Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
REFINING PROCESS AND APPARATUS
Document Type and Number:
WIPO Patent Application WO/1996/024652
Kind Code:
A1
Abstract:
A process of producing high octane alcohols includes the steps of preparing a mixture of substantially ethanol and butane or natural gasoline, the mixture having a certain temperature and a certain pressure, adjusting the certain pressure of the mixture to a magnitude within the range of 10 to 50 pounds per square inch, adjusting the temperature of the mixture to a magnitude within the range of 100 to 350 degrees Fahrenheit, adjusting the pressure of the mixture to a pressure within the range of 500 to 1000 pounds per square inch, catalyzing the mixture with a platinum catalyst, lowering the temperature of the mixture to a magnitude within a range of 90 to 190 degrees Fahrenheit, and separating out liquid product and gas from the mixture. An apparatus for producing high octane alcohols includes a starting tank (12) for retaining a mixture of substantially ethanol and butane or natural gasoline, a heat exchanger (20) for raising the temperature of the mixture, a first high pressure conduit (16) extending from the starting tank to the heat exchanger, a catalyzing chamber (30), second and third high pressure conduits (24 and 32) extending from the heat exchanger to the catalyzing chamber, a nozzle (26) interconnecting the second and third high pressure conduits, high pressure pumps (22) for extracting the heated mixture from the heat exchanger and delivering the mixture to the catalyzing chamber through the second and third high pressure conduits, and a separator (70) for precipitating liquid product out of the mixture.

Inventors:
JARVIS DAVID R (US)
Application Number:
PCT/US1996/001540
Publication Date:
August 15, 1996
Filing Date:
February 08, 1996
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
RES OCTANE INC (US)
JARVIS DAVID R (US)
International Classes:
C10G35/04; C10L1/02; (IPC1-7): C10L1/16
Foreign References:
US2012199A1935-08-20
US2365009A1944-12-12
US4243493A1981-01-06
US4296262A1981-10-20
US4297172A1981-10-27
US5348707A1994-09-20
Download PDF:
Claims:
I CLAIM :
1. A process of producing high octane alcohols, comprising the steps of: preparing a mixture of substantially alcohol and hydrocarbons, said mixture having a certain temperature and a certain pressure, adjusting said certain pressure of said mixture to a magnitude within the range of 10 to 50 pounds per square inch, adjusting said temperature of said mixture to a magnitude within the range of 100 to 350 degrees Fahrenheit, adjusting the pressure of said mixture to a pressure within the range of 500 to 1000 pounds per square inch, catalyzing said mixture with a platinum catalyst, lowering the temperature of said mixture to a magnitude within a range of 90 to 190 degrees Fahrenheit, separating out liquid product and gas from said mixture.
2. A process according to claim 1, comprising the additional step of: delivering a quantity of said gas separated from said liquid product into furnace means to supply heat required for said process.
3. A process according to claim 1, comprising the additional steps of: delivering a quantity of said gas separated from said liquid product into said mixture at the initial step of said process.
4. A process according to claim 1, wherein said separating step comprises a plurality of separation steps of separating said mixture into liquid product and gas.
5. An apparatus for producing high octane alcohols, comprising: a starting tank for retaining a mixture of alcohol and hydrocarbons, a heat exchanger for raising the temperature of said mixture , a first high pressure conduit extending from sai starting tank to said heat exchanger, a catalyzing chamber, second and third high pressure conduits extending fr said heat exchanger to said catalyzing chamber, a nozzle interconnecting said second and third hig pressure conduits, high pressure pumps for extracting the heated mixtu from said heat exchanger and delivering said mixture t said catalyzing chamber through said second and third hi pressure conduits, separation means for precipitating liquid product ou of said mixture.
6. An apparatus according to claim 5, wherein sai catalyzing chamber comprises: a plurality of upright tubular segments, each sai tubular segment having a top portion and a bottom portion and each said tubular segment containing said platinu catalyst, interconnection conduits interconnecting said tubula segments alternatingly across the top portions and botto portions of said tubular segments, a baffle plate within at least one said tubula segment, said baffle plate having a plurality of plat ports.
7. An apparatus according to claim 6, wherein on said baffle plate is positioned within and across said to portion and said bottom portion of each said tubula segment.
8. An apparatus according to claim 5, wherein sai hydrocarbons comprise natural gasoline.
9. An apparatus according to claim 5, wherein sai hydrocarbons comprise butane.
10. A method according to claim 1, wherein sai hydrocarbons comprise butane.
11. A method according to claim 1, wherein sai hydrocarbons comprise natural gasoline.
Description:
REFINING PROCESS AND APPARATUS

