Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
RADIO WITH IMPROVED RECEPTION
Document Type and Number:
WIPO Patent Application WO/1998/016019
Kind Code:
A1
Abstract:
A method and apparatus for improving the signal-to-noise ratio of a citizen's band (CB) radio, a 10 meter radio receiver and scanner radio receiver, are disclosed. A compander circuit (30) is used in both the transmitting and receiving portions of the radio. Demodulated incoming audio signals are expanded by the compander circuit (30) to increase the dynamic range of incoming audio signals. Outgoing audio signals from a microphone (36) are compressed by the compander circuit (30) to decrease the dynamic range of the outgoing audio signals before they are amplified and transmitted.

Inventors:
AHN THOMAS I (US)
Application Number:
PCT/US1997/017719
Publication Date:
April 16, 1998
Filing Date:
October 02, 1997
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
COBRA ELECTRONICS CORP (US)
AHN THOMAS I (US)
International Classes:
H04B1/04; H04B1/40; H04B1/10; H04B1/64; H04J3/06; (IPC1-7): H04B1/00
Foreign References:
US5640685A1997-06-17
US5493698A1996-02-20
US4317220A1982-02-23
Other References:
See also references of EP 0929943A4
Attorney, Agent or Firm:
Morneault, Monique A. (311 South Wacker Drive - 530, Chicago IL, US)
Download PDF:
Claims:
CLAIMS
1. I CLAIM: An apparatus for receiving a citizen's band (CB) radio communication signal comprising: an antenna which receives an incoming CB radio communication signal; a CB receiver which demodulates said incoming communication signal into an incoming audio signal; a compander which expands said incoming audio signal; and a speaker which converts said expanded incoming audio signal into an audible message.
2. The receiving apparatus of claim 1 wherein the receiver comprises: a first amplifier connected to said antenna for amplifying said incoming communication signal; a reference oscillator for producing a reference signal; a first mixer which mixes said amplified communi¬ cation signal with said reference signal; a first band pass filter which filters an output signal of said first mixer; a second mixer which mixes an output signal of said first band pass filter with said reference signal; a second band pass filter which filters an output signal of said second mixer; a second amplifier which amplifies an output signal of said second band pass filter; a detector which demodulates an output of said second amplifier to produce an audio signal.
3. An apparatus for transmitting a citizen's band (CB) radio communication signal comprising: a microphone for converting an audible message in to an outgoing audio signal; a compander for compressing said outgoing audio signal; a transmitter which modulates said compressed outgoing audio signal into an outgoing communication signal; and an antenna which broadcasts said outgoing com¬ munication signal.
4. The transmitting apparatus of claim 3 wherein the transmitter comprises : a reference oscillator for producing a reference signal; a transmitter driver which mixes said reference signal with said compressed outgoing audio signal to produce modulation for said outgoing communication signal; and a transmitter amplifier connected to said antenna which amplifies said outgoing CB radio communication signal produced by said transmitter driver.
5. A twoway citizen's band (CB) radio communi¬ cation system comprising: a CB transmitter including a microphone which converts an outgoing audible message into an outgoing audio signal, a compander having a compressing portion, wherein said compressing portion compresses said outgoing audio signal, a CB modulator which modulates said compressed outgoing audio signal to create an outgoing communication signal, and an antenna which broadcasts said outgoing communication signal; and a receiver including a compander having an expanding portions, the receiver including means for demodulating said incoming communication signal to create an incoming audio signal, wherein said incoming audio signal is expanded by said compander expanding portion, and a speaker which converts said expanded incoming audio signal into an incoming audible message.
6. A method of improving the signaltonoise ratio of a citizen's band communication radio signal comprising the steps of: receiving a citizen's band radio signal; demodulating said received CB radio signal to create an incoming audio signal; expanding said incoming audio signal in a compan¬ der circuit; and converting said expanded incoming audio signal into an audible message.
7. A method of improving the signaltonoise ratio of a citizen's band (CB) communication radio signal comprising the steps of: converting an audible message into an outgoing audio signal; compressing said outgoing audio signal in a com¬ pander circuit; modulating said compressed outgoing audio signal to create an outgoing CB radio communication signal.
8. An apparatus for receiving a 10 meter radio communication signal comprising: an antenna which receives an incoming 10 meter radio communication signal; a 10 meter radio receiver which demodulates said incoming communication signal into an incoming audio signal; a compander which expands said incoming audio signal; and a speaker which converts said expanded incoming audio signal into an audible message.
9. The receiving apparatus of claim 8 wherein the receiver comprises: a first amplifier connected to said antenna for amplifying said incoming communication signal; a reference oscillator for producing a reference signal; a first mixer which mixes said amplified communi¬ cation signal with said reference signal; a first band pass filter which filters an output signal of said first mixer; a second mixer which mixes an output signal of said first band pass filter with said reference signal; a second band pass filter which filters an output signal of said second mixer; a second amplifier which amplifies an output signal of said second band pass filter; a detector which demodulates an output of said second amplifier to produce an audio signal.
10. A scanner radio receiver comprising: an antenna which receives an incoming communication signal in the range of 500 kHz to 1 GHz.; a receiver which demodulates said incoming communication signal into an incoming audio signal; a compander which expands said incoming audio signal; and a speaker which converts said expanded incoming audio signal into an audible message.
11. The receiving apparatus of claim 10 wherein the receiver comprises: a first amplifier connected to said antenna for amplifying said incoming communication signal; a reference oscillator for producing a reference signal; a first mixer which mixes said amplified communi¬ cation signal with said reference signal; a first band pass filter which filters an output signal of said first mixer; a second mixer which mixes an output signal of said first band pass filter with said reference signal; a second band pass filter which filters an output signal of said second mixer; a second amplifier which amplifies an output signal of said second band pass filter; a detector which demodulates an output of said second amplifier to produce an audio signal.
Description:
RADIO WITH IMPROVED RECEPTION

