCCTCTGCCCTTCTTCCCTTTTCTCGACACCCTGCGGCCCC CCAGTTTCAGCAGAGTTTATTTGGGGTGAAAAACAAGAGATGC TCAGCGCCTGTGGGATGTGTGGGCTGACTCGTACATTAGGATGTGTGTCAATCTGAAATA ACCTGGCCGTTATATGGATGCCTTGGGGCTTGGGGGGTTTCT GCAGTCTGTCGAGCCCGAGGTGAATGTCCCCAAGGCTGCTGGTGAATCAGATCCCTGGCG TTCTCCGTTGGCAGTTCAGCCCAACAGTTTCTCTGCCGGCCGT GCCTCTGCAGGTCCCTCCTCTGATCTGATTGGATTAATATTTGAATCAATAGACTGAGTC AAGCAGAATGTGGGTGGGCCTCATGCAATCAGCTGAAGCCCT

AAAAGAGCAAAAGGGC GCCCCTTCCCCCGAGGAGGAGAGAAC

CACATTTCAGAGCTGAGGTGCTGGTGCGGGCAGGTCTCCTGAGCTGGGGGGTCAGCTGTG TGGCCAGTGATGGTGACGCCTCAGGCCGTGCATGGCCGGGGA GCGGCCCTGCCTCTGCACTCTTTTGACTCCATGACTACTGGTGTCTTCGGACGCCAGAGT CGGGGGAGCAACCATGGGGCACCGCCCCTGCCTGGGGAGGCA

UMODL CACGAGGCCTGAGCCCAGCT ACAGGGGGACATCCACCCCCGCTGAGAGCCCCACCTTCACGGCGAGGATCTGTAGAAGAA GACATTTGATATTACTCGGCA

215 l/C21or AAAAAACAAGAAACGAAAACACAAAAAGAGCTCCTCTGAAGAAGAAAAGGTATTTGCGCT GTGGTCCACCTAGAAATAATGTTGTTGGCACAACTAGAGCATT fl28 CCTCAGTCATTCAGGAGCACTCCCTGCCGGTGCGTCCACATGTCCCAACCCCGATAGATG AGGCGCTGTTCGCCCGTGGAGGGGTCAGGTTGTCGTGACCTT

TCTTTACCCTTAGGCCGTCCATCCCGGGGCCTGGGGTTTCCTGCGCCAGTCACGGTGGGC TGTGTAGGTGGCCATGTGTTCGGTCTTTCCCCAGGAGGTACGT ACCATGTGCTGGGAGGCCTGGAGGCTGAGCCGCCCCCCGCGCCTATGAGTTGCACCCTCA CAGCGGCGGCCAAACCTCCTGC

CAGGCTTGAGCGGTGACTGGGAGACCCCGGGAATGGAAATGGCGCTCAAATGCTGGT GTGGTGTCCGCAGGGGAACGGCCCGCGGGTGTGTGGAGTCTGCGCC

216 ABCG1

CCTGTGGCTTCAGCTGCGTCGGGGGACTGCGGGAATCTTCCAGACTCCAGTTTAAATCAG AGAGGTGTGTCCACGAAAAGAGTCAAACTAAAACATT

AACGAGACAGTGCAAAAAGCCGCTGCCTGGTGACCTGGCATGCAGACTCGGCCCTCC CACTTGCACGGTGATCCACTGAAGACAACAGCTGCCTCTGTACTC CGCTCCCCCACACTCCCCTCCTTCCTGCCCTGGTTTCTCCATCCCTAGATGCCATCCCAT GCCCCAAACCATCCGCCAAGCACAATAACCTCGCCCCCACCC CCCCATGAGGTCACTCGAGTTGACAACCAGATAACAGTTTTTGTTTTGTTTTGTTTTGTT TTGTTTTGTTTGTTTTTGAGACGGGGTCTCGCTCTGTTGCCC GGCTGGAGTGCAATGACGTTATCTCGGCTCACCACAACCTCCGCCTCCCGGGTTCAAGAG ATTCTTCTGCCTCAGCTGCCTGAGTAGCTGGGACTACAGGCGC

chr21:4 GTGCCACCATTCTCAGCTAACTTTTGTATTTTTAGTAGAGACAGGGTTTCATTATATTGG CCAGGCTGGTCTCGAACTCCTGACCTCTTGATCCGCCCACCTC 259830 AGCCTCTCAAAGTGCAGGGATTACAGGCGTGAGCCACCGCGCCCAATAGCAATTTGATGA CCCATCCCCTCCACTGCTGGGAAAAGGCTGGGCACCGCCCAC

217 0- CTCCATGCAGCTCTCTTTCCCTGGCTCGGAATCGCTGCAGGCGCCACAGACCAGACGCGC ACTGTTCCCCACTCCTGCTTATCGGCCGCGCGGCATCCCCTT

425996 TCGCAGCACTCCAGCATCCATGCAGCCGCGCGGCACCCCGTCTTCGGAGCACTCCAGAAT CCATGCAGAGCGCAGCACCCCACATCCAGAGCGCTCCAGAATC 00 CATGAAGCACGCGGCACCCCCTCGTCAGAGTGCTCCAGAATCCATGAAGTGCGCAGCACC CCTTAATCGGAGCGCTCTAGAACCCGTGCAGCGAGCAGCACCC

CACACCCGGAGCGCTCCAGAATCCATGAAGCCAGCAGCACCCCACACCCGGAGTGCTCCA GAATCCACGCAGCACGTGGCATCTCCTCGTCATAGCGTTCTA AATCCATGCAGCGAGCAGTACCCCACACCGGGAGCGCTCCAGAATCCACGCAGCGTCTGG CACATCTTTATCAGAGCGCTCCAGAGTCCATGCAGCCACAGTC CTCCAACGGACCCTGAGATTGTTTCTGCAAAAGGCCATGCCTTCATAAATCTGAAAATTT GGAAAACATCCTTCTACTTATATCCTTACAACCCACCATTCA GCTGTAGAAGCCTTTCTGGAACCCCAAGCAGAAGGATATCCAAAATGTAAAAACGGTGGG GCCT

ATAGTGCGACTGTTCCGAAGTCTTTATCACAGTTACTGGTGATGCTTTTTTCCAGAT GTCCTCGACGTGCACCCATGAAGGGCTCCACCTGAGAGTGCCAGG TCCTCCGTGGGATGGGGCTGGAGGGGGTGCTCTTGCCGTCCTGGGCTCCCAAGCAGCCAT AGGAACAATAGGGTGATGGGGTCCCAGAGATAGAGGCCAGTG CAGCAGCGCTTTGAACCCCTCACACGGGCACGGGCCCTCTGGCAGGGATGGGCGTCCCGG TCACACGGAGATGGGGGCTGCTGCTGCCTGCAGGTAGAGGAA

chr21:4

GGACGTGTTTGGCAGTCCTGTGACCCCTGGGCACCTCGCCTCCCCCACGGCCGGCTCTGC TTGTAAACAGACAAGTGCACAAGCGCAGCCCGGTGAAGGCAC

291000

GCGGTCCCAGGAGGCATCTGGGCTGCACCCCAGCGAGCCGCCCATACACGTGGAGATGCC GGCCAAGGCCCTGCAGCACACGGCAGAGGAAGGCGCGATGGG

218 0- GCCATGCTGGGCCCGGAAGGTGCCGCCGCCCGGAGCTGTAGCCATCACTCCAGCTCTTCT TTTAAGTGTTCCCAGAAATTGTGACCCACCAAAATCTGAGAGC

429110

ACCCGACAGTAAGCCAGAGGACCTTGATGTGAGATCCCAGCACGGTGTGGGGGCGGACTG TGGTGGGTGCTGTCTCGGCCCCCACCCCTTCCACAGGTCGGT

00 TGCACATCCCACGGCGCCTGCTAAGCTGCAGTCTTCTCCAAAGGGGTCACTCTCCGTGGG AAGGGAGCCACCCGCCCCCGGGTGATGTCCCCAGTCAGTGACT

GACGACAGTCCCCAGCCGAGGTGAGGGACCAGCTCCTGCATCCCTCACTCCGGGGCTTGC CTGTGGGCCAGGGTGGGGGCGAGCCTCAGCAGAGACCGCGTCC CCCTTGCCTGTCCTGCCCTGCCTCCCCTGCCTCCCCCGCGCCTCTGCTGAGCACGCCCAG AGGGAGCTGCTTG

CACTTGAAAAGCACAACTCATGGTGCCAAAGCTCTGACACGGACTCCACTGGAGCTG TGGGCAGGGGGTGCCAAGGTACCGAGTTCCAAGCCGTTGTTATTT

219 PDE9A AGAGCGTGCCCCCCGCCATGAGAGCAGGTGGGGGGACATAAAGTGACACAGGATGGACTG GCCAAAGGCTGAGGACGATCACTTACCTCACAGGATGATGCC

CCCCCACGGACAGGCAAGGAGCTCTCACCTTCCCCAGGACCCCAGCTGCCACCAGAGCTC CAGATGGCCCTGGGGGTGTCTGTAAAGCCTGTGACCGTCCACC

AGGTGGAGACCAGGCTGGCCAGGGGAGGGAGAGGAAGTGACCACTGGCCCTGGCACT GGCTGGCCGGCTCCAGCAGGCCCGAAGGGGAGGGAGGAGCCTGGGT GCACCAGACTCTCTCAATAAGCAGCACCCAGACACTTAACAGATGGAAAGCGGTGGCTTG GAACTCACTTCCAACGAAACAATAGCAC

AGCACCTCCTACCCCACCCTCCCCATTCCTGCCATCCCCAGGGTCCAGGGAGCCCAG ATTCCAGGGAAGGGTTGCATTAGCTCCCACTCGGAGTCCTGATGC GCAGAGACAGACAGAGGCCCTGGGAGAAGTGAGCATGAATTATTAAGACAAGACAAGGGT GAGGCCCCAGAGAGGGGGTGGCGGAAGGGTCATGTTCATGCA CGAGAGTTGCTTCGAGCTTGAACCGCGTATCCAGGAGTCAAGCAGATTGCAACTGGCGAG AGGCCTTCAGAAATGCCCCGTGAGAGTCCTGTGTGCAGAGCTC CATCTCAGCACACTTCCTGTTCTTTTGGTTCGTCGATTTTTGCATTTTCAGTCCCCTGTG ATCCATTATTTATAACAGTGGAGATTGGCCTCAGACACTAGC GTGAGGAAAACAAAAGCGAAGCTACGCAGAAAAATGACAAGAGTGATGAGCACAGCAGTC ATGACAAATGAGCCCTGTGCGGAGGCCCGGGATCCGCGCAGAT GCCGGCGCGGGGGAAATGGGCCCTGAAATCCCACCGTCAGGCCAGGCAGCTCTGAGCGTG ACCTGGAGGGCTGTTCAGACGGTCTGGGTAGCCGTGTCCTGC

220 PDE9A CATGAACATCCTCCGTCGGGAGAGGAATTCCCCACGGATTATCAGAGCTGCTCCCTCCAC CCCCCGCCACGTCCCACGCGGGCCACATCAACTCCCTCTGCA

CCTCTGGCCAGCGGCTGAGCCCTCCGTGTCTCCCCTCGTTAATGCCTCCTTCACCATCCC CTCCTGAAGTTTCCCCCATTGCATACACGCGCTGAGGCCCACC CGGTATCAAGGACTCCCATTGCTTGCGAAAAAGATTCCACCCCTCTTAGAACAGAGACCA GGGCCGCTGTAGCAAATGGCCATAAATGCCACAGCTTAAAAC ACAGAAACGGATTATCTCGCAGCTCTGGAGGATGGAGTCCAAAATCTGAATCGCTGGGCT GAAATCCAGGTGTGGGCAGGGCCGCGCTCCCTCTAGAGGCTCC CCCGGAGATTCCCTTCCTTGCCTCTTCCAGCTGCTGGTGGCTGCCAGCAGTTTGGGAATT GCGGCCGCATCACACCACCTTTCTGTTTGTTGTTGACATCCCC GCCTCCCCTGCCTGCGGGGTCTTAGATGTCTCTCTCCTTCCCACTGAGTTTCACTCCACA TTTGAATTGGATTAACTCATGCCATGTTAGGCAAACGTGCCCC TCAAATCCTTCCACTTAACAGACATTTATTGAAGGTTCCTGTGTGCGGGGCCCAAGAGAA GGGA

GAATGTTCAAAGAAAGAGCCCTCCTTGCCTTCCTCTTCTTCCACCCCTGCCCTCTGC AGACTGGGGTTCTGTAGACCCCCAAAGTAAGTCCGCCACACCGGA

221 PDE9A

GGAAGTGAGTTACACAGGGGCCCACATGGGAACCGCTTTTTGTCCTGTCTTGGTGGGAAA ATGGCCACGACCCCAGCCCAGGCTCTGCCACGCCACA

CCATCTTCCTAGGCCTGCGTTTCCCCCACACCGGGGACTTGTGCTGGAAAGAAAAGC TGCGTTGGCAGCCAGGAGCCGGGGAAACTGTCCAGGGAGGCATCCT CTGCGATGAAGGCGGGGCCTCGGCGTGGCCCGTTCCGCGCTCTGTCCAGCCCTGGAGAAG CCCCACCCTCACCGAGCTCGAAATACCCCCTCCCTGAGAGCC AGACTCATGGCCGGGACCCCTTGGACAGAAGATGCGGATGCTAACCCGGCGCTTCCACCA CAGCCCCGGCGGCACTGGGGAGCGAGCGCGGCCATCCCGCGC TAGGTGGTGTTTCTCTGCAGGCGCCAGTTTCACCGCGGGCGCCCAGGATCCTCAACGGTT CTGTTGTGATGTGATTCCCCTCTTCGACTTCGTCATTCAGCCT CAGTCCCTCAGTCCCCAAATACCGAAAGGCAGTCTTTTTTTTTTTTTTTTGAGACGGAGT TTCACTCTTGTTGCCCAGGCTGGAGTGCAATGGTGCGATCTC GTTCACTGCAACCTCCGTCTCCCTGGCTCAAGCGATTCTCCCGGCTCAGCCTCCCGAGTA GCTGGGATTACAGGCACCTGCCACCACGCCCGGCTAATTTTTT GTATTTTTAGTAGAGACGGGGTTTCACCATGTTGGCCAGGATGGTCTGGAACTCCTGATC TCAGGTGATCCACCCGCCTCTGCCTCCCAAAGTGCTGGGATT CAGGCGTGAGCCACCGCGCCCGGCCTTTTTTTCTTTTTTCTTTTGAAGTTAATGAACTTG AATTTTATTTTATTTACAGAATAGCCCCCATGAGATACTTGA

222 PDE9A

GACCCGGTGCCAAGCGACAGTGTTGACCCCAGGTGGTCAGTCCTGCCTGGCCCCTTCCGA GGGATGCGCCTTCACCATAACCATGTCACGGACAGGCGTGTG GCAAGGGGGCATCGCTGTATTTTTCACAACTCTTTCCACTGAACACGACAATGACATTTT TCACCACCCGTATGCATCAACCAAATGAAAAGATGAGCCTGT ACATTCCCGTGCGTAGAGTTACAGCTTTTCTTTTCAAAACGAACCTTCAGTTTGGAGCCG AAGCGGAAGCACGTGGCGTCTGACGTCTCCAGGGAGACCCGCC GCCCTCGCTGCCGCCTCACCGCGCTTCTGTTTTGCAGGTAATCTTCAGCAAGTACTGCAA CTCCAGCGACATCATGGACCTGTTCTGCATCGCCACCGGCCT CCTCGGTGAGTGCGCGCTGCGGGCTCTGCCCGGTGACGCCACGCGGCCTCCTCGCCTTTT CGGGATGGCTGGGAGGGGCGGGAAGAGGCGCTGAAGGGCCCG GGCACCGGCCTTCTACAAGGGGCTCTTCGAAATCAATCAATGCGCAGAATCCCGAGGGAG GCTCAGCCGCCCTCCGGGCCTCTCTGCCTCCACAGGTGATGGC TGTGTCCACAAGGAGGAAACCGTCGGGCTGAATTAAACAGAACCGCCCTCCTAAGAGTGT GGGTTTTTCTGCCGGGCGTGGTGTCTCACACCTGTAATCCCA CACTTTGAGAGGCCGAGGTGGGCAGATCACCTGAGGTCAGGAGTTCGAGACCAGC

AGGCAGCAGGGTTAGGACTTCAACATACAACTTTTGGGGGGAGATGTACTTCAGCCC ATAACACACCACGTGGGAGGATAACACCGATTTCAGAGCTTGCAG

223 PDE9A GGAAGCCGCCAGGAACTCCAGTGAGACATCAGCCCCCAGGTGCCTGTCAGGCACGCCGGG CTGTGGGGGGCACCTGGGCCCATCTGAGTAACGGAGGCGCATC

CGCACTTCCCCCAGGAGTACATTTTTAGAACCCACAGCGCCATAAACCAAAGACAAGGAG ACTTCCTGGTGCCCCGTCAGCTTCTGGAGGCGACGTTCTCGGC

TGACAGCTCTGGCAGCCTCCCCTGTAGGTGAGAGACAGGTAAATGGGACTCTTGCTT CCAAAACGGAACAGGGTAAAAATTCTCAAGCGTT

TGCTGCACCCCCGCTGCCCTCCCTCCCGCTGGCCGGCAGCACCTTCTCCACCCGGGC CCCTCTGCTCACAGCGCTCCCCGCCCCCGTCTCCCCGAGGGGCGG

chr21:4 GAGCCAGGACATGGCCCTGAAAGCCTAGCCCTGGCCTTGACCTCCCCAGAGCGCCCTCCC CACCCTCCGCCCTCTGCCAACCCTGGCCCCTGCCCTGGCCCC 313080 TCCTTGTCCTCTGCTGCTGGCCTTGGGGTCGCGCCCCGCAGACTGGGCTGTGCGTGGGGG TCCTGGCGGCCTGTGCCGTCCCACGCCTACGGGGATGGGCGA

224 0- GTCCTTCTTGGGGCTTCTCTTACCCACTCTCCAGTCACCTGAGGGCGCTGCTTCCCTGCG GCCACCCCAGGTTTCTGTGCAGCCGAAGCCTCTGCCTCTGCG

431315 CCGGGTGATCCCAAGACCCCGGGGTCCAGGGAGGCACGGGATCTGCTCCCCCGGTCCCAA ATGCACCGGCTGCGCCTTAGGAGGGACGGCCTCCACCCATGGC 00 GCTGGCGCCCAGGGGCCGCTCCTCGGACTACAGCACTTGCTCGTCGCCCTGCGCCCTGTT TAGTTCTCATCACCAGCAGCCTGGACTAGGGCCCTGGTCCTTC

TGGCCTCCTTCCACAGCCCGCTGCACATCTCACCCACTTCCCCGAGGTGCTGTCATTGTT TAGCTGGGCCCCTCAGCCTCCG

TTAAAGGGGAGTGGTTGTATGAAGAGTTCCTCAGTCAAAGGTGTGCAGCTGGGAAGC CCACCCCACCTAAGAGGGAGGTCTGACAAACTGTCCACACTGAACC

225 U2AF1 ACTCAGACCTGCATCAGGGCCCCGTTTCTTCCATAAGCCGCCAAGTACAGCCCTGAGTCA ACTGAACTCAGGCCTGGGAGGCTTCCCAAAGCTGACTTGACTC

AGCTTTGAACTGAAATGACCGTACCATGACAACCCTGATGAAAAGCTAAACTGAGCCCAA TTATTCAACAGTAAAATTCAGTTGGTCTCACTCA

TGCTACCAGCTGCTTGGGCTTGGGCAAGTCACCCTAGCTCTCAGATGTCATCTGTAA ATGATGACAATGCCAATGTGGCACTGTTCTGAGAGTCAGACAGAAC GTATGTGTGCTTCACATATGGTGCTCATGAAGTGCTATCATTATCTAAGGAAAACAGAAA ACGAAGTTCAGAGTCTCTCTAAACGCATGACACCAGACCAAC

226 U2AF1 GGGAGTTTCAAAAAATAGGTCTGAAGTAAATCAATTCTCCTGGTCTCAATACACTGAAAA CAAACTATTAGGGGACTGACCGAACCCACCTTAGGAACCACCT

TACGTCACCTTCTGTCTCTACTGCAAAACCCTCCCTTAATACTGTTCAAATACGCTGACA ATCCAGATCCATATCCAATGGAACCAGCAATCATGCCTGTGT CCAGCAATGTCAGGGAGGGAAGCCGATCTCTGATGAAT

CAGGTGCCGGCCACCACACCCGGCTAATTTTTGTGTTTTTAGTGGAGACAGGGTTTC GCCATGTTGGCCGGGCTGGTCTCAAACTCCTGACCTCATGTGATCC ACCCGCCTCGGCCTTCCAAAGTGCTGGGATTACAAGTGTAAGCCACTGCGCCCGGCCAAG AGTGAAGTTCTGATAGCTGGGGTAAGAAAGGCCGTGGGAACA CCGGTTTCAGACACGCTGGGTCTAAGACGCTGCGTCTGGCGCTGCTCGGCATCCAATGGG AGCCGTGGAGAAGCCAGGCGAGTGCGTAGGGCGGAGCCAGCGC

chr21:4

ACAGGAAATAGGACGTGATGAGGTCAACCGGCTGGTCCAAGTGTGGACGGAAGTAGAGGA TGCAAGCACCGAGCCCCGGGGCCCCCAGCATTGGCGGGGAGG

344660

GCTCGCGGTGCGGGAGAAGCAGGGGACCGCGCATCCTGGAGACCAGGTGGAGCCAGTGCG CCCGGAAGGGGCGTGGCCCGCTGACAGCCGCCCAGGAGGCCG

227 0- GGGAGGCCTGGAGCCGAGGGCCGCGCGTGGCAATGTGGAGAGACATTTTGGTGGAGTCAT GGGGCCACAGCCTGATTGGTGAGAACAGGAAGGGAAATTGCA

434476

ATGGGCCTGGGCCCCCTGGCTCCCGCATACTCCAGGACCAGGGCTGAGTCATCGTTCACC GTGTGTGACCAGGGCCCCGTGTGGCCGGCTGTCACTCGGTATC

00 CAGTTACCCTGGGCAGACCACTGGCGGCACCCCCCAGCCAGAGGCCGCAGCAACACACAC GCCTGCAGGCGACCAGGCCGGACTGCATGCCCCGTGGGGGAAC

TGAGGGCGTTTCAGTAACAGAGTGTTAGGGGACACGGGTTGGGTGGCTTGGAAAGGGCCT AAGGTGGGGTTTGTTTTAGATTGGGGTGGTGAGGGCGCAGGG CCCGGTAGGATTCTCTAACAGGGCAGCAGCCACTCATTTAGCAACAGGAGAGGCGTCCAG CGTTTCGTGGGCT

