Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
PROTECTED POWER AND DATA BUS CONNECTION OF PERIPHERAL DEVICE AND HOST DEVICE
Document Type and Number:
WIPO Patent Application WO/2021/191238
Kind Code:
A1
Abstract:
An apparatus includes a connector port configured to be selectably connected with and disconnected from a peripheral device. A detector is configured to provide an output indicating the connection of the peripheral device with the connector port with a time delay between connection of the peripheral device with the connector port and outputting the signal. A data switch is operatively coupled with the detector and a communication pin of the connector port and to selectably enable and disable data communication between the communication pin and a computer board in response to the output of the detector. A power switch is operatively coupled with the detector, the power supply pin, and a DC power supply and is configured to selectably connect and disconnect the power supply and the power supply pin in response to the output of the detector.

Inventors:
TRAINOR JOHN J (US)
TAYLOR RUSSELL JOHN (US)
Application Number:
PCT/EP2021/057492
Publication Date:
September 30, 2021
Filing Date:
March 23, 2021
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
ABB POWER GRIDS SWITZERLAND AG (CH)
International Classes:
G06F13/38
Foreign References:
US20170372787A12017-12-28
Other References:
DUNSTAN BOB ET AL: "USB Power Delivery Specification Revision 2 , Version 1.3", 12 January 2017 (2017-01-12), XP055457270, Retrieved from the Internet [retrieved on 20180307]
Attorney, Agent or Firm:
VOSSIUS & PARTNER (No 31) (DE)
Download PDF:
Claims:
CLAIMS

1. An apparatus comprising: a connector port configured to selectably connect with and disconnect from a peripheral device, the connector port including a power supply pin and a communication pin; a detector including an input pin operatively coupled with the connector port and an output pin, the detector configured to provide an output at the output pin in response to connection of the peripheral device with the connector port with a time delay between connection of the peripheral device with the connector port and providing the output; a data switch operatively coupled with the detector output pin and the communication pin and configured to selectably enable and disable data communication between the communication pin and a computer board in response to the output at the output pin; and a power switch operatively coupled with the detector, the power supply pin, and a DC power supply and configured to selectably connect and disconnect the power supply and the power supply pin in response to the output at the output pin.

2. The apparatus of claim 1 wherein a circuit node coupled with an input pin of the detector transitions from a first voltage to a second voltage in response to connection of the peripheral device with the connector port.

3. The apparatus of claim 2 wherein the first voltage is a higher voltage and the second voltage is a lower grounded voltage.

4. The apparatus of claim 2 or 3 wherein the circuit node is coupled with a capacitor configured to discharge in response to connection of the peripheral device with the connector port effective to transition the circuit node from the first voltage to the second voltage.

5. The apparatus of any one of claims 2 to 4 wherein the time delay is proportional to a time constant of the capacitor and an associated resistor.

6 The apparatus of any one of claims 2 to 5 wherein the circuit node is coupled with a detection pin of the connector port.

7. The apparatus of claim 6 further comprising the peripheral device.

8. The apparatus of claim 7 wherein connection of the peripheral device and the connector port initiates a change from the first voltage to the second voltage.

9. The apparatus of any one of claims 1 to 8 wherein the detector is configured as a discrete device.

10. The apparatus of any one of claims 1 to 9 further comprising the computer board.

11. A system comprising: a host computer device including a connector port including a power supply pin, a communication pin, and a detection pin, a detector including an input operatively coupled with the detection pin, a data switch operatively coupled with an output of the detector and operatively coupled with the communication pin, and a power switch operatively coupled with the output of the detector, the power supply pin, and a DC power supply; and a peripheral device configured to selectably connect with the connector port; wherein connection of the peripheral device and the connector port connects the detection pin with ground, a voltage input to the detector transitions over a transition time from a first voltage to a second voltage in response to connection of the detection pin with ground, an output of the detector changes in response to the transition to the second voltage changes, the data switch turns on communication with the peripheral device in response to the change in the output of the detector, and the power switch turns on power supply to the peripheral device in response to the change in the output of the detector.