DESCRIPTION

Technical Field

The present invention relates generally to two- way radio communications and more particularly to improving the signal-to-noise ratio in radios. Background of the Invention

It is known that the signal-to-noise ratio in a two-way radio system affects the quality of the audio communications. When an audio signal is amplified during transmission and reception, the noise in the signal is also amplified. By narrowing the dynamic range of the signal to be amplified, the noise that is amplified can be reduced.

It is also known that a compander circuit can be used to improve the signal to noise ratio of an audio signal. A compander operates in a transmitter to compress audio signals before they are transmitted. A compander in a receiver then expands the audio signals after they are received. The compressor portion of the compander reduces the dynamic range of the signals by imparting more gain to low-intensity signals than to high-intensity signals. As a result of amplifying the weak signals more than the strong signals, the signal-to- noise ratio is improved. The expander portion of the compander does the reverse of the compressor circuit by restoring a compressed signal to it original dynamic range.

Companders are known to improve the signal-to- noise ratio in telephone communications, and they are used in such devices as cordless telephones and cellular

telephones. However, to the inventor's knowledge there has not been disclosed heretofore a method or apparatus which combines a citizen's band radio, with the signal- to-noise ratio improvements of a compander circuit. The quality of the signal of a citizen's band radio like all two-way radios depends upon the signal-to-noise ratio of the radio's transmitter and receiver. Hence there is a particular need for a device and method capable of improving the signal-to-noise ratio in two-way and citizen's band radios. Additionally to the inventor's knowledge, there has not been disclosed heretofore a method or apparatus which combines a 10 meter radio receiver or a radio scanner receiver, with the signal-to- noise ratio improvements of a compander circuit. Hence there is a particular need for a device and method capable of improving the signal-to-noise ratio in 10 meter radio (FM or AM) receivers and radio scanner receivers (FM or AM) .

The present invention is provided to overcome these and other problems of the prior art.

Summary of the Invention

It is an object of the present invention to provide a method and device for improving the signal-to- noise ratio of a citizen's band radio with a compander circuit by expanding the dynamic range of incoming audio signals after reception and demodulation and compressing the dynamic range of outgoing audio signals before modulation and transmission.

