Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
RADATION-EMITTING SEMICONDUCTOR CHIP AND A METHOD FOR PRODUCING A RADIATION-EMITTING SEMICONDUCTOR CHIP
Document Type and Number:
WIPO Patent Application WO/2019/145193
Kind Code:
A1
Abstract:
The invention relates to a radiation-emitting semiconductor chip (1), comprising: a semiconductor body (2) having an active region designed for generating electromagnetic radiation; a reflector (3) designed for reflecting a portion of the electromagnetic radiation; at least one cavity (4) filled with a material with a refractive index of max. 1.1; and a seal (5) which is not permeable for the material; wherein the at least one cavity (4) is arranged between the reflector (3) and the semiconductor body (2).

Inventors:
PERZLMAIER KORBINIAN (DE)
ILLEK STEFAN (DE)
Application Number:
PCT/EP2019/050967
Publication Date:
August 01, 2019
Filing Date:
January 15, 2019
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
OSRAM OPTO SEMICONDUCTORS GMBH (DE)
International Classes:
H01L33/56; H01L33/44; H01L33/60; H01L33/00; H01L33/38; H01L33/40
Domestic Patent References:
WO2010020213A12010-02-25
Foreign References:
DE102008035900A12009-11-05
US20140367693A12014-12-18
DE102018101389A2018-01-23
Attorney, Agent or Firm:
EPPING HERMANN FISCHER PATENTANWALTSGESELLSCHAFT MBH (DE)
Download PDF:
Claims:
Patentansprüche

1. Strahlungsemittierender Halbleiterchip (1) mit

einem Halbleiterkörper (2) umfassend einen aktiven

Bereich, der zur Erzeugung von elektromagnetischer Strahlung ausgebildet ist,

einem Reflektor (3) , der dazu ausgebildet ist, einen Teil der elektromagnetischen Strahlung zu reflektieren,

zumindest einer Kavität (4), die mit einem Material befüllt ist, das einen Brechungsindex von höchstens 1,1 aufweist, und

einer Versiegelung (5) , die für das Material

undurchlässig ist, wobei

die zumindest eine Kavität (4) zwischen dem Reflektor (3) und dem Halbleiterkörper (2) angeordnet ist.

2. Strahlungsemittierender Halbleiterchip (1) nach dem vorherigen Anspruch, bei dem

die Versiegelung (5) die zumindest eine Kavität (4) lateral vollständig umgibt, und

die Versiegelung (5) eine Seitenfläche des Reflektors (3a) zumindest stellenweise bedeckt.

3. Strahlungsemittierender Halbleiterchip (1) nach einem der vorherigen Ansprüche, bei dem eine Unterstützungsschicht (7) an einer dem Halbleiterkörper (2) abgewandten Unterseite des Reflektors (3b) angeordnet ist.

4. Strahlungsemittierender Halbleiterchip (1) nach einem der vorherigen Ansprüche, bei dem die Versiegelung (5) die Unterseite des Reflektors (3b) überdeckt.

5. Strahlungsemittierender Halbleiterchip (1) nach einem der vorherigen Ansprüche, bei dem die Unterstützungsschicht (7) zwischen der Versiegelung (5) und dem Reflektor (3) angeordnet ist.

6. Strahlungsemittierender Halbleiterchip (1) nach einem der vorherigen Ansprüche, bei dem die Versiegelung (5) seitlich bündig mit dem Halbleiterkörper (2) abschließt.

7. Strahlungsemittierender Halbleiterchip (1) nach einem der vorherigen Ansprüche, bei dem die Versiegelung (5) seitlich bündig mit der Unterstützungsschicht (7) abschließt.

8. Strahlungsemittierender Halbleiterchip (1) nach einem der Ansprüche 1 bis 5, bei dem die Versiegelung (5) die

Unterstützungsschicht (7), den Reflektor (3) und die

zumindest eine Kavität (4) lateral vollständig umgibt.

9. Strahlungsemittierender Halbleiterchip (1) nach einem der vorherigen Ansprüche, bei dem zwischen dem Reflektor (3) und dem Halbleiterkörper (2) zumindest eine Stütze (6) angeordnet ist.

10. Strahlungsemittierender Halbleiterchip (1) nach einem der vorherigen Ansprüche, bei dem die zumindest eine Stütze (6) eine elektrisch leitende und mechanische Verbindung zwischen dem Reflektor (3) und dem Halbleiterkörper (2) bildet .

11. Strahlungsemittierender Halbleiterchip (1) nach einem der vorherigen Ansprüche, bei dem die zumindest eine Stütze (6) in direktem Kontakt mit dem Reflektor (3) und dem

Halbleiterkörper (2) steht.

12. Strahlungsemittierender Halbleiterchip (1) nach einem der vorherigen Ansprüche 1 bis 9, bei dem zwischen dem Halbleiterkörper (2) und der zumindest eine Stütze (6) eine Zwischenschicht (13) angeordnet ist.

13. Strahlungsemittierender Halbleiterchip (1) nach einem der vorherigen Ansprüche, bei dem die zumindest eine Stütze (6) das gleiche Material wie der Reflektor (3) enthält.

14. Verfahren zur Herstellung eines strahlungsemittierenden Halbleiterchips (1) mit den folgenden Schritten:

Bereitstellen eines Halbleiterwafers (8) umfassend eine Vielzahl von Halbleiterkörpern (2),

Aufbringen einer strukturierten Opferschicht (9) an einer Unterseite des Halbleiterwafers (8b),

Aufbringen einer Reflektorschicht (11) an einer dem Halbleiterwafer (8) abgewandte Außenseite der Opferschicht, Entfernen der Opferschicht (9),

Aufbringen einer Versiegelungsschicht (12) an einer dem Halbleiterwafer (8) abgewandte Außenseite, und

Vereinzeln zu einer Vielzahl von Halbleiterchips (1) .

15. Verfahren nach dem vorherigen Anspruch, wobei nach dem Aufbringen der Reflektorschicht (11) eine

Unterstützungsschicht (7) an einer dem Halbleiterwafer (8) abgewandte Außenseite der Reflektorschicht (11) aufgebracht wird .

16. Verfahren nach einem der zwei vorherigen Ansprüche, wobei nach dem Aufbringen der Opferschicht (9) Ausnehmungen (10) in der Opferschicht (9) erzeugt werden, wobei der Halbleiterwafer (8) im Bereich der Ausnehmungen (10) freigelegt wird, und Stützen (6) durch Ausfüllen der

Ausnehmungen mit einem Stützmaterial (60) erzeugt werden, wobei die Reflektorschicht (11) die Stützen (6) überdeckt. 17. Verfahren nach einem der drei vorherigen Ansprüche, wobei das Vereinzeln durch die Versiegelungsschicht (12) und den Halbleiterkörper (2) erfolgt.

18. Verfahren nach einem der vier vorherigen Ansprüche, wobei das Vereinzeln durch die Unterstützungsschicht (7), und/oder die Versiegelung (5) und den Halbleiterkörper (2) erfolgt .

Description:
Beschreibung

STRAHLUNGSEMITTIERENDER HALBLEITERCHIP UND VERFAHREN ZUR HERSTELLUNG EINES STRAHLUNGSEMITTIERENDEN HALBLEITERCHIPS

Es wird ein strahlungsemittierender Halbleiterchip angegeben. Des Weiteren wird ein Verfahren zur Herstellung eines

strahlungsemittierenden Halbleiterchips angegeben.