12. The system of claim 11 wherein the transition time is established at least in part by a time constant of a capacitor and an associated resistor.

13. The system of claim 11 or 12 wherein the detector is implemented as a discrete integrated circuit chip.

14. The system of any one of claims 11 to 13 wherein the host computer device is configured to control and monitor a power grid infrastructure device.

15. The system of any one of claims 11 to 14 wherein the power grid infrastructure device comprises a transformer.

16. A method comprising: connecting a peripheral device with a connector port of a host device including connecting respective power supply pins, communication pins, and detection pins of the peripheral device and the host device; changing over a transition time an input to a detector of the host device from a first level to a second level in response to the act of connecting; changing an output of the detector in response to the changing of the input, enabling communication between a data switch of the host device and the peripheral device in response to the changing the output; and enabling a power supply from the host device to the peripheral device in response to the changing the output.

17. The method of claim 16 wherein the transition time is established at least in part by a resistive- capacitive time constant.

18. The method of claim 17 wherein the changing of the input to the detector includes discharging a capacitor.

19. The method of any one of claims 16 to 18 wherein the enabling communication comprises turning on the data switch.

20. The method of any one of claims 16 to 19 wherein the enabling the power supply comprises turning on the power supply.

Description:
PROTECTED POWER AND DATA BUS CONNECTION OF PERIPHERAL DEVICE

AND HOST DEVICE BACKGROUND

[0001] The present disclosure relates to apparatuses, systems, and methods of protected power and data bus connection of a peripheral device and a host device. A growing number of applications call for the provision of power and data bus connections of a peripheral device and a host device. The Universal Serial Bus (USB) set of industry standards establishes specifications for cables and connectors and protocols for connection, communication and power supply between computers and peripheral devices or other computers. USB-type connections typically provide a 5VDC power supply pin, a ground pin, and a plurality of data pins. USB Power Delivery (USB PD) connections may provide power supply pins at higher voltages up to 20VDC. Such connections generally require more complex and costly circuitry to accommodate higher voltages. Even with such accommodations, there remains a significant risk of damage to host devices as well as peripheral devices during connection or disconnection of peripheral and host devices. There remains an unmet need for the unique apparatuses, systems, and methods disclosed herein.

DISCLOSURE OF EXAMPLE EMBODIMENTS [0002] For the purposes of clearly, concisely and exactly describing example embodiments of the present disclosure, the manner and process of making and using the same, and to enable the practice, making and use of the same, reference will now be made to certain example embodiments, including those illustrated in the figures, and specific language will be used to describe the same. It shall nevertheless be understood that no limitation of the scope of the invention is thereby created and that the invention includes and protects such alterations, modifications, and further applications of the example embodiments as would occur to one skilled in the art. SUMMARY OF THE DISCFOSURE

[0003] One example embodiment is a unique apparatus including a protected power and data bus connection of a peripheral device and a host device. Another example embodiment is a unique system including a protected power and data bus connection of a peripheral device and a host device. A further example embodiment is a unique method including establishing a protected power and data bus connection of a peripheral device and a host device. Further embodiments, forms, objects, features, advantages, aspects, and benefits shall become apparent from the following description and drawings. BRIEF DESCRIPTION OF THE DRAWINGS

[0004] Fig. 1 is a block diagram illustrating certain aspects of an example system according to the present disclosure.

[0005] Figs. 2A, 2B, and 2C are a circuit diagram illustrating certain aspects of an example implementation of certain elements of the system of Fig. 1.