FIELD OF THE INVENTION

The present invention relates generally to the field of fuel forming processes. More specifically it relates to a process of producing high octane alcohols, including the steps of placing a pre-mixed mixture of ethanol and butane or natural gasoline in a starting tank, raising the pressure of gases above the surface of the mixture to fifty pounds per square inch, pumping the mixture from the bottom of the starting tank through a first high pressure conduit into a heat exchanger where the temperature of the mixture is raised to a magnitude within the range of 100 to 350 degrees Fahrenheit, extracting the heated mixture from the heat exchanger with high pressure pumps which raise the mixture pressure to 500 to 1000 pounds per square inch, and feeding the heated and pressurized mixture through a seconds high pressure conduit through a nozzle and through a third high pressure conduit into an elongate catalyzing chamber containing a platinum catalyst- Additional steps include delivering the catalyzed mixture through a fourth high pressure conduit into a cooler for lowering the temperature to a magnitude within a range of 90 to 190 degrees Fahrenheit feeding the cooled mixture through a fifth high pressure conduit into a series of separator tanks in which liquid final product collects in the tank bottoms and gas rises within the tanks above the surface of the liquid, and the liquid is drained off as the final product. The final product is 120 to 160 research octane, 110 to 129 motor octane, R & M about 148.

BACKGROUND OF THE INVENTION

There have long been various chemical processes fo producing gasoline and other fuels. A problem with thes prior processes has been that they either fail to produce high octane gasoline, or they fail to do so efficiently.

These prior processes include that of Harandi, U.S. Patent Number 5,171,912, issued on December 15, 1992. Harandi discloses a process for the production of Cc gasoline from n-butane and propane. The Harandi proces includes the steps of contacting a fresh feedstrea including normal butane with shape selective medium por zeolite catalyst particles under conditions sufficient t convert n-butane to an effluent stream including C3 alkanes; separating the effluent stream in a fractionato to recover an overhead stream including propane; contacting the propane stream and a fresh propane feedstsream with shape selective, medium pore zeolit catalyst particles under conversion conditions sufficien to convert propane to a mixture including C2+ alkanes; deethanizing the mixture and passing the deethanize product including C2+ alkanes to the fractionator fo separation concurrent with the effluent stream; recoverin a bottom stream including C5+ gasoline from th fractionator; preferably, distilling an intermediate strea including C^ alkanes from the fractionator and recoverin a stream including isobutane and a stream includin unconverted normal butane; and recycling the unconverte normal butane to the normal butane feedstream to th integrated process. Ward, et al. , U.S. Patent Number 4,393,259, issued o July 12, 1983, reveals a process for converting propane o butane to gasoline. The Ward, et al. process includes th steps of passing feed hydrocarbon into a dehydrogenatio zone; passing the entire dehydrogenation zone effluent including hydrogen and light by-products into a catalyti condensation zone where the resulting olefins are converte into dimerε and trimers; passing the condensation zon effluent stream into a separation zone in which the dimer

and tri ers are concentrated into a product stream, with unconverted feed hydrocarbon and hydrogen being recycled to the dehydrogenation zone.