Eine zu lösende Aufgabe besteht darin einen

strahlungsemittierenden Halbleiterchip anzugeben, der eine verbesserte Effizienz aufweist. Eine weitere zu lösende

Aufgabe besteht darin, ein Verfahren anzugeben, mit dem ein solcher strahlungsemittierender Halbleiterchip herstellbar ist .

Es wird ein strahlungsemittierender Halbleiterchip angegeben. Der strahlungsemittierende Halbleiterchip emittiert

beispielsweise im Betrieb elektromagnetische Strahlung, insbesondere sichtbares Licht. Bei dem

strahlungsemittierenden Halbleiterchip handelt es sich beispielsweise um einen Leuchtdiodenchip, kurz LED-Chip oder einen oberflächenemittierenden Laserdiondenchip (vertical- cavity surface-emitting laser kurz VCSEL) .

Gemäß zumindest einer Ausführungsform umfasst der

strahlungsemittierende Halbleiterchip einen Halbleiterkörper, umfassend einen aktiven Bereich, der zur Erzeugung von elektromagnetischer Strahlung ausgebildet ist. Bei dem

Halbleiterkörper handelt es sich beispielsweise um einen epitaktisch gewachsenen Halbleiterkörper. Der

Halbleiterkörper kann auf einem III-V-

Verbindungshalbleitermaterial basieren. Der aktive Bereich kann eine QuantentopfStruktur oder eine Mehrfach QuantentopfStruktur umfassen.

Gemäß zumindest einer Ausführungsform umfasst der

strahlungsemittierende Halbleiterchip einen Reflektor, der dazu ausgebildet ist, einen Teil der elektromagnetischen Strahlung zu reflektieren. Der Reflektor ist beispielsweise ein metallischer Reflektor. Das heißt, der Reflektor besteht aus oder enthält ein Metall. Der Reflektor ist beispielsweise elektrisch leitfähig und reflektiert einen hohen Teil von der im aktiven Bereich erzeugten elektromagnetischen Strahlung. Der Reflektor enthält beispielsweise Silber, Aluminium, Rhodium, Nickel, Kupfer oder Gold oder besteht aus

beispielsweise Silber, Aluminium, Rhodium, Nickel, Kupfer oder Gold.

Ferner ist es möglich, dass es sich bei dem Reflektor um einen Bragg-Spiegel handelt, der aus abwechselnd angeordneten Schichten eines hoch-brechenden und eines niedrig-brechenden Materials besteht. Der Reflektor ist zum Beispiel elektrisch isolierend ausgebildet.

Darüber hinaus kann es sich bei dem Reflektor um eine

Kombination eines Bragg-Spiegels und eines metallischen

Reflektors handeln. Der Bragg-Spiegel ist dabei zum Beispiel zwischen aktivem Bereich und metallischem Reflektor

angeordnet .

Der Reflektor weist dabei für im aktiven Bereich erzeugte elektromagnetische Strahlung vorzugsweise eine Reflektivität von wenigstens 90 % auf. Gemäß zumindest einer Ausführungsform umfasst der strahlungsemittierende Halbleiterchip zumindest eine Kavität, die mit einem Material befüllt ist, das einen Brechungsindex von höchstens 1,1 aufweist. Das Material mit dem die

zumindest eine Kavität befüllt ist kann beispielsweise ein Gas sein. Das Gas kann beispielsweise Luft oder ein

Prozessgas wie beispielsweise Argon, Krypton, Xenon,

Stickstoff, Sauerstoff, SF6 oder H2O sein und Spuren anderer

Gase enthalten. Das heißt, die zumindest eine Kavität, enthält ein Gas und ist vorzugsweise mit diesem Gas befüllt. Das Gas kann unter sehr kleinem Druck in der Kavität

vorhanden sein, so dass in der Kavität ein Unterdrück oder ein Vakuum wie zum Beispiel ein Grobvakuum oder ein

Feinvakuum vorliegt.

Gemäß zumindest einer Ausführungsform umfasst der

strahlungsemittierende Halbleiterchip eine Versiegelung, die für das Material undurchlässig ist. Beispielsweise ist die Versiegelung im Rahmen der Herstellungstoleranz im

Wesentlichen undurchlässig für das Material. Im Wesentlichen undurchlässig heißt dabei, dass kleine Mengen von Material durch die Versiegelung aus der zumindest einen Kavität nach außen diffundieren könnten. Die Versiegelung bildet eine Versiegelung für das Material, mit dem die zumindest eine Kavität befüllt ist. Des Weiteren bildet die Versiegelung eine Versiegelung für Umgebungsmaterialien wie zum Beispiel Feuchte oder Schadgase, die den Reflektor beschädigen

könnten. Die Versiegelung ist beispielsweise aus einem Metall oder einem Dielektrikum gebildet. Zudem ist es möglich, dass die Versiegelung eines der folgenden Materialien enthalten oder aus einem der folgenden Materialien bestehen kann:

Siliziumnitrid, Siliziumoxid, Aluminiumoxid,

Titanwolfram (nitrid) , Nickel, Titan, Bisbenzocyclobuten . Das Versiegelungsmaterial kann beispielsweise durch Sputtern, Aufdampfen, chemischer Gasphasenabscheidung (CVD) oder

Elektroplattieren aufgebracht werden.

Gemäß zumindest einer Ausführungsform ist die zumindest eine Kavität zwischen dem Reflektor und dem Halbleiterkörper angeordnet. Das Material mit dem die zumindest eine Kavität befüllt ist, ist beispielsweise in direktem Kontakt mit dem Halbleiterkörper und dem Reflektor. Beispielsweise ist es möglich, dass sich zwischen Halbleiterkörper und Reflektor ausschließlich das Gas befindet. Ein anderes Material befindet sich dann nicht zwischen Halbleiterkörper und

Reflektor. Durch den direkten Kontakt des Halbleiterkörpers, der beispielsweise einen Brechungsindex von wenigstens 2 aufweist, mit dem Material mit dem die zumindest eine Kavität befüllt ist und der Eigenschaft, dass der Brechungsindex des Materials höchstens 1,1 ist, ergibt sich an der Grenzfläche des Halbleiterkörpers zur Kavität ein Sprung des

Brechungsindexes. Dieser Sprung bewirkt vorteilhafterweise eine besonders hohe Reflektivität für emittierte Strahlung, die mit einem flachen Winkel auf die Grenzfläche auftrifft.

Gemäß zumindest einer Ausführungsform umgibt die Versiegelung die zumindest eine Kavität lateral vollständig. Durch die Versiegelung ist es beispielsweise möglich, das Material, mit dem die zumindest eine Kavität befüllt ist, mit einem Druck zwischen Reflektor und Halbleiterkörper einzubringen, der kleiner ist als der normale Außendruck. Beispielsweise wird das Material mit einem Druck zwischen 1 mbar und 1 bar in der zumindest einen Kavität versiegelt.

Ferner ist es möglich, das Material mit Überdruck in der zumindest einen Kavität zu versiegeln. Ein mit Überdruck eingebrachtes Material verbessert dabei die thermischen

Eigenschaften des Materials in der zumindest einen Kavität. Das heißt, die Wärmeableitung durch das Material in der zumindest einen Kavität ist in diesem Fall weiter verbessert. Insbesondere sind Druckbereiche zwischen 1 bar und 5 bar vorstellbar .