ACCCAACCACAGGCCTCCTCTCTGAGCCACGGGTGAGCGGTGCAGGTTCTGCTGTTC TGGAGGGCCTGAGTCCCACCCAGCACCTCATAAACAGGGTCCTCCC CAGGGCTGCTGCAGTAGGCATCAACGCCAGGGTGCAAAATGCCTCAGGGAGCCAAGGCTG AGCCAGGGGAGTGAGAAGGAGCATGTGGAAGTGCGTTTTGGA AGGCAGCTGCGCAGGCTGTCAGCAGGCTCCGGCCGCTTCTATAGACAGCATGACACCAAG GGCAGTGACCTCATTCCACAGGCTGAGTCCAGCCAGCCAGCC AGCATCACCAGCCAGACGATTGACCCTAACGGACCAACCAACCCGTAACGACCCCTCCTA CCATAACCAGTAGCCAGCCAGCCCATAACCAGCCAACTTATCT ATAACCAGCCACCTGACCATAGCCAAACAACCAGCCGGCCCACCAGTAGCATTCAGCCCC TCAGCTGGCCCTGAGGGTTTGGAGACAGGTCGAGGGTCATGCC

228 C YAA

TGTCTGTCCAGGAGACAGTCACAGGCCCCCGAAAGCTCTGCCCCACTTGGTGTGTGGGAG AAGAGGCCGGCAGGTGACCGAAGCATCTCTGTTCTGATAACC GGACCCGCCCTGTCTCTGCCAACCCCAGCAGGGACGGCACCCTCTGGGCAGCTCCACATG GCACGTTTGGATTTCAGGTTCGATCCGACCGGGACAAGTTCGT CATCTTCCTCGATGTGAAGCACTTCTCCCCGGAGGACCTCACCGTGAAGGTGCAGGACGA CTTTGTGGAGATCCACGGAAAGCACAACGAGCGCCAGGTGAGC CCAGGCACTGAGAGGTGGGAGAGGGGGGCGAGTTGGGCGCGAGGACAAGGGGGTCACGGC GGGCACGACCGGGCCTGCACACCTGCACCATGCCTTCAACCCT GGGAGAGGGACGCTCTCCAGGGGACCCCGAATCAGGCCTGGCTTTTCCCCAAGGGAGGGG CCGTGCCCACCTGAGCACAGCCAGCCCCTCCCGGTGACAGAG

TCACCATTCCCGAGCTAATGTGGCTCAGGGATCCAGGTTAGGGTCCCTTCCCGGGCT GCACCCAGCCGTCGCCAGCTCCATCCCTGTCACCTGGATGCCAGG TGGTCTTAGAAAGAACCCCAGGAAGTGGGAGTGCCCCGGGTGGCCGCCTCCTAGCCAGTG TACATCTTCACATGAACCCTACCTGAGGAAGCCAGTCCCCGAC GGCATAGCTGCATCCGCTTGGAATGCTTTACAGGCATTGACACCTTCGCCTCACAGCAGC ACTTTGGAACCAGTGTCCTCATTATTCCAGGGCACGGCTGGG AACAAGGGGGTCCTCAGCCTGCTGGGTCCCACAGCTAGTACCGGGCAGGTGGACGGGAGC TTCTCCCCACAGTCACCCTGATGCCCCGCTCTTGCTCGGCTG AGGCCTCGGATCTCCGTGGTGTTGAGGGAGCCGGGGCACTGGAGCCCTGGTGACCTGCAT CTCCTGGCGGAGCCGGGAAGAGCTCATGGACTGTCACAGATG ACAGTGCCCCGCGGGGGCTGGAGAGCAGAGTGGGGCTGGAAGGTGGAACTCTTAGCCAAA GTCTTGGTTTCTTTTGGCCAGGGTCCTCTTTCAATGGCTGGA AAGGTGGTGCTGGGGGGTGAACGCTGACCTCCTCATGTGCTGCCCCTCCCTCGCCTGGGC CCGGTAAAGCCCCCACGTAGCCCCAGCCAGCCTGGAACATGCT TCCTGAGCTCCCAGCTCTTGGTCTTTGCACCCAGTGGAGGAGGAGGTCAGCCCAGGGAGC TGAGTCTGCGGTTTAGGGCGTCCAGGGGACGTGGAAGCATGT GGTCGTCTGGCCACATTAGGTAGGGCTGCAGAGACCTGGGCTAGAGCAGTCCTGCGGGGT CTGGAAGGGGAAGACTGGCTGAGGTGCGGGGCCTGGTCTGGA GATCCTGCGATTTT GGAGT GAAGC CAT GGAGC GGGAAGAGAC AAC C C C C C GC GGGGAAT AGC CC GGC AAGT GGC C AC GAGGC CAGGCT GAGGTC C AGAGAA CAGGGGCATGAATCCATAAATCCCAGGGGGCCTGGCCATGGGATGTGCTGGCTGCACCCG GCCCCTGTGAGAGCCCCCGCAGGCTGGCCCCCTTCTGCAGTC GTGGGGCTGGGGCAGCTTCTCTGGCATGGGGCGAGGCAGCCGCCTGCACAGTGGCCCCCC TGACTGTGCGCCCCCACCCTCTCCAGGACGACCACGGCTACAT TTCCCGTGAGTTCCACCGCCGCTACCGCCTGCCGTCCAACGTGGACCAGTCGGCCCTCTC TTGCTCCCTGTCTGCCGATGGCATGCTGACCTTCTGTGGCCCC AAGATCCAGACTGGCCTGGATGCCACCCACGCCGAGCGAGCCATCCCCGTGTCGCGGGAG GAGAAGCCCACCTCGGCTCCCTCGTCCTAAGCAGGCATTGCCT CGGCTGGCTCCCCTGCAGCCCTGGCCCATCATGGGGGGAGCACCCTGAGGGCGGGGTGTC TGTCTTCCTTTGCTTCCCTTTTTTCCTTTCCACCTTCTCACAT GGAATGAGGGTTTGAGAGAGCAGCCAGGAGAGCTTAGGGTCTCAGGGTGTCCCAGACCCC GACACCGGCCAGTGGCGGAAGTGACCGCACCTCACACTCCTTT AGATAGCAGCCTGGCTCCCCTGGGGTGCAGGCGCCTCAACTCTGCTGAGGGTCCAGAAGG AGGGGGTGACCTCCGGCCAGGTGCCTCCTGACACACCTGCAGC CTCCCTCCGCGGCGGGCCCTGCCCACACCTCCTGGGGCGCGTGAGGCCCGTGGGGCCGGG GCTTCTGTGCACCTGGGCTCTCGCGGCCTCTTCTCTCAGACC TCTTCCTCCAACCCCTCTATGTAGTGCCGCTCTTGGGGACATGGGTCGCCCATGAGAGCG CAGCCCGCGGCAATCAATAAACAGCAGGTGATACAAGCAACCC GCCGTCTGCTGGTGCTGTCTCCATCAGGGGCGCGAGGGGCAGGAGGGCGGCGCCGGGAGG GAGGACAGCGGGGTCTCCTGCTCGCGTTGGACCCGGTGGCCTC GGAACGATGG

TTTTTGTGTTTTTAGTAGAGATGGGATTTCACCATGTTGGCCAGGCTGGTCTCAAAC TCCTGGCCTCATGCAATCCTCCTGCCTCAGTAGTAGTAGTTGGGAT TACAGGTGTGAGCTGCCATGCCCAGCTGCAGGTGCGGAAGCTGGGGGCCTCAGAGACTGT GGACTCCTGGCCGGTGAGGAGCGGCATGGGCCGGGAGAGCTG CTCTTCAGCGGGACTGAGGTGGCTGGAGCGTGACCCTTTCCTGAGGGCAAACAGGGAGGG CCTTGGAGCCCGGCGCTCAGGACAGGCCCCTGCTGGCCCGGC

chr21:4

GCCTGAGCTTCCACACTTTTCCAGGGCGTCTCGAGTTCGCCCACAGAGCTGTTGTTTCAG GATAAAAAATGCCCTTGTATTCCACGTTCCAGTTCAGAGGCCC

354500

GTCTGTTCCCAAGAGCGGAGGCGTCAGCCGCATGAGTCCCACCGGAAGCCGGGTTGCCGG GTCCCCGTCCCTGCCCTGCAGACGACGCATTCCGGAGCCCCCT

229 0- TGGGAAGCTGCCTGGCTCTCCCAGGCCTGGCTGCCTTCGCACGAGGGCTCCGAGGCATGC TCATCCTACGTGACTGCCCGAGTGTGCACACGCCTGGCCGTGT

435460 GTGGGCGTGTGCCTGGGGCCCGAGCTCAGGAGCAAGGCCTGCGTGGACCTGTTGTCTGAA ACAAGCCAGTAGACAGCTGCGTCAATGCAGGCAAGCTGAACA 00 GGC T GC T T T T T C AGC C T GAC AAC C C C AGGGGC T GAAC AGGAGC T GGGGGAGGAGC AAGGGGC C GT T C C C C T GC C C C AC AGC AC AGC AC AC GAC C C C GC C T T G

AAC C T GGGGC C C GGGGT GAAT C GAGGGT C C T GGAGC AAGAGGGGC T GC T C C AC AGGAGAGC C T GT C C C GC C AC C C C T C AGC C AC C AGAT T C GGGGC T GC T GG CTTGTTCTCAAACCTGCACAGTGAGTGACAGCTGCTGAGACGGAGGTCTCAGGCAGTGCA GGTGAATCAGCAT

chr21:4 TCCTTATTTTTTAGTTCTCAAGCCCTGTAGGGTGTTTTCGGTCGCAGTTGTTTGGGCTGT GGTCCTGACCCTCCTGAGTTCCAGTGGCTCTGTTCAGGAGAGC 360600 TGCCTGGGGCCGGGACTTCTGAAACACACACTGAGCCACAGGCCGGCCCGGCGGCTTGGG TTCACCGCCGCCTCTTTGTGTGTGATGTCCTGGGATAGGCCC

230 0- TGCACGTTCAGATGACACTGTACATATAAATAACTTGTAGCCGAGAACAGGATGGGGCGG GGAGGAGGGGAGGGCAGAACGTACCACAGCAGCAGAAGTCACT

436065 GTGGATGCCTTCGTAAGTTGCATGGAAGGTTTTTAAACCTAGCCCTGCCGAGCAGCCCTC TCCTGGTCCGGGAGAACGATGGGGAGAGAGCTGGCGTTCAGCT 00 TTCATCACTGGAGCCGTTCCTTCTTCCGGCCCCCCGAGGGCCTGTCCATGATCACACTTT GTCTTGTTTCGGGGGTGGCCCCTGTGAC

CAAGCCTGTGGTAGGGACCAGGTCAGAGTAAACAGGAAGACAGCTTTCGGCCAGGCG GTGCACCTCGGTGCCGGTGAGTGTGAGCGTGTGTGCGTGTGCACGT GTGCAGATGTGTGTGGACGCTCCCTTCTCCGCAGCAGCTCCTGACCCCCTGCAGGTGACC CTCAGCCAGCCCCAGGGCTGCCCCCACTCTCCCCTGTGGACAC CTACCTCATTTGGGGTGAAGTGGGGGGACTGGGGTGTGAGGGGTGCTTTGGGGGGCACAC TTCGACCCCTCTCTCTGCAGGCCAAGTCCTGAGGCTCAGTTTC CTCCTCTGTGCCCCGGCGACGTGGTGCAGGCCTCGCGAGTGACGTGAGGGTTCATGACCC AGGTGTGGGCAGCCAGCCCTTCACGGGAGGCCACCCACCTGGC

chr21:4 CACAGTGCCTGGGAATTTAGGTCGGGCACTGCCGATATGTCGCCTTCCACAAGGCGGGCC CGGGCCTCTGCTGACCGTGCACCGGTCCTGGGGCTGGGTAATT 364300 CTGCAGCAGCAGCGCAGCCCATGCCGGGGAATTTGCGGGCAGAGGAGACAGTGAGGCCCG CGTTCTGTGCGGGAACTCCCGAGCTCACAGAGCCCAAGACCAC

231 0- ACGGCTGCATCTGCTTGGCTGACTGGGCCAGGCCCACGCGTAGTAACCCGGACGTCTCTC TCTCACAGTCCCCTTGCGTCTGGCCAGGGAGCTGCCAGGCTGC

436443 ACCCCGCGGTGGGGATCGGGAGAGGGGCAGTGTCGCCCATCCCCGGAAGGCTGAGCCTGG TGCAGCCAGGGAGTGAGGGGGCGGGAAGCCGGGGTGCTGCCCT 00 GAGGGTGCCCCGACACGCTCTCCTGGGGCCCTGAGCGGCTGCCACGTGCGTCCAGGGTTC TGGCCACAGGGTGGGCAGGGGCCCTGTGCTCCTCACTGGAGGC

CCCTGAGGCTCTGGAACTGAGACCATCCACCCGCCGGCCCCCTCTCGCCGGCTCCGGCAC CCCTGCCTACTGTGACTTCCTGCCCCGGACTCGCTCTGCCAGC TTGGGGCAAACCACTTCCCTCTGGGGTTTTCACTTCCCTCTTTCCCAAGTGGGGAAAGAC CACCTGTCCCCGACCCAGAAAGGGCCCCTGCCCGAGGGCAGC GCAGTGCCAGGCTGGCATGTGAGGCTTGGGGCAGGCCCGGCCCCCAGAGGCACAGGGCGA TGCTCTGTGGGACGCTGTGTCGTTTCTAAGTACAAGGTCAGG GAGGAGCCCCCTGACCCCGGAGGGGAGGAGAGGCAGGGCAGGAAACCGCCACCATCTCAG CCCA

C21orfl GCCCACTGTGGGTGTGCCCGTGTGTGTGGCTGTGAGGCGTGAGTGCAGGCGTGAAGTGTC TGGGAGTGGGAGCGGGCATGAGTGTGTGCCACGGGCCTGCTGT

232

25 TGGGTCCTTGGAGGCCACGGTTGCCCCTGAAGGGACTGCAAGCTCTTTTTTGATTTGTAG TTATTTGAGAAGTCTATACAGGAAGAAAATTAAACCG

AGCGCCCAGCGCAGGGCCGGGACCCAGAGTGGACTCTACCGTGGGGCTGCCTCAAAGAAA TCTCAGCAAACACAGGAAGCCAGCCCACCCGTGCAGCCATGG GCCAGGAAGCCCGCCCTTTACCAAGTCATTTGGGCATTTTTTCTCTGTGCTAACAGCCCA GATGGAGCCATAGCCTCAACCTCTGTGTTCTGATAACACCAA CTGGGACGCCGGAGCCATGCAGGGGACAGTGCCCGGCCTGAGGCTGCAGCCTGGGTCTGG ATGCCTTTCTAATTCAGGGCCTCCTCATGGCCTGGTTCCATA ATGGTCAAATGCAGCCTGACAGCGCAGCCTCCTATCAGCGCTGGGCTCCGTACCGCCACA CAGCCCACATACCCCGTTCCCCAGGAGACGCCCGCAGGTGGGC

C21orfl AGCGTCACTCCCACCCGCCGAGCACACGCTGTCCCCGTCTCGTGTCCCGAGGAGCCGGAA GCAGCTGCTTCCTCCCAGCCTGAAAGCTGCACCTCGGGCTGC

233

25 CTCGGCTCCCCGAACCCGCCCTCCGCTGCCCTGCAATTCGCCAAGGGAGCTACCCTTCCC ATATAAAAATTTCACCTCCATTTCCTTGTAGAGAAGAAACATT

TCTGACAGCAAGGAAGATTCTAATTTGAAAAGCAAGTGATTCATCTCCCGGTGCCAAACA GCAGACGCAGGCGTTACCAGTCTGGGTGGGGCGCCCGAGCTG GGACCTGGGGTCCTCTGGGAGGGGCAAGAAGGCAGCGATGCTGGCCCCCGCCTCCATCTG CCCATCCCATCTGCTTCCACACACCGCCCTGCCGTAGCTGCTT GCAGCCCTTCTCTGTCAGTTTCTCCATCTTTTGGTTTGGTGATAAATGAGAGTTCCCATC GGGTGTGCCACCCTCTGTGTGACGGGGAGCAGAGAAGACCCT CGTCCAAGTCCTCCTGGGGGAAGAGCGAAGATGCTGGGACCAGCCCCAGCTGTCAGGGGG TCTCCAATCCCAG

GGAACGGAGAGCCGCCAGGCCCAAACCTCCCAGAATTTGCGCAGTATTCTCGGCCTA GAGAGCGAGGAGTGGCCTTGGCGAGGTCCCTCTTTGGCTCTTCTG CTTAGCCGGGGTTTTAAACTTGTTATCTGCAAAGCAGAAGGAAAGTCAGCCCCTGATGTA AGTGTCAAGTAAAATAAATCGGATGGGTCCTTTCCTGTTTGGC GAGGAATGCTACACTAAGGGGGACTGCGTTCAAATGGGCAGTCTTTGCTGGAAACCTCGC CTCCGCGCGCCTTCCCTCGCTCGGATTCAGGCGCTTTTACGTT AAGGGTTGAATTTTTGTGTCAACAGGCACCTCGGGAGGTCGCCTAGACAACTGAGCGGAG CAACTGAGATAACCCCCGCTACGTGTGGAGTGACCTAGTCCAT TAACTTGCCCCAGCACGCCCGCTGAGTCCGCAAAATATAGGATGGCCTCGGGTTTTAGAT GAACCCAAAGCTAAGATTTCTTCCCTCTCTGGAATTAGCAAGC

234 HSF2BP AGCCCGCCCTGCCCAACTCCCCTGGAAGCGCGCGTGCTCGCCAGGCCTCGGGACGCCTGC GCGGGCGCCCTTGCACTGGCACCAGGGCTCCGGGGTAGGGGC

CACCGATCTGCCCAAGCCTCTGCAGGCACTGGAGGAAGGCGAGCCCTCCACCCGCTCAAC AGGCCCCAGTGCCGGCCTTTCCTTCCAGTCTCAACTCCACCC GGGGCCCGGGGGCTCCACAGTTAAAAACTCCACGCCACGGAGATCGCAGGTAAGCTGCTG GCTCAACGAGGTGTGCTAAATGGGATTAAAGATCCTGGACCGT GGCCAGGCGCGGCGGCTCAAGCCTGTAATCCCAGCGATCAGGGAGGCCGCCGCGGGAGGA TTGCTTGAGCCCAGGAGTTTGAGACCAGCTTGGGCAACATAGC GAGACACCGTCTCTACAAAAAAATAACAAATAGTGGGGCGTGATGGCGCGCGCCTGTAGT CTCAGCTACTTGGGCGGTCGAGATGGGAGGATCGATCGAGTCT GGGAGGTCGAGGCTGCAGTGAGCCAGGATCACCGCCAAGATCGCGCCACTGCATTCCAGC CTGGGCGACAGAGGGAGACCCTGTCTCAAAAACAAACAAAAA

TCCTAGACCGTTTACAAACAGCCTTCCGTCTCTTCCTGGTCAAGTCCTAACCCTGGC TAACCTCGCCGTCTACAGCCTGAATTTTGGCAACCGAAAGGCAGC CCGGCGCCACGTGCACACGGGCTGGGCCGCTCCGCCAGCTGCCAGGGCCACTGCCGCGCT CACT

CGCACACACAGCACAGACGCCTGCATCTTCCCATGCGTGGTTTCTGCTCTTGCCTCT CTGGGTTTTTGTTTCACTTCGGTCGAGTTTTTGGTGGTGTTGAGC

235 AGPAT3 GATAGCCGGGGAAGTTGGAGTCTTGTTTGTGGCCGCCTCGTGCTCGTGTCTGTATCTAAG ATCCTCAGGCTGCTCCTTTTTGGGTAAGGTCTGTTGCTTCTCT

AGGAACAGTGACGGTGGCAGAGCCCGTGGCCCCTCTCTCCTGTCCCAGAGCCAAGCTGTT TCCTCTCCCCACTCCCGGGCACCCTGCGGGCAAG

CACAGCCCAGCTTCAAGCCTGGCCGACCAGGGGTTTGGCATGAAGACCCCGGCAGGG CTGGGGCTGTGCTGGAATCCACCCGGAAGTTTCCTGCCCCTTGGGC TGCCCACCAGGTCCCCTTTCTGCTCTGATCAAGCTGGACAAAACGTCGTGGGGCCACAGC ACAGGGGGCCAACGCAAGCTGGGATCGTCAGACGTTAGGAAAT CCCAAGGAAGAAGAGAAAGGGGACACATTCGGGAGACGTCGGCACACGCTCGAAGCAGCG GACAGGCACCTCTCTGTGGACAAGGCAGACTGGGCGGCCGAG

chr21:4

TTCCGCATAGATGCCTGCTTCCTCCACGACCTCCACGTGTGGCTGGCCCAGTCCGGGTCC CCCTCACCTCCTCTGTCTGTCTTGGTGGCCTCACGCCGTGGGC

444650

TGTGATGCCGGCTACGCTGCTTGGGTGGCCAAGGGTCTGAGCTGCAAGACGCCCAGCCTG GGTCTCTCCCGAGCTCTCCCACGTCCTGTCTGCTCCTCCTCC

236 0- AGCTCCCGGTTGACTCTCACGACTGCACCAGCCTCTCCCCCAGGAAGGCGTGGAAACAAC CTCCTTCTCCCAGGCCCGCTCTGCCTCCTGCGTTTCAAGGCA

444475

ATCCGTTCCTCCAGGAGATGATGCAACCACATCCTGTTGGAGCCCAGAGAAGTGCGGATG CAGCCCGGGGCTCTTTCTTTCCTAGAACCCTGCCTGGGAGTG

00 CTTCCCTGAACTAAGGACAGAGACTTTGTCTTCGTTGCCTCTCGGCCTGTGGGCACTGAG CATACAGTAGGTGCTCAGTAAATGCTTGCAGGCCGATGCCCA

AGCCATTAGCCCTCATCATGGTGAGCTCGGCAGCCGGTGTTGGGGCTGGGCTGGGCCTAG GTGTGCGTGGGGGCGGTGCTGGTCTGCTTTGCTGGGAGCCAT GACACCGGAGGAACAGGGCCCCATCAGTGCGGTCAGAGTGCAAACTCGGAGCGTCCTTCT CTGGAAAACGAAT

GGGAGGGGGCGTGGCCAGCAGGCAGCTGGGTGGGGCTGAGCCAGGGCGATCCGACCC CGAACCGGAGCTTTTAGCACTTTGAGTCCCTGTACTCAGAGGTCTC CTGCAGCCGGGAATCCCACTGTGCTGTGGTCCCTGGCAGCCAGCACCCACCCCCAGCTTC TCCGTCAAGGTTGAGGACGGAGCACTCCTGCCTCTGATTAACT

237 T PM2 GGACGCAGGAGAAGCAGTTGCTTTAATCCGGAGCCTTGAGTTGGGACAGATAATGAGTCA TTCAACCAGATTTTCCAAGGACACACTAACTTTGGTATGATGC

GTGTGTGCCCCTGAATCCACGTGGTCAGGAAAGCCCAGGGAACACTGGCCTGTGACTCAC TGAGCAGGTTCCCTTGTTACCCCGAGGGGTGATTTACTCCTCT GACAGTGACACGGACACTGTGCGTCCATTCCCCGGGCGGGCAGAGGACACTCCCAGATGC CCACGAGGGGCCCAGCAAGCACTGGCCA