Vora, et al. , U.S. Patent Number 4,304,948, issued on December 8, 1981, teaches a multi-step hydrocarbon conversion process for converting butane to gasoline. The process includes the steps of passing butane into a dehydrogenation zone and the entire dehydrogenation zone effluent is then passed into a catalytic condensation zone where butylene is converted into C g and C 12 hydrocarbons; commingling and separating the condensation zone effluent, a stripper overhead stream and an absorber bottoms stream into vapor and liquid portions; passing the liquid into the stripper and contacting the vapor portion with stripper bottoms liquid in an absorber; contacting the absorber overhead stream with liquid butane in a second absorber to remove C g hydrocarbons and recycling the dehydrogenation zone; and debutanizing a portion of the stripper bottoms to yield the liquid butane and a gasoline product. Capsuto, et al. , U.S. Patent Number 4,444,988, issued on April 24, 1984, discloses the use of liquefied propane and butane or butane recycled to control the heat of reaction of converting olefins to gasoline and distillate. The Capsuto, et al. process uses beds and separates the effluent product from the beds into a gas in a liquid phase, cools the gas phase to form additional liquid and heat exchanges the liquid with the overhead gas from the separator.

Wilson, U.S. Patent Number 5,093,533, issued on March 3, 1992, reveals blended gasolines and a process for making the blended gasolines. The Wilson process involves mixing of a butane-pentane rich component, and natural gasoline component, and at least one octane-enhancing component. The mix is weathered during the blending operation to remove light-weight hydrocarbons including two, three and four-carbon components.

Hiles, et al., U.S. Patent Number 5,310,954, issued on

May 10, 1994, discloses a process for preparing tetrahydrofuran. The Hiles et al. process separates tetrahydrofuran from a feed mixture containing water, lower alkanol and tetrahydrofuran, which includes distilling the mixture in a first distillation zone at a first pressure; recovering from an upper part of the distillation zone a first vaporous mixture including water, lower alkanol and tetrahydrofuran; subjecting the material from the first vaporous mixture to condensation conditions in a condensation zone; passing condensate from the condensation zone to a second distillation zone operated at a second pressure higher than the first pressure; recovering from an upper part of the second distillation zone a second vaporous mixture including water, lower alkanol and tetrahydrofuran that has a lower concentration of tetrahydrofuran than the first vaporous mixture; and recovering from a lower part of the second distillation zone a stream including substantially pure tetrahydrofuran. It is thus an object of the present invention to provide a process of producing a very high octane alcohol product efficiently.

It is another object of the present invention to provide such a process which can be practiced with conventional heat exchanger and separator tank equipment.

It is still another object of the present invention to provide such a process which is safe to practice.

It is finally an object of the present invention to provide such a process which is inexpensive to practice. SUMMARY OF THE INVENTION

The present invention accomplishes the above-stated objectives, as well as others, as may be determined by a fair reading and interpretation of the entire specification. A process of producing high octane alcohols is provided, including the steps of preparing a mixture of substantially ethanol and butane or natural gasoline, the mixture having a certain temperature and a certain

pressure, adjusting the certain pressure of the mixture to a magnitude within the range of 10 to 50 pounds per square inch, adjusting the temperature of the mixture to a magnitude within the range of 100 to 350 degrees Fahrenheit, adjusting the pressure of the mixture to a pressure within the range of 500 to 1000 pounds per square inch, catalyzing the mixture with a platinum catalyst, lowering the temperature of the mixture to a magnitude within a range of 90 to 190 degrees Fahrenheit, and separating out liquid product and gas from the mixture. The process preferably includes the additional steps of delivering a quantity of the gas separated from the liquid product into a furnace to supply heat required for the process, and the further additional steps of delivering a quantity of the gas separated from the liquid product into the mixture at the initial step of the process. The separating step preferably includes several separation steps of separating the mixture into liquid product and gas. An apparatus for producing high octane alcohols is also provided, including a starting tank for retaining a mixture of substantially ethanol and butane or natural gasoline, a heat exchanger for raising the temperature of the mixture, a first high pressure conduit extending from the starting tank to the heat exchanger, a catalyzing chamber, second and third high pressure conduits extending from the heat exchanger to the catalyzing chamber, a nozzle interconnecting the second and third high pressure conduits, high pressure pumps for extracting the heated mixture from the heat exchanger and delivering the mixture to the catalyzing chamber through the second and third high pressure conduits, and a separator for precipitating liquid product out of the mixture.

