Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
ROOF PAVER LOCKING SYSTEM
Document Type and Number:
WIPO Patent Application WO/2016/094453
Kind Code:
A1
Abstract:
An apparatus and methods for locking together pavers on a roof deck to reduce uplift pressure and increase stability and strength in a variety of environmental conditions. More specifically, a paver lock apparatus is placed in grooves on the top side of a multiple of pavers and locked to a stationary object, such as the roof or a pedestal placed on the roof underneath the deck. Roof pavers are manufactured with grooves on the paver surface to hold the paver lock apparatus. The pavers are loose laid on paver pedestals and the paver lock apparatus is laid into the grooves of multiple adjacent pavers and locked into place by connecting the paver lock apparatus to the paver pedestal.

Inventors:
ESSIG DANIEL (US)
Application Number:
PCT/US2015/064568
Publication Date:
June 16, 2016
Filing Date:
December 08, 2015
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
ESSIG DANIEL (US)
International Classes:
E04F15/02; E04D11/00; E04D13/00; E04F15/00; E04F19/06
Domestic Patent References:
WO2001012918A12001-02-22
WO2006087572A12006-08-24
WO2002010532A12002-02-07
Foreign References:
US6604330B22003-08-12
US7536802B12009-05-26
US6520471B22003-02-18
US20040250435A12004-12-16
US7770345B22010-08-10
US5377468A1995-01-03
US6604330B22003-08-12
Other References:
See also references of EP 3234279A4
Attorney, Agent or Firm:
SCHLACKMAN, Steven (LLP1344 Euclid Ave. #, Miami Beach FL, US)
Download PDF:
Claims:
CLAIMS

What is claimed is

1. A roof paver locking system comprising: at least three roof pavers of a symmetrical polygonal shape with at least one side adjacent to a side of another paver to create a paver seam; a paver lock comprising an open geometric shaped upper frame; at least two spacer arms extending from a point on the the upper frame to a center connector at the center of the upper frame and having a connector hole; a connector bolt having a length and width sufficient for fitting inside and through the connector hole of the center connector and the connector bolt fastened to a stationary object.

2. The paver lock of claim 1 wherein the entire paver lock is made from a molded polymer.

3. The paver lock of claim 1 wherein the entire paver lock is made from a non-corrosive metal.

4. A roof paver of claim 1, 2 or 3 wherein at least one vertex of each paver contains a paver groove diagonally spanning between either side of the vertex and comprising a center connector cutaway in place of the tip of the vertex.

5. An Upper frame of claim 1, 2 or 3 wherein the upper frame shape corresponds to the paver grooves on a multiple of pavers wherein the upper frame fits into the paver grooves on a multiple of roof pavers and the top of the upper frame is flush with or below the paver surface.

6. Spacer arms of claim 1, 2 or 3 wherein the width of the spacer arms is sufficient to fit in a spacer seam and the top of the spacer arms are below the paver surface.

7. A center connector of claim 1, 2 or 3 wherein the center connector size is sufficient to fit into the center connector cutaway of a multiple of pavers and the top of the connector bolt is below the paver surface.

8. a connector bolt of claim 1, 2 or 3 wherein the connector bolt is fastened to a paver pedestal through a pedestal hole at the top of the pedestal.

9. The paver locking system of claim \, 2, 3 or 4 wherein the paver grooves are slanted toward the paver seams and the bottom of the upper frame is slanted so that the bottom of the upper frame contacts the bottom of the paver groove at a plurality of points.

10. The roof paver locking system of claim 9 whereby the sides of the paver grooves are slanted away from the upper frame to create a channel that reduces liquid pooling on the surface of the roof paver.

11. The roof paver locking system of claim 1, 2 or 3 whereby at least four roof pavers are each supported by at least four pedestals, and one vertex of each of the four roof pavers is set on a quadrant on the surface of one pedestal, leaving the pedestal center connector hole exposed; and one upper frame is placed over the roof paver surface, the connector hole of the center connector is aligned with the pedestal hole, and the upper frame is placed within the paver grooves; and the connector bolt is inserted through the connector hole and into the pedestal hole where it is fixed in place, but removable, securing the four roof pavers to the one pedestal.

12. A method of setting and securing roof pavers on flat roofs while leaving a space between the flat roof surface and the bottom of the roof pavers, the method steps comprising: manufacturing a roof paver from a mold wherein the mold includes a paver groove diagonally spanning between either side of at least one vertex and a center connector cutaway in place of the tip of the vertex.; manufacturing a paver lock comprising an open geometric shaped upper frame;

at least two spacer arms extending from a point on the the upper frame to a center connector at the center of the upper frame and having a connector hole; loose laying the corner vertices of at least two pavers onto paver pedestals, wherein the pavers are adjacent to each other and the pedestal hole on top of a pedestal is accessible; loose laying the paver lock onto at least 2 pavers wherein the upper frame sits in the paver grooves and the spacer arms sit in the paver seams; placing a connector bolt through the connector hole and fixing it into the pedestal hole and locking the paver between the paver lock and the pedestal.

