Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
SAWING WIRE, AND METHOD FOR PRODUCING SAME
Document Type and Number:
WIPO Patent Application WO/2023/016690
Kind Code:
A1
Abstract:
The invention relates to a method for producing a structured sawing wire, wherein a metal wire having an at least two-dimensional structure is formed in such a way that the wire is crimped along a longitudinal axis of the wire such that the wire is predominantly plastically deformed with protrusions, wherein, during crimping, a maximum of 20%, in particular 10%, of the entire wire cross-section lies in the region of an elastic deformation, while the remaining cross-sectional area of the wire is plastically deformed.

Inventors:
BERGER WALTER (AT)
Application Number:
PCT/EP2022/067240
Publication Date:
February 16, 2023
Filing Date:
June 23, 2022
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
VOESTALPINE WIRE ROD AUSTRIA GMBH (AT)
International Classes:
B23D61/18; B28D5/04
Domestic Patent References:
WO2018149631A12018-08-23
WO2015119344A12015-08-13
WO2018149631A12018-08-23
WO2015119344A12015-08-13
Foreign References:
KR20120120721A2012-11-02
EP1827745A12007-09-05
US5261974A1993-11-16
EP3565693A12019-11-13
EP2906382A12015-08-19
CN108284529A2018-07-17
Attorney, Agent or Firm:
HGF (DE)
Download PDF:
Claims:
8

Ansprüche Verfahren zum Erzeugen eines strukturierten Sägedrahtes, wobei ein Metalldraht mit einer zumindest zweidimensionalen Struktur derart ausgebildet wird, dass entlang einer Längsachse des Drahtes der Draht derart gekrimpt wird, dass der Draht überwiegend plastisch mit Ausbuchtungen verformt wird, dadurch gekennzeichnet, dass während der Krimpung maximal 20%, insbesondere 10% des gesamten Drahtquerschnitts im Bereich einer elastischen Verformung liegen, während in der restlichen Querschnittsfläche Drahtes plastisch verformt wird Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der Draht zur Erzeugung einer dreidimensionalen Struktur in mehreren zueinander gewinkelten Ebenen gekrimpt wird. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Draht beim Krimpen ein Fließgelenk ausbildet, wobei der Biegeradius in einer Größenordnung von 1-3-des Durchmessers des Drahtes liegt, so dass die praktische Dehnung der Außenfaser zwischen 10% und 30%, insbesondere bei etwa 17% bis 23% liegt. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Fläche, in der eine plastische Verformung erfolgt erhöht wird, indem während der Krimpung eine Zugkraft auf den Draht aufgebracht wird. Verfahren nach Anspruch 4, wobei diese Zugspannung mindestens 8%, insbesondere mindestens 12%, und maximal 35%, insbesondere maximal 24% des Produkts aus Zugfestigkeit Rm und Drahtquerschnitt A beträgt. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass an der Position der Krimpung am gekrimpten Draht an der Außenseite eine 9

Druckspannung eingestellt wird, die 20 - 40 pm unter die Oberfläche reicht, bevor dort die Spannung zu Zugeigenspannungen werden.

7. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Draht wird um eine gerundete Spitze gebogen wird insbesondere mittels eines passend geformten Zahnes eines Zahnrades oder regelmäßig aufschlagender Umformpins.

8. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Abstand der Verformung (von zwei Seiten auf den Draht treffend) bei etwa lOx dem Durchmesser des Drahtes liegt, womit die Wellenlänge bei etwa 20x dem Durchmesser.

9. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass Die Struktur wird unabhängig aus um 80° bis 90° versetzten Richtungen aufgebracht, wobei darauf geachtet wird, dass entstehenden Wellenlängen ein möglichst großes Kleinstes Gemeinsames Vielfaches haben.

10. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Amplitude wird so eingestellt wird, dass der scheinbare Durchmesser des Drahtes (Hüllkreis in Längsrichtung) bei Arbeitsspannung im Drahtfeld einer Drahtsäge rund 8 bis 12 pm und insbesondere 10pm und/ oder ohne aufgebrachte Spannkraft 8-24%, insbesondere 10 bis 20% größer als der eigentliche Drahtdurchmesser ist.

11. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Fließgrenzenverhältnis Re zu Rm des Drahtmaterials auf 85 bis 95% und insbesondere 90 % eingestellt wird.

