Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
QUATERNIZED POLYETHERAMINES AND USE THEREOF AS ADDITIVES IN FUELS AND LUBRICANTS
Document Type and Number:
WIPO Patent Application WO/2013/064689
Kind Code:
A1
Abstract:
The present invention relates to innovative quaternized polyetheramines and to the preparation thereof. The present invention further relates to the use of these compounds as a fuel and lubricant additive. More particularly the invention relates to the use of these quaternized nitrogen compounds as a fuel additive for reducing or preventing deposits in the injection systems of direct injection diesel engines, especially in common rail injection systems, for reducing the fuel consumption of direct injection diesel engines, especially of diesel engines with common rail injection systems, and for minimizing power loss in direct injection diesel engines, especially in diesel engines with common rail injection systems. The invention also provides additive packages comprising these polyetheramines, and fuels and lubricants additized therewith. The invention further relates to the use of these quaternized nitrogen compounds as an additive for gasoline fuels, especially for improving the intake system cleanliness of gasoline engines.

Inventors:
HANSCH MARKUS (DE)
BOEHNKE HARALD (DE)
VOELKEL LUDWIG (DE)
WALTER MARC (DE)
GRABARSE WOLFGANG (DE)
Application Number:
PCT/EP2012/071844
Publication Date:
May 10, 2013
Filing Date:
November 05, 2012
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
BASF SE (DE)
International Classes:
C10L1/22; C10L1/222; C10L10/04; C10L10/06; C10M133/08; C10M149/12
Domestic Patent References:
WO1994001517A11994-01-20
WO2006135881A22006-12-21
WO1985000620A11985-02-14
WO1994024231A11994-10-27
WO1997003946A11997-02-06
WO1996003367A11996-02-08
WO1996003479A11996-02-08
WO1987001126A11987-02-26
WO1999029748A11999-06-17
WO2005054314A22005-06-16
WO2004035715A12004-04-29
WO1993018115A11993-09-16
WO2000044857A22000-08-03
WO1998004656A11998-02-05
WO2000047698A12000-08-17
Foreign References:
US3362801A1968-01-09
US4581151A1986-04-08
EP0182669A11986-05-28
DE2545163A11976-04-15
CN102108054A2011-06-29
DE3319509A11984-11-29
US20090293763A12009-12-03
JP2006290956A2006-10-26
DE10239841A12004-03-11
US20080113890A12008-05-15
US6331648B12001-12-18
EP0182669A11986-05-28
US4564372A1986-01-14
US4581151A1986-04-08
US4600409A1986-07-15
DE4325237A11995-02-02
DE10243361A12004-04-01
DE19620262A11997-11-27
EP0476485A11992-03-25
EP0307815A11989-03-22
EP0639632A11995-02-22
EP0310875A11989-04-12
EP0356725A11990-03-07
EP0700985A11996-03-13
US4877416A1989-10-31
DE3838918A11990-05-23
EP0831141A11998-03-25
DE3826608A11990-02-08
DE4142241A11993-06-24
DE4309074A11994-09-22
EP0452328A11991-10-23
EP0548617A21993-06-30
DE10102913A12002-07-25
EP0061895A21982-10-06
US4491455A1985-01-01
EP0261957A21988-03-30
US6743266B22004-06-01
EP1591466A12005-11-02
Other References:
MOMOHARA ET AL: "Spectrophotometric assay of a wood preservative, N,N-didecyl-N-methyl-poly(oxyethyl)ammonium propionate (DMPAP), in aqueous solution", J WOOD SCI, vol. 57, 26 February 2011 (2011-02-26), pages 166 - 169, XP002666600
CRETU STELIANA ET AL: "Note about the behavior of some surfactants in the process of stabilization of the MoS2 suspension in mineral oil", BULETIN STIINTIFIC : B, UNIVERSITATEA POLITEHNICA DIN BUCURE TI = SCIENTIFIC BULLETIN, POLITEHNICA UNIVERSITY OF BUCHAREST. SERIES B, CHEMISTRY AND MATERIALS SCIENCE, UNIVERSITATEA POLITEHNICA DIN BUCURE TI, PL, vol. 55, no. 1-2, 1 January 1993 (1993-01-01), pages 141 - 145, XP009155197, ISSN: 1220-305X
M. ROSSENBECK: "Katalysatoren, Tenside, Mineralöladditive", 1978, G. THIEME VERLAG, pages: 223
N. A. PLATE; V. P. SHIBAEV: "Comb-Like Polymers. Structure and Properties", J. POLY. SCI. MACROMOLECULAR REVS., vol. 8, 1974, pages 117 - 253, XP009033606, DOI: doi:10.1002/pol.1974.230080103
"Ullmann' s Encyclopedia of Industrial Chemistry", vol. A12, pages: 617 FF
Attorney, Agent or Firm:
REITSTÖTTER KINZEBACH (DE)
Download PDF:
Claims:
Patentansprüche

1 . Kraftstoff- oder Schmierstoffzusammensetzung, enthaltend in einem üblichen Kraft- oder Schmierstoff wenigstens ein eine quaternisierte Stickstoffverbindung umfassendes Reaktionsprodukt, wobei das Reaktionsprodukt erhältlich ist durch

Umsetzung

a) eines Polyether-substituierten Amins, enthaltend wenigstens eine tertiäre, quaternisierbare Aminogruppe mit

b) einem Quaternisierungsmittel, das die wenigstens eine tertiäre Aminogruppe in eine quaternäre Ammoniumgruppe überführt.

2. Kraftstoff- oder Schmierstoffzusammensetzung nach Anspruch 1 , worin der Po- lyether-Substituent Monomereinheiten der allgemeinen Formel Ic -[-CH(R3)-CH(R4)-0-]- (Ic) umfasst, worin

R3 und R4 gleich oder verschieden sind und für H, Alkyl, Alkylaryl oder Aryl stehen.

3. Kraftstoff- oder Schmierstoffzusammensetzung nach Anspruch 2, wobei das Po- lyether-substituierte Amin ein zahlenmittleres Molekulargewicht im Bereich von 500 bis 5000 aufweist. 4. Kraftstoff- oder Schmierstoffzusammensetzung nach einem der vorhergehenden Ansprüche, wobei das Quaternisierungsmittel ausgewählt ist unter Alkylenoxiden ggf. in Kombination mit Säure; aliphatische oder aromatische Carbonsäureestern, wie insbesondere Dialkylcarboxylaten; Alkanoaten; cyclischen nichtaromatischen oder aromatischen Carbonsäureestern; Alkylsulfaten; Alkylhalo- geniden; Alkylarylhalogeniden; und Mischungen davon.

5. Kraftstoff- oder Schmierstoffzusammensetzung, enthaltend in einer Hauptmenge eines üblichen Kraft- oder Schmierstoffs eine wirksame Menge wenigstens einer quaternisierten Stickstoffverbindung der allgemeinen Formel la oder Ib,

X "

X " worin

Ri und R2 gleich oder verschieden sind und für Alkyl, Alkenyl, Hydroxyalkyl, Hyd- roxyalkenyl, Aminoalkyl oder Aminoalkenyl stehen, oder Ri und R2 zusammen für Alkylen, Oxyalkylen oder Aminoalkylen stehen;

R3 und R4 gleich oder verschieden sind und für H, Alkyl, Alkylaryl oder Aryl stehen;

R5 für einen durch Quaternisierung eingeführten Rest, wie insbesondere Alkyl, Hydroxyalkyl, Arylalkyl oder Hydroxyarylalkyl steht;

R6 für Alkyl, Alkenyl, ggf. ein- oder mehrfach ungesättigtes Cycloalkyl, Aryl, jeweils gegebenenfalls substituiert, wie z.B. mit wenigstens einem Hydroxylrest oder Alkyl rest, oder unterbrochen durch wenigstens ein Heteroatom, steht;

A für einen geradkettigen oder verzweigten Alkylenrest steht, der gegebenenfalls durch ein oder mehrere Heteroatome, wie N, O und S, unterbrochen ist;

n für einen ganzzahligen Wert von 1 bis 50 steht und

X- für ein Anion, insbesondere ein aus der Quaternisierungsreaktion resultierendes Anion, steht.

Kraftstoff- oder Schmierstoffzusammensetzung nach Anspruch 5, worin

Ri und R2 gleich oder verschieden sind und für Ci-C6-Alkyl, Hydroxy-Ci-C6-alkyl, Hydroxy-Ci-C6-alkenyl, oder Amino-Ci-C6-alkyl stehen, oder Ri und R2 zusammen eine C2-C6-Alkylen-, C2-C6-Oxyalkylen- oder C2-C6-Aminoalkylen-Rest bilden;

R3 und R4 gleich oder verschieden sind und für H, Ci-C6-Alkyl oder Phenyl stehen;

R5 für einen durch Quaternisierung eingeführten Rest, ausgewählt unter C1-C6- Alkyl, Hydroxy-Ci-Ce-alkyl oder -CH2CH(OH)Aryl steht;

R6 für Ci-C2o-Alkyl oder Aryl oder Alkylaryl steht; A für einen geradkettigen oder verzweigten C2-C6-Alkylenrest steht, der gegebenenfalls durch ein oder mehrere Heteroatome, wie N, O und S, unterbrochen ist; n für einen ganzzahligen Wert von 1 bis 30 und

X- für ein aus der Quaternisierungsreaktion resultierendes Anion steht.

Kraftstoffstoffzusammensetzung nach einem der vorhergehenden Ansprüche, ausgewählt unter Dieselkraftstoffen, Ottokraftstoffen, Biodieselkraftstoffen und Alkanol-haltigen Ottokraftstoffen.

Quaternisierte Stickstoffverbindung gemäß der Definition in einem der vorhergehenden Ansprüche.

Verfahren zur Herstellung quaternisierter Stickstoffverbindungen der allgemeinen Formel la,

X

worin

Ri bis R5, A, X und n die oben angegebenen Bedeutungen besitzen wobei man a) ein Aminoalkanol der allgemeinen Formel II

(R.XFyN worin

Ri , R2 und A die oben angegebenen Bedeutungen besitzen, mit einem Epoxid der allgemeinen Formel III O

/ \

(R3)HC CH(R4) worin

Rß und R4 die oben angegebenen Bedeutungen besitzen,

alkoxyliert, wobei man ein alkoxyliertes Amin der Formel

(R1)(R2)N-A-o†cH(R3)-CH(R4)-0 erhält, worin Ri bis R4, A und n die oben angegebenen Bedeutungen besitzen und b) die so erhaltene Alkoxylverbindung der Formel la-1 quaternisiert, wobei man ein Reaktionsprodukt, umfassend wenigstens eine Verbindung der allgemeinen Formel la erhält, wobei die Quaternisierung beispielsweise mit einer Verbindung der allgemeinen Formel IV erfolgt

R5-X (IV) worin

R5 für Alkyl oder Aryl steht und X die oben angegebene Bedeutung besitzt, oder mit einem Alkylenoxid der Formel

O

/ \ (IVa)

H2C CH(R5.) in Kombination mit einer Säure HX quaternisiert, worin X die oben angegebene Bedeutung besitzt, wobei Rs' für H, Alkyl oder Aryl steht und der Rest R5 für eine Gruppe -CH2CH(OH)R5' steht. 10. Verfahren zur Herstellung quaternisierter Stickstoffverbindungen der allgemeinen Formel Ib,

X worin Ri bis R6, X und n die oben angegebenen Bedeutungen besitzen wobei man

a) einen Alkohol der allgemeinen Formel V

Re-OH (V) worin

R6 die oben angegebenen Bedeutungen besitzt, mit einem Epoxid der allgemei nen Formel III

O

/ \ (III)

(R3)HC CH(R4) worin

R3 und R4 die oben angegebenen Bedeutungen besitzen, alkoxyliert, wobei man einen Polyether der Formel lb-1 ;

R6— O^CH(R3)-CH(R4)-0^ CH(R3)-CH(R4)OH (lb-1 ) erhält; worin R3, R4 und R6, A, X und n die oben angegebenen Bedeutungen besitzen b) anschließend den so erhaltenen Polyether der Formel lb-1 mit einem Amin der allgemeinen Formel worin R1 und R2 die oben angegebenen Bedeutungen besitzen,

aminiert, wobei man ein Amin der Formel lb-2 erhält

R^- O— ["CH(R3)-CH(R4)-0-j^ -1CH(R3)-CH(R4)_N(R1 )(R2) (lb-2) worin Ri bis R4 und R6, A, X und n die oben angegebenen Bedeutungen besitzen, das Amin der Formel (lb-2) gegebenenfalls alkyliert, falls Ri und/oder R2 für H stehen und anschließend c) das Produkt aus Stufe b) quaternisiert, wobei man ein Reaktionsprodukt, umfassend wenigstens eine Verbindung der allgemeinen Formel Ib erhält, wobei die Quaternisierung beispielsweise mit einer Verbindung der allgemeinen Formel IV erfolgt

R5-X (IV) worin

R5 für Alkyl oder Aryl steht und X die oben angegebene Bedeutung besitzt, oder mit einem Alkylenoxid der Formel

O

/ \ (IVa)

H2C CH(R5.) in Kombination mit einer Säure HX quaternisiert, worin X die oben angegebene Bedeutung besitzt, wobei R5' für H, Alkyl oder Aryl steht und der Rest R5 für eine

Gruppe -CH2CH(OH)R5' steht.

1 1 . Verfahren nach Anspruch 9 oder 10, wobei das Quaternisierungsmittel ausgewählt ist unter: Alkylenoxiden, ggf. in Kombination mit einer Säure; Alkylcarbona- ten, wie Dialkylcarbonaten; Alkylsulfaten, wie Dialkylsulfaten; Alkylphosphaten,

Dialkylphosphaten, Halogeniden, wie Alkyl- oder Arylhalogeniden; aliphatischen und aromatischen Carbonsäureestern, wie Alkanoaten, Dicarbonsäureestern; sowie cyclischen aromatischen oder nichtaromatischen Carbonsäureestern. 12. Quaternisierte Stickstoffverbindung erhältlich nach einem Verfahren nach Anspruch 10 oder 1 1 .

13. Verwendung einer quaternisierten Stickstoffverbindung nach Anspruch 8 oder hergestellt nach einem der Ansprüche 9 bis 1 1 als Kraftstoffadditiv oder Schmierstoffadditiv.

14. Verwendung nach Anspruch 13 als Dieselkraftstoffadditiv, insbesondere als Kalt- fließverbesserer oder als Wachs-Anti-Settling Additiv (WASA).

15. Verwendung nach Anspruch 13 als Ottokraftstoffadditiv zur Verringerung bzw.

Vermeidung von Ablagerungen im Einlasssystem eines Ottomotors, insbesondere zur Verringerung bzw. Vermeidung von Ablagerungen in Einspritzdüsen von direkteinspritzenden Ottomotoren.

16. Verwendung nach Anspruch 13 als Additiv zur Verringerung des Kraftstoffverbrauches von direkteinspritzenden Dieselmotoren, insbesondere zur Verringerung des Kraftstoffverbrauches von Dieselmotoren mit Common-Rail- Einspritzsystemen, und/oder zur Minimierung des Leistungsverlustes (powerloss) in direkteinspritzenden Dieselmotoren, insbesondere in Dieselmotoren mit Com- mon-Rail-Einspritzsystemen oder als Additiv zur Verringerung und/ oder Vermeidung von Ablagerungen in den Einspritzsystemen, wie insbesondere der Internal Diesel Injector Deposits (IDID) und / oder zur Verringerung und/ oder Vermeidung von Ablagerungen in den Einspritzdüsen in direkteinspritzenden Dieselmotoren, insbesondere in Common-Rail-Einspritzsystemen.

17. Additivkonzentrat, enthaltend in Kombination mit weiteren Diesel- oder Ottokraftstoffadditiven, wenigstens eine quaternisierte Stickstoffverbindung gemäß der Definition in Anspruch 8 oder hergestellt nach einem der Ansprüche 9 oder 10.

Description:
Quaternisierte Polyetheramine und deren Verwendung als Additive in Kraft- und Schmierstoffen

Die vorliegende Erfindung betrifft neuartige quaternisierte Polyetheramine und deren Herstellung, Weiterhin betrifft die vorliegende Erfindung die Verwendung dieser Verbindungen als Kraft- und Schmierstoffadditiv. Insbesondere betrifft die Erfindung die Verwendung dieser quaternisierten Stickstoffverbindungen als Kraftstoffzusatz zur Verringerung oder Verhinderung von Ablagerungen in den Einspritzsystemen von direkteinspritzenden Dieselmotoren, insbesondere in Common-Rail-Einspritzsystemen, zur Verringerung des Kraftstoffverbrauches von direkteinspritzenden Dieselmotoren, insbesondere von Dieselmotoren mit Common-Rail-Einspritzsystemen, und zur Minimierung des Leistungsverlustes (power loss) in direkteinspritzenden Dieselmotoren, insbesondere in Dieselmotoren mit Common-Rail-Einspritzsystemen. Gegenstand der Erfindung sind auch Additivpakete, welche diese Polyetheramine enthalten; sowie damit additivierte Kraft- und Schmierstoffe. Weiterhin betrifft die Erfindung die Verwendung dieser quaternisierten Stickstoffverbindungen als Additiv für Ottokraftstoffe, insbesondere zur Verbesserung der Einlasssystemsauberkeit von Ottomotoren.

Stand der Technik:

Bei direkteinspritzenden Dieselmotoren wird der Kraftstoff durch eine direkt in den Brennraum reichende Mehrloch-Einspritzdüse des Motors eingespritzt und feinst verteilt (vernebelt), anstatt wie beim klassischen (Kammer-)Dieselmotor in eine Vor- oder Wirbelkammer eingeführt zu werden. Der Vorteil der direkteinspritzenden Dieselmoto- ren liegt in ihrer für Dieselmotoren hohen Leistung und einem dennoch geringen Verbrauch. Außerdem erreichen diese Motoren ein sehr hohes Drehmoment schon bei niedrigen Drehzahlen.

Zurzeit werden im Wesentlichen drei Verfahren eingesetzt, um den Kraftstoff direkt in den Brennraum des Dieselmotores einzuspritzen: die konventionelle Verteilereinspritzpumpe, das Pumpe-Düse-System (Unit-Injector-System bzw. Unit-Pump-System) und das Common-Rail-System. Beim Common-Rail-System wird der Dieselkraftstoff von einer Pumpe mit Drücken bis zu 2000 bar in eine Hochdruckleitung, die Common-Rail gefördert. Ausgehend von der Common-Rail laufen Stichleitungen zu den verschiedenen Injektoren, die den Kraftstoff direkt in den Brennraum injizieren. Dabei liegt auf der Common-Rail stets der volle Druck an, was eine Mehrfacheinspritzung oder eine spezielle Einspritzform ermöglicht. Bei den anderen Injektionssystemen ist dagegen nur eine geringere Variation der Einspritzung möglich. Die Einspritzung beim Common-Rail wird im Wesentlichen in drei Gruppen unterteilt: (1 .) Voreinspritzung, durch die im Wesentlichen eine weichere Verbrennung erreicht wird, so dass harte Verbrennungsgeräusche (" Nageln" ) vermin- dert werden und der Motorlauf ruhig erscheint; (2.) Haupteinspritzung, die insbesondere für einen guten Drehmomentverlauf verantwortlich ist; und (3.) Nacheinspritzung, die insbesondere für einen geringen NCvWert sorgt. Bei dieser Nacheinspritzung wird der Kraftstoff in der Regel nicht verbrannt, sondern durch Restwärme im Zylinder verdampft. Das dabei gebildete Abgas-/Kraftstoffgemisch wird zur Abgasanlage transpor- tiert, wo der Kraftstoff in Gegenwart geeigneter Katalysatoren als Reduktionsmittel für die Stickoxide NO x wirkt.