CTGCAGGACCTGCTCGTTCACAGATGTTCTCCTAGAAGCAGAAGCTGTTTCTTGTTG CAAACAAATTTGCTGTGTCCTGTCTTAGGAGTCTCACCTGAATTT CCAAGGATGCATCTGTGCTTGGGGATGGCTCGGTTTGAGGGGTCTGAGGAGCGGCTCCCC TGGATCCTTTCCTCCCCAGGAGCCCACCTGCCGAGCTGTCAGC

C21orf2 GTCAGCCCCACATCTCAAGATGAGGAAATGGAGGTCGAAGCCATGCACACGCAGGCGTCC TGCTGACATGCAGGCCAGGCGGGTGCCTCTGTATTCAGCAGCC

238

9 TCAGGGCTGTGGCCAGTTCAGGCAGCAGAGGGGCCTCATCCCGGTGCTTCCCTGCAGGCA GTTGTGGGGCCGGCCTGCAGCAGGGGCTCAGACAGGGCCTTG

GAGAGGGAGGGATCACAGAGGTGTCCAGTGACAGGCAGGGCGGGCAGAGCCCATGGGGCC TTGGGCTCCTCACTCCTTCGGTCAGTCAGGGTGACATCTGGA CCACCTCCATTAATGGTGGGTTATGATTTGGTTCCCATGCAGCCCGTGCCAGCTCGCTGG GAGGAGGACGAGGACGCCTGTGATC

AAGAGGAAATTCCCACCTAATAAATTTTGGTCAGACCGGTTGATCTCAAAACCCTGT CTCCTGATAAGATGTTATCAATGACAATGGTGCCCGAAACTTCATT AGCAATTTTAATTTCGCCTTGGAGCTGTGGTCCTGTGATCTCGCCCTGCCTCCACTGGCC TTGTGATATTCTATTACCCTGTTAAGTACTTGCTGTCTGTCAC CCACACCTATTCGCACACTCCTTCCCCTTTTGAAACTCCCTAATAAAAACTTGCTGGTTT TTGCGGCTTGTGGGGCATCACAGATCCTACCAACGTGTGATGT CTCCCCCGGACGCCCAGCTTTAAAATTTCTCTCTTTTGTACTCTGTCCCTTTATTTCTCA AGCCAGTCGATGCTTAGGAAAATAGAAAAGAACCTACGTGATT

C21orf2 ATCGGGGCAGGTCCCCCGATAACCCCCAGCTGCAGATCGAGGCCTAGTGCGAGCACAGGT CCCCCCAGACCCTTCCCAGTGCCCACCAACCGGCGGCCTAGGC

239

9 CAGGTAGAACTGGCAGCGCCTCCCCTGCTGCAACACCAGGCTCTGGTAGAAACTTCAGAA AACATGCACCGGCAAAACCAAGGAAGGGTGGCTGCGTCCCGG

TTCTTCCGCGCAGCTGTGTGTACACGCATGCACACACCCACACGCACACACCCACGTGCA CACCCCCATGCACACGCACCCACTTGCACGCCCATGCACGCAC ACACGCGCGTGCACCCATGCGCACGCACCCATGCACACACACGCGCGCACACACCCACGT GCGCACCCACATGTACACACCCACGTGCACACACCCACGCGT CACACCCACGCGCACACACCGCTGTCCCCAGCCGTGCAGAACGATCCTCCCTGAGTCCCC GGCTCCGACCCACACGCAGCACTCGCTAAACGCTTCCCACGC GTCGTTTTGCTGGGTTGCGCTTCACCCACTTCTCAGAGGGGGCGGCCGAGGCAGAGGTGT CGGGGATCGAGCAGCTCCGGGCCTCAGGGGTCGCCCCGCCACC

GTTTTCCTTTCCCAGA GC GGGACGGGGGCAGGGAGGGGCTCCCCAGGC GAACCCGAC AGG CACCC AGAAGCGAGGCGAGCTTCTCTTCTGTTTTTCT CGGCGCCCC GAGCCCC GACAG GCCCAAGC GCCCA GGGA GGA CGCCAGAGCC CC ACGCAGACCCCACCCAGGGCCAAAGCCAACCCCAAGCC CCACCACCTTGGTGGTGTGGGATGAAAAGTGAGCCATCGAGAGATGGGGTCCCCCCACCC CCAACCCCTCCAAGGACAAAGGCGGGCTGGGAAGCACCCGCTT TCACGTCCGCCCCTGCCCGGCTTTCCTAGCGGAATTGGCGCCGGCATCAGTTGGGGGTTG TGGGATCAGTGAGGAATCCCGTGGGGTCGCCTCCATTTATCA TTGTGTGGGGTTGGGCGAGCACCCCTAGCCCCAGCCCAGGCGATCAGGGCGCGAAGCCCA CTGGACGCGGATTTGGGATTAGGACGGGGGTGACAGCCAGGA GACCGCACCTGCCCTCCCCACTCCTGCCGCTCCACCCCTGCCCCCACCGCAACACCAAGG TCTCCACCAGGAAGATGGGGGTGGGGAAAGGACGCGGGGTGG GGGGGGTGCGGGGAGAGAGGACACAGGGTCGGAAGGGTGAGGGGTAGTGGCAGAGGCGGA GGCCGAGGCCACGCAGCTGCGGGGCGCAGGGAGGGGCAGAGG GGGGCGTTCAGATGGGAACCTAGTCCAGACCCGTCGGGGCCCTCGTGTGCGGCTCGTTAT CCTGGAACCAGAGAGGCTGGAGACCCTTGGCTTGTCTGGAGC GAACCGTAGTGTCCAATAGAGTGTGTGGGGCTCAGCCCTAAAGCTAAACATTCTTTATTT CCTGATGACCATGGGGGCGGAGCGGGGGAAAAGCCCTGGCCTT ATAGTTTAGAATTTTATAAAAGGAAAGGCGTGGCCACTGACAATTTGCGCTTCAGGAGTC CCAGAGTGACCGCCTGGCTCGGAGCAGGGAATGAGGGGGTCCT TAACTCTGAGATTTGTTTTCTGAGAGACAAAGGTGATGGGTGAGGCGGCTAAGCCTCTGA TTCTCTATAGGTGGCGGTCATTCATTTCAGAACATGAATGGAT TCAGTAAATAAACATGATAGAAAAATGCCACAAGCCCTAGGCCCATTGGAGTGGACTGGA CAGTCTGTTCCCAGTGTGTCCCTCAGCCTCGGTCCCCCACCCT TCCCGGAGCCCTGGGGGTCACACACATCCCTCCTGGCTGCCTAGCCTGTGCCCCCCGATT CCCCCCCTCCCCGCCCCGCGCGTGCACACACACACACACACAC ACACACACACACACACACACCACACAGCACGAGGCGACAGAGATATGAGAGAGAGCGAGC GAGAGAGGACGGGAGAGAGAGGGAGTGCAAGTGTGCGCTGGG GTAACCCGTGCATGCATGCATTGGGGGTAACAGGCTGGAGCTCAGATCCCTCCCCCAGCC CCCAGCAGGGGGGACTGCAGGCTCCTGGTCTGAGTGGGGAGCT GGGCCCCCTGGACAGAGGACTGGGCTGCGGGGTCAGGAATGGGCACACTTCCTAACTGCA GGACACTCTAAGGGCTTTGGTCATGCACACGCAGCCAAGAGA GGTGTCGCTGGCACACAGCCTTCCAGGAGCGGACTTGGAGACCTCGCCAAGGACCAGGAC TCCCCAGCACTCACACTCCCTTAGGCGCTGAAGTCCAGAGGAC AGAGGTTGAGGGCAGAGCTCCTGGGAGCACCAGTGGAAGTAGGAGGGCTGGGCTGGAAAA CCTCCCCCAACCTCCTATTGCAAAGAGGCTCCAGCCAGCAGCC TCCACACCCCAGTGATCTTTTAAGATGCAAATCTGCGCCATCATTTATTTCCTCAGTGCC TTCTCCAGCTCCTGGGATGCACACTGCCCGTCCCCAGGCCCA AGACCTGACCACCCTCATTCCTCCCTCAGCCCACCCTGGGGTCTCTCCACCAGCTGACAG CCTTCCTGCAGTCCCCTCCCCGAATGCTGCTCCCTGAGGCCCT CCTGGACACCTGCAGGGCAGGCACAGCCCGCGGGACCTCACAGCACTTGCTCCGGGCAGA GCTGCAGTTTGGCCAAGTTGCCAGCTCCGTGTGGGCAGGGGCC CTGGCCTGTGGCTGCCACATCCCGGGTGGGGGCACGGCCTTTCCTGGCGTGGATGCTGAG CAAACGTAGGGGGAAGGGGAGTGAATGAGGAGAGCCAGGTAGC TCAGGGGCTGAGGCCTCACTGAGCAGGGTCCCGCGTGACCGGTCCCCACCGCTGACGGTT CCTGGGGTAACACTCAGGACAGGGAGAGGCAATGGAAAGAGAC GTGGCCGCCCTCGCATCCTGCAGCTCCCGCACTCCCAGCCTCCCAGCCTCCCACCCAGCC CCCCAGAGCCCACCAGTGACCCCGCCCACTGGGTCCTCAGAT GCTCCCACGGGATCTCCTGCCTTGATCTCCTGTCCACATGGAGGTGAAGTGGGTTGCTCT GAATGAGGGGTGCCGAGCCTAGGGCGCAGCCCACTCTCCTGG TCCGCAGCATCACGCAGCCCGGACCACAGGCTCCTTACAAGAATCGGAAGGGTCCCTGCA ATCGCCCTTCGCACTGAGGCTTCCTACTGTGTGGTGTAAAAAC ACAGGCTTGTCCTCCCTTGCTGCCCACGGGGCTGGAGCCGCCTGAAAATCCCAGCCCACA ACTTCCCCAAAGCCTGGCAGTCACTTGAATAGCCAAATGAGTC CTAGAAAGCGAGAGACGAGAGGGGAATGAGCGCCGAAAATCAAAGCAGGTTCCCCTCCTG ACAACTCCAGAGAAGGCGCATGGGCCCCGTGGCAGACCCGAAC CCCCAGCCTCGCGACCGCCTGTGACCTGCGGGTCAACCACCCGCCGCGGCTCCACGCCGT GGGCACAGACTCAGGGAGCAGGATGAGAAAGCTGAGACGGCGC AGCCACGGCCCGGTGCCTTCACGCGCACAGCGACACAGCCCCAGCCAGCGGGGCCCACGC TAAGGCGGAATCCCACAGAAGCCTACAGAGCGAGCGCGCGCCT GTGCTTCCCAAAACGGAATGGAACCAAGGTGACTTCTACAGAACGATCTGAAGCCCTGGC TGGCCCTTATGCTAGTCTCTTGGGAGCGTTCCAAATGCAGCTC AATATTACTTACTTGACTTTTATCTTTCCTCCCTGGTTCGTGGTATTTATAACTGGGTCA TCTTTTAACTATTTGCAACGTAGCTTCAGGGGAGAGGGGGAG GCTTTATAAATAACCTGTATTATTATTATGCAGGTTGATTCTGTTCCCTGAGCTAAAGGG AACATGAAAATACATGTCTGTGACTCATGCCCCCCCACCCCC CTCCAGGGTGTGCTGAGGAGTCTCTCAGCTGCCCCGGGGTCCTCGAGCAGGGGAGGGAGA AAGGCTGGCGCTGCGCCCTCCATCGCGTGAAGCCAGGGGATTT TGCTCTGCGACAAGCTGACTTGGCTCTCGTATTGTTTGCAGAATCACCCAGTTCCAAGGC AGTCCCTGCGGGCAGGTGCAGCTGTGCGGGAGCTTCAGTCCT TCCCCAACACCCAGGCAGTAATGGTTCCAGCACGGAAGGTCTACCTACCTCCCACTGCAC AGCCCGAGGGCTGTCCTGGAGGCACAGCCATCCGTCCCTGGGT

GGGCAGGCACGTTTATGACCCCCACCCCCACCCCCACCCCCCACGCGAGTCAGCACG TTCCATACTCGGGTGATCGTGCTCATCCCCTGGTCATGTCATCGG A C GAG GCCA CCGAGCAGAGAGC G GGCCCGG GCCGGGGG GGAC CA C A CCAGGGAACCAAGGA GCA GA GCAAACAAAACCAGAAGC GCAAGCCATCTCCTCGCCTCCCCTGATAGCCGTGCTGCGGAGCCTGAGTGCTGGAG

CAGGAACCACGGGACCTGCTGCCTAGCGGCCCTGTTCCACCCTTGGCCGCTCGCAAA ATGTTTAGGCTTCATAAGGTTTGCCCAGGGTCACAAATTTAACTC CAGCAAACAATGAAATCAGCGCATGATTTTCGAGCCCTCGTGGTCACCCTCCCTTCCTCC TGCCCTTTCCTGCATGGGCAGCAGCAGGGTGAGGAGCTGCTCT CCCCAGGCCCAGGCTGGAGTCCCTCAGACGACCTGCCGGCCAGGGTACCCCCCTGCCCCC ACACAGCGCCTGACAGAGCCCCCCACACTGGGGGAACGTGGG

240 ITGB2

ACCCAAGCAGGGGCAGCGGCCTCACCGGGCAGGCGGCGACCTGCATCATGGCGTCCAGCC CACCCTCGGGTGCATCCAGGTTTCCGGAAATCAGCTGCTTCCC GACCTCGGTCTGAAACTGGTTGGAGTTGTTGGTCAGCTTCAGCACGTGCCTGAAGGCAAA CGGGGGCTGGCACTCTTTCTCCTTGTTGGGGCATGGGTTTCGC AGCTTATCAGGGTGCGTGTTCACGAACGGCAGCACGGTCTTGTCCACGAAGGACCCGAAG CCTGCAGGGCACATGGAGGGGCTGG

TGCGTTTAGTGTAAAAATATCAGGTGTGGCTGCACGGAGTGAAAAATCACAGGCTCC ACGGAGCCGGGAGGCCTGCTGCCCTGCCCTCTTGCTTTGATGAGG AATGGCGACCGCAGAAGGAAATGTAGCAGCACCGGCAACCGGCATCCGTGGGGCCACGCC GGGCTGCTTCCCAGGGCCCTCCAGCCAAGCAGCCACAGGAAA

241 ITGB2

AGTAGATGTTGATCCCAAGCTAGGACTGAGGAGTCCGTCCCTAAGAGCCGAGGGAGTCAG GTGGGCGAAACTGGCCGCATGTCTGGGTACAACTGCTCAGGGT TTCTCATCTGCTGAATCACCAAGCTAGGTTCTGAAGCCAGGCGTGAGTGAGCAGGACTGG AGCAGGATTCTGGGAACAATCTTTTCCCTCC

GCTGGGGAACTGAAGGAAGGGCTGTGGAGCCTGAAGCCTGGGCCTGGCCTGTGCTGC GGCCGCACCGCTGGGTGATGCAGGAGCCACTCCACCTCCCTGGCAC CCCAGCCTCATCCGGCAACCTGGGAGCGTGGGCCTCCTGCCCCTCCAGGGAGGCCCTGGC CGTGTCCTCATGGGGCCCCTCCAGGTCCTTGTGGCTCCAGGTC GGGACAGTGGCTGTGAGATCTGACCCTCCCGTTCCCCCTCCACCAAGTAGGAGAAACCCC GGAGCATGAGCCCTCGTCCTTCACCGTCCCGGGGACAGGGGG CCCCCAGATGCTGCACGGCTGACAGGCCAACGTGGCAGAAGCTCCAGCTTCACAGGAAGC CAGTGACCATGAGAGTCTGTAGCTGTAACGAAGCCACAGAGCT GTGGCTTTCTTTCCCCTTCAGCTCTAGGAAAGGTTATCTGCCCTGCACAGATCTCCGGAG GCCTGGCTGGGCTCTGAGAGCATCAGACTGATTATCGTAAGA AATAATCTCTGCAGACACATTCCTTGCTAGAAGCAGGGGACAAAGCCCAGCTTCAAAGAC AATTCCACACACGCCCTCCCTGCCCTGCACAGCTGCCTGCCG GTGGGAGCAGAGCCCTTGCAGCCGGGCTCAGGGGCCTGGGCAGGGACAGCGTGTGGCAGG GGCACAGCTGAGACAGGAGCCTCAAAGCGACACCAACCCGAC TGAAGCTACAGTTGAGGAGACACAGCTGCCCCCATTCCCGGGCCTCATCTCCACAGTGAG ACGCTGGACTCTCTCCCTGACCCACCGTCTCTTAGAACCTCCC CTCCATCCGGAGCAGTTCGGCAGCCCCAGGGCAGCCAGGGGAACCCTGCCGAGTGCCTCT GGGCCGCCACAGACCGCAGAGCCCGCGGGAGCCTTGCTCACAC AGCCTCAGGTCCACTGTGGTCTTGGGGGAAAGCCCTGTCCTGGGACAGGGGAGCCGGGGG TCCTGGCCCTGGACCACCATCTGGGGACCACGTTGTCACGCCT

242 POFUT2

GCAAAGCTCCCTGCCCCACCCCCATGTGCCGGCTGGTGTTGACACCTTTGTAGAGTGGGA ACCTGCCTCCGACCCCAGCCTGCAGCCACAGGGCAGGTTATA ACCAGGTGAGAGGGCGCCGCGCCCAGAACCAAGGAGCACAAGTCCGCAGTGCCCATGAGA TCCTCATGCTGGCCGGCGCAGGAGCCATCCTCGGCCTCTGCA GTCCTCGTGGGAAACCGCGGGGGCACGTGGGGCGGCTGCAGGGTCCGCAAAGCCGGCTGT TTGCGAAGGGCGCAGCTCCACCTGGAACAGCCGAGGCCGCCC CGCGCTTCCCGCGGGATCAGAGCAGCCTCCACGGCTGTTGTCTCAGGCACCACGGGATGC CTTTCTTCGTTTCAATAGCTGTGGGAAAGCCTCAATCGGTCCT GAAAGAACCCAGATGTGCAGCAATGACAAGGCCTTCTCTGAGACTCTAGAACCTTCTGCC ATCTCAGACAGGAGGGAGCCGTGAGGCAGGCGGGAGATTTGC GTCAGCAAAGGACGGGCAGGTGGGGCAGCTGCACACCCAGGGCCCTCTCCACGGTCTTCC CGGGCCCACCCCTCCCGCGGTCCTGGGTCATCCACCTGCTGGC CTCACTCTGCCCACGCGGCCAGGTCCCACCGGCCCCTGAGCTCAACAGACCAAAGCTGGC CCGACCCCACCCCCAAGAAGAATGAAACAATTTTTTTTTACCT CTTGCAGAAAAGTAAAAGATCATTTATTCATTCTGTTTCTAGATAGCAAAACTAAGTGTC AAAAGCACCTTCTGCACACAGTCTGCACACACTGGCCGGTGGT CCTGTTCCCGCAAGGTTGAGCTGTGTTCCAGAGACATGGGTCCTCCGGGTGATGAGGAGC CGCTGGAGGGCCCTGAGCTGCACGTGCTAATGATTAACGCCCC GTCCGTGCTGGCCGGTTTCTCAAATGCCTCCTGACGATTGCGC

chr21:4 GGCCTGAGGAGTCAAACGGTGCAAACCCTGCCCCACTCTGTTTGGGAAGCACCTGCTGTG TGGCAGGCGCTGCGCTTGGTGCTGGGGATAGACCATGGGGAA

243 557150 AAACACACAGAACCTGCCCTGCTCTCAAGGAACAGGCCCTGGGGGCGGCCAGGGGCAGAG ACCCAAGGCAGACACCCACACAGTGGCGTAATGACAGTGCTT 0- TGGTGGGGACCTGGCTGCACAGCAGGTCAGCAAGGGGATGTTCAGGTGACACTGGGGGCA CGGAGACCCAGGGGAGAGTGGATTGACAGAGGGGACGCTGGGC

455737 AAATGTCCCGAGGCTGAGGTGGAGTTGCGGGAAGGAGGAGGCTGCCGGGCAGAGGCGCAG AGAGCTTTGCAGGTGTTGGCAGAGACCAGCAGGCCCTGCGAG 00 CCTGGGGTGTGTCCTCAGCTGGGAGGGCCATAGAAGGATCTGGGCTTGCAGATGCTGGTG CAGACTGGAGGCCTGGGGTGTGAGAGTCCAGGCGGGGCTCCT

CCAACACCCAGGGGAGTGGGCCTGGGCCAGGTGGACCGGGAGCTGGCACGGTGGTCAGGT GCTTGGAGGCTGCGTGCCACGCTGGGGACCTGGAGGTGTGTG GGAGGTGTCTGTTGCTCCTGGGGCTGCCGCCTGCAGGGCTGGGTGTGCAGCAGTGCGGGG CAATGAAGTGGGCGGGTTCTGGGATGGTGGACGTTCCCTTTGT TGGGAACGTGTTGGTGCCAAGCTGCCATTTGAGTTTGGCTCTGAGGGGTCTGGGCAGGGG ACACACAGGGAATCACACAGGATGGAGTGAGTTCCCAGGGACC CAGGGTGGCTTGGCCTGAGAACAGCTCCCACTCCCAGATGTGTGGGAAGCCCTCGGCACC AAGCCTCAGCCTCTCCATCTGTGAAATGGAGACAACGTCACT GACTTGCAGGCTGTCCATGAGGGTGATGCGATCAGAAAGGGTGGAGTTCCTGAACGCCCC GGGGTCGGGGTCTCACAGCAGGAGCTTAGCTGGTGTCGGCATC TCCTGGACCCGTCCTCAGCTCCGAGCGCCCAGTCCTGCCACCTGTGTCCAAGTCTGCACT GTGCCCACGAGGCCCTCAAGGCCGCAGACAGCCCCACACTTCT CGGACGCCGCCCCAGCACGGTCCTTGTGTGAGGTGGACACTCCTTCTGGACGCCGCCCCA GCACGGTCCTTGTGTGAGGTGGACACTCCTTCTGGACGCCGCC CCAGTACGGTCCTTGTGTGAGGTGGACACTCCTTCTAGGGAAGGAGTAGTAACTCTTGGG TGGTCGGGTAGTTGCCATGGAAAGGGGCAGTAATGCCCAGGT TTGCCGTGGCAACCGTAAACTGACATGGCGCACTGGAGGGCGTGCCTCATGGAAAGCTAC CTGTGCCCCTGCCCTGTGTTAGCTAGGCCTCAATGTGGTCCA TATCTGAGCACCGCCTCCTGCCTCAGATGTTCCCGTCTGTCACCCCATTACCAGGGCGGC ACTTCGGGTCCTTTCCAGCCATCATTGTCCTGGCATTGCCAC GTGGACACTGCCACACAGGCTTGTGTGCTTGCGCGTACCCAGGTCCTCACCTCTCTGGGA TAAACCAGGCACGTGGCGGCCGCCCCATTTTCCACCCGCCAGC GGTGGAGGAGTTGCCCAGCCTTGCAGGAAAACAGCTCTCATGCCAGCAGCGGAGCATCCT ATTCAAGTTTTCTCAGGGCTGCCAGCACAAATGCTGCATGCC GGCGGCTTCCTCAGCAGACCGTTGTTTCTCTGCGTCCTGGAGGCTGGACGTCCCAGGTCC CCGTGTGGCAGGCCCGGTTCCTCCCGCAGCCTCTCCTTGGCTT GTGGGCGGCGTCTCCTCCCTGGGTCCTCGCAGGGCCACCCCTCCGTGTGTCTGTGTCCTC CCTCCCCTTATAAGGACCCCAGGCAGACTGGATCAGGGCCTGC CCTAAGGACTGAATTTTACCTTAATCACCTCTTTAAAAGCTGTCTCCAAATACAGTCACC TTCTGGGGTCCTGGCTGTTAGGGCTTTGATGCATGGATTTGG GGACACCGCTCAGCCCCTAACAGCCCCCATCCTCTGCCTGCCTTTACCATGGGGCTGAGC CCAGCCCTGCAGGAGTCCCCTGGTTTGATGTCTGCTGTGGCC CGGCGACCCTCAGGCTGCTCCAGCCGCACTTGTGCTT