In accordance with the invention, a communication signal is received by a CB radio and demodulated into an audio signal . The audio signal then passes through the expander portion of a compander circuit. The audio

signal is expanded resulting in an increase in the dynamic range of the audio signal and an improved signal- to-noise ratio. The expanded audio signal is then converted into an audible message by a speaker. In accordance with a further aspect of the inven¬ tion, an audible message is converted into an audio signal by a microphone. The audio signal then passes through the compressor portion of a compander circuit. The compressed audio signal is then mixed with a carrier signal to create a communication signal and the communi¬ cation signal is transmitted to other two-way CB radios. It is also an object of the present invention to provide a method and device for improving the signal-to- noise ratio of a 10 meter radio receiver and scanner radio receiver with a compander circuit by expanding the dynamic range of incoming audio signals after reception and demodulation.

Other advantages and aspects of the present invention will become apparent upon reading the following description of the drawings and detailed description of the invention. Brief Description of the Drawings

Figure 1 is a schematic of a two-way communica¬ tion radio circuit of the present invention using a compander.

Detailed Description

While this invention is susceptible of embodiment in many different forms, there is shown in the drawings and will herein be described in detail a preferred embodiment of the invention with the understanding that the present disclosure is to be considered as an exemplification of the principles of the invention and is

not intended to limit the broad aspect of the invention to the embodiments illustrated.

A citizen's band (CB) radio circuit, generally designated 6, is shown in Figure 1. The circuit 6 generally has two portions, a receiver portion and a transmitter portion. As is well known, a CB radio operates in the frequency range of 26 MHz to 27 MHz.

For purposes of illustration and discussion, a single CB radio having a receiver portion and a transmit- ter portion is shown. It should be understood that when discussing the transmitting function, that the signal is to be transmitted to another CB radio, and that when discussing the receiving function, that the signal is to be received from another CB radio. In the receiver portion of the radio, incoming RF communication signals are received by an antenna 10 and the received signals are then amplified by an RF ampli¬ fier 12. A reference oscillator 14 produces a reference signal of 10.24 MHz which passes through a phase locked loop circuit 16. The outputs of the RF amplifier 12 and the phase locked loop circuit 16 are then mixed in a first mixer 18. The output of the first mixer 18 is filtered by a 10.7 MHz band pass filter 20 and then mixed with the 10.24 MHz reference signal in a second mixer 22. The output signal of the second mixer 22 is filtered by a 455 KHz band pass filter 24 and amplified by an IF amplifier 26. The output signal of the IF amplifier 26 passes through a detector 28 to create an incoming audio signal . The incoming audio signal is expanded in the expander portion of a compander circuit 30 and amplified by an amplifier 32 to produce an incoming audio message

at a speaker 34. The compander circuit 30 can be a model number TA31101, distributed by Toshiba America Electronic Components, Inc., or a model number MC33110, distributed by Motorola, Inc. In the transmitter portion of the radio, an outgoing audio message is converted to an outgoing audio signal by a microphone 36 and then amplified by an amplifier 38. The amplified outgoing audio signal is compressed by the compressor portion of a compander circuit 30 and amplified by an amplifier 32. The compressed outgoing audio signal is then sensed by an automatic microphone gain control circuit 40 and input into a transmitter driver 42. A mixer 44 mixes the 10.24 MHz reference signal with the output of the phase locked loop 16 to produce a carrier signal. The carrier signal passes through transmitter buffer 46 and then is mixed with the compressed outgoing audio signal in the trans¬ mitter driver 42 to create an AM modulation for an outgoing RF communication signal. The outgoing RF communication signal is amplified in the transmitter final amplifier 48 and broadcast by the antenna 10.

A citizen's band radio without the compander circuit generally has a signal-to-noise ratio of 35-40 dB, at 1000 μV, 30% modulation. By using the compander circuit, the signal-to-noise ratio of a citizen's band radio has been shown to be improved to 50-55 dB. It is not required that both the transmitting and receiving radios have the compander circuitry in order to achieve improvement in the signal-to-noise ratio. However, the best results are obtained when both radios use the compander circuit .

The compander circuit 30 can also be similarly used in conjunction with a 10 meter radio receiver, FM or AM, operating in the frequency range of 28 to 29.8 MHz, or in conjunction with a scanner radio receiver, FM or AM, operable generally in the frequency range of 500 kHz to 1.3 GHz.

While the specific embodiments have been illustrated and described, numerous modifications come to mind without significantly departing from the spirit of the invention and the scope of protection is only limited by the scope of the accompanying Claims.