Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
PYROLYSIS DEVICE
Document Type and Number:
WIPO Patent Application WO/2019/166980
Kind Code:
A1
Abstract:
A pyrolysis device (1; 200) comprising an elongated tubular structure (2; 201 ) which extends along a longitudinal axis (X) and includes a first tubular body (3; 202) which defines an initial washing or drainage chamber, in which a shaped carriage (5; 204) containing a polymeric material to be subjected to pyrolysis thermal treatment is received, and provided with a movable front shutter (8; 207), arranged at an axial inlet mouth (9) through which the shaped carriage (5; 204) is introduced into the initial chamber (4; 203), and cooperating with first actuating means (1 0; 209) which alternately move them at least between a first position, in which the front shutter (8; 207) closes the initial chamber (4; 203) from the outer side (4a), and a second position, in which the front shutter (8; 207) opens the initial chamber (4; 203) from such an outer side (4a) putting it into communication with the external environment. The pyrolysis device (1; 200) further comprises a second tubular body (11; 210), located downstream of the first tubular body (3; 202) and provided at a first end (11 a) with closing means (12; 211 ), defining a pyrolysis chamber (13; 212) which receives the shaped carriage (5; 204) to be subjected to the pyrolysis treatment, interface chimneys (6, 7; 225) for replacing the air present in the initial chamber (4; 203) and/or in the pyrolysis chamber (13; 212) with an inert gas, one or more microwave heating sources (14; 213) coupled to the second tubular body (11; 210) and facing the pyrolysis chamber (13; 212) in which they activate the pyrolysis treatment on the polymeric material present in the shaped carriage (5; 204), and a movable center shutter (15; 214) interposed between the first tubular body (3; 203) and the second tubular body (11; 210) and cooperating with second actuating means (1 6) which alternately move it between a closing position, in which the center shutter (15; 214) keeps the initial chamber (4; 203) and the pyrolysis chamber (13; 212) mutually isolated, and an opening position in which the center shutter (15; 214) puts the initial chamber (4) into communication with the pyrolysis chamber (13), thus allowing the passage of the shaped carriage (5; 204).

Inventors:
INNOCENTI GIANNI (IT)
SIMONI ROBERTO (IT)
D'ALESSANDRO GIUSEPPE (IT)
ANDREINI VANNI (IT)
FREDIANI PIERO (IT)
SONEGO ALESSANDRO (IT)
OCCHIALINI SILVIO (IT)
Application Number:
PCT/IB2019/051611
Publication Date:
September 06, 2019
Filing Date:
February 28, 2019
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
TYREBIRTH S R L (IT)
International Classes:
C10B19/00; C10B25/24; C10B47/36; C10B47/46; C10B53/07; F16K1/00
Domestic Patent References:
WO2014110640A12014-07-24
Foreign References:
US20080141589A12008-06-19
US6244198B12001-06-12
DE102016111169A12017-12-21
US5802993A1998-09-08
US5678496A1997-10-21
US20140161680A12014-06-12
Attorney, Agent or Firm:
CONTADIN, Giorgio et al. (IT)
Download PDF:
Claims:
CLAIMS

1. Pyrolysis device (1 ; 200) for the disposal of polymeric materials characterized in that it comprises an elongated tubular structure (2; 201 ) which extends along a longitudinal axis (X) and includes at least:

- a first tubular body (3; 202) defining an initial washing or drainage chamber (4;

203), in which a shaped carriage (5) containing a polymeric material to be subjected to pyrolysis treatment is received, and provided with a movable front shutter (8), arranged at an axial inlet mouth (9) through which said shaped carriage (5; 204) is introduced into said initial chamber (4) and cooperating with first actuating means (10; 209) which alternately move it at least between a first position, in which said front shutter (8; 207) closes said initial chamber (4) from an outer side (4a), and a second position, in which said front shutter (8) opens said initial chamber (4) from said outer side (4a) thus putting it into communication with the external environment;

- a second tubular body (1 1 ), located downstream of said first tubular body (3;

202) and provided at a first end (1 1 a) with closing means (12; 21 1 ), defining a pyrolysis chamber (13) which receives said shaped carriage (5) containing polymeric material to be subjected to the pyrolysis treatment;

- one or more interface chimneys (6, 7; 225) for the replacement the air present in said initial chamber (4; 203) and/or in said pyrolysis chamber (13; 212) with an inert gas;

- one or more microwave heating sources (14; 213) coupled to said second tubular body (1 1 ; 210) and facing said pyrolysis chamber (13; 212) in which they activate said pyrolysis treatment on said polymeric material present in said shaped carriage (5; 204);

- a movable center shutter (15; 214), interposed between said first tubular body (3; 202) and said second tubular body (1 1 ; 210) and cooperating with second actuating means (16), which alternately move it at least between a closing position, in which said center shutter (15; 214) keeps said initial chamber (4;

203) and said pyrolysis chamber (13; 212) mutually isolated, and an opening position, in which said center shutter (15) puts said initial chamber (4; 203) into communication with said pyrolysis chamber (13; 212).

2. Device (1 ; 200) according to claim 1 ), characterized in that it comprises at least a third tubular body (216, 217), normally closed at a first head (216a, 217a) and functionally arranged downstream of said second body tubular (1 1 ; 210) from which it is physically separated and with which it temporarily communicates, having a final cooling chamber (218, 219) which receives said shaped carriage (5; 204) coming from said pyrolysis chamber (13; 212) and containing the residues of said polymeric material just subjected to said pyrolysis treatment.

3. Device (1 ; 200) according to claim 2), characterized in that said third tubular body (216, 217) is coaxial and aligned with said first tubular body (3; 202) and with said second tubular body (1 1 ; 210).

4. Device (1 ) according to claim 2), characterized in that said third tubular body coincides with said first tubular body (3) and is closed, at a first head (3a), by said movable center shutter (15) when the latter takes said closing position and, at a second head (3b) opposed to said first head (3a), by said movable front shutter (8) when the latter takes said first position, so that when said front shutter (8) takes said second position, said third tubular body is open and puts said final cooling chamber, coinciding with said initial washing or drainage chamber (4), into communication with the external environment for releasing said shaped carriage (5), at the end of the pyrolysis process, according to an exit direction (F) opposite to the entry direction (G) of said shaped carriage (5) into said initial chamber (4) and into said pyrolysis chamber (13).

5. Device (1 ) according to claim 2), 3) or 4), characterized in that said closing means (12) comprise a fixed laminar plate (17) provided with an annular flange (18) fixed to the outer annular edge of said second tubular body (1 1 ) at said first end (1 1 a).

6. Device (200) according to claim 2) or 3), characterized in that said third tubular body (216, 217) is a distinct mechanical piece separated from said first tubular body (202) and said second tubular body (210), with respect to which it is:

• arranged downstream, resulting axially opposite to said first tubular body (202) arranged functionally upstream of said second tubular body (210);

• physically separated by means of said closing means (21 1 ) interposed between an outlet mouth (220) of said second tubular body (210) and an inlet mouth of said third tubular body (216).

7. Device (200) according to claim 6), characterized in that said closing means (21 1 ) comprise an auxiliary movable center shutter (221 ) interposed between said second tubular body (210) and said third tubular body (216), opposed and facing said movable center shutter (214) and cooperating with third actuating means which alternately move it between a closing position, in which said auxiliary movable shutter (221 ) keeps said pyrolysis chamber (212) and said final chamber (218) isolated from each other, and an opening position, in which said auxiliary movable shutter (221 ) puts said pyrolysis chamber (212) into communication with said final chamber (218).

8. Device (200) according to claim 7), characterized in that said auxiliary movable center shutter (221 ) is arranged at the inlet mouth of said third tubular body and at the outlet mouth (220) of said second body tubular (210) from which said shaped carriage (204) exits at the end of said pyrolysis treatment in said pyrolysis chamber (212).

9. Device (200) according to any of the claims 6) to 8), characterized in that said third tubular body (217) is provided with at a first head (217a) of a movable rear shutter (223) operatively connected to third actuating means which alternately move it between a first position, in which said rear shutter (223) closes said final cooling chamber (219) from an outer side (219a), and a second position, in which said rear shutter (223) opens from said outer side (219a) said final cooling chamber (223) putting it in communication with the external environment.

10. Device (200) according to any of the claims 6) to 9), characterized in that it comprises a plurality of tubular extension bodies (216, 217) arranged mutually axially and consecutively downstream of said second tubular body (202), each of which is physically separated and made independent from the immediately adjacent one, with which it temporarily communicates, by means of said closing means (21 1 ).

1 1 . Device (1 ; 200) according to any of the preceding claims, characterized in that said interface chimneys (6, 7; 225) communicate with said initial chamber (4; 203) of said first tubular body (3; 202) and/or with said pyrolysis chamber (13; 212) of said second tubular body (1 1 ; 210) on both of which they are arranged laterally with respect to said longitudinal axis (X).

12. Device (1 ; 200) according to any of the preceding claims, characterized in that said first tubular body (3; 202) comprises on the upper part of the side surface (3c) one or more safety chimneys (19) communicating with said initial chamber (4; 203), at least one of which comprising at least one burst disc adapted to be activated to prevent damage to said first tubular body (3; 202) due to an abrupt and sudden increase in pressure difference between said initial chamber (4; 203) of said first tubular body (3; 202) and the external environment of said first tubular body (3; 202).

13. Device (1 ; 200) according to any of the preceding claims, characterized in that it comprises first moving means (23; 226) installed in said initial washing or drainage chamber (4; 203) and at a bottom (3d) of said first tubular body (3; 203) and operatively connected to first driving means (24; 227) to determine the advancement of said shaped carriage (5; 204) along said longitudinal axis (X) from said initial chamber (4; 203) to said pyrolysis chamber (13; 212) during the pyrolysis process.

14. Device (1 ; 200) according to claim 13), characterized in that said first moving means (23; 226) comprise at least one transmission assembly (25, 26), which substantially extends over the entire length of said first tubular body (3; 203) along said longitudinal axis (X) and is rotated by a transverse shaft (27) integral with said transmission assembly (25, 26) and keyed onto said first driving means (24; 227) adapted to rotate said transverse shaft (27) about a linear axis (Y) orthogonal to said longitudinal axis (X).

15. Device (1 ; 200) according to any of the preceding claims, characterized in that said first actuating means (10) comprise a linear actuating member (28) selected from the group consisting of pneumatic actuators, hydraulic actuators and the like, constrained at a first end (29a) of an articulation lever (29) provided with a second end (29b) connected to the side edge (8a) of said movable front shutter (8), so that:

• when said linear actuating member (28) takes a first operating condition, said articulation lever (29) is arranged in a main direction (W) which defines an acute inner angle (r) with a linear action direction (K) of said linear actuating member (28) and said movable front shutter (8) takes said first position in which it fully closes said outer side (4a) of said initial chamber (4);

• when said linear actuating member (28) takes a second operating condition, said articulation lever (29) is arranged in a main direction (W’) which defines an obtuse inner angle (cp) with said linear action direction (K) of said linear actuating member (28) and said movable front shutter (8), following a rotation of said articulation lever (29) about a fulcrum (30) defined at said first end (29a) of said articulation lever (29), takes said second position in which it fully opens said outer side (4a) of said initial chamber (4).

16. Device (1 ; 200) according to claim 13) or 14), characterized in that it comprises second moving means (31 ) which:

• are installed in said pyrolysis chamber (13; 212) and at a bottom of said second tubular body (1 1 ; 21 1 );

• are operatively connected to second driving means (32) and cooperate with said first moving means (23; 226) to determine the advancement of said shaped carriage (5; 204) along said longitudinal axis (X) from said initial chamber (4; 203) to said pyrolysis chamber (13; 212) when said center shutter (15; 214) takes said opening position.

17. Device (200) according to claim 16) when claim 13) or 14) depends on claim 2), characterized in that said second moving means cooperate with third moving means which are installed in said final cooling chamber (218) and at a bottom of said third tubular body (216) and are operatively connected to third driving means to determine the advancement of said shaped carriage (204) along said longitudinal axis (X) from said pyrolysis chamber (212) to said final chamber (218).

18. Device (1 ; 200) according to any of the preceding claims, characterized in that said first tubular body (3; 202) is made integral with said movable center shutter (15; 213) by means of a first peripheral flange (33), which is:

• arranged at a first head (3a) of said first tubular body (3);

• protruding from the outer surface (3c) of said first tubular body (3);

• fixed to a first side face (15a) of said movable center shutter (15),

while said second tubular body (1 1 ) is made integral with said movable center shutter (15) through of a second peripheral flange (34) which is:

• arranged at a second end (1 1 b), opposed to said first end (1 1 a), of said second tubular body (1 1 );

• protruding from the outer wall (1 1 c) of said second tubular body (1 1 );

• fixed to a second side face (15b), opposed to said first side face (15a), of said movable center shutter (15).

19. Device (1 ; 200) according to any of the preceding claims, characterized in that said microwave heating sources (14; 213) include one or more cartridge feeders (44) communicating with said pyrolysis chamber (13; 212) and uniformly distributed on the outer wall (1 1 c) of said second tubular body (1 1 ; 210) with which they are coupled by means of fastening means, each of said cartridge feeders (44) internally containing one or more microwave generation devices (45) electrically connected to a central processing and control unit.

20. Device (1 ; 200) according to any of the preceding claims, characterized in that said second tubular body (1 1 ; 210) includes shielding means (46) transparent to microwaves (E), interposed between said microwave heating sources (14; 213) and said pyrolysis chamber (13; 212) which they face, adapted to protect said heating sources (14; 213) against the high temperatures and against the corrosive and/or aggressive gases which develop inside said pyrolysis chamber (13; 212) during said pyrolysis treatment.