Gemäß zumindest einer Ausführungsform bedeckt die

Versiegelung eine Seitenfläche des Reflektors zumindest stellenweise. „Zumindest stellenweise" heißt zum Beispiel, dass die Versiegelung die Seitenfläche des Reflektors

stellenweise oder vollständig bedeckt. Eine Seitenfläche des Reflektors ist dabei eine Außenfläche des Reflektors, die eine Deckfläche des Reflektors mit einer Bodenfläche des Reflektors verbindet. Die Versiegelung an der Seitenfläche des Reflektors schützt dabei den Reflektor vor beispielsweise chemischer Beschädigung. Die Versiegelung schützt den

Reflektor zudem gegen mechanische Beschädigung bei weiteren Prozessierungsschritten . Die Versiegelung kann an allen

Seitenflächen des Reflektors angeordnet sein.

In mindestens einer Ausführungsform umfasst der

strahlungsemittierende Halbleiterchip einen aktiven Bereich, der zur Erzeugung von elektromagnetischer Strahlung

ausgebildet ist, einen Reflektor, der dazu ausgebildet einen Teil der elektromagnetischen Strahlung zu reflektieren, zumindest eine Kavität die mit einem Material befüllt ist, das einen Brechungsindex von höchstens 1,1 aufweist, und einer Versiegelung, die für das Material undurchlässig ist.

Die zumindest eine Kavität ist zwischen dem Reflektor und dem Halbleiterkörper angeordnet. Die Versiegelung umgibt die zumindest eine Kavität lateral vollständig, und die Versiegelung bedeckt eine Seitenfläche des Reflektors

zumindest stellenweise.

Der hier beschriebene strahlungsemittierende Halbleiterchip macht nun unter anderem von der Idee Gebrauch, dass Gase als Reflektor eingesetzt werden, die einen kleineren

Brechungsindex haben als beispielsweise dielektrische

Festkörper. Dadurch erhöht sich am Reflektor die

Totalreflexion der von einer Leuchtdiode emittierten

Strahlung. Dadurch erhöht sich die Lichtauskopplung der

Leuchtdiode über einer Emissionsseite, die dem Reflektor gegenüber liegt.

Gegenwärtig wird die Lichtauskopplung von

strahlungsemittierenden Halbleiterchips, wie beispielsweise LEDs, durch reflektierende Spiegel erhöht, die beispielsweise aus einem Metall gebildet sind. Des Weiteren kann die

Reflektivität erhöht werden, indem ein dielektrisches, festes Material oder ein transparentes, leitfähiges Oxid (TCO) zwischen metallischem Spiegel und Halbleiterkörper angeordnet ist. Der zusätzliche Sprung im Brechungsindex unterstützt die Totalreflexion und erhöht dadurch die Lichtauskopplung.

Hierbei gilt, je kleiner der Brechungsindex des

dielektrischen Materials ist, desto höher ist die

Totalreflexion.

Eine Idee des hier beschriebenen strahlungsemittierende

Halbleiterchip ist unter anderem, das Dielektrikum durch ein Gas zu ersetzten, welches einen besonders kleinen

Brechungsindex aufweist. An der Grenzfläche des Gases und beispielsweise eines strahlungsemittierenden Halbleiters, tritt somit ein erhöhter Brechungsindexsprung auf. Damit wird eine besonders hohe Reflektivität für emittierte Strahlung erreicht, die mit einem flachen Winkel auf die Grenzfläche auftrifft. Elektromagnetische Strahlung, die unter steilen Winkeln einfällt wird durch den Reflektor reflektiert.

Das Gas wird beispielsweise in Kavitäten eingeschlossen und mit einer Versiegelung versiegelt. Diese Versiegelung kann auch als Schutz für die verwendete Spiegelschicht eingesetzt werden .

Gemäß zumindest einer Ausführungsform ist eine

Unterstützungsschicht an einer dem Halbleiterkörper

abgewandten Unterseite des Reflektors angeordnet. Die

Unterstützungsschicht bildet dabei beispielsweise die

mechanisch tragende Komponente des strahlungsemittierenden Halbleiterchips. Die Unterstützungsschicht enthält oder besteht beispielsweise aus Nickel, Kupfer,

Titanwolfram (nitrid) , Titan, Platin, Wolfram oder einem dicken reflektierenden Film. Der reflektierende Film ist beispielsweise wenigstens 200 nm dick. Der reflektierende Film ist beispielsweise aus Gold gebildet.

Eine Seitenfläche der Unterstützungsschicht ist dabei eine Außenfläche der Unterstützungsschicht, die eine Deckfläche der Unterstützungsschicht mit einer Bodenfläche der

Unterstützungsschicht verbindet.

Die Unterstützungsschicht kann beispielsweise seitlich bündig mit dem Reflektor abschließen oder diesen seitlich überragen.

Ferner kann die Unterstützungsschicht beispielsweise aus den gleichen Materialen wie der Reflektor gebildet sein. Gemäß zumindest einer Ausführungsform überdeckt die

Versiegelung die Bodenfläche des Reflektors an der Unterseite des Reflektors an der dem Halbleiterkörper abgewandten Seite des Reflektors. Die Versiegelung ist beispielsweise in direktem und unmittelbarem Kontakt mit dem Reflektor an dessen Unterseite. Die Versiegelung an der Unterseite des Reflektors schützt dabei den Reflektor vor beispielsweise chemischer und mechanischer Beschädigung.

Gemäß zumindest einer Ausführungsform ist die

Unterstützungsschicht zwischen der Versiegelung und dem

Reflektor angeordnet. Die Unterstützungsschicht ist

beispielsweise in direktem und unmittelbarem Kontakt mit dem Reflektor an der Unterseite des Reflektors. Die Versiegelung ist beispielsweise in direktem und unmittelbarem Kontakt mit der Unterstützungsschicht an der Unterseite der

Unterstützungsschicht an der dem Reflektor abgewandten Seite der Unterstützungsschicht. Das heißt, die Versiegelung schützt die Seitenflächen des Reflektors und der

Unterstützungsschicht, sowie die Unterseite der

Unterstützungsschicht vor beispielsweise chemischer und mechanischer Beschädigung.

Es ist beispielsweise möglich, dass die Versiegelung die Unterstützungsschicht an der Unterseite der

Unterstützungsschicht nur stellenweise bedeckt. Das heißt, stellenweise ist die Unterstützungsschicht frei von der Versiegelung. Die Versiegelung ist beispielsweise elektrisch isolierend ausgebildet. Das heißt, an den Stellen an der die Unterstützungsschicht frei von der Versiegelung ist kann beispielsweise ein elektrischer Kontakt zu der

Unterstützungsschicht und dem Reflektor hergestellt werden. Gemäß zumindest einer Ausführungsform schließt die Versiegelung seitlich bündig mit dem Halbleiterkörper ab. Das heißt, eine Seitenfläche des Halbleiterkörpers schließt bündig mit einer Seitenfläche der Versiegelung ab. Eine dem Halbleiterkörper zugewandte Deckfläche der Versiegelung steht dabei in direktem und unmittelbarem Kontakt mit der

Bodenfläche des Halbleiterkörpers an der Unterseite des

Halbleiterkörpers. Zudem steht beispielsweise eine der

Oberseite der Unterstützungsschicht zugewandte Bodenfläche der Versiegelung in direktem und unmittelbarem Kontakt mit der Deckfläche der Unterstützungsschicht an der Oberseite der Unterstützungsschicht .