DETAIFED DESCRIPTION OF EXAMPFE EMBODIMENTS

[0006] With reference to Fig. 1, there is illustrated a functional block diagram of an example system 100 including a host device 200 operatively coupled with a peripheral device 300 via a cable 310 which is plugged into a connector port 209 of the host device 200. The connector port 209 is configured to be selectably coupled to and decoupled from peripheral device 300 and to provide data communication with and power supply to the peripheral device 300. In the illustrated embodiment, peripheral device 300 is configured as a peripheral wireless communication module configured for wireless communication with one or more remote devices or networks, wired communication with host device 200 via cable 310, and to receive DC power from the host device 200 via cable 310. In other embodiments, peripheral device 300 may be another type of peripheral device configured for wired communication with host device 200 via cable 310, and to receive DC power from the host device 200 via cable 310. It shall be appreciated that the power connection from a host device according to the present disclosure, such as host device 200, may deliver higher voltages and power than a typical USB communication interface and can be utilized to provide alternative supply voltages to a peripheral device greater than those of a typical USB communication interface. In one example application, a +24VDC power supply is provided from a host device to a peripheral device via cabling of such a length that lower voltages such as those of a typical USB communication interface are unsuitable due to voltage drop along the length of the cabling.

[0007] Host device 200 includes a connector port 209, a data signal switch 230, a peripheral device presence detector 250 (hereinafter detector 250), a DC power switch 270 (hereinafter power switch 270), and a microcontroller or computer board 290 (hereinafter board 290). In the illustrated embodiment, host device 200 is configured as an equipment control and monitoring device configured to be operatively coupled with a power grid infrastructure device such as a transformer. In other embodiments, host device 200 may be another type of computing device or single-board computer.

[0008] Power switch to 270 is operatively coupled with connector port 209 by power line

271. The power switch 270 is also coupled with power supply 280 and detector 250. In the illustrated embodiment, power supply 280 is configured as a +24VDC power supply. In other embodiments, power supply 280 may be configured to provide other voltages such as those disclosed herein. Power switch 270 is operable to selectively switch the supply of DC power to connector port 209 on and off in response to one or more inputs received from detector 250 via line 255.

[0009] Data signal switch 230 is operatively coupled with connector port 209 via data signal lines 229 and is operatively coupled with data port 292 of board 290 via data signal and power lines 239. Data signal switch 230 is operable to selectively enable and disable data communication between connector port 209 and board 290 in response to one or more inputs received from detector 250 via line 253. The detector 250 is operatively coupled with the connector port 209 via line 251 and is optionally operatively connected with the digital input 249 of board 290 via line 259 and is operable to detect the presence or absence of a peripheral device connected to connector port 209.

[0010] With reference to Figs. 2A, 2B, and 2C, there is illustrated a schematic diagram of example circuitry 201 illustrating certain aspects of an example implementation of system 100. Circuitry 201 includes connector port 209 which is configured to be selectably coupled to and decoupled from a peripheral device, such as peripheral device 300 or another peripheral device, and to provide data communication with and power supply to the peripheral device. In the illustrated embodiment, connector port 209 is configured as a six-pin USB-type connector port including a peripheral detection pin 209.1, data pins 209.2 and 209.3, a power supply pin 209.5, and ground pins 209.2 and 209.6. It shall be appreciated that connector port 209 may be provided in a variety of other forms including forms with a different number of peripheral detection pins, data pins, power supply pins, and ground pins. In the illustrated embodiment, power supply pin 209.5 is selectably operably coupled with a +24VDC power supply as further described herein. It shall be appreciated that power supply pin 209.5 may be provided in a variety of other forms selectably operably coupled with a power supply at a lesser voltage ( e.g ., 12VDC) or a greater voltage (e.g., 48VDC).

[0011] Peripheral detection pin 209.1 is connected to the negative input pin of comparator 251 via positive temperature coefficient (PTC) device PTC1 which provides overcurrent protection and a resistor R14. Capacitor Cl 5 and resistor R12 are connected to the power supply 280 and to the negative input pin of comparator 251. Resistor R11 is connected to the power supply 280 and via resistor R17 to the gate of power MOSFET Ql. It shall be appreciated that power MOSFET Ql is one non-limiting example of a DC power switch component and that a variety of other switching devices may be utilized in other embodiments, for example, other types of solid-state switching devices or other types of switches or switching devices. Furthermore, it shall be appreciated that comparator 251 is one non-limiting example of a detector component and that a variety of other detector components or combinations of detector components may be utilized in other embodiments, for example, other types of logic, switching, signal processing devices, or other solid-state devices. In some forms, comparator 251 implemented as a discrete integrated circuit chip. In other forms, comparator 251 may be implemented using a plurality of components or a subset of a more signal processing circuitry.