GGGGAGT C TCCAGGGGCTGGGGCT GGAGC C GC AT C AGAGAGGAAAGGGGT GT T T GAAAAAGGGGC AGGGC C T GGGAC C C AGGAAAC TGTTCTTC C AGAGAC AC C C GT GAAGC T GAGC TTTGCCTCT C AGGGAAGC T GT GAC CCCACGGGTGCTGCC C AGAGAGAT C GGGC C AGGT GGAGC C AAGAT GGAC T GGAAT T C C C C GAC G GGAC AAGGGGC C GGAC GAGGC T GAC T T GC C C T GT C T GAT GAAT GGT C AGGT T T GC T T T T T C T C C T GAAAAC AC GAGGC AGT GAT C C C GGC C AGC T AAT T C C A CAGAC T GGAGAC GGGAT GGT GGAGAAT GAGGC T GT GGGC GGGAAGAGC AGAT GGGAC T C GC C AGC AT CCTCACGGCAGGGCCGCGCTATTGCCCTCCCTCCCC TCCTACTCTCTGGGGTCCCAGGAGCCCCAGATACGCAATGCTGCCAGGCGATTTCTGGCG CCCCGCAGACCCCTGCCCCTGGAGTTGGGCCAGGTCCCGGCT GAGCAAAGGGGGCTCCTTCAAGCCCGCTCCTCCCTGTCAAACCCGAGGAGCCTGACAGGC GCAGCGTCACCAGCGTCACCGGGCCATAGTGAGCGGCCAAGCC

chr21:4

AGCGTCACCGGGCCATAGTGAGCGGCCAAGCCAGCGTCACCGGGCCATAGTGAGCCGCCA AGCCAGCGTCACCGGGCCATAGTGAGCCGCCAAGCCAGTGTC

560900

CCGGGCCATAGTGAGCGGCCAAGCCTTGGTCTGCCAGAGCCGGCCGCACCAGAAGGATTT CTGGGTCCCCAGTCCTGGAGGAGCACACGGTTTACACCAGGCC

244 0- T T GGGAGGGGAAGAGGC AAGGC GT GGGC CCAGCCCTCACTCCC C AGGAGAAAC C C T GT T T GAGCGGC AGAGGAGAC T GGAGAGAC CCCAGGGCGGGGATCCCT

456106 GAGAGGAGAGAAAC C C GGAAT T C AT C C AC GGAGGC GT T C AC C C AGAGGAGAC C C GGAGC T T C T CC AGGAGAGGC TGGATTGCTC C AAC AGGGGC C C T GAGGA 00 CTGATGGCAAGAGCGGAAGGCAGCTCTGACTCGTGCGTCTGACTCCAGGTGTGGCCGTTG GGGCTACAGTGGGACCAGCCTGTTGTCACTGAACCCACAAAGT

GCCTCCGAGCGCGGGTGGAGAGAGGGGGACCTCCCACCGTCTGCTGGCCTTGAATCTTGA ATCTAATTCCCGTCTGTGCTTTGATGGGAGAGGCACTGGGAGC GGGCGGCTTTTTCAGTTCCTTTTATCTTGAATGGCCTTTGGGGGATTTTCACAGATTCTG AGTTCAAAGCCCAGGGAGGTGTGGGAACGTGACATTCCTCACC GCATTCCTCACCGCATTCCTCTGTAAACCAGGCGGTGTTGGCACCCATGAGCCTGTGTCT TCTATGACATCAGGAGTTTTATCCCTCACGTCAGAAATCAGG TTCCAGGCGCCTTGGTTTTTCTTGGCGCCAGCGGCTTGGCTATAGAAGAAAAACTGAAGG GGCCAGGTGCGGTGGCTCACACCTGTAATCCCAGCACTTTGG AGGCCAAGGCGGGTGGATCACGAGGTCAGGGGTTCGAGACCAGCCAACATGGCAA

245 COL18A GCTCCTCAGGGGGAGGTTCGGGGCCTTTGGTCTCTGGACTTGGGCAGCAGAAAGGAAACA TCCCTGGGGGCCTGTGGTGACCCCCATCCTCCCCAGGGTGGTC

TGGCAGGGGACACTGTTTTCCAAAGCAAAGCCAGAGCGCCAAGGGCTCTCGGGATTC ACGAGATCCACATTTATCCCAAGTTAGAACAGCACATCTGTGCGT CAAACTTCATTCTGACTTCGGCCGGCTGTCCTTCTTGCCCAAAGCACCGTGAGGCCTCAT CCCTGCATCCCTGTTGCTTCTTTCATGTGGGATGAGAACCCA GAAGGGGCTGAGTGTGACTCCTCTGGTTTTTAGAGAGCACTGCCCCCGCCCCGCCCCCTC CTGCTTCCCCACCTTTTCACAGTTGCCTGGCTGGGGCGTAAGT GAATTGACAGCATTTAGTTTGAGTGACTTTCGAGTTACTTTTTTTCTTTTTTTGAGACAG AGTCTCGCTCTGTCGCCCAGGGTGGACTGCAGTGGTGTAATCT TGGCTCACTGCAACCTCTACCTCCCGGGTTCAAGCGATTCTCACATCTCAGCCTCTGGAG TAGCTGGAATTACAGGCGCCCGCCACCACACCTGGCTAATTTT TGTGTTTTTAGTAGAGATGGGGTTTCACCATGTTGGCCAGGCTGGTCTCGAACTCCTGAC CTCAGGTGATCCGCCTGCCTTGGCCTCCCAAAGTGCTGGGATT ACAGGTGTGAGCCACCGAGCCTGGCCTGGAGTTATTTTGGGAGAGGGCAGCCCCTGGTTC AGCGTGGCGAGGCTGCGCTTGCTCTCCCGGGCGGGCGTCCAC CCCTCCTCGCCGAGATGGAGAAGCCCAAACCCCTGCAGCGCTCCCCCATCACGTCCGGCC CTGGAAGCCCCCGGAAACCCTGCCACGCCCTGAGTGGGAGAGC GCAGGTCCCTTTCCGGCCCTGGAAGCCCCCAGAAACCCTTGGGTGCCAGGCCTGGCCGGG ACAGCAGCGACACTGCATGCTCAGCCCTTGCGTGAGACCACG GAGTGTCCGCCCTCTGCACGTGCTGCTGATTGCCCACTTCGTCCAGCAGGTTTGGGAGCT TGTGGCTGCATCCTCCTGCAGACACTTGCCCATTCTGGGGCCT CCTCTCTGTCTTTTCTCCTCTGTTGAGGGGTCTGGGAGGGAGGCCTTGGAGGGTACCCAT GCTGCTGGGACTGATGCTCCCCGCGGTGGAAGGAGCTGCCTCT TGAACAGCAGGGGGCTGAGCAGAGGGGAGGGGATGCGGGGGTGCCGTGCACACAGGTGCT CTCAGGACGCAGGGGCTTCTCAGCCCTGCTGTCCCAGGGCTGC ACTCCAGCAGGGCAGACTCCTGAGGTGCAGACACCCCAGCTTCACGCTCACACTTCTGGA AGGCGATGTCTGTGCGTTTGCTTTCTGCTGCAGTTTAAAAAGC CGGGCTCTCTCCGGAGCGTGTGTAGGGCCTGGTCACTGGAATATCTGGACTCAGTGTTAA TGGCAGCCACGCTGGGGGCTGGGCCCAGCTTTCTGTTCTCCGT GTGGGTGCCATATCCACCTCCATCGCAGCCCTTTCTCTCTCGACCTTTTAAATCACAGTG TCACCTCCCCCTGCTGTCCTGCCAGTGGCCCCTGGAGGCTTCT CCCCACCCCTTTCTTCTGGGGCAATTCTTAAGGCTGGCATTGAATCAGGAGGCCAGATGT GGCCCCTAGTAACTCACCAGCAGTCCCTGAGGCTTCTGGCTCC CCTGGCCCACCAGCCTCCCATGTCTGCCTCAGGCCTCTTGACCCGCCTGGCACTGACCAG ACTGTGTGCCCGGGTGCCGTGCCCATGGGCTCCGCCTCCCCC GGCAGGCCCCCTCTTGCTCCGCGGCCACCCCTGCTCTTGACCTCACACCTCTGCGGTGTG TCTGGACACACCAGCACCACGGCGGGCGGGGAGCGGAATTCTC CAGGTGGGGTGGGCAGGCCGGCGGGTGTTGAGGTCTCTGTGCATGCTTGTGCGTACCCTG GACTTTGCCGTGAGGGGTGGCCAGTGCTCTGGGTGCCTTTGCC AGACAACTGGTCTGCCGGGCCGAGCATTCATGCTGGTCGCCATCACGTGACTCCCATGCG CCCTGGCCCTGGGGTTGGGTCTGCAGGACTGAGAACCAGCGG AGGGGGGCGAGGCCTCGGGAATGCGCCGGCAACTGGCGATGAGCTCAGGCCTGACTAATG AGCCCAGGTGACTCATACACCCGGGGCCTGGATGAGTCTGACT GGGTCAGGACTTCCCTGCTTGTTCTGTCCTGGGAGATGTTGTCCCTGGCCCTGCAGAGCC GGGAGGACACGAGGCCTCCTGGGTCACAGCCAACGCAGCCTAC TCCTGCCCACTGCTCGCGCCGGCCAAGGCCCGTCGGCACCACCTCCTCCATGAAGCCTTC CTGACTGCCCCCATCCCTCTGTGGGCAGCTCGAGTGTGCATCT TGAGTGCTGTGCAGGTTGGGGTCCGGCGCTCCTGCAGGCAGGCGGCGTCTGGGCCTGGGG GCTCTCAGAGTTTGAGGAGCGTGTGGTGAGGGTGGCCTCGGGC CTCAAAGACGCAGCGCTGTGGGAACCGGGAGACTGGCTGAGCCCGCTCTGAGGAAGGTGG GGCCAGGGGCACCCTCAGCTGACCCGGCGTGCAGGGGTGACC GCCAGGCGTGGCCAAGGATGGGGTCTCTGGGATCAGGAGACTTCAGTAGCAGCCAGGACC GAGGCCACCAGTTTCCACCCTGGCATTTTCCATCTTTTGAAG ACTGGAAACGATTGGATTCTTTAACTTTTTTAAGTTGAGGTGAAATTCACAACGCATAAA ATTAACCATCTTAAAGCGAACAATTCGGTGACATTTAGTACA CCAGAAGGCTGTGCAGCCATCACCAC GCCCAACTCTAGAACATTCACACGCCGGAGAGAGGGAGCCCTGGGCCATCACGCAGCCAC CGCCCGGCCCCAAGA CCTGCGAGTCCACTTTCCACCTCTGGATCGGCGGTTCTGGACGTTCATGCAGGTGGTTCC CGCAGTGCGAGGCCTTTTGTTTCGGGCTCCTCTCACAAGCCTC ACGTTTCCAGGTACGTCGTGGTGTTGTGCAGACCCACAATTCATCCCTTTTCATGGGTGT GTAATAGTCCACCATAGATTCTCTACGTTTTAAAGCATGTTTT ATGTGCCTGAAATGTCTCTGCACTCGAGACTATAGCTTGCTTTCTTTCTTTTCTTTTTTT TTTTTTAATTTGAGACGGAGTCTTGCTCTGTTTTCAGGCTGG GTGCAGTGGTGCGATCTCGGCTCACTATAACCTCTGCCTCCCAGGTTCAACTGATTCTTT TGCCTCAGCCTCCCGAGTAGCTGGGACTATAGGCGCGCCACCC CACCCGGCCAATTTTTTTGTATTTTTAGTAGAGATGGGGTTTCATCATGTTGGCCAGGAT GGTCTCGATCTTCCGACCTTGTGATCTGCCCGCCTCGGCCTCC CAAATTGTTGGGATTACAGGCGTGAGCCACCGCGCCCAGCCGAGACTACAGCTTTCTTTA ACTGCATCCCTGGAGGGATCTGAGAGTCTCTTTCCCTGTCTCC TTTCCTTTGGAAAACATTTCAGCCAGGGCTCCCCAAGATGAAAGGCCAGAGTCCCAGGCA TGGGCGTTGCAGGTGCACAGTTGCCACGGGGAGCTGTGGGTG TGGTCGCTGTCAGCGATGGCTGCTGCAGGTCCCTGTGAGGAAGGGGCAGTGCCACAGCAG GAGGAGAGGGAGTCAGCGGACGTTGATTGGCAGTGCCCGCCC

TTCCATCATTCAGTCACCCACTGTGCACCCAGCACCCAGGCTCGGCTGCATAGAACA TGGCCCAGGAAGGCTCCACTTCCTGTCTCCTCTTCTCCCCTCTCC GTCTCATGATGGGGCTGGAGGCATCTTCTAGTTTTGAGTTCTGAGCTAATGAACATGCTC ATGAGCAGGCGGCAGGATCCCAGGACGGTGGAGCTGGGAGCCT GACTGCGGGTGACGGACAGGCTCTGGCAGCCCCTGTCAGCATCCTCTCCAGGGCATGTGA AAGCCAGTGTGTCCTCAGCTGCCAGTGCCCCCTCCCCACCTCC TCTGGGCCCATGTGCACGGGACCTGGGCTCCCCCAACCAAGCCTGCCCGCCTTGGTTCAG CAGAACGGCTCCTGTCTCTACAGCGGTGCCAGGCCAGGAGTGC TGTGTCTGTGAAGCGGGGTCATGGTTTTGGGGCCCTCATCTCCCTCGCGCCCTCTCATTG GGGACCCCCCGTCTCCCTAGCGCCCTCTCGTCCTCTCCTGCAT GTGCTGTGTCTGTGAAGCGGGGTCATGGTTTTGGGGCCCCCCGTCTCCCTAGCGTTCTCT CGCCCTCTCCAGCATGTGAAGTGGGGTCATGGTTTGGGGGCCC CCATCTCCCTAGCGCCCTCTCGTTGGGGACCCCCCGTCTCCCTAGCGCCCTCTCGCCCTC GCCTGCATGTGCTGTGTCCATGAAGTGGGGTCATGGTTTGGG GCCCCCTATCTTTCTAGCACCCTCTCGCCCTCTCCTGTATGTGAAGTGGGGTCATGGTTT GGGGGCCGCCATCTTTCTAGCGCCCTCTCGCCTTCTCCTGAGC GTGTGGAACTCTGTGGTGGTCAGAGCTAAGGTTCTGAATAGGTCGAAGCACCTCCCCGGT GCCTCTCACCCTGAATGCTCTGGGAGGACACAGCCTTTTCAT GGCTACGACTGACATGGCAGGAGGGGCCTGCCTGCCACCCGGGTCCTCTGCTGCCTGCTG CTTGCTGGGGAGGGGGCTCGAGACTGGGATCCTGGGCTTCTGC TCCAGCTGTGCCCAAGGGAGCTGCTGAGGAGGGACCGGGTGGGGCATCCACTCTGGGCAG GTTCAGGGTCATTCTTGGTGACCCCGGGTCCGGTTACAAAGGC TGATGGAGCGCGTGGGTGGCTGCCTAAGTCTCTGGAAGCCCAAGAATGTGGAGATGGCGC GTCTCGGCCCGGGGTCTCGTGGCTGGTCTGGGAGAACTTGCCT TTATTTCTAGGCAGGAGGCTGCACTGCAAGGGAGCGTCAGTGGCCCGGCTGGCTTTCCCC GGCCCTCAGCCCGCACTCGTCCACCAAAGCAAGCTCCTTTGT GGGCTGCCCTGGGAAGCCGGGATCACGAGGCTCTGCCGGCCGTGGTCACCCCATGAGGCA GGGTCAGCTCGGGAGCAAGGCGGATCAGATGGAACAGAACAC TAGACCACCTCGCCCGCCCTTAGTCAGCTGGGCCATTGAAAATCAAGTCCGTAGAAAGAC CTAGAAATAAGTCCCGGGGTGCCCTTGCCTGTTGACGGGCGG CCGAGCAGGACTGTTCTCAGGCAGGCACTGGTCTCTTGGCTTCCAGGTGGTTTGTTTGCT GGTTTGAGGCTGGGGGTGACGCTCCTGTGCGGGAGGAGGTCGC ATTCCATTCATAGCGGCTTATCTGGGCTGTCAGGCAGGCCTGGGAGGGAGCCTGCCTCTG TGCTCTCCAAGGGTGGGCGACGGACAGACAGGGTGTCCCACCC CTTCTGGGCCAAGGACAGAGGGTCAGTGTTTGCAGAGACCTGGGGAGGCCCAGGTGACCT CCACCGAGCACCTGCTGTGTGCAGGGCCAGTGCTGGCTGCAG GACAGCGGAGCGTGTGTGGACCCGGCGGCCCAGGGGAGGGGGGCAGGCAGGACCCGGCGG CCCAGGGGAGGGGGGCAGGCAGGACCCGGCGGCCCAGGGGAG TGGGCAGGCAGGACCCGGCGGCCCAGGGGAGGGGGGCAGGCAGGACCCGGCGGCCCAGGG GAGGGGGCAGGCAGGACCCGGCGGCCCAGGGGAGGGGGGCAG CAGGACTCGGCGGCCCAGGGGAGGGGGGCAGGCAGGACCAGGCGGCCCTGGGGGTCAGGG GTGGAGGCCAGGCCTAGACGGCCCACAGGAGGGTGGACTCATT CTGACCGATTCCTGGAAGCCCCCGGAAAGTGGTGATGTTCTGGAGGGCCCAGCAGACCCC AAGGCCCCCAAGACAATCCCAGCTGGCTCTCTGCGGCTCTCG TGTCTGCCATTTGAGACAATTTGGGCACAGGCAGGGCAGGCCGTCGCGGACGGTCTAAGC CGCGCGCATTGGTGGGGGCAGCAGAGCCCCTGCTCTCAGCTCC TCGGGGTACAGCGGGGGTACCAGGCGGGTGAGTGGGTGGGTGGTCACTGCTCCTGCCAAG GGCAGCCCTGGTTTGGTTTGCACTTGCTGCCCTGGTGACGGCT GCTCTCATTCCTGCCCCATTGCTAACAAGGGTGTCATAAGCTACTTTCCCGGCCCACATC CTATTAAGCCCATGGAGACCCTCCCACAGCTGAGCCTGCTGT GGCTGCAGGCCCTGGGCGGTGCCCACCTCGGTCCCCACTGGCCTCCTTCCAGCACTTTAG AGCAGACACAGGTTGGAGATAAGGAAAGTTCCAGAGCACAGAC TGGAACAAGCCCCAGGCCTCTCCCTGCCCCAGCAGGGCCTCCCTGGATTTGGGGGACAGG TGCCCTCATGGGGGGTCCTGAAGGTCAGAGCTGGGGCTGGGGC TGGGCTGGCGGAGGTGGCCTTGGCGGAGGCCACATTCCAGGGTCTCAGTGAGAGTCTGTG GCAGGCAGCCTTGCAGATGCCGCTGAGGGACCCCCCACTTCAT GTTGTGGGTGATGTGGTCCATTGATTGCCTCCAGGTTTAAATCAGGTGGATATTTACCTA GCGGCCTCCTCTCCCTCTGCACAGGGCCTGGAGTGGGATGGAC TGGGGTGCTCAGCTGGAGGCTCTGCAGACACAGCCCCCTGGGCTATGCAGGCCCTGCTGG GAGCCACATTGCCATTTTTCATCACCCACTTTTTGGGTGAGA CCCCCTCGAGTCCTAACATCTGCCGCATCTCAGAGCCTGTGGCTCCAGTCAGAGCATCTG GACCATACTGCTGGGGTCAGAGCGCGGCAGGACAATGGC

TGCCACCACCATCTTCAGGTAGAGCTTCTCTCTCCTCCTTGCTGGGCGGGGCCCCTC CCTGGGGAAGCCTGCAGGACCCAGACAGCCAAGGACTCTCGCCCGC CGCAGCCGCTCCCAGCCAGCAGCTCCAACGCCCTGACGTCCGCCTGCGCACGCCACTTCT GCACCCCCTGGTGATGGGCTCCCTGGGCAAGCACGCGGCCCCC

C0L18A

246 TCCGCCTTCTCCTCTGGGCTCCCGGGCGCACTGTCTCAGGTCGCAGTCACCACTTTAACC AGGGACAGCGGTGCTTGGGTCTCCCACGTGGCTAACTCTGTG

1 GGCCGGGTCTTGCTAATAACTCTGCCCTGCTCGGGGCTGACCCCGAGGCCCCCGCCGGTC GCTGCCTGCCCCTGCCACCCTCCCTGCCAGTCTGCGGCCACCT

GGGCATCTCACGCTTCTGGCTGCCCAACCACCTCCACCACGAGAGCGGCGAGCAGGTGCG GGCCGGGGCACGGGCGTGGGGGGGCCTGCTGCAGACGCACTGC

CACCCCTTCCTCGCCTGGTTCTTCTGCCTGCTGCTGGTCCCCCCATGCGGCAGCGTC CCGCCGCCCGCCCCGCCACCCTGCTGCCAGTTCTGCGAGGCCCTGC AGGATGCGTGTTGGAGCCGCCTGGGCGGGGGCCGGCTGCCCGTCGCCTGTGCCTCGCTCC CGACCCAGGAGGATGGGTACTGTGTGCTCATTGGGCCGGCTGC AGGTAACTGGCCGGCCCCGATCTCCCCACCCTTTCCTTTTTGCCTTGCCAGGTAAGTGTG GGCGGGGCTGACGTGAGCCTGGTACAGGTTCCCCCCACATCG ATCTCTACGTTCAGGGGCCCGTGGCCCTCGGGAGGTGGGAGAGCTGGGAGTGAGGCCTCC TGTGTGGGGAGGAGGCCGGCGTCTGGACAGGAAGAGGGCTGG TGAACCGCAGCCGATGTGTCCAGGTGCCACCTGGGCCTGGAGCTCCCTGAGCATTTTAGC GCATTTAGTCCTCAGCACGGTCCCGAGATACCCTGCCATGCCC CGAGTCACAGAGGGGAAACTGAGGCGTGGGGCAGTGGCGTGACTCACCCCAGGGAGCCGA GATTCCCGCTCAGGTGTGGCTGCATCGACCTTGCTCCGGTCAC TAAGCTGCACGGTTCGATGCGCTTCCTGGGAGCCCCAGCGTGCTCGGGCCAAGGGTGCTG CCGCGTGGGCAGTGCAGAGACCCTACCAGCGTGGGGACCAGG AGGTCTGCAGGGCCCGTCCTGAGAGGGAGCCTTTCATGTCCCCCTCCCCATCCTGAAGCA CACAGCCTCCCTGCCACAGTGGGGGCCGCTTCTGGGCCCAGG GACGTTGCCCCATCACCGTGTGGCCTGGCCTTGTTGCTGGCTGGACAGTTGGGGGCAGGA AGAGGAGGGAAAGGGGGACTCTTTAACCTCCTGGGGGCAGGG C AGC C C AGAAAGGAC C C C AGC AGAT CCCTCCTCTGTGTCC GGGAGT AGAC GGGGCCCC