Gemäß zumindest einer Ausführungsform schließt die

Versiegelung seitlich bündig mit der Unterstützungsschicht ab. Das heißt, eine Seitenfläche der Unterstützungsschicht schließt bündig mit einer Seitenfläche der Versiegelung ab. Vorteilhafter weise wird so eine kompakte Bauart des

strahlungsemittierenden Halbleiterchips erreicht.

Gemäß zumindest einer Ausführungsform umgibt die Versiegelung die Unterstützungsschicht, den Reflektor und die zumindest eine Kavität lateral vollständig. Das heißt, die

Seitenflächen der Unterstützungsschicht und des Reflektors sind vollständig von der Versiegelung bedeckt. Zudem wird die zumindest eine Kavität durch die Versiegelung versiegelt. Die lateralen Richtungen verlaufen dabei zum Beispiel parallel zur Haupterstreckungsebene des Halbleiterkörpers.

Gemäß zumindest einer Ausführungsform ist zwischen dem

Reflektor und dem Halbleiterkörper zumindest eine Stütze angeordnet. Die zumindest eine Stütze vermittelt

beispielsweise einen Abstand zwischen dem Halbleiterkörper und dem Reflektor und gibt somit die vertikale Erstreckung der Kavität vor. Der Halbleiterkörper und der Reflektor berühren sich beispielsweise vorzugsweise nicht. Der

Halbleiterkörper und der Reflektor stehen also insbesondere an keiner Stelle in direktem Kontakt zueinander, sondern sind durch die zumindest eine Stütze voneinander getrennt.

Zudem vermittelt die zumindest eine Stütze eine mechanische Verbindung zwischen dem Halbleiterkörper und dem Reflektor. Das heißt, der Reflektor kann insbesondere über die zumindest eine Stütze mit dem Reflektor mechanisch verbunden sein.

Sind zwischen dem Reflektor und dem Halbleiterkörper mehrere Stützen angeordnet, die beispielsweise als Säulen oder

Pfosten ausgebildet sind, können diese beispielsweise an Gitterpunkten eines regelmäßigen Gitters angeordnet sein, das sich entlang einer lateralen Ebene, parallel zur

Haupterstreckungsebene des Halbleiterkörpers erstreckt.

Alternativ kann die zumindest eine Stütze beispielsweise als eine geschlossene Bahn ausgebildet sein. Das heißt, die zumindest eine Stütze weist in der lateralen Ebene einen beispielsweise rahmenförmigen Verlauf auf. Die zumindest eine Stütze verläuft also kontinuierlich und kann beispielsweise einen Bereich zwischen dem Reflektor und dem Halbleiterkörper rahmenartig umschließen. Der Begriff rahmenartig ist dabei hinsichtlich der Form und des Verlaufs der zumindest einen Stütze nicht als einschränkend zu verstehen. Die zumindest eine Stütze kann beispielsweise eine rechteckige, eine vieleckige, eine runde oder eine ovale Form aufweisen.

Die zumindest eine Stütze, die beispielsweise als Bahn ausgebildet ist, kann Unterbrechungen aufweisen. Das heißt, die zumindest eine Stütze weist in der lateralen Ebene einen beispielsweise rahmenförmigen Verlauf auf, der stellenweise unterbrochen ist. Die Unterbrechung ist dann ein Teil der zumindest einen Kavität, die frei von der zumindest einen Stütze ist.

Weist der strahlungsemittierender Halbleiterchip mehre

Stützen auf, können die Stützen jeweils die gleiche Form aufweisen. Alternativ ist es möglich, dass die Stützen als Säulen oder Pfosten und geschlossene oder stellenweise geschlossene Bahnen ausgebildet sind.

Zudem ist es möglich, dass der Halbleiterkörper und der Reflektor stellenweise in direktem Kontakt stehen. Der

Reflektor und der Halbleiterkörper sind beispielsweise in einem ersten Bereich durch die zumindest eine Stütze

stellenweise voneinander getrennt und stehen beispielsweise in einem zweiten Bereich stellenweise in direktem Kontakt zueinander. Der Reflektor durchbricht im zweiten Bereich beispielsweise die zumindest eine Kavität vollständig bis zum Halbleiterkörper .

Der Reflektor im zweiten Bereich ist beispielsweise als geschlossene Bahn ausgebildet und kann Unterbrechungen aufweisen. Das heißt, der Reflektor im zweiten Bereich kann in der lateralen Ebene einen rahmenförmigen Verlauf

aufweisen, der beispielsweise stellenweise unterbrochen ist. Die Unterbrechung ist dann beispielsweise ein Teil der zumindest einen Kavität, die frei von dem Reflektor ist.

Gemäß zumindest einer Ausführungsform bildet die zumindest eine Stütze eine elektrisch leitende und mechanische

Verbindung zwischen dem Reflektor und dem Halbleiterkörper. Die zumindest eine Stütze stellt beispielsweise die

mechanische Verbindung zwischen dem Reflektor und dem

Halbleiterkörper her. Das heißt, der Reflektor und der

Halbleiterkörper sind über die zumindest eine Stütze

mechanisch miteinander verbunden. Die zumindest eine Stütze vermittelt vorteilhafterweise die mechanische Stabilität des strahlungsemittierenden Halbleiterchips. Ferner stellt die zumindest eine Stütze eine elektrisch leitende Verbindung zwischen dem Reflektor und dem Halbleiterkörper her. Das heißt, der Reflektor und der Halbleiterkörper sind über die zumindest eine Stütze elektrisch leitend miteinander

verbunden. Vorteilhafterweise kann der Halbleiterkörper mit der zumindest einen Stütze bestromt werden.

Gemäß zumindest einer Ausführungsform steht die zumindest eine Stütze in direktem Kontakt mit dem Reflektor und dem Halbleiterkörper. Die zumindest eine Stütze kann dabei direkt und unmittelbar an den Halbleiterkörper und direkt und unmittelbar an den Reflektor grenzen. Das heißt, die

zumindest eine Stütze kann sich beispielsweise in direktem und unmittelbarem Kontakt mit dem Halbleiterkörper und in direktem und unmittelbarem Kontakt mit dem Reflektor

befinden .

Gemäß zumindest einer Ausführungsform ist zwischen dem

Halbleiterkörper und der zumindest einen Stütze und der zumindest einen Kavität eine Zwischenschicht angeordnet. Die Zwischenschicht ist beispielsweise in direktem und

unmittelbarem Kontakt zu der zumindest einen Stütze und dem Halbleiterkörper. Zudem kann die Zwischenschicht auch

zwischen der Versiegelung und/oder der Unterstützungsschicht und/oder dem Reflektor im zweiten Bereich angeordnet sein. Die Zwischenschicht ist für die im Halbleiterkörper erzeugte elektromagnetische Strahlung durchlässig.

Beispielsweise ist die Zwischenschicht aus einem

transparenten leitfähigen Oxid gebildet (TCO) . Das TCO weist insbesondere eine Dicke von höchstens 50 nm, bevorzugt höchstens 20 nm auf. Ferner kann die Zwischenschicht aus einem nativen Oxid gebildet sein und beispielsweise eine Dicke von höchstens 10 nm, bevorzugt höchstens 5 nm, aufweisen. Vorteilhafterweise bestromt die Zwischenschicht den Halbleiterkörper dabei homogen.