12. Sägedraht, insbesondere hergestellt mit einem Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Draht in einer oder mehreren zueinander gewinkelten Ebenen gekrimpt ist, wobei das Fließgrenzenverhältnis Re zu Rm des Drahtmaterials 85 bis 95% und insbesondere 90 % beträgt. 10

13. Sägedraht nach Anspruch 12, dadurch gekennzeichnet, dass Biegeradius das 1-2 fache des Durchmessers des Drahtes beträgt und der Abstand der Verformung von zwei Seiten auf den Draht treffend liegt bei 5 bis 15 mal und insbesondere 10 mal des Durchmessers des Drahtes liegt, und die Wellenlänge bei 10 bis 30 und insbesondere 20 mal dem Durchmesser des Drahtes liegt.

14. Sägedraht nach Anspruch 12, dadurch gekennzeichnet, dass an der Position der Krimpung am gekrimpten Draht an der Außenseite eine Druckspannung vorhanden ist, die bis 20 - 40 pm unter die Oberfläche des Drahtes reicht, bevor dort die Spannung zu Zugeigenspannungen werden.

15. Sägedraht nach einem der Ansprüche 12 bis 14, dadurch gekennzeichnet, dass die Zugfestigkeit des gezogenen Drahtes Rm zwischen 3000 und 4200, insbesondere 3200 und 4000, weiter bevorzugt zwischen 3400 und 3800 MPa beträgt und die Streckgrenze des gezogenen Drahtes zwischen 2500 und 4000, insbesondere 2900 und 3800 und bevorzugt 3000 und 3450 MPa beträgt.

16. Sägedraht nach einem der Ansprüche 12 bis 15, dadurch gekennzeichnet, dass der Draht einen Durchmesser von 0,12 bis 0,17 mm besitzt und eine dreidimensionale Krimpstruktur aufweist, wobei der Biegeradius 0,24 bis 0,34 mm beträgt, wobei die Amplitude beträgt 0,14 bis 0,2 mm beträgt und die Wellenlänge zwischen 2 und 4 mm liegt.

Description:
Säqedraht und Verfahren zu seiner Herstellung

Die Erfindung betrifft einen Sägedraht und ein Verfahren zu seiner Herstellung.

Nachfolgend werden Sägedrähte beschrieben, mit welchen metallische und mineralische Stoffe und insbesondere Wafer zur Herstellung von elektronischen Bauteilen geschnitten werden.

Es ist bekannt, beispielsweise von Siliziumstäben zu diesem Zwecke Scheiben abzuschneiden, wobei das Schneiden hierbei dadurch geschieht, dass ein Metalldraht mit Führungsrollen umlaufend geführt wird, wobei in einem Schneid bereich der zu schneidende Stab vorhanden ist, welcher abrasiv von dem Schneiddraht geschnitten wird.

Genauer gesagt, wird hierbei das Material des zu schneidenden Stabes nicht von dem Metalldraht selbst geschnitten, sondern von abrasiven Bestandteilen in einem Slurry, das vom Draht in den Schnittspalt transportiert wird. Man spricht daher auch von einem Drahttrennläppen, wobei hierbei Draht in seiner Längsrichtung von einer Abwickel- auf eine Aufwickelspule bewegt wird, wobei es Ausführungen mit Drahtbewegung in nur in eine Richtung und Drahtbewegung mit ständiger Richtungsumkehr der Bewegungsrichtung gibt. Der Draht muss insofern also in der Lage sein, abrasive Bestandteile in den Schnittspalt zu bringen und dort dafür zu sorgen, dass die abrasiven Bestandteile in der Lage sind, abtragend auf das zu schneidende Material einzuwirken. Das Slurry ist hierbei ein Gemisch z.B. aus relativ hochviskosem Glyzerin und Siliziumkarbid-Partikeln. Die harten kleinen Siliziumkarbid-Körner brechen hierbei feine Partikel aus der Grundmatrix des zu bearbeitenden Materials aus. Selbstverständlich sind auch andere Öle oder flüssige Trägermedien und andere Hartmaterialien möglich.

Um aber überhaupt eine solche Slurry (Schlämme) mitzuführen, braucht der Sägedraht eine Oberflächengestaltung, welche das Mitführen der hoch-viskosen Schlämme erlaubt. Ausschließlich zylindrische Drähte tragen das Slurry nur durch die adhäsive Wechselwirkung, aber der Schneidvorgang führt zu einem raschen Abstreifen des Slurry und einem Verlust der Schneidwirkung. Um die Transportfähigkeit des Drahtes bezüglich der Slurry zu verbessern, werden die Sägedrähte mit einer Struktur versehen, wobei die Struktur durch sogenanntes Krimpen aufgebracht wird. Die Krimpung ist hierbei ein geordneter Biegeprozess, bei der eine Struktur in den Draht geprägt wird, beispielsweise mit zwei um 90° versetzten Zahnrädern, die den Draht mechanisch aus einer zentralen Mittenlage heraus plastisch ablenken bzw. verbiegen. Die Struktur entsteht dabei dadurch, dass der Draht um eine gerundete Spitze gebogen wird, zum Beispiel einen passend geformten Zahn eines Zahnrades.