GGGCTCCACAGCGGCCTGTCTCCTCACAGGGTTCAGCCCAGTCTGCTCTCACTCATT TGCTGATTCATTCTTTCATTCAGCCAGTCAATAGTCATGGCCCCTC CTGTGTGCCGGGTGGCCATGGATATTGCCCTGGGTAACACACAGCCTGGCCCTGTGGAGC AGACAGTGGGGACAGCCATGTGGACAGGGTGCAGGTGGATGGC AATGGCAGCTGGGTCAGGAGGGGCTGAGGGCCGTGGGGAAAGGTGCAGAATCAATAGGGG CATCCGGACTGGGGTGCAGGCCTGGGGGCTGGGATTTCTAGG TGGAGGTCACCTCTGAGGGAGACAGAGCAAGGCCCTGGGAGATTAGAAGGTCGAAGGTCG CCGTGTTGAGGTCAGGGGCCCTGAATTGGAGCCGCGGCAAAG AGAGGGCAGGTCAGGGCACGTGGTGAGTGATTGCTGCGGCTTCTGAGCACGGCTGGGTCT GTGGGGCCTGAGCAGAGGTGACCCGCGATCCGGCGCCACGGC GGCAGGACTCCCCACCCTTGCTGCTGCCTACACCCCCAGGGCAGCCCCAGAGTCGGGGGC GCAGCTCCCTGCTTGCCAGTTCAGAGCCCAGCCCCTCTCACCC AGC C C AGAGGAGGAC AC AGAT GGAGGAGGGGC AC C C GGAGGGT C CCCCCGCC GACAGGC CCCACGTCTCCCACCT GCAGGACAAT GAAGT GGC CGCCTTGCA CCCCCCGTGGTGCAGCTGCACGACAGCAACCCCTACCCGCGGCGGGAGCACCCCCACCCC ACCGCGCGGCCCTGGCGGGCAGATGACATCCTGGCCAGCCCCC CTCGCCTGCCCGAGCCCCAGCCCTACCCCGGAGCCCCGCACCACAGCTCCTACGTGCACC TGCGGCCGGCGCGACCCACAAGCCCACCCGCCCACAGCCACC

C0L18A CGACTTCCAGCCGGTGGTGAGTGCCCCCCCAAAGTGGGCTTGGCTCCATCTAGCCCCTCG GCTCTCGGCAGCAGAAGAGGGCCCAGCCCCTGCAGAGCTGCT

247

1 GGGGTCCCAGGCTTCGGCCATGGGTGGGGGTCTGGCGGCTCAGGGCCACTCAGGGCGGCT TGGCTGGCCCTGGGACTTGCCCTCTGGTGGCCAAGCAGTGGTC

ATGAAAGTCCAGCCGCTGTCACATCCTTGAGGAACCGGCGTACCTCCGCCTACAGCGGCA GCTGGGGGCACCCACGTGGCCCGGGGCTGCTCTGACCTGGCA CGTATGGGGGCTGCTGCCTGGGCCCCTCAGTGTGTCACTTGCGCGCCTCCCGCTCAGCGC CCCTCGGCCGTGCCTGTCCACACAGGTGCGGGGCCGGGGTGGT GCGCCCGGGGCCTGGGTGCAGGGGGCAGCGTGGGACACAGCCCGTGACGCGCCCCTCTCC CCGCAGCTCCACCTGGTTGCGCTCAACAGCCCCCTGTCAGGC GCATGCGGGGCATCCGCGGGGCCGACTTCCAGTGCTTCCAGCAGGCGCGGGCCGTGGGGC TGGCGGGCACCTTCCGCGCCTTCCTGTCCTCGCGCCTGCAGG CCTGTACAGCATCGTGCGCCGTGCCGACCGCGCAGCCGTGCCCATCGTCAACCTCAAGGT GGGTCAGTCCAGTCCTGAGGGCGCGGGCTCCTCGGCCCCCACT TGACCTCTGGGGTGAACTCCCAGCGGGGAGCTCCCCTCTAGGGCCTCTGGAGGCCACCAT GTTACAGACACTGGCGCCTAGGCTGGCGACTTCAGGGCAGGCT CCGGGTGGGTCACACCCCTCCAGGCTCAGGCCAGGCCTCTGCATCCCTGGGCACTGCCAC GTCCCCCAGGGCATCCCATGAGGCCCCCCCGTGGCCCCCTGAC CCCCCGCTCCCCCGGCAGTGCCCCTCAGAGGGTCCCATGCTGCTGGACCAAGTGTCCACA CAGGTGATAGGGCTCACATACAAGCCTGGAATCAGGAACCGTC CTTTGGGCCTCTAGTGCCATGCGGGCTGGTGGCCCCTCTGCCA

GCCTGGAGTGTAGTCCTGCTGAAGGCCAGAGACCACACACTCCACCCAGACTCCGGA TCTCCCTCCCCAGCAGGGGGATGGAGGCCCTGCCGCTGGGAGTGCT

chr21:4

GGTGTTATGTGGAAGGGCTGGGCTTCTCCAGGGCTCCTGGGAGGCCTAAACATCTTGCAA GGTTTTGACGTTAATTACTATTATGATTGCTTTCTGTGTGTT

588500

CTGTTTTCCCCACACTTTAGCCAGCTAATGTGGAGCTACAGAAGGCCCTCGCCCCTACCC CTCCAGATGTCCCAGCCCATGACAAGCAGGAAGGCCGGGTGCT

248 0- GGGAGAC TTCCTGGGGCTGGATCT GAC AT C AT T C C AAGC AGAT GAT AAC CTGCCTTCCCGAT T TC C AAAC C C AC AGC AAGAC AC C C T GGAGT T AT T T AT AAAT

458870 GC GAGC CCCTGGGTGCACTTCT GAC GGGAC C AGC AC C C T GAC GGC CAT GAGAGGGT GGAGAC AGC GC AC C C C GAGC T C AGGGAGGC AGGAAAC T C T GGAC C T 00 GAGGC C GGGC AC C AT GAGGGAC AC GC T GC AGGC C C AGC T GC T GC C GC C T GGGGC GGGGC T GC C C T GC AGGC T C C GGGAAAAC C C AGAAC C AGGC C GGAT C AGC

GTGTGTCAAGAGGCGGGGCGTGAGAGATGAGCTGCTTTTTTTCTTCACAGGGTTGGC AGGAACTGCAAATAATAGAAAGTCTTTAGGGTCTAACACGCTGCCC TGAAAACACTATCATTACTTTCCTAATGACTAACTGTGTCTTTCAGCCGGCGGGGCAGGC AGCTGAGGCCGCAGGCTCCCGCAGAGGACCGGGGGAGGCTGGC AGCCTGTAATCTGGGGGCGCTGACAGTGCTCTGCCCAGACCCTCGCGCCAGCTCCAGCTC CAGCACAGCAGCCCTGGGTCCCTCTGGCCCCCTGCCCGCAGA TCCAGGTGTGGCAGAGGCCGCCCAGTATCCCTTCTCCTCCTCCTTTTCTAAAAACAGAGT CTCACGATGTTTCCCATGCGGGTCTCCAACGCCTGGGCTCAA CGATCCTTCTGCCTCGGCCTCCCAAAGCGTTGGGATTAAGGGGCGAGCCACCGCGCCCGG CCCACCTTCCCTTCTGGTTCATTTCCAGTAAGGTCCTGTCCAC AGCGTCCTTCCCAGCATTCCCACCAGGCTGCAGGCCTTGGCCTCCCTCCCCTCCATTCTC ATTCTCCCCGAAACCGCCAAGCGCGTCCAAAGCACGGGTTCGC CAAGCGCCCCCCCCGCCCCACTCCACATTCCCTTCCCCGCCGACTCAGCCTCCGTAGCTC GCGGACGGCCCCTCCTCACGCCAGCCCAGGCTTTTTTTTTTTT TTTTTCTTCTATTTTAAGGTTGTCTTTTAATGACACAAGCGACATTTGGAGACAAAAGGA CACATCTCTTCCTGACCCACCTCCAACCCCAGCTGACGGCCGC CCTGAGCCTGGCGTAGACGGCCCGGAACGTTCCCTGCGTGGGTTCCGTCCATCCCGAACC CCTGTCCCCGCGCCGGCTCCGGGGGTGCTCGGGGGGCCGCGT GGGTCTGTGACGTCGCCTCGAGGCTGCATCCCGGTGACCCGGCAGCCCCTGGCGCTCGCG GGAGGCGGGCGGGCGCGGACCCCAGGCTTTAGGGCGCGATTCC TGCAGCTGGCTGCCGGCCCGAGGTTCTGGGGTGTCTGAGGTCTCGGGCGGGGCGAGGACG TTTCTCCGGCTCAGCCCCCCCACCTCCTGCCCTGCCGCCCCCC ACACCCAGCTCCCCACGGACGCCAAGAGGCGCCTCCCACCCCGGCGAGGACCCGCGGGGA AACGGGGCCCAGGCGCGGCGACTGCGGAGGACGCGCCTCGGCC CCAGCGCCCTGGTCCTCGGGGCGTCCGGCTGCCCTTGCCCGAGGCCGGGGCGGGCGCTCA GCGCCGCGGAAGAAACGCCCGGGCGGGGACGCACAGCGAGGC GGCTCCGCGGGAAGTACCGGGAAAACGGCGCGGAGCGGAACAG

TGGAGCAATCCCAGAGAGGCTGAGGTGTTCAGGCTGGCCCCAGATGCACACGAGCGT GAAGCCTGTTCAGAAGCCAGCTCCTCACACCCTCTCCCCTGCCAG GGCTCCAGCACCCCCTCCCCTCTCCTCTCCCCTCCCTTCCCTGTGGTCCTCCTGCCCACC CCACCCCCGTCTGCATGTGCACCGTCACGGAGATGCGTGTACT AGGGCGGAGGTCGGGGACAGTCGTCAGAAGGACACAGGAAAGAAGGGAACAGGAATCCCA TAACAGAACATTATCCGGCAGGAGTAATTAACACAGGCAGGAC TGGAGGCTTTGTTTTGTTTTGCTTAAAAAACAGTGGTATTTAAATTAATGGGCATGGGAA GACTATTCAGTGAAAGACATCGGTCATTGAGGTATCTATTCA AAACACGGTTTAGTACTCTGCCACACACCGAACGCAACGCCACAGCAGCCATAGAAGCGT GTGTGGCTGTTTAACGTGGTCTTTTTGGGGAGGGCATCCTAG CAGAGCAGGCGTGGAAGGGAAGGCGGCGGACGGAACAAAACGCGGGCACGCAACGGCTGC TGCGCCGGATCTGAGGCAGGGCCAGCCTGTGGGAGCAGCAAC TCGCTCGCAGGACAGCGATGGAGCCCCCACGAATCCGCGTGAAAGCAGCAACCACCTAGA AATGAACGTACAGCTGCTTAGAAACAGAATACGGATGACCCG AAGACTTCCCGATGGTAGTCACCAGCATACAGGACCTGACACGGGCGTGCGGGCAGGGTG TGCCGCTACGGGGTCCCTGGCGCACCTGCTACCCCTGCTACCC GCATTCACCGCACGCGGAGGGTGCGGGCCGTGAAGGTTATACATGCAAATATCCTTCCAC CAGCCAGTTCTCCTTCCAGGAATCTGCCACCCGACCCTTGTGT TGTGCACAGACATGGTCCAGGTGTTTGCGACGTGATTGTTTATCAGAGAGAGAGAAGGGA AATCTCCAGGCTCGCTGTAGCTGCAGGAGCTCTGGGGGCTGC CCCATCGTGGAGACGGATAGCTGTCTCTCATGAACACAGGACAGCAAGTCCGGCTGCGGC CACAGAAGACTCGCCCTCCTGGACGCAGCGTCTTCCTTCCTC

249 PCBP3

GCCCCACACTGGAGGTGGCCAGTGCCATCCACAGCAGAAGGGGCCAGCCGGGACCAGGCT CACGCCGTGGAATTCTGCTCTGTGGTAAGAGGAAGAGCGATA CTGGAACCCAGCGCCGTCGCACACACAGCGGGGAAGAGTCTCAGAAATGTTACTTTGAGT CAAAAAGCTGGACAAAAAAAGGCGCAAGCCAGATGGTGCTGA GAGGCCACAGGAGGCTGGCAGCCAGGGGGTCTGGCACCTCACTCGGAGGCGCAGTGGGCC CGTCCGGAATTAGTGGCCATACGGCAAGTGCCGAGTGGACATC AAACCGTCACTTCAGACTCCTGCGCTTCACTGCCTGTCGGTTATGCCTGGGTTTTGAAAT CAAGTCACAGAACACCTGGAATGTGGTGTTTACGCAGAACAA GCGGGTGCCTCGGAGGAGAGAGCCTAGGGACAGGGGCACCTCCCGGTGTGGGTGCCCAGG GTTGCAGGGTGGCTTCCTCTGTCTGCGCGGTTTTCAGAGCCCC AGGGTCCTGCCTGCCCGGCTGCCTGGAGGCGGCCCACATCCTGCTCTGCGCCGCCGAATC TCAGCCTGAACAGCTTCGCTGGTGTTTGTGTTGACTTATTTGT TCTTTTTTTTTTTTTTTTTTTTTAAATAAAGGATTCCGATGCTGTTACAGTCAATAAAAG CCACAGGTCTGGGTGACCTACAAATGTGTGTGTCTGACTTTCT GCAGTTTAAATCGCCACTGAGCCTTAAGGCGTCTGGCCCGCGCATTGAGGAATCCACGTG GGTCTCGGGGTCCCCATGCCTGCCCAGCTCCCTGCTTCAGCCT GGGCGGGTCTGGCGGGCATTTCTGCGAGCCTGTCCCTGGGCCCGCCTCCTGGCCAGACTT CCAGAAACATTGTCCACATCCCCGTTGCACGTCCCCCCGTCAC CGGAAACTGCAGCCCACAGCACTGGGAAGAACCCGGGAGGCAGGCGTTAGGACGGGGTGG CCGAGACAGGGAAGGGAGCCATGGCGGACGTCCTCACCCAAGC CAGGGCTTCCTGCCCCTGTGGTACTGACAGGAGCCCCGCAGGACGTGGGGTTGGCTTTGG GCAGCTCGGTGGACACTTCTCTTTCAGATCCTGCCACAGCAA

GCTCACGAGACTCACTTCTTCCCATTGGAATTCACTAAGAACAAATTCAACAATTCA GACGCCCCAGCTGGAGGTTTATTTTATGGATTTTACCTGTGCGGT TTTAGGGTTGTGTTTATGAATAAAGGTGTGCGTTCTGGCAAGTAGAAATACAGAGCTTGT CTTTCACCCAAGTATCTGTAACTTTCTCCAATGCAGACACTA AATGCAATAAAAACAAACCAAACCCATTAAACATGAATTAGATGAGGCAGGCTGATGGGA GGTTGTGGGATTAACAGGCCGTCAGCGGATTGAAGCTGCGCAC ATCGCTGGGATGCTGCTGCGGGAGGATTCGGTCTAATCCGGGAGCATCTGGCTGGGCAGT GGGCAGCGTCTGCAGTCGTGGCTGCTTGAAGGTATGAAGGTT TGGCCTTTGCTTCCCCCCATCAGGCTGCCCCACCCTGGACCCCACCCAGACCCCTCGGGC ACCCTGGGGTCATCTTCAGCTCCCCCTTCTCTTCCTTCCTTCT CTTCCGCCTGGGCCCCTACTGTGACCCGAGGTCAGCAGAGGACCCTGGCAGGTGGCTGCT CCCTGGGACTCGACTGTGCAGGTGAGGCTTGGGGTGACCGCT CTCCTGCTCCTGCTCCTCTCGCCGTCCCCACCCTCCTCCATCATGCTGTCAACATGCATG TGGGCTGCAGCCCTCAGCCTGCAGGACGCTGTCAGTGCAGCTC CTCAGTGGCCAGG

ATCTTGTCTTCCTTGTCCCAGTCCTGGAACCAGCCACTGCCCCAGCAGCTCCTGTGT GTGGTGGCATGTTCTGGAAGCCAGGATGCATGGTGCTCCTGGGCT CTGTGGGTCCTGGGCTGCTGTGGGTCCCGAGCTGCTGTGGGTCCTGGGCTGCACCCCTGC AGAACACTTCCTTCCATGTTCAGCTCCCTATATGGAACCCCA TTCCAGCCCCACAGCACAGGGTCCCCCAGTTCTTCCTGCCTCAGGTGTGCACCACGAGGA ATCCAACTGCCAGTATCTGTGCGTGGCCTCCCGCCGGGAGGA GCTGCCGGAGGCTCTGAGCTCTAGCCCCACAGCACTGGCACATCCTAGATTTCCGGGAAG ACACGGCCTCCTCCCCAGGGGAAGGTGGTGGTGCCCACACCC GAGCATTCATTCCTGCAGTGGAGACAGAGGGACCTGCCTCTCCAACTGTGGGTGTCAGGA GCCAAGGCGCATGGTAAATGGGGCTCTCTGTGAGGCCAGGTGC ACGGCCCCATCTCCAGCAGCAGCGGCCATGCCACCCAGCTGCACTCTGTGGGGGAGGTGC CATGATTGACGGGGGCCCCTCCCTGTGTCCAGTGTCCTCCTCC CTCCACGGGCCCCTCTGCACACCGTCCTCACAGTCTCCCTCTGCACACCGTCCTCACAGC CTCCCTCTGCACACCATCCTCATGGTCTCCCTCTGCACACCGT CCTCACAGCCTCCCTCTGCACACCGTCCTCACAGCCTCCCTCTGCACACCGTCCTCACAG CCTCCCTCTGCACACCATCCTCATGGTCTCCCTCTCCTTCCAC AGACCCCTCTGCTCGCCATCCTGACGGCCTCCCTCTCCCTCCACGGACCCCTCTACACAC TGTCCTCCCAGCCTCCCTCTACACGCCATCCTCACAGCCTCCC TCTCCCTCCACGGGCCCCTCTACACACCGTCCTCACGGCCTCCCTCTCCCTCCACGGGCC CCTCTGCACACCGTCCTCACAGCCTCCCTCTCCCTCCACGGGC CCCTCTGCACGCCGTCCTCACGGCCTCCCTCTGCCTCCACGGGCCCCTCTGCACGCCGTC CTCACGGCCTCCCTCTGCCTCCACGGGCCCCTCTGCATGCCGT CCTCACGGCCTCCCTCTCTCTCCACGGGCCCCTCTGCACGCCGTCCTCACGGCCTCCCTC TCTCTCCACGGGCCCCTCTGCACGCCGTCCTCACAGCCTTCCT

250 PCBP3 CTTTTTCCACAGACCCCTCTGCACGCCGTCCTCACGGCCTCCCTCTCCCTCCACGGGCCC CTCTGCATGCCGTCCTCACAGCCTCACCGACGTCACCATTGCT

GGCCCCGCTTCAGGTGACAGGCCACAGTAGCACCTGTCAGCTCTGTCCCGCTGCTGGACA GGGAGATACTGGGCCACTCAGCCCAGCGGGGAACGTGTGTCCC GAAACTGCCTTGGGCTCGCCATCAGAACTGTGGCAGCATCTTCCAGCGTTCCTTTTAACA GGCTGCCGTTGGAATAGGAGTCACGGAGCAATTGCAGTGCTA GTTTTCTTTAAGTCACACAATTGAAGGAGGCTTTATTTTTCACACATTTCTTCCAGAGTT TCCTGGTAGCCTGAGTGCATGGGTGATGCCCCCTGAGTTATTT ATCAGGGGCAGCCAGCTGCCCTCCCCCGGGGCACTTACAGTCAGCCCATCTCTGTCCTGG TCAGGTGGGCGCCAAGGAAGACCCGGCTCAGGGCCTCTGTAT GGCAGCCTGGCTTGTACACACACCCCTCCCCACCAGCAGATTCTGAATTCTCCCTTCTTC ATGCACACCGGGAAGGTCCCTTCTGCACTCATACCGGGAAGGT AGGCAGGTTTCGGTAGTGTCTGCCTCCAGTGTTTTCCTCCTCCTGCTCTATGACATCATC TTTCTGTGATTTTTTTTTTCTTGCAGGAAGTTGGAAGCATCAT CGGGAAGGTAATTATTGATTGAATCTCTGCCTCTCCTGGGGTCTCTGTAAGGGGATGGTG AGGATGGCAGCCTCCCTGGGTACTAGGTGGCACCCAGTAGGT CGCCTTTCCCAGTTGGTGGGTGGTCTGTGTTCCATGAAGACAGGACCCCAGAGGTGTCGC CTTTATGCTGTATGACATTGAAGCTGGTCCCTGGCTCTGCGT GCCTGAGGGGAAGGGGTTCACTCCAGCTGGTCACCTCGCTGCCCCCTGCCCGTGGCCTTG GTGGCCAGTCCTTCTTTCCCGGTTGAAGACCCCACGAAGAAT ATTTCTCACGCCTTCTTCAGCCGGCTGTGTAGTCTGGGTGGTCTCCAGGAGTGCCAGTGG AGGCAGCAGCCCCCAGACAATTCCTTTCCAAATCAGGGCTGGC CCGGGGGAAGTAAGGCCCAGTTTGGAAGCCTGCTGCCCCGGGAGGCCGAGCAGTGAGGGC CACCTCCCTGTCTTCATCACATTTTCACCGCTTCCGGGGGTCC TTCCCCTCAGTCCCACCATGGGGGCGCC

