Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
REINFORCED HEAT EXCHANGER
Document Type and Number:
WIPO Patent Application WO/2010/069874
Kind Code:
A1
Abstract:
A brazed heat exchanger comprises a number of heat exchanger plates (100, 200, 300) provided with a pressed pattern of ridges (110a) and grooves (110b) arranged such that flow channels for media to exchange heat are formed between neighboring plates (100,200,300). The plates (100,200,300) are further provided with port openings (120a-d) in selective communication with said flow channels and with a circumferential edge formed by skirts (130;240; 335) of neighboring plates (100,200,300) overlapping one another. A reinforcement portion (140; 250;340) extends outside the skirt (130;240; 335), and comprises a ribbon of sheet metal.

Inventors:
ANDERSSON SVEN (SE)
HOBERG SVANTE (SE)
DAHLBERG TOMAS (SE)
Application Number:
PCT/EP2009/066931
Publication Date:
June 24, 2010
Filing Date:
December 11, 2009
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
SWEP INT AB (SE)
ANDERSSON SVEN (SE)
HOBERG SVANTE (SE)
DAHLBERG TOMAS (SE)
International Classes:
F28D9/00
Domestic Patent References:
WO1999036740A11999-07-22
Foreign References:
US5291945A1994-03-08
DE19900629A11999-07-15
US20010030043A12001-10-18
JP2002062078A2002-02-28
US5971065A1999-10-26
US5462113A1995-10-31
Attorney, Agent or Firm:
KARLSSON, Leif (P.O Box 4188, Malmö, SE)
Download PDF:
Claims:
CLAIMS

1. Brazed heat exchanger (HE, 200, 300) comprising a number of heat exchanger plates (100, 210, 310) provided with a pressed pattern of ridges and grooves arranged such that flow channels for media to exchange heat are formed between neighboring plates, the plates further being provided with port openings in selective communication with said flow channels and with a circumferential edge formed by skirts (130;240; 330) of neighboring plates (100, 210, 310) overlapping one another, characterized by a reinforcement portion (140; 250;340) extending outside the skirt (130;240; 330), said reinforcement comprising a ribbon of sheet metal.

2. The brazed heat exchanger according to claim 1, wherein the reinforcement portion is provided with a pressed pattern comprising upper and lower surfaces.

3. The brazed heat exchanger according to claim 2, wherein the upper and lower surfaces are arranged such that an upper surface of the reinforcement portion of a first heat exchanger plate contacts the lower surface of the reinforcement portion of a heat exchanger plate stacked on top of the first heat exchanger.

4. The brazed heat exchanger according to claim 2, wherein the upper and lower surfaces are arranged such that the upper and lower surfaces of neighbouring plates are aligned.

5. The brazed heat exchanger according to any of the preceding claims, wherein the reinforcement portion extends in the plane of the heat exchanger plate.

6. The brazed heat exchanger according to any of the preceding claims, wherein the reinforcement portion extends over the entire periphery of the heat exchanger plates.

7. The brazed heat exchanger of claim 1, wherein the ribbon of sheet metal extending outside the skirt is pressed such that at least a portion of the ribbon extends in a direction such that the ribbon and the skirt form a truncated V.

Description:
REINFORCED HEAT EXCHANGER

FIELD OF THE INVENTION

The present invention relates to a brazed heat exchanger comprising a number heat exchanger plates provided with a pressed pattern of ridges and grooves arranged such that flow channels for media to exchange heat are formed between neighboring plates, the plates further being provided with port openings in communication with said flow channels and with a circumferential edge formed by a skirt which overlaps skirts of neighboring plates..

PRIOR ART

Brazed heat exchangers are used in a large number of heat exchanging applications. Compared to other types of heat exchangers, brazed heat exchanger are cost-efficient and compact.

Brazed heat exchangers comprise a number of plates provided with a pattern of pressed ridges and grooves arranged such that flow channels for media to exchange heat are formed between neighboring plates as they are stacked onto one another. Port openings are arranged to provide a selective liquid communication with the flow channels.

Usually, the plates are provided with a skirt extending around the periphery of the plate in an angle slightly offset from the perpendicular direction. The skirts of two neighboring plates will overlap one another and form a brazed edge extending around the plates, which edge seals the flow channels formed by the plates.