13. A method of setting and securing roof pavers on flat roofs while leaving a space between the flat roof surface and the bottom of the roof pavers, the method steps comprising: cutting a paver groove in a paver diagonally spanning between either side of at least one vertex; and cutting a center connector cutaway in place of the tip of the vertex; manufacturing a paver lock comprising an open geometric shaped upper frame;

at least two spacer arms extending from a point on the the upper frame to a center connector at the center of the upper frame and having a connector hole; loose laying the corner vertices of at least two pavers onto paver pedestals, wherein the pavers are adjacent to each other and the pedestal hole on top of a pedestal is accessible; loose laying the paver lock onto at least 2 pavers wherein the upper frame sits in the paver grooves and the spacer arms sit in the paver seams placing a connector bolt through the connector hole and fixing it into the pedestal hole and locking the paver between the paver lock and the pedestal.

Description:
CROSS-REFERENCE TO RELATED APPLICATION

[0001] This application claims priority to U.S. provisional application number 62089400 having a filing date of December 09, 2014.

FIELD OF THE INVENTION

[0002] The present disclosure is an apparatus and method for locking together pavers on a roof deck to reduce uplift pressure and increase stability and strength in a variety of environmental conditions. More specifically, the present disclosure provides for a paver lock apparatus consisting of a geometrically shaped upper frame, which is attached to a center connector point by two or more cross-braces.

BACKGROUND OF THE INVENTION

[0003] Along with the growing population, especially in major cities, there has been an increased desire by residents to find adequate green spaces as well as a desire to create communal areas on high rise buildings, such as restaurants and bars, where customers can have a panoramic view of the surrounding area.

[0004] To fulfill residents' wants, a rising number of commercial office buildings, apartment complexes, and residential high-rises are now using their rooftops as rooftop gardens, patios, bars, restaurants, and residential green spaces for relaxation, personal well-being and socialization.

[0005] Additionally, rooftop spaces have a number of secondary benefits such as mitigating the detrimental effects of elevated urban temperatures, attracting wildlife and beneficial insects, absorbing airborne pollution and filtering storm water run-off. [0006] However, rooftops are also prone to intense environmental conditions such as rain, snow, intense heat or even earthquakes as well as high traffic volume. Therefore, the placement of patios and decks along with the choice of materials used to create them must be carefully chosen to suit the environment.

[0007] Additionally, roofs on multi-story building hide important structural components, such as electrical wiring, air conditioning ducts, heating or water piping which may require maintenance or repair, so any roof patios or decking are often removable, to allow access to critical areas.

[0008] To accommodate such a diverse set of requirements, many common roof areas use a ballasted system in which heavyweight tiles or wood, also known as pavers, are loose-laid across the common outdoor roof area, held in place purely by the weight of the paver.

[0009] Pavers can vary in shape, size, and material but are typically square, ranging from 12" to 36" in width with a thickness dependent on the paver material, but are generally 2" or less, so that they are heavy enough to avoid uplifting but at a size and strength that allows for installation by workers without the needs for heavy equipment.

[0010] The pavers are typically aligned edge-to-edge with little or no space between each paver and being loose laid, each paver can be removed as necessary to access the surface underneath.

[0011] To promote easier access to the roof surface, pavers are often placed on elevated pedestals, which are either a fixed height or are adjustable to accommodate variations in the contour of the roof surface, allowing the finished roof patio to maintain a continuously uniform flat surface in a variety of designs and styles.

[0012] Each paver rests on a portion of the pedestal so that each pedestal can hold multiple corners of adjacent pavers, creating an interlocking deck. The number of paver corners depends on the geometric shape of the paver. For example, square or rectangular pavers, aligned in a grid like a chessboard, would have a Paver Pedestal with four Pedestal corners, each paver corner accounting for approximately one corner of the pedestal.

[0013] Additional pedestals can be positioned at other support points to accommodate larger or heavier pavers.

[0014] However, ballasted roof pavers require sufficient weight so that they are held in place during normal conditions, which means that lightweight materials that may be cheaper, easier to install or more durable would not remaining in place without some type of locking mechanism.

[0015] Even ballasted pavers may not remain in place if they are subjected to extreme weather events, such as high velocity winds during hurricanes, or during other catastrophic events such as earthquakes.

[0016] This is especially true for decks or patio areas on high-rise building where the building height and shape or proximity to other building can often cause wind shears and other strong wind forces.