[0012] Data pin 209.2 is coupled with input/output pins EOl and 1/04 of small outline transistor transient voltage suppressor (TVS) U2 and to common mode choke L4. Data pin 209.3 is coupled input/output pins 1/02 and 1/03 of TVS U2 and to common mode choke L4. Capacitor C36 is coupled across data pin 209.2 and data pin 209.3. Power supply pin 209.5 is coupled to the drain pin of power MOSFET Ql via PTC device PTC6 and ferrite bead FB6. Ground pins 209.4 and 209.6 are coupled to ground and to the ground pin of TVS U2 via PTC device PTC2. Data pin 209.2 and data pin 209.3 are configured to receive and transmit negative USB data signal USBDN and positive USB data signal USBDP, respectively.

[0013] Common mode choke L4 is coupled with pins D+ and D- of USB signal switch

231. It shall be appreciated that USB signal switch 231 is one example implementation of a data signal switch such as data signal switch 230. In other embodiments, various other types of data signal switching devices or combinations of devices may be utilized as would occur to one of skill in the art with the benefit of the present disclosure. Ground pins GND of USB signal switch 231 are coupled to ground. USB signal switch 231 further includes pin D1+ which is coupled with ground via resistor R9, and pin Dl- which is coupled with ground via resistor R10. Additionally, capacitor C2 is coupled between pin D+ and ground, and capacitor Cl 1 is coupled between pin D- and ground.

[0014] The VCC pins of USB signal switch 231 are coupled with pin 229.1 of connector port 229. Pins SI and S2 of USB signal switch 231 are coupled with pin 229.1 of connector port 229 via resistor R8. Pin D2+ of USB signal switch 231 is coupled with pin 229.3 of connector port 229. Pin D2- of USB signal switch 231 is coupled with pin 229.2 of connector port 229.

Pin 229.4 of connector port 229 is coupled with ground. Capacitor Cl 3 is coupled to ground at one pole and to pin 229.2 and pin D2- at the other pole. Capacitor Cl 2 is coupled to ground at one pole and to pin 229.3 and pin D2+ at the other pole. Connector port 229 is also operatively coupled with a microcontroller or computer board such as board 290.

[0015] When the negative input of the comparator 251 is at a greater voltage than the positive input of the comparator 251, the output of comparator 251 output is driven to a low state ( e.g ., 0.0 to +0.4VDC). When the positive input of comparator 251 is greater than its negative input, the output of comparator 251 is high-impedance and does not control the output level of the comparator 251. Instead, resistor R13 pulls the signal at the output of the comparator up to the +24VDC level of power supply 280.

[0016] Connecting a compatible peripheral device to connector port 209 establishes a connection between pin 209.1 and ground. This connection may be provided, for example, via an internal resistance in a connecting cable or the peripheral device connected to pin 209.1 and pin 209.6 of connector port 209 of sufficiently low impedance (e.g., IKohm). In response to the connection of a compatible peripheral device, capacitor Cl 5 discharges through resistor R14 and PTC device PTC1 causing the voltage at the negative pin of comparator 251 to decay from 24VDC to around 12VDC at a rate corresponding to the resistive- capacitive (RC) time constant established by resistor R14 and capacitor C15. The positive pin of comparator 251 is nominally at or about around 18VDC due to its connection to voltage supply 280 via resistor R15 and to ground via resistor R16. The comparator 251 is optionally and preferably provided with a hysteresis to provide stability. Thus, as the voltage at the negative input to comparator 251 decreases to a sufficiently low level to overcome the hysteresis ( e.g ., at or about 16VDC), the open-drain output of the comparator 251 changes from an actively driven low voltage output (established by the voltage drop from power supply 280 across resistor R13) to a higher voltage output (established by the open-drain output of comparator 251 being pulled to a higher voltage via resistor R13 in response to the voltage change at its negative input).