Durch die variable, zylinderindividuelle Einspritzung kann beim Common-Rail-Einspritz- system der Schadstoffausstoß des Motors, z.B. der Ausstoß von Stickoxiden (NO x ), Kohlenmonoxid (CO) und insbesondere von Partikeln (Ruß), positiv beeinflusst werden. Dies ermöglicht beispielsweise, dass mit Common-Rail-Einspritzsystemen ausgerüstete Motoren der Euro 4-Norm theoretisch auch ohne zusätzlichen Partikelfilter genügen können. In modernen Common-Rail-Dieselmotoren können sich unter bestimmten Bedingungen, beispielsweise bei Verwendung von biodieselhaltigen Kraftstoffen oder von Kraftstoffen mit Metall-Verunreinigungen wie Zink-Verbindungen, Kupfer-Verbindungen, Bleiverbindungen und weiteren Metallverbindungen, an den Injektoröffnungen Ablagerungen bilden, die das Einspritzverhalten des Kraftstoffs negativ beeinflussen und dadurch die Performance des Motors beeinträchtigen, d.h. insbesondere die Leistung verringern, aber zum Teil auch die Verbrennung verschlechtern. Die Bildung von Ablagerungen wird durch bauliche Weiterentwicklungen der Injektoren, insbesondere durch die Veränderung der Geometrie der Düsen (engere, konische Öffnungen mit abgerundetem Auslass) noch verstärkt. Für eine dauerhaft optimale Funktionsweise von Motor und Injektoren müssen solche Ablagerungen in den Düsenöffnungen durch geeignete Kraftstoffadditive verhindert oder reduziert werden.

Vergaser und Einlasssysteme von Ottomotoren, aber auch Injektoren Einspritzsysteme für die Kraftstoffdosierung, werden durch Verunreinigungen belastet, die durch Staubteilchen aus der Luft, unverbrannte Kohlenwasserstoffreste aus dem Brennraum und die in den Vergaser geleiteten Kurbelwellengehäuseentlüftungsgase verursacht werden. Diese Rückstände verschieben das Luft-Kraftstoff-Verhältnis im Leerlauf und im unteren Teillastbereich, so dass das Gemisch magerer, die Verbrennung unvollständiger und wiederum die Anteile unverbrannter oder teilverbrannter Kohlenwasserstoffe im Abgas größer werden und der Benzinverbrauch steigt. Es ist bekannt, dass zur Vermeidung dieser Nachteile Kraftstoffadditive zur Reinhaltung von Ventilen und Vergaser bzw. Einspritzsystemen von Ottomotoren verwendet werden (vgl. z.B.: M. Rossenbeck in Katalysatoren, Tenside, Mineralöladditive, Hrsg. J. Falbe, U. Hasserodt, S. 223, G. Thieme Verlag, Stuttgart 1978). Je nach Wirkungsweise aber auch dem bevorzugten Wirkort solcher Detergensadditive unterscheidet man heute zwei Generationen.

Die erste Additiv-Generation konnte nur die Bildung von Ablagerungen im Ansaugsystem verhindern, nicht aber bereits vorhandene Ablagerungen wieder entfernen, wohin- gegen die modernen Additive der zweiten Generation beides bewirken können (keep- clean- und clean-up-Effekt) und zwar insbesondere auch aufgrund ihrer hervorragenden Thermostabilität an Zonen höherer Temperatur, nämlich an den Einlaßventilen. Derartige Detergentien, die einer Vielzahl chemischer Substanzklassen entstammen können, wie zum Beispiel Polyalkenamine, Polyetheramine, Polybuten-Mannichbasen oder Polybutensuccinimide, gelangen im allgemeinen in Kombination mit Trägerölen und teilweise weiteren Additivkomponenten, wie z.B. Korrosionsinhibitoren und Demul- gatoren, zur Anwendung. Die Trägeröle üben eine Lösungsmittel- bzw. Waschfunktion in Kombination mit den Detergentien aus. Trägeröle sind in der Regel hochsiedende, viskose, thermostabile Flüssigkeiten, welche die heiße Metalloberfläche überziehen und dadurch die Bildung bzw. Ablagerung von Verunreinigungen an der Metalloberfläche verhindern.

Kraftstoffadditive jüngerer Generation mit Detergenswirkung weisen häufig quaterni- sierte Stickstoffgruppen auf.

So beschreibt z.B. die WO 2006/135881 quaternisierte Ammoniumsalze, hergestellt durch Kondensation eines Hydrocarbyl-substituierten Acylierungsmittels und einer Sauerstoff- oder Stickstoffatom-haltigen Verbindung mit tertiärer Aminogruppe, und anschließender Quaternisierung mittels Hydrocarbylepoxid in Kombination mit stöchi- ometrischen Mengen einer Säure, wie insbesondere Essigsäure. Diese Additive werden insbesondere als Dieselkraftstoffadditive zur Verminderung von Leistungsverlust eingesetzt. Polyalkensubstituierte quaternisierte Amine, wie insbesondere quaternisierte Poly- isobutenamine, und deren Verwendung als Detergensadditive zur Verringerung von Einlassventilablagerungen und als Schmierstoffzusatz für Verbrennungsmotoren sind in der US 2008/01 13890 beschrieben. Die US 6 331 648 B1 betrifft spezielle quaternäre Etheramin-Verbindungen die eine 1 - Ethyl-1 ,3-propylen-Einheit zwischen Alkoxylatkette und quaternärem Stickstoff eingebaut enthalten. Über die Verwendbarkeit dieser Verbindungen als Korrosionsschutzoder Detergens-Additive in Otto- und Dieselkraftstoffen wird spekuliert, ohne jedoch deren Brauchbarkeit zu belegen..

Die EP 182 669 A1 beschreibt halogen- oder schwefelhaltige alkoxylierte quaternäre Ammoniumverbindungen der generellen Struktur

[RO(Ri)xCH 2 CH(R2)HNR 3 R4R6] + A- wobei Ri einen Alkylenoxidblock darstellt. Für diese Verbindungen werden eine ganze Reihe von Anwendungen postuliert, u.a. auch allgemein als Kraft- und Schmierstoffadditive, ohne allerdings spezielle Funktionen tatsächlich experimentell zu belegen. Bevorzugte Anionen A- sind Chlorid, Methylsulfat und Ethylsulfat. Die US 4 564 372, US 4 581 151 , US 4 600 409 und die WO 1985/000620 betreffen mit Alkylhalogeniden quaternisierte, d.h. halogenhaltige, Polyoxyalkylenamin-Salze, bei denen polyoxyalkylen-Einheit und Amineinheit über verschiedene Linkergruppen, wie insbesondere Amin-Linker des Typs - C(0)-NH-. Anwendung als Dispergatoren und Korrosionsinhibitoren in Kraftstoffen wird postuliert, ohne allerdings spezielle Funktionen tatsächlich experimentell zu belegen.

Es besteht daher die Aufgabe, verbesserte quaternisierte Kraftstoffadditive, bereitzu- stellen, welche die genannten Nachteile des Standes der Technik nicht mehr aufweisen und insbesondere in Dieselkraftstoffen und Ottokraftstoffen gleichzeitig einsetzbar sind.

Kurze Beschreibung der Erfindung:

Es wurde nun überraschenderweise gefunden, dass obige Aufgabe durch Bereitstellung speziell additivierter Kraft- und Schmierstoffe gemäß der Definition in den beiliegenden Ansprüchen gelöst werden kann. Die erfindungsgemäßen Additive sind den bekannten Additiven gemäß Stand der Technik in mehrfacher Hinsicht überlegen und können in Diesel und Ottokraftstoffen gleichzeitig eingesetzt werden. Sie zeichnen sich durch ihre vorteilhafte reinigende und reinhaltende Wirkung auf verschiedene Bauteile von Verbrennungsmotoren aus, wie auf Dieselmotor-Einspritzdüsen aber auch auf Einlassventile und Injektoren von Ottomotoren, und verhindern die Bildung von Brennraumablagerungen oder beseitigen bereit gebildete Brennraumablagerungen von Ver- brennungsmotoren. Zudem verhindern sie die Bildung von Ablagerungen in Kraftstofffiltern oder beseitigen bereits gebildete Filterverunreinigen.

Figurenbeschreibung: Figur 1 zeigt die mit erfindungsgemäßen Additiven erzielbare Injektorsauberkeit nach einem Testbetrieb mit einem direkteinspritzender Otto-Motor (1 b und 1 c) im Vergleich zu einem Betrieb mit nicht-additiviertem Kraftstoff (1 a).

Figur 2 zeigt den Ablauf eines einstündigen Motorentestzyklus gemäß CEC F-098-08. Detaillierte Beschreibung der Erfindung:

A1) Spezielle Ausführungsformen Die vorliegende Erfindung betrifft insbesondere folgende spezielle Ausführungsformen:

1 . Kraftstoff- oder Schmierstoffzusammensetung, insbesondere Kraftstoffzusammensetzung, enthaltend in einer Hauptmenge eines üblichen Kraft- oder Schmierstoffs eine wirksame Menge wenigstens eines eine quaternisierte Stick- Stoffverbindung umfassenden Reaktionsprodukts, oder eine aus dem Reaktionsprodukt durch Aufreinigung erhaltene, eine quaternisierte Stickstoffverbindung enthaltende Teilfraktion davon, wobei das Reaktionsprodukt erhältlich ist durch Umsetzung

a. eines Polyether-substituierten Amins, enthaltend wenigstens eine tertiäre, quaternisierbare Aminogruppe mit

b. einem Quaternisierungsmittel, das die wenigstens eine tertiäre Aminogruppe in eine quaternäre Ammoniumgruppe überführt.

2. Kraftstoff- oder Schmierstoffzusammensetzung nach Anspruch 1 , worin der Po- lyether-Substituent Monomereinheiten der allgemeinen Formel Ic

-[-CH(R 3 )-CH(R 4 )-0-]- (Ic) umfasst, worin

R3 und R 4 gleich oder verschieden sind und für H, Alkyl, Alkylaryl oder Aryl stehen.

3. Kraftstoff- oder Schmierstoffzusammensetzung nach Ausführungsform 2, wobei das Polyether-substituierte Amin ein zahlenmittleres Molekulargewicht im Be- reich von 500 bis 5000, insbesondere 800 bis 3000 oder 900 bis 1500 aufweist.

4. Kraftstoff- oder Schmierstoffzusammensetzung nach einer der vorhergehenden Ausführungsformen, wobei das Quaternisierungsmittel ausgewählt ist unter Alky- lenoxiden ggf in Kombination mit Säure; aliphatische oder aromatische Mono- oder Polycarbonsäureestern, wie insbesondere Mono- oder Dialkylcarbonsäu- reestern; cyclischen nichtaromatischen oder aromatischen Mono- oder Polycarbonsäureestern; Dialkylcarbonaten; Alkylsulfaten; Alkylhalogeniden; Alkylarylha- logeniden; insbesondere halogen- und schwefelfreien Quaternisierungsmitteln, wie Alkylenoxiden in Kombination mit Säure, wie z.B. einer Carbonsäure; aliphatische oder aromatische Mono- oder Polycarbonsäureestern, wie insbesondere Mono- oder Dialkylcarbonsäureestern; cyclischen nichtaromatischen oder aromatischen Mono- oder Polycarbonsäureestern und Dialkylcarbonaten; und Mischungen davon. Kraftstoff- oder Schmierstoffzusammensetzung, enthaltend in einer Hauptmenge eines üblichen Kraft- oder Schmierstoffs eine wirksame Menge wenigstens einer quaternisierten Stickstoffverbindung der allgemeinen Formel la oder Ib,

(RsX^X^N-A-O-f-CHiRgJ-CHiR^-O-Jn-H (la)

X "

Re-O^-CHiR g J-CHiR^-O-Jn^CHiR g J-CHiR^-N^Ji^XR g ) (Ib)

X " worin

Ri und R2 gleich oder verschieden sind und für Alkyl, Alkenyl, Hydroxyalkyl, Hyd- roxyalkenyl, Aminoalkyl oder Aminoalkenyl stehen, oder Ri und R2 zusammen für Alkylen, Oxyalkylen oder Aminoalkylen stehen;

R3 und R 4 gleich oder verschieden sind und für H, Alkyl, Alkylaryl oder Aryl stehen;

R5 für einen durch Quaternisierung eingeführten Rest, wie insbesondere Alkyl, Hydroxyalkyl, Arylalkyl oder Hydroxyarylalkyl steht;

R6 für Alkyl, Alkenyl, ggf ein oder mehrfach ungesättigtes Cycloalkyl, Aryl, jeweils gegebenenfalls substituiert, wie z.B. mit wenigstens einem Hydroxylrest oder Al- kylrest, oder unterbrochen durch wenigstens ein Heteroatom, steht; A für einen geradkettigen oder verzweigten Alkylenrest steht, der gegebenenfalls durch ein oder mehrere Heteroatome, wie N, O und S, unterbrochen ist; n für einen ganzzahligen Wert von 1 bis 50 steht und

X- für ein Anion, insbesondere ein aus der Quaternisierungsreaktion resultierendes Anion, steht.

Kraftstoff- oder Schmierstoffzusammensetzung nach Ausführungsform 5, worin Ri und R2 gleich oder verschieden sind und für Ci-C6-Alkyl, Hydroxy-Ci-C6-alkyl, Hydroxy-Ci-C6-alkenyl, oder Amino-Ci-C6-alkyl stehen, oder R1 und R2 zusammen eine C2-C6-Alkylen-, C2-C6-Oxyalkylen- oder C2-C6-Aminoalkylen-Rest bilden;

R3 und R 4 gleich oder verschieden sind und für H, Ci-C6-Alkyl oder Phenyl stehen;

R5 für einen durch Quaternisierung eingeführter Rest, ausgewählt unter C1-C6- Alkyl, Hydroxy-Ci-Ce-alkyl oder -CH 2 CH (OH)Aryl steht;

R6 für Ci-C2o-Alkyl, wie z.B. C10-C20- ,Cn-C2o- oder Ci2-C2o-Alkyl oder Aryl oder Alkylaryl, wobei Alkyl insbesondere für C1-C20- bedeutet, steht;

A für einen geradkettigen oder verzweigten C2-C6-Alkylenrest steht, der gegebenenfalls durch ein oder mehrere Heteroatome, wie N, O und S, unterbrochen ist; n für einen ganzzahligen Wert von 1 bis 30 und

X- für ein aus der Quaternisierungsreaktion resultierendes Anion steht.

Kraftstoffstoffzusammensetzung nach einer der vorhergehenden Ausführungsformen, ausgewählt unter Dieselkraftstoffen, Ottokraftstoffen, Biodiesel kraftstof- fen und Alkanol-haltigen Ottokraftstoffen.

Quaternisierte Stickstoffverbindung gemäß der Definition in einer der vorhergehenden Ausführungsformen, insbesondere ausgewählt unter solchen, die halo- gen- und schwefelfrei sind.

Verfahren zur Herstellung quaternisierter Stickstoffverbindungen der allgemeinen Formel la,

X

worin i bis R5, A, X und n die oben angegebenen Bedeutungen besitzen wobei man a. ein Aminoalkanol der allgemeinen Formel I I

(R, )(R 2 )N A— OH (I I) worin

Ri , R2 und A die oben angegebenen Bedeutungen besitzen, mit einem Epoxid der allgemeinen Formel I I I

O

/ \

(R 3 )HC CH(R 4 ) worin

Rs und R 4 die oben angegebenen Bedeutungen besitzen,

alkoxyliert, wobei man ein alkoxyliertes Amin der Formel

(R 1 )(R 2 )N-A-o†cH(R 3 )-CH(R 4 )-0 erhält, worin Ri bis R 4 , A und n die oben angegebenen Bedeutungen besitzen und b) die so erhaltene Alkoxylverbindung der Formel la-1 quaternisiert, wobei man ein Reaktionsprodukt, umfassend wenigstens eine Verbindung der allgemeinen Formel la erhält, wobei die Quaternisierung beispielsweise mit einer Verbindung der allgemeinen Formel IV erfolgt

R 5 -X (IV) worin

R 5 für Alkyl oder Aryl steht und X die oben angegebene Bedeutung besitzt, oder mit einem Alkylenoxid der Formel

CH(R 5 .) in Kombination mit einer Säure HX quaternisiert, worin X die oben angegebene Bedeutung besitzt, wobei Rs' für H, Alkyl oder Aryl steht und der Rest R 5 für eine Gruppe -CH 2 CH(OH)R 5 ' steht. Verfahren zur Herstellung quaternisierter Stickstoffverbindungen der allgemeinen Formel Ib,

Rg-O^-CHiR^-CHiR^-O-^CHiR^-CHiR^-Ni^i^XR g ) (Ib)

X " worin Ri bis R6, X und n die oben angegebenen Bedeutungen besitzen wobei man

a) einen Alkohol der allgemeinen Formel V R 6 -OH (V) worin

R6 die oben angegebenen Bedeutungen besitzt, mit einem Epoxid der allgemeinen Formel III

O

/ \ (III)

(R 3 )HC CH(R 4 ) worin

R3 und R 4 die oben angegebenen Bedeutungen besitzen, alkoxyliert, wobei man einen Polyether der Formel lb-1 ; R 6 — O^CH(R 3 )-CH(R 4 )-0^ CH(R 3 )-CH(R 4 )OH (lb-1 ) erhält; worin R3, R 4 und F S, A, X und n die oben angegebenen Bedeutungen besitzen b) anschließend den so erhaltenen Polyether der Formel lb-1 mit einem Amin der allgemeinen Formel worin R1 und R2 die oben angegebenen Bedeutungen besitzen,

aminiert, wobei man ein Amin der Formel lb-2 erhält

R^- O— ["CH( 3 )-CH( 4 )-0-j^ - 1 CH( 3 )-CH( 4 ) _ N( 1 )( 2 ) (lb-2)

worin R1 bis R 4 und R6, A, X und n die oben angegebenen Bedeutungen besitzen, das Amin der Formel (lb-2) gegebenenfalls alkyliert, falls R1 und/oder R2 für H stehen und anschließend c) das Produkt aus Stufe b) quaternisiert, wobei man ein Reaktionsprodukt, umfassend wenigstens eine Verbindung der allgemeinen Formel Ib erhält, wobei die Quaternisierung beispielsweise mit einer Verbindung der allgemeinen Formel IV erfolgt

R 5 -X (IV) worin

R 5 für Alkyl oder Aryl steht und X die oben angegebene Bedeutung besitzt, oder mit einem Alkylenoxid der Formel

O

/ \ (IVa)

H 2 C CH(R 5 .) in Kombination mit einer Säure HX quaternisiert, worin X die oben angegebene Bedeutung besitzt, wobei R5' für H, Alkyl oder Aryl steht und der Rest R 5 für eine Gruppe -CH 2 CH(OH)R 5 ' steht. Verfahren nach Ausführungsform 9 oder 10, wobei das Quaternisierungsmittel ausgewählt ist unter: Alkylenoxiden, ggf. in Kombination mit einer Säure; Al- kylcarbonaten, wie Dialkylcarbonaten; Alkylsulfaten, wie Dialkylsulfaten; Alkylp- hosphaten, Dialkylphosphaten, Halogeniden, wie Alkyl- oder Arylhalogeniden; aliphatischen und aromatischen Carbonsäureestern, wie Alkanoaten, Dicarbon- säureestern; sowie cyclischen aromatischen oder nichtaromatischen Carbonsäureestern. Quaternisierte Stickstoffverbindung erhältlich nach einem Verfahren nach Ausführungsform 10 oder 1 1 , insbesondere in halogen- und schwefelfreier Form. Verwendung einer quaternisierten Stickstoffverbindung nach Ausführungsform 8 oder hergestellt nach einer der Ausführungsformen 9 bis 1 1 als Kraftstoffadditiv oder Schmierstoffadditiv.