[0017] Certain points along the roof, such as roof edges, roof peaks or near obstructions, cause the wind to deflect away creating a significant drop in air pressure immediately above the patio surface. [0018] The external pressure distribution on the top surface of a paver causes wind flow through the gaps between adjacent pavers as well as the space between the underside of the paver which are in contact with the pedestals.

[0019] In certain areas of the roof, such as windward edges and corners, higher pressure may exist under the pavers, resulting in a pressure differential that creates an uplift force on certain individual pavers.

[0020] When the pressure acting on the bottom surface of a paver exceeds the pressure experienced on the top surface, the paver becomes subject to the negative net pressure force, (uplift force) which reduces the effect of the ballast weight. High uplift forces can cause the paver to dislodge or crack, creating destructive flying debris as well as leaving the roof and its substrate exposed to the damaging external forces.

[0021] As well, harsh conditions, such as freezing and thawing, can also cause pavers to weaken at point and crack if exposed to high uplift forces. Since, the smaller broken areas have less ballasted weight, less uplift force is required to dislodge them and in some cases, the smaller paver pieces can become dangerous flying debris.

[0022] The net pressure at which a paver may fail depends on a multitude of factors, such as paver weight, the roof area of a paver, the paver's material density and its permeability. Even 2 ft. x 2 ft. x 2-in.-thick concrete pavers, weighing approximately 90 lbs. can be dislodged by hurricane force winds gusts of only 125 mph. 1

[0023] Isolated high-rise building without other high-rise structures to act as wind breaks or smaller multi-story structures located in lowland, flat geographic areas that do not have a buffer to reduce wind speed are particularly prone to damaging wind.

Ayscue, Jon K., "Hurricane Damage to Residential Structures: Risk and Mitigation," November 1996, The Johns Hopkins University. [0024] There are multiple methods for calculating paver Strength across a multitude of conditions. For example, a method for calculating the overall wind uplift load, L(t), acting on any single paver can be obtained from the equation:

L(t) = - oU 2 ff JA A n p a a v v p e r r Cp n n e e t z (t, x, y)dA→ C L (t) = T ^ p l] i A where A is the surface area of the paver and Cp net t)— Cp ext t)— Cp int (t) is the net total pressure coefficient defined as the instantaneous difference between the external and corresponding underneath pressure coefficient at the same location. The overturning moment about a selected axis is obtained from:

Mix, y, t) =

where e (x, y) is the moment arm defined as the distance from the selected axis to each point on the paver. 2

[0025] The blow-off takes place when the uplift force is equal to the paver's weight W. Therefore, the critical wind velocity U CRIT at which the blow-off occurs is calculated from: pU CRIT 2 C L A = W→ U CRIT =

The mean pressure coefficient at any location obtained from: Cp„

where P (t) mean is the time history of mean pressure, p is the air density at and Uis the mean wind sped measured at the building height. For the proper securing of individual pavers, measure values of Cp peak should be considered because the highly fluctuating nature of wind pressures can create significant differences than might be

2

Asghari Mooneghi, M., Irwin, P., Gan Chowdhury, A. (2014). Wind Uplift of Concrete Roof pavers, Structures Congress 2014, 1915-1925. expected in the peak pressure values even over multiple tests. 3

[0026] One method for determining peak pressures is that found in Sadek, F and Simiu, E., (2002), "Peak Non-Gaussian Wind Effects for Database-Assisted Low-Rise Building Design," Journal of Engineering Mechanics, ASCE, Vol. 128(5), pp. 530-539. Estimates obtained from this approach are based on the entire information contained in a time series and are therefore more stable than estimates based on single observed peaks. The peak pressure coefficient can be obtained from: Cp peak = p ^ p ak where

P(_t) peak is the peak pressure and U 3s is the peak 3-s gust at the reference height. 4 [0027] Examples of additional methods for determining roof paver strength requirements at various wind speeds can be found at Aly, A.M., Bitsuamlak, G.T., and Gan Chowdhury, A. "Full-scale aerodynamic testing of a loose concrete roof paver system," Engineering Structures, 44, 60-270, 2012 or Asghari Mooneghi, M., Irwin, P., Gan Chowdhury, A. (2015). Design Guidelines for Roof pavers against Wind Uplift, Structures Congress 2015, 2679-2688.

[0028] As well, those skilled in the art should consider consensus guidelines from organizations such as ASTM International, the globally recognized leader in the development and delivery of voluntary consensus standards. For example, concrete roof pavers can be constructed and placed according to Standard Specification for Concrete Roof pavers C15.03 Active Standard ASTM C1491.

Id

Id [0029] Specific Tests include, but are not limited to, a 50-Cycle Freeze Thaw Test (ASTM C-67), a Coefficient of Friction Test (ASTM C1028-84), a Compression Test (ASTM C-67), and a Flexural Strength Test (ASTM-67).