21 . Device (1 ; 200) according to claim 20) when dependent on claim 19), characterized in that said shielding means (46) comprise:

- at least one main laminar plate (47, 48) made of refractory material with high mechanical resistance and transparent to microwaves (E), facing said pyrolysis chamber (13; 212) and coupled to the inner wall (1 1 e) of said second body tubular (1 1 ; 210) by means of supporting means (49);

- at least one secondary laminar plate (50, 51 ) for each of said microwave generation devices (45) of said cartridge feeders (44), made of a material which is transparent to said microwaves (E), facing from one side said main laminar (47, 48) and on the opposite side said microwave generation devices (45) of each of said cartridge feeders (44) and firmly contained in a through hole (52) made in said second tubular body (1 1 ; 210).

22. Device (1 ; 200) according to claim 21 ), characterized in that said main laminar plate (47, 48) extends over the entire axial length of said second tubular body (1 1 ; 210) and is removably and slidingly coupled to said inner wall (1 1 e) of said second tubular body (1 1 ; 200) by means of said supporting means (49), which act as guides during insertion in position and/or extraction of said main laminar plate (47, 48).

23. Device (1 ; 200) according to claim 21 ) or 22), characterized in that said supporting means (49) are arranged in the upper part of said inner wall (1 1 e) of said second tubular body (1 1 ; 210) and define two mutually opposite longitudinal seats (52, 53) in which two mutually opposite longitudinal peripheral portions of said main laminar plate (47, 48) slide and remain housed.

24. Device (1 ; 200) according to any of claims 21 ), 22) or 23), characterized in that said secondary laminar plate (50, 51 ) is stably sealed to the inner surface (52a) which delimits said through hole (52) of said second tubular body (1 1 ; 210) and interposes between said microwave generation devices (45) and said main laminar plate (50, 51 ).

25. Device (1 ; 200) according to any of the claims 21 ) to 24), characterized in that said second tubular body (1 1 ; 210) comprises one or more terminal ducts (60) projecting from the upper part of said outer wall (1 1 c) of said tubular body (1 1 ; 210) and communicating with said pyrolysis chamber (13; 212) to cool the electrical and electronic part of said microwave heating sources (14; 213).

26. Device (1 ; 200) according to any of the preceding claims, characterized in that said second tubular body (1 1 ; 210) comprises on the upper part of an outer wall (1 1 c) one or more auxiliary safety chimneys (42) communicating with said pyrolysis chamber (13; 212), at least one of which comprising at least one burst disc adapted to be activated to prevent damage to said second tubular body (1 1 ; 210) due to an abrupt and sudden increase in pressure in said pyrolysis chamber (13; 212) of said second tubular body (1 1 ; 210).

27. Device (1 ; 200) according to claim 26), characterized in that each of said auxiliary safety chimneys (42) is provided with at least one terminal connector to which a conveying duct is connected adapted to convey fumes and/or gases which may damage said burst disc to the outside.

28. Device (1 ; 200) according to any of the preceding claims, characterized in that, in cross section, said pyrolysis chamber (13; 212) has an at least partially polygonal profile adapted to promote a more effective and efficient diffusion of the microwaves (E) generated by said heating sources (14; 213) in said pyrolysis chamber (13; 212) and on said polymeric material to be treated contained in said shaped carriage (5; 204).

29. Device (1 ; 200) according to claim 28), characterized in that said microwave heating sources (14; 213) are arranged at at least one upper side (61 , 62) of said at least partially polygonal profile of said pyrolysis chamber (13; 212), so that the magnetic field generated by said heating sources (14; 213) is concentrated towards the central zone of said pyrolysis chamber (13; 212), in which said shaped carriage (5; 204) loaded with said polymeric material to be treated by means said pyrolysis treatment is positioned.

30. Device (1 ; 200) according to claim 28) or 29), characterized in that said second tubular body (1 1 ; 210) comprises a finned outer structure (64), formed by a series of laminar fins (65) projecting from an outer wall (1 1 c) of said second tubular body (1 1 ; 210), and adapted to compensate for the structural stresses generated by said at least partially polygonal profile of said pyrolysis chamber (13; 212).

31 . Device (1 ; 200) according to any of the preceding claims, characterized in that it includes auxiliary heating means arranged on a bottom (1 1 d) of said second tubular body (1 1 ; 210) and inside said pyrolysis chamber (13; 212), adapted to preheat, starting from ambient temperature, said polymeric material to be treated present in said shaped carriage (5; 204).

32. Device (1 ; 200) according to any of the preceding claims, characterized in that, in cross section, said shaped carriage (5; 204) has an at least partially polygonal profile, formed at least by a central flat portion (66) and two peripheral longitudinal flat portions (67, 68), inclined with respect to said central portion (66) from which they start in a symmetrically opposite manner, so as to define an open squared inner seat (69), facing upwards and adapted to stably receive said polymeric material to be subjected to said pyrolysis treatment.

33. Device (1 ; 200) according to any of the preceding claims, characterized in that said movable center shutter (15; 214) has a box-like structure comprising an fixed outer bearing casing (70) coupled to said first tubular body (3; 202) and to said second tubular body (1 1 ; 210), and a movable inner assembly (71 ) contained in said fixed outer bearing casing (70) with which is coupled by means of main guiding means (72) and operatively connected to said second actuating means (16) which slide it vertically and alternately at least between:

• a lowered position, coinciding with said closing position, in which said movable inner assembly (71 ) physically separates each other said initial chamber (4; 203) and said pyrolysis chamber (13; 212), thus closing an axial outlet mouth

(73) of said first tubular body (3; 202) and an axial inlet mouth (74) of said second tubular body (1 1 ; 210);

• a raised position, coinciding with said opening position, in which said movable inner assembly (71 ) puts said initial chamber (4; 203) and said pyrolysis chamber (13; 212) into communication with each other, thus opening said axial outlet mouth (73) of said first tubular body (3; 202) and said axial inlet mouth

(74) of said second tubular body (1 1 ; 210).

34. Device (1 ; 200) according to claim 33), characterized in that said main guiding means (72) are arranged in the inner longitudinal surface (75a, 76a) of two side walls (75, 76) opposed to each other of said fixed outer bearing casing (70) and cooperate with a transverse rod (77) belonging to said movable inner assembly (71 ) of said movable center shutter (15) and operatively connected to said second actuating means (16).

35. Device (1 ; 200) according to claim 34), characterized in that said main guiding means (72) comprise:

- a pair of vertical plates (78, 79) mutually parallel and spaced apart, arranged in each of said side walls (75, 76) opposed to each other of said fixed outer bearing casing (70), fixed to said inner longitudinal surface (75a, 76a) of said side walls (75, 76) and mutually defining a linear groove (80) open towards the inside of said fixed outer bearing casing (70);

- two ends (77a, 77b) mutually opposite to said transverse rod (77), each of which is inserted in said linear groove (80) defined in one of said side walls (75, 76) of said bearing casing (70);

- two sliding elements (81 , 82) for each of said ends (77a, 77b) of said transverse rod (77) to which they are coupled on opposite sides, interfering with an inner wall (78a, 79a) of said vertical plates (78, 79).

36. Device (1 ; 200) according to claim 35), characterized in that said vertical plates (78, 79) are arranged in an upper centerline of each of said side walls (75, 76) of said fixed outer bearing casing (70).

37. Device (1 ; 200) according to claims 35) or 36), characterized in that said second actuating means (16) comprise a pair of hydraulic actuators with a vertical actuating axis (83, 84) mutually parallel and spaced apart, each of which provided with:

- a supporting cylinder (85) fixed, near a base wall (85a) thereof, to the inner surface (86a) of a lower lamina (86) of said fixed outer bearing casing (70);

- a force piston (87) coupled, near a free ends (87a) thereof external to said supporting cylinder (85), to one of said ends (77a, 77b) of said transverse rod (77),

the maximum permissible exit of said force piston (87) from said supporting cylinder (85) being achieved when said movable inner assembly (71 ) takes said raised position and the maximum permissible re-entry of said force piston (87) into said supporting cylinder (85) being reached when said movable inner assembly (71 ) takes said lowered position.

38. Device (1 ; 200) according to any of the claims 33) to 37), characterized in that said movable inner assembly (71 ) comprises:

- a pair of mutually facing compartmenting bulkheads (88, 89), integral with a transverse rod (77) cooperating with said main guiding means (72) and operatively connected to said second actuating means (16), said compartmenting bulkheads (88, 89) closing, when said movable inner assembly (71 ) takes said lowered position, a pair of mutually facing, opposite through apertures (90, 91 ), respectively made in the front face (70a) and in the rear face (70b) of said fixed outer bearing casing (70);

- feeding means (92), which cooperate with one or more idle rollers (93, 94) projecting from the inner wall (88a, 89a) of at least one of said compartmenting bulkheads (88, 89) with which said idle rollers (93, 94) are made integral by means of at least one supporting bracket (95).

39. Device (1 ; 200) according to claim 38), characterized in that said feeding means (92) comprise one or more rise wedges (96, 97) coupled to a base plate (98) operatively connected to said transverse rod (77), each of which provided with a sloping surface (96a, 97a) adapted to cooperate by sliding with the side wall (93a, 94a) of one of said idle rollers (93, 94) during the passage of said movable inner assembly (71 ) from said lowered position to said raised position and vice-versa until said idle rollers (93, 94) are placed against a flat contrast surface (99, 100) by the side of said rise wedges (96, 97), when said movable inner assembly (71 ) takes said raised position, and free from any contact when said movable assembly (71 ) takes said lowered position.

40. Device (1 ; 200) according to claim 39), characterized in that said flat contrast surface (99, 100) belongs to a central zone of said base plate (88), for a first of said idle rollers (93, 94), and/or to a laminar fin (101 ), projecting from said sloping surface (96a) of one of said rise wedges (96, 97) laterally and towards the main extension axis of said base plate (88) from which it is spaced apart, for a second of said idle rollers (93, 94).

41 . Device (1 ; 200) according to claim 38), 39) or 40), characterized in that said compartmenting bulkheads (88, 89) and said through apertures (90, 91 ) have in cross section an at least partially polygonal profile substantially equal to and mating with that of said shaped carriage (5; 204) and of said pyrolysis chamber (13; 212), so as to allow the precise sliding passage along said longitudinal axis (X) by said carriage shaped (5; 204) by means of said movable center shutter (15; 214).

42. Device (1 ; 200) according to any of the claims 38) to 41 ), characterized in that said movable inner assembly (71 ) comprises:

- a pair of shaped closure wedges (102, 103), connected with said transverse rod (77) by means at least one supporting column (104, 105) which keeps said shaped wedges (102, 103) integral with each other and vertically step-spaced apart;

- a first pair of shaped pressing wedges (106, 107) facing and opposite to each other, integral with said inner wall (88a, 89a) of said compartmenting bulkheads (88, 89) and cooperating with a first one of said shaped closure wedges (102, 103) when said movable inner assembly (71 ) takes said lowered position;

- a second pair of shaped pressing wedges (108, 109) facing and opposite to each other, integral with said inner wall (88a, 89a) of said compartmenting bulkheads (88, 89) and cooperating with a second one of said shaped closure wedges (102, 103) when said movable inner assembly (71 ) takes said lowered position,

said shaped closure wedges (102, 103) cooperating with said shaped pressing wedges (106, 107, 108, 109) to ensure a tight closing of said through apertures (90, 91 ) as well as of said axial outlet mouth (73) of said first tubular body (3; 202) and said axial inlet mouth (74) of said second tubular body (1 1 ; 210) facing said through apertures (90, 91 ).

43. Device (1 ; 200) according to claim 42), characterized in that each of said compartmenting bulkheads (88, 89) comprises an inner laminar plate (1 10) supporting said shaped pressing wedges (106, 107, 108, 109), and a three- dimensional reticular body (1 1 1 ) coupled to said inner laminar plate (1 10).

44. Device (1 ; 200) according to claim 43), characterized in that said three- dimensional reticular body (1 1 1 ) comprises a refractory material adapted to protect each of said compartmenting bulkheads (88, 89) against the high temperatures which develop inside said pyrolysis chamber (13; 212) during said pyrolysis treatment.

45. Device (1 ; 200) according to claim 42), 43) or 44), characterized in that each of said shaped closure wedges (102, 103) has in cross section a tapered polygonal profile comprising at least:

- a pair of first mutually converging linear stretches (1 12), arranged near the free end (102a, 103a) of each of said shaped closure wedges (102, 103) and defining an inclined plane which forms a first acute angle (a) with a horizontal plane passing through a flat end surface (1 13) of each of said shaped closure wedges (102, 103);

- a pair of second mutually converging linear stretches (1 14), arranged in a central part (102b, 103b) of each of said shaped closure wedges (102, 103) and defining an inclined plane forming a second acute angle (b) with said horizontal plane of said flat end surface (1 13) of each of said shaped closure wedges (102, 103), said second acute angle (b) being greater than said first acute angle (a).

46. Device (1 ; 200) according to claim 45), characterized in that said first linear stretches (1 12) of each of said shaped closure wedges (102, 103):

• cooperate by sliding with a first oblique linear wall (106a, 107a, 108a, 109a) of each of said shaped pressing wedges (106, 107, 108, 109) during the initial part of the vertical stroke of said movable inner assembly (71 ) from said raised position to said lowered position, moving said compartmenting bulkheads (88, 89) away from each other by a first distance, to eliminate the existing initial clearance and avoid an excessive vertical stroke of said compartmenting bulkheads (88, 89);

• are partially encompassed between said shaped pressing wedges (106, 107, 108, 109) and partially protrude from a lower wall (106b, 107b, 108b, 109b) of each of said shaped pressing wedges (106, 107, 108, 109) at the end of said vertical stroke of said movable inner assembly (71 ) which positions said movable inner assembly (71 ) in said lowered position;

• cooperate by sliding with said first oblique linear wall (106a, 107a, 108a, 109a) of each of said shaped pressing wedges (106, 107, 108, 109) during the final part of said vertical stroke of said movable inner assembly (71 ) from said lowered position to said raised position, bringing said compartmenting bulkheads (88, 89) closer to each other by said first distance;

• almost totally protrude from an upper wall (106c, 107c, 108c, 109c) of each of said shaped pressing wedges (106, 107, 108, 109) at the end of said vertical stroke of said movable inner assembly (71 ) which positions said movable inner assembly (71 ) in said raised position.