After the plates have been stacked onto one another, with brazing material provided on the surfaces of the plates, the entire heat exchanger is placed in a furnace to be completely brazed together. The pressed patterns of neighboring plates will provide contact points which are brazed together,

In order for brazed heat exchangers to withstand high pressure, it has hitherto been necessary to enclose the heat exchanger with rigid plates in order for it not to flex or move upwards or downwards. Such rigid plates primarily strengthens the area around the port openings, which is especially susceptible to damage due to high pressure, since the pressure acting on the port hole generates a force that must be transferred from a bottom portion of the port opening to a top portion of the port opening. Without the rigid plates, the cntiie foice must be transferred by brazing points formed between the ridges and grooves of the pressed patterns of the plates. For obvious reasons, the density of such points is low in the aiea of the port openings. Heat exchangers provided with the rigid plates are, however, prone to burst around the edges, i.e. the seal provided by the overlapping skirts. The present invention aims to increase the strength of the edges of bra/ed heat exchangers.

Also, a well known problem with the manufacturing technique is that the stack of heat exchanger "shrinks" during the brazing operation. The shrinking is a iesult of the brazing material melting during the brazing, hence leaving a space enabling the stacked heat exchanger plates to come closer to one another. The shrinking is most severe in the vicinity of the port openings.

SUMMARY OF THE INVENTION

According to the invention, these and other problems are solved or alleviated by a reinforcement portion extending outside at least a part of the skirt, said reinforcement comprising a ribbon of sheet metal.

In one embodiment of the invention, the reinforcement portion is provided with a pressed pattern comprising upper and lower surfaces. The upper and lower surfaces may be arranged such that an upper surface of the reinforcement portion of a first heat exchanger plate contacts the lower surface of the reinforcement portion of a heat exchanger plate stacked on top of the first heat exchanger.

In another embodiment of the invention, the upper and lower surfaces may be arranged such that the upper and lower surfaces of neighbouring plates are aligned.

The reinforcement portion may extend in the plane of the heat exchanger plate. In order to get an as strong heat exchanger as possible, the reinforcement portion may extend along the entire periphery of the heat exchanger plates.

The reinforcement portion may be pressed such that at least a portion of the reinforcement extends in a direction such that the ribbon and the skirt form a V.

BRIEF DESCRIPTION OF THE DRAWINGS

In the following, the invention will be described with reference to the appended drawings, wherein: Fig. 1 is a schematic perspective view of a heat exchanger plate provided with an edge reinforcement according to a first embodiment of the present invention,

Fig. 2 is a schematic, partly sectioned, perspective view of a heat exchanger plate provided with an edge reinforcement according Io a second embodiment of the present invention,

Fig. 3 is a schematic, partly sectioned, view showing a third embodiment of the present invention, and

Fig 4 is a schematic perspective view showing a heat exchanger manufactured from heat exchanger plates according to Fig. 1.

DESCRIPTION OF EMBODIMENTS

In Fig. 1, a heat exchanger plate 100 according to a first embodiment of the present invention is shown. The plate 100 extends in a general plane, and is provided with a pressed pattern of ridges 11 Oa and groove 11 Ob. Moreover, the plate 100 is provided with port openings 120a-d (only the port openings 120a and 120b are shown); neighboring openings are provided on different heights; in the shown figure, the port opening 120b is provided on a height equal to the height of the ridges 1 10a, whereas the port opening 120a is provided at the height of the grooves 1 10b. A skirt 130 is provided in a basically perpendicular direction vis-a-vis the plane

P. The skirt 130 surrounds the area provided with the ridges 1 10a and the grooves 120b and the port openings 120a-d; skirts of neighboring plates are adapted to overlap one another such that a seal between the plates is achieved. At the end of the skirt opposite the pressed pattern and the port openings, a reinforcement portion 140 is provided. The reinforcement portion extends in an outward direction parallel to the general plane P.

The reinforcement portion 140 of the first embodiment is provided with a pressed pattern comprising upper areas 145 and lower areas 150. In a first aspect of the present invention, the upper areas 145 of a first plate 100 are arranged to contact lower areas 150 of a neighboring upper plate 100, whereas the lower areas 150 of the reinforcement portion 140 of the first plate are arranged to contact the upper areas 145 of the reinforcement portion 140 of a neighboring lower plate.

For manufacturing a plate heat exchanger according to the first embodiment, heat exchanger plates 100 are stacked onto one another to form a stack of heat exchanger plates. A brazing material is provided between the plates. The brazing material may be any suitable brazing material, e.g. copper, tin, lead, silver, or stainless steel mixed with a liquid depressant, e.g. silica, boron, or mixtures thereof. The stainless steel brazing material is especially suitable if heat exchanger plates of stainless steel arc used.