Gemäß zumindest einer Ausführungsform enthält die zumindest eine Stütze das gleiche Material wie der Reflektor. Das heißt, die zumindest eine Stütze und der Reflektor können jeweils zumindest ein gemeinsames Metall enthalten.

Beispielsweise enthält sowohl die zumindest eine Stütze als auch der Reflektor Silber, Aluminium oder Gold. Zudem können die zumindest eine Stütze und der Reflektor beispielsweise aus dem gleichen Material bestehen. Beispielsweise bestehen die zumindest eine Stütze und der Reflektor aus Aluminium, Silber oder Gold.

Ferner kann die zumindest eine Stütze beispielsweise auch durch ein transparentes, leitfähiges Oxid (TCO) gebildet sein .

Es wird darüber hinaus ein Verfahren zur Herstellung eines strahlungsemittierenden Halbleiterchips angegeben.

Vorzugsweise eignet sich das Verfahren zur Herstellung eines hier beschriebenen strahlungsemittierenden Halbleiterchips. Das heißt, ein hier beschriebener strahlungsemittierender Halbleiterchip ist mit dem beschriebenen Verfahren herstellbar oder wird mit dem beschriebenen Verfahren

hergestellt. Sämtliche in Verbindung mit dem

strahlungsemittierenden Halbleiterchip offenbarten Merkmale sind daher auch in Verbindung mit dem Verfahren offenbart und umgekehrt .

Gemäß zumindest einer Ausführungsform umfasst das Verfahren den Schritt des Bereitstellens eines Halbleiterwafers umfassend eine Vielzahl von Halbleiterkörpern. Die

Halbleiterkörper umfassen jeweils einen aktiven Bereich, der zur Erzeugung von elektromagnetischer Strahlung ausgebildet ist. Bei dem Halbleiterwafer handelt es sich beispielsweise um einen epitaktisch gewachsenen Halbleiterwafer. Ferner kann der Halbleiterwafer einen Träger umfassen, auf den eine

Vielzahl von Halbleiterkörpern aufgebracht ist.

Gemäß zumindest einer Ausführungsform umfasst das Verfahren den Schritt des Aufbringens einer Opferschicht an einer Unterseite des Halbleiterwafers. Die Unterseite des

Halbleiterwafers ist beispielsweise eine Seite auf der die Vielzahl von Halbleiterkörpern aufgebracht ist und

beispielsweise eine p-dotierte Halbleiterschicht aufweist.

Die Opferschicht ist beispielsweise aus Siliziumdioxid, Silizium oder Germanium gebildet. Die Opferschicht wird beispielsweise durch Aufdampfen, Sputtern, CVD, PECVD an der Unterseite des Halbleiterwafers erzeugt.

Gemäß zumindest einer Ausführungsform umfasst das Verfahren den Schritt des Erzeugens von Ausnehmungen in der

Opferschicht, wobei der Halbleiterwafer im Bereich der

Ausnehmung freigelegt wird. Die Ausnehmungen in der

Opferschicht können beispielsweise durch Materialabtrag der Opferschicht erzeugt werden. Der Materialabtrag kann beispielsweise durch Ätzen erzeugt werden. Die Ausnehmungen durchdringen dabei die Opferschicht vollständig. Das heißt, die Opferschicht ist dann komplett abgetragen und ist durch die Ausnehmung durchbrochen. Eine Bodenfläche an der

Unterseite des Halbleiterwafers bildet dann eine Bodenfläche der Ausnehmung.

Gemäß zumindest einer Ausführungsform umfasst das Verfahren den Schritt des Erzeugens von Stützen durch Ausfüllen der Ausnehmungen mit einem Stützmaterial. Das heißt, das

Stützmaterial wird in die Ausnehmungen gefüllt. Die

Bodenfläche der Ausnehmungen und die Seitenflächen der

Ausnehmungen sind vollständig mit dem Stützmaterial bedeckt. Das Stützmaterial steht beispielsweise in direktem und unmittelbarem Kontakt mit dem Halbleiterwafer an dessen

Unterseite und den Seitenflächen der Ausnehmungen der

Opferschicht. Die Ausnehmungen werden beispielsweise bis zu einer Unterseite der Opferschicht gefüllt. Das Stützmaterial schließt dann beispielsweise bündig mit der Unterseite der Opferschicht ab.

Zudem ist es möglich, dass das Stützmaterial die Unterseite der Opferschicht überragt. Des Weiteren ist es möglich, dass das Stützmaterial an der Oberseite der Opferschicht die

Ausnehmungen in lateralen Richtungen überragen.

Das Stützmaterial ist beispielsweise elektrisch leitfähig und enthält beispielsweise Silber, Aluminium oder Gold.

Gemäß zumindest einer Ausführungsform umfasst das Verfahren den Schritt des Aufbringens einer Reflektorschicht an einer dem Halbleiterwafer abgewandten Außenseite der Opferschicht, wobei die Reflektorschicht die Stützen überdeckt. Die Reflektorschicht kann beispielsweise aus demselben Material wie das Stützmaterial bestehen oder dieses beinhalten.

Die Reflektorschicht kann beispielsweise durch Aufdampfen aufgebracht werden. Bei einer Verwendung einer Maske, insbesondere einer Schattenmaske, wird beispielsweise beim Aufbringen der Reflektorschicht eine Vielzahl von

Aussparungen in die Reflektorschicht erzeugt. Die

Reflektorschicht ist dabei in direktem und unmittelbarem Kontakt zur Unterseite der Opferschicht und zu den Stützen. Eine Bodenfläche an der Unterseite der Opferschicht bildet dann eine Bodenfläche der Aussparungen. Die Seitenflächen der Aussparungen sind durch die Reflektorschicht gebildet.

Alternativ ist es möglich, nach dem Aufbringen der

Reflektorschicht eine Vielzahl von Ausnehmungen in die

Reflektorschicht zu erzeugen. Die Ausnehmungen in der

Reflektorschicht können beispielsweise durch Materialabtrag der Reflektorschicht erzeugt werden. Der Materialabtrag kann beispielsweise durch Ätzen erzeugt werden. Die Ausnehmungen durchdringen dabei die Reflektorschicht vollständig. Das heißt, die Reflektorschicht ist dann komplett abgetragen und ist durch die Ausnehmung durchbrochen. Eine Bodenfläche an der Unterseite der Opferschicht bildet dann eine Bodenfläche der Ausnehmung.

Gemäß zumindest einer Ausführungsform umfasst das Verfahren den Schritt des Entfernens der Opferschicht. Die

Opferschicht, die beispielsweise aus Siliziumdioxid besteht oder gebildet ist, kann beispielsweise durch einen Ätzprozess mit gasförmigem Fluorwasserstoff abgetragen werden. Aufgrund des Abstands, den die Stützen zwischen dem Halbleiterwafer und Reflektorschicht vermitteln, ist zwischen dem Halbleiterwafer und Reflektorschicht zumindest eine Kavität gebildet. Das heißt, der Halbleiterwafer und die

Reflektorschicht sind beabstandet zueinander angeordnet. Das heißt, der Raum, der nicht durch die Stützen ausgefüllt ist, ist die zumindest eine Kavität zwischen dem Halbleiterwafer und Reflektorschicht.