Verwendung nach Ausführungsform 12 als Dieselkraftstoffadditiv, insbesondere als Kaltfließverbesserer, als Wachs-Anti-Settling Additiv (WASA).

Verwendung nach Ausführungsform 12 als Ottokraftstoffadditiv zur Verringerung von Ablagerungen im Einlasssystem eines Ottomotors, wie insbesondere DISI und PFI(Port Fuel Injector) -Motoren

Verwendung nach Ausführungsform 12 als Additiv zur Verringerung des Kraftstoffverbrauches von direkteinspritzenden Dieselmotoren, insbesondere von Dieselmotoren mit Common-Rail-Einspritzsystemen, und/oder zur Minimierung des Leistungsverlustes (powerloss) in direkteinspritzenden Dieselmotoren, insbesondere in Dieselmotoren mit Common-Rail-Einspritzsystemen oder als Additiv zur Verringerung und/ oder Vermeidung von Ablagerungen in den Einspritzsystemen, wie insbesondere der Internal Diesel Injector Deposits (I DID) und / oder zur Verringerung und/ oder Vermeidung von Ablagerungen in den Einspritzdüsen in direkteinspritzenden Dieselmotoren, insbesondere in Common- Rail-Einspritzsystemen..

17. Additivkonzentrat, enthaltend in Kombination mit weiteren Diesel- oder Ottokraft- stoffadditiven, insbesondere Dieselkraftstoffadditiven, wenigstens eine quaterni- sierte Stickstoffverbindung gemäß der Definition in Ausführungsform 8 oder hergestellt nach einer der Ausführungsformen 9 oder 10.

In einer speziellen Ausgestaltung der Erfindung ist in einigen oder allen obigen Aus- führungsformen das Quaternierungsmittel kein aromatischer Carbonsäureester, wie z.B. Salicylsäureester.

In einer speziellen Ausgestaltung der Erfindung ist in einigen oder allen obigen Ausführungsformen das Quaternierungsmittel ausgewählt unter Verbindungen der hierin beschriebenen Formeln (1 ) oder (2).

In einer speziellen Ausgestaltung der Erfindung ist in einigen oder allen obigen Ausführungsformen der durch Quaternisierung eingeführte Rest (Stickstoffsubstituent) insbesondere Alkyl (insbesondere C1-C6 Alkyl), oder Hydroxyarylalkyl (wie z.B. 2- Hydroxy-2-phenyl ethyl).

In einer speziellen Ausgestaltung der Erfindung weist in einigen oder allen obigen Ausführungsformen der Polyethersubstituent keine Aryl oder Aralkyl-Gruppen auf. In einer speziellen Ausgestaltung der Erfindung ist in einigen oder allen obigen Ausführungsformen die quaternisierte Stickstoffverbindung eine Verbindung der Formel (la) oder (Ib).

Jeweils geeignete Testmethoden zur Überprüfung der oben bezeichneten Anwendun- gen sind den Fachmann bekannt, bzw. in folgenden experimentellen Teil, worauf hiermit ausdrücklich allgemein Bezug genommen wird, beschrieben.

A2) Allgemeine Definitionen „ Halogenfrei" bzw.„ schwefelfrei" bedeutet im Sinne der vorliegenden Erfindung das Fehlen von anorganischer oder organischer halogenhaltigen oder schwefelhaltigen Verbindungen und/oder von deren korrespondierenden Ionen, wie Halogenid-Anion und schwefelhaltigen Anionen, wie insbesondere Sulfaten. „ Halogenfrei" bzw. „ schwefelfrei" umfasst insbesondere das Fehlen von stöchiometrischen Mengen von halogenhaltigen oder schwefelhaltigen Verbindungen oder Anionen Substöchiometri- sche Mengen von halogenhaltigen oder schwefelhaltigen Verbindungen oder Anionen liegen z.B. in molaren Verhältnissen von weniger als 1 : 0,1 , oder weniger als 1 . 0,01 oder 1 :0,001 , oder 1 :0,0001 von Quaternisierter Stickstoffverbindung zu halogenhalti- gen oder schwefelhaltiger Verbindung oder Ionen davon vor.. „ Halogenfrei" bzw. „ schwefelfrei" umfasst insbesondere auch das vollständige Fehlen von halogenhaltigen oder schwefelhaltigen Verbindungen und/oder von deren korrespondierenden Ionen, wie Halogenid-Anion und schwefelhaltigen Anionen, wie insbesondere Sulfaten. „ Carbonsäuren" umfassen insbesondere organische Carbonsäuren, wie insbesondere Monocarbonsäuren des Typs RCOOH, worin R für einen kurzkettigen Hydrocar- bylrest steht, wie z.B. eine Niedrigalkyl- oder Ci-C4-Alkylcarbonsäure.

„ Quaternisierbare" Stickstoffgruppen oder Aminogruppen umfassen insbesondere primäre, sekundäre und tertiäre Aminogruppen.

Werden keine gegenteiligen Angaben gemacht, so gelten folgende allgemeine Bedeutungen: „ Hydrocarbyl" ist breit auszulegen und umfasst sowohl cyclische aromatische oder nichtaromatische, als auch langkettige oder kurzkettige, gerade oder verzweigte Kohlenwasserstoffreste mit 1 bis 50 Kohlenstoffatomen, welche ggf. zusätzlich Heteroato- me, wie z.B. O, N, NH, S, in ihrer Kette bzw. Ring enthalten können. Hydrocarbyl umfasst beispielsweise die im Folgenden definierten Alkyl-, Alkenyl-, Aryl-, Alkylaryl-, Cyc- loalkenyl- oder Cycloalkyl-Reste und deren substituierten Analoga.

„ Alkyl" oder„ Niedrigalkyl" steht insbesondere für gesättigte, geradkettige oder verzweigte Kohlenwasserstoffreste mit 1 bis 4, 1 bis 6, 1 bis 8, 1 bis 10, 1 bis 14 oder 1 bis 20 Kohlenstoffatomen, wie z. B. Methyl, Ethyl, n-Propyl, 1 -Methylethyl, n-Butyl, 1 - Methyl-propyl, 2-Methylpropyl, 1 ,1 -Dimethylethyl, n-Pentyl, 1 -Methylbutyl, 2- Methylbutyl, 3-Methylbutyl, 2,2-Di-methylpropyl, 1 -Ethylpropyl, n-Hexyl, 1 ,1 - Dimethylpropyl, 1 ,2-Dimethylpropyl, 1 -Methyl pentyl, 2-Methylpentyl, 3-Methylpentyl, 4- Methylpentyl, 1 ,1 -Dimethylbutyl, 1 ,2-Dimethylbutyl, 1 ,3-Dimethylbutyl, 2,2- Dimethylbutyl, 2,3-Dimethylbutyl, 3,3-Dimethylbutyl, 1 -Ethylbutyl, 2-Ethylbutyl, 1 ,1 ,2- Trimethylpropyl, 1 ,2,2-Trimethylpropyl, 1 -Ethyl-1 -methylpropyl und 1 -Ethyl-2- methylpropyl; sowie n-Heptyl, n-Octyl, n-Nonyl und n-Decyl, n-Dodecyl, n-Tetradecyl, n-Hexadecyl, sowie die ein- oder mehrfach verzweigten Analoga davon.

„ Hydroxyalkyl" steht insbesondere für die ein- oder mehrfach, insbesondere einfach hydroxylierten Analoga obiger Alkylreste, wie z.B. die monohydroxylierten Analoga obiger geradkettiger oder verzweigter Alkylreste, wie z.B. die linearen Hydroxyal- kylgruppen, wie z.B. solchen mit primärer (endständigen) Hydroxylgruppe, wie Hydro- xymethyl, 2-Hydroxyethyl, 3-Hydroxypropyl, 4-Hydroxybutyl, oder solchen mit nicht- endständigen Hydroxylgruppen, wie 1 -Hydroxyethyl, 1 - oder 2-Hydroxypropyl, 1 - oder 2-Hydroxybutyl oder 1 -, 2- oder 3-Hydroxybutyl.

„ Alkenyl" steht für ein- oder mehrfach, insbesondere einfach ungesättigte, geradkettige oder verzweigte Kohlenwasserstoffreste mit 2 bis 4, 2 bis 6, 2 bis 8 2 bis 10 oder 2 oder bis 20 Kohlenstoffatomen und einer Doppelbindung in einer beliebigen Position, z. B. C2-C6-Alkenyl wie Ethenyl, 1 -Propenyl, 2-Propenyl, 1 -Methylethenyl, 1 -Butenyl, 2- Butenyl, 3-Butenyl, 1 -Methyl-1 -propenyl, 2-Methyl-1 -propenyl, 1 -Methyl-2-propenyl, 2- Methyl-2-propenyl, 1 -Pentenyl, 2-Pentenyl, 3-Pentenyl, 4-Pentenyl, 1 -Methyl-1 -butenyl, 2-Methyl-1 -butenyl, 3-Methyl-1 -butenyl, 1 -Methyl-2-butenyl, 2-Methyl-2-butenyl, 3- Methyl-2-butenyl, 1 -Methyl-3-butenyl, 2-Methyl-3-butenyl, 3-Methyl-3-butenyl, 1 ,1 - Dimethyl-2-propenyl, 1 ,2-Dimethyl-1 -propenyl, 1 ,2-Dimethyl-2-propenyl, 1 -Ethyl-1 - propenyl, 1 -Ethyl-2-propenyl, 1 -Hexenyl, 2-Hexenyl, 3-Hexenyl, 4-Hexenyl, 5-Hexenyl, 1 -Methyl-1 -pentenyl, 2-Methyl-1 -pentenyl, 3-Methyl-1 -pentenyl, 4-Methyl-1 -pentenyl, 1 -Methyl-2-pentenyl, 2-Methyl-2-pentenyl, 3-Methyl-2-pentenyl, 4-Methyl-2-pentenyl, 1 -Methyl-3-pentenyl, 2-Methyl-3pentenyl, 3-Methyl-3-pentenyl, 4-Methyl-3-pentenyl, 1 -Methyl-4-pentenyl, 2-Methyl-4-pentenyl, 3-Methyl-4-pentenyl, 4-Methyl-4-pentenyl,

1 .1 - Dimethyl-2-butenyl, 1 ,1 -Dimethyl-3-butenyl, 1 ,2-Dimethyl-1 -butenyl,

1 .2- Dimethyl-2-butenyl, 1 ,2-Dimethyl-3-butenyl, 1 ,3-Dimethyl-1 -butenyl,

1 .3- Dimethyl-2-butenyl, 1 ,3-Dimethyl-3-butenyl, 2,2-Dimethyl-3-butenyl, 2,3-Dimethyl-1 -butenyl, 2,3-Dimethyl-2-butenyl, 2,3-Dimethyl-3-butenyl,

3,3-Dimethyl-1 -butenyl, 3,3-Dimethyl-2-butenyl, 1 -Ethyl-1 -butenyl, 1 -Ethyl-2-butenyl, 1 -Ethyl-3-butenyl, 2-Ethyl-1 -butenyl, 2-Ethyl-2-butenyl, 2-Ethyl-3-butenyl, 1 ,1 ,2-Trimethyl-2-propenyl, 1 -Ethyl-1 -methyl-2-propenyl, 1 -Ethyl-2-methyl-1 -propenyl und 1 -Ethyl-2-methyl-2-propenyl.

„ Hydroxyalkenyl" steht insbesondere für die ein- oder mehrfach, insbesondere einfach hydroxylierten Analoga obiger AI kenylreste

„ Aminoalkyl" und ,, Aminoalkenyl" steht insbesondere für die ein- oder mehrfach, insbesondere einfach aminierten Analoga obiger Alkyl- bzw. Alkenylreste, oder Analoga obiger Hydroxyalkyl, wobei die OH-Gruppe durch eine Aminogruppe ersetzt ist.

„ Alkylen" steht für geradkettige oder ein- oder mehrfach verzweigte Kohlenwasserstoff-Brückengruppen mit 1 bis 10 Kohlenstoffatomen, wie z.B. Ci-Cz-Alkylengruppen ausgewählt unter -CH 2 -, -(CH 2 ) 2 -, -(CH 2 )3-,-(CH 2 )4-, -(CH 2 ) 2 -CH(CH 3 )-, -CH 2 -CH(CH 3 )- CH 2 - , (CH 2 ) 4 -, -(CH 2 ) 5 -, -(CH 2 ) 6 , -(CH 2 ) 7 -, -CH(CH 3 )-CH 2 -CH 2 -CH(CH 3 )- oder - CH(CH 3 )-CH 2 -CH 2 -CH 2 -CH(CH 3 )- oder Ci-C 4 -Alkylengruppen ausgewählt unter -CH 2 -, -(CH 2 ) 2 -, -(CH 2 ) 3 -,-(CH 2 ) 4 -, -(CH 2 ) 2 -CH(CH 3 )-, -CH 2 -CH(CH 3 )-CH 2 - oder für C 2 -C6-Alkylengruppen, wie z.B.

-CH 2 -CH(CH 3 )-, -CH(CH 3 )-CH 2 -, -CH(CH 3 )-CH(CH 3 )-, -C(CH 3 ) 2 -CH 2 -, -CH 2 -C(CH 3 ) 2 -, -C(CH 3 ) 2 -CH(CH 3 )-, -CH(CH 3 )-C(CH 3 ) 2 -, -CH 2 -CH(Et)-, -CH(CH 2 CH 3 )-CH 2 -,

-CH(CH 2 CH 3 )-CH(CH 2 CH 3 )-, -C(CH 2 CH 3 ) 2 -CH 2 -, -CH 2 -C(CH 2 CH 3 ) 2 -,

-CH 2 -CH(n-Propyl)-, -CH(n-Propyl)-CH 2 -, -CH(n-Propyl)-CH(CH 3 )-, -CH 2 -CH(n-Butyl)-, -CH(n-Butyl)-CH 2 -, -CH(CH 3 )-CH(CH 2 CH 3 )-, -CH(CH 3 )-CH(n-Propyl)-, -CH(CH 2 CH 3 )- CH(CH 3 )-, -CH(CH 3 )-CH(CH 2 CH 3 )-, oder für C 2 -C 4 -Alkylengruppen, wie z.B. ausgewählt unter -(CH 2 ) 2 -, -CH 2 -CH(CH 3 )-, -CH(CH 3 )-CH 2 -, -CH(CH 3 )-CH(CH 3 )-, -C(CH 3 ) 2 - CH 2 -, -CH 2 -C(CH 3 ) 2 -, -CH 2 -CH(CH 2 CH 3 )-, -CH(CH 2 CH 3 )-CH 2 -.

" Oxyalkylen-Reste entsprechen der Definition obiger geradkettiger oder ein- oder mehrfach verzweigter Alkylenreste mit 2 bis 10 Kohlenstoffatomen, wobei die Kohlenkette durch ein Sauerstoff-Heteroatom 1 - oder mehrfach, insbesondere 1 -fach unterbrochen ist. Als nichtlimitierende Beispiele sind zu nennen: -CH 2 -0-CH 2 -, -(CH 2 ) 2 -0- (CH 2 ) 2 -, -(CH 2 ) 3 -0-(CH 2 ) 3 -, oder -CH 2 -0-(CH 2 ) 2 -, -(CH 2 ) 2 -0-(CH 2 ) 3 -, -CH 2 -0-(CH 2 ) 3 " Aminoalkylen" entsprechen der Definition obiger geradkettiger oder ein- oder mehrfach verzweigter Alkylenreste mit 2 bis 10 Kohlenstoffatomen, wobei die Kohlenkette durch eine Stickstoffgruppe (insbesondere - NH-Gruppe) 1 - oder mehrfach, insbeson- dere 1 -fach unterbrochen ist. Als nichtlimitierende Beispiele sind zu nennen: -CH 2 -NH- CH2-, -(CH 2 )2-NH-(CH 2 )2-, -(CH 2 )3-NH-(CH 2 )3-, oder -CH 2 -NH-(CH 2 ) 2 -, -(CH 2 ) 2 -NH- (CH 2 ) 3 -, -CH 2 -NH-(CH 2 ) 3 .

„ Alkenylen" steht für die ein- oder mehrfach, insbesondere einfach ungesättigten Analoga obiger Alkylengruppen mit 2 bis 10 Kohlenstoffatomen, insbesondere für C 2 - C 7 -Alkenylene oder C 2 -C 4 -Alkenylen, wie -CH=CH-, -CH=CH-CH 2 -, - CH 2 -CH=CH-, -CH=CH-CH 2 -CH 2 -, -CH 2 -CH=CH-CH 2 -, -CH 2 -CH 2 -CH=CH-, -CH(CH 3 )-CH=CH-, -CH 2 -C(CH 3 )=CH-. -„Cycloalkyl" steht für carbocyclische Reste mit 3 bis 20 Kohlenstoffatomen, wie z.B. C 3 -Ci 2 -Cycloalkyl, wie Cyclopropyl, Cyclobutyl, Cyclopentyl, Cyclohexyl, Cycloheptyl, Cyclooctyl, Cyclononyl, Cyclodecyl, Cycloundecyl und Cyclododecyl; bevorzugt sind Cyclopentyl, Cyclohexyl, Cycloheptyl, sowie Cyclopropyl-methyl, Cyclopropyl-ethyl, Cyclobutyl-methyl, Cyclobutyl-ethyl, Cyclopentyl-methyl, Cyclopentyl-ethyl, Cyclohexyl- methyl oder C 3 -C 7 -Cycloalkyl, wie Cyclopropyl, Cyclobutyl, Cyclopentyl, Cyclohexyl, Cycloheptyl, Cyclopropyl-methyl, Cyclopropyl-ethyl, Cyclobutyl-methyl, Cyclopentyl- ethyl, Cyclohexyl-methyl, wobei die Anbindung an den Rest des Moleküls über jegliches geeignetes C-Atom erfolgen kann. „Cycloalkenyl" oder ein- oder mehrfach ungesättigtes Cycloalkyl" steht insbesondere für monocyclische, ein oder mehrfach ungesättigte Kohlenwasserstoffgruppen mit 5 bis 8, vorzugsweise bis 6 Kohlenstoffringgliedern, wie z.B. die einfach ungesättigten Rests Cyclopenten-1 -yl, Cyclopenten-3-yl, Cyclohexen-1 -yl, Cyclohexen-3-yl und Cyclohe- xen-4-yl;

„Aryl" steht für ein- oder mehrkernige, vorzugsweise ein- oder zweikernige, gegebenenfalls substituierte aromatische Reste mit 6 bis 20 wie z.B. 6 bis 10 Ring- Kohlenstoffatomen, wie z.B. Phenyl, Biphenyl, Naphthyl wie 1 - oder 2-Naphthyl, Tetra- hydronaphthyl, Fluorenyl, Indenyl und Phenanthrenyl. Diese Arylreste können gegebe- nenfalls 1 , 2, 3, 4, 5 oder 6 gleiche oder verschiedene Substituenten tragen. „Alkylaryl" steh für die in beliebiger Ringposition ein- oder mehrfach, insbesondere 1 - oder 2-fach, Alkyl-substituierten Analoga obiger Arylreste, wobei Aryl ebenfalls die oben angegebenen Bedeutungen besitzt, wie z.B. CrC 4 -Alkyl-Phenyl-, wobei der d- C 4 -Alkylreste in beliebiger Ringposition liegen können..