Ein solcher Draht unterliegt selbstverständlich auch einer Abnutzung im Schneidprozess, da die abrasiven, mitgeführten Partikel nicht nur auf das zu schneidende Material wirken, sondern auch auf den Draht bzw. das zu schneidende Material auch auf den Draht abrasiv wirken kann. Insbesondere nutzt sich der Draht außen an der Außenseite der Krimpung ab, wobei eine zu große Abnutzung dazu führen kann, dass die Krimpung dadurch verloren geht, dass sich der Draht streckt und dann auch nicht mehr ausreichend Schlämme mitführen kann.

Aus der WO2018/149631 Al sind eine Drahtsäge, Drahtführungsrollen und ein Verfahren zum gleichzeitigen Abtrennen einer Vielzahl von Scheiben von einem Stab bekannt. Hier wird ausgeführt, dass für die oben genannten Verfahren strukturierte Drähte aus glatten, runden Stahldrähten eine besondere Bedeutung haben, welche periodisch entlang ihrer gesamten Länge ohne Veränderung von Form und Größe ihrer Querschnittsfläche und gleiche Beträge senkrecht zur Drahtlängsrichtung verschobene Querschnitte besitzen. Es wird ausgeführt, dass diese Verschiebungen oft als Krimp bezeichnet werden, wobei der Betrag der Verschiebung als Amplitude der Krimps und die Länge in Längsrichtung zwischen Verschiebungen als Wellenlänge bezeichnet wird. Das Dokument führt auch aus, dass die Zwischenräume zwischen den Krimps als Taschen oder Reservoirs wirken, in denen mehr Slurry vom Draht bei Bewegung des Drahts in Drahtlängsrichtung mitgeführt werden kann, ohne abgestreift zu werden, als dies einem glatten Draht vergleichbaren Durchmessers möglich wäre. Für einen strukturierten Draht wird die Einhüllende als derjenige gerade Kreiszylinder kleinsten Durchmessers definiert, der den gesamten strukturierten Draht vollständig enthält. Die Grundfläche dieses geraden Kreiszylinders wird als Wirkquerschnitt der Durchmesser der Grundfläche des Zylinders als Wirkdurchmesser des strukturierten Drahtes definiert und die Längsachse der Einhüllenden des Zylinders als Längsachse des strukturierten Drahtes. Der Durchmesser des Kerndrahtes sollte bei von 130 pm bis 175 pm liegen, wobei der Durchmesser der Einhüllenden des strukturierten Drahtes das 1,02 - 1,25-fache des Durchmessers des Kerndrahtes betragen soll. Aufgrund des Verschleißes zeigt sich ein anisotroper Verschleiß im Bereich der exponierten Spitzen der Krimps, wobei der Draht in dem Bereich oval wird. Aus der WO2015/119344 Al ist ein strukturierter Sägedraht bekannt, welcher seine gekrimpten Eigenschaften auch unter Spannung beibehalten soll. Auch in diesem Dokument wird die Notwendigkeit angesprochen, die Struktur des Drahtes unter Sägebedingungen beizubehalten, um das Schneidmaterial mitzuführen. Dieser Sägedraht soll eine kontinuierliche Krimp- ung in Zick-Zack-Weise aufweisen, wobei der Biegeradius des eigentlichen Krimps 5-20-mal dem Durchmesser des Drahtes selber entsprechen soll. Beim Sägen wird dieser Draht einer Spannung in Längsrichtung ausgesetzt, welche darauf gerichtet ist, die Biegung des Krimps zu öffnen. Hierdurch wird die Krimpamplitude verringert und der Draht gestreckt. Es wird darauf hingewiesen, dass bei einem Biegeradius, der lediglich 5-mal dem Durchmesser des Drahtes entspricht oder geringer ist, eine Überbiegung erfolgen kann, welche schon bei der Herstellung zu Brüchen des Drahtes führen kann. Auf der anderen Seite führt ein Biegeradius von größer 20-mal dem Durchmesser des Drahts dazu, dass wenn Schneidspannung aufgebracht wird, der Schneiddraht sich sehr leicht streckt, so dass der Abnutzungsgrad des Drahtes stark erhöht wird und die Schneideffizienz herabgesetzt wird. Es ist zudem vorgesehen, die Krimpung nicht nur zweidimensional auszuführen, sondern dreidimensional dadurch auszuführen, dass die Krimpung um die Längsachse rotiert, so dass der Krimp abwechselnd auf der XZ-Ebene und der YZ-Ebene liegt, wodurch eine Helix erzeugt wird. Hierdurch wird die Schneid Kapazität durch ein verbessertes Mitführen der Slurry erhöht.