Gemäß zumindest einer Ausführungsform umfasst das Verfahren den Schritt des Vereinzeins zu einer Vielzahl von

Halbleiterchips. Der Halbleiterwafer wird durch vertikale Schnitte durch den Halbleiterwafer zu strahlungsemittierenden Halbleiterchips vereinzelt. Nach dem Vereinzeln bildet ein Teilbereich der Reflektorschicht auf den vereinzelten

strahlungsemittierenden Halbleiterchips jeweils einen

Reflektor für den jeweiligen strahlungsemittierenden

Halbleiterchip .

Gemäß zumindest einer Ausführungsform umfasst das Verfahren den Schritt, nach dem Aufbringen der Reflektorschicht eine Unterstützungsschicht an einer dem Halbleiterwafer

abgewandten Seite der Reflektorschicht aufzubringen. Die Unterstützungsschicht steht dabei in direktem und

unmittelbarem Kontakt mit der Reflektorschicht. Die

Unterstützungsschicht schließt beispielsweise seitlich bündig mit der Reflektorschicht ab.

Gemäß zumindest einer Ausführungsform umfasst das Verfahren den Schritt nach dem Aufbringen der Unterstützungsschicht eine Versiegelungsschicht an einer dem Halbleiterwafer abgewandten Außenseite aufzubringen. Die Versiegelungsschicht steht somit beispielsweise in direktem und unmittelbarem Kontakt zu der Unterseite des Halbleiterwafers und zu der Unterseite der Unterstützungsschicht. Zudem bedeckt die Versiegelungsschicht die Seitenflächen der

Unterstützungsschicht und der Reflektorschicht und versiegelt die zumindest eine Kavität. Die Versiegelungsschicht umgibt die zumindest eine Kavität dabei lateral vollständig. Die Versiegelungsschicht bildet eine Versiegelung für das

Material, mit dem die zumindest eine Kavität befüllt ist. Die Versiegelungsschicht ist beispielsweise aus einem Metall oder einem Dielektrikum gebildet.

In einer weiteren Ausführungsform wird die

Versiegelungsschicht beispielsweise vor Aufbringen der

Unterstützungsschicht auf die Unterseite der Reflektorschicht und auf die Unterseite der Halbleiterschicht aufgebracht.

Gemäß zumindest einer Ausführungsform umfasst das Verfahren den Schritt des Vereinzeins durch die Versiegelungsschicht und den Halbleiterwafer. Das heißt, der Halbleiterwafer wird durch vertikale Schnitte durch die Versiegelungsschicht und den Halbleiterwafer zu strahlungsemittierenden

Halbleiterchips vereinzelt. Die Versiegelungsschicht bedeckt dabei die Reflektorschicht und die etwaige

Unterstützungsschicht, sowie die zumindest eine Kavität der vereinzelten strahlungsemittierenden Halbleiterchips. Nach dem Vereinzeln bildet ein Teilbereich der Reflektorschicht auf den vereinzelten strahlungsemittierenden Halbleiterchips jeweils einen Reflektor. Ferner bildet ein Teilbereich der Versiegelungsschicht auf den vereinzelten

strahlungsemittierenden Halbleiterchips jeweils eine

Versiegelung für den jeweiligen strahlungsemittierenden

Halbleiterchip .

Im Folgenden werden der hier beschriebene

strahlungsemittierende Halbleiterchip sowie das hier beschriebene Verfahren anhand von Ausführungsbeispielen und den zugehörigen Figuren näher erläutert.

Es zeigen:

Figuren 1,2, 3A, 3B, 3C und 3D schematische

Schnittdarstellungen von Ausführungsbeispielen eines hier beschriebenen strahlungsemittierenden Halbleiterchips,

Figuren 4A, 4B, 4C, 4D, 4E, 4F, 4G und 4H schematische

Schnittdarstellungen in Draufsicht von Ausführungsbeispielen eines hier beschriebenen strahlungsemittierenden

HalbleiterChips ,

Figuren 5A, 5B, 5C, 5D, 5E und 5F schematische

Schnittdarstellungen von Verfahrensschritten eines

Ausführungsbeispiels eines hier beschriebenen Verfahrens zur Herstellung eines strahlungsemittierenden Bauteils,

Figur 6 eine schematische Schnittdarstellung eines

Ausführungsbeispiels eines hier beschriebenen

strahlungsemittierenden Halbleiterchips .

Gleiche, gleichartige oder gleich wirkende Elemente sind in den Figuren mit den gleichen Bezugszeichen versehen. Die Figuren und die Größenverhältnisse der in den Figuren dargestellten Elemente untereinander sind nicht als

maßstäblich zu betrachten. Vielmehr können einzelne Elemente zur besseren Darstellbarkeit und/oder für eine bessere

Verständlichkeit übertrieben groß dargestellt sein. Die schematische Schnittdarstellung der Figur 1 zeigt ein Ausführungsbeispiel eines hier beschriebenen

strahlungsemittierenden Halbleiterchips .

Der strahlungsemittierende Halbleiterchip 1 umfasst

beispielsweise einen Halbleiterkörper 2. Der Halbleiterkörper 2 umfasst einen aktiven Bereich, der beispielsweise zur

Erzeugung von elektromagnetischer Strahlung vorgesehen ist. Der Halbleiterkörper 2 ist an seiner Unterseite 2b einer Oberseite des Reflektors 3c zugewandt. Der Reflektor 3 besteht oder enthält beispielsweise Silber, Aluminium oder Gold .

Der Halbleiterkörper 2 und der Reflektor 3 sind

beispielsweise mittels zumindest einer Stütze 6 mechanisch und/oder elektrisch leitend miteinander verbunden. Die zumindest eine Stütze 6 stellt einen Abstand zwischen dem Halbleiterkörper 2 und dem Reflektor 3 her. Aufgrund dieses Abstandes entsteht zwischen dem Halbleiterkörper 2 und dem Reflektor 3 zumindest eine Kavität 4. Die zumindest eine Kavität 4 ist dabei mit Luft oder einem anderen Gas befällt. Eine Versiegelung 5 umgibt die zumindest eine Kavität 4 lateral vollständig.

Zudem bedeckt die Versiegelung 5 die Seitenflächen des

Reflektors 3a beispielsweise vollständig. Eine Bodenfläche an der Unterseite der Versiegelung 5b schließt dabei

beispielsweise plan mit einer Deckfläche an der Unterseite des Reflektors 3b ab. Zudem schließt die Versiegelung 5 seitlich bündig mit dem Halbleiterkörper 2 ab. Die

Versiegelung 5 steht hierbei beispielsweise in direktem und unmittelbarem Kontakt mit dem Halbleiterkörper 2 und den Seitenflächen des Reflektors 3a. An der Unterseite des Reflektors 3b und der Versiegelung 5b ist eine

Unterstützungsschicht 7 angeordnet. Die Unterstützungsschicht 7 schließt dabei seitlich bündig mit der Versiegelung 5 ab und steht beispielsweise in direktem Kontakt mit der

Unterseite der Versiegelung 5b und des Reflektors 3b.

Die schematische Schnittdarstellung der Figur 2 zeigt ein weiteres Ausführungsbeispiel eines hier beschriebenen

strahlungsemittierenden Halbleiterchips 1. Der

strahlungsemittierende Halbleiterchip 1 umfasst einen

Halbleiterkörper 2, der beispielsweise einen aktiven Bereich umfasst. Der aktive Bereich ist beispielsweise zur

Strahlungserzeugung vorgesehen. Der Halbleiterkörper 2 ist an seiner Unterseite 2b der Oberseite des Reflektors 3c

zugewandt .