„ Substituenten" für hierin angegebene Reste, sind insbesondere ausgewählt sind unter Ketogruppen, - COOH, -COO-Alkyl, - OH, -SH, -CN, Amino, -N0 2 , Alkyl-, oder Alkenylgruppen.

Mn (zahlenmittleres Molekulargewicht) wird in herkömmlicher Weise bestimmt; insbesondere beziehen sich die Angaben auf werte, bestimmt durch Gelpermeationschro- matographie oder Massenspektrometrie.

A3) Starter- Verbindungen (Alkohole der Formel V und Aminoalkohole der Formel II) a) Alkohole der allgemeinen Formel V

Re-OH (V) worin R6 für Alkyl, Alkenyl, ggf ein oder mehrfach ungesättigtes Cycloalkyl, Aryl, jeweils gegebenenfalls substituiert, wie z.B. mit wenigstens einem Hydroxylrest oder Alkylrest, oder unterbrochen durch wenigstens ein Heteroatom, steht; b) Aminoalkanole der allgemeinen Formel I I

(R, )(R 2 )N A— OH (I I) worin

Ri und R2 gleich oder verschieden sind und für Alkyl, Alkenyl, Hydroxyalkyl, Hydroxyal- kenyl, Aminoalkyl oder Aminoalkenyl stehen, oder R1 und R2 zusammen für Alkylen, Oxyalkylen oder Aminoalkylen stehen; und A für einen geradkettigen oder verzweigten Alkylen- oder Alkenylenrest steht, der gegebenenfalls durch ein oder mehrere Heteroatome, wie N, O und S, unterbrochen ist;

A4) Quaternisierungsmittel:

Als Quaternisierungsmittel kommen im Prinzip alle als solche geeigneten Verbindungen in Betracht. Das Quaternisierungsmittel ist insbesondere ausgewählt unter Alky- lenoxiden ggf. in Kombination mit Säure; aliphatische oder aromatische Carbonsäu- reestern, wie insbesondere Dialkylcarboxylaten; Alkanoaten; cyclischen nichtaromatischen oder aromatischen Carbonsäureestern; Dialkylcarbonaten; Alkylsulfaten; Alkyl- halogeniden; Alkylarylhalogeniden; und Mischungen davon.

In einer besonderen Ausführungsform erfolgt die Quaternisierung des mindestens ei- nen quaternisierbaren tertiären Stickstoffatoms jedoch mit mindestens einem Quaternisierungsmittel ausgewählt aus Epoxiden, insbesondere Hydrocarbyl-Epoxiden. wobei die darin enthaltenen R a Reste gleich oder verschieden sind und für H oder für einen Hydrocarbylrest stehen. Dabei kannder Hydrocarbylrest wenigstens 1 bis 14 Kohlenstoffatome aufweisen. Insbesondere sind dies aliphatische oder aromatische Reste, wie z.B. lineare oder verzweigte Ci- C-u-Alkylreste oder aromatische Reste, wie Phenyl oder Ci-C4-Alkylphenyl. Als Hydrocarbyl-Epoxide eignen sich beispielsweise aliphatische und aromatische Al- kylenoxide, wie insbesondere C2-i6-Alkylenoxide, wie Ethylenoxid, Propylenoxid, 1 ,2- Butylenoxid, 2,3-Butylenoxid, 2-Methyl-1 ,2-propenoxid (Isobutenoxid), 1 ,2-Pentenoxid, 2,3-Pentenoxid, 2-Methyl-1 ,2-butenoxid, 3-Methyl-1 ,2-butenoxid, 1 ,2-Hexenoxid, 2,3- Hexenoxid, 3,4-Hexenoxid, 2-Methyl-1 ,2-pentenoxid, 2-Ethyl-1 ,2-butenoxid, 3-Methyl- 1 ,2-pentenoxid, 1 ,2-Decenoxid, 1 ,2-Dodecenoxid oder 4-Methyl-1 ,2-pentenoxid; Tetra- decanoxid; Hexadecenoxid; sowie aromatensubstituierte Ethylenoxide, wie gegebenenfalls substituiertes Styroloxid, insbesondere Styroloxid oder 4-Methyl-styroloxid. Im Falle der Verwendung von Epoxiden als Quaternisierungsmittel werden diese in Gegenwart oder in Abwesenheit von freien Säuren, insbesondere in Gegenwart oder Abwesenheit von freien Protonensäuren, wie vor allem mit Ci-12-Monocarbonsäuren, wie Ameisensäure, Essigsäure oder Propionsäure oder C2-i2-Dicarbonsäuren wie O- xalsäure oder Adipinsäure; oder auch in Gegenwart oder Abwesenheit von Sulfonsäu- ren, wie Benzolsulfonsäure oder Toluolsulfonsäure oder wässrigen Mineralsäuren, wie Schwefelsäure oder Salzsäure, eingesetzt. Das so hergestellte Quaternisierungspro- dukt ist damit entweder„ säurehaltig" oder„ säurefrei" im Sinne der vorliegenden Erfindung.

Als weitere Gruppe von Quaternisierungsmittel sind insbesondere zu nennen Alkylester einer cycloaromatischen oder cycloaliphatischen Mono- oder Polycarbonsäure (insbesondere einer Mono- oder Dicarbonsäure) oder einer aliphatischen Polycarbonsäure (insbesondere Dicarbonsäure).

In einer besonderen Ausführungsform erfolgt die Quaternisierung des mindestens einen quaternisierbaren tertiären Stickstoffatoms jedoch mit mindestens einem Quaternisierungsmittel ausgewählt unter a) Verbindungen der allgemeinen Formel 1 worin

Ri für einen Niedrigalkylrest steht und

R2 für einen gegebenenfalls substituierten einkernigen Aryl- oder Cycloalkylrest steht, wobei der Substituent ausgewählt ist unter OH, NH 2 , N0 2 , C(0)OR 3 ; RiaOC(O)-, worin Ri a die oben für R1 angegebenen Bedeutungen besitzt, und R3 für H oder R1 steht; oder

b) Verbindungen der allgemeinen Formel 2 RiOC(0)-A-C(0)ORia (2) worin

Ri und Ria unabhängig voneinander für einen Niedrigalkylrest steht und

A für Hydrocarbylen (wie Alkylen oder Alkenylen) steht.

Als insbesondere geeignete Quaternisierungsmittel sind die Niedrigalkylester der Oxalsäure zu nennen, wie Dimethyloxalat und Diethyloxalat.

Besonders geeignet sind Verbindungen der Formel 1 , worin

Ri für einen d-, C2- oder C3-Alkylrest steht und

R2 für einen substituierten Phenylrest steht, wobei der Substituent für HO- oder einen Esterrest der Formel Ri a OC(0)- steht der sich in para-, meta- oder insbesondere ortho-Stellung zum Rest RiOC(O)- am aromatischen Ring befindet.

Als insbesondere geeignete Quaternisierungsmittel sind die Niedrigalkylester der Sa- licylsäure zu nennen, wie Methylsalicylat, Ethylsalicylat, n- und i-Propylsalicylat, und n-, i- oder tert-Butylsalicylat.

Ein „ aus der Quaternisierungsreaktion resultierendes Anion" X- ist beispielsweise ein Halogenid, wie z.B. ein Chlorid oder Bromid, ein Sulfatrest ((SO4) 2" ), oder der anionische Rest einer ein- oder mehrwertigen, aliphatischen oder aromatischen Carbonsäure, oder der anionische Rest ROC(0)0- resultierend aus der Quaternierungsreakti- on eines Dialkylcarbonates.

A5) Quaternisierbare Stickstoff-Verbindungen (der Formel II):

Die quaternisierbare Stickstoff-Verbindung ist ausgewählt unter Hydroxyalkyl- substituierten Mono- oder Polyaminen mit wenigstens einer quaternisierbaren, primären, sekundären oder tertiären Aminogruppe und wenigstens einer Hydroxylgruppe, welche mit einem Polyetherrest verknüpfbar ist. Insbesondere ausgewählt sind die quaternisierbaren Stickstoff-Verbindung unter Hyd- roxyalkyl-substituierten primären, sekundären, tertiären oder quartären Monoaminen und Hydroxyalkyl-substituierten primären, sekundären, tertiären oder quartären Diaminen.

Beispiele für geeignete„ hydroxyalkyl-substituierte Mono- oder Polyamine" sind solche, die mit wenigstens einem, wie z.B. 1 , 2, 3, 4, 5 oder 6, Hydroxyalkyl-Substituierten ausgestattet sind. Ala Beispiele für„ Hydroxyalkyl-substituierte Monoamine" können genannt werden: N-Hydroxyalkyl-monoamine, Ν,Ν-Dihydroxyalkyl-monoamine und Ν,Ν,Ν- Trihydroxyalkyl-monoamine, wobei die Hydroxyalkylgruppen gleich oder verschieden sind und außerdem wie oben definiert sind. Hydroxyalkyl steht dabei insbesondere für 2-Hydroxyethyl, 3-Hydroxypropyl oder 4-Hydroxybutyl.

Beispielsweise können folgende„ Hydroxyalkyl-substituierte Polyamine" und insbesondere „ Hydroxyalkyl-substituierte Diamine" genannt werden: (N-Hydroxyalkyl)- alkylendiamine, Ν,Ν-Dihydroxyalkyl-alkylendiamine, wobei die Hydroxyalkylgruppen gleich oder verschieden sind und außerdem wie oben definiert sind. Hydroxyalkyl steht dabei insbesondere für 2-Hydroxyethyl, 3-Hydroxypropyl oder 4-Hydroxybutyl; Alkylen steht dabei insbesondere für Ethylen, Propylen oder Butylen.

Folgende quaternisierbare Stickstoffverbindungen seien insbesondere genannt:

NAME FORMEL

Alkohole mit primärem und sekundärem Amin

H 9 I\L

Ethanolamin 2 ^-"^ OH

3-Hydroxy-1-propylamin

H

Diethanolamin

^OH

A6) Herstellung erfindungsgemäßer Additive: a) Herstellung der Polyethersubstituierten quaternisierbaren Zwischenstufen (la-1 und lb-1 ) a1 ) Ausgehend von Aminoalkoholen der Formel II :

Die Aminoalkohole der allgemeinen Formel I I können in prinzipiell bekannter Art und Weise alkoxyliert werden, wobei alkoxylierte Amine der allgemeinen Formel la-1 erhalten werden.

Die Durchführung von Alkoxylierungen ist dem Fachmann prinzipiell bekannt. Es ist dem Fachmann ebenfalls bekannt, dass man durch die Reaktionsbedingungen, insbesondere die Wahl des Katalysators, die Molekulargewichtsverteilung der Alkoxylate beeinflussen kann.

Zur Alkoxylierung werden C2- Ci6-Alkylenoxide eingesetzt, beispielsweise Ethylenoxid, Propylenoxid, oder Butylenoxid. Bevorzugt sind jeweils die 1 ,2-Alkylenoxide.

Bei der Alkoxylierung kann es sich um eine basenkatalysierte Alkoxylierung handeln. Dazu können die Aminoalkohole (I I) in einem Druckreaktor mit Alkalimetallhydroxiden, bevorzugt Kaliumhydroxid oder mit Alkalialkoholaten wie beispielsweise Natriumme- thylat versetzt werden. Durch verminderten Druck (bspw. <100 mbar) und/oder Erhöhung der Temperatur (30 bis 150°C) kann noch in der Mischung vorhandenes Wasser abgezogen werden. Der Alkohol liegt danach als das entsprechende Alkoholat vor. Anschließend wird mit Inertgas (z.B. Stickstoff) inertisiert und das(die) Alkylenoxid(e) bei Temperaturen von 60 bis 180°C bis zu einem Druck von max. 10 bar schrittweise zugegeben. Am Ende der Reaktion kann der Katalysator durch Zugabe von Säure (z.B. Essigsäure oder Phosphorsäure) neutralisiert und kann bei Bedarf abfiltriert werden. Der basische Katalysator kann aber auch durch Zugabe handelsüblicher Mg-Silikate neutralisiert werden, welche anschließend abfiltriert werden. Optional kann die Alkoxylierung auch in Gegenwart eines Lösungsmittels durchgeführt werden. Dies kann z.B. Toluol, Xylol, Dimethylformamid oder Ethylencarbonat sein. Die Alkoxylierung der Aminoalkohole kann aber auch mittels anderer Methoden vorgenommen werden, beispielsweise durch säurekatalysierte Alkoxylierung. Weiterhin können beispielsweise Doppelhydroxidtone wie in DE 43 25 237 A1 beschrieben eingesetzt werden, oder es können Doppelmetallcyanid-Katalysatoren (DMC-Katalysatoren) verwendet werden. Geeignete DMC-Katalysatoren sind beispielsweise in der DE 102 43 361 A1 , insbesondere den Abschnitten [0029] bis [0041 ] sowie der darin zitierten Literatur offenbart. Beispielsweise können Katalysatoren vom Zn-Co-Typ eingesetzt werden. Zur Durchführung der Reaktion kann der Aminoalkohol mit dem Katalysator versetzt, die Mischung wie oben beschrieben entwässert und mit den Alkylenoxiden wie beschrieben umgesetzt werden. Es werden üblicherweise nicht mehr als 1000 ppm Katalysator bezüglich der Mischung eingesetzt, und der Katalysator kann aufgrund dieser geringen Menge im Produkt verbleiben. Die Katalysatormenge kann in der Regel geringer sein als 1000 ppm, beispielsweise 250 ppm und weniger. Die Alkoxylierung kann alternativ auch durch Reaktion der Verbindungen (IV) und (V) mit cyclischen Carbonaten wie beispielsweise Ethylencarbonat vorgenommen werden. a2) Ausgehend von Alkanolen der Formel V: Wie unter dem vorherigen Abschnitt a1 ) für Aminoalkohole (I I) beschrieben können analog auch Alkanole ReOH in prinzipiell bekannter Weise zu Polyethern (lb-1 ) alkoxy- liert werden. Die so erhaltenen Polyether können anschließend durch reduktive Aminie- rung mit Ammoniak, primären Aminen oder sekundären Aminen (VI I) nach üblichen Methoden in kontinuierlichen oder diskontinuierlichen Verfahren unter Verwendung hierfür üblicher Hydrier- bzw. Aminierungskatalysatoren wie beispielsweise solchen, die katalytisch aktive Bestandteile auf Basis der Elemente Ni, Co, Cu, Fe, Pd, Pt, Ru, Rh, Re, AI, Si, Ti, Zr, Nb, Mg, Zn, Ag, Au, Os, Ir, Cr, Mo,, W oder Kombinationen dieser Elemente untereinander enthalten, in üblichen Mengen zu den entsprechenden Po- lyetheraminen (lb-2) umgesetzt werden. Die Umsetzung kann ohne Lösungsmittel oder bei hohen Polyetherviskositäten in Gegenwart eines Lösungsmittels, vorzugsweise in Gegenwart verzweigter Aliphaten wie beispielsweise Isododekan durchgeführt werden. Die Aminkomponente (VII) wird dabei im Allgemeinen im Überschuss, z.B. im 2- bis 100-fachen Überschuss, vorzugsweise 10- bis 80-fachem Überschuss, eingesetzt. Die Reaktion wird bei Drücken von 10 bis 600 bar durchgeführt über einen Zeitraum von 10 Minuten bis 10 Stunden. Nach dem Abkühlen trennt man den Katalysator durch Filtrieren ab, verdampft überschüssige Aminkomponente (VII) und destilliert das Reaktionswasser azeotrop oder unter einem leichten Stickstoffstrom ab. Sollte das resultierende Polyetheramin (lb-2) primäre oder sekundäre Aminfunktionali- täten aufweisen (Ri und/oder R2 gleich H), kann dieses nachfolgend in ein Polyetheramin mit tertiärer Aminfunktion überführt werden (R1 und R2 ungleich H). Die Alkylie- rung kann in prinzipiell bekannter Weise durch Umsetzung mit Alkylierungsmitteln erfolgen. Geeignet sind prinzipiell alle Alkylierungsmittel wie beispielsweise Alkylhalo- genide, Alkylarylhalogenide, Dialkylsulfate, Alkylenoxide ggf. in Kombination mit Säure; aliphatische oder aromatische Carbonsäureester, wie insbesondere Dialkylcarboxylate; Alkanoate; cyclische nichtaromatische oder aromatische Carbonsäureester; Dial- kylcarbonate; und Mischungen davon. Die Umsetzungen zum tertiären Polyetheramin können auch durch reduktive Aminierung durch Umsetzung mit einer Carbonylverbin- dung wie beispielsweise Formaldehyd in Gegenwart eines Reduktionsmittels stattfinden. Geeignete Reduktionsmittels sind Ameisensäure oder Wasserstoff in Gegenwart eines geeigneten heterogenen oder homogenen Hydrierkatalysators. Die Reaktionen können ohne Lösungsmittel oder in Gegenwart von Lösungsmitteln durchgeführt werden. Geeignete Lösungsmittel sind beispielsweise H2O, Alkanole wie Methanol oder Ethanol, oder 2-Ethylhexanol, aromatische Lösungsmitteln wie Toluol, Xylol oder Lösungsmittelgemischen der Solvesso-Serie, oder aliphatische Lösungsmittel, insbesondere Gemische verzweigter aliphatischer Lösungsmittel. Die Reaktionen werden bei Temperaturen von 10°C bis 300°C bei Drücken von 1 bis 600 bar über einen Zeitraum von 10 Minuten bis 10 h durchgeführt. Das Reduktionsmittel wird dabei mindestens stöchiometrisch, vorzugsweise im Überschuss eingesetzt, insbesondere im 2- bis 10- fachen Überschuss.

Das so gebildete Reaktionsprodukt (Polyetheramin lb-1 oder lb-2) kann theoretisch weiter aufgereinigt oder das Lösungsmittel entfernt werden. Gewöhnlich ist dies aber nicht zwingend notwendig, so dass das Reaktionsprodukt ohne weitere Aufreinigung in den nächsten Syntheseschritt, der Quaternisierung, überführt werden kann. b) Quaternisierung b1 ) mit Epoxid/Säure

Zur Durchführung der Quaternisierung versetzt man das Reaktionsprodukt oder Reaktionsgemisch aus obiger Stufe a) mit wenigstens einer Epoxidverbindung obiger For- mel (IVa), insbesondere in den erforderlichen stöchiometrischen Mengen, um die gewünschte Quaternisierung zu erreichen. Die Säure wird vorzugsweise ebenfalls in stöchiometrischen Mengen zugesetzt Pro Äquivalent an quaternisierbarem tertiären Stickstoffatom kann man z.B. 0,1 bis 2,0 Äquivalente, oder 0,5 bis 1 ,25 Äquivalente, an Quaternisierungsmittel einsetzen. Insbesondere werden aber etwa annähernd äquimo- lare Anteile des Epoxids eingesetzt, um eine tertiäre Amingruppe zu quaternisieren. Entsprechend höhere Einsatzmengen sind erforderlich, um eine sekundäre oder primäre Amingruppe zu quaternisieren. Geeignete Säuren sind insbesondere Carbonsäuren wie beispielsweise Essigsäure. Man arbeitet hierbei typischerweise bei Temperaturen im Bereich von 15 bis 160°C, insbesondere von 20 bis 150 oder 40 bis 140 °C. Die Reaktionsdauer kann dabei im Bereich von wenigen Minuten oder einigen Stunden, wie z.B. etwa 10 Minuten bis zu etwa 24 Stunden liegen. Der Umsetzung kann dabei bei etwa 0,1 bis 20 bar, wie z.B. 1 bis 10 bar Druck erfolgen. Der Druck wird dabei in der Regel durch den Dampfdruck des eingesetzten Alkylenoxides bei der jeweiligen Reaktionstemperatur bestimmt. Insbesondere ist eine Inertgas-Atmosphäre, wie z.B. Stickstoff, zweckmäßig.