47. Device (1 ; 200) according to claim 45) or 46), characterized in that said second linear stretches (1 14) of each of said shaped closure wedges (102, 103):

• cooperate by sliding with a second oblique linear wall (106d, 107d, 108d, 109d), more inclined with respect to said first oblique linear wall (106a, 107a, 108a, 109a) in relation to said horizontal plane, of each of said shaped pressing wedges (106, 107, 108, 109) during the final part of the vertical stroke of said movable inner assembly (71 ) from said raised position to said lowered position, moving said compartmenting bulkheads (88, 89) away from each other by a second distance, to provide a lateral or horizontal thrust to said compartmenting bulkheads (88, 89) which determines said tight closure of said through apertures (90, 91 );

• are encompassed between said shaped pressing wedges (106, 107, 108, 109) and in contact with said second oblique linear wall (106d, 107d, 108d, 109d) of each of said shaped pressing wedges (106, 107, 108, 109) at the end of said vertical stroke of said movable inner assembly (71 ) which positions said movable inner assembly (71 ) in said lowered position;

• cooperate by sliding with said second oblique linear wall (106d, 107d, 108d, 109d) of each of said shaped pressing wedges (106, 107, 108, 109) during the initial part of said vertical stroke of said movable inner assembly (71 ) from said lowered position to said raised position, bringing said compartmenting bulkheads (88, 89) closer to each other of said second distance;

• totally project from an upper wall (106c, 107c, 108c, 109c) of each of said shaped pressing wedges (106, 107, 108, 109) at the end of said vertical stroke of said movable inner assembly (71 ) which positions said movable inner assembly (71 ) in said raised position.

48. Device (1 ; 200) according to claim 47) when dependent on claim 46), characterized in that said first distance is greater than said second distance.

49. Device (1 ; 200) according to any of the claims 42) to 48), characterized in that said feeding means (92) are coupled to an upper wall (103c) of one of said shaped closure wedges (102, 103), the lower one according to a vertical direction, which operatively connects them to said transverse rod (77).

50. Device (1 ; 200) according to any of the claims 42) to 49), characterized in that each of said compartmenting bulkheads (88, 89) is slidingly coupled by means of auxiliary guiding means (1 15) to a pair of mutually parallel and spaced apart supporting uprights (1 16, 1 17), interposed between said compartmenting bulkheads (88, 89) and two side walls (75, 76) opposite to each other of said outer fixed bearing casing (70), said supporting uprights (1 16, 1 17) being fixed to a lower lamina (86) of said outer bearing casing (70).

51 . Device (1 ; 200) according to claim 50), characterized in that each of said supporting uprights (1 16, 1 17) has at an upper end (1 16a, 1 17a) a linear open- profile through recess (1 18) in which said transverse rod (77) is inserted for a respective section when said movable inner assembly (71 ) takes said lowered position and from which said transverse rod (77) protrudes in the passage of said movable inner assembly (71 ) from said lowered position to said raised position.

52. Device (1 ; 200) according to claim 50) or 51 ), characterized in that said auxiliary guiding means (1 15) are placed in a position below said main guiding means (72) and receive two vertical edges (88b, 88c, 89b, 89c) opposed and parallel to each other of said compartmenting bulkheads (88, 89) when said movable inner assembly (71 ) takes said lowered position.

53. Device (1 ; 200) according to claim 50), 51 ) or 52), characterized in that said guiding auxiliary means (1 15) comprise, for each of said supporting uprights (1 16, 1 17), a pair of longitudinal grooves (120, 121 ) mutually parallel and placed side-by- side and communicating with the outside frontally and superiorly, in which the vertical edges (88b, 88c, 89b, 89c) of said compartmenting bulkheads (88, 89) are engaged.

54. Device (1 ; 200) according to claim 53) when dependent on claim 42), characterized in that each of said longitudinal grooves (120, 121 ) is:

- opened at an upper end where it has an access mouth (123), which allows said compartmenting bulkheads (88, 89) to decouple from said auxiliary guiding means (1 15) in the passage of said movable inner assembly (71 ) from said lowered position to said raised position and to mate with said auxiliary guiding means (1 15) in the reverse passage;

- closed at a lower end where it has a limit stop partition (124) against which a peripheral portion (125) of a lower edge (88d, 89d) of said compartmenting bulkheads (88, 89) contrasts when said movable inner assembly (71 ) takes said lowered position.

55. Device (1 ; 200) according to claim 54), characterized in that each of said longitudinal grooves (120, 121 ) terminates at said lower end with a curved portion (126) in which each of said vertical edges (88b, 88c, 89b, 89c) of said compartmenting bulkheads (88, 89) is forced by said shaped closure wedges (102, 103) to further increase the tight seal of the closure of said through apertures (90, 91 ) of said compartmenting bulkheads (88, 89).

56. Device (1 ; 200) according to claim 33), characterized in that said movable center shutter (15; 214) comprises one or more interface ducts (127), coupled to the outer wall (70c) of said outer fixed bearing casing (70) of said movable shutter (15; 214) and adapted to replace the air present in said outer fixed bearing casing (70) with an inert gas under pressure.

57. Device (1 ; 200) according to claim 33), characterized in that said outer fixed bearing casing (70) of said movable center shutter (15; 214) has in an upper lamina (128) a through slot (129) adapted to ease the removal of said movable inner assembly (71 ) of said movable shutter (15; 214) and/or inspection, maintenance, repair and/or replacement of the inner volume of said outer fixed bearing casing (70) or of the components of said movable inner assembly (71 ).

58. Device (1 ; 200) according to claim 33), characterized in that said outer fixed bearing casing (70) of said movable center shutter (15; 214) has in the side surface (70d) one or more revolving service doors (130) to allow installation, inspection, maintenance, repair and/or replacement of the components of said movable inner assembly (71 ) or cleaning of the inside of said outer fixed bearing casing (70).

59. Device (1 ; 200) according to claim 33), characterized in that said movable center shutter (15; 214) comprises inside said box-like structure at least one sealing gasket (131 ) interposed between said movable inner assembly (71 ) and said outer fixed bearing casing (70).

60. Device (1 ; 200) according to claim 35), characterized in that it comprises a metal sealing gasket (132) arranged outside said box-like structure of said movable center shutter (15; 214) and interposed between said outer fixed bearing casing (70) of said movable center shutter (15; 214) and said second tubular body (1 1 ; 210).

61. Device (200) according to claim 6), characterized in that said at least a third tubular body (216, 217) has a constructional structure substantially equal to that of said first tubular body (203), wherein said final cooling chamber (218, 219) is subjected to the action of cooling devices adapted to cool the residues deriving from said pyrolysis treatment performed on said polymeric material.

Description:
PYROLYSIS DEVICE

Description

The present invention relates to an innovative pyrolysis device of the microwave- type for the disposal of polymeric materials, especially at end of life, such as, in particular, end-of-life tires (often and notoriously designated by the acronym ELT), and dedicated to the recovery of component materials.

It is firstly worth noting that pyrolysis (or cracking) is a thermochemical decomposition process of organic materials obtained by applying heat in the complete absence of an oxidizing agent (normally oxygen).

In essence, by heating the material in the presence of oxygen, a combustion occurs which generates heat and, negatively or at least problematically, which produces oxidized gaseous compounds; conversely, by performing the same heating in conditions of total absence of oxygen, the material undergoes a breakdown of the original chemical bonds with the formation of simpler molecules.

One of the main pyrolysis processes currently exploited on a large scale is that defined in industrial chemistry as cracking (process means of which light paraffin hydrocarbons are obtained due to the breaking of heavy paraffin hydrocarbon molecules), as well as the thermal treatment of waste by exploiting, in this case, temperatures between 400 °C and 800 °C (typically 500-600 °C).

In particular, waste pyrolysis converts the material to be treated from solid state (so- called char component) into liquid products (so-called tar or pyrolysis oils) and/or gaseous products {syngas), which can be used as fuel or as raw materials intended for successive chemical processes. The solid carbonaceous residue which is obtained can be further refined by providing products such as, for example, activated charcoal.

As known, the management of large amounts of waste has become an environmental issue of huge proportions and so the strategy adopted by European Community (or European Union) lawmakers for waste management is to consider waste disposal, however appropriate and effectively performed, to be taken into account only as the last resort.

Lawmakers, particularly on European Community level, firstly encourage waste reduction at the source, which means using prevention to minimize the production of waste and, alternatively, reuse in original form, recycling and recovery of materials and energy.

For used tires, for example, reuse in original form (either directly or following rebuilding pretreatments) is currently considered the Best Practicable Environmental Option in the waste management hierarchy.

However, due to the increasingly widespread use of low-profile, high-performance tires (required to meet the needs of driving stability in bad or extreme weather conditions), the average life of tires is significantly decreasing, with consequent increase of the amount intended for disposal, and an ever-greater portion of used tires appears inadequate for rebuilding or for total recovery by recycling.

Reference will be precisely made hereinafter to this because, contrarily to other types of waste (such as, for example, glass, packaging, metals and paper), used tires are difficult to recycle: the complete recycling of used tires - i.e. the operation which includes industrially processing used tires to produce new ones - is not currently achievable.

When tires can no longer be used as such or intended to be rebuilt, they must inevitably be disposed of as waste.

Indeed, the disposal of ELTs in landfills has been banned in Italy since 2006 (by means of Legislative Decree 152/2006 which transposes European Community Directive 199/31/EC); so, for example in Italy, for over a decade, end-of-life tires have been partially reused - cut or whole - for various applications or, by processing them by thermal treatment, are exploited for the recovery of materials and/or energy. Tires are made of materials which may be notoriously reused in new production processes.

By virtue of industrial tire cutting and granulation processes (e.g. mechanical crushing or cryogenic processes, electrothermal processes), it is possible to separate the various components (rubber, steel and fiber), thus obtaining a material which can be used in different manners: tiles, soundproofing panels, sports surfaces, shoe soles, wheels for forklift trucks, road paving and components for cars, just to mention some of the most common and known applications.

However, this operative solution allows disposing of only some of the tires which cannot be rebuilt, i.e. precisely those called ELTs. An alternative to this is represented by the recovery of materials and/or energy by means of thermal treatments, such as, typically and generally, incineration, waste- to-energy (i.e. incineration with energy recovery) or pyrolysis, performed on ELTs. The first of such thermal treatments, i.e. incineration, includes the use of incinerators in waste management, with a view to disposal, which employ a high-temperature combustion process which provides, as final products, gaseous effluent, ashes and dust.

As a function of the specific technology used in the respective combustion chamber, it is possible to distinguish various types of incinerators, such as, for example, grid incinerators which have a combustion chamber in which movable or fixed metal grids are used (the material combustion occurs above them).

Such an operating solution of known type has some recognized disadvantages and drawbacks, in particular:

- possible emission of toxic and pollutants agents which, for their abatement, require the installation of dedicated and rather articulated and complex technological plants (from the constructional point of view);

- production of slag which must be disposed of and forms a major item of expenditure;

- pollutants present in burned fumes, nitrogen oxides and particulate, which require specific equipment for treatment before emission into the atmosphere;

- operating and maintenance costs are high;

- problematic acceptance by the population of this technology, especially from a psychological point of view, because of doubts which persist on the on the long term harmfulness for public health of emissions from incinerators,

- destruction of products which may be useful and recoverable.

As regards thermal treatment of waste to energy, instead, according to the waste management hierarchy defined by European Directive 2008/98/EC, incineration with high-efficiency energy recovery is placed on the fourth level of priority after prevention, preparation for reuse and recovery of materials, while it precedes final disposal in controlled landfills.

As known, in the most modern incineration plants (waste-to-energy plants), the heat developed during waste combustion is recovered and used to produce steam. It is worth emphasizing that, as regards waste in general, waste-to-energy is a little used disposal type due to the low calorific value of the waste, to the extent of making it unattractive because it is not very efficient.

The features making an end-of-life tire an excellent source of energy recovery are, instead, precisely ease of combustion and high calorific value (comparable to that of coal).

For this reason, the most widely used application of this type of ELT disposal is that which produces fuel for cement works or furnaces for the production of steam.

The disadvantages of this operating solution for ELT disposal the same as those of the previously described solution which includes resorting to incinerators, because a waste-to-energy plant is nothing other than an implemented version of an incinerator, with the sole and exclusive advantage of energy recovery.

In relation to the pyrolysis thermal treatment, it is worth noting that the disposal of the ELTs by means of pyrolysis consists in a thermal decomposition in inert atmosphere, obtained by indirect heating, after which, for example, the tires undergo thermal cracking at temperatures of about 500/600 °C, breaking down, as already pointed out above, into a solid component {char), a liquid part {tar or pyrolysis oils) and a gaseous, partially condensable one {syngas).

The pyrolysis products may be used, in turn, to feed plants which exploit combustion processes or can be used as raw materials for other processes.

Therefore, this type of process has the features to transform polymeric materials into products adapted for the production of energy or petrochemical raw materials. In pyrolysis plants, heating is performed in the total absence of oxygen, unlike incinerators, and the processed material thus undergoes the cracking of original chemical bonds with the formation of simpler molecules.

This points to a major advantage in the use of pyrolysis plants consisting in the absence of nanoparticles, unburned fumes, dioxins or whatever else is created in the plants described above, which must be accompanied by adequate (and expensive) technological plant abatement solutions.

The fundamental part of each pyrolysis apparatus currently available on the market resides in the reactor (or heating means) in which the produced heat is transferred from the source to the material. Many types of pyrolysis apparatus reactors (or devices) are currently available. The main ones will list below, focusing on the disadvantages thereof.

First of all, the autoclave is available - notoriously, a vessel or appliance provided with a hermetic sealing system, in which the positive pressure difference between the inside and the outside of the vessel facilitates the sealing - the main drawback of which lies in the fact that heat transfer is not effective.