The catalyzing chamber preferably includes several upright tubular segments, each tubular segment having a top portion and a bottom portion and containing the platinum catalyst, interconnection conduits interconnecting the

tubular segments alternatingly across the top and botto portions of the tubular segments, a baffle plate within a least one of the tubular segments, the baffle plate havin several plate ports. The tubular segments eac preferably include one baffle plate positioned within an across the top portion and the bottom portion of th tubular segment . BRIEF DESCRIPTION OF THE DRAWINGS

Various other objects, advantages and features of th invention will become apparent to those skilled in the ar from the following discussion taken in conjunction with th following drawings, in which:

Figure 1 is a semi-schematic view of the preferre apparatus for carrying out each step of the inventiv process.

Figure 2 is a perspective view of the baffle plate fo use in the catalyzing chamber tubular segments. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

As required, detailed embodiments of the presen invention are disclosed herein; however, it is to b understood that the disclosed embodiments are merel exemplary of the invention which may be embodied in variou forms. Therefore, specific structural and functiona details disclosed herein are not to be interpreted a limiting, but merely as a basis for the claims and as representative basis for teaching one skilled in the ar to variously employ the present invention in virtually an appropriately detailed structure.

Reference is now made to the drawings, wherein lik characteristics and features of the present invention show in the various FIGURES are designated by the same referenc numerals.

Process

Referring to Figure 1, a process of producing hig octane alcohols is disclosed, including the followin steps. A pre-mixed mixture 10 of one third ethanol and tw thirds butane is placed in a starting tank 12. Th pressure of gases above the surface of the mixture 10 i

raised to fifty pounds per square inch. The mixture 10 is pumped with pumps 14 from the bottom of starting tank 12 through a first high pressure conduit 16 into a heat exchanger 20, where the temperature of mixture 10 is raised to a level within the range of 100 to 350 degrees Fahrenheit. The preferred temperature is 225 degrees Fahrenheit. The heated mixture 10 is extracted from heat exchanger 20 with high pressure pumps 22 , which raise mixture 10 pressure to a level within the range of 500 to 1000 pounds per square inch. The preferred pressure is 600 pounds per square inch. The heated and pressurized mixture 10 is fed through a second high pressure conduit 24, through a nozzle 26 and through a third high pressure conduit 32 into an elongate catalyzing chamber 30 contain- ing a platinum catalyst 34. Chamber 30 includes three interconnected upright segments 28. The catalyzed mixture 10 is delivered through a fourth high pressure conduit 42 into a cooler 40 for lowering the mixture 10 temperature to a level within a range of 90 to 190 degrees Fahrenheit. The cooled mixture 10 is fed through a fifth high pressure conduit 44 into a first separator tank 50 in which final liquid product 60 collects in the bottom of first separator tank 50 and gas 62 rises to fill a space within tank 50 above the surface of liquid product 60. The liquid product 60 is fed through a first separated liquid conduit 12 at the bottom of tank 50 and the gas 62 is drained off through a first separated gas conduit 82 at the top of tank 50. Both liquid product 60 and gas 62 are delivered into a second separator tank 70, in which more liquid product 60 is separated. Some of gas 62 within second separator tank 70 is delivered back through a feedback conduit 100 into the top of starting tank 12. Some of gas 62 within the second separator tank 70 is simultaneously delivered through a second separated gas conduit 84 into a third separator tank 80 where still more liquid product 60 precipitates out and gathers in the bottom of third separator tank 80. Some of gas 62 within third separator

tank 80 is drained into a feedback conduit branch 92. S of gas 62 within third separator tank 80 is delive through a third separated gas conduit 86 into a furnace where gas 62 is burned as fuel to supply heat to process where needed.