[0030] It is well known by those persons skilled in the art that locking a group of loose pavers together creates a sufficient downward force on the pavers that acts together to counterbalance the net uplifting loadings caused by the wind, enhancing stability at all points across the roof.

[0031] One example of a paver locking systems is U.S. Patent number US5377468, "Aerodynamically stable roof paver system and ballast block," in which rectangular ballast blocks are laid in rows and interlocked by tongue and groove edge faces. The adjacent blocks in each row form labyrinthine channels between their edge faces for drainage and equalization of air pressure above and below the blocks. To accomplish the locking mechanism, a groove is cut into the side of a paver (female) with an extruding joint (male) located on the opposite side of the paver, of a size and shape that it will fit snugly into the female groove of an adjacent paver. In this method, pavers can be held together across the entire roof area.

[0032] The tongue and groove approach has a significant drawback in that the mechanism does not work with heavyweight ballasted pavers such as those made of concrete or stone.

[0033] Another method is shown in patent US 6,604,330, "Ballast Block Deck System and Pedestal Assembly." A ballast block deck system includes a plurality of ballast blocks (pavers) laterally positioned to form an elevated deck on an existing roof structure. A pedestal is located directly beneath corner portions of adjacent pavers spaced across the roof as support. A corner cap is installed above the pedestal, which holds the pavers in place in the event of strong winds. The paver corners are cut out to accommodate a flat paver plate so that the plate surface is the same elevation as the paver creating a uniform surface.

[0034] The problem with the paver plate, is that, although uniform with paver surfaces at installation, plate displacement, including shifting, tilting, or being depressed below the paver surface, can occur from continuous traffic, over time, by residents or other pedestrians, especially in highly trafficked rooftop such as hotels or restaurants.

[0035] As well, exposure to the elements over time, can have a detrimental effect on the paver plate. For example, snow, ice or intense heat can cause damage to the plastic paver plate, such as warping, which weakens the plate resulting in displacement.

[0036] With the surface area of a paver plate no longer being at a level elevation with the surface of adjoining pavers, the paver plate can collect debris and other windblown material at the edge where the plate is lower than the top side of the paver and become a trip hazard.

[0037] Additionally, water may pool on the lower side of the corner plate leaving areas throughout the patio or deck where bacteria, algae and mildew can grow, and insects, such as mosquitoes, can breed.

[0038] Plate surfaces can become slippery from water runoff containing oils and other particulate matter; creating hazardous conditions.

[0039] Also, in patio or decking where pavers are lightweight materials, such as Teak, there are only minimal ballast forces exerting downward pressure. Therefore, a significantly lower upward force can dislodge a lightweight paver. In some cases, additional downward force may be required, in the form of larger plates. Large corner plates can trap additional debris or water as well as reduce a roof patio or deck's aesthetic appeal.

[0040] Although rooftop ballast block systems may function satisfactorily under certain conditions, there is a need for an improved system for locking together pavers, which can exert downward force on the pavers, reducing the effects that weather and human forces have on their stability while maintaining the desired aesthetic appeal.

[0041 ] It is therefore an objective of the current invention to provide a locking system for ballasted and non-ballasted roof pavers that reduces problems found in current plate-type ballasted paver systems, while also providing increased structural stability for a roof deck or patio, in a diverse set of environments and for a wide-range of pavers and paver materials.

BRIEF SUMMARY OF THE INVENTION

[0042] The Roof Paver Locking System consist of a series of symmetrical polygonal shaped Pavers, a Paver Lock situated above the Pavers and a stationary object below the Pavers to which the Paver Lock is attached.

[0043] To provide the counter forces necessary to hold the Pavers in place during extreme environmental conditions, a Paver Lock is placed on the top surface of a multiple of Pavers, the center of the Paver Lock being located on the patio or deck at the positions where the corner of the Pavers meet. [0044] The Paver lock should be constructed from a non-corrosive material and lightweight material such as a polymer or stainless steel.

[0045] The Paver Lock is comprised of an open geometric shaped Upper Frame and two or more Spacer Arms acting as cross-braces that extend on one end from the Upper Frame to a Center Connector on the opposite end.

[0046] The Center Connector is located at the center of the Upper Frame.

[0047] The top side of the Pavers contain two or more grooves diagonally spanning between either side of the Paver's corner vertices.

[0048] When the Pavers are placed adjacent to each other, the Paver Grooves form a shape around the point where the corners of multiple Pavers meet and have a dimension and shape that corresponds to the dimension and shape of the Upper Frame.

[0049] The Upper Frame fits into the Paver Grooves so that the top of the Upper Frame is flush with or below the Paver surface.