[0017] Reversed-biased dual common cathode Schottky diode D1 is coupled on its cathode side with the open-drain output of the comparator 251 and on its anode side with pins SI and S2 of the USB signal switch 231 and with the gate of transistor Q2. If the cathode of diode D1 is at a lower voltage than its anode, then current will flow through diode D1 from the anode to the cathode. Thus, when the comparator is at its low state, current will flow through the diode D1 as its anode side will be at -0.35VDC above its cathode side. Since the cathode is at the same voltage as the comparator output (0.0 to 0.4VDC), the anode will be in the range of 0.35 to 0.75V. For the input to the USB switch, this voltage is a “low” signal. On the other hand, when the output of the comparator 251 is high impedance, the output is pulled up to nominal +24VDC through resistor R13. The diode D1 is then reverse biased since its cathode is at a higher voltage than its anode, and no current flows through the diode D1. In this state, the anode side of the diode D1 gets pulled up through resistor R8 and inputs SI and S2 of the USB signal switch 231 are consequently at a high state (nominal 5VDC.)

[0018] If VUSB is on, after the open-drain output of the comparator 251 is pulled up via resistor R13 to a high voltage (e.g., +24VDC), the voltage at the node connecting the output of diode D1 and pins SI and S2 are pulled to a high voltage (e.g., +5VDC) via resistor R8. The output of comparator 251 is either low (0.0 to 0.4V) or high impedance, which is effectively an open-circuit. When in a high impedance state, the output is pulled up to nominal 24VDC via resistor R13. When the cathode side of diode D1 is pulled low, it will conduct current, pulling down the anode side of diode Dl. When the cathode side of diode D1 is pulled high, it will be reverse biased with respect to its anode side and will effectively be an open-circuit. This allows resistor R8 to pull up the signals connecting to pins SI and S2 of the USB switch 231. In response, the USB signal switch 231 is turned on and USB data communication between the peripheral device and the microcontroller or computer board is enabled. Additionally, the anode of diode D1.1 is applied to the gate of transistor Q2 which is thereby turned on. In response, the drain of Q2 goes to a low voltage, forcing a nominal 12VDC at the gate of transistor Q1 and turning it on. With transistor Q1 turned on, the switched 24VDC supply is enabled and connected to the peripheral device, and nominal 24VDC is supplied to pin 209.5. If VUSB is off, the open-drain output of the comparator 251 changing to a higher voltage does not turn on the USB signal switch 231 or transistor Q1 leaving the power supply pin 209.5 effectively turned off. Reversed-biased diode D1.2 is optionally provided and is coupled on one side with the open-drain output of the comparator 251 and on the other side with the digital input 294 of board 290 or another board via line 259 effective to communicate the connection status to the board. This signal provided to digital input 259 is normally pulled high and is pulled low when the comparator 251 is turned on.

[0019] When no compatible peripheral device ( e.g ., no peripheral device or an incompatible peripheral device) is coupled with connector port 209, an open circuit is present at detection pin 209.1 and the negative input pin of the comparator 251 is pulled up via resistor R12 to a nominal 24VDC. The positive pin of comparator 251 is nominally at 2/3 of 24VDC, or around 18VDC. With the negative pin at around 24VDC, the open-drain output of the comparator 251 goes to (or remains at) a low voltage (e.g., 0.0 to 0.4VDC (Vsat of output transistor)). This pulls the voltage at the node connecting diode D1 and pins SI and S2 of the USB signal switch 231 to a low voltage (e.g., 0.35 + Vsat = 0.35 to 0.75 VDC) which turns off (or keeps turned off) the USO signal switch 231. When the cathode is at a high (nominal 24VDC), diode D1 is reverse-biased and the anode of diode D1 gets pulled up to (nominal) 5VDC. The low voltage is also provided to the gate of transistor Q2 which is turned off (or is kept off) which, in turn, turns off (or keeps turned off) transistor Q1 and disables (or keeps disabled) the switched 24VDC to the peripheral device.