Final liquid product 60 is within the range of 120 160 research octane, 110 to 129 motor octane, and about R and M. Other final product 60 test data are as follow

Oxygenates L.V. % 42 .75

MTBE L.V. % < 0.1

TAME L.V. % < 0.1

Alcohols (Ethanols) L.V. % 42 .75

G . C . Breakdown Wt % Vol %

N. Butane 45.60 53.03

ISO Pentane 1.42 1.55

N. Pentane 1.02 1.10

Toluene 2.02 1.57

Ethanol 49.94 42.75

PONA Vol %

Paraffins 55.68 Olefins < 0.01 Naphtheneε < 0.01 Aromatics 1.57

To produce high octane gasoline, add 20% by volume the new product to 80 octane gasoline. The result mixture is 92.8 octane, with a vapor pressure in the ra of 4 to 19 pounds per square inch.

Preferred Embodiments of Apparatus Referring to Figure 1, a preferred apparatus disclosed for practicing the above-described process producing high octane alcohols. This apparatus is mer exemplary and other forms of apparatus are contemplated.

Starting tank 12 is a vertical cylindrical dr Heat exchanger 20 and pumps 14 and 22 are of any suitab

conventional design. Nozzle 26 is preferably about three eights inches diameter. Catalyzing chamber 30 includes three elongate, upright tubular segments 28, each containing platinum catalyst 34. Segments 28 are interconnected by interconnection conduits 110, across the tops of the first and second segments 28 and across the bottoms of second and third segments 28. A baffle plate 120 having a plurality of ports 122 is positioned across the top and bottom of each segment 28. See Figure 2. Cooler 40 preferably includes a substantially horizontal tray 130 elevated on legs 132. Separator tanks 50, 70 and 80 are vertical cylindrical drums. Tank 70 is preferably of substantially larger diameter than tanks 50 and 80.

Another embodiment of the invention uses as a starting material approximately one third ethanol mixed with two thirds natural gasoline. The process and apparatus for treating this mixture is the same as that previously described and this explanation will not be repeated herin. Natural gasoline is essentially a mixture of butanes and pentanes plus other hydrocarbon materials. Natural gasoline is derived from wet gas by stripping it. An example of natural gasoline is as follows:

C6 + ...53.871% by liquid volume

Butane ...3.03% by liquid volume Neo-pentane ...0.697% by liquid volume

Iso-pentane ...26.046% by liquid volume

Normal pentane ...16.349% by liquid volume.

The resulting product is substantially one half natural gasoline and one half ethanol. It has a vapor pressure of 1.5 to 8.0 psi and an octane rating of 108 to 160.

A further embodiment uses as a starting material a mixture of 10% ethanol and 90% natural gasoline. The process steps and apparatus remain the same. The resulting product showed an increase in octane rating from 72 to 80-

100.

It has been found that the starting material may

contain 5% to 50% ethanol, and 50% to 95% natural gasoline. It is possible to add to the mixture 3% to 40% butane. Th resulting product contains 5-50% ethanol, 50-90% natura gasoline including 3% to 50% hydrocarbons, and a trace o aromatics. The resulting product has a higher octan rating than the starting material. The product has a acceptable vapor pressure. This product appears to be gasoline grade product. The ethanol can be removed without harming the product. In the first embodiment, pentane, including iso pentane, may be substituted for butane in the startin material.

While the invention has been described, disclosed, illustrated and shown in various terms or certai embodiments or modifications which it has assumed i practice, the scope of the invention is not intended to be, nor should it be deemed to be, limited thereby and suc other modifications or embodiments as may be suggested b the teachings herein are particularly reserved especiall as they fall within the breadth and scope of the claims here appended.