[0050] The Paver Grooves can also be slanted so that liquid and debris are channeled into the Spacer Seams onto the roof below.

[0051] The Paver Grooves can also be made wide that the Upper Frame to create a wider volume to collect and channel liquid and small debris toward the Spacer Seams and onto the roof below.

[0052] The Spacer Arms correspond to the space between the Pavers (Paver Seams), so that when a Paver Lock is placed on top of a multiple of Pavers at the Pavers' corner vertices, the Spacer arms are hidden within the Paver Seams.

[0053] The horizontal top portion of the corner vertex of the Paver may also be partially removed so that the corners of a multiple of pavers form a Center Connector Cutaway that is equal to or larger than the Center Connector so the Center Connector may sit flush with or below the surface of the Paver. [0054] To add strength and stability to the Paver Lock, it should be affixed to a stationary object underneath the Pavers. Traditionally, the corners of the roof pavers are placed on Paver Pedestals, which keep the patio or deck raised above the roof.

[0055] The Paver Pedestals are placed below the corners of the pavers, under the Paver lock whereby a Connector Bolt can be fed though a Connector Hole in the Center Connector and into a hole at the top of the Paver Pedestal, where it can be tightened to a point that provides sufficient additional strength.

[0056] The method for deploying the roof paver locking system comprises manufacturing roof Pavers with Paver Grooves and and a Center Connector Cutaway.

[0057] The Pavers are loose laid on the roof or onto the Paver Pedestals and the Paver Lock is loose laid into the Paver Grooves of multiple adjacent Pavers.

[0058] The Pavers are locked into place by connecting the Paver Lock to the stationary object below the patio, such as the Paver Pedestal.

BRIEF DESCRIPTION OF THE DRAWINGS

[0059] FIG. 1 shows the Paver Lock apparatus consisting of an Upper Frame, Spacer

Arms and a Center Connector with a Connector Hole. [0060] FIG. 2 illustrates a side view of the Paver Lock.

[0061] FIG. 3 shows an aerial view of four ballasted pavers in a grid formation prior to placement of the Paver Lock. [0062] Fig 4. shows a side view of a declining Upper Frame, with the bottom slanted from the center point outward to the Spacer Arms. [0063] Fig. 5. shows a side view of two Pavers, with the Paver Center Connector

Cutaway [24]. [0064] FIG. 6 shows a typical Paver Pedestal.

[0065] FIG. 7 shows shows a side view of two Pavers, with the Paver Center

Connector Cutaway with the Paver Lock in place.

[0066] FIG. 8 illustrates a cross view of the Paver Lock, Pavers and Paver Pedestal [0067] FIG. 9 shows a top view of a roof deck with a multiple of Pavers and Paver

Locks.

DETAILED DESCRIPTION OF THE INVENTION

[0068] FIG. 1 shows the Paver Lock, consisting of an Upper Frame [10], Spacer Arms

[12], a Center Connector [14] and a Connector Hole [16].

[0069] The Upper Frame [10] is a geometric shape, such as a square, or circle, with an empty interior surface area, like a picture frame.

[0070] The Upper Frame [10] can vary in size, with larger sizes having a greater span and distance, allowing for greater downward pressure required to provide sufficient counterbalance against upward wind pressure, without affecting the aesthetic appeal of deck or patio surface.

[0071] The Upper Frame [10] can also vary in shape, creating geometric designs and patterns throughout the roof deck.

[0072] The Spacer Arms [12] function as cross-braces enhancing the strength of the

Paver Lock.

[0073] In the presented embodiment there are four Spacer Arms [12]. One end of each Spacer Arm [12] is connected to one corner of the Upper Frame [10], with the other end of the Spacer Arm [12] connected to the Center Connector [14]. However, the Spacer Arms [12] can be connected to a plurality of points along the Upper Frame [10] depending upon the Upper Frame shape and the number and location of the paver seams.

[0074] At the center, between the four Spacer Arms [12] is the Center Connector [14].

[0075] In a preferred apparatus, the Center Connector [14] contains a Connector Hole

[16].

[0076] FIG. 2 illustrates a side view of the Paver Lock. The upper rectangle is one side of the Upper Frame [10], with the Spacer Arms [12] underneath in a perspective view, moving away from the viewer. (In this view, the Spacer Arms [12] have a uniform height.)

[0077] The displayed embodiment assumes square concrete Pavers, evenly distributed in symmetrical rows, like a chessboard, however, any number of patterns, shapes or sizes are contemplated.

[0078] FIG. 3 shows an aerial view of four ballasted Pavers [18] in a grid formation prior to placement of the Paver Lock.

[0079] The current embodiment shows Paver Grooves [20], Paver Seams [22] and the

Paver Corner Hole [24].