Falls erforderlich können die Reaktanden in einem geeigneten organischen aliphatischen oder aromatischen Lösungsmittel oder einem Gemisch davon, für die Epoxidie- rung vorgelegt werden, oder es ist noch eine ausreichender Anteil an Lösungsmittel aus Reaktionsschritt a) vorhanden. Typischen Beispiele sind z.B. Lösungsmittel der Solvesso Serie, Toluol oder Xylol. Desweiteren sind Alkanole als Lösungsmittel oder als Co-Lösungsmittel im Gemisch mit den vorgenannten Lösungsmitteln geeignet, wie beispielsweise Methanol, Ethanol, Propanol, 2-Ethylhexanol oder 2-Propylheptanol. b2) Mit Verbindungen der Formel IV

Zur Durchführung der Quaternisierung versetzt man das Reaktionsprodukt oder Reaktionsgemisch aus obiger Stufe a) mit wenigstens einem Alkylierungsmittel der Formel (IV), insbesondere in den erforderlichen stöchiometrischen Mengen, um die gewünschte Quaternisierung zu erreichen. Pro Äquivalent an quaternisierbarem tertiären Stickstoffatom kann man z.B. 0, 1 bis 5,0 Äquivalente, oder 0,5 bis 2,0 Äquivalente, an Qua- ternisierungsmittel einsetzen. Insbesondere werden aber etwa annähernd äquimolare Anteile des Alkylierungsmittels eingesetzt, um eine tertiäre Amingruppe zu quaternisie- ren. Entsprechend höhere Einsatzmengen sind erforderlich, um eine sekundäre oder primäre Amingruppe zu quaternisieren. Besonders geeignete Quaternierungsmittel sind Methylsalicylat, Oxalsäuredimethylester, Phthalsäuredimethylester und Dimethyl- carbonat.

Die Umsetzung kann gegebenenfalls durch Zugabe katalytischer oder stöchiometri- scher Mengen einer Säure beschleunigt werden. Geeignete Säure sind beispielsweise Protonendonoren, wie aliphatische oder aromatische Carbonsäuren bzw. Fettsäuren. Weiterhin sind Lewis-Säuren, wie beispielsweise Bortrifluorid, ZnC , MgC , AlC oder FeC , geeignet. Die Säure kann in Mengen von 0,01 bis 50 Gew-% eingesetzt werden, beispielsweise im Bereich 0, 1 bis 10 Gew-%.

Man arbeitet hierbei typischerweise bei Temperaturen im Bereich von 15 bis 160°C, insbesondere von 20 bis 150 oder 40 bis 140 °C. Die Reaktionsdauer kann dabei im Bereich von wenigen Minuten oder einigen Stunden, wie z.B. etwa 10 Minuten bis zu etwa 24 Stunden liegen. Die Umsetzung kann dabei bei etwa 0,1 bis 20 bar, wie z.B. 0,5 bis 10 bar Druck, erfolgen. Insbesondere kann die Umsetzung bei Normaldruck erfolgen. Insbesondere ist eine Inertgas-Atmosphäre, wie z.B. Stickstoff, zweckmäßig. Falls erforderlich können die Reaktanden in einem geeigneten organischen aliphatischen oder aromatischen Lösungsmittel oder einem Gemisch davon, für die Quaternie- rung vorgelegt werden, oder es ist noch eine ausreichender Anteil an Lösungsmittel aus Reaktionsschritt a) vorhanden. Typische Beispiele sind z.B. Lösungsmittel der Sol- vesso Serie, Toluol oder Xylol. Desweiteren sind Alkanole als Lösungsmittel oder als Co-Lösungsmittel im Gemisch mit den vorgenannten Lösungsmitteln geeignet, wie beispielsweise Methanol, Ethanol, Propanol, Butanol, 2-Ethylhexanol oder 2- Propylheptanol. c) Aufarbeitung des Reaktionsgemisches Das so gebildete Reaktionsendprodukt kann theoretisch weiter aufgereinigt oder das Lösungsmittel kann entfernt werden. Gewöhnlich ist dies aber nicht zwingend notwendig, so dass das Reaktionsprodukt ohne weitere Aufreinigung als Additiv, gegebenen- falls nach Abmischung mit weiteren Additivkomponenten (s. unten) einsetzbar ist. Gegebenenfalls kann die eingesetzte Säure durch Filtration, Neutralisation oder Extraktion aus dem Reaktionsprodukt entfernt werden. Gegebenenfalls kann ein Überschuss an Alkylierungsmittel destillativ oder durch Filtration entfernt werden. B) Weitere Additivkomponenten

Der mit dem erfindungsgemäßen quaternisierten Additiv additivierte Kraftstoff ist ein Ottokraftstoff oder insbesondere ein Mitteldestillat-Kraftstoff, vor allem ein Dieselkraftstoff.

Der Kraftstoff kann weitere übliche Additive zur Wirksamkeitsverbesserung und/oder Verschleißunterdrückung enthalten.

Im Falle von Dieselkraftstoffen sind dies in erster Linie übliche Detergens-Additive, Trägeröle, Kaltfließverbesserer, Schmierfähigkeitsverbesserer (Lubricity Improver), Korrosionsinhibitoren, Demulgatoren, Dehazer, Antischaummittel, Cetanzahlverbesse- rer, Verbrennungsverbesserer, Antioxidantien oder Stabilisatoren, Antistatika, Metal- locene, Metalldeaktivatoren, Farbstoffe und/oder Lösungsmittel. Im Falle von Ottokraftstoffen sind dies vor allem Schmierfähigkeitsverbesserer (Friction Modifier), Korrosionsinhibitoren, Demulgatoren, Dehazer, Antischaummittel, Verbrennungsverbesserer, Antioxidantien oder Stabilisatoren, Antistatika, Metallocene, Metalldeaktivatoren, Farbstoffe und/oder Lösungsmittel. Typische Beispiele geeigneter Co-Additive sind im folgenden Abschnitt aufgeführt:

B1 ) Detergens-Additive Vorzugsweise handelt es sich bei den üblichen Detergens-Additiven um amphiphile Substanzen, die mindestens einen hydrophoben Kohlenwasserstoffrest mit einem zah- lengemittelten Molekulargewicht (M n ) von 85 bis 20.000 und mindestens eine polare Gruppierung besitzen, die ausgewählt ist unter:

(Da) Mono- oder Polyaminogruppen mit bis zu 6 Stickstoffatomen, wobei mindestens ein Stickstoffatom basische Eigenschaften hat;

(Db) Nitrogruppen, gegebenenfalls in Kombination mit Hydroxylgruppen;

(De) Hydroxylgruppen in Kombination mit Mono- oder Polyaminogruppen, wobei min destens ein Stickstoffatom basische Eigenschaften hat;

(Dd) Carboxylgruppen oder deren Alkalimetall- oder Erdalkalimetallsalzen;

(De) Sulfonsäuregruppen oder deren Alkalimetall- oder Erdalkalimetallsalzen;

(Df) Polyoxy-C2- bis C4-alkylengruppierungen, die durch Hydroxylgruppen, Mono oder Polyaminogruppen, wobei mindestens ein Stickstoffatom basische Eigen Schäften hat, oder durch Carbamatgruppen terminiert sind;

(Dg) Carbonsäureestergruppen; aus Bernsteinsäureanhydrid abgeleiteten Gruppierungen mit Hydroxy- und/oder Amino- und/oder Amido- und/oder Imidogruppen; und/oder durch Mannich-Umsetzung von substituierten Phenolen mit Aldehyden und Mono- oder Polyaminen erzeugten Gruppierungen.

Der hydrophobe Kohlenwasserstoffrest in den obigen Detergens-Additiven, welcher für die ausreichende Löslichkeit im Kraftstoff sorgt, hat ein zahlengemitteltes Molekulargewicht (M n ) von 85 bis 20.000, vorzugsweise von 1 13 bis 10.000, besonders bevorzugt von 300 bis 5.000, stärker bevorzugt von 300 bis 3.000, noch stärker bevorzugt von 500 bis 2.500 und insbesondere von 700 bis 2.500, vor allem von 800 bis 1500. Als typischer hydrophober Kohlenwasserstoffrest, insbesondere in Verbindung mit den polaren Gruppierungen kommen insbesondere Polypropenyl-, Polybutenyl- und Poly- isobutenylreste mit einem zahlenmittleren Molekulargewicht M n von vorzugsweise jeweils 300 bis 5.000, besonders bevorzugt 300 bis 3.000, stärker bevorzugt 500 bis 2.500 noch stärker bevorzugt 700 bis 2.500 und insbesondere 800 bis 1 .500 in Betracht.

Als Beispiele für obige Gruppen von Detergens-Additiven seien die folgenden genannt: Mono- oder Polyaminogruppen (Da) enthaltende Additive sind vorzugsweise Polyal- kenmono- oder Polyalkenpolyamine auf Basis von Polypropen oder von hochreaktivem (d.h. mit überwiegend endständigen Doppelbindungen) oder konventionellem (d.h. mit überwiegend mittenständigen Doppelbindungen) Polybuten oder Polyisobuten mit M n = 300 bis 5000, besonders bevorzugt 500 bis 2500 und insbesondere 700 bis 2500. Der- artige Additive auf Basis von hochreaktivem Polyisobuten, welche aus dem Polyisobuten, das bis zu 20 Gew.-% n-Buten-Einheiten enthalten kann, durch Hydroformylierung und reduktive Aminierung mit Ammoniak, Monoaminen oder Polyaminen wie Dimethyl- aminopropylamin, Ethylendiamin, Diethylentriamin, Triethylentetramin oder Tetraethyl- enpentamin hergestellt werden können, sind insbesondere aus der EP-A 244 616 be- kannt. Geht man bei der Herstellung der Additive von Polybuten oder Polyisobuten mit überwiegend mittenständigen Doppelbindungen (meist in der ß- und γ-Position) aus, bietet sich der Herstellweg durch Chlorierung und anschließende Aminierung oder durch Oxidation der Doppelbindung mit Luft oder Ozon zur Carbonyl- oder Carboxyl- verbindung und anschließende Aminierung unter reduktiven (hydrierenden) Bedingun- gen an. Zur Aminierung können hier Amine, wie z. B. Ammoniak, Monoamine oder die oben genannten Polyamine, eingesetzt werden. Entsprechende Additive auf Basis von Polypropen sind insbesondere in der WO-A 94/24231 beschrieben.

Weitere besondere Monoaminogruppen (Da) enthaltende Additive sind die Hydrie- rungsprodukte der Umsetzungsprodukte aus Polyisobutenen mit einem mittleren Polymerisationsgrad P = 5 bis 100 mit Stickoxiden oder Gemischen aus Stickoxiden und Sauerstoff, wie sie insbesondere in der WO-A 97/03946 beschrieben sind. Weitere besondere Monoaminogruppen (Da) enthaltende Additive sind die aus Polyisobutenepoxiden durch Umsetzung mit Aminen und nachfolgender Dehydratisierung und Reduktion der Aminoalkohole erhältlichen Verbindungen, wie sie insbesondere in der DE-A 196 20 262 beschrieben sind.

Nitrogruppen (Db), gegebenenfalls in Kombination mit Hydroxylgruppen, enthaltende Additive sind vorzugsweise Umsetzungsprodukte aus Polyisobutenen des mittleren Polymerisationsgrades P = 5 bis 100 oder 10 bis 100 mit Stickoxiden oder Gemischen aus Stickoxiden und Sauerstoff, wie sie insbesondere in der WO-A96/03367 und in der WO-A 96/03479 beschrieben sind. Diese Umsetzungsprodukte stellen in der Regel Mischungen aus reinen Nitropolyisobutenen (z. B. α ,ß -Dinitropolyisobuten) und gemischten Hydroxynitropolyisobutenen (z. B. α -Nitro-ß -hydroxypolyisobuten) dar.

Hydroxylgruppen in Kombination mit Mono- oder Polyaminogruppen (De) enthaltende Additive sind insbesondere Umsetzungsprodukte von Polyisobutenepoxiden, erhältlich aus vorzugsweise überwiegend endständige Doppelbindungen aufweisendem Poly- isobuten mit M n = 300 bis 5000 mit Ammoniak, Mono- oder Polyaminen, wie sie insbesondere in der EP-A 476 485 beschrieben sind. Carboxylgruppen oder deren Alkalimetall- oder Erdalkalimetallsalze (Dd) enthaltende Additive sind vorzugsweise Copolymere von C2- bis C4o-Olefinen mit Maleinsäureanhydrid mit einer Gesamt-Molmasse von 500 bis 20.000, deren Carboxylgruppen ganz oder teilweise zu den Alkalimetall- oder Erdalkalimetallsalzen und ein verbleibender Rest der Carboxylgruppen mit Alkoholen oder Aminen umgesetzt sind. Solche Additive sind insbesondere aus der EP-A 307 815 bekannt. Derartige Additive dienen hauptsächlich zur Verhinderung von Ventilsitzverschleiß und können, wie in der WO-A 87/01 126 beschrieben, mit Vorteil in Kombination mit üblichen Kraftstoffdetergenzien wie Poly(iso)-butenaminen oder Polyetheraminen eingesetzt werden. Sulfonsäuregruppen oder deren Alkalimetall- oder Erdalkalimetallsalze (De) enthaltende Additive sind vorzugsweise Alkalimetall- oder Erdalkalimetallsalze eines Sulfobern- steinsäurealkylesters, wie er insbesondere in der EP-A 639 632 beschrieben ist. Derartige Additive dienen hauptsächlich zur Verhinderung von Ventilsitzverschleiß und kön- nen mit Vorteil in Kombination mit üblichen Kraftstoffdetergenzien wie Poly(iso)buten- aminen oder Polyetheraminen eingesetzt werden.

Polyoxy-C2-C4-alkylengruppierungen (Df) enthaltende Additive sind vorzugsweise Po- lyether oder Polyetheramine, welche durch Umsetzung von C2- bis C6o-Alkanolen, C6- bis C3o-Alkandiolen, Mono- oder D1-C2- bis C3o-alkylaminen, Cr bis C3o-Alkylcyclo- hexanolen oder Cr bis C3o-Alkylphenolen mit 1 bis 30 mol Ethylenoxid und/oder Propy- lenoxid und/oder Butylenoxid pro Hydroxylgruppe oder Aminogruppe und, im Falle der Polyetheramine, durch anschließende reduktive Aminierung mit Ammoniak, Monoami- nen oder Polyaminen erhältlich sind. Derartige Produkte werden insbesondere in der EP-A 310 875, EP-A 356 725, EP-A 700 985 und US-A 4 877 416 beschrieben. Im Falle von Polyethern erfüllen solche Produkte auch Trägeröleigenschaften. Typische Beispiele hierfür sind Tridecanol- oder Isotridecanolbutoxylate, Isononylphenol- butoxylate sowie Polyisobutenolbutoxylate und -propoxylate sowie die entsprechenden Umsetzungsprodukte mit Ammoniak.

Carbonsäureestergruppen (Dg) enthaltende Additive sind vorzugsweise Ester aus Mono-, Di- oder Tricarbonsäuren mit langkettigen Alkanolen oder Polyolen, insbesondere solche mit einer Mindestviskosität von 2 mm 2 /s bei 100 °C, wie sie insbesondere in der DE-A 38 38 918 beschrieben sind. Als Mono-, Di- oder Tricarbonsäuren können aliphatische oder aromatische Säuren eingesetzt werden, als Esteralkohole bzw. -polyole eignen sich vor allem langkettige Vertreter mit beispielsweise 6 bis 24 C-Atomen. Typische Vertreter der Ester sind Adipate, Phthalate, iso-Phthalate, Terephthalate und Tri- mellitate des iso-Octanols, iso-Nonanols, iso-Decanols und des iso-Tridecanols. Derar- tige Produkte erfüllen auch Trägeröleigenschaften.

Aus Bernsteinsäureanhydrid abgeleitete Gruppierungen mit Hydroxy- und/oder Amino- und/oder Amido- und/oder insbesondere Imidogruppen (Dh) enthaltende Additive sind vorzugsweise entsprechende Derivate von Alkyl- oder Alkenyl-substituiertem Bernsteinsäureanhydrid und insbesondere die entsprechenden Derivate von Polyisobute- nylbernsteinsäureanhydrid, welche durch Umsetzung von konventionellem oder hochreaktivem Polyisobuten mit M n = vorzugsweise 300 bis 5000, besonders bevorzugt 300 bis 3000, stärker bevorzugt 500 bis 2500, noch stärker bevorzugt 700 bis 2500 und insbesondere 800 bis 1500, mit Maleinsäureanhydrid auf thermischem Weg in einer En-Reaktion oder über das chlorierte Polyisobuten erhältlich sind. Bei den Gruppierungen mit Hydroxy- und/oder Amino- und/oder Amido- und/oder Imidogruppen handelt es sich beispielsweise um Carbonsäuregruppen, Säureamide von Monoaminen, Säure- amide von Di- oder Polyaminen, die neben der Amidfunktion noch freie Amingruppen aufweisen, Bernsteinsäurederivate mit einer Säure- und einer Amidfunktion, Carbonsäureimide mit Monoaminen, Carbonsäureimide mit Di- oder Polyaminen, die neben der Imidfunktion noch freie Amingruppen aufweisen, oder Diimide, die durch die Umsetzung von Di- oder Polyaminen mit zwei Bernsteinsäurederivaten gebildet werden. Beim Vorliegen von Imidogruppierungen D(h) wird das weitere Detergens-Additiv im Sinne der vorliegenden Erfindung jedoch nur bis maximal 100 % der Gewichtsmenge an Verbindungen mit Betainstruktur eingesetzt. Derartige Kraftstoffadditive sind allgemein bekannt und beispielsweise in den Dokumenten (1 ) und (2) beschrieben. Bevorzugt handelt es sich um die Umsetzungsprodukte von Alkyl- oder Alkenyl-substituierten Bernsteinsäuren oder Derivaten davon mit Aminen und besonders bevorzugt um die Umsetzungsprodukte von Polyisobutenyl-substituierten Bernsteinsäuren oder Derivaten davon mit Aminen. Von besonderem Interesse sind hierbei Umsetzungsprodukte mit aliphatischen Polyaminen (Polyalkylenimine) wie insbesondere Ethylendiamin, Diethylentriamin, Triethylentetramin, Tetraethylenpentamin, Pentaethylenhexamin und Hexaethylenheptamin, welche eine Imidstruktur aufweisen.