It is then mentioned rotary kiln (having a cylindrical shape and generally supported on rolling rollers) used in various industrial applications and in particular as a pyrolysis appliance reactor in the field of waste disposal; the main drawbacks or disadvantages of such an ELTs heating system consist in:

- the need for gas circulation to remove the pyrolysis products at the desired moment;

- maximum reduction or maximum containment of the size of the processed material to improve heat transfer.

The prior art of interest herein also comprises pyrolysis devices with so-called static bed (or fixed) reactor, the most relevant disadvantages or drawbacks of which are:

- ineffective heat transfer;

- rather long reaction time, beyond the levels which are desirable and acceptable;

- need for gas circulation to remove the pyrolysis products at the desired moment. Alternatively, in the background art, pyrolysis devices are available provided with so-called fluidized bed reactor, which however has the following drawbacks:

- process associated therewith, which is sensitive to fibers and high amounts of metals;

- high operating costs for heating;

- complex preparation of the raw materials;

- desirably and preferably, small size of the material to be processed;

- again, in this case, need for gas circulation to remove the pyrolysis products at the desired moment.

From that briefly outlined above, it can be inferred that that the only applications used so far on a large industrial scale provide that the pyrolysis process for ELT disposal is mostly performed by conventional heating and, in short, adversely require: • long reaction times;

• difficulty in heat transfer, even and especially in consideration of the fact that the thermal conductivity of polymers is low;

• difficulty in obtaining good heating efficiency.

Additionally, ELTs recovery by reuse of its compounds, obtained from processes such as pyrolysis, continues to struggle to take off because it strongly suffers also from the high processing costs required by the heat treatment processes described above. Incidentally, patent application published under WO2012/220991 A1 describes an ELTs pyrolysis process which, by exploiting heating by microwaves of the material to be treated, appears potentially very interesting.

Therefore, the present invention suggests to remedy fully and effectively the aforesaid disadvantages suffered by the prior art considered hereto, the present invention suggests to effectively overcome such drawbacks.

In particular, it is a primary object of the present invention to provide an industrial pyrolysis device for the disposal of polymers and in particular of end-of-life tires, which with respect to the known pyrolysis devices used for the same function either eliminates or at least considerably reduces the difficulties in heat transfer to the material to be treated.

Within the scope of this object, it is the task of the invention to devise an industrial pyrolysis device (or apparatus) for the disposal of polymers and in particular of end- of-life tires, which has an efficiency, in the thermal treatment of the material, typically of the one or more end-of-life tires, higher than that of the devices of the prior art.

In other words, it is the object of the invention to provide an industrial pyrolysis device (or apparatus) for the disposal of polymers and in particular of end-of-life tires, which allows heating the material to be treated more efficiently than the devices of the prior art comparable thereto in some measure.

It is a further object of the present invention to suggest an industrial pyrolysis device (or apparatus) for the disposal of polymers and in particular of end-of-life tires, which includes shorter reaction times of the material to be treated than those which can be encountered in the devices of known type.

In the cognitive scope of such a second object, it is the task of the invention to provide an industrial pyrolysis device (or apparatus) for the disposal of polymers, and in particular of end-of-life tires, which, with respect to the closer prior art, allows reducing production cost, the factors involved in the calculation of such a cost, such as labor and the raw materials used for the construction thereof, being equal.

It is a last but not least object of the present invention to provide an industrial pyrolysis device (or apparatus), for use in particular for the disposal of end-of-life tires, which can be manufactured at sustainable costs and which has a competitive sales price.

Said objects are achieved by a pyrolysis device according to appended claim 1 , to which reference is made for brevity.

Further detailed technical features of the pyrolysis device of the present invention are contained in the respective dependent claims.

The aforesaid claims, hereinafter specifically and concretely defined, are an integral part of the present description.

Advantageously, in light of the fact that the pyrolysis process is a promising solution in the perspective of disposal of polymers, and of ELTs in particular, and in the perspective of recovery of the materials which form such products, the innovative pyrolysis device of the present invention intends to overcome the criticalities of the conventional heating methods described above, by using one or more microwave sources as means for heating the material to be treated.

Experimentally, the pyrolysis process of polymers and of ELTs, in particular by means of microwave heating sources, has already been studied, highlighting considerable advantages with respect to conventional methods, such as:

- efficient heating with a high energy yield;

- rapid heating;

- homogeneous heating in the processed material;

- possibility of using large pieces without problems of heat administration, thus overcoming the problem of the low thermal conductivity of the polymers;

- increased productivity of the designed system;

- overall cost reduction.

The features and conformation of the industrial device designed and disclosed herein allow extending and applying the scientific study (underlying the aforementioned patent application WO2012/220991 A1 ) to a device (or apparatus) which can be manufactured and provided on large scale, while maintaining of the advantages described in the experiment but with the possibility of performing a pyrolysis process even on large amounts and on large-size parts of material to be processed (e.g., simultaneously even on multiple, whole end-of-life tires).

This is possible by virtue of the ideation of an innovative launch system of the heating microwaves inside the reactor, of a pyrolysis chamber structure designed to maintain radiation homogeneity inside, by closing (or compartmenting) systems of the process zones designed to maintain both the features required by the process itself and safety as regards the environment created inside the reactor.

Equally advantageously, due to the constructional features generally outlined here, the pyrolysis device of the invention optimizes the heat transfer from the specific heating sources of the microwave-type included to the polymeric material to be treated and conveyed inside the pyrolysis treatment chamber, thus substantially eliminating or at least reducing the difficulties encountered in this sense in the prior art.

Equally advantageously, the pyrolysis device of the invention promotes shorter reaction times of the polymeric material to be treated than those encountered in the known devices to the advantage of production costs.

Advantageously and briefly, the pyrolysis device of the invention has a significantly better yield than that offered by the devices of the however remotely comparable prior art.

Said objects and advantages will become more apparent from the description which follows, relating to preferred embodiments of the pyrolysis device of the invention given by way of indicative and illustrative but non-limiting example, with reference to the accompanying drawings, in which:

- figure 1 is a simplified assonometric view of a first variant of embodiment of the pyrolysis device of the invention, in a possible operating configuration;

- figure 2 is an exploded view in figure 1 , with the compartmenting (or movable center shutter) in opening position;

- figure 3 is the front view in figure 1 , with the pyrolysis device of the invention in a second configuration;

- figure 4 is the view in figure 3 taken along section plane IV-IV; - figure 5 is a first side view of the pyrolysis device in figure 1 ;

- figure 6 is a second side view of the pyrolysis device in figure 1 from the opposite side with respect to figure 5;

- figure 7 is the rear view in figure 6;

- figure 8 is a front view of the pyrolysis device in figure 1 ;

- figure 9 is the view in figure 8 taken along section plane IX-IX;

- figures 10 and 1 1 are two different exemplified assonometric views, from different angles, of a constructional assembly in figure 2;

- figure 12 is a complete assonometric view of the assembly in figures 10 and 1 1 ;

- figure 12a is a partial, simplified, enlarged detail of figure 12;

- figure 12b is a diagrammatic and simplified view of a detail of figure 10;

- figure 13 is a front view of a first constructional assembly in figure 2, in the closing position;

- figure 14 is the view in figure 15 taken along section plane XIV-XIV;

- figure 15 is the view in figure 13 taken along section plane XV-XV;

- figure 16 is an enlarged detail of figure 15;

- figure 16a is a further enlarged detail of figure 16;

- figure 17 is a front view of a first constructional assembly in figure 2, in the opening position;

- figure 18 is the view in figure 17 taken along section plane XVIII-XVIII;

- figure 18a is an enlarged detail of figure 18;

- figure 19 is the view in figure 18 taken along section plane XIX-XIX;

- figure 20 is the side view in figure 17;

- figures 21 , 22 and 23 are three distinct and different exploded views of the constructional part in figure 13.

- figure 22a is an enlarged detail of figure 22;

- figure 23a is an enlarged detail of figure 23;

- figure 24 is a simplified assonometric view of a second variant of embodiment of the pyrolysis device of the invention, in a possible operating condition.

The pyrolysis device of the invention, used for the disposal of polymeric materials, especially at end of life, such as typically and preferably ELTs, is disclosed in the minimal variant thereof in figure 1 , in which it is designated as a whole by reference numeral 1 .

It is worth noting that, in accordance with the invention, the pyrolysis device 1 comprises an elongated tubular structure, designated as a whole by reference numeral 2, which extends along a longitudinal axis X and includes as essential components:

- a first tubular body 3, which defines an initial washing or drainage chamber 4, in which a shaped carriage 5 containing a polymeric material - either whole or in pieces, not shown for simplicity - to be subjected to pyrolysis treatment is received, and provided with a movable front shutter 8, e.g. having circular profile, as shown in figures 1 , 2 and 3, arranged at an axial inlet mouth 9, through which the shaped carriage 5 is introduced into the initial chamber 4 and cooperating with first actuating means, indicated by reference numeral 10 as a whole, which alternately move it between a first position, in which the front shutter 8 closes the initial chamber 4 from an outer side 4a, and a second position, in which the front shutter 8 opens the initial chamber 4 from the outer side 4a putting it into communication with the external environment;

- a second tubular body 1 1 , located downstream of the first tubular body 3 and provided at a first end 1 1 a with closing means, designated as a whole by reference numeral 12, defining a pyrolysis chamber 13 which, during the operation of the device 1 of the invention, receives the shaped carriage 5 containing polymeric material just treated in the initial washing or drainage chamber 4 and to be subjected to the pyrolysis treatment in the pyrolysis chamber 4;

- a plurality of interface side chimneys 6, 7 for replacing the air present in the initial chamber 4 and, in this case (at least before the first pyrolysis treatment starts) also in the pyrolysis chamber 13 with an inert gas, such as typically nitrogen, particularly suited to the current application in order to prevent the formation of explosive mixtures;

- a plurality of microwave heating sources 14 coupled to the second tubular body 1 1 and facing the pyrolysis chamber 13 in which they activate the pyrolysis treatment on the polymeric material present in the shaped carriage 5; - a movable center shutter 15, interposed between the first tubular body 3 and the second tubular body 1 1 and cooperating with second actuating means, indicated as a whole by reference numeral 16, which alternately move it between a closing position, in which the center shutter 15 keeps the initial chamber 4 and the pyrolysis chamber 13 mutually isolated (and, in this case, also hermetically sealing the pyrolysis chamber 13 itself), and an opening position, in which the center shutter 15 puts the initial chamber 4 into communication with the pyrolysis chamber 13, at an inner side 4b, opposite to the aforesaid outer side 4a, of the initial chamber 4, thus allowing the passage of the shaped carriage 5.

Hereinafter, for the purposes of the present invention, the expression“pyrolysis treatment” (or“pyrolysis thermal treatment”) means the specific step of the process implemented by the pyrolysis device 1 of the invention which occurs inside the pyrolysis chamber 13 of the second tubular body 1 1 , while with the expression “pyrolysis process” (or“pyrolysis cycle”) means the entire process implemented by the pyrolysis device 1 of the invention, thus involving all its component members which will be disclosed in detail.

In an appropriate but non-binding manner, in essence and at least from a functional point of view, the pyrolysis device 1 of the invention also includes a third tubular body (not designated with a specific reference numeral in the figures which follow, for the reason that will be soon clarified), normally closed at a first head and placed functionally downstream of the second tubular body 1 1 from which it is physically separated and with which it temporarily communicates; the third tubular body has an end cooling chamber which receives the shaped carriage 5 coming from the pyrolysis chamber 13 and containing the residues of polymeric material just subjected to the pyrolysis treatment by exploiting the microwave sources 14.

In particular, since the elongated tubular structure 2 of pyrolysis device 1 of the invention extends along a longitudinal axis X, the first tubular body 3 and the second tubular body 1 1 are mutually coaxial and axially aligned, the third tubular body is also formally coaxial and aligned with both the first tubular body 3 and with the second tubular body 1 1 .

Actually, in this specific variant of the invention, the third tubular body coincides with the first tubular body 3 and is closed, at a first head 3a, by the aforesaid movable center shutter 15 itself when the latter takes said closing position and, at a second head 3b, opposed to the first head 3a, by the movable front shutter 8 when the latter takes the first position, so that when the front shutter 8 takes the second position, the third tubular body is open and puts the final cooling chamber (coinciding with the initial washing or drainage chamber 4 but functionally distinct therefrom), into communication with the external environment for releasing the shaped carriage 5, at the end of the pyrolysis cycle (or process), according to an exit direction (given by arrow F in figures 1 and 2) opposite to the entry direction (given by arrow G in figures 1 and 2) of the shaped carriage 5 into the initial chamber 4 and into the pyrolysis chamber 13.

The shaped carriage 5 is thus provided, after appropriate washing and cleaning cycle, for a successive pyrolysis treatment cycle of other polymeric material to be subjected to pyrolysis.

In practice, by means of the variant of pyrolysis device 1 of the invention shown in figures 1 and 2, at the end of the pyrolysis treatment in the pyrolysis chamber 13 of the second tubular body 1 1 , the shaped carriage 5, loaded with treated polymeric material, returns into the initial chamber 4, from where it was received with the polymeric material to be treated: at that point, the initial chamber 4 acts as a cooling chamber.

This is possible because, in the philosophy of the invention, the initial washing or drainage chamber (indicated by reference numeral 4 in figures 1 -3) substantially has the same constructional concept as the final chamber cooling.

Preferably but not necessarily, the closing means 12 comprise, in this case, a fixed laminar plate 17 provided with an annular flange 18 fixed to the outer annular edge of the second tubular body 1 1 at the first end 1 1 a thereof opposite to the second end 1 1 b coupled to the movable center shutter 15.

As far as the interface chimneys 6, 7 (intended respectively for extracting air from the initial chamber 4 and thus creating a vacuum therein, and for introducing an inert gas, such as nitrogen, in such an initial chamber 4) are concerned, they communicate with the initial chamber 4 of the first tubular body 3 on which they are arranged, preferably laterally with respect to aforesaid longitudinal axis X: such a position of the interface chimneys 6, 7, shown in greater detail in figure 6, derives from the preferred and optional, though recommended, presence, in this case of the safety chimneys 19 which must be necessarily placed in the upper part of the side surface 3c of the first shaped body 3, to perform their function in the most effective way possible.