[0080] When the Paver Lock is affixed to the four Pavers [18], the components of the

Paver Lock are designed to correspond to components of the Paver so that the Paver

Lock fits snugly, with a minimum of visibility.

[0081] In a preferred embodiment, the Upper Frame [10] dimensions correspond to the size of the Paver Groove [20] so that the Upper Frame [10] sits within the Paver

Grooves [20] on a multiple of Pavers [18]. [0082] Although the top for the Upper Frame [10] can be at any height in relation to the paver surface, the preferred height of the Upper Frame [10] should be flush or below so the paver surface across the patio or deck surface because an Upper Frame [10] that is higher than the paver surface can cause a trip hazard.

[0083] The width of the Paver Groove [20] can be equal to, or greater than the width of the Upper Frame [10]. A snug fit will minimize pooling water that can attract breeding insects and lessen the debris or other detritus from settling in the space.

[0084] In the displayed embodiment, the Paver Grooves [20] create a diamond shape and are cut or molded into the pavers at the position on which the Upper Frame [10] will be set.

[0085] The depth of the Paver Groove is dependent upon the materials used to create the Pavers [18]. For example, a concrete paver is thicker and heavier than most wood pavers, and allows for deeper Paver Grooves [20]. As well, materials used in the Paver Lock can also have an effect on the depth of the Paver Groove [20]. For example, a Paver lock made from welded steel requires less Upper Frame [10] high (and therefore Paver Groove [20] depth, than a lightweight plastic Upper Frame [10].

[0086] Water, oils, or small particulate matter caught in the Paver Groove [20] can flow downward toward the Spacer Arms [12] and out onto the roof underneath.

[0087] The bottom of the Paver Groove [20] does not need to be level, and instead can decline from one side of the Paver Groove [20] to its opposite side, or from a position within the Paver Groove [20], declining outward toward the Spacer Arms [12]. The corresponding Paver Groove [20] should match the decline so that the bottom of the Upper Frame makes contact at a plurality of points at the bottom of the Paver Groove [20]. Indents or divots in the Paver Groove [20] should be avoided during manufacture as they can become areas where water and debris can pool.

[0088] In an additional embodiment, a Paver Groove [20] width is greater than the width of the Upper Frame [10] allowing more water, oils and small particulate matter to enter the Paver Groove [20] and flow down onto the roof below.

[0089] Additionally, those persons skilled in the art should consider the impact the Paver Groove [20] will have on the strength of the Paver [18] at the Paver Groove [20] location, particularly when deciding on materials and size for a particular geographic location. In some cases, especial when using already fragile materials such as ceramic, the Paver Groove [20] could be an area that is less stable than the rest of the Paver [18]. Increased uplift forces from weather events or downward forces caused by heavy foot traffic could cause the Paver [18] to crack at the Paver Groove [20] if the groove is cut or molded too deep, without enough material below the Paver Groove to maintain sufficient strength to counteract said forces.

[0090] It should be noted that forces acting upon the Pavers [18], such as foot traffic, uplift wind or the Shockwave from an earthquake, will rarely create a uniform pressure across the Paver [18]. This means that the combination of the Paver [18] and Paver Lock should have sufficient strength to withstand the highest expected forces at all points on the Paver [18], including potential weak spots such as at the Paver Groove [20] otherwise the Paver [18] may fail.

[0091] In the displayed embodiment, four Pavers [18] intersect at the corners creating four Paver Seams [22].

[0092] The Spacer Arms [12] can are placed within the Paver Seams [22]. It is preferred that the Spacer Arms [12] lie below the surface of the Pavers [18], which makes the Spacer Arms [12] difficult to see, helping to ensure the Paver Lock has a minimal effect on the aesthetics of the roof deck, while sustaining downward forces.

[0093] The number of Spacer Seams [22] is determined by the shape and placement of the Pavers [18]. For example, if hexagonal Pavers are used, three Paver spaces would be created, allowing for a triangular Upper Frame [10] and three Spacer Arms [12] connecting to the Center Connector [14].

[0094] In the displayed embodiment, the Paver Seams [22] are at a 45-degree angle in relation to the Paver Grooves [20], when viewed from above.

[0095] When the Paver Lock is in place, the Spacer Arms [12] are fit into the Paver Seam [22] and so the Spacer Arm [12] should be equal to or less than the width of the space between the Pavers. The top of the Spacer Arms [12] can sit below the Paver [18] surface for aesthetics.

[0096] In a preferred embodiment, the number of Spacer Arms [12] will correspond to the number of Paver Seams [22], although the number of Spacer Arms [12] can be less than the number of Paver Seams [22].

[0097] The Paver Center Connector Cutaway [26] will hold the Center Connector [14].