Aufgabe der Erfindung ist es, ein Verfahren zum Herstellen eines Sägedrahtes zu schaffen, welches einen Sägedraht erzeugt, welcher eine geometrische Formstabilität aufweist, welche gegenüber dem Stand der Technik verbessert ist und damit verschleißunabhängiger ist.

Die Aufgabe wird mit einem Verfahren mit den Merkmalen des Anspruchs 1 gelöst.

Vorteilhafte Weiterbildungen sind in hiervon abhängigen Unteransprüchen gekennzeichnet.

Es ist eine weitere Aufgabe einen Sägedraht zu schaffen, der über eine geometrische Formstabilität verfügt, welche eine verbesserte Resistenz gegen Verschleiß derart aufweist, dass eine Unabhängigkeit gegenüber Formänderungen besteht und somit das Vermögen abrasiver Mittel mitzuführen, aufrechterhalten bleibt.

Die Aufgabe wird mit einem Sägedraht mit den Merkmalen des Anspruchs 12 gelöst.

Vorteilhafte Weiterbildungen sind in den hiervon abhängigen Unteransprüchen gekennzeichnet. Aus dem Stand der Technik ist der Ansatz bekannt, die Zugeigenspannungen eines Drahtes zu erhöhen, um eine Form Stabilität zu gewährleisten. Die Erfinder haben jedoch herausgefunden, dass höhere Zugeigenspannungen vernachlässigbare Auswirkungen haben, da sie an der Außenphase eines Drahtes liegen und ihr Einfluss mit einer Tiefe von 1 - 3 pm sofort mit der plastischen Verformung abgebaut wird.

Erfindungsgemäß wird ein Sägedraht strukturiert. Die Strukturierung stellt eine Lösung des apollinischen Problems dar, d.h., der Draht versucht eine Lage zwischen drei Zahnradspitzen, die zur Verformung verwendet werden (zwei Spitzen gegenüberliegend, eine Spitze prägend) zu finden. Hierbei wird der Draht am Ort der Krimpung ein Fließgelenk ausbilden, wobei die Zahnradspitze einen geeigneten Radius haben soll. Ein geeigneter Radius liegt beispielsweise in einer Größenordnung von 1-3-mal dem Durchmesser des Drahtes. Hierdurch kann die praktische Dehnung der Außenfaser zwischen 10% und 30%, insbesondere bei etwa 17% bis 23% liegen. Dem entsprechend liegen maximal 20 %, insbesondere maximal 10% des gesamten Drahtquerschnitts im Bereich einer elastischen Verformung, während in der restlichen Querschnittsfläche des Drahtes plastisch verformt werden. Die hohe plastische Verformung verringert die Zugfestigkeit des Drahtes insgesamt nur um 2 - 6 % entsprechend der Tragzahl von Fließgelenken.

Dem entsprechend stellt sich an der Position der Krimpung am gekrimpten Draht an der Außenseite eine Druckspannung ein, die durchmesserabhängig 20 - 40 pm unter die Oberfläche reicht, bevor dort die Spannungen durch das notwendige Momentengleichgewicht im Draht zu Zugeigenspannungen werden. Die hohe plastische Verformung macht den Draht weitgehend unempfindlich gegen Schwankungen von äußeren Bedingungen, da eine Abnutzung von 0,3 - 0,8 pm und damit nur eine Veränderung von 1 - 2 % der mechanischen Bedingungen darstellt.

Erfindungsgemäß kann der Bereich der möglichen Drahtformen vergrößert werden, wenn während der Krimpung eine Zugkraft auf den Draht aufgebracht wird. Insbesondere hat es sich als vorteilhaft erwiesen, wenn diese Zugkraft so dimensioniert wird, dass sie mindestens 8%, insbesondere mindestens 12% und maximal 35%, insbesondere maximal 24% des Produkts aus Zugfestigkeit Rm und Drahtquerschnitt A beträgt. Diese Zugspannung führt zu einer weiteren Vergrößerung des plastischen Verformungsbereichs, so dass eine Beeinflussung der Drahtgeometries durch äußeren Verschleißbedingungen weiter abgesenkt werden kann und den möglichen Formen der Drahtgeometrie weitaus weniger Restriktionen entgegengesetzt werden. Da die aus der Zugkraft während der Krimpung resultierenden Zugspannungen nach der Krimpung systembedingt nicht mehr vorhanden sein können, stellen sich im fertigen Draht an der Außenfaser ausschließlich Druckspannungen ein.