[0020] A number of example embodiments shall now be further described. A first example embodiment is an apparatus comprising a connector port configured to selectably connect with and disconnect from a peripheral device, the connector port including a power supply pin and a communication pin; a detector including an input pin operatively coupled with the connector port and an output pin, the detector configured to provide an output at the output pin in response to connection of the peripheral device with the connector port with a time delay between connection of the peripheral device with the connector port and providing the output; a data switch operatively coupled with the detector output pin and the communication pin and configured to selectably enable and disable data communication between the communication pin and a computer board in response to the output at the output pin; and a power switch operatively coupled with the detector, the power supply pin, and a DC power supply and configured to selectably connect and disconnect the power supply and the power supply pin in response to the output at the output pin.

[0021] In certain forms, of the first example embodiment a circuit node coupled with an input pin of the detector transitions from a first voltage to a second voltage in response to connection of the peripheral device with the connector port. In certain forms, the first voltage is a higher voltage ( e.g . DC supply voltage) and the second voltage is a lower grounded voltage. In certain forms, the circuit node is coupled with a capacitor configured to discharge in response to connection of the peripheral device with the connector port effective to transition the circuit node from the first voltage to the second voltage. In certain forms, the time delay is proportional to a time constant of the capacitor and an associated resistor. In certain forms, the circuit node is coupled with a detection pin of the connector port. Certain forms, further comprise the peripheral device. In certain forms, connection of the peripheral device and the connector port initiates a change from the first voltage to the second voltage. In certain forms, the detector is configured as a discrete device. Certain forms, further comprise the computer board.

[0022] A second example embodiment is a system comprising: a host computer device including a connector port including a power supply pin, a communication pin, and a detection pin, a detector including an input operatively coupled with the detection pin, a data switch operatively coupled with an output of the detector and operatively coupled with the communication pin, and a power switch operatively coupled with the output of the detector, the power supply pin, and a DC power supply; and a peripheral device configured to selectably connect with the connector port; wherein connection of the peripheral device and the connector port connects the detection pin with ground, a voltage input to the detector transitions over a transition time from a first voltage to a second voltage in response to connection of the detection pin with ground, an output of the detector changes in response to transition to the second voltage changes, the data switch turns on communication with the peripheral device in response to the change in the output of the detector, and the power switch turns on power supply to the peripheral device in response to the change in the output of the detector.

[0023] In certain forms, of the second example embodiment, the transition time is established at least in part by a time constant of a capacitor and an associated resistor. In certain forms, the detector is implemented as a discrete integrated circuit chip. In certain forms, the host computer device is configured to control and monitor a power grid infrastructure device. In certain forms, the power grid infrastructure device comprises a transformer.

[0024] A third example embodiment is a method comprising: connecting a peripheral device with a connector port of a host device including connecting respective power supply pins, communication pins, and detection pins of the peripheral device and the host device; changing over a transition time an input to a detector of the host device from a first level to a second level in response to the act of connecting; changing an output of the detector in response to the changing of the input, enabling communication between a data switch of the host device and the peripheral device in response to the changing the output; and enabling a power supply from the host device to the peripheral device in response to the changing the output.

[0025] In certain forms, of the third example embodiment the transition time is established at least in part by a resistive-capacitive time constant. In certain forms, the changing of the input to the detector includes discharging a capacitor. In certain forms, the enabling communication comprises turning on the data switch. In certain forms, the enabling the power supply comprises turning on the power supply.

[0026] While example embodiments of the disclosure have been illustrated and described in detail in the drawings and foregoing description, the same is to be considered as illustrative and not restrictive in character, it being understood that only certain example embodiments have been shown and described and that all changes and modifications that come within the spirit of the claimed inventions are desired to be protected. It should be understood that while the use of words such as preferable, preferably, preferred or more preferred utilized in the description above indicates that the feature so described may be more desirable, it nonetheless may not be necessary and embodiments lacking the same may be contemplated as within the scope of the invention, the scope being defined by the claims that follow. In reading the claims, it is intended that when words such as “a,” “an,” “at least one,” or “at least one portion” are used there is no intention to limit the claim to only one item unless specifically stated to the contrary in the claim. When the language “at least a portion” and/or “a portion” is used the item can include a portion and/or the entire item unless specifically stated to the contrary.