[0098] The Paver Center Connector Cutaway [26] is a cutaway area at the corner of each paver, equal to a fraction equal to or greater than — where N is the number of pavers connecting at corners. For example, in the displayed embodiment of four pavers connecting at the corners, the Paver Center Connector Cutaway [26] on each of the four Pavers [18] is a cutaway equal to ¼ the size of the Center Connector [14]. The Paver Center Connector Cutaway [26], therefore, will be equal to or greater than the size of Center Connector [14]. [0099] In a preferred embodiment, the depth of the Paver Center Connector Cutaway [26] is equal to or greater than the height of the Center Connector [14] so that it remains flush or below the paver surface.

[0100] Fig 4. shows a side view of a declining Upper Frame [10], with the bottom slanted from the center point outward to the Spacer Arms [12]. The top of the Upper Frame remains level so that it remains flush with the Paver [18] surface.

[0101] Fig. 5. shows a side view of two Pavers [18], with the Paver Center Connector Cutaway [26].

[0102] Preferably, the Paver Lock should fit snugly to provide even counterbalance forces, otherwise extra stress on vulnerable paver areas, such as roof corners and escarpments, can occur allowing for a greater potential for paver failure.

[0103] As well, properly set Pavers can minimize damage from the expansion forces of freezing water and thermal stress, as well as inertial forces from catastrophic events, such as earthquakes.

[0104] Once the Paver Lock is placed onto the Paver [18], each Paver Lock should be affixed to a stationary object through the Connector Hole [16], so that all the Paver

Locks on the patio or deck are interlocking.

[0105] Interlocking systems distribute uplift forces to adjacent pavers to resist uplift forces on the Pavers [18].

[0106] While the invention contemplates a direct connection to the roof, the most common approach uses a Paver Pedestal [28]. [0107] FIG. 6 shows a typical Paver Pedestal [28], although the present invention can use a plurality of types of Paver Pedestals [28] to connect the Paver Locks together for stability.

[0108] The Paver Pedestal [28] sits on a surface substrate such as a roof. In a typical ballasted roof paver system, the Paver Pedestal [28] is not permanently affixed to the roof. However, if additional counterbalancing forces are required, Paver Pedestals [28] can be permanently affixed to the surface substrate before connecting the Paver Lock.

[0109] Pavers are loose laid on the Upper Pedestal [30]. In order to evenly align the pavers so each is an equal distance from the center of the Upper Pedestal [30], Paver Dividers [34] can be used.

[0110] The Paver Pedestal [28] displayed in FIG. 6 is designed to accommodate four Pavers [18] in a uniform grid pattern. The Paver Dividers [34] guide the Paver [18] placement, with the corner of each paver located at the center of the Paver Pedestal [28], with the paver sides separated by the Paver Dividers [34].

[0111] The thickness of the Paver Dividers [34] is equal to or less than the width of the Paver Seam [22].

[0112] A Pedestal Hole [32] sits directly below Connector Hole [16] through which the

Paver Lock will be connected to the Paver Pedestal [28].

[0113] The Paver Pedestal [28] is loose laid on the roof but can be affixed to the roof, for example, by bolting it down.

[0114] FIG. 7 shows shows a top view of four Pavers [18], with the with the Paver

Lock in place. [0115] From the top view, Upper Frame [10] is visible, flush with the paver surface, and creating a diamond pattern at the intersection of four Pavers [18].

[0116] The Spacer Arms [12] sits in the Paver Seam [22] at a lower depth to minimize their visibility from the deck or patio surface.

[0117] In the center, placed over Paver Center Connector Cutaway [26] is the Center Connector [14]. The Connector Bolt [38] is placed above the Paver Center Connector Cutaway [26] and connects the Paver Lock to the Paver Pedestal [28].

[0118] In the preferred embodiment, a screw apparatus is used but any mechanism that allows for both attaching the Paver Lock to the Pedestal and removing the attachment is contemplated.

[0119] FIG. 8 illustrates a cross view of the Paver Lock, Pavers [18] and Paver Pedestal

[28] detailing how the Paver Lock attaches to the various components. In the presented embodiment, the Paver Pedestal Bottom [40] sits, unattached, on the surface substrate. The Paver [18] (along with three additional pavers not seen here), lie loose on the Upper Pedestal [30] and guided into position by the paver Dividers [34]. Each Paver [18] has a Paver Groove [20] and a Paver Center Connector Cutaway [26].

[0120] Upper Frame [10] is situated in the Paver Groove [20] and the Spacer Arms [12] are positioned in the Paver Seam [22]. The Center Connector [14] is situated in the Paver Center Connector Cutaway [26]. Both the Spacer Arms [12] and the Center Connector [14] sit below the topside elevation of the pavers in this display.