GCTGGACACCTCTGAGAGCGTGGCCCTGAGGCTGAAGCCCTACGGGGCCCTCGTGGA CAAAGTCAAGTCCTTCACCAAGCGCTTCATCGACAACCTGAGGGAC

251 COL6A1 AGGTAGGAGGGACGCCCCGTGACCTTCCTCCTGTGCTTCTGGGCCTCTTGGAGGGAGGGG TGGGGGCCCAGGGGAACACGGGTGCGACGGCCTCAACCTCCT

AGGTTGGGCGAGCGTTGCCCTGACCGGGGCCCCTCCCGGCGCCCTCCAGAGTGAGGCCGG GGCCCTTTCCGGCGCCCTCCAGAGTGAGCTGGTCTGAGCCTCT

CCCAGCGCCTTCCAGAGTGAGCTGGTTTGAGACCCTGCTCGCGGGGGTGGCACCTGT TCAGCAGGGCCGAGGTGACAGTGAGGCTGAGATGTAGGGAAGAGA GCTCCCGCAGGCTGACCGAGAGGGCTCAGCGCACTGGCCCAGACACGCAGTCCTGCCTGG TGCGCGGGAGCCCCTCACTAACCACCTGGACCCTGGTTTGTTC CGTGGGCAGTGAGAGCCTCTACCTGGGTCCTGGATCCCACGTTCTGAAGGTCCCCGACTC GGGAGCCAGGAGGGGTGTCGCTCTGCAGCCCCAGGGCCCCCA GCTTGGTTCTGGGCTTGGGACACGGCACCCTCTGCTCCACGTTCCTCCATCTGTGCGTGT GGCTGAGGACAGACCGGGGGGAGAGGGGAGTCGGTCCTGTGG TGCACAGGGCCGCTGAGGGGGGGGCATGTAGAACGGGGCTCCCCCACTGAGACGGGTCCT GGCAGTGGGGACACAGCTTAGCCGGCGTAGGAACCCCCGTCCT CCTTGACCCTGCTGACTGGCCGCTGGGCCGGAGCCTCCCGCCACCAGAAGGGGCACAGTC AGAGGCTGCCGGTAACAGCAGGGTGGACCTTCCAGCCCACACC GTGCCCAGCAGGAGCCATTGGTACCAGGAACCCTGAGCTTAGTGGACATGGCCAGGCCCG TGCGGCAGTGTTTGGGGGGGGGTCTGGCTGTGGATGGCACCG GGAGGGGCGGCCGCGTGGCCCAGCGTCCCCCGAGTCGCCCTTGTTGCCTTTACTCAGTCT CCCCATGACTCAGTTTCCCACCTGTGAAATGGGGCGGAGTCAT CCCCATGTCGCTGCCACTGGATTCCTGCAGGCGCCGTGGTCACTCTGCTGAATGGATGGG AGGGTGGGTGGGGCAGAGGTGGGCCCACCCCAGGCTGGGGCA AGCAGACCCCTGAGAGCCTCAGGCTCAGGTGCTCAGAGGGCAGCGAGGGGGCTGCTCAGA TCCCCGGGGTGCCTCCTTCCCCCACTGTCATGCTGCCCCACT CAGGCCCAAGGACCCCACCCCAGCAGGGCCACACACTCAGGGCTCCTGGTCTGAGGGCCT GAGGGATCGGGGCGCAGGTCGCTTGCTGGCCACACCCGCCTGC ACAGCCTTCCAGGAGGGCCGGCCTCAGGGCCACAGGGCAAGTCCAGCTGTGTGTCAGCCA CGGCCAGGGTGGGGCAGCCTGTCCATCTGGGTGACGTCGCGCC CTGGGACGGGTAGCGATGGCGCCAGGGGCCGCCCGCCTCACGCCCGCCGTGCCTGTTCCT GGCAGGTACTACCGCTGTGACCGAAACCTGGTGTGGAACGCA GCGCGCTGCACTACAGTGACGAGGTGGAGATCATCCAAGGCCTCACGCGCATGCCTGGCG GCCGCGACGCACTCAAAAGCAGCGTGGACGCGGTCAAGTACTT TGGGAAGGGCACCTACACCGACTGCGCTATCAAGAAGGGGCTGGAGCAGCTCCTCGTGGG GTGAGTGGCCCCCAGCCTCCTGCCCACGCCAGTTCTCACGCGT GGTACCCAGCCTGGGCTGGGGTTGGCCTGGGGTCCCTGTGCGGCTTCAGCTGCAGCCTCC CTGTTCTCTTGGAGGCTGCACGGCCTCCCTGACCCACTTTGT GGCAGGAAAGAGACGGAGACAGACAGAGACAGAGAGAAACAGAAACAGGGAGAAACAGAC ACAGAGAGAGACAGAGACAGAGAGAGATAGAGACAGAGACAG GAGAGACAGAGACAAAGAGTGACAGAGGGACCAAGACAGGCAGACAGAGACAAACAGAGA CAGAGACAGAGACACAGAGAGAGACACAGAGAGACAGAGACG GAACAGAGACAGGCAGACAGAGACAGAGAGAGACAGAGACAGAAACAGAGACAGAGGGAC AGAGACAGGCAGAGAGAGACAGAGAGACAGAGACAGAGACAG CAAACAGAGACAGAGAGACAGAAACAGGGACAGAGACAGAAAGAGAGAGAGACAGAGGGA AACAGAGAGAGACAGAGACAGATAGAAAAAGACAGAGGCAGA AGAAGCAGAGACAGAGAAACAAAGACAGTCAGAGACAGACAGAGACAGAGACAGAAACAG AGACAGAGAGACAGAGACAGAGGGGCAGAGACAGGCAGACAG GAGACAGAGACAGAGACAGCGAAACAGAGACAGAAACATACAGAGACAGAGAGACAGAGA GAAGCAGAGACAGACAGAGGCAGAGAGACAGAGAGAAGCAGA ACAGGGACAGAGACAGAGACAGAAATAGAGAGATAGAGACAGAGGGACAGAGACAGAGAG ATAGAGACAGAGAGGGAGACAGAGAGATAGAAGCAGAGAGAG GAGACAAAGACAGAGGCAGAGAGACAGAGAGAGAAGCACAGACAGAGACAGACAGAGAGA CAGGGACAGACAGAGACAGAGAGACCGGAAACAGAGGCAGAG GACTGAGAGACTGAGAGAGACGGGGTGGTTTTCCCCACAGCATCAACACCAAGCAGGGCT AGGATCACTGAAACAGACTCATCAGACCCGAAGCATGCGCTTT CTCGGGGTTTTTCTGGACTGAGGGGTTTCCTCTCATCCCAGTGTCCAGCTGTGGGGACGC AGGGGCCGCAAGCCCCGGAGTGTCCAGAGGGGAACGTGGCCTC CCCACACCCAGCCCTTCACGAGGCCTCAGGATCCCAGTGGGGGTACCCGAGGCTGCCCTG TCCAGCCAGGCGGTGCGGGGGGTTTGGGGAGAGCCTCTCCCC AGGTCGGTCTCAGAGGGCCACATGGCCGGTGTGGGCCGGACATTCCCTTTCCAATGGTTG TGCCCACTTCCCTCCAGAGTTGGTGCCAAGCTGGGACCTGGG GACTTGGAGTCTCAGGAAGTCGTCCGCTGTCTGCAGGGGGTGCATGGGGGATGTGGCCAC ACACGTCAGAGTGCGGCCCCCTGTGGAAGCCACAGACAGACAC GACTCCCCTAAATGAGCTCGCCCTTCTGGCCGAGATGCTCAGCGTCCCCAGCAGGCTGCC CGACTGCCCTGCGATACTGCCCTCCTTCCTGCTGCTCCCACTT TCCCTTTCGGGGGGTTGGATTTGGGGCATTCAGGGATCGCCCTGTTGTTTGCTCATCACA CCCATTTCCTGCAAGAGCCACGGTGACCGAGCAGCCTTGAGTT GAGGCAGCTTGTGGGTAGACGCGGCGGGCATCTCGGAGGGGCACGCTCCCTGCCACCCTC AGCCTCCACTCACTGGTCAGGGGCTTTGCGCCCCAGGGCACCC CAGGAACCGAGCCTCCTTTGGGGTCATGGGTGCCTCTCCTGGGAGGGCGTGGATTTTCCA AAGCAGTTTAGAGAAATGAGACCCACAGGCGTTATTTCCCAT GTGAGGTTCTTTTCAGTAACCCCCACCGTATAGCCAGGATCAGCAAAGAGAGGCGGCTCC TCCCGGTGAGACAGGGACCAGCACCTCCCGGACAGGCTTGGGT CTCCCTCCAGTTCCCCCACCTAGTCTCGAGGTCTCACGCTGCCCTCTCCTGTCCAGGGGC TCCCACCTGAAGGAGAATAAGTACCTGATTGTGGTGACCGAC GGCACCCCCTGGAGGGCTACAAGGAACCCTGTGGGGGGCTGGAGGATGCTGTGAACGAGG CCAAGCACCTGGGCGTCAAAGTCTTCTCGGTGGCCATCACACC

CGACCACCTGGTAGGCACCGGCCCCCCCCGGCAGATGCCCCCAACCACAGGGAGTGG CGGCTGCAAGGCCCCCGGCAGCTGGGACCGTCTTTTGGTCCTCGG AGGGTGTGGGTTCTCCAGCCGGCCACCCTTGCCCCTGAGAGGCCAGCCCCTCCTGCTGAG GAGCCTGGAGCGCCCCAGCCCAGCCTCCCCTCTGGCCCTGTG GAAGCGGCCCCGGCCGTCAGGGGTCCCAGCCCTGCTCAGCCCACCCTGAACACTGCCCCC AGGAGCCGCGTCTGAGCATCATCGCCACGGACCACACGTACC GCGCAACTTCACGGCGGCTGACTGGGGCCAGAGCCGCGACGCAGAGGAGGCCA CAGCCAGACCA CGACACCATCGTGGACATGATCGTGAGGCCCCTGCCC AGGAGACGGGGAGGCCCGCGGCGGCCGCAGGTGGAAAGTAATTCTGCGTTTCCATTTCTC TTTCCAGAAAAATAACGTGGAGCAAGTGGTAAGAGCCCTCCCC ACCACCCCCAGCCGTGAGTCTGCACACGTCCACCCACACGTCCACCTGTGTGTTCAGGAC GCATGTCCCTATGCATATCCGCCCATGTGCCCGGGACACATGT CCCCTGCGTGTCTGCCCGTGTGCCCGGGATGTGTGTCCCCCTGCGTGTCCACCTGTGTGT CTGCCCATGTGCCTGGGACATGTGTCCGCCTGTGCGTCCATCC GTGTGTCCGTCTGCCCATGTGCCTGGGTCGCATGTCACCCTGTGTCCCAGCCGTATGTCC GTGGCTTTCCCACTGACTCGTCTCCATGCTTTCCCCCCACAGT GCTGCTCCTTCGAATGCCAGGTGAGTGTGCCCCCCGACCCCTGACCCCGCGCCCTGCACC CTGGGAACCTGAGTCTGGGGTCCTGGCTGACCGTCCCCTCTGC CTTGCAGCCTGCAAGAGGACCTCCGGGGCTCCGGGGCGACCCCGGCTTTGAGGTGAGTGG TGACTCCTGCTCCTCCCATGTGTTGTGGGGCCTGGGAGTGGG GTGGCAGGACCAAAGCCTCCTGGGCACCCAAGTCCACCATGAGGATCCAGAGGGGACGGC GGGGGTCCAGATGGAGGGGACGGCGGGGGTCCAGATGGAGGG ACGGCGGGAGTCCAGATGGAGGGGATGGCGGGGTCCAGATGGAGGGGACGGCGGGGTCCA GATGGAGGGGACGGCGGGGTCCAGATGGAGGGGATGGCGGGGT CCAGATGGAGGGGACGGCGGGGTCCAGATGGAGGGGACGGCGGGGTCCAGATGGAGGGGA CGTCGGGGCTCCAGATGGAGGGGACGGCGGGAGTCCAGATGG GGGGACGGCGGGGTCCAGATGGAGGGGACGGCGGGGTCCAGATGGAGGGGACGGCGGGGT CCAGATGGAGGGGACGTCGGGGCTCCAGATGGAGGGGACGGC GGAGTCCAGATGGAGGGGACGGCGTGGTCCAGATGGAGGGGACGGCGGGGTCCAGATGGA GGGGACGTCGGGGCTCCAGATGGAGGGGACGGCGGGGGTCCA ATGGAGGGGACGGCGGGGTCCAGATGGAGGGGACGGCGGGGTCCAGATGGAGGGGACGGC GGGGTCCAGATGGAGGGGACGGCGGGGTCCAGATGGAGGGGAC GGCGGGGTCCAGATGGAGGGGACGGCGGGAGTCCAGATGGAGGGGACGGCGTGGTCCAGA TGGAGGGGACGGCGGGGTCCAGATGGAGGGGACGTCGGGGCTC CAGATGGAGGGGACGGCGGGGTCCAGATGGAGGGGATGTCGGGGTCCAGATGGAAGGGAC GGCGGGGTCCAGCAGGCAGGCTCCGGCCGTGCAGGGTGTGGAC TGTCCCGGGGGCGCTGGGGGCTTCTGAGGGTGTCTCTGTCCGCCCTGCCCTCAGCCGCAC TCTGTTCAGAAGGACCTTTCTGGAGGTAGGAGGGTGAGAATGT GGGTCCCCTGCTTCTGTGTGGCTCAC

GGCCGGGGAGGCGGGGAGGCTGCCCCAAGAGTAAAAGCCTTTCTGACGTGCGCAGGA CGCGGCCCTGACTGGTCTAACTGACTCTTTCTCTTCTCCTCAGCTT GCTGTGGTGAGACCCAGGCTCTAGCTCCTGAGAGAATGGATCCCGGGGGTCGGGGAGCGA GGCCTGGGTCCCACACATGTCACAGGACAGCACATGGCACTCT GGTCCCCGCCCGCAGCTCCCTGCACCTGCCCGCCCCCTCTGGGGCCTGCTCCAAGCCAGC AGGGTTCCCGGGTGTTGGGCTGGGCCCCGCCCTCTTTCACCC TAACTGAAATAACCAGGAGCAGGCTTGGGGGGGTCCCTGCTCCATCATTCTGGCCCACAG GCCCCACCCTAGCCTGGCTGAGCAACGCCAGCCCTGACCAGCC GCCGGACAGAGCAGCCTTTACGGGGCCATGGGAGGGGGTGGGCTTTTCTGGGGCTGAGAC GGGGGGACCCCAACGTGTCAGGTGAGGATGTGGCAGCCAAGG GGGGCCAGGGCGGTGGAGGGGAGGGGCCAGGGCACTGGAGGGGAGGGGCGTGCTCTGCTG ACACCGCCCCCGCCTGCAGAATGCAAGTGCGGCCCCATCGACC TCCTGTTCGTGCTGGACAGCTCAGAGAGCATTGGCCTGCAGAACTTCGAGATTGCCAAGG ACTTCGTCGTCAAGGTCATCGACCGGCTGAGCCGGGACGAGCT GGTCAAGGTGAGGCCTCGCCCCGCCCGGCTTTCTCAAGCCCAGGTGCACCCCGACCCTGC CGGCCGCCCCTGCCCGCGCCAGACCTCAGCCTCCCGAGGCCAC

252 C0L6A1

CGCTGCATCCCTGTGACTTCCCTACTCATGACAAGGATGCCAGGCACGCGCCAGCCCGTC CAGGCCTCCAGCTCCACCTGGCGAGGCTGGCCCATTGTACAC GGCGCCCCAGATGAGGGAGGGTCTCCCCCTCTCCTTGAAGGGCGGTAGTCTGGGGTCCTG AGTGCTGGGTGTGGGCTTGTCCCTCGTGGACAGAACCCAGGA GGCTTCATCCACCAAGGAAGATTGCTTTGCAGGGTACCCAGGTCCCGGGGGCTGTGCCAC CCTCTGGGCACCCGGAGCCAATCGCAGGGTACCCAGGTCCCG GGGCTGTGCCACCCTCTGTGCACCCAGAGCCAATCGCAGGGGACCCAGGTCCTGAGGTCC TGGGGGCCATGCCACCCTCTGGGCACCCGCAGCCAATAGAGTC ACCCTTGGGAAGCTTATGCGGACCTGGGGCAGCACTCGCGTCCTGACCCCGGTGCCGGTC CCACAGTTCGAGCCAGGGCAGTCGTACGCGGGTGTGGTGCAGT ACAGCCACAGCCAGATGCAGGAGCACGTGAGCCTGCGCAGCCCCAGCATCCGGAACGTGC AGGAGCTCAAGGAGTGAGTGCCCCACGCGGCCAGGACCCTCCC ACCCCTCGCCCCGACCGCTGTTCCCACGGCAGGTCGGCCCTGACCCCTGATCCCAGGTGG GCTCGGCCCCGCGGCAGGCCTGGCCCCAACCGGCCCTTCCTGC CCTTTGCTATGCAGAGCCATCAAGAGCCTGCAGTGGATGGCGGGCGGCACCTTCACGGGG GAGGCCCTGCAGTACACGCGGGACCAGCTGCTGCCGCCCAGCC

CGAACAACCGCATCGCCCTGGTCATCACTGACGGGCGCTCAGACACTCAGAGGGACA CCACACCGCTCAACGTGCTCTGCAGCCCCGGCATCCAGGTGGGGT GCCACCCCCAGGCTGCACCTGCCCCGCCTAGGGCGCCCCGCCAGCCAGGGTGGCCTTGTC CCCAGAAAGACGAGGGCAGAGCAGGCTGCGCCACACCGATACT GTCTGTCCCCACAGGTGGTCTCCGTGGGCATCAAAGACGTGTTTGACTTCATCCCAGGCT CAGACCAGCTCAATGTCATTTCTTGCCAAGGCCTGGCACCATC CCAGGGCCGGCCCGGCCTCTCGCTGGTCAAGGAGAACTATGCAGAGCTGCTGGAGGATGC CTTCCTGAAGAATGTCACCGCCCAGATCTGCATAGGTGCGCAT GGGGCCACCCGGGCAGTCCCAGATCTGCGTAGGTGCGCGCGGGGCCGCCCGGGCAGTCCC AGATCTGCGTAGGTGCACGCGGGGCCGCCCGGGCAGTCCCAG TCTGCGTAGGTGCACGCGGGGCCGCCCAGGGCCGTCCCAGATCTGTGTAGGTGCGCGCAG GCGCCCAGGGCTGTCCCAGAGGCCTCCTCCCAGCTCACTGTT CCTCCAGGGGCACGGCCACCCTGTAGGTGCGCACGGGGCCGCCTGGGGCTGTCCCACAGG CATCCTCCTCCCGGCTCGCTGTGACTTCCGGGGGCACGGCCAC CCCTGTGCTCGGCCGGGAGGTCCTGTGACATCTCCTTGCGGGGTTATAGGTGGAGCAGTG GGCTCACACTGCACGGCTTTTCTCTTTTACAGACAAGAAGTGT CCAGATTACACCTGCCCCAGTGAGTACCTCGGCGGCCGGGACACGTGGGGAGGAGGGCAC CGTGGTTGGGGCGAGGGCTCTGAGAGGACGGGGCTCTGGGAG AGGGCCTGGCGGTCACGAGAGTAGGTGCATGGCTCACTCCGGTGGCTGAGCACCACCGTG CCGTGCCCTCTCTGGGGAGCTTAGACGCTCTCTGGCCGGCCC CTGCGGCTGCATCACCAGGGCCTCATGCTAACGGCTGCCCACCCCGCCCCGCAGTCACGT TCTCCTCCCCGGCTGACATCACCATCCTGCTGGACGGCTCCGC CAGCGTGGGCAGCCACAACTTTGACACCACCAAGCGCTTCGCCAAGCGCCTGGCCGAGCG CTTCCTCACAGCGGGCAGGACGGACCCCGCCCACGACGTGCG GTGGCGGTGGTGCAGTACAGCGGCACGGGCCAGCAGCGCCCAGAGCGGGCGTCGCTGCAG TTCCTGCAGAACTACACGGCCCTGGCCAGTGCCGTCGATGCC TGGACTTTATCAACGACGCCACCGACGTCAACGATGCCCTGGGCTATGTGACCCGCTTCT ACCGCGAGGCCTCGTCCGGCGCTGCCAAGAAGAGGCTGCTGCT CTTCTCAGATGGCAACTCGCAGGGCGCCACGCCCGCTGCCATCGAGAAGGCCGTGCAGGA AGCCCAGCGGGCAGGCATCGAGATCTTCGTGGTGGTCGTGGGC CGCCAGGTGAATGAGCCCCACATCCGCGTCCTGGTCACCGGCAAGACGGCCGAGTACGAC GTGGCCTACGGCGAGAGCCACCTGTTCCGTGTCCCCAGCTACC AGGCCCTGCTCCGCGGTGTCTTCCACCAGACAGTCTCCAGGAAGGTGGCGCTGGGCTAGC CCACCCTGCACGCCGGCACCAAACCCTGTCCTCCCACCCCTCC CCAC CATCAC AAACAGAG AAAATGTGATGCGAATTTTCCCGACCAACCTGATTCGCTAGATTTTTTTTAAGGAAAAGC TTGGAAAGCCAGGACACAACGC TGCTGCCTGCTTTGTGCAGGGTCCTCCGGGGCTCAGCCCTGAGTTGGCATCACCTGCGCA GGGCCCTCTGGGGCTCAGCCCTGAGCTAGTGTCACCTGCACA GGCCCTCTGAGGCTCAGCCCTGAGCTGGCGTCACCTGTGCAGGGCCCTCTGGGGCTCAGC CCTGAGCTGGCCTCACCTGGGTTCCCCACCCCGGGCTCTCCT CCCTGCCCTCCTGCCCGCCCTCCCTCCTGCCTGCGCAGCTCCTTCCCTAGGCACCTCTGT GCTGCATCCCACCAGCCTGAGCAAGACGCCCTCTCGGGGCCT TGCCGCACTAGCCTCCCTCTCCTCTGTCCCCATAGCTGGTTTTTCCCACCAATCCTCACC TAACAGTTACTTTACAATTAAACTCAAAGCAAGCTCTTCTCCT CAGCTTGGGGCAGCCATTGGCCTCTGTCTCGTTTTGGGAAACCAAGGTCAGGAGGCCGTT GCAGACATAAATCTCGGCGACTCGGCCCCGTCTCCTGAGGGTC CTGCTGGTGACCGGCCTGGACCTTGGCCCTACAGCCCTGGAGGCCGCTGCTGACCAGCAC TGACCCCGACCTCAGAGAGTACTCGCAGGGGCGCTGGCTGCAC TCAAGACCCTCGAGATTAACGGTGCTAACCCCGTCTGCTCCTCCCTCCCGCAGAGACTGG GGCCTGGACTGGACATGAGAGCCCCTTGGTGCCACAGAGGGCT GTGTCTTACTAGAAACAACGCAAACCTCTCCTTCCTCAGAATAGTGATGTGTTCGACGTT TTATCAAAGGCCCCCTTTCTATGTTCATGTTAGTTTTGCTCCT TCTGTGTTTTTTTCTGAACCATATCCATGTTGCTGACTTTTCCAAATAAAGGTTTTCACT CCTCTCCCTGTGGTTATCTTCCCCACAAAGTAAAATCCTGCC TGTGCCCCAAAGGAGCAGTCACAGGAGGTTGGGGGGCGTGTGCGTGCGTGCTCACTCCCA ACCCCCATCACCACCAGTCCCAGGCCAGAACCAGGGCTGCCCT TGGCTACAGCTGTCCATCCATGCCCCTTATCTGCGTCTGCGTCGGTGACATGGAGACCAT GCTGCACCTGTGGACAGAGAGGAGCTGAGAAGGCAACACCCT GGCTTTGGGGTCGGGAGCAGATCAGGCCTCAGTGGGCTGGGGCCGGCCACATCCACCGAG GTCAACCACAGAGGCCGGCCACAGGTTCTAGGCTTGGTACTG AATACCCCTGGGAGCTCGGAAGGGGAGTTGAGATACTGCAGGGCCCATAGGAAGAAGTCT TGGGAGGCTCCACCTTTGGGGCAGAGGAAGAAGTCTTGGGAG CTCCACCTTTGGGGCAGAGCAAGAAGAGGGCGGAGGGCAGAGGCAGCGAGGGCTCATCCT CAAAAGAAAGAAGTTAGTGGCCCCTGAATCCCAGAATCCGGG TGCACGGCTGTTCTGGGGGCCGCTAGGGGACTAAGAGGATCGGCCGAGGGCTGGGCTGGA GGAGGGCAGCAGGGATGGGCGGCGAGGGTGAGGGTGGGGCTTC CTGAAGGCCTTCACCTGCGGGGACCCCGGCGAGCCCCTCAGGTGCCACAGGCAGGGACAC GCCTCGCTCGATGCGTCACACCATGTGGCCACCAGAGCTGCG GAAAATGCTGGGGACCCTGCATTTCCGTTTCAGGTGGCGAACAAGCGCCCCTCACAGAAC TGCAGGTAGAGACGGGCCCGGGGCAGACGCAGTGAGGCGGTG GCGGGGCCCGGGGCAGATGCAGTGAGGCGGTGGGCGGGGCCCGGGGCAGAGGCAGCGAGC GGTGGGCGGGGCCCGGGGCAGACGCAGTGAGGCGGTGGGCGG