Indeed, the safety chimneys 19 allow the evacuation of fumes, gases, dust, chips and/or small-size fragments in case of dangerous and unexpected explosions which could occur inside the pyrolysis chamber 13 during the pyrolysis treatment which, as known, may create, at least in theory, explosive environment conditions.

Further worth noting in figures 1 , 2, 4 and 5 are the lateral installation, in the first tubular body 3, of a first connector 20 for a supporting beam of the sensor for reading the temperature of the polymeric material in the shaped carriage 5 exiting from the final cooling chamber, and the provision of auxiliary through holes 21 , 22 for the application of possible measuring or reading instruments deemed useful for controlling various parameters of the cycle in progress: the first connector 20 and the auxiliary through holes 21 are placed in the side surface 3c of the first tubular body 3 substantially on the symmetrically opposite side with respect to the interface chimneys 6, 7 in relation to the longitudinal axis X, in order to facilitate the connection of the aforesaid control instrumentation by the final user.

Furthermore, the first tubular body 3 has a pair of second connectors 40, almost symmetrically opposite to the interface chimney 6, for connecting cooling fluid passage ducts of the thermal exchange battery under the shaped carriage 5, as well as a third connector 41 for the power electrodes and for the electric battery reading sensors.

Thus, figures 1 -6 described hereto show that the first tubular body 3 comprises, on the upper part of the side surface 3c, a plurality of safety chimneys 19 communicating with the initial chamber 4, at least one of which comprises at least one burst disc (not shown), which is activated in the presence of dangerous explosions, in order to prevent damaging the first tubular body 3 due to a sudden and sharp increase in the pressure difference between the initial chamber 4 and the external environment of the first tubular body 3.

As shown in particular in figures 1 and 2, the pyrolysis device 1 of the present invention further comprises, appropriately although not necessarily, the first moving means, indicated as a whole by reference numeral 23, installed in the initial washing or drainage chamber 4 and at the bottom 3d of the first tubular body 3 and operatively connected to first driving means, indicated as a whole by reference numeral 24 and of the type known per se, to determine, during the pyrolysis cycle, the advancement of the shaped carriage 5 along the longitudinal axis X in a direction, i.e. from the initial chamber 4 to the pyrolysis chamber 13 and, in this case, also in the opposite direction, i.e. from the pyrolysis chamber 13 to the cooling chamber 4 and from there outwards.

By way of illustrative and preferred example only, the first moving means 23 comprise two transmission assemblies 25, 26, which are mutually and equally spaced apart and evenly distributed on the bottom 3d of the first tubular body 3 so as to ensure a balanced and stable conveying of the shaped carriage 5.

Each of such transmission assemblies 25, 26 (e.g. formed by two toothed wheels spaced connected by a chain) substantially extends over the entire length of the first tubular body 3 along the longitudinal axis X and is rotated by a transverse shaft 27 integral with the transmission assemblies 25, 26, which are thus synchronized by such a transverse shaft 27, and keyed onto the first driving means 24 adapted to rotate the transverse shaft 27 about a linear axis Y orthogonal to the aforesaid longitudinal axis X.

It is worth noting that in other embodiments of the pyrolysis device of the present invention, not disclosed in the following, the first moving means may have a different constructional concept from that one just described and shown in the accompanying figures, as well as in further embodiments of the pyrolysis device of the invention, not yet disclosed, the first moving means may include a number of transmission assemblies different from two, since this number may vary according to requirements, starting from one.

It is worth noting that the first actuating means 10 which move the movable front shutter 8 preferably but not necessarily, comprise a linear actuating member 28, selected from the group consisting of pneumatic actuators, hydraulic actuators (preferred solution) and the like, which is rigidly coupled to a first end 29a of an articulation lever 29 provided with a second end 29b connected to the side edge 8a of the movable front shutter 8, so that, as shown in greater detail in figures 2 and 3:

• when the linear actuating member 28 takes a first operating condition, the articulation lever 29 is arranged in a main direction W which defines an acute inner angle r with a linear action direction K of the linear actuating member 28 and the movable front shutter 8 takes the first position (shown in figure 4) in which it fully closes the outer side 4a of the initial chamber 4;

• when the linear actuating member 28 takes a second operating condition, the articulation lever 29 is arranged in a main direction W’ which defines an obtuse inner angle f with the linear action direction K of the linear actuating member 28 and the movable front shutter 8, following a rotation (e.g. counterclockwise) of the articulation lever 8 about a fulcrum 30 defined at the first end 29a of the articulation lever 29, takes the second position (shown in figure 2) in which it fully opens said outer side 4a of the initial chamber 4.

Advantageously but not exclusively, the pyrolysis device 1 of the invention also includes second moving means, indicated as a whole by reference numeral 31 , which:

• are installed in the pyrolysis chamber 13 and at a bottom 1 1 b of the second tubular body 1 1 ;

• are operatively connected to second driving means, indicated as a whole by reference numeral 32, and cooperate with the first moving means 23 to determine the advancement of the shaped carriage 5 along the longitudinal axis X from the initial chamber 4 to the pyrolysis chamber 13 when the movable center shutter 15 takes the opening position.

In particular, the second moving means 31 conveniently have the same constructional composition described above in detail, of the first moving means 23 with which they cooperate in this variant both in the passage of the shaped carriage 5 from the initial chamber 4 into the pyrolysis chamber 13 and in the reverse passage.

Preferably but not restrictively, the first tubular body 3 is made integral with the movable center shutter 15 by means of a first peripheral flange 33 which, as can be seen in figures 1 and 2, is:

• arranged at an aforesaid first head 3a of the first tubular body 3; • protruding from the outer surface 3c of the first tubular body 3;

• fixed to a first side face 15a of the movable center shutter 15,

while the second tubular body 1 1 is made integral with the movable center shutter 15 by means of a second peripheral flange 34 which is:

• arranged at a second end 1 1 b, opposed to the first end 1 1 a, of the second tubular body 1 1 ;

• protruding from the outer wall 1 1 c of the second tubular body 1 1 ;

• fixed to a second side face 15b, opposed to the first side face 15a, of the movable center shutter 15.

The combination in figures 4-9 highlights how, again in this case, the second tubular body 1 1 preferentially comprises on the side surface 1 1 c a plurality of auxiliary interface chimneys 35, 36, intended respectively for extracting the oxygen (more properly air) present in the internal atmosphere of the pyrolysis chamber 13 from the pyrolysis chamber 13 (and thus creating a vacuum therein) and for introducing an inert gas (such as typically nitrogen) before performing the first pyrolysis treatment into the pyrolysis chamber 13 itself.

In an advantageous and preferred manner, the second tubular body 1 1 also has:

- first lower through apertures 37 for balancing the pressures between the process chambers 4 and 13 provided in this variant (however also present in the first tubular body 3, e.g. one, indicated by reference numeral 38);

- an unloading through aperture 39 defined in the lower part of the second tubular body 1 1 , in a position under the lower through apertures 37;

- two auxiliary through holes 43 for applying possible measuring or reading instruments deemed useful for controlling the cycle in progress.

Additionally, the second tubular body 1 1 (which generally has an axial length of about 1 .5 meters) comprises, on the upper part of the outer lateral wall 1 1 c, a plurality of auxiliary safety chimneys 42 communicating with the pyrolysis chamber 13, at least one of which comprising at least one burst disc which is activated to avoid dangerous damage of the second tubular body 1 1 due to an abrupt and sudden increase of the pressure difference between the pyrolysis chamber 13 of the second tubular body 1 1 and the environment outside the second tubular body 1 1 . Each of such auxiliary safety chimneys 42 is provided with a terminal connector, not shown, to which a conveying duct (not shown) is connected adapted to convey outwards the fumes which may have damaged the burst disc.

Further constructional solutions of the pyrolysis device of the invention, not shown in the accompanying drawings, may provide that the first tubular body and/or the second tubular body comprise a number of interface chimneys and a number of safety chimneys different from that which can be derived from the accompanying figures, because each of such numbers may vary according to design choices, starting from one.

According to the preferred embodiment of the invention described herein, the microwave heating sources 14 include a plurality of cartridge feeders 44 communicating with the pyrolysis chamber 13 and uniformly distributed on the outer wall 1 1 c of the second tubular body 1 1 to which they are coupled by fixing means of a type known perse to those skilled in the art (e.g. flanges), as shown in greater detail figures 10-12.

In particular, the microwave sources 14 comprise a first plurality of cartridge feeders 44, mutually aligned along a first longitudinal direction X’ parallel to the longitudinal axis X, and a second plurality of cartridge feeders 44 mutually aligned along a second longitudinal direction X”, also parallel to the longitudinal axis X and symmetrical with respect to the first direction X’.

As clearly shown in figure 7, each of the cartridge feeders 44 of the first plurality is also oriented in a first direction Z’ inclined with respect to the longitudinal axis X, while each of the cartridge feeders 44 of the first plurality is also oriented in a second direction Z” inclined with respect to the longitudinal axis X and defining an angle s smaller than the flat angle, preferably substantially a right angle with the first direction Z’.

Each of the aforesaid cartridge feeders 44 internally contains a plurality of microwaves generation devices 45, shown in greater detail in figure 12a, electrically connected to a processing and control unit (not shown), which also controls the operation of the pyrolysis device 1 of the invention as a whole.

Preferably but not exclusively, the second tubular body 1 1 also includes shielding means, generally designated by reference numeral 46, transparent to electromagnetic waves, interposed between the microwave heating sources 14 and the pyrolysis chamber 13 that they directly face, adapted to protect the microwave sources 14 against the high temperatures and against the corrosive and/or aggressive gases which develop in the pyrolysis chamber 13 during the respective pyrolysis treatment.

The detail in figure 12b shows that, more specifically, the shielding means 46 comprise for example:

- two main laminar plates 47, 48, each arranged in front of one of the two pluralities of described cartridge feeders 44 and made of refractory material with high mechanical strength (or mechanically robust material) transparent to electromagnetic waves, facing the pyrolysis chamber 13 and coupled to the inner wall 1 1 e of the second tubular body 1 1 by means of the supporting means, in the assembly indicated by reference numeral 49;

- two secondary laminar plates 50, 51 for each microwave generation device 45 and respective cartridge feeder 44, each made of a material which is transparent to microwaves E, the first of which (designated by reference numeral 50) facing the respective main laminar plate 47, 48 and the second of which (designated by reference numeral 51 ) facing microwave generation devices 45 and respective cartridge feeder 44; both secondary laminar plates 50, 51 are stably contained in a through hole 52 obtained in the second tubular body 1 1 .

More precisely, each main laminar plate 47, 48 extends over the entire axial length of the second tubular body 1 1 , to the inner wall 1 1 e of which it is removably and slidingly coupled by means of the aforementioned supporting means 49 which act as guiding means during the insertion into position (or installation) and/or the extraction of each main laminar plate 47, 48.

In accordance with the arrangement of the first and of the second plurality of cartridge feeders 44 described above and shown in figures 10-12 (which shows that such two pluralities are facing each other), the two main laminar plates 47, 48 also face each other, because each one is arranged in front of a specific plurality of cartridge feeders 44.

It is understood that in other embodiments of the pyrolysis device of the invention, not shown in the accompanying drawings, the shielding means may comprise a number of main laminar plates made of refractory material different from that indicated above, because such a number may be varied at will by the manufacturer or according to requirements in relation to the positioning of the second tubular body.

Likewise, also the number of secondary laminar plates for each of the cartridge feeders can be different from that described above in other executive solutions of pyrolysis device of the invention: In this case, again, such a number of secondary laminar plates may vary according to design choices starting from one, and therefore to the actual shielding level of the electromagnetic waves which must be obtained.

The supporting means 49 are arranged in the upper portion of the inner wall 1 1 e of the second tubular body 1 1 and define two mutually opposite longitudinal seats 53, 54, in which two longitudinal peripheral portions which are mutually opposite to the respective main laminar plates 47, 48 slide and remain housed, as shown in greater detail in figures 1 1 and 12.

In preferred but non-binding manner, the supporting means 49 comprise a plurality of laminar tongues 55, 56 mutually spaced apart and uniformly distributed along the longitudinal axis X, on a pair of mutually opposite laminar plates 57, 58 facing each other and projecting from the inner wall 1 1 e of the second tubular body 1 1 towards the pyrolysis chamber 13.

Of course, the laminar plates 57, 58 and the respective laminar tongues 55, 56 are defined both in front of the first plurality of cartridge feeders 44 to support the main laminar plate 47 and in front of the second plurality of cartridge feeders 44 to support the main laminar plate 48.

In the example of embodiment of pyrolysis device 1 of the invention described here, each of the two secondary laminar plates 50, 51 is stably sealed (e.g. by means of appropriate adhesives substances 59 foamed into position) to the inner surface 52a which delimits the through hole 52 of the second tubular body 1 1 and which is interposed between the microwave generation devices 45 and the respective main plate laminar 47 or 48.

It is stated precisely that, purely by way of preferred example, the transparent material of which each secondary laminar plate (or layer) 50, 51 is made is quartz glass: such a material effectively allows the passage of the microwaves E produced by the cartridge feeders 44 through each laminar plate 50, 51 but not of the gases which are developed during the pyrolysis treatment in the pyrolysis chamber 13. Some of the accompanying figures hereto used for the present description show that the second tubular body 1 1 preferably also comprises a plurality of terminal ducts 60 projecting from the upper portion of the outer wall 1 1 c of the second tubular body 1 1 and communicating with the pyrolysis chamber 13 to cool the electric part and electronics of microwaves sources 14.

Other embodiments of the pyrolysis device of the invention may evidently exist, not shown in hereinafter, in which the second tubular body includes a number of terminal ducts different from that shown in the figures mentioned hereto, because this number may vary according to operating requirements, starting from one.