[0121] Finally, the Connector Bolt [38] is situated in the Connector Hole [16] and attached to the Paver Pedestal [28] through Pedestal Connection Hole [42]. The top of Connector Bolt [38] is flush with, or below the topside of the Paver [18] after it is screwed into the Paver Pedestal [28], creating a uniform surface across the deck without a raised obstruction that can cause a trip hazard.

[0122] Fig. 9 shows a top view of a roof deck with a multiple of Pavers [18] and Paver Locks. From this top view can be seen the Connector Bolt [38] which has been fed through the Connector Hole [16] in the Center Connector [14]. The Center Connector [14] and the Connector Bolt [38] are show situated in the Paver Center Connector Cutaway [26] of four adjacent Pavers [18]. Between the pavers are the Paver Seams [22] which hold the Spacer Arms [12] unseen here as they are below the surface. Set into the Paver Grooves [20] on a multiple of Pavers [18] is the Upper Frame [10].

[0123] The method for deploying the Roof Paver Locking System has three steps, 1) manufacture of the Pavers [18], 2) manufacture of the Paver Lock, and 3) the placement of the Pavers [18] and Paver Lock.

[0124] In a preferred embodiment, the Paver [18] is manufactured with a Paver Center Connector Cutaway [26] and a Paver Groove [20], as described earlier.

[0125] Although the present method contemplates a number of manufacturing processes, the preferred methods for producing a Paver [18] that includes a Paver Center Connector Cutaway [26] and Paver Grooves [20] is to either cut the Paver Center Connector Cutaway [26] and Paver Grooves [20] after the Paver [18] is already manufactured or include the Paver Center Connector Cutaway [26] and the Paver Grooves [20] as part of a mold.

[0126] For example, the Paver Center Connector Cutaways [26] and Paver Grooves

[20] in wood pavers would likely be cut out of the Paver [18]. In a concrete paver, concrete is poured into a mold containing raised portions equivalent to the both the size and shape of the Paver Center Connector Cutaway [26] and the Paver Groove [20].

[0127] The method for manufacturing the Paver Lock is also dependent on factors, such as desired materials, expected environmental conditions and Paver [18] materials.

[0128] Where the Paver Lock is a made of a polymer, for example, production may use an injection molding process or 3d printing and where the Paver Lock is made of a non corrosive metal, like stainless steel, the Paver Lock may be formed using techniques such as such as roll forming, press forming, forging, press drawing, and extrusion.

[0129] To lay a patio or deck, a preferred method places Paver Pedestals [28] in positions throughout the patio or deck area, below the estimated position of the Paver Center Connector Cutaways [26] and the Paver Lock's Center Connector [14].

[0130] In the preferred method, the Pavers are loose laid onto the Paver Pedestals.

[0131] In one embodiment the Paver Dividers [34] are used to guide the Paver [18] into place.

[0132] Once a set of Pavers [18] are laid and can be locked to the Paver Pedestal [28], the Paver Lock is loose laid such that the Center Connector [14] is placed in the Paver Center Connector Cutaway [26], the Spacer Arms [12] are placed in the Paver Seams [22], and the Upper Frame [10] is placed into the Paver Grooves [20].

[0133] While the Pavers Lock can be fastened once laid into place, it is recommended that the continuous patio or deck be laid and all Paver Locks placed before locking to allow for adjustments to the patio or decks position. [0134] Although any method for securing the Paver Lock to a Paver Pedestal [28] is contemplated, the preferred method is to feed a Connector Bolt [38] through the Connector Hole [16], through the Paver Corner Hole [24] and into the Pedestal Connection Hole [42] and tightened.

[0135] All patents and publications mentioned in this specification are indicative of the levels of those skilled in the art to which the invention pertains. All patents and publications are herein incorporated by reference to the same extent as if each individual publication was specifically and individually indicated to be incorporated by reference.

[0136] It is to be understood that while a certain form of the invention is illustrated, it is not to be limited to the specific form or arrangement herein described and shown. It will be apparent to those skilled in the art that various changes may be made without departing from the scope of the invention and the invention is not to be considered limited to what is shown and described in the specification and any drawings/figures included herein.

[0137] One skilled in the art will readily appreciate that the present invention is well adapted to carry out the objectives and obtain the ends and advantages mentioned, as well as those inherent therein. The embodiments, methods, procedures and techniques described herein are presently representative of the preferred embodiments, are intended to be exemplary and are not intended as limitations on the scope. Changes therein and other uses will occur to those skilled in the art which are encompassed within the spirit of the invention and are defined by the scope of the appended claims. Although the invention has been described in connection with specific preferred embodiments, it should be understood that the invention as claimed should not be unduly limited to such specific embodiments. Indeed, various modifications of the described modes for carrying out the invention which are obvious to those skilled in the art are intended to be within the scope of the following claims.