Durch Mannich-Umsetzung von substituierten Phenolen mit Aldehyden und Mono- o- der Polyaminen erzeugte Gruppierungen (Di) enthaltende Additive sind vorzugsweise Umsetzungsprodukte von Polyisobuten-substituierten Phenolen mit Formaldehyd und Mono- oder Polyaminen wie Ethylendiamin, Diethylentriamin, Triethylentetramin, Tetra- ethylenpentamin oder Dimethylaminopropylamin. Die Polyisobutenyl-substituierten Phenole können aus konventionellem oder hochreaktivem Polyisobuten mit M n = 300 bis 5000 stammen. Derartige "Polyisobuten-Mannichbasen" sind insbesondere in der EP-A 831 141 beschrieben. Dem Kraftstoff können ein oder mehrere der genannten Detergens-Additive in solch einer Menge zugegeben werden, dass die Dosierrate an diesen Detergens-Additiven vozugsweise 25 bis 2500 Gew.-ppm, insbesondere 75 bis 1500 Gew.-ppm, vor allem 150 bis 1000 Gew.-ppm, beträgt. B2) Trägeröle

Mitverwendete Trägeröle können mineralischer oder synthetischer Natur sein. Geeignete mineralische Trägeröle sind bei der Erdölverarbeitung anfallende Fraktionen, wie Brightstock oder Grundöle mit Viskositäten wie beispielsweise aus der Klasse SN 500 bis 2000, aber auch aromatische Kohlenwasserstoffe, paraffinische Kohlenwasserstoffe und Alkoxyalkanole. Brauchbar ist ebenfalls eine als "hydrocrack oil" bekannte und bei der Raffination von Mineralöl anfallende Fraktion (Vakuumdestillatschnitt mit einem Siedebereich von etwa 360 bis 500 °C, erhältlich aus unter Hochdruck katalytisch hy- driertem und isomerisiertem sowie entparaffiniertem natürlichen Mineralöl). Ebenfalls geeignet sind Mischungen oben genannter mineralischer Trägeröle.

Beispiele für geeignete synthetische Trägeröle sind Polyolefine (Polyalphaolefine oder Polyinternalolefine), (Poly)ester, Poly)alkoxylate, Polyether, aliphatische Polyetherami- ne, alkylphenolgestartete Polyether, alkylphenolgestartete Polyetheramine und Carbonsäureester langkettiger Alkanole.

Beispiele für geeignete Polyolefine sind Olefinpolymerisate mit M n = 400 bis 1800, vor allem auf Polybuten- oder Polyisobuten-Basis (hydriert oder nicht hydriert).

Beispiele für geeignete Polyether oder Polyetheramine sind vorzugsweise Polyoxy-C2- bis C 4 -alkylengruppierungen enthaltende Verbindungen, welche durch Umsetzung von C2- bis C6o-Alkanolen, C6- bis C3o-Alkandiolen, Mono- oder D1-C2- bis C3o-alkylaminen, Cr bis C3o-Alkyl-cyclohexanolen oder Cr bis C3o-Alkylphenolen mit 1 bis 30 mol Ethyl- enoxid und/ oder Propylenoxid und/oder Butylenoxid pro Hydroxylgruppe oder Amino- gruppe und, im Falle der Polyetheramine, durch anschließende reduktive Aminierung mit Ammoniak, Monoaminen oder Polyaminen erhältlich sind. Derartige Produkte werden insbesondere in der EP-A 310 875, EP-A 356 725, EP-A 700 985 und der US-A 4,877,416 beschrieben. Beispielsweise können als Polyetheramine P0IV-C2- bis C6- Alkylenoxidamine oder funktionelle Derivate davon verwendet werden. Typische Beispiele hierfür sind Tridecanol- oder Isotridecanolbutoxylate, Isononylphenolbutoxylate sowie Polyisobutenolbutoxylate und -propoxylate sowie die entsprechenden Umsetzungsprodukte mit Ammoniak. Beispiele für Carbonsäureester langkettiger Alkanole sind insbesondere Ester aus Mono-, Di- oder Tricarbonsäuren mit langkettigen Alkanolen oder Polyolen, wie sie insbesondere in der DE-A 38 38 918 beschrieben sind. Als Mono-, Di- oder Tricarbonsäuren können aliphatische oder aromatische Säuren eingesetzt werden, als Esteralkohole bzw. -polyole eignen sich vor allem langkettige Vertreter mit beispielsweise 6 bis 24 Kohlenstoffatomen. Typische Vertreter der Ester sind Adipate, Phthalate, iso-Phthalate, Terephthalate und Trimellitate des Isooctanols, Isononanols, Isodecanols und des Iso- tridecanols, z. B. Di-(n- oder lsotridecyl)phthalat. Weitere geeignete Trägerölsysteme sind beispielsweise in der DE-A 38 26 608, DE-A 41 42 241 , DE-A 43 09 074, EP-A 452 328 und der EP-A 548 617 beschrieben.

Beispiele für besonders geeignete synthetische Trägeröle sind alkoholgestartete Po- lyether mit etwa 5 bis 35, vorzugsweise etwa 5 bis 30, besonders bevorzugt 10 bis 30 und insbesondere 15 bis 30 C3- bis C6-Alkylenoxideinheiten, z. B. Propylenoxid-, n- Butylenoxid- und Isobutylenoxid-Einheiten oder Gemischen davon, pro Alkoholmolekül. Nichtlimitierende Beispiele für geeignete Starteralkohole sind langkettige Alkanole oder mit langkettigem Alkyl-substituierte Phenole, wobei der langkettige Alkylrest insbesondere für einen geradkettigen oder verzweigten C6- bis Cis-Alkylrest steht. Als besonde- re Beispiele sind zu nennen Tridecanol und Nonylphenol. Besonders bevorzugte alkoholgestartete Polyether sind die Umsetzungsprodukte (Polyveretherungsprodukte) von einwertigen aliphatischen C6- bis Cis-Alkoholen mit C3- bis C6-Alkylenoxiden. Beispiele für einwertige aliphatische C6-Ci8-Alkohole sind Hexanol, Heptanol, Octanol, 2-Ethyl- hexanol, Nonylalkohol, Decanol, 3-Propylheptanol, Undecanol, Dodecanol, Tridecanol, Tetradecanol, Pentadecanol, Hexadecanol, Octadecanol und deren Konstitutions- und Stellungsisomere. Die Alkohole können sowohl in Form der reinen Isomere als auch in Form technischer Gemische eingesetzt werden. Ein besonders bevorzugter Alkohol ist Tridecanol. Beispiele für C3- bis C6-Alkylenoxide sind Propylenoxid, wie 1 ,2-Propylen- oxid, Butylenoxid, wie 1 ,2-Butylenoxid, 2,3-Butylenoxid, Isobutylenoxid oder Tetrahyd- rofuran, Pentylenoxid und Hexylenoxid. Besonders bevorzugt sind hierunter C3- bis C 4 - Alkylenoxide, d.h. Propylenoxid wie 1 ,2-Propylenoxid und Butylenoxid wie 1 ,2-Butylenoxid, 2,3-Butylenoxid und Isobutylenoxid. Speziell verwendet man Butylenoxid. Weitere geeignete synthetische Trägeröle sind alkoxylierte Alkylphenole, wie sie in der DE-A 10 102 913 beschrieben sind.

Besondere Trägeröle sind synthetische Trägeröle, wobei die zuvor beschriebenen al- koholgestarteten Polyether besonders bevorzugt sind.

Das Trägeröl bzw. das Gemisch verschiedener Trägeröle wird dem Kraftstoff in einer Menge von vorzugsweise 1 bis 1000 Gew.-ppm, besonders bevorzugt von 10 bis 500 Gew.-ppm und insbesondere von 20 bis 100 Gew.-ppm zugesetzt.

B3) Kaltfließverbesserer

Geeignete Kaltfließverbesserer sind im Prinzip alle organischen Verbindungen, welche in der Lage sind, das Fließverhalten von Mitteldestillat-Kraftstoffen bzw. Dieselkraftstof- fen in der Kälte zu verbessern. Zweckmäßigerweise müssen sie eine ausreichende Öllöslichkeit aufweisen. Insbesondere kommen hierfür die üblicherweise bei Mitteldestillaten aus fossilem Ursprung, also bei üblichen mineralischen Dieselkraftstoffen, eingesetzten Kaltfließverbesserer (" middle distillate flow improvers" , " MDFI" ) in Betracht. Jedoch können auch organische Verbindungen verwendet werden, die beim Einsatz in üblichen Dieselkraftstoffen zum Teil oder überwiegend die Eigenschaften eines Wax Anti-Settling Additivs (" WASA" ) aufweisen. Auch können sie zum Teil oder überwiegend als Nukleatoren wirken. Es können aber auch Mischungen aus als MDFI wirksamen und/oder als WASA wirksamen und/oder als Nukleatoren wirksamen organischen Verbindungen eingesetzt werden.

Typischerweise wird der Kaltfließverbesserer ausgewählt aus:

(K1 ) Copolymeren eines C2- bis C4o-Olefins mit wenigstens einem weiteren ethyle- nisch ungesättigten Monomer;

(K2) Kammpolymeren;

(K3) Polyoxyalkylenen;

(K4) polaren Stickstoffverbindungen;

(K5) Sulfocarbonsäuren oder Sulfonsäuren oder deren Derivaten; und

(K6) Poly(meth)acrylsäureestern. Es können sowohl Mischungen verschiedener Vertreter aus einer der jeweiligen Klassen (K1 ) bis (K6) als auch Mischungen von Vertretern aus verschiedenen Klassen (K1 ) bis (K6) eingesetzt werden. Geeignete C2- bis C4o-Olefin-Monomere für die Copolymeren der Klasse (K1 ) sind beispielsweise solche mit 2 bis 20, insbesondere 2 bis10 Kohlenstoffatomen sowie mit 1 bis 3, vorzugsweise mit 1 oder 2, insbesondere mit einer Kohlenstoff-Kohlenstoff-Doppelbindung. Im zuletzt genannten Fall kann die Kohlenstoff-Kohlenstoff-Doppelbindung sowohl terminal (a -Olefine) als auch intern angeordnet sein kann. Bevorzugt sind je- doch α -Olefine, besonders bevorzugt α -Olefine mit 2 bis 6 Kohlenstoffatomen, beispielsweise Propen, 1 -Buten, 1 -Penten, 1 -Hexen und vor allem Ethylen.

Bei den Copolymeren der Klasse (K1 ) ist das wenigstens eine weitere ethylenisch ungesättigte Monomer vorzugsweise ausgewählt unter Carbonsäurealkenylestern, (Meth)Acrylsäureestern und weiteren Olefinen.

Werden weitere Olefine mit einpolymerisiert, sind dies vorzugsweise höhermolekulare als das oben genannte C2- bis C4o-Olefin-Basismonomere. Setzt man beispielsweise als Olefin-Basismonomer Ethylen oder Propen ein, eignen sich als weitere Olefine ins- besondere C10- bis C 4 o-a -Olefine. Weitere Olefine werden in den meisten Fällen nur dann mit einpolymerisiert, wenn auch Monomere mit Carbonsäureester-Funktionen eingesetzt werden.

Geeignete (Meth)Acrylsäureester sind beispielsweise Ester der (Meth)Acrylsäure mit Cr bis C2o-Alkanolen, insbesondere Cr bis Cio-Alkanolen, vor allem mit Methanol, Ethanol, Propanol, Isopropanol, n-Butanol, sec.-Butanol, Isobutanol, tert.-Butanol, Pen- tanol, Hexanol, Heptanol, Octanol, 2-Ethylhexanol, Nonanol und Decanol sowie Strukturisomeren hiervon. Geeignete Carbonsäurealkenylester sind beispielsweise C2- bis C-u-Alkenylester, z.B. die Vinyl- und Propenylester, von Carbonsäuren mit 2 bis 21 Kohlenstoffatomen, deren Kohlenwasserstoffrest linear oder verzweigt sein kann. Bevorzugt sind hierunter die Vinylester. Unter den Carbonsäuren mit verzweigtem Kohlenwasserstoffrest sind solche bevorzugt, deren Verzweigung sich in der α-Position zur Carboxylgruppe befindet, wobei das α-Kohlenstoffatom besonders bevorzugt tertiär ist, d. h. die Carbonsäure eine sogenannte Neocarbonsäure ist. Vorzugsweise ist der Kohlenwasserstoffrest der Carbonsäure jedoch linear. Beispiele für geeignete Carbonsäurealkenylester sind Vinylacetat, Vinylpropionat, Vi- nylbutyrat, Vinyl-2-ethylhexanoat, Neopentansäurevinylester, Hexansäurevinylester, Neononansäurevinylester, Neodecansäurevinylester und die entsprechenden Prope- nyl-ester, wobei die Vinylester bevorzugt sind. Ein besonders bevorzugter Carbonsäurealkenylester ist Vinylacetat; typische hieraus resultierende Copolymere der Gruppe (K1 ) sind die mit am häufigsten eingesetzten Ethylen-Vinylacetat-Copolymere (" EVA" ). Besonders vorteilhaft einsetzbare Ethylen-Vinylacetat-Copolymere und ihre Herstellung sind in der WO 99/29748 beschrieben.

Als Copolymere der Klasse (K1 ) sind auch solche geeignet, die zwei oder mehrere voneinander verschiedene Carbonsäurealkenylester einpolymerisiert enthalten, wobei diese sich in der Alkenylfunktion und/oder in der Carbonsäuregruppe unterscheiden. Ebenfalls geeignet sind Copolymere, die neben dem/den Carbonsäurealkenylester(n) wenigstens ein Olefin und/oder wenigstens ein (Meth)Acrylsäureester einpolymerisiert enthalten.

Auch Terpolymere aus einem C2- bis C 4 o-a -Olefin, einem C bis C2o-Alkylester einer ethylenisch ungesättigten Monocarbonsäure mit 3 bis 15 Kohlenstoffatomen und einem C2- bis Ci 4 -Alkenylester einer gesättigten Monocarbonsäure mit 2 bis 21 Kohlenstoffatomen sind als Copolymere der Klasse (K1 ) geeignet. Derartige Terpolymere sind in der WO 2005/054314 beschrieben. Ein typisches derartiges Terpolymer ist aus Ethyl- en, Acrylsäure-2-ethylhexylester und Vinylacetat aufgebaut.

Das wenigstens eine oder die weiteren ethylenisch ungesättigten Monomeren sind in den Copolymeren der Klasse (K1 ) in einer Menge von vorzugsweise 1 bis 50 Gew.-%, insbesondere von 10 bis 45 Gew.-% und vor allem von 20 bis 40 Gew.-%, bezogen auf das Gesamtcopolymer, einpolymerisiert. Der gewichtsmäßige Hauptanteil der Monomereinheiten in den Copolymeren der Klasse (K1 ) stammt somit in der Regel aus den C2- bis C 4 o-Basis-Olefinen. Die Copolymere der Klasse (K1 ) weisen vorzugsweise ein zahlenmittleres Molekulargewicht Mn von 1000 bis 20.000, besonders bevorzugt von 1000 bis 10.000 und insbesondere von 1000 bis 8000 auf. Typische Kammpolymere der Komponente (K2) sind beispielsweise durch die Copoly- merisation von Maleinsäureanhydrid oder Fumarsäure mit einem anderen ethylenisch ungesättigten Monomer, beispielsweise mit einem α -Olefin oder einem ungesättigten Ester wie Vinylacetat, und anschließende Veresterung der Anhydrid- bzw. Säurefunktion mit einem Alkohol mit wenigstens 10 Kohlenstoffatomen erhältlich. Weitere geeigne- te Kammpolymere sind Copolymere von α -Olefinen und veresterten Comonomeren, beispielsweise veresterte Copolymere von Styrol und Maleinsäureanhydrid oder veresterte Copolymere von Styrol und Fumarsäure. Geeignete Kammpolymere können auch Polyfumarate oder Polymaleinate sein. Außerdem sind Homo- und Copolymere von Vinylethern geeignete Kammpolymere. Als Komponente der Klasse (K2) geeignete Kammpolymere sind beispielsweise auch solche, die in der WO 2004/035715 und in " Comb-Like Polymers. Structure and Properties" , N. A. Plate und V. P. Shibaev, J. Poly. Sei. Macromolecular Revs. 8, Seiten 1 17 bis 253 (1974)" beschrieben sind. Auch Gemische von Kammpolymeren sind geeignet. Als Komponente der Klasse (K3) geeignete Polyoxyalkylene sind beispielsweise Poly- oxyalkylenester, Polyoxyalkylenether, gemischte Polyoxyalkylenesterether und Gemische davon. Bevorzugt enthalten diese Polyoxyalkylenverbindungen wenigstens eine, vorzugsweise wenigstens zwei lineare Alkylgruppen mit jeweils 10 bis 30 Kohlenstoffatomen und eine Polyoxyalkylengruppe mit einem zahlenmittleren Molekulargewicht von bis zu 5000. Derartige Polyoxyalkylenverbindungen sind beispielsweise in der EP- A 061 895 sowie in der US 4 491 455 beschrieben. Besondere Polyoxyalkylenverbindungen basieren auf Polyethylenglykolen und Polypropylenglykolen mit einem zahlenmittleren Molekulargewicht von 100 bis 5000. Weiterhin sind Polyoxyalkylenmono- und -diester von Fettsäuren mit 10 bis 30 Kohlenstoffatomen wie Stearinsäure oder Behen- säure geeignet.

Als Komponente der Klasse (K4) geeignete polare Stickstoffverbindungen können sowohl ionischer als auch nicht ionischer Natur sein und besitzen vorzugsweise wenigstens einen, insbesondere wenigstens zwei Substituenten in Form eines tertiären Stick- stoffatoms der allgemeinen Formel >NR 7 , worin R 7 für einen Cs- bis C4o-Kohlenwas- serstoffrest steht. Die Stickstoffsubstituenten können auch quaternisiert, das heißt in kationischer Form, vorliegen. Beispiele für solche Stickstoffverbindungen sind Ammoniumsalze und/oder Amide, die durch die Umsetzung wenigstens eines mit wenigstens einem Kohlenwasserstoffrest substituierten Amins mit einer Carbonsäure mit 1 bis 4 Carboxylgruppen bzw. mit einem geeignetem Derivat davon erhältlich sind. Vorzugsweise enthalten die Amine wenigstens einen linearen Cs- bis C4o-Alkylrest. Zur Herstellung der genannten polaren Stickstoffverbindungen geeignete primäre Amine sind beispielsweise Octylamin, Nonylamin, Decylamin, Undecylamin, Dodecylamin, Tetrade- cylamin und die höheren linearen Homologen, hierzu geeignete sekundäre Amine sind beispielsweise Dioctadecylamin und Methylbehenylamin. Geeignet sind hierzu auch Amingemische, insbesondere großtechnisch zugängliche Amingemische wie Fettamine oder hydrierte Tallamine, wie sie beispielsweise in Ullmanns Encyclopedia of Industrial Chemistry, 6. Auflage, im Kapitel " Amines, aliphatic" beschrieben werden. Für die Umsetzung geeignete Säuren sind beispielsweise Cyclohexan-1 ,2-dicarbonsäure, Cyc- lohexen-1 ,2-dicarbonsäure, Cyclopentan-1 ,2-dicarbonsäure, Naphthalindicarbonsäure, Phthalsäure, Isophthalsäure, Terephthalsäure und mit langkettigen Kohlenwasserstoffresten substituierte Bernsteinsäuren. Insbesondere ist die Komponente der Klasse (K4) ein öllösliches Umsetzungsprodukt aus mindestens eine tertiäre Aminogruppe aufweisenden Poly(C2- bis C2o-Carbon-säu- ren) mit primären oder sekundären Aminen. Die diesem Umsetzungsprodukt zugrundeliegenden mindestens eine tertiäre Aminogruppe aufweisenden Poly(C2- bis C2o-Car- bonsäuren) enthalten vorzugsweise mindestens 3 Carboxylgruppen, insbesondere 3 bis 12, vor allem 3 bis 5 Carboxylgruppen. Die Carbonsäure-Einheiten in den Polycar- bonsäuren weisen vorzugsweise 2 bis 10 Kohlenstoffatome auf, insbesondere sind es Essigsäure-Einheiten. Die Carbonsäure-Einheiten sind in geeigneter Weise zu den Polycarbonsäuren verknüpft, meist über ein oder mehrere Kohlenstoff- und/oder Stickstoffatome. Vorzugsweise sind sie an tertiäre Stickstoffatome angebunden, die im Falle mehrerer Stickstoffatome über Kohlenwasserstoffketten verbunden sind.