Yet in figures 2 and 8, and in greater detail in figures 10-12, it can be observed that, in cross section, the pyrolysis chamber 13 advantageously but not necessarily has a profile which is at least partially polygonal, which promotes a more effective and more efficient diffusion of the microwaves E generated by the microwave sources 14 in the pyrolysis chamber 13 and on the polymeric material to be treated contained in the shaped carriage 5.

It follows that the microwave sources 14 are arranged, in this case, at two upper sides 61 , 62 of the at least partially polygonal profile of the pyrolysis chamber 13, so that the magnetic field generated by the microwave sources 14 focuses mainly, if not almost integrally, towards the central zone of the pyrolysis chamber 13, i.e. that in which the shaped carriage 5 loaded with the polymeric material to be treated is positioned.

It is worth noting that, for the purposes of clarification only, the two upper sides 61 , 62 of the at least partially polygonal profile of the pyrolysis chamber 13 are those which, in this case, are connected to each other by a curved portion 63.

Therefore, thanks to this constructional concept of the pyrolysis chamber 13, and of the consequent arrangement of the microwave sources 14, the magnetic field produced by the latter is almost entirely directed towards the center of the pyrolysis chamber 13 and therefore towards the polymeric material to be treated contained in the shaped carriage 5, without causing an excessive dispersion of such a magnetic field inside the pyrolysis chamber 13 itself, in the points in which there is no material to be treated (e.g., under the shaped carriage 5) or in which having the magnetic field itself is not required.

Indeed, the polygonal shape of the profile of the pyrolysis chamber 13 allows an effective play of reflections of the electromagnetic waves E generated by the cartridge feeders 44, accentuated by the shape of the shaped carriage 5 itself, which will be described below and which is characterized by squared stretches.

In essence, the at least partially polygonal profile of the pyrolysis chamber 13 allows maximizing the energy (or, in other words, increasing the density of the microwaves E) absorbed by the polymeric material to be treated present in the shaped carriage 5 and produced by the microwave sources 14, to the advantage of efficiency of the pyrolysis treatment and of the pyrolysis cycle as a whole.

On the other hand, the at least partially polygonal profile of the pyrolysis chamber 13 allows achieving a saving of material for manufacturing the second tubular body 1 1 , which can be quantified in a reduction of the volume of the pyrolysis chamber 13 equal to about 1 /3 with respect to a traditional type tubular body which typically has a circular profile.

The aforesaid reduction of size of the second tubular body 1 1 and thus of the volume of the pyrolysis chamber 13 - without being at the detriment of the pyrolysis device 1 and in particular of the pyrolysis treatment performed in this pyrolysis chamber 13, quite the opposite, in light of its advantageous profile as mentioned - also advantageously reflects, for example, in a smaller amount of inert gas (typically nitrogen) to obtain the effective cleaning of the pyrolysis chamber 13.

To compensate for the inevitable structural strains generated by the profile of the pyrolysis chamber 13, the second tubular body 1 1 conveniently comprises a finned outer structure 64, formed by a plurality of laminar fins 65, which are equally spaced apart from one another, projecting in uniform manner from the outer wall 1 1 c of the second tubular body 1 1 .

In preferred but non-exclusive and non-limiting manner, the pyrolysis device 1 of the invention also comprises auxiliary heating means, not shown in the accompanying figures for simplicity, and comprising, for example, at least one electrical resistance of known type to those skilled in the art.

Such auxiliary heating means, such as, for example, electrical resistances of the traditional type, are arranged on the bottom 1 1 d of the second tubular body 1 1 and inside the pyrolysis chamber 13, so as to be under the shaped carriage 5 when it is in the pyrolysis chamber 13 itself, and perform the function of preheating from ambient temperature the polymeric material to be subjected to pyrolysis treatment, present in the shaped carriage 5.

Basically, therefore, if present, the auxiliary heating means are activated before the microwave heating means 14, thus raising the temperature of the pyrolysis chamber 13, and thus of the polymeric material present in the shaped carriage 5, to a desired value (starting from the ambient temperature value): this allows optimizing the next amount of thermal energy which is supplied to the polymeric material by the microwave sources 14 for the pyrolysis thereof, the operational efficiency of which has been proven to be better when the polymeric material to be treated is already partially heated.

As shown in figure 1 , in cross section, the shaped carriage 5 has an at least partially polygonal profile, formed at least by a central flat portion 66 and by two peripheral longitudinal flat portions 67, 68, inclined with respect to the central portion 66 from which they depart in symmetrically opposite manner, so as to define an open squared inner seat 69, facing upwards and adapted to stably receive the polymeric material to be subjected to the pyrolysis treatment.

Indeed, figure 1 shows that each of the two flat peripheral longitudinal portions 67, 68 defines with the flat center portion 66 an obtuse inner angle which promotes the stable housing of the polymeric material in the inner squared seat 69.

The second tubular body 1 1 of pyrolysis device 1 of the invention preferably and advantageously further comprises fractionation means, not shown for convenience and consisting for example of a dephlegmator, of the vapors produced in the pyrolysis chamber 13 during the heat treatment and provided just above the furnace, connected to the auxiliary safety chimneys 42 from which the formed vapors exit.

In a preferred but not limiting manner, the second tubular body 1 1 also comprises means for modulating, also not shown for simplicity, of the microwave power E operatively connected to the microwave heating sources 14: they may be able to modulate the microwave power E by modulating the supply of electrical power of the microwave heating sources 14 and by activating the operation of only part of the microwave heating sources 14.

In this case, the auxiliary heating means may appropriately comprise one or more electrical resistors of traditional type or infrared rays, either instead or in combination therewith.

The movable center shutter 15, shown in detail in figures 13-23 and subject of possible and possibly separate, dedicated and independent patenting by filing a divisional application, conveniently appears as a box-like structure which comprises a fixed outer bearing casing 70 (either monolithic or composite) coupled to the first tubular body 3 and to the second tubular body 1 1 , and a movable inner assembly, indicated as a whole by reference numeral 71 , contained in the fixed outer bearing casing 70 to which it is coupled by means of main guiding means, indicated as a whole by reference numeral 72, and is operatively connected to the second actuating means 16 which enable it to slide vertically and alternately at least between:

• a lowered position, coinciding with the closing position of the movable shutter 15, in which the movable inner assembly 71 physically separates the initial chamber 4 and the pyrolysis chamber 13, making them independent, by closing an axial outlet mouth 73 of the first tubular body 3 and an axial inlet mouth 74 of the second tubular body 1 1 ;

• a raised position, coinciding with the opening position of the movable shutter 15, in which the movable inner assembly 71 puts the initial chamber 4 and the pyrolysis chamber 13 into mutual communication, by opening the axial outlet mouth 73 of the first tubular body 3 and the axial inlet mouth 74 of the second tubular body 1 1 .

Appropriately, in terms of safety and wear, the second actuating means 16 are contained inside the fixed outer bearing casing 70 of the movable center shutter 15, as shown in the sections in figures 14 and 19 and in the exploded views in figures 21 , 22 and 23.

It is worth noting that the main guiding means 72 are preferably arranged in the inner longitudinal surface 75a, 76a of two mutually opposite side walls 75, 76 of the fixed outer bearing casing 70 and cooperate with a transverse rod 77 belonging to the movable inner assembly 71 of the movable center shutter 15 and operatively connected to the second actuating means 16.

In particular, the main guiding means 72 preferentially comprise:

- a pair of mutually parallel and spaced apart vertical plates 78, 79, arranged in each of the side walls 75, 76 of the fixed outer bearing casing 70, to the inner longitudinal surface 75, 76 of which, a linear groove 80 open towards the inside of the fixed outer bearing casing 70 is fixed and identified therebetween;

- two ends 77a, 77b opposite to each other of the transverse rod 77, each of which is inserted into the linear groove 80 defined in one of the side walls 75,

76 of the bearing casing 70;

- two sliding elements 81 , 82 for each of the ends 77a, 77b of the transverse rod

77 to which they are coupled on opposite sides, interfering with an inner wall 78a, 79a of the vertical plates 78, 79.

In more detail, the two vertical plates 78, 79 are arranged in the upper middle line of each of the two mutually opposite lateral sides 75, 76 of the fixed outer bearing casing 70: this constructional detail is emphasized because it is of some relevance in relation to a further constructional assembly belonging to the movable inner assembly 71 of the movable center shutter 15, which will be described in greater detail below.

In a preferred but not exclusive way, the aforesaid second actuating means 16 comprise a pair of vertically actuated hydraulic actuators 83, 84, which are mutually parallel and spaced apart, each of which is provided with:

- a supporting cylinder 85 fixed, near a base wall 85a thereof, to the inner surface 86a of a lower lamina 86 of the fixed outer bearing casing 70;

- a force piston 87 coupled, near a free end 86a thereof external to the supporting cylinder 85, to one of the ends 77a, 77b of the transverse rod 77.

On the basis of this, the maximum allowable output of the force piston 87 by the supporting cylinder 85 is achieved when the movable inner assembly 71 of the movable center shutter 15 takes the raised position and forms the vertical stop point of the movable inner assembly 71 when passing from the lowered position to the raised position, while the maximum admitted return of the piston force 87 in the supporting cylinder 85 is achieved when the movable inner assembly 71 takes the lowered position and forms the vertical stop point of the movable inner assembly 71 when passing from the raised position to the lowered position.

By way of preferred but not limiting example, the movable inner assembly 71 comprises:

- a pair of compartmenting bulkheads, clearly visible in figures 21 and 22 and indicated as a whole respectively by reference numerals 88 and 89, facing each other, integral with the transverse rod 77 cooperating with the main guiding means 72 and operatively connected to the second actuating means 16: such two compartmenting bulkheads 88, 89 close, when the movable inner assembly 71 takes the lowered position, a pair of respective through apertures 90, 91 facing each other and opposite formed respectively in the front face 70a and the rear face 70b of the fixed outer bearing casing 70;

- feeding means, indicated as a whole by reference numeral 92, which, on the one hand, make the movement of the compartmenting bulkheads 88, 89 integral with the transverse rod 77 and, on the other hand, cooperate with two idle rollers 93, 94 projecting from the inner wall 88a, 89a of respective compartmenting bulkheads 88, 89 to which each one is made integral by means of a pair of supporting brackets 95, clearly shown in the enlargements in figures 22a and 23a.

According to the preferred embodiment described herein of the invention, the driving means 92, in this case, comprise a pair of separate, opposed and mutually facing rise wedges 96, 97, coupled to a base plate 98 operatively connected to the transverse rod 77.

Each of such rise wedges 96, 97 is provided with a sloping surface 96a, 97a, which cooperates by sliding, respectively, with the side wall 93a, 94a of the idle rollers 93, 94 during the passage of the movable inner assembly 71 from the lowered position to the raised position and vice versa to arrange the idle rollers 93, 94:

• close to a flat contrast surface 99, 100 adjacent to and encompassed between the rise wedges 96, 97, when the movable inner assembly 71 takes the raised position shown in figures 17-20 (Cf. the enlargement in figure 18a in particular);

• free from any contact when the movable assembly 71 takes the lowered position shown in figures 13-16 (Cf. the enlargement in figure 16 in particular).

More specifically, in the example described here, the flat contrast surface 99 belongs to a center zone of the base plate 98 (for the idle roller 94), while the flat contrast surface 100 belongs to a laminar fin 101 , projecting from the sloping surface 96a of one of the rise wedges 96, 97 laterally and towards the main development axis of a base plate 98 from which it is separated (for the idle roller 93).

Also for the feeding means, it is understood that in other embodiments of the invention, not shown in the accompanying drawings, they may comprise a different number of rise wedges from two, since such a number may vary according to design choices, starting from one; it is apparent that in these circumstances, also the number of idle rollers and flat contrast surfaces will vary in accordance, remaining equal to that of the rise wedges.

In particular, if a single idle roller is included in the presence of a single rise wedge, the idle roller itself will be coupled only to one of the compartmenting shutters of the movable inner assembly, provided that the two shutters are mutually integral also in the raising and lowering motion to open and close the through apertures which are presented thereto, respectively.

In appropriate but not limiting manner, the compartmenting bulkheads 88, 89 and the through apertures 90, 91 have in cross section at least partially polygonal profile substantially equal to and mating with that of the shaped carriage 5 and of the profile of the pyrolysis chamber 13, so as to allow the precise sliding passage along the longitudinal axis X of the shaped carriage 5 through the movable center shutter 15. Particularly, figures 13, 21 -23 show that each compartmenting bulkhead 88, 89 has a reticular structure which, at the same time guarantees adequate mechanical strength or reinforcement for the movable center shutter 15 and offers the possibility to position refractory material resistant to high temperatures inside it, as will soon be described in greater detail.

Preferably but not necessarily, the movable inner assembly 71 also comprises:

- a pair of shaped closure wedges 102, 103, connected to the transverse rod 77 by means of at least one supporting column 104, 105 which keeps the shaped wedges 102, 103 constructionally and functionally integral with each other and vertically step-spaced apart;

- a first pair of shaped pressing wedges 106, 107 mutually facing and opposite, one integral with the inner wall 88a of the compartmenting bulkhead 88 and the other integral to the inner wall 89a of the compartmenting bulkhead 89, both cooperating with one of the shaped closure wedges 102, 103 when the movable inner assembly 71 is in the lowered position;

- a second pair of shaped pressing wedges 108, 109 mutually facing and opposite, one integral with the inner wall 88a of the compartmenting bulkhead 88 and the other integral to the inner wall 89a of the compartmenting bulkhead 89, underneath respective pressing wedges 106, 107 and cooperating with one of the shaped closure wedges 102, 103 when the movable inner assembly 71 takes the lowered position.

The shaped closure wedges 102 and 103 cooperate respectively with the first pair of shaped pressing wedges 106, 107 and with the second pair of pressing wedges 108, 109 to ensure a tight closing of the through apertures 90, 91 , as well as of the axial outlet mouth 73 of the first tubular body 3 and of the axial inlet mouth 74 of the second tubular body 1 1 facing such through apertures 90, 91 .