In diesem Ausführungsbeispiel stellen mehrere Stützen 6 einen Abstand zwischen dem Halbleiterkörper 2 und dem Reflektor 3 her. Aufgrund dieses Abstandes entsteht zwischen dem

Halbleiterkörper 2 und dem Reflektor 3 zumindest eine Kavität

4.

Die Stützen 6 können beispielsweise als Säulen oder Pfosten ausgebildet sein. Dadurch entsteht genau eine Kavität 4 zwischen dem Halbleiterkörper 2 und dem Reflektor 3. Die Stützen 6, die beispielsweise als Säulen oder Pfosten

ausgebildet sind, können beispielsweise an Gitterpunkten eines regelmäßigen Gitters angeordnet sein. Alternativ ist es möglich, dass die Stützen 6 als geschlossene oder nicht geschlossene Bahn ausgeführt sind. Eine Unterstützungsschicht 7 ist an der Unterseite des Reflektors 3b angeordnet. Die Unterstützungsschicht 7 schließt dabei seitlich bündig mit dem Reflektor 3 ab.

Der Halbleiterkörper 2 überragt den Reflektor 3 und die Unterstützungsschicht 7 seitlich. An der Unterseite des Halbleiterkörpers 2b, der den Reflektor 3 und die

Unterstützungsschicht 7 überragt, ist eine Versiegelung 5 angeordnet. Zudem umgibt die Versiegelung 5 den Reflektor 3 und die Unterstützungsschicht 7 lateral vollständig und versiegelt die zumindest eine Kavität 4.

Zudem ist die Versiegelung 5 an der Unterseite der

Unterstützungsschicht 7b angeordnet. Die Versiegelung 5 schließt die zumindest eine Kavität 4 ab und versiegelt diese. Auf diese Weise kann beispielsweise auch ein anderes Gas als Luft in die zumindest eine Kavität 4 eingebracht werden. Das Gas kann dabei auch mit einem Druck kleiner als der Normaldruck zwischen dem Halbleiterkörper 2 und dem Reflektor 3 eingebracht sein.

Die schematischen Schnittdarstellungen der Figuren 3A bis 3D zeigen weitere Ausführungsbeispiele eines hier beschriebenen strahlungsemittierenden Halbleiterchips 1.

Im Unterschied zum Ausführungsbeispiel der Figur 2 ist gemäß Figur 3A die Versiegelung 5 an der Unterseite der

Unterstützungsschicht 7 stellenweise durchbrochen und die Unterstützungsschicht 7 liegt frei. Die Versiegelung 5 ist hier elektrisch isolierend ausgebildet. Das heißt, an den Stellen an denen die Unterstützungsschicht 7 frei von der Versiegelung 5 ist kann beispielsweise ein elektrischer Kontakt zu der Unterstützungsschicht 7 und dem Reflektor 3 hergestellt werden.

Im Unterschied zum Ausführungsbeispiel der Figur 2 ist gemäß Figur 3B zwischen den Säulen 6 und dem Halbleiterkörper 2 eine Zwischenschicht 13 angeordnet. Zudem bedeckt die

Unterstützungsschicht 7 eine Seitenfläche der Versiegelung 5a, die dem Reflektor 3 zugewandt ist. Die

Unterstützungsschicht 7 steht hier in direktem Kontakt zum Halbleiterkörper 2. Die Zwischenschicht 13 kann die

Unterseite des Halbleiterkörpers 2b bedecken, die nicht von der Versiegelung 5 und der Unterstützungsschicht 7 bedeckt ist. Alternativ ist es möglich, dass die Zwischenschicht 13 die Unterseite des Halbleiterkörpers 2b vollständig bedeckt und auch zwischen der Versiegelung 5 und der

Unterstützungsschicht 7 und dem Halbleiterkörper 2 angeordnet ist .

Im Unterschied zum Ausführungsbeispiel der Figur 3B bedeckt gemäß Figur 3C der Reflektor 3 eine Seitenfläche der

Unterstützungsschicht 7a, die den Säulen 6 zugewandt ist. Zudem steht der Reflektor 3 in direktem Kontakt zum

Halbleiterkörper 2.

Im Unterschied zum Ausführungsbeispiel der Figur 3C sind gemäß Figur 3D keine Säulen und keine Zwischenschicht 13 zwischen dem Halbleiterkörper 2 und dem Reflektor 3

angeordnet. Die mechanische Stabilität wird hier von dem Reflektor 3 und der Unterstützungsschicht 7 vermittelt, die in direktem Kontakt zum Halbleiterkörper stehen. Der

Reflektor 3 und die Unterstützungsschicht 7 vermitteln hier einen Abstand zwischen dem Halbleiterkörper 2 und dem Reflektor 3 und geben somit die vertikale Erstreckung der Kavität 4 vor.

Die schematischen Schnittdarstellungen in Draufsicht der Figuren 4A bis 4H zeigen weitere Ausführungsbeispiele eines hier beschriebenen strahlungsemittierenden Halbleiterchips 1. Es ist jeweils eine Anordnung der Stützten 6 auf dem

Halbleiterkörper 2 gezeigt.

Gemäß Figur 4A sind die Stützen 6 an Gitterpunkten eines regelmäßigen Gitters angeordnet, das sich entlang einer lateralen Ebene, parallel zur Haupterstreckungsebene des Halbleiterkörpers 2 erstreckt. Zudem können die Stützen 6 an Gitterpunkten eines unregelmäßigen Gitters angeordnet sein, dargestellt in Figur 4B.

Gemäß Figur 4C und 4D sind die Stützen 6 als Bahn

ausgebildet, die sich überlappen.

Gemäß Figur 4E, 4F und 4G ist die Stütze 6 als geschlossene Bahn ausgebildet, die Unterbrechungen aufweist. Das heißt, die Stütze weist in der lateralen Ebene einen rahmenförmigen Verlauf auf, der stellenweise unterbrochen ist.

Gemäß Figur 4H sind die Stützen aus einer geschlossene Bahn, die Unterbrechungen aufweist und einer Säulen oder Pfosten Form, gebildet.

In Verbindung mit den Figuren 5A bis 5F ist ein

Ausführungsbeispiel für ein Herstellungsverfahren für hier beschriebene strahlungsemittierende Halbleiterchips 1

dargestellt . Gemäß Figur 5A wird in einem ersten Verfahrensschritt ein Halbleiterwafer 8 bereitgestellt. Auf die Unterseite des Halbleiterwafers 8b wird eine Opferschicht 9, die

beispielsweise aus Siliziumdioxid besteht oder gebildet ist, aufgebracht. Die Opferschicht 9 steht hier in direktem und unmittelbarem Kontakt zum Halbleiterwafer 8.

Gemäß Figur 5B wird in einem nächsten Verfahrensschritt eine Vielzahl von Ausnehmungen 10 in die Opferschicht 9 erzeugt. Der Materialabtrag wird hier beispielsweise durch lokales Ätzen von der Unterseite der Opferschicht 9b aus erzeugt. Die Ausnehmungen 10 durchdringen die Opferschicht 9 hierbei vollständig. Die Ausnehmungen 10 können beispielsweise an Gitterpunkten eines regelmäßigen Gitters angeordnet sein. Alternativ besteht die Möglichkeit, die Ausnehmungen jeweils als geschlossene Bahn auszuführen.