GCCCGGGGCAGAGGCAGCGGGTGGTGGCCGGGGCCCGGGGCAGACGCAGTGAGGCGG TGGGCGGGGCCCGGGGTAGTCGCAGTAGGTGGTGGGCGGGGCCCG GGCAGACGCAGTGAGGTGGTGGGCGGGGCCCGGGGCAGACGCAGTGAGGCGGTGGGAGGG GCCCGGGGCAGACGCAGTGAGGCGGTGGGCGGGGCCCGGGTC GAGGCAACGGGTGGTGGGCGGGGCCCGGGGCAGACGCAGTGAGGCGGTGGGCGGGGCCCG GGGCAGATGCAGTGAGGCGGTGGGCGGGGCCCGGGGCAGATGC AGTGAGGCGGTGGGAGGGGCCCGGGGCAGACGCAGTGAGGCGGTGGGCGGGGCCCGGGGC AGACGCAGTGAGGCGGTGGGCGGGGCCCGGGGCAGACGCAGT AGGCAGTTGCCAGCCTCTCTCAGCTGCCTCATGGGATTCGCACTGCAGCTGCGGCCCTGG CGCGACAAGGGCTGGACTTGGCCAGCGGGACGGTCCCTCACG CGCTGAGGCCCACACTCTGCGTGGAGCCTCCCCGTGCCCAGGCTACCCTGCAAGGTCCTC GGAGAGGCTTCCTCCAGCCCCAGCCCCCACACAGCTCCGGCCC AGGCCCGCTCTTCCCCATCCCAGTTGCTTTGCGCTGTATACGGCCAGGTGACCCCGAGCC GGCCCTGAGCCCTCGTCCCGGCTTCCTCCCCTGTAAGCTGGGT GAAGGACTCCATGGCACCCACCTGAGAGGGTTGTGGCGAGGCCCAGGCCCCTCGTGCCCA CACGGCCGGCGGCCCATGCCTGGCAGGGGCTGGGAGGAGGCT GGGCGACCAGAGGGGAGCGGCCTGTCCTGGAGGAGGCCCAGGGACCCTGGTGAGAGGGTC TCTCCCAAGTGCTCTCTATGGGACCCCCTTCCTCTGCGCCCGT CCTTCACGGACCTCTCCGGGTCACCCCTGGGCTGCACACTGGGTTCAGGGGGGCCTTGAG GTGGGGCCCCTGTTCCCAAGTCCCGGCGGGGTTTCTCCTGAAC CTCAACCCATCCTCACCTGCGGGCATTCCCATCCCCCAACGCCTGGGTCACCAGGATTCC AGGCAGGAGGGGCGGTGGGGGTTACCAAGGCCCGGGTTGCCAT GCAGAACCCCCAGCCACCACGCAGACCCCCACGGGGCCCAGGGAAGCTCCTGGTCTCACA CTGCACCTCACACTTCCTGTGGGGGCAGACTCCAAGGTCCCG CCTCTCATCTTGTAGAAACTGAGGCACAGGAGGGACACACACTCCCACGGCCGGTCACCG TGGCCCCCACACCTCCCACTGGACTGACACCTGGCCAGGCTCC GGACACCCGTGGCACAGCCTCAGCCCCTGCGGCCCCTGCTCCGTGGCCCCCAGGCCCCAG CTCCCATGTGCACGTCCTGCCTCAGGCCTGGAGGCCCCTCGGC CCCAAATAATCAGACAATTCAACAGCAAAACTACTTTTTTCAGGCTGGCAGGACTCTGGG CAACCCCCTGCAACAGCCCCCTGCCCTATCACAGCCACCCTT CCTCCCAGGCACGGAGACCCCACCATCAGGTCCCAGCCTTGGTTCATCCCCAAGCACCCT GTGTGTTGGGATGGCGATGCTGGCTGAGCCCCTGCATCC

AGGGCGTTTGGGAACACCCCTCCCGGAGGGGTGAGGCGGCCCAGCCTGCGGCTGCCA GAGGACACAGGTTCTGCTGCGGAACCTGCAGACATGGCCATAACA GCCACAGTGCTCGGGCCCACACAGCCTGGACCCACATGGCCCTGTGTCACCTCCTCAGGG GCAGGCTTCAGGGCCTCGACCCTAGAGGCTGCCCCTCGGTTCT GCTCCATGGACGGCGCAGGCAGGCCCAGGCCTGTGACGAGTTCACGGAAGCTCCAGGATG ACCCCCGCTCTGCGCCCTCCTCCAGCATTCCAGACCACAAACC AC C GGGC AAAAC GAGGC A C GC C AGAGC A C C C AC C C C GGAAAGC GC GG C GGGGAC GC G C GGC C C GAAGAGGC C CAGA GGC C C CA C AGGCCTCTCCGCCTACGTGCGGCC GAC AT GGAGT GAC AGAGC GT C GGGGAC AC AGAAT T C AGAGC TGGGCCTGGGGCTGCTTT GAGAT AC TGATGGCTGCCA GGGGCACAGAGACCCGTCCTGCAGACAGGGCTGTGAGGGCCACAGGGGGCCTCGGGGAGA GGCAGTGGGAGGGAGGACAGTGGGGGCCTCCAGCTGGGTGAGC AGCTGGAGCGAGGGGGGCCCGGGGCTTGTGATGGTGCTGCCGACCCTAGAGGTGCCGGCC CCACGATGGAGAGCACGTAGTGCCCCCCGGGAGTCAGGAGGCC GGGCCTGACCTCGGGGGCTGCAGCCAGGGGAGGCCGGCACCCCAGATAACCCCCAAAGAA CTGCAGGCCCTGAGGCGAGGCCAGAGTGGGGGCGGGGGCAGGT

chr21:4

C C C AGC C GAGGAGGT GC T C C GT GC T GC C T C AGC AGAAC C C AT GAT GGGC T GGC C C AAGGC T C T GAAGGT GGAAAGGC C T C AC AC AT T C T GC C C C GGC T GAC GC

628050

CTTCCTTGGGCCAGTGCTCGGGGGTGTGTAACAAACGCCAAGACGCATTGTAAAGAAGGA AGCCTGCGTTTCCATCACCGGCTTAATATCAAACAAAAGTGC

253 0- ATTTTGAAAATGTAGTCCAAGGTTTTCTGTGGTGCGGAAATGGCCAGGCCAGACCTCCGT GGGTGGTCCTTCGTGTCCACGTCAGCGCCCTACATCCACACT

462830 TGGGCACCATGACCTCACATGCGGAGCGGAGCAGGGCCGGCGCCCGGAGAGCCAGGCTGG TCACGAACGAGGCCTAGAGGGCGTCAGGCCCCAAAGCACTCAC 00 AGGCTTCTCCTCTGTCCTCGGGGCCTTCAGACACCTGCATGCGCCGATTCAGCCACCCGC GCGCGCCGATTCCCCTGGCCATGGGGTTTCCAAAGTGTGTGCT

CAGAGGACAGTTTCCTCCAGGATGACCTGTCAGTGGCTCTCTGTGCCGGGGACGTCGCGT GCTGGGTCCCGGTCTGAATGCTTCCTAACGATTTACCCAGTTC CTTTTCTCCACTCAGGAGGCGTTTGCTGAGAGGCACAGGCTGAGCCCCCGTGCTGATGCC ACGACCGAGGGAACGGGTCTCCCTGTCGGCGTGAACTGACCC GCCAGGCGTCCACTGCCACTCGGACTGTCTCCCAGGCACGTGGCGCCCACACGGGCAGAA CACGCCCTCCACACACGCGGCTTCGGGCAGAACACGAGGCGCC CTCCACACACGCGGCTTCGGGGCTTGTCATGAAAAAAGCTGAATGCTGGGGGTGCAGCTT TCACCAACAGAATCCCGTTTGGAAGGGACGCGGTGAGACATG TCCACCCTAAGTTGTGATCCTGGGTGAGCCGCCGTCCACACCCTGCTGAGGGTCCCTTCA CCCACTTTATTCTCCAGAAAACCCTGCCCATCAGGGCTGAGTC CCACGCCTTCCCTCTCCGTCCAGGCCTGGCTTTGACCTCTGGGGTCGTGTGGGGCACAGG GGACACCCTATCCAGGCAGAGGCCCTACGGCTATCTGGAGGA GTGGTGGGAGCTGGGCTTCTGCCTGGAGGATGCACCCAGAGGGGTCACAGTCCACACAGA GACACACGGGTGCCTTCCAGATGGCTGAGCCAGTCCAGCCCA

AAGGGCCTGGGGGTTGGGGGCTGCACCTGGCCTGTCCCCACCAGCAGGGCTCAGGGC TTCCCAAGGTGTGTGGGGGACGGGGCAGCACCTCTCAACCAGGTC CCTGAAACCCGAACTGAAAGGCATCCTAAGTTAAGACATTAACTCCCATTGTCAAGGTGC CATCGTCAATTCTGTCTCCAAATCCTTCTTTGTTATTTCATGT ATTCACAGAGTGACGCTCCGTGTTTCGTTCAGCCTGCAGGCCTGCAGAAGCTGCATCTCG GGATGGCCAAGAGCCCGGCCAGGCCCCACGGCTGCACCCAGG CGGGATTCATGCCCCATGCCTGGCTTCTCACGACCACAGAGTGCCTTTCCCGGGACTGGA GGAGGCAGAG GAGAGAAGAGCC GGAGCAAG GTTT GGAC CACAGTGATCAAACACGGAGCCCGTGGG

AAGAAAGGCCAGACCGGGCACGGTGGCTCACGCCTGTAATCCCAACACTTGGGGAGG CCGAGGCGGGCAGATCACCTGAGGTCAGGAGTTCGAGACCAGCCT GCCAACAGGGTGAAACCCCGTCTCTACTAAAAATACAAAAAAAAATTAGCCGGGCGTGGT GGCAGGCACCTGTAATCCCAGCTAATCGGGAGGCTGAGGCAG AGAAAATCACTTGAACCTGGGAGGCGGAGGCTGCAGTGAGCTGAGATCGCGCCACTGCAC TCCAGCCTGGGTGAGGGAGCGAGACTGTCTCAAAAAAAAAAA

254 COL6A2 AAAAAAAAAAAAAAAGGAAAGAAAGGCCCGGTGAGATGCTTTCTCTTAAACACGGCCCTG CACGTTGAGTTGCTGCCTCCTGTGGCCTATTTCACGTTTATGC

AAAGTCGGGCGCCTGATGCGGGGCTCACCCGCCACAAGCAGGGGTCCTGGTGCTGCTCAT GGAAGGGGCCCTACCCAGCCCGCGGGGCACTGGCTGGGACGG GCTGCCCAGGTCCGCCCAGGATCCAAACACCCAGCCCCGCCCAGCGGCCCTTCCTGGCCT GCAGTGGAGGCTGTAATGGGCAGGGGTGGTGGGAATCCCAGCT CACAGGGCGCCTGCTCTTAGAAGGGCGGCATCTGGGTCCAGAGGTCAGAAACGTCAGATG CCCATCCCAGAAGTGGCGGGGA

GGGTGAATGAGTAGATGTATGGGTGAGTAGGTGGGTAGGTGGGTAGATGGATGGGTG GGTGGGCGAGTGTGTGGTTAGATGATGGATGGCTGAATGGATGAGT GGGGGGATGGATGGGTGAGTGGGTGTATGTATGGATGGGTTAGTGGGTGGGTGGATGAAT GGATGGGTGCATAAAGGATGGATGGATGAATGAGTTAGTGGGT TGGCAGATGGATGGATGGGTGAGTCAGTGGATAGATGGATGGGTGGGTGGATAGAGGATG GATGGTTGGGTAGGTGATGGGTGGATGAGTGGATAGATGGGT TGTGAGTGAGTGGGGGGATGGGTAGGTGGGTGGATGGATGGTTAGGTGAATGAGTGGATG GACAGACGGACAGTGGGTGGATGGATGAGTGAACGGATGGACC GATGGATGAATGGGTGGGTGGGTAGAGGATGGACGGACAGGTGAGTGGGTGGGTGGATGG ATAGATGGGTAAGTGAGTGGATAGATAGATGGGTGGGTGGAC GAGGATGGGTGGATGAATGGATGGGTTAGTGGGTGGCTGGGTGGATGGATGATGGATGGG TGACTGGGTGGATGGATGGATGGGTTAGTGGGTGGCTGGGTG ATAGATGGATGGGTGATTGGGCGAATGGGCGAATGGGTGGATGGGTGGGCGTGGAGTTGG TGGGTACATGATAATGGGGTGGAATACCCATGGATTGGAATG GCTGTTTTGGCTGCTATTTCTGGGACACCCAGCTCTGCCAGGCCCCTACCCCTCTGGTGG GCCAGGCTCTGACGGTGGCCACTCATGGCCTTTCTAGCTCTG TGCCAGCATAGGGAAGGAGGAGGCACAGCCTTGTCTTACTCCTTGCACCTGTTAGCCCCC CCCCCCGCCAAGGGAGGACCCGTGGTTGGGGACAGCACAGGG GCCCTGCTGTGTGCAGGGACTGTCCCTGGGGCCACTGAAGCCCACCTGTTCTTGTTCCTT CTCAGGCGGATCCTGGTCCCCCTGGTGAGCCAGGCCCTCGGG GCCAAGAGGAGTCCCAGGACCCGAGGTAGGTTGGTGGCCAGTCCCCATGCCCTCCCCCCA ACCTGCCAGGCCAACACACACCCAAGCCTCGTGGTTCTGCCC CGGTGGACCCACGTATCAGTGGGCAGTGGCCTGGGAGAGACTCAGCCACCCAGCCTTGGC CCCAGAGTCTCAGCCTCATCCTTCCTTCCCCAGGGTGAGCCC

255 COL6A2

GCCCCCCTGGAGACCCCGGTCTCACGGTAGGTGTCACATGGGGCAGAACCAGTGTCCTTC TCCTGCCAAAACTAGACACCAAGAGCAGCAGGGGTGGGGGAA GTCAGCTGGCACGGTCAGAGAGCAAGATCAGTGGAGGAGGTCAGAGGGCAAGGTCAGAGA GCAAGCTTGGTTGGGGAAGGTCACAGGGCAAGGTTGGTGGGG GAGGAGGGTGGCAGCGAGGTTGGTAGGGACAGGACCCGCCAGCCTCCCCGCATGGCTGCC TCCACACGTGGGCTGGAATGTCCCGGGACCCCCAGGCCAGGAC CTTGCTGTGGAAACTCTTCTGGGGCCCCGGGGGGACTACCCTGCCTGCCGTGTGCATTGC AGGAGTGTGACGTCATGACCTACGTGAGGGAGACCTGCGGGT CTGCGGTGAGGCACTGCCCACGGCAGGGTCGGGGCCCATGCACCGGGTGGAGGGCGGGAG TGCAGCAGGGCTGGGTCATCGCTGGGTCCTGCATGTGCACGT ACCCTAGGGTCTGAGGTCTCCCCGGTACCCCCCGATGACCCTGCCACCCCCCCAGACTGT GAGAAGCGCTGTGGCGCCCTGGACGTGGTCTTCGTCATCGAC GCTCCGAGAGCATTGGGTACACCAACTTCACACTGGAGAAGAACTTCGTCATCAACGTGG TCAACAGGCTGGGTGCCATCGCTAAGGACCCCAAGTCCGAGAC AGGTCAGCGGGGCAGGGGCGGGTGCAGCATTGCGGGGGGCCGGGCGGGGCGTGGGAGGCG ATGAGATGGGAGAAGTCCAGACGCGTCCCTCCAACGAGGGCCT CTGCATGGCTGGGGATGCCCCAGACCCCGAGGCCTCTGGCAACGACCTCACGCGTGCGGC TTGCAGGGACGCGTGTGGGCGTGGTGCAGTACAGCCACGAGG CACCTTTGAGGCCATCCAGCTGGACGACGAACGTATCGACTCCCTGTCGAGCTTCAAGGA GGCTGTCAAGAACCTCGAGTGGATTGCGGGCGGCACCTGGAC CCCTCAGCCCTCAAGTTTGCCTACGACCGCCTCATCAAGGAGAGCCGGCGCCAGAAGACA CGTGTGTTTGCGGTGGTCATCACGGACGGGCGCCACGACCCTC GGGACGATGACCTCAACTTGCGGGCGCTGTGCGACCGCGACGTCACAGTGACGGCCATCG GCATCGGGGACATGTTCCACGAGAAGCACGAGAGTGAAAACCT

CTACTCCATCGCCTGCGACAAGCCACAGCAGGTGCGCAACATGACGCTGTTCTCCGA CCTGGTCGCTGAGAAGTTCATCGATGACATGGAGGACGTCCTCTGC CCGGGTGAGCGTGTGGGCGCGGGGCAGTCGGCCGAGGAGCAGCAGGCCCCAGCCGCTGTC TAGCGTGAGCCCCAGGGACACCCCTCACCTGAGGGATGAATGT GCAGCCCAGGATCTTGGGCTGTGGGTGGGAAGGGGTCGGGCCCTCTCGGGGCTGCAGGGC AGAGGCCAGCTGCACCCTGAGCCTGTCTAGGCAGATCAGTGA CGGCCGCTGAGGGTTCGCTAGGGACTGACCCTGGCCTGGCCCGGCCTCTCTCCTCTCTTC CAGACCCTCAGATCGTGTGCCCAGACCTTCCCTGCCAAACAG TAATGCAGGGCACCCTGAGCCACCACCCCAGACTAGCAAAGCAGCCCTGGTGTCCTTCCT CCTCGAGGGCCGGGCTGGGGGAGGGGCCGTGCAGGGACCCGG GGGCGGCGGAGCCAC GCGGAGGC GC CC AGGGAGA GGCCCCAGGA GGCAGCACAGGGGAGGAGGGGC GGGGAAGGCAGGC CCCAGGAACGCAG AACAGCATCACGAGGCCATGAGGTGGGTGCTGCTAGCCTGGCGCTGTGCTCGGCATGTGG CCACTGGTCTTGAAGGCCCACCATGGGCCTTGCAGTCTCCCTC AGCTGCCGCCCAGCTCCCATGGGCTGGCCGTGCATGTGCCACTCGGAGGAAGCCCTGGAT TCAGTGAGTGAAACCATCCCGGGGTGGAAGCACTGACACCCCC CAGCACCAGCAGGTCTTGCTCCAACCCTGGCCTGCCTCGGAGCTGCAGCTGCGGCTCTCA CATCTCTGGGAGTGGGGGAGCCCATGTCCCGGATGTGGCCCAC GTGGGTGTGAAGCTGGAGCTGGGGGTGCCGTCCAGGCTCTGCTGGACGTGGTGCTGCCCC CATGGTGCACTGCTGCACCGTACCTGGGCCCACAGGAGGTCCC CGGGGGCGTTAGGAGCTGAGTCCCCCTCAGTGAGCCGTCCCCTCCAGGAGTGTGAGGGTA GGGATGCCATGGAGACAGGGTGGGAGGGTCCGACCTGGAGGAC CACAGGGAGGAAACCTCAGGGTCTGCGGTACGAAGTCAGCGCTTCCTCAGCACGCGGGTC GCGGTGTGCGTTCGGGCGTTCCATGGGGAGCTCCCGGTGGGT AGCTGGGCCACTGAGCACATTCACAGGCCCTGAGGCTGCCCCAGGGGAGGAGCCGTGGAC TCAGAGCCGAGGTTCCCCATACGTGCTGCGACAGAGAACCTA GGCTTGCACCTGGGTCTGGCTGCCCTTCAGCAGGCGGGCAGCCTCTGGCCCCACAACAGT GGGCTGTGCTTCTGCCGCCAAGGTGCAGGCGTCCTCCCCCAG GTCCACATCAGCAGCAGGGGCACCTGGACCCTGAGGGCAGGAACCAGACCTTGGCTCCTC CACCCACCCCCTCGTTCCTGATGGGGCAGGGAAGTCTCGGGAC CCCATGATGGGCGACATGGCGATGGTCACTGTGGGTGCTTTGCTATCAGGTGGGGGGCCT TCCTCTCCACTCTGGGTCCAGTGTGAGTGGCCGCTATGGCTTC CCCTCCACTCCAGGTTCTATCGTGAGTGGGTGGGTGCTGCGTCTGTGGATGTCACGTGAC CTTTCCTCTTTAGCCTATCATTGTAGTTGGGAGTTAGTTAGCC CGTTGAGCGTCATTGAATTTCCAGTGTTGAGCCAGCCCTGCGTGCCCGGGATAAACCCAC CTGGCCGTGGTGTGTGGCCCTGTTTATGCACGTGGGCCCTGAT TCGCTGATGCCTGCCTGAGGGTTTGCGCTTATCGGCGACATCAGCCTGCACTTTTCTTTT CTCGTGATCTCTCTGGTTCTGGCCTCAGGGTGACGTGGGCCTC GTAGGGTCCTGTGGTGGCTCCTCCCCAGACGGTGACATGGAGTGAGCCCATTCTCCCTCC TGGGAGTGGGTCACTCAGGCCACCAGAGCACCACAGGGAAAGC AGCCAGGGAGGACACGGAGGCCCTTGAAGCTCTGGCCTCTTCTGAGGCCTCCAGGACCTG ACAGTGAGTGGGAGCAGCCCTGGCAGAACCCCTCCCCTCCTCT CGGCCGCCCTGACACCTCATCCCCGACACTCAGAGCTCATCCTCCTTCCCAGCTGTTTCC AATTTCAAAGTGAACTCGACCTTGTGGCTCCAGGAGATGCAGC AGGGACAGTGTTAAATCGGCTTTCACCAGCCCACACGGCCAGGCATCCTCCTCGGCCCTC CTGGGCACTGGGTGGACACCACTGGCTGTGGCCTGGCCCTGGC CTTCTCCAGACAGCCCTGTCCACCCCAAAGCCCAGCCACCCTGGGCCTGCAGCAGGCCTG TGGAGTTCTCAGTTGCGTGGGGACCAGAGGGTGCTGGAGAAAC AAACCAGACGCAGCTGAAGGCAGTCAGGGCAGGGCGCAATCAGCGATAAGAGCTGCATAG GGGCCACAGCGTAACCTGAGCTCCAGTCGGTGGAAAGAAAAG CAGAGACGTTGCAGAGGCCAGGTCTGCTCAGGGGAAGACAGTTCTGGGTGTAGAGGACTC ACATCCCAGAGAGGCTGAGGAAGGGTTTACCACCGCAAGCTTT CTCAGGCGGGCTCTTGAGGGGTGGCTGGGGTCTTCCTGGCGACGGGCCTGCGGCACTGGA AGCCCTACTGGAGTTTGGCCTGTCTCCGGCACAGGTTTGGAC GAGCTGTTTTGTGCTGAAAGGTTTTCTCGGGGTCCGTGGTGTCCCCCAAAGGTGCCACCG TGCGGGTCTCCTAGCTCCCTGCCAGCTTCCTGTCCCTGTGCTC ACTGCCCCCACGCCTCCTGCCAAGGCCGAGCCACACACCCGCTCCACCTGCATTTCCTCT ACCGACTCGCCAGCCCAAATGCCGCTCTTCACTCTGGCCTCGC TGAGCGGCTGCCCGAGGAGGAGCTCTAGGCCGACGCCCACCGCAGGCCTTACAGTCTTCT CTGGACGCTCCCTTGCAGATGCACCGTGGCCTGGCGGCGAGCC CCCGGTCACCTTCCTCCGCACGGAAGAGGGGCCGGACGCCACCTTCCCCAGGACCATTCC CCTGATCCAACAGTTGCTAAACGCCACGGAGCTCACGCAGGAC CCGGCCGCCTACTCCCAGCTGGTGGCCGTGCTGGTCTACACCGCCGAGCGGGCCAAGTTC GCCACCGGGGTAGAGCGGCAGGACTGGATGGAGCTGTTCATT ACACCTTTAAGCTGGTGCACAGGGACATCGTGGGGGACCCCGAGACCGCGCTGGCCCTCT GCTAAAGCCCGGGCACCCGCCCAGCCGGGCTGGGCCCTCCCT CCACACTAGCTTCCCAGGGCTGCCCCCGACAGGCTGGCTCTCAGTGGAGGCCAGAGATCT GGAATCGGGGTCAGCGGGGCTACAGTCCTTCCAGGGGCTCTG GGCAGCTCCCAGCCTCTTCCCATGCTGGTGGCCACCGTGTCCCTTGCTGCGGCTGCATCT TCCAGTCTCTCCTCCGTCTTCCTGTGGCCGCTCTCTTTATAA AACCCTGGTCATTGAATTTAAGGCCCACCCCAAGTCCAGAATGACCTCGCAAGACCCTTA ACTCACTCCCGTCTGCAGAGTCCTTCTTTGCTGCATCAGGTC