As shown in particular in figures 21 and 22, each of the compartmenting bulkheads 88, 89 comprises an inner laminar plate 1 10 supporting two of said shaped pressing wedges 106, 107 and 108, 109, and a three-dimensional reticular body 1 1 1 coupled with the inner laminar plate 1 10.

In more detail, the compartmenting bulkhead 88 supports the shaped pressing wedges 106 and 108, while the compartmenting bulkhead 89 supports the shaped pressing wedges 107 and 109.

Furthermore, the three-dimensional reticular body 1 1 1 preferably comprises refractory material, such as poured concrete (not shown for simplicity), adapted to protect each of the compartmenting bulkheads 88, 89 against the high temperatures which develop inside the pyrolysis chamber 13 during the pyrolysis treatment. Advantageously, each of the shaped closure wedges 102, 103 has in cross section a composite polygonal profile, tapered from the top downwards, comprising at least:

- a pair of first mutually converging linear stretches 1 12, arranged near the free end 102a, 103a of each of the shaped closure wedges 102, 103 and defining an inclined plane which forms a first acute angle a with a horizontal plane passing through a flat end surface 1 13 of each of the shaped closure wedges 102, 103; - a pair of second mutually converging linear stretches 1 14, arranged near the central part 102b, 103b of each of the shaped closure wedges 102, 103 and defining an inclined plane which forms a second acute angle b with the horizontal plane passing through said flat end surface 1 13 of each of the shaped closure wedges 102, 103; such a second acute angle b is greater than the first acute angle a.

In particular, the first linear stretches 1 12 of each shaped closure wedge 102, 103:

• cooperate by sliding with a first oblique linear wall 106a, 107a, 108a, 109a of each of the shaped pressing wedges 106, 107, 108, 109 during the initial part of the vertical stroke of the movable inner assembly 71 from the raised position to the lowered position, moving the compartmenting bulkheads 88, 89 away from each other by a first distance, to eliminate the existing initial clearance and avoid an excessive vertical stroke of the compartmenting bulkheads 88, 89;

• are partially encompassed between the shaped pressing wedges 106, 107, 108, 109 and partially (for a rounded tip 1 19) protrude from a lower wall 106b, 107b, 108b, 109b of each of said shaped pressing wedges 1 06, 107, 108, 109 at the end of the vertical stroke of the movable inner assembly 71 which arranges the latter in the lowered position in figure 16 and in detail in figure 16a;

• cooperate by sliding with the first oblique linear wall 106a, 107a, 108a, 109a of each of the shaped pressing wedges 106, 107, 108, 109 during the final part of the vertical stroke of the movable inner assembly 71 from the lowered position to the raised position, bringing the compartmenting bulkheads 88, 89 closer to each other by the first distance;

• almost totally protrude from an upper wall 106c, 107c, 108c, 109c of each of the shaped pressing wedges 106, 107, 108, 109 at the end of the vertical stroke of the movable inner assembly 71 which arranges the latter in the raised position in figure 18 and in the detail in figure 18a.

For their part, instead, the second linear portions 1 14 of each of the shaped closure wedge 102, 103:

• cooperate by sliding with a second oblique linear wall 106d, 107d, 108d, 109d, more inclined with respect to the first oblique linear wall 106a, 107a, 108a, 109a in relation to the horizontal plane, of each of the shaped pressing wedges 106, 107, 108, 109 during the final part of the vertical stroke of the movable inner assembly 71 from the raised position to the lowered position, moving the compartmenting bulkheads 88, 89 away from each other by a second distance, to provide a lateral or horizontal thrust to the compartmenting bulkheads 88, 89 which determines the tight closure of the through apertures 90, 91 ;

• are encompassed between the shaped pressing wedges 106, 107, 108, 109 and in contact with the second oblique linear wall 106d, 107d, 108d, 109d of each of the shaped pressing wedges 106, 107, 108, 1 09 at the end of the vertical stroke of the movable inner assembly 71 which arranges the latter in the lowered position;

• cooperate by sliding with the second oblique linear wall 106d, 107d, 108d, 109d of each of the shaped pressing wedges 106, 107, 108, 109 during the initial part of the vertical stroke of the movable inner assembly 71 from the lowered position to the raised position, thus bringing the compartmenting bulkheads 88, 89 closer to each other by the second distance;

• totally protrude from an upper wall 106c, 107c, 108c, 109c of each of the shaped pressing wedges 106, 107, 108, 109 at the end of the vertical stroke of the movable inner assembly 71 which arranges the latter in the raised position.

More particularly, it is worth noting that the first distance is greater than the second distance so that the lateral thrust applied on the respective shaped pressing wedges 106, 107, 108, 109 by the first linear portions 1 12 of the shaped closure wedges 102, 103 is greater than that of the second linear portions 1 14 of the shaped closure wedges 102, 103.

As a function of the appropriate although not essential presence of the shaped closure wedges 102, 103, it is apparent that the feeding means 92 are coupled to an upper wall 103c of the wedge-shaped closure 103, that between the two more smaller according to a vertical direction and that which, to all effects, operatively connects the feeding means 92 to the transverse rod 77.

Figures 14, 19, 21 , 22 and 23 show that, even more advantageously but not exclusively, each compartmenting bulkhead 88, 89 is slidably coupled by means of auxiliary guides, designated as a whole by reference numeral 1 15, with a pair of supporting uprights 1 16, 1 17 parallel to each other and spaced apart, interposed between the two mutually opposite lateral sides 75, 76 of the fixed outer bearing casing 70 and the compartmenting bulkheads 88, 89 themselves: the supporting uprights 1 16, 1 17 are fixed to a lower plate 86 of the fixed outer bearing casing 70. Such auxiliary guiding means 1 15 are therefore conveniently contained in the fixed outer bearing casing 70 of the wing of the centerline 15 and hidden from view. Preferably, each of the supporting uprights 1 16, 1 17 has an open-profile linear recess to 1 18, passing through the thickness of the supporting uprights 1 16, 1 17 at the upper end 1 16a, 1 17a: the transverse rod 77 fits inside the through recess linear 1 18 for a respective section when the movable inner assembly 71 takes the lowered position and protrudes from the through linear recess 1 18 during the passage of the movable inner assembly 71 from the lowered position to the raised position described above.

In the figures mentioned hereto, it is also worth noting that the auxiliary guiding means 1 15 are arranged below the main guiding means 72 and receive two vertical edges 88b, 88c, 89b, 89c mutually opposed to each compartmenting bulkhead 88, 89 when the movable inner assembly 71 takes the lowered position.

Preferentially but not necessarily, the auxiliary guiding means 1 15 comprise, for each of the supporting uprights 1 16, 1 17, a pair of longitudinal grooves 120, 121 , mutually parallel and placed side-by-side and communicating with the outside frontally and superiorly, in which the vertical edges 88b, 88c and 89b, 89c of the compartmenting bulkheads 88, 89 are engaged.

More in detail, figures 22 and 23 and their respective enlargements in figures 22a and 23a show that each of the longitudinal grooves 120, 121 is:

- opened at an upper end where it has an access mouth 123 which allows the compartmenting bulkheads 88, 89 to decouple from the auxiliary guiding means 1 15 in the passage of the movable inner assembly 71 from the lowered position to the raised position and to mate with the auxiliary guiding means 1 15 themselves in the reverse passage;

- closed at a lower end where it has a limit stop partition 124 against which a peripheral portion 125 of a lower edge 88d, 89d of the compartmenting bulkheads 88, 89 contrasts when the movable inner assembly 71 takes the lowered position. In a particularly advantageous way, each of the longitudinal grooves 120, 121 ends at the respective lower end with a curved portion 126 which is closed by the aforesaid limit stop partition 124 and in which each of the vertical edges 88b, 88c and 89b, 89c of the compartmenting bulkheads 88, 89 is forced by the shaped closure wedges 102, 103 in order to further increase the tightness and sealing of the closure of the through apertures 90, 92 present in the compartmenting bulkheads 88, 89.

Figures 13, 14, 17, 19 and 20 show that, by way of preferred and not binding example, the movable center shutter 15 includes a plurality of interface ducts 127, coupled to the outer wall 70c of the fixed outer bearing casing 70 (more precisely of the side wall 75) of the movable center shutter 15 and arranged for extracting air from the fixed outer bearing casing 70 and for introducing an inert gas (which is typically nitrogen) under pressure in the fixed outer bearing casing 70.

By virtue of the latter constructional arrangement, together with the fact that the movable center shutter 15 has an extremely compact box-like structure, the movable shutter 15 itself is also configured as a sort of pressure chamber, in which the nitrogen (introduced at a pressure higher than that of the nitrogen contained in the initial chamber 4 and of the gases in the pyrolysis chamber 13):

• facilitates the sealing contact of the compartmenting bulkheads 88, 89 on the fixed outer bearing casing 70;

• contributes to avoiding the risk of explosion, because the inert gas, even in the presence of a minimum but dangerous leakage through the movable center shutter 15 (when the movable part thereof - the movable inner assembly 71 - is in the lowered position in figure 14) for the fumes or gases produced in the pyrolysis chamber 13 during the pyrolysis treatment of polymeric material present on the shaped carriage 5.

Therefore, the movable center shutter 15 is a physical structural barrier, resistant to the corrosive agents which are inevitably developed during the pyrolysis process, which is maintained stably in position, for which the movable inner assembly 71 takes the lowered position, when the pyrolysis treatment of the polymeric material is in progress inside the pyrolysis chamber 13, which ensures high safety conditions for operators, personnel and the environment. Further constructional embodiments of pyrolysis device of the invention, not shown in the accompanying drawings, may include that the movable center shutter comprises a number of interface ducts different from that shown in the accompanying figures, because this number may vary according to the requirements starting from one.

Advantageously but not limitedly, the outer fixed bearing casing 70 of the movable center shutter 15 has in an upper lamina 128, a through slot 129 which promotes the extraction, for any reason, of the movable inner assembly 71 of the movable shutter 15 and/or the inspection, maintenance, repair and/or replacement of the inner volume of the outer fixed bearing casing 70 or of the components of the movable inner assembly 71 .

Equally advantageously but not necessarily, the outer fixed bearing casing 70 of the movable center shutter 15 has in the side surface 70d one or more revolving service doors 130 to allow the access, inspection, maintenance, repair and/or replacement of the components of the movable inner assembly 71 or the simple cleaning of the inside of the outer fixed bearing casing 70.

In other embodiments of the pyrolysis device of the invention, not shown in the accompanying figures, the fixed outer bearing casing of the movable center shutter may have a different number of service through holes from that shown in accompanying figures because this number may vary according to design choices and/or operating requirements, starting from one.

In preferred but not essential manner, the movable center shutter 15 also comprises, within its box-like structure, a sealing gasket 131 made of soft (e.g. elastomeric) material of inflatable type, interposed between the movable inner assembly 71 and the fixed outer bearing casing 70, as shown in the enlarged detail in figure 16a.

Still advantageously, the pyrolysis device 1 of the invention also comprises a metal sealing gasket 132, also shown in the enlarged detail in figure 16a, arranged on the outside of the box structure of the movable center shutter 15 and, more particularly, interposed between the fixed outer bearing casing 70 of the fixed outer bearing casing 70 and the second tubular body 1 1 .

More than one sealing gasket made of soft material and one metal sealing gasket may be present in alternative embodiments, not shown, of the pyrolysis device of the present invention.

Figure 24 shows a first possible variant of the invention in which the pyrolysis device, designated here as a whole by reference numeral 200, differs from that previously described designated by reference numeral 1 primarily due to the fact that both the first tubular body 202 and the second tubular body 210 consist of a pair of modular elements flanged to each other which doubles the length thereof with respect to that of the corresponding components 2 and 1 1 of the pyrolysis device 1 of the invention: this provides an alternative industrial device which, by virtue of this constructional arrangement, has a greater production capacity than that of the pyrolysis device 1 of the invention.

Another substantial difference between the pyrolysis device 1 described above and the pyrolysis device 200 disclosed in this step of the description of the invention is related to the fact that, in an appropriate but non-binding manner, the pyrolysis device also comprises two third tubular bodies 216, 217 arranged in series and coaxial with each other and with the second tubular body 210 and the first tubular body 202, along the longitudinal axis X.

Both the third tubular bodies (or tubular extension bodies, in the specific case) 216, 217 are arranged in mutually axial and consecutive manner downstream of the second tubular body 210 from which are physically separated and with which only the third tubular body 216 directly and temporarily communicates.

The third tubular bodies 216, 217 are also physically separated and made independent from one another by the closure means, indicated as a whole by reference numeral 21 1 , which, in given operating conditions, are put temporarily in communication: in essence, therefore, these closure means 21 1 , which, as will be explained shortly, comprise compartmenting doors, perform the function of hermetically separating, for a given interval of time, the interior of the process chambers (or cells) of the pyrolysis device 200 from one another, while inside them, in particular inside the pyrolysis chamber 212, the respective treatment provided by the process itself is performed.

Thereby, the closure means 21 1 isolate and make the process chambers of the pyrolysis device 200 mutually independent in relation to the environmental conditions which are generated inside them, such as developed aggressive gases, pressures, temperatures and anything else.

Furthermore, the third extension tubular body 216 has a final cooling chamber 218 which receives the shaped carriage 204 containing the residues of the newly treated polymeric material exiting from the pyrolysis chamber 212 of the second tubular body 210, while the third extension tubular body 217 (in series and successive to the third tubular body 216) has a final cooling chamber 219 which also receives the shaped carriage 204 coming from the final cooling chamber 218 of the third tubular body 216.

Thus, in brief, in this solution of embodiment of the invention, the shaped carriage 204 continues always forwards along the longitudinal axis X, during the cycle of pyrolysis, without ever traveling backwards, as occurs for the shaped carriage 5 of the pyrolysis device 1 .

It follows that the third tubular extension body 216 (and thus the third tubular extension body 217 successive to and distinct from it) is arranged downstream of the second tubular body 210 from a constructional, not only from a functional, point of view, always advancing in any case following a single direction, given by the arrow H in figure 24, along the longitudinal axis X.