Vorzugsweise ist die Komponente der Klasse (K4) ein öllösliches Umsetzungsprodukt auf Basis von mindestens eine tertiäre Aminogruppe aufweisenden Poly(C2- bis C20- Carbonsäuren) der allgemeinen Formel IIa oder IIb HOOC. D D OOH

B B

HOOC_ .N _ .N COOH

B A B (IIa)

HOOC" B "N" B "COOH

i

B^ COOH (IIb) in denen die Variable A eine geradkettige oder verzweigte C2- bis C6-Alkylengruppe oder die Gruppierung der Formel III

HOOC' B^ N 'CH2"CH2"

1

CH2-CH2- darstellt und die Variable B eine C bis Cig-Alkylengruppe bezeichnet. Die Verbindungen der allgemeinen Formel IIa und IIb weisen insbesondere die Eigenschaften eines WASA auf.

Weiterhin ist das bevorzugte öllösliche Umsetzungsprodukt der Komponente (K4), insbesondere das der allgemeinen Formel IIa oder IIb, ein Amid, ein Amidammoniumsalz oder ein Ammoniumsalz, in dem keine, eine oder mehrere Carbonsäuregruppen in Amidgruppen übergeführt sind.

Geradkettige oder verzweigte C2- bis C6-Alkylengruppen der Variablen A sind beispielsweise 1 ,1 -Ethylen, 1 ,2-Propylen, 1 ,3-Propylen, 1 ,2-Butylen, 1 ,3-Butylen, 1 ,4-Bu- tylen, 2-Methyl-1 ,3-propylen, 1 ,5-Pentylen, 2-Methyl-1 ,4-butylen, 2,2-Dimethyl-1 ,3-pro- pylen, 1 ,6-Hexylen (Hexamethylen) und insbesondere 1 ,2-Ethylen. Vorzugsweise um- fasst die Variable A 2 bis 4, insbesondere 2 oder 3 Kohlenstoffatome.

Cr bis Ci9-Alkylengruppen der Variablen B sind vor beispielsweise 1 ,2-Ethylen, 1 ,3- Propylen, 1 ,4-Butylen, Hexamethylen, Octamethylen, Decamethylen, Dodecamethylen, Tetradecamethylen, Hexadecamethylen, Octadecamethylen, Nonadecamethylen und insbesondere Methylen. Vorzugsweise umfasst die Variable B 1 bis 10, insbesondere 1 bis 4 Kohlenstoffatome.

Die primären und sekundären Amine als Umsetzungspartner für die Polycarbonsäuren zur Bildung der Komponente (K4) sind üblicherweise Monoamine, insbesondere aliphatische Monoamine. Diese primären und sekundären Amine können aus einer Vielzahl von Aminen ausgewählt sein, die - gegebenenfalls miteinander verbundene - Kohlenwasserstoffreste tragen. Meist sind diese den öllöslichen Umsetzungsprodukten der Komponente (K4) zugrundeliegenden Amine sekundären Amine und weisen die allgemeine Formel HN(R 8 )2 auf, in der die beiden Variablen R 8 unabhängig voneinander jeweils geradkettige oder verzweigte C10- bis C3o-Alkylreste, insbesondere Cu- bis C24-Alkylreste bedeuten. Diese längerkettigen Alkylreste sind vorzugsweise geradkettig oder nur in geringem Grade verzweigt. In der Regel leiten sich die genannten sekundären Amine hinsichtlich ihrer längerkettigen Alkylreste von natürlich vorkommenden Fettsäure bzw. von deren Derivaten ab. Vorzugsweise sind die beiden Reste R 8 gleich.

Die genannten sekundären Amine können mittels Amidstrukturen oder in Form der Ammoniumsalze an die Polycarbonsäuren gebunden sein, auch kann nur ein Teil als Amidstrukturen und ein anderer Teil als Ammoniumsalze vorliegen. Vorzugsweise liegen nur wenige oder keine freien Säuregruppen vor. Vorzugsweise liegen die öllöslichen Umsetzungsprodukte der Komponente (K4) vollständig in Form der Amidstrukturen vor.

Typische Beispiele für derartige Komponenten (K4) sind Umsetzungsprodukte der Nitri- lotriessigsäure, der Ethylendiamintetraessigsäure oder der Propylen-1 ,2-diamintetra- essigsäure mit jeweils 0,5 bis 1 ,5 Mol pro Carboxylgruppe, insbesondere 0,8 bis 1 ,2 Mol pro Carboxylgruppe, Dioleylamin, Dipalmitinamin, Dikokosfettamin, Distearylamin, Dibehenylamin oder insbesondere Ditalgfettamin. Eine besonders bevorzugte Komponente (K4) ist das Umsetzungsprodukt aus 1 Mol Ethylendiamintetraessigsäure und 4 Mol hydriertem Ditalgfettamin. Als weitere typische Beispiele für die Komponente (K4) seien die N,N-Dialkylammoni- umsalze von 2-N' ,Ν' -Dialkylamidobenzoaten, beispielsweise das Reaktionsprodukt aus 1 Mol Phthalsaureanhydrid und 2 Mol Ditaigfettamin, wobei letzteres hydriert oder nicht hydriert sein kann, und das Reaktionsprodukt von 1 Mol eines Alkenylspirobislac- tons mit 2 Mol eines Dialkylamins, beispielsweise Ditaigfettamin und/oder Talgfettamin, wobei die beiden letzteren hydriert oder nicht hydriert sein können, genannt.

Weitere typische Strukturtypen für die Komponente der Klasse (K4) sind cyclische Verbindungen mit tertiären Aminogruppen oder Kondensate langkettiger primärer oder sekundärer Amine mit carbonsäurehaltigen Polymeren, wie sie in der WO 93/181 15 beschrieben sind.

Als Kaltfließverbesserer der Komponente der Klasse (K5) geeignete Sulfocarbonsäu- ren, Sulfonsäuren oder deren Derivate sind beispielsweise die öllöslichen Carbonsäu- reamide und Carbonsäureester von ortho-Sulfobenzoesäure, in denen die Sulfonsäure- funktion als Sulfonat mit alkylsubstituierten Ammoniumkationen vorliegt, wie sie in der EP-A 261 957 beschrieben werden.

Als Kaltfließverbesserer der Komponente der Klasse (K6) geeignete Poly(meth)acryl- säureester sind sowohl Homo- als auch Copolymere von Acryl- und Methacrylsäure- estern. Bevorzugt sind Copolymere von wenigstens zwei voneinander verschiedenen (Meth)Acrylsäureestern, die sich bezüglich des einkondensierten Alkohols unterscheiden. Gegebenenfalls enthält das Copolymer noch ein weiteres, davon verschiedenes olefinisch ungesättigtes Monomer einpolymerisiert. Das gewichtsmittlere Molekularge- wicht des Polymers beträgt vorzugsweise 50.000 bis 500.000. Ein besonders bevorzugtes Polymer ist ein Copolymer von Methacrylsäure und Methacrylsäureestern von gesättigten C14- und Cis-Alkoholen, wobei die Säuregruppen mit hydriertem Tallamin neutralisiert sind. Geeignete Poly(meth)acrylsäureester sind beispielsweise in der WO 00/44857 beschrieben.

Dem Mitteldestillat-Kraftstoff bzw. Dieselkraftstoff wird der Kaltfließverbesserer bzw. das Gemisch verschiedener Kaltfließverbesserer in einer Gesamtmenge von vorzugsweise 10 bis 5000 Gew.-ppm, besonders bevorzugt von 20 bis 2000 Gew.-ppm, stärker bevorzugt von 50 bis 1000 Gew.-ppm und insbesondere von 100 bis 700 Gew.-ppm, z.B. von 200 bis 500 Gew.-ppm, zugegeben.

B4) Schmierfähigkeitsverbesserer

Geeignete Schmierfähigkeitsverbesserer (Lubricity Improver bzw. Friction Modifier) basieren üblicherweise auf Fettsäuren oder Fettsäureestern. Typische Beispiele sind Tallölfettsäure, wie beispielsweise in der WO 98/004656 beschrieben, und Glycerin- monooleat. Auch die in der US 6 743 266 B2 beschriebenen Reaktionsprodukte aus natürlichen oder synthetischen Ölen, beispielsweise Triglyceriden, und Alkanolaminen sind als solche Schmierfähigkeitsverbesserer geeignet.

B5) Korrosionsinhibitoren Geeignete Korrosionsinhibitoren sind z.B. Bernsteinsäureester, vor allem mit Polyolen, Fettsäurederivate, z.B. Ölsäureester, oligomerisierte Fettsäuren, substituierte Ethanol- amine und Produkte, die unter dem Handelsnamen RC 4801 (Rhein Chemie Mannheim, Deutschland) oder HiTEC 536 (Ethyl Corporation) vertrieben werden. B6) Demulgatoren

Geeignete Demulgatoren sind z.B. die Alkali- oder Erdalkalisalze von Alkyl-substituier- ten Phenol- und Naphthalinsulfonaten und die Alkali- oder Erdalkalisalze von Fettsäuren, außerdem neutrale Verbindungen wie Alkoholalkoxylate, z.B. Alkoholethoxylate, Phenolalkoxylate, z.B. tert-Butylphenolethoxylat oder tert-Pentylphenolethoxylat, Fettsäuren, Alkylphenole, Kondensationsprodunkte von Ethylenoxid (EO) und Propylenoxid (PO), z.B. auch in Form von EO/PO-Blockcopolymeren, Polyethylenimine oder auch Polysiloxane. B7) Dehazer

Geeignete Dehazer sind z.B. alkoxylierte Phenol-Formaldehyd-Kondensate, wie beispielsweise die unter dem Handelsnamen erhältlichen Produkte NALCO 7D07 (Nalco) und TOLAD 2683 (Petrolite). B8) Antischaummittel

Geeignete Antischaummittel sind z.B. Polyether-modifizierte Polysiloxane, wie bei- spielsweise die unter dem Handelsnamen erhältlichen Produkte TEGOPREN 5851 (Goldschmidt), Q 25907 (Dow Corning) und RHODOSIL (Rhone Poulenc).

B9) Cetanzahlverbesserer Geeignete Cetanzahlverbesserer sind z.B. aliphatische Nitrate wie 2-Ethylhexylnitrat und Cyclohexylnitrat sowie Peroxide wie Di-tert-butylperoxid.

B10) Antioxidantien Geeignete Antioxidantien sind z.B. substituierte Phenole, wie 2,6-Di-tert.-butylphenol und 6-Di-tert.-butyl-3-methylphenol sowie Phenylendiamine wie N,N'-Di-sec.-butyl-p- phenylendiamin.

B1 1 ) Metalldeaktivatoren

Geeignete Metalldeaktivatoren sind z.B. Salicylsäurederivate wie N,N'-Disalicyliden- 1 ,2-propandiamin.

B12) Lösungsmittel

Geeignete sind z.B. unpolare organische Lösungsmittel wie aromatische und aliphatische Kohlenwasserstoffe, beispielsweise Toluol, Xylole, "white spirit" und Produkte, die unter dem Handelsnamen SHELLSOL (Royal Dutch/Shell Group) und EXXSOL (Exxon Mobil) vertrieben werden, sowie polare organische Lösungsmittel, bei- spielsweise Alkohole wie 2-Ethylhexanol, Decanol und Isotridecanol. Derartige Lösungsmittel gelangen meist zusammen mit den vorgenannten Additiven und Co-Additi- ven, die sie zur besseren Handhabung lösen oder verdünnen sollen, in den Dieselkraftstoff. C) Kraftstoffe Das erfindungsgemäße Additiv eignet sich in hervorragender Weise als Kraftstoffzusatz und kann im Prinzip in jeglichen Kraftstoffen eingesetzt werden. Es bewirkt eine ganze Reihe von vorteilhaften Effekten beim Betrieb von Verbrennungsmotoren mit Kraftstoffen.

Gegenstand der vorliegenden Erfindung sind daher auch Kraftstoffe, insbesondere Mitteldestillat-Kraftstoffe, mit einem als Zusatzstoff zur Erzielung von vorteilhaften Effekten beim Betrieb von Verbrennungsmotoren, beispielsweise von Dieselmotoren, insbesondere von direkteinspritzenden Dieselmotoren, vor allem von Dieselmotoren mit Common-Rail-Einspritzsystemen, wirksamen Gehalt an dem erfindungsgemäßen quaternisierten Additiv. Dieser wirksame Gehalt (Dosierrate) liegt in der Regel bei 10 bis 5000 Gew.-ppm, vorzugsweise bei 20 bis 1500 Gew.-ppm, insbesondere bei 25 bis 1000 Gew.-ppm, vor allem bei 30 bis 750 Gew.-ppm, jeweils bezogen auf die Ge- samtmenge an Kraftstoff.

Bei Mitteldestillat-Kraftstoffen wie Dieselkraftstoffen oder Heizölen handelt es sich vorzugsweise um Erdölraffinate, die üblicherweise einen Siedebereich von 100 bis 400°C haben. Dies sind meist Destillate mit einem 95%-Punkt bis zu 360°C oder auch dar- über hinaus. Dies können aber auch so genannte "Ultra Low Sulfur Diesel" oder "City Diesel" sein, gekennzeichnet durch einen 95%-Punkt von beispielsweise maximal 345°C und einem Schwefelgehalt von maximal 0,005 Gew.-% oder durch einen 95%- Punkt von beispielsweise 285°C und einem Schwefelgehalt von maximal 0,001 Gew.- %. Neben den durch Raffination erhältlichen mineralischen Mitteldestillat-Kraftstoffen bzw. Dieselkraftstoffen sind auch solche, die durch Kohlevergasung oder Gasverflüssigung ["gas to liquid" (GTL)-Kraftstoffe] oder durch Biomasse-Verflüssigung ["biomass to liquid" (BTL)-Kraftstoffe] erhältlich sind, geeignet. Geeignet sind auch Mischungen der vorstehend genannten Mitteldestillat-Kraftstoffe bzw. Dieselkraftstoffe mit regenerativen Kraftstoffen, wie Biodiesel oder Bioethanol.

Die Qualitäten der Heizöle und Dieselkraftstoffe sind beispielsweise in DI N 51603 und EN 590 näher festgelegt (vgl. auch Ullmann' s Encyclopedia of Industrial Chemistry, 5. Auflage, Band A12, S. 617 ff.). Das erfindungsgemäße quaternisierte Additiv kann neben seiner Verwendung in den oben genannten Mitteldestillat-Kraftstoffen aus fossilem, pflanzlichem oder tierischem Ursprung, die im wesentlichen Kohlenwasserstoffmischungen darstellen, auch in Mischungen aus solchen Mitteldestillaten mit Biobrennstoffölen (Biodiesel) eingesetzt werden. Derartige Mischungen werden im Sinne der vorliegenden Erfindung auch von dem Begriff " Mitteldestillat-Kraftstoff" umfasst. Sie sind handelsüblich und enthalten meist die Biobrennstofföle in untergeordneten Mengen, typischerweise in Mengen von 1 bis 30 Gew.-% insbesondere von 3 bis 10 Gew.-%, bezogen auf die Gesamtmenge aus Mitteldestillat fossilen, pflanzlichem oder tierischen Ursprungs und Biobrennstofföl.

Biobrennstofföle basieren in der Regel auf Fettsäureestern, vorzugsweise im wesentlichen auf Alkylester von Fettsäuren, die sich von pflanzlichen und/oder tierischen Ölen und/oder Fetten ableiten. Unter Alkylestern werden üblicherweise Niedrigalkylester, insbesondere d- bis C4-Alkylester, verstanden, die durch Umesterung der in pflanzli- chen und/oder tierischen Ölen und/oder Fetten vorkommenden Glyceride, insbesondere Triglyceride, mittels Niedrigalkoholen, beispielsweise Ethanol oder vor allem Methanol (" FAME" ), erhältlich sind. Typische Niedrigalkylester auf Basis von pflanzlichen und/oder tierischen Ölen und/oder Fetten, die als Biobrennstofföl oder Komponenten hierfür Verwendung finden, sind beispielsweise Sonnenblumenmethylester, Palmölme- thylester (" PME" ), Sojaölmethylester (" SME" ) und insbesondere Rapsölmethylester (" RME" ).

Besonders bevorzugt handelt es sich bei den Mitteldestillat-Kraftstoffen bzw. Dieselkraftstoffen um solche mit niedrigem Schwefelgehalt, das heißt mit einem Schwefel- gehalt von weniger als 0,05 Gew.-%, vorzugsweise von weniger als 0,02 Gew.-%, insbesondere von weniger als 0,005 Gew.-% und speziell von weniger als 0,001 Gew.-% Schwefel.

Als Ottokraftstoffe kommen alle handelsüblichen Ottokraftstoffzusammensetzungen in Betracht. Als typischer Vertreter soll hier der marktübliche Eurosuper Grundkraftstoff gemäß EN 228 genannt werden. Weiterhin sind auch Ottokraftstoffzusammensetzungen der Spezifikation gemäß WO 00/47698 mögliche Einsatzgebiete für die vorliegende Erfindung. Das erfindungsgemäße quaternisierte Additiv eignet sich insbesondere als Kraftstoffzusatz in Kraftstoffzusammensetzungen, insbesondere in Dieselkraftstoffen, zur Überwindung der eingangs geschilderten Probleme bei direkteinspritzenden Dieselmotoren, vor allem bei solchen mit Common-Rail-Einspritzsystemen.

Die Erfindung wird nun anhand der folgenden Ausführungsbeispiele näher beschrieben. Insbesondere die im Folgenden genannten Testmethoden sind Teil der allgemeine Offenbarung der Anmeldung und nicht auf die konkreten Ausführungsbeispiele be- schränkt.

Experimenteller Teil:

A. Allgemeine Testmethoden

1. XUD9 Test - Bestimmung der Flow Restriction

Die Durchführung erfolgt nach den Standardbestimmungen gemäß CEC F-23-1 -01 . 2. DWI O Test - Bestimmung des Leistungsverlusts durch Injektorablagerungen im Common Rail Dieselmotor

2.1. DW10- KC - Keep Clean Test

Der Keep Clean Test lehnt sich an die CEC Test Prozedur F-098-08 Issue 5 an. Dabei kommen der gleiche Testaufbau und Motorentyp (PEUGEOT DW10 ) wie in der CEC Prozedur zum Einsatz.

Änderung und Besonderheiten:

Bei den Versuchen kamen gereinigte Injektoren zum Einsatz. Die Reinigungsdauer im Ultraschallbad in 60°C Wasser + 10% Superdecontamine (Intersciences, Brüssel) betrug 4h.

Testlaufzeiten: Der Testzeitraum betrug 12h ohne Abstellphasen. Der in Figur 2 dargestellte einstündige Testzyklus aus der CEC F-098-08 wurde dabei 12-mal durchfahren.

Leistungsbestimmung:

Die Anfangsleistung P0,KC [kW] wird aus dem gemessenen Drehmoment bei 4000/min Volllast direkt nach Teststart und Warmlauf des Motors berechnet. Die Vorgehensweise ist in der Issue 5 der Testprozedur (CEC F-98-08) beschrieben. Dabei wird der gleiche Testaufbau und der Motorentyp PEUGEOT DW10 verwendet. Die Endleistung (Pend,KC) wird im 12. Zyklus in Stufe 12, (siehe Tabelle, Figur 2) bestimmt. Auch hier ist der Betriebspunkt 4000/min Volllast. Pend,KC [kW] errechnet sich aus dem gemessenen Drehmoment.