CCCTCACAGGCTCCAGGGTTTGGGTGTGGAAGTCTTTGGAGGCCCTTACTTAGCGGC CCAGCTGGGCTGCCGTGCGTCTGGGATGGGGCTGAGGGAGGGTGCT GCCCAGGTGCTGGAGGATGTTCCAGCACCAGGTTCCAGCGGAGCCTCGGAAACAGGCCCC AGAGGCTGGTGAGCCTCGCTGGGTGTGGGCACTAATCCCGTGC ATGGTGACTCGTGGGCGCTCACGGCCCACCTGGTGGCAGGTGAAGGCTTCCGGTTGGGCA GCAGATAGTCCTGGGGGAAGCTGGCAGTCCTGGCACCATGAC TATCTGGGCTGGTGTCATGCACAGTAGGGCGAATGGCCACAGCTGCCTGCCAGCAGCCCT GATCCCGGGGTGTCTGCACCCTTCCAGCCCAACCTCTGGGTCT CCAAAAGCACAGTCGGGGGAGCATCCACCAGGCACAACCTCTGCGGTCCTCAGAGGACTG AGCAGAGAATCCCAGGGTCCACAATGTTGGGGAGCGGCAGGG TCACCATCCAAAGGGAGCGGCCCCCACGGCGAGCTGACCCCGACGTTCTGACTGCAGGAG CCCTCATCCAGGCTGGGCTCCTGCCGGGCACGGCTGTGACCAT TTCTCAGGGCCAGGTTCTCGTCCCCACACCCACTGCACAGGGCAGGCCAGGCTGGTCTTC CCACTGTGGGGATGAAGGATCCTCCACAGGAGGAGGAGAGCA AGTCCACAGACATCCCAACAGCCTCAGCCTCCCTGTGCCTGGCCGGCCCCCACAGCTTCC CCGTCTCCTCCAGGCCCCACAGACACTGATGAATGGACAGAG CCCCCAAAACCAGCTGCCCCTTGCATGTCTGTCTCCATATGTTTGGTGACAGCAGTGAAA ATGTTATTAGTTTTGAGGGGGTTTGGGAAGCCCAGCGGTACCT GAGGAGTTTCTGGACATTTAAGCCGGTTCCTAGGTGTGGCCTTAACAGGGAGGCTGCCCT TCCTTTCACTGAATGAGCTGCGTCACTCATAAGCTCACTGAG GAACCCCATCTGCCAGCTCGTGCGTGCTCAGACGGCGTCCATGTCTCAAGCGTTCTGTGA AGGCTGCGGTGCAGCGTGAGGTCACCCTGCTGTGTTCAGAGCT TTGCTCACTGCCTGCGGGGCTGGACCGTTGCACCTCCAGGGCCCCCAGAAACCGAGTTTC GGGTCAGGGTCCTCTGTGTGCATTCCTGGGGGTCCATGTACC GCTGTGACGACGTCCAGGGGTTGGGCTGAGAAGCAGACACCCTTGGGGAAACTGGCTCTG TCCCTCCCCTCCCCCATCCCAGGAGCTGAGGTCTTGGTGAGGC CACAGGGCCAGGTCCACGCAAGGACTGTCCGTGTCCTGTCCTGTGGTCTCTGGCCCCACG TGACACCCACACGTGTGGTAGGCAGCCTGGCCTGGGTTGTGGC TATGGCCAGGCCCCCAAGCTGTCCCCGATGCCCAGGGCTGGTGACCACCCAGGCAGGTGG GGGCCCCACTTGGTAACAGAGTCATAGGGCAGAACCCACCTG GCTGCCACAGAAGGTCTGGCTGCCCCTGTGCCCACTGCTCCCCACCATGGCCAATCAGAA GAGTCAGGGGCTCCTGGTCTTTCCGGGAGGGACGTGGCCCAGC CAGCTCTAGGTGTTCTGAGCAGCTCTGGGACCCAGCGATTGAGGGGTCAGGCTGGGGGTG TCAGAGCCAGGGTCCTCCTTAAGTACCTCCCACACTACACAG CAGTGGCCCTTTTGTGGGCAGCAAATTCTTGAGCCATGAAAGGATGCTTTGGGCCCCTTC CCTCCCAGGAGGGCAGCCTGTGCAGGGATGGTGCTCAGCAGGT GGACAGGGCCTGGGGCCTGTGTCAGGGTCTCAGGCCTGGGAGCACCAGCAGAGGAGATGG CGGCTCCCAGCAGTGCCGCCTGAAAGTGTCTTGGGCTAAGGAC CCACACCCAGGGCTGCCCTGCAGAAACGCCCCCGCAGAGCCCAGTGGTCTGTGAGGTTGC AGGCAGGGTGCGAATGGAAGGGCACAGGTGCGGGGCTGGCACC TGCCCGGTCCTGCCCACCTCCCCTCCGCCCAGCCCGCACCTGCGTCTCCCCACAGAGCTG TCCGTGGCACAGTGCACGCAGCGGCCCGTGGACATCGTCTTCC TGCTGGACGGCTCCGAGCGGCTGGGTGAGCAGAACTTCCACAAGGCCCGGCGCTTCGTGG AGCAGGTGGCGCGGCGGCTGACGCTGGCCCGGAGGGACGACG CCCTCTCAACGCACGCGTGGCGCTGCTGCAGTTTGGTGGCCCCGGCGAGCAGCAGGTGGC CTTCCCGCTGAGCCACAACCTCACGGCCATCCACGAGGCGCT GAGACCACACAATACCTGAACTCCTTCTCGCACGTGGGCGCAGGCGTGGTGCACGCCATC AATGCCATCGTGCGCAGCCCGCGTGGCGGGGCCCGGAGGCAC CAGAGCTGTCCTTCGTGTTCCTCACGGACGGCGTCACGGGCAACGACAGTCTGCACGAGT CGGCGCACTCCATGCGCAAGCAGAACGTGGTACCCACCGTGCT GGCCTTGGGCAGCGACGTGGACATGGACGTGCTCACCACGCTCAGCCTGGGTGACCGCGC CGCCGTGTTCCACGAGAAGGACTATGACAGCCTGGCGCAACCC GGCTTCTTCGACCGCTTCATCCGCTGGATCTGCTAGCGCCGCCGCCCGGGCCCCGCAGTC GAGGGTCGTGAGCCCACCCCGTCCATGGTGCTAAGCGGGCCC GGTCCCACACGGCCAGCACCGCTGCTCACTCGGACGACGCCCTGGGCCTGCACCTCTCCA GCTCCTCCCACGGGGTCCCCGTAGCCCCGGCCCCCGCCCAGCC CCAGGTCTCCCCAGGCCCTCCGCAGGCTGCCCGGCCTCCCTCCCCCTGCAGCCATCCCAA GGCTCCTGACCTACCTGGCCCCTGAGCTCTGGAGCAAGCCCT ACCCAATAAAGGCTTTGAACCCATTGCGTGCCTGCTTGCGAGCTTCTGTGCGCAGGAGAG ACCTCAAAGGTGTCTTGTGGCCAGGAGGGAAACACTGCAGCT TCGCTCGCCCACCAGGGTCAATGGCTCCCCCGGGCCCAGCCCTGACCTCCTAGGACATCA ACTGCAGGTGCTGGCTGACCCCGCCTGTGCAGACCCCACAGCC TTGATCAGCAAACTCTCCCTCCAGCCCCAGCCAGGCCCAAAGTGCTCTAAGAAGTGTCAC CATGGCTGAGGGTCTTCTGTGGGTGGACGCATGATTAACACT GACGGGGAGACAGCAGGTGCTGAGCCTGTTGTGTTCTGTGTGGAGATCTCAGTGAGTTTT TGCTGTTCAGACCCCAGGGTCCTTCAGGCTCAGCTCAGGAGCC CCACAGTGAACCAGAGGCTCCACAGGCAGGTGCTGACCTGACAGGAGTGGGCTTGGTGGC CATCACAGGGCACCACAGACACAGCTTGAACAACTACCAGTAT CGGCCACAGGCCTGGAGGCATCAGCCGGGCCATGCTTCCTCTGGAGGGCTAGAGGAGGAC TAGAGAAGGGCCTGCCCCGGCCTCTCCCCAGCATCCCAGGGTT CCTGATCTCCTGGATAAGGATACAAGTCACCACACTGGACTGGGGCTCAGCCTGCTCTAG AATACCTCACCTAAGTCACAGTGGACCAGGCTCAGCCTGCTCT

AAGGTGAGCT ACCCGAGACACTGGACCAGAGATCAGCCTATCCTGGGATAAGCTCACCCGAGTCACACTG GACCAGGGCTCAGCCTATTCCGGGATGAGCTC ACCCGAGTC

GACACTTCCATGACTGCAGCTGACCAGTCCACCTGCCAGCGGTTGACCACTCCCACT TCGCCAGCGACCGAAGGGGAGGGGAGGGGCCTCACCTGAGGGCAAC AGCAGAACCCACCACCTGGTCTTGCTTTACTCAGACCTGAGGGTGTGAAAGGTGCCCGTG ACCTCCCGCATCAGGGAGCTGGCCGCCACCCTCGACTCCCGG GAGCAGGCGTCCCGCGACCCCCTCATCTACCAGGCCATCTGAGCTGGGCGGCGCCTCACC TCCGCTCCCGGGGGAGCCGGCCTCAGGGTAGGCATGCGCCCT

C21orf5 GGTGGGAGCAGGTCGTGGCCGCCGCCCTCCTGGCAGCTCTGGCTGAGCAGCCGCCGCAGC ATCTGATTCTCCTTCAGGAGGCGCACCTGCTTCTTCAGGTCC

256

6 CGTTCTCGCTCAGGAGCCGGCTCATCAGCTCGCCGCCTTCAGCCATGGCGGGTGCGTCCC TCCTTGTCCCTCACGGCTCCTGCAGCCCCATGGAGGTGGGAGC

CCAGAGCCCGCAGGCACCACAGAAACAGCCCAGGCACGGAGTTCCGTAGCCACCACCGCC TTCCACGCCTTGTGATGTCACTGCCCTAGTGATGAGGTGCCC GCACCCTGCCTGCCCCCGCGATGGCTCATGGCCCCGTTGAGGCAGTGAAGCTGGAGGCCC GTGGCGTGCACAGGCAGCCACTCCCACATTATGACCAGGGCCC GAGAATGCCAAGGACATTAGGCAGCTACGGGATGTAGCGACTGTACTCCAAGAGGGGCGT CCAAGCCACTCCCCATTGA

AGGTGGAGGTTGCAGTGAGCCCTCCTCCCCTCCTCCCCCTTCCCTTCCCACCTCCCA TGCCCCCCTTTCTTCCTCCCACTCCCCTCCCGAGGCCCCGCTTATT

C21orf5

257 CTCCCGGCCTGTGGCGGTTCGTGCACTCGCTGAGCTCAGGTTCTGGTGAAGGTGCCCGGA GCCGGGTCCCGCCTTCGGCCTGAGCTAGAGCCGCGCGGGCGGC 7

CGGCTTCCCCCAAACCCTGTGGGAGGGGCATCCCGAGGAGGCGACCCCAGAGAGTGGGGC GCGGACACCTTCCCTGGGGAGGGCCAG

CCTTCCAGATGTTCCAGAAGGAGAAGGCGGTGCTGGACGAGCTGGGCCGACGCACGG GGACCCGGCTGCAGCCCCTGACCCGGGGCCTCTTCGGAGGGAGCT AGGGCCGCGTTCCTTCTGAAAGCGGGACGCGGGAGGGGTGGAGGCTGCGGGGAGCCGGGG TCGCACACGAATAAATAACGAATGAACGTACGAGGGGAACCTC

C21orf5

258 CTCTTATTTCCTTCACGTTGCATCGGGTATTTTTCGTTATTGTAAATAAAACGGTTCCGA GCCGTGGCATCGAGAGGGCGTCTGGAGTTCAGGGAACGCGTG 7 CCCCCGCCCGGGAGCACCGCGCAGCGCTCGCCTCTCGCCCTTCAAGGGGGTCCCTGCCCG GAGCCTGCGCCCCCGGAGAGGAAGGGGCTCGAGGGGCTTGGGT

GCCGCAGCGCGTCCTTCCGTAGAAAAGGCTTGCGTCAGTATTTCCTGCTTTTACCTCCTG AG

CAGTATTTCCTGCTTTTACCTCCTGAGTATTGGAATATTCGAGTAAACCCTGGAGTT TCAGCGCCAGCGCACGCCTCTTCATCAGGGCAGCGCGTCGCGAGC

C21orf5 CGCTGGTTCCCCGGGGCCTCCCGGCCACGGACACCGCTCTAGCCAGGGCCACGGCGAGGC CGCCGAGCAGCACCTCAGAGACCTGCGTGAGTTCTAAAGCCT

259

7 GGGCTACTACAATTCTGCTCATCTGTTTGTCCTGTGAAATGATTCAGGGACATGAAAATG CCTTCCCACTGACTTGCGTCCTGTCTTAGCCTGGACTTGTCCC

CTTGGGAACACGGGCCAGGCCCCTCTGTTCCTGAAGT

ATGTCTGCAGGGAAGAAGCAGGGGGACCCTGAATAAAGTTTCCGTTTTTCCTATTTG TTAAAGTGATAGAGCATTATAGGACCAGAGAACAGGTGTGTCTGT CACTGTGCAGGTCCCCGGGGCAGGCTCTGAGTCCGTCTGCACACGGTGCGGGTCCCCGGG GCGCGCCCTGAGCCCGTCTGCACACGGTGCGGGTCCCCGGGGC

C21orf5

260 GCGCCCTGAGCCCGTCTGCACACGGTGCGGGTCCCCGGGGCGCGCCCTGAGCCCGTCTGC ACACGGTGCGGGTCCCCGGGGCGCGCCCTGAGCCCGTCTGCAC 8

ACGGTGCGGGTCCCCGGGGCGCGCCCTGAGCCCGTCTGCACACGGTGCGGGTCCCCGGGG CGCGCCCTGAGCCCGTCTGTACACGGTGCGGGTCCCCGGGGC CGCCCTGAGTCTCTACTAAAAATACAAAAATTAGCCAGGCGTGGTGGTTCAAGCCTGTAA TCCCAGCTCCTTGGGAGG

CATACATGGTTATTAGAAAAGGCATCTCATCCAAATGTGGTGGCTCGTGCTTGTAAT CCCAGTGCTTCAGGAGGCCAAGGGAGGAGGATTACTTGAGCCTAA AGTTTGAGACCAGCCTGGGCAACACAACAAGACCTTGCCTCTACAAAAAACTTAAAAACT AGCTGGGTATGATGGTGCACACCTGTAGTCCCAGCTACTTGG AGGCGGAGGCGGGCAGATCGCCTGAGGTCAGGAGTTCGAGACCAGCCTGGCCAACATGAT GAAACCCCGTCTCTACTAAAAATACAAAAATTAGCCGAGTGT GTGGTGCATGCCTGTAATCCCAGCTACTCAGGAGGCTGAGGCAGGAGAATCACTTGAACC CGGGAGGCGGAGGTTGCCATGAGCCGAGATCACGTCACTGCAC

261 P MT2 TCCAGCCTGGGTGACAGAGCACAAAAGACAGGCATGACTTTGTACTTAACTGCTCAGCTT TGTAATCACTGGGGGCCCAGATGCTCACTTGGATTCTAACTTT

GTTGGCATCTGGGCCTAAAAGCCGTGATGCAGGTGAGCAATGATGCAGAGGGCTCTGTGC GCCTGGCGGGCTCTGTTTGCCTGCTGGGCTCTGTGCGCCTGCT GGGCTCTGTGCGCCCGGGAAGGTGCGGCCACCCTCACGCGGAAGGCGGCCAGCGGATCCC GGTGCGCGCAGCTCCCAGCGCTGGGGTTCCAGCGCCCCGCCTC TTCCTATAGCAACCAGCGGGACCTGCCGTCCCCCGGGGCACCCCGAGGGGTCTGCGCCCG CTTCTTTCCGAAACGGGAAGGCGCTGGGGGCTCGGCAGCCAG GGGACGGGTTCAGGGAGCGTCCGGTGAGCCTAAGACGCGCCTTTGCCGGGGTTGCCGGGT GTCTGCCTCTCACTTAGGTATTAGGAACCGTGGCACAAATCT

TAGGTTTTCCTCTGGGGGTGGGCGGAGGCTCCAAACCGGACGGTTTTCTCCTGGAGG ACTGTGTTCAGACAGATACTGGTTTCCTTATCCGCAGGTGTGCGC GCGCTCGCAAGTGGTCAGCATAACGCCGGGCGAATTCGGAAAGCCCGTGCGTCCGTGGAC GACCCACTTGGAAGGAGTTGGGAGAAGTCCTTGTTCCCACGC CGGACGCTTCCCTCCGTGTGTCCTTCGAGCCACAAAAAGCCCAGACCCTAACCCGCTCCT TTCTCCCGCCGCGTCCATGCAGAACTCCGCCGTTCCTGGGAG GGAAGCCCGCGAGGCGTCGGGAGAGGCACGTCCTCCGTGAGCAAAGAGCTCCTCCGAGCG CGCGGCGGGGACGCTGGGCCGACAGGGGACCGCGGGGGCAGG CGGAGAGGACCCGCCCTCGAGTCGGCCCAGCCCTAACACTCAGGACCGCCTCCAGCCGGA GGTCTGCGCCCTTCTGAGGACCCTGCCTGGGGGAGCTTATTGC GGTTCTTTTGCAAATACCCGCTGCGCTTGGACGGAGGAAGCGCCCACGCGTCGACCCCGG AAACGAAGGCCTCCCTGATGGGAACGCATGCGTCCAGGAGCCT TTATTTACTCTTAATTCTGCCCGATGCTTGTACGTGTGTGAAATGCTTCAGATGCTTTTG GGAGCGAGGTGTTACATAAATCATGGAAATGCCTCCTGGTCTC ACCACACCCAGGGTGACAGCTGAGATGCGGCTTCTCCAGGGTGGAGCCTCCTCGTTTTCC AGAGCTGCTTGTTGAAGTCTTCCCAGGGCCCCTGACTTGCACT GGAAACTGCTCACCTTGGCATCGGGATGTGGAGCAAGAAATGCTTTTGTTTTCATTCATC CTAGTGTTCATAAAATGGAAAACAAATAAGGACATACAAAAAC ATTAATAAAATAAATTAATGGAACTAGATTTTTCAGAAAGCACAACAAACACAAAATCCA AGTATTGCCATGTCAGCAACACATTCCTACTTTAAGTTTTAT AAGTTAATTGGAGTAGTGGAGAACAAAAGTGGATGTGGGGCAG

* * *

The entirety of each patent, patent application, publication and document referenced herein hereby is incorporated by reference. Citation of the above patents, patent applications, publications and documents is not an admission that any of the foregoing is pertinent prior art, nor does it constitute any admission as to the contents or date of these publications or documents.

Modifications may be made to the foregoing without departing from the basic aspects of the technology. Although the technology has been described in su bstantial detail with reference to one or more specific embodiments, those of ordinary skill in the art will recognize that changes may be made to the

embodiments specifically disclosed in this application, yet these modifications and improvements are within the scope and spirit of the technology.

The technology illustratively described herein suitably may be practiced in the absence of any element(s) not specifically disclosed herein. Thus, for example, in each instance herein any of the terms "comprising," "consisting essentially of," and "consisting of" may be replaced with either of the other two terms. The terms and expressions which have been employed are used as terms of description and not of limitation, and use of such terms and expressions do not exclude any equivalents of the features shown and described or portions thereof, and various modifications are possible within the scope of the technology claimed. The term "a" or "an" can refer to one of or a plurality of the elements it modifies (e.g., "a reagent" can mean one or more reagents) unless it is contextually clear either one of the elements or more than one of the elements is described. The term "about" as used herein refers to a value within 10% of the underlying parameter (i.e., plus or minus 10%), and use of the term "about" at the beginning of a string of values modifies each of the values (i.e., "about 1, 2 and 3" refers to about 1, about 2 and about 3). For example, a weight of "about 100 grams" can include weights between 90 grams and 110 grams. Further, when a listing of values is described herein (e.g., about 50%, 60%, 70%, 80%, 85% or 86%) the listing includes all intermediate and fractional values thereof (e.g., 54%, 85.4%). Thus, it should be understood that although the present technology has been specifically disclosed by representative embodiments and optional features, modification and variation of the concepts herein disclosed may be resorted to by those skilled in the art, and such modifications and variations are considered within the scope of this technology.

Certain embodiments of the technology are set forth in the claims that follow.