To summarize, the third tubular body 216 is thus a distinct and separate mechanical piece from the first tubular body 202 (unlike the third tubular body of the pyrolysis device 1 which could be defined as such by semantic artifice only which is perfectly valid and verified from the functional point of view, as mentioned) and from the second tubular body 210 with respect to which it is:

• arranged downstream, resulting axially opposite to the first tubular body 202 arranged functionally upstream of the second tubular body 210;

• physically separated by the closure means 21 1 interposed between the outlet mouth 220 of the second tubular body 210 and the inlet mouth (not numbered for simplicity of explanation, in any case defined at the second head 216b) of the third tubular body 216.

Therefore, on the basis of the technical features described above, the pyrolysis device 200 of the invention has a high productive capacity, certainly greater than that of the pyrolysis device 1 of the invention described before, because it allows continuously loading the initial chamber 203 with a shaped carriage 204 filled with polymeric material to be treated, while at the same time, the next pyrolysis chamber 212 is processing the polymeric material contained in another shaped carriage 204 and the next final cooling chambers 218, 219 are finishing the complete pyrolysis cycle on the polymeric material already treated (or subjected to pyrolysis) and contained in the other shaped carriages 204, thus eliminating the operation downtimes which are encountered, instead, in the pyrolysis device 1 of the invention when the shaped carriage 5, with the polymeric material already been treated, returns into initial chamber 4 from the pyrolysis chamber 13.

Preferably, both the third tubular body 216 and the third tubular body 217 of pyrolysis device 200 of the invention have a constructional structure substantially equal to that of the first tubular body 202, in which the final chamber cooling of 218 and 219 is subjected to the action of cooling devices (not shown for simplicity) adapted to cool the residues deriving from the thermal pyrolysis treatment performed on the polymeric material.

In this case, in accordance with the elongated structure 201 which distinguishes the pyrolysis device 200 of the invention, the closure means 21 1 physically separate also the third tubular extension body 216 from the third tubular extension body 217, with the latter normally closed at a first head 217a.

In preferred but not exclusive manner, the closure means 21 1 firstly comprise a first auxiliary movable center shutter 221 interposed between the second tubular body 202 and the third tubular body 216, opposite to and facing the movable center shutter 214 and cooperating with third actuating means (not shown in the accompanying figures but of the same type as the second actuating means 16 provided on the movable shutter 15 of the pyrolysis device 1 ).

The third actuating means move the first auxiliary movable shutter 221 alternately between a closed position, in which the first auxiliary movable shutter 221 keeps the pyrolysis chamber 212 and the final cooling chamber 218 mutually insulated (and hermetically closes the third tubular body 216 at least at the height of the second head 216b), and an open position in which the first auxiliary movable shutter 221 connects the pyrolysis chamber 212 to the chamber cooling end 218 (which in figure 24 is the last chamber of the cycle).

In greater detail, the first rear movable shutter 221 is arranged at the inlet mouth of the third tubular body 216 and the outlet mouth 220 of the second tubular body 210 from which the shaped carriage 204 exits at the end of the pyrolysis treatment in the pyrolysis chamber 212.

Similarly, the closure means 21 1 firstly also comprise, in this case, a second auxiliary movable center shutter 222 interposed between the third tubular body 216 and the third tubular body 217, opposite to and facing the first movable center shutter 221 and cooperating with fourth actuating means (not shown in the accompanying figures but of the same type as the second actuating means 16 provided on the movable shutter 15 of the pyrolysis device 1 ).

Also the third actuating means move the second auxiliary movable shutter 222 alternately between a closing position, in which the first auxiliary movable shutter 221 keeps the pyrolysis chamber 218 and the final cooling chamber 219 mutually insulated and hermetically closes the third tubular body 217 at least at the height of the second head 217b, and an opening position, in which the second auxiliary movable shutter 221 puts the final chamber 218 into communication with the final chamber 219.

Advantageously but not necessarily, the first auxiliary movable center shutter 221 and the second auxiliary movable center shutter 222 have the same construction as the movable center shutter 214 (which is the possible subject of separate patenting, and therefore protection, as already pointed out above and assumed) thus promoting the creation of economies of scale in their manufacture.

In a preferred but not limiting manner, the third tubular body 217 (the last one of the pyrolysis device 200, following the direction given by arrow H) is provided at the first head 217a of a rear movable shutter 223 operatively connected to third actuating means, not shown, which alternately move between a first position, in which the rear shutter 223 closes from an outer side 219a the final cooling chamber 219, and a second position in which the rear flap 223 opens the final cooling chamber 219 from such an outer side 219a, by putting it into communication with the outside environment for extracting the shaped carriage 204 at the end of the pyrolysis cycle. As regards the second moving means (not shown in figure 24) installed in the pyrolysis chamber 212, in this case, they cooperate with third moving means (also not shown), which are installed in both final cooling chambers 218, 219 and at the bottom of the respective tubular extension bodies 216, 217 and are operatively connected to a third driving means, designated as a whole by reference numeral 224, to determine the advancement of the shaped carriage 204 along said longitudinal axis X (and according to the arrow H) from the pyrolysis chamber 212 to the final chamber 218 and from here to the next chamber 219.

It is understood that in further embodiments of the invention, not accompanied by reference drawings, the pyrolysis device may comprise a number of tubular extension bodies, normally closed at a first head and arranged functionally and constructionally downstream of the second tubular body, which is different from two, since this number may vary according to production requirements (and obviously the spaces available at the processing plant), starting from one.

Operatively, we will primarily describe the most congenial operation of the pyrolysis device 200 of the invention primarily, which is substantially as follows.

When it is started for the first time, it is necessary replace the air with the inert gas (which is preferably nitrogen) in the process chambers 203, 212, 218 and 219 of pyrolysis device 200 of the invention.

To start this procedure, it is firstly necessary to close the front movable shutter 207 and the rear movable shutter 223 of the device 200 (already in the startup phase, it is possible to introduce the shaped carriage 204, loaded with polymeric material to be subjected to pyrolysis, e.g. thirty end-of-life tires in the initial washing or drainage chamber 203), while the movable center shutters 214, 221 and 222 - inside the elongated structure 201 of the pyrolysis device 200 - arranged between the various process chambers 203, 212, 218 and 219 may be left in the respective opening position during this first step of the start-up phase.

By means of the appropriate flanged interface chimneys (in figure 24, visible only for the pyrolysis chamber 212 in which they are designated by reference numeral 225) present in the various process chambers 203, 212, 218 and 219, air is extracted and nitrogen is let in (nitrogen, which as mentioned, is an inert, odorless and colorless gas): appropriately, this operation should be repeated several times so as to extract with great probability all oxygen components present in the atmosphere inside the process chambers 203, 212, 218 and 219 of pyrolysis device 200 of the invention. Once the air has been replaced with the inert gas in the entire pyrolysis device 200, the movable center shutters 214, 221 and 222 are closed (of course, if they have been left open during the preliminary start-up phase), the last air is extracted from the pyrolysis chamber 212 and the cycle procedure continues.

At the beginning of a complete pyrolysis cycle, after performing the start-up procedure, both the movable front shutter 207 and the movable rear shutter 223 take the previously defined first position and all the movable center shutters 214, 221 and 222 of the pyrolysis device 200 take the closing position.

To start the cycle, the movable front shutter 207 for entering the initial washing or drainage chamber 203 and the shaped carriage 204 is introduced inside loaded with the polymeric material to be subjected to pyrolysis, accommodated for the treatment.

Once having closed and compartmented the initial room 203 by activating the first actuating means 209, the air is extracted and the inert gas is introduced (such as nitrogen, as mentioned), again in this case, advantageously but not necessarily repeating the process several times to replace all the air present in the pyrolysis device 200 with the inert gas, with the appropriate but not absolute arrangement of including a final extraction of the air and of the introduced nitrogen.

At the end of this phase, the pressure between the initial washing or drainage chamber 203 and the next pyrolysis chamber 212 is equalized.

When the pressures between the aforesaid two process chambers 203 and 212 are equalized by means of the second actuating means (not shown in figure 24), only the movable center shutter 214 which puts the two chambers 203 and 212 into communication is opened and by automatic actuating the first driving means 227 and the first moving means 226 coupled thereto, the shaped carriage 204 is transferred from the initial chamber 203 to the pyrolysis treatment chamber 212. When the movable center shutter 214 is then closed by actuating the second actuating means, the heating of the polymeric material is started (especially ELTs, e.g. thirty tires) first electrically - by means of the optional electrical resistors (not shown in figure 24) installed in the pyrolysis treatment chamber 212 - and then by the microwave sources 213, thus implementing the pyrolysis thermal treatment. After completing the pyrolysis treatment, before the opening of the next auxiliary movable shutter 221 and the advancement of the shaped carriage 204 along the longitudinal axis X according to arrow H, the pressure is equalized again between the pyrolysis treatment chamber 212 and the cooling chamber 218 of the tubular extension body 216.

After completing such a new pressure equalization phase, it is possible to open the auxiliary movable center shutter 221 which puts the cooling chamber 218 into communication with the pyrolysis chamber 212 and by operating automatically by means of the second moving means transfer the shaped carriage 204 into the cooling chamber 218, closing the auxiliary movable shutter 221 again at the end of transfer along the longitudinal axis X, according to the arrow H.

The shaped carriage 204 is then left in the cooling chamber 218 for the time necessary to cool the process residues, while maintaining the vacuum inside it to extract of emanated gases.

After cooling, it is possible to open the auxiliary movable center shutter 222 and then exit the cooling chamber 218 the shaped carriage 204 containing the residual elements of the pyrolysis treatment.

In entirely identical way, the shaped carriage 204 is then transferred to the final cooling chamber 219, by virtue of the actuation of the third moving means and from here towards the outside after having completed the pyrolysis cycle.

Before removing the shaped carriage 204 from the pyrolysis device 200 with the treatment residues a washing cycle is performed with suction and introduction of nitrogen into the cooling chamber 218, then balancing the pressure with the outside environment and finally opening the rear shutter 223.

The operation of the pyrolysis device 1 of the present invention is substantially the same as that just described for the pyrolysis device 200, especially from the point of view of the operation of the single process cells (or chambers) 4 and 13 and of the movement therebetween of the shaped carriage 5 by means of the opening and closing cycles of the movable center shutter 14 which can be obtained by actuating the second actuating means 16.

It is worth noting that the shaped carriage 5 is smaller in size than the shaped carriage 204, because the initial chamber 4 is smaller than the initial room 203: therefore, the shaped carriage 5 may contain a smaller amount of ELTs than shaped carriage 204.

The only substantial difference between the operation of pyrolysis device 1 and that of the pyrolysis device 200 derives from the fact that, at the end of the treatment of the polymeric material in the pyrolysis chamber 13, the shaped carriage 5 is moved axially along the longitudinal axis X, by the second moving means 31 , in cooperation with the first moving means 23, according to the direction given by the arrow G in figure 1 , which is opposite to that given by the arrow F, with which it was initially introduced into the initial washing or drainage chamber 4 of the first tubular body 3 and then into the pyrolysis chamber 13 of the second tubular body 1 1 .

On the basis of this description, it is therefore understood that the pyrolysis device for disposal of polymeric materials, especially end-of-life tires (ELTs), which is the subject of the present invention achieves the aims and offers the advantages mentioned previously.

Upon execution, changes may be made to the concerned pyrolysis device of the present invention, consisting, for example, in a length of the initial washing or drainage chamber and/or the pyrolysis chamber of pyrolysis treatment different from which can be obtainable from the accompanying figures.

Particularly, each initial washing or drainage chamber and each final cooling chamber may have, in other embodiments of the pyrolysis device of the present invention not accompanied herein by reference to figures, a modular composition different from that shown in the accompanying figures, according to the amount of polymeric material that it is desired to process in the unit of time (in other words, according to production efficiency needs) and the consequent overall duration of the processing cycle.

Additionally, further embodiments of the invention, also not shown in the accompanying drawings, the pyrolysis device may comprise a number of microwave heating sources coupled to the second tubular body different from that shown in the figures of these drawings, because this number may vary according to production requirements, design choices and constructional concept, starting from one.

Furthermore, in other optional embodiments of the pyrolysis device of the present invention, not disclosed hereinafter, the first tubular body and/or the second tubular body may be provided with a number of interface chimneys different from that one previously described and shown in the accompanying drawings, since such a number also vary in this case according to requirements and design and operational choices, starting from one.

The variability of the number of such interface chimneys also depends on the fact that the use thereof could not be finalized only at replacing the air with an inert gas in the initial washing or drainage chamber, in the pyrolysis chamber (at least before performing the pyrolysis treatment therein) and/or in the at least one final cooling chamber but also to the installation of measuring instruments which may be deemed useful to the control of the process in progress.

Alternative and optional embodiments of the invention, again not shown, may provide that only the first body or only the second tubular body comprise one or more interface chimneys for extracting air from the respective process chambers or introducing nitrogen therein.

Yet further, in further applicative and operative embodiments of the pyrolysis device of the invention, not covered in the proceeding description, only the initial chamber or only the pyrolysis chamber may require the replacement of air with an inert gas through the interface chimneys.

In addition to this, other embodiments of the pyrolysis device which is exclusively disclosed herein, not shown below, in which the first actuating means and second actuating means are of a different type from that described above, without impairing the advantage provided by the present invention.

In particular, the pyrolysis device of the invention lends itself to exploit at least part of the process for the pyrolysis of end-of-life tires (ELTs) described in the patent document published under WO2012/220991 A1 , the teachings of which are incorporated by reference in the present description.

Finally, it is apparent that many other variants may be made to the concerned pyrolysis device, without departing from the principles of novelty inherent in the inventive idea, just as it is apparent that in the practical implementation of the invention, the materials, shapes and sizes of the details shown may be any according to the requirements and may be replaced by other technically equivalent elements.

Where the constructional features and techniques mentioned in any one of the following claims are followed by references signs or numerals, such reference signs were introduced for the sole purpose of increasing intelligibility of the claims themselves and therefore such reference signs have no limiting effect on the interpretation of each element identified by way of example only by such reference signs.