Der Leistungsverlust im KC Test wird wie folgt berechnet:

2.2. DW10-Dirty Up - Clean Up-(DU-CU)

Der DU-CU Test lehnt sich an die CEC Test Prozedur F-098-08 Issue 5 an. Die Vorgehensweise ist in der Issue 5 der Testprozedur (CEC F-98-08) beschrieben. Dabei wird der gleiche Testaufbau und der Motorentyp PEUGEOT DW10 verwendet.

Der DU - CU Test besteht aus zwei einzelnen Tests, die hintereinander gefahren werden. Der erste Test dient zur Ablagerungsbildung (DU), der zweite zum Entfernen der Ablagerungen (CU). Nach dem DU wird der Leistungsverlust (Powerloss) be- stimmt. Nach Ende des DU Laufs wird der Motor für mindestens 8 Stunden nicht betrieben und auf Umgebungstemperatur abgekühlt. Danach wird mit dem CU Kraftstoff der CU gestartet, ohne die Injektoren auszubauen und zu reinigen. Die Ablagerungen und der powerloss gehen im Idealfall im CU-Testverlauf zurück. Änderung und Besonderheiten:

Gereinigte Injektoren wurden vor jedem DU Test in den Motor eingebaut. Die Reinigungsdauer im Ultraschallbad bei 60°C , Wasser + 10% Superdecontamine (Inter- sciences, Brüssel) betrug 4h. Testlaufzeiten:

Der Testzeitraum betrug 12h für den DU und 12h für den CU. Der Motor wurde im DU und CU Test ohne Abstellphasen betrieben.

Der in Figur 2 dargestellte einstündige Testzyklus aus der CEC F-098-08 wurde dabei jeweils 12-mal durchfahren.

Leistungsbestimmung:

Die Anfangsleistung PO, du [kW] wird aus dem gemessenen Drehmoment bei 4000/min Volllast direkt nach Teststart und Warmlauf des Motors berechnet. Die Vorgehensweise ist ebenfalls in der Issue 5 der Testprozedur beschrieben.

Die Endleistung (Pend,du) wird im 12. Zyklus in Stufe 12, (siehe Tabelle oben) bestimmt. Auch hier ist der Betriebspunkt 4000/min Volllast. Pend,du [kW] errechnet sich aus dem gemessenen Drehmoment.

Der Leistungsverlust im DU wird wie folgt berechnet

Clean up

Die Anfangsleistung PO.cu [kW] wird aus dem gemessenen Drehmoment bei 4000/min Volllast direkt nach Teststart und Warmlauf des Motors im CU berechnet. Die Vorgehensweise ist ebenfalls in der Issue 5 der Testprozedur beschrieben.

Die Endleistung (Pend,cu) wird im 12. Zyklus in Stufe 12, (siehe Tabelle Figur 2) bestimmt. Auch hier ist der Betriebspunkt 4000/min Volllast. Pend,cu [kW] errechnet sich aus dem gemessenen Drehmoment.

Der Leistungsverlust im CU-Test wird wie folgt berechnet (negative Zahl beim power- loss im cu-Test bedeutet Leistungszuwachs) Als Kraftstoff wurde ein handelsüblicher Dieselkraftstoff der Fa. Haltermann (RF-06-03) eingesetzt. Diesem wurden zur künstlichen Anregung der Bildung von Ablagerungen an den Injektoren 1 Gew.-ppm Zink in Form einer Zink-Didodecanoat-Lösung zuge- setzt.

3. IDID Test - Bestimmung der Additivwirkung gegen interne Injektorablagerungen

Die Bildung von Ablagerungen im Inneren des Injektors wurde anhand der Abweichun- gen der Abgastemperaturen der Zylinder am Zylinderausgang beim Kaltstart des DW10-Motors charakterisiert.

Zur Förderung der Bildung von Ablagerungen wurden dem Kraftstoff 1 mg/l Na Salz einer organischen Säure, 20 mg/l Dodecenylbernsteinsäure und 10 mg/l Wasser zuge- geben.

Der Test wird als dirty-up-clean-up Test (DU-CU) durchgeführt.

DU-CU lehnt sich an die an die CEC Test Prozedur F-098-08 Issue 5 an.

Der DU - CU Test besteht aus zwei einzelnen Tests, die hintereinander gefahren werden. Der erste Test dient zur Ablagerungsbildung (DU), der zweite zum Entfernen der Ablagerungen (CU).

Nach dem DU Lauf wird nach einer mindestens achtstündigen Stillstands-Phase ein Kaltstart des Motors mit anschließendem 10-minütigen Leerlauf durchgeführt.

Danach wird mit dem CU Kraftstoff der CU gestartet, ohne die Injektoren auszubauen und zu reinigen. Nach dem CU Lauf über 8h wird nach einer mindestens achtstündigen Stillstands-Phase ein Kaltstart des Motors mit anschließendem 10-minütigen Leer- lauf durchgeführt. Die Auswertung erfolgt durch den Vergleich der Temperaturverläufe für die einzelnen Zylinder nach Kaltstart des du und des CU-Laufs.

Der IDID-Test zeigt die interne Ablagerungsbildung im Injektor an. Als Kenngröße dient bei diesem Test die Abgastemperatur der einzelnen Zylinder. Bei einem Injektor Sys- tem ohne IDID erhöhen sich die Abgastemperaturen der Zylinder gleichmäßig. Bei vorhandenem IDID erhöhen sich die Abgastemperaturen der einzelnen Zylinder nicht gleichmäßig und weichen voneinander ab. Die Temperatursensoren befinden sich hinter dem Zylinderkopfaustritt im Abgaskrümmer. Signifikante Abweichung der einzelnen Zylindertemperaturen (z.B. > 20°C) zeigen das Vorliegen von internen Injektorablagerungen (IDID) an.

Die Tests (DU und CU) werden mit jeweils 8h Laufzeit durchgeführt. Der Einstündige Testzyklus aus der CEC F-098-08 wird dabei jeweils 8-mal durchfahren. Bei Abweichungen der einzelnen Zylindertemperaturen von größer 45°C zum Mittelwert aller 4 Zylinder wird der Test vorzeitig abgebrochen.

B. Herstellungs- und Analysenbeispiele:

Verwendete Reaktanden:

N,N-Dimethylethanolamin CAS. 108-01 -0 Firma BASF

1 ,2-Propylenoxid CAS. 75-56-9 Firma BASF

1 ,2-Butylenoxid CAS. 106-88-7 Firma BASF

Kalium-fert-butylat CAS. 865-47-4 Firma Aldrich

Dimethyloxalat CAS. 553-90-2 Firma Aldrich

Solvent Naphtha Heavy CAS. 64742-94-5 Firma Exxon Mobil

Styroloxid CAS. 96-09-3 Firma Aldrich

2-Ethylhexanol CAS. 104-76-7 Firma BASF

Laurinsäure CAS. 143-07-7 Firma Aldrich

Isotridecanol N CAS. 27458-92-0 Firma BASF

Essigsäure, rein CAS. 64-19-7 Firma Aldrich

Ameisensäure, 85% in H2O CAS 64-18-6 Firma Kraft

Formalin, 36,5% CAS 50-00-0 Firma Aldrich

Polydispersitäten D wurden mittels Gelpermeationschromatographie bestimmt. Synthesebeispiel 1 : N,N-Dimethylethanolamin*15 PO (A) In einem 21 Autoklaven wird N,N-Dimethylethanolamin (76,7 g) mit Kalium-ferf-butylat (4, 1 g) versetzt. Es wird dreimal mit N2 gespült, ein Vordruck von ca. 1 ,3 bar N2 eingestellt und die Temperatur auf 130°C erhöht. 1 ,2-Propylenoxid (750 g) wird über einen Zeitraum von 10 h so zudosiert, dass die Temperatur zwischen 129°C-131 °C bleibt. Anschließend wird 6 h bei 130°C nachgerührt, mit N2 gespült, auf 60°C abgekühlt und der Reaktor entleert. Überschüssiges Propylenoxid wird am Rotationsverdampfer im Vakuum entfernt. Das basische Rohprodukt wird mit Hilfe von handelsüblichen Mg- Silikaten neutralisiert, welche anschließend abfiltriert werden. Man erhält 831 g des Produktes in Form eines orangen Öls (TBN 58, 1 mg KOH/g; D 1 , 16).

Synthesebeispiel 2: N,N-Dimethylethanolamin*25 BuO (B)

In einem 21 Autoklaven wird N,N-Dimethylethanolamin (47,1 g) mit Kalium-feri-butylat (5,0 g) versetzt. Es wird dreimal mit N2 gespült, ein Vordruck von ca. 1 ,3 bar N2 einge- stellt und die Temperatur auf 140°C erhöht. 1 ,2-Butylenoxid (953 g) wird über einen Zeitraum von 9 h so zudosiert, dass die Temperatur zwischen 138°C-141 °C bleibt. Anschließend wird 6 h bei 140°C nachgerührt, mit N2 gespült, auf 60°C abgekühlt und der Reaktor entleert. Überschüssiges Butylenoxid wird am Rotationsverdampfer im Vakuum entfernt. Das basische Rohprodukt wird mit Hilfe von handelsüblichen Mg-Silikaten neutralisiert, welche anschließend abfiltriert werden. Man erhält 1000 g des Produktes in Form eines gelben Öls (TBN 28, 1 mg KOH/g; D 1 , 12).

Synthesebeispiel 3: N,N-Dimethylethanolamin*15 PO quaterniert mit Dimethyloxalat (I) Polyetheramin (A) (250 g) aus Synthesebeispiel 1 wirde mit Dimethyloxalat (59 g) und Laurinsäure (12,5 g) versetzt und das Reaktionsgemisch wird für 4 h bei einer Temperatur von 120°C gerührt. Anschließend wird überschüssiges Dimethyloxalat am Rotationsverdampfer im Vakuum (p = 5 mbar) bei einer Temperatur von 120°C entfernt. Man erhält 290 g des Produktes. 1 H-NMR-Analyse des so erhaltenen quaternierten Po- lyetheramins zeigt die Quaternierung.

Synthesebeispiel 4: N,N-Dimethylethanolamin*25 BuO quaterniert mit Dimethyloxalat (II) Polyetheramin (B) (250 g) aus Synthesebeispiel 2 wird mit Dimethyloxalat (67,3 g) und Laurinsäure (6,2 g) versetzt und das Reaktionsgemisch wird für 4,5 h bei einer Temperatur von 120°C gerührt. Anschließend wird überschüssiges Dimethyloxalat am Rotationsverdampfer im Vakuum (p = 5 mbar) bei einer Temperatur von 120°C entfernt. Man erhält 270 g des Produktes. 1 H-NMR-Analyse des so erhaltenen quaternierten Po- lyetheramins zeigt die Quaternierung.

Synthesebeispiel 5: N,N-Dimethylethanolamin*25 BuO quaterniert mit Styro- loxid/Essigsäure (III)

Polyetheramin (B) (400 g) aus Synthesebeispiel 2 wird in Solvent Naphtha Heavy (436 g) gelöst, mit Styroloxid (24,0 g) und Essigsäure (12,0 g) versetzt und anschließend 8 h bei einer Temperatur von 80°C gerührt. Nach Abkühlen auf Raumtemperatur erhält man 870 g des Produktes. 1 H-NMR-Analyse der so erhaltenen Lösung des quaternierten Polyetheramins in Solvent Naphtha Heavy zeigt die Quaternierung.

Synthesebeispiel 6: N,N-Dimethylethanolamin*15 PO quaterniert mit Propylen- oxid/Essigsäure (IV)

In einem 21 Autoklaven wird Polyetheramin (A) (305 g) aus Synthesebeispiel 1 in 2- Ethylhexanol (341 g) gelöst und mit Essigsäure (18,3 g) versetzt. Es wird dreimal mit N2 gespült, ein Vordruck von ca. 1 .3 bar N2 eingestellt und die Temperatur auf 130°C erhöht. 1 ,2-Propylenoxid (17,7 g) wird zudosiert. Anschließend wird 5 h bei 130°C nachgerührt, mit N2 gespült, auf 40°C abgekühlt und der Reaktor entleert. Überschüssiges Propylenoxid wird am Rotationsverdampfer im Vakuum entfernt. Man erhält 675 g des Produktes in Form eines orangen Öls. 1 H-NMR-Analyse der so erhaltenen Lösung des quaternierten Polyetheramins in 2-Ethylhexanol zeigt die Quaternierung. Synthesebeispiel 7: N,N-Dimethylethanolamin*15 PO quaterniert mit Ethylen- oxid/Essigsäure (V)

In einem 21 Autoklaven wird Polyetheramin (A) (518 g) aus Synthesebeispiel 1 in 2- Ethylhexanol (570 g) gelöst und mit konz. Essigsäure (30 g) versetzt. Es wird dreimal mit N2 gespült, ein Vordruck von ca. 1 .3 bar N2 eingestellt und die Temperatur auf 130°C erhöht. Ethylenoxid (22 g) wird zudosiert. Anschließend wird 5 h bei 130°C nachgerührt, mit N2 gespült, auf 40°C abgekühlt und der Reaktor entleert. Man erhält 1 1 16 g des Produktes in Form eines orangen Öls. 1 H-NMR-Analyse der so erhaltenen Lösung des quaternierten Polyetheramins in 2-Ethylhexanol zeigt die Quaternierung.

Synthesebeispiel 8: Isotridecanol N*22 BuO: Polyether (C)

Die Herstellung des Polyethers aus Isotridecanol N und 1 ,2-Butylenoxid im Molverhält- nis 1 :22 erfolgt nach bekannten Verfahren durch DMC-Katalyse, wie z.B. beschrieben in EP1591466A.

Synthesebeispiel 9: Isotridecanol (Tridecanol N, BASF)*22 BuO aminiert mit NH3: prim. Polyetheramin (D)

Die Herstellung des prim. Polyetheramins (D) durch Umsetzung des Polyethers (C) aus Synthesebeispiel 8 mit ΝΗβ ίη Gegenwart eines geeigneten Hydrierkatalysators erfolgt nach bekannten Verfahren, wie z.B. beschrieben in DE3826608A. Die Analyse des so erhaltenen Polyetheramins (D) ergibt TBN 32,0 mg KOH/g.

Synthesebeispiel 10: Tert. Polyetheramin (E)

Das Polyetheramin (D) (400 g) aus Synthesebeispiel 9 wird unter Eisbadkühlung mit Ameisensäure (65,3 g, 85% in H2O) versetzt. Das Reaktionsgemisch wird anschlie- ßend auf eine Temperatur von 45°C erwärmt und Formaldehyd-Lösung (44,9 g, 36,5% in H2O) wird bei dieser Temperatur zugetropft, wobei das freiwerdende Kohlendioxid aus dem Reaktionsgefäß abgeleitet wird. Das Reaktionsgemisch wird 16 h bei einer Temperatur von 80°C gerührt. Anschließend wird das Reaktionsgemisch auf Raumtemperatur abgekühlt, mit Salzsäure (37%; 35,4 g) versetzt und 1 h bei Raumtempera- tur gerührt. H2O (500 ml) wird zugegeben und die wässrige Phase wird durch Zugabe von 50%-iger Kalilauge auf einen pH-Wert von ca. 10 eingestellt. Anschließend wird das Gemisch mehrmals mit feri.-Butyl-methylether (insgesamt 1200 ml) extrahiert. Die vereinigten organischen Phasen werden mit ges. wässriger NaCI-Lösung gewaschen, über MgSC getrocknet und das Lösungsmittel wird im Vakuum entfernt. Man erhält 403 g des Produktes in Form eines gelben Öls. 1 H-NMR-Analyse des so erhaltenen tert. Polyetheramins zeigt die reduktive Dimethylierung.

Synthesebeispiel 11 : Isotridecanol (Tridecanol N, BASF)*22 BuO aminiert mit NH3, red. dimethyliert, quaterniert mit Dimethyloxalat (VI)

Tert. Polyetheramin (E) (172 g) aus Synthesebeispiel 10 wird mit Dimethyloxalat (55,3 g) und Laurinsäure (5,2 g) versetzt und das Reaktionsgemisch wird für 4 h bei einer Temperatur von 120°C gerührt. Anschließend wird überschüssiges Dimethyloxalat am Rotationsverdampfer im Vakuum (p = 5 mbar) bei einer Temperatur von 120°C entfernt. 1 H-NMR-Analyse des so erhaltenen quaternierten Polyetheramins zeigt die Qua- ternierung.

Synthesebeispiel 12: Isotridecanol (Tridecanol N, BASF)*22 BuO aminiert mit NH3, dimethyliert, quaterniert Styroloxid/Essigsäure (VII)

Tert. Polyetheramin (E) (200 g) aus Synthesebeispiel 10 wird in Toluol (222 g) gelöst, mit Styroloxid (14,4 g) und konz. Essigsäure (7,2 g) versetzt und anschließend 7 h bei einer Temperatur von 80°C gerührt. 1 H-NMR-Analyse der so erhaltenen Lösung zeigt die Quaternierung.

C. Anwendungsbeispiele:

In den folgenden Anwendungsbeispielen werden die Additive entweder als Reinsub- stanz (so wie in obigen Herstellungsbeispielen synthetisiert) oder in Form eines Additiv-Paketes eingesetzt.

Anwendungsbeispiel 1 : Bestimmung der Additivwirkung auf die Bildung von Ablagerungen in Dieselmotor-Einspritzdüsen a) XUD9 Tests

Verwendeter Kraftstoff: RF-06-03 (Referenzdiesel, Haltermann Products, Hamburg) Die Ergebnisse sind in Tabelle 1 zusammengefasst. Tabelle 1 :XUD9 Tests

b) DWI O Test Die Versuchsergebnisse sind in Tabelle 2 dargestellt.

Tabelle 2: Ergebnisse des DW10 Tests

Anwendungsbeispiel 2: Einlassventilsauberkeit (Saugrohreinspritzender Otto-Motor)

Methode : MB M102 E (CEC F-05-93)

Kraftstoff : E5 gemäß EN 228

Additiv gemäß Synthesebeispiel 4

Ergebnisse :

Einlassventilablagerung nach Testende (mg/V)

Grundwert (ohne Additiv) 1 12

Mit 1 16 mg/kg Additiv 86 Anwendungsbeispiel 3: Injektorsauberkeit

(Direkteinspritzender Otto-Motor)

Methode : BASF Hausmethode

Motor : Aufgeladener Vierzylinder mit 1 ,6 Liter Hubraum

Testdauer : 60 Stunden

Kraftstoff : Testkraftstoff mit 7 Vol.-% sauerstoffhaltigen Komponenten

Additive :

A : Additiv gemäß Synthesebeispiel 4

B : Additiv gemäß Synthesebeispiel 3

* : Der FR-Wert ist ein durch die Motorsteuerung erfasster Parameter, der mit der Dauer des Einspritzvorgangs des Kraftstoffes in den Brennraum korreliert. Je ausgeprägter die Bildung von Ablagerungen in den Injektordüsen, desto länger die Einspritzdauer bzw. höher der FR-Wert. Umgekehrt bleibt der FR-Wert konstant bzw. nimmt tendenziell leicht ab, wenn die Injektordüsen frei von Ablagerungen bleiben.

Auf die Offenbarung der hierin zitierten Druckschriften wird ausdrücklich Bezug genommen.