Im Bereich der Ausnehmungen wird der Halbleiterwafer 8 freigelegt. Das heißt, dass die Bodenfläche der Ausnehmungen

10 durch die Unterseite des Halbleiterwafers 8b gebildet ist. Die Seitenflächen der Ausnehmungen 10a werden durch die

Opferschicht 9 gebildet.

Gemäß Figur 5C werden in einem nächsten Verfahrensschritt die Ausnehmungen 10 mit einem Stützmaterial 60 ausgefüllt. Die Ausnehmungen 10 werden dabei vollständig mit dem

Stützmaterial 60 gefüllt. Das Stützmaterial 60 kann dabei über die Unterseite der Opferschicht 9b ragen. Zudem kann das Stützmaterial 60 die Ausnehmungen 10 seitlich überragen.

Des Weiteren wird auf der Unterseite der Opferschicht 9b und der Unterseite des Stützmaterials 60b eine Reflektorschicht

11 erzeugt. Die Reflektorschicht 11 steht dabei in direktem und unmittelbarem Kontakt zur Unterseite der Opferschicht 9b und der Unterseite des Stützmaterials 60b.

Nach dem Aufbringen der Reflektorschicht 11 ist es möglich, die Reflektorschicht 11 zu strukturieren. Beispielsweise kann beim Aufbringen der Reflektorschicht 11 eine Vielzahl von Aussparungen 100 in der Reflektorschicht 11 erzeugt werden. Die Reflektorschicht 11 ist dabei in direktem und

unmittelbarem Kontakt zur Unterseite der Opferschicht9b und zu den Stützen 6. Eine Bodenfläche der Aussparungen 100 ist durch die Unterseite der Opferschicht 9b gebildet. Die

Seitenflächen der Aussparungen 100 sind durch die

Reflektorschicht 11 gebildet.

Alternativ ist es möglich, nach dem Aufbringen der

Reflektorschicht 11 eine Vielzahl von Ausnehmungen 100 in der Reflektorschicht 11 zu erzeugen. Die Ausnehmungen 100 in der Reflektorschicht 11 können beispielsweise durch

Materialabtrag der Reflektorschicht 11 erzeugt werden. Der Materialabtrag kann beispielsweise durch Ätzen erzeugt werden. Die Ausnehmungen 100 durchdringen dabei die

Reflektorschicht 11 vollständig. Das heißt, die

Reflektorschicht 11 ist dann komplett abgetragen und ist durch die Ausnehmung 100 durchbrochen. Die Unterseite des Halbleiterwafers 8b bildet dann eine Bodenfläche der

Ausnehmung 100.

Gemäß Figur 5D wird in einem nächsten Verfahrensschritt eine Unterstützungsschicht 7 an einer dem Halbleiterwafer 8 abgewandten Außenseite der Reflektorschicht 11 aufgebracht. Die Unterstützungsschicht 7 schließt hierbei beispielsweise seitlich bündig mit der Reflektorschicht 11 ab. Die

Unterstützungsschicht 7 steht dabei in direktem und unmittelbarem Kontakt zur Unterseite der Reflektorschicht 11b.

Gemäß Figur 5E wird in einem nächsten Verfahrensschritt die Opferschicht 9 entfernt. Die Opferschicht 9, die

beispielsweise aus Siliziumdioxid besteht, wird

beispielsweise mittels einem Fluorwasserstoffätzprozess entfernt. Dadurch entsteht zumindest eine Kavität 4 zwischen dem Halbleiterkörper 2 und der Reflektorschicht 11.

Gemäß Figur 5F wird in einem nächsten Verfahrensschritt eine Versiegelungsschicht 12 an einer dem Halbleiterwafer 8 abgewandten Außenseite aufgebracht. Die Versiegelungsschicht 12 umschließt die zumindest eine Kavität 4 lateral

vollständig. Durch die Versiegelungsschicht 12 ist es

beispielsweise möglich, dass ein Material mit einem Druck in die zumindest eine Kavität 4 eingebracht werden kann, der kleiner ist als der normale Außendruck. Ein mit Überdruck eingebrachtes Material verbessert dabei die thermischen

Eigenschaften des Materials in der zumindest einen Kavität 4. Das heißt, die Wärmeableitung durch das Material in der zumindest einen Kavität 4 ist in diesem Fall weiter

verbessert .

Ferner bedeckt die Versiegelungsschicht 12 die Unterseite der Unterstützungsschicht 7b und die Seitenflächen der

Reflektorschicht 11a vollständig. Die Versiegelungsschicht 12 schützt dabei die Unterstützungsschicht 7 und die

Reflektorschicht 11 vor beispielsweise chemischer

Beschädigung .

Die schematische Schnittdarstellung der Figur 6 zeigt ein weiteres Ausführungsbeispiel eines hier beschriebenen strahlungsemittierenden Halbleiterchips, das mit einem hier beschriebenen Verfahren herstellbar ist. Analog zum

Ausführungsbeispiel der Figuren 1 und 2 umfasst der

strahlungsemittierende Halbleiterchip 1 einen

Halbleiterkörper 2, der beispielsweise einen aktiven Bereich umfasst .

Der Halbleiterkörper 2 und der Reflektor 3 sind

beispielsweise mittels zumindest einer Stütze 6 mechanisch und/oder elektrisch leitend miteinander verbunden. Die zumindest eine Stütze 6 stellt einen Abstand zwischen dem Halbleiterkörper 2 und dem Reflektor 3 her. Aufgrund dieses Abstandes entsteht zwischen dem Halbleiterkörper 2 und dem Reflektor 3 zumindest eine Kavität 4. Die zumindest eine Kavität 4 ist dabei mit Luft befällt. Hier wird keine

Versiegelung 5 angeordnet und die zumindest einen Kavität 4 ist nicht versiegelt. Dieser strahlungsemittierenden

Halbleiterchip 1 kann beispielsweise in ein Bauteil eingebaut werden .

Diese Patentanmeldung beansprucht die Priorität der deutschen Patentanmeldung 10 2018 101 389.2, deren Offenbarungsgehalt hiermit durch Rückbezug aufgenommen wird.

Die Erfindung ist nicht durch die Beschreibung anhand der Ausführungsbeispiele auf diese beschränkt. Vielmehr umfasst die Erfindung jedes neue Merkmal sowie jede Kombination von Merkmalen, was insbesondere jede Kombination von Merkmalen in den Patentansprüchen beinhaltet, auch wenn dieses Merkmal oder diese Kombination selbst nicht explizit in den

Patentansprüchen oder Ausführungsbeispielen angegeben ist. Bezugszeichenliste

1 strahlungsemittierender Halbleiterchip

2 Halbleiterkörper

2b Unterseite Halbleiterkörper

3 Reflektor

3a Seitenfläche Reflektor

3b Unterseite Reflektor

3c Oberseite Reflektor

4 Kavität

5 Versiegelung

5a Seitenfläche Reflektor

5b Unterseite Versiegelung

6 Stützen

60 Stützmaterial

60b Unterseite Stützmaterial

7 Unterstützungsschicht

7a Seitenfläche Unterstützungsschicht 7b Unterseite Unterstützungsschicht

8 Halbleiterwafer

8b Unterseite Halbleiterwafer

9 Opferschicht

9b Unterseite Opferschicht

10 Ausnehmungen

10a Seitenflächen Ausnehmungen

100 weitere Ausnehmungen und Aussparungen

11 Reflektorschicht

11a Seitenfläche Reflektorschicht

11b Unterseite Reflektorschicht

12 Versiegelungsschicht

13 Zwischenschicht