In some cases, it is possible to use identical heat exchanger plates for the entire stack of heat exchanger plates. In such a case, every other heat exchanger plate is rotated 180 degrees compared to its neighboring plates. This rotation results in the port areas 120a, b of neighboring plates interacting such that, seen from one port opening, every other flow channel will be open to a port, every other being closed. This manufacturing method is well known by persons skilled in the art of brazed heat exchangers.

According to the first aspect, the upper areas 145 of the reinforcement portion 140 of a first plate are arranged to contact the lower areas 150 of the reinforcement potion 140 of a neighboring upper plate. This gives, except from the reinforcing effect, also the beneficial effect that shrinking of the heat exchanger plate stack during brazing is significantly reduced, especially in the vicinity of the port openings 120a-d. A heat exchanger made from heat exchanger plates 100 according to the first aspect is shown in Fig. 4.

According to a second aspect, the upper areas 145 of the reinforcement portion 140 of a first plate are arranged to align with the upper areas 145 of its neighboring plates; the reinforcement portions 140 of neighboring plates will then contact one another along the areas between the upper areas 145 and the lower areas 150. The second aspect is beneficial in that the connection between the neighboring reinforcement patterns become stronger connected to one another, but the positive effect on the shrinking is smaller as compared to the first aspect. The second aspect will be more thoroughly described below with reference to Fig. 3

A second embodiment of the invention, shown in Fig. 2, comprises a number of heat exchanger plates 200 provided with a pressed pattern of ridges 210 and grooves 220 arranged to hold the heat exchanger plates on a distance from one another under formation of flow channels for media to exchange heat. The heat exchanger plates are moreover provided with port openings 230 (only one partially shown in Fig. 2). In order to seal off the flow channels, skirts 240 are arranged along edges of the heat exchanger plates, such skirts 240 being arranged such that an upper side of a skirt of a first heat exchanger plate will contact a lower side of a skirt of a second heat exchanger plate stacked upon the first plate. On an outside of the skirt 240, a reinforcement ribbon 250 is provided. The reinforcement ribbon is pressed such that an outer surface 260 extends such that it forms a truncated V with respect to the skirt 240.

Preferably, the outer surface 260 of one heat exchanger cooperates with the outer surfaces 260 of neighboring plates the same way as the skirts of neighboring plates do.

Hence, neither the skirt 240 nor the outer surface 260 may be provided perpendicular to a plane P of the heat exchanger plate 200; if this would be the case, it would be impossible to stack heat exchanger plates upon one another. Instead, there must be a certain angle between the skirts and the plane P and the outer surface and the plane P.

Consequently, the outer surfaces 260 of neighboring plates will contact one another in the same way as the skirts of neighboring plates contact one another. This will, except for the increased strength of the edge, provide an extra insurance against leakage; if the connection between the skirts 240 of neighboring plates will leak, there is still a possibility that the outer surfaces 260 will provide a seal.

In Fig. 3, a heat exchanger 300 according to a third embodiment, equaling the second aspect as described above, of the present invention is shown. The heat exchanger comprises a number of heat exchanger plates 310, all of which being provided with ridges 320 and grooves 330 to form flow channels for media to exchange heat, port openings (not shown) and a skirt 335 surrounding the heat exchanger plate and providing a seal for the flow channels by contact between skirts 335 of neighboring plates 300.

Moreover, the heat exchanger plates 300 according to the third embodiment comprises a reinforcing portion 340, which resembles the reinforcement area 140 of the heat exchanger plates according to the first embodiment in that it comprises pressed ridges 350 and grooves 360. However, the ridges and groves of the third embodiment differ from the ridges and grooves of the first embodiment in that the ridges 350 and grooves 360 of one heat exchanger plate of the third embodiment are located to be placed inline with the ridges 350 and grooves 360 of neighboring plates. Consequently, the ridges and grooves of heat exchanger plates of the third embodiment will not touch one another.

Instead, contact between the reinforcing portions 340 of neighboring heat exchanger plates takes place between walls 370 connecting said ridges and grooves. In Fig. 4, a heat exchanger HE comprising heat exchanger plates according to the first embodiment is shown. Here, the interaction between the upper areas 145 and the lower areas 150 of the reinforcement portions 140 of neighboring plates is clearly shown In still another embodiment of the invention, the reinforcement portion only extends around the port areas, i.e. not along the long sides of the heat exchanger plates. This embodiment strengthens the ports, and may be reducing shrinking of the heat exchanger plate stack, but provides only a minor increase of the strength of the sides; as mentioned above, the area around the ports is particularly prone to break. Persons skilled in the art will realize that there are several modifications possible within the scope of the invention without departing from the same; such as it is defined by the appended claims.