Die erfindungsgemäßen Einflussgrößen sind die Geometrie des Zahnradkopfes, insbesondere der Radius der Zähne der Zahnräder, die Streckkraft während der Strukturierung und das Fließgrenzenverhältnis Re/Rm.

Die Erfindung betrifft insbesondere ein Verfahren zum Erzeugen eines strukturierten Sägedrahtes, wobei ein Metalldraht mit einer zumindest zweidimensionalen Struktur derart ausgebildet wird, dass entlang einer Längsachse des Drahtes der Draht derart gekrimpt wird, dass der Draht plastisch mit Ausbuchtungen verformt wird, wobei während der Krimpung eine Zugspannung im Ausmaß von 10 - 20 % der Zugfestigkeit des Drahtes aufgebracht wird.

Eine Weiterbildung sieht vor, dass der Draht zur Erzeugung einer dreidimensionalen Struktur in mehreren zueinander gewinkelten Ebenen gekrimpt wird.

Eine Weiterbildung sieht vor, dass der Draht beim Krimpen ein Fließgelenk ausbildet, wobei der Biegeradius in einer Größenordnung von 1-2-mal dem Durchmesser des Drahtes liegt so dass die praktische Dehnung bei etwa 17% bis 23%, insbesondere um 20 % liegt

Eine Weiterbildung sieht vor, dass die Fließgrenze bei 1,5 - 1,7 % beginnt wobei maximal 5 - 20 % des gesamten Drahtquerschnitts im Bereich einer elastischen Verformung liegen, während die restlichen 80 - 95 % des Drahtes plastisch verformt werden, so dass die plastische Verformung die Zugfestigkeit des Drahtes insgesamt nur um 2 - 6 % entsprechend der Tragzahl von Fließgelenken verringert.

Eine Weiterbildung sieht vor, dass an der Position der Krimpung am gekrimpten Draht an der Außenseite eine Druckspannung eingestellt wird, die 20 - 40 pm unter die Oberfläche reicht, bevor dort die Spannung zu Zugeigenspannungen werden.

Eine Weiterbildung sieht vor, dass der Draht um eine gerundete Spitze gebogen wird insbesondere mittels eines passend geformten Zahnes eines Zahnrades oder regelmäßig aufschlagender Umformpins. Eine Weiterbildung sieht vor, dass der Abstand der Verformung (von zwei Seiten auf den Draht treffend) bei etwa 10-15x dem Durchmesser des Drahtes liegt, die Wellenlänge damit bei etwa 20-30x dem Durchmesser.

Eine Weiterbildung sieht vor, dass die Struktur unabhängig aus um 80° bis 90° versetzten Richtungen aufgebracht wird, wobei darauf geachtet wird, dass entstehenden Wellenlängen ein möglichst großes Kleinstes Gemeinsames Vielfaches haben.

Eine Weiterbildung sieht vor, dass die Amplitude wird so eingestellt wird, dass der scheinbare Durchmesser des Drahtes (Durchmesser des Hüllkreises in Längsrichtung) bei Arbeitsspannung im Drahtfeld einer Drahtsäge rund 8 bis 12 pm und insbesondere 10pm und/oder ohne aufgebrachte Spannkraft 8-24%, insbesondere 10 bis 20% größer als der eigentliche Drahtdurchmesser ist.

Eine Weiterbildung sieht vor, dass das Fließgrenzenverhältnis Re zu Rm des Drahtmaterials auf 85 bis 95% und insbesondere 90 % eingestellt wird.

Ein weiterer Aspekt der Erfindung betrifft einen Sägedraht, insbesondere hergestellt mit einem zuvor beschriebenen Verfahren, wobei der Draht in einer oder mehreren zueinander gewinkelten Ebenen gekrimpt ist.

Eine Weiterbildung sieht vor, dass Biegeradius am Punkt der Krimpung das 1-2 fache des Durchmessers des Drahtes beträgt und der Abstand der Verformung von zwei Seiten auf den Draht treffend liegt bei 5 bis 15 mal und insbesondere 10 mal des Durchmessers des Drahtes liegt, und die Wellenlänge bei 10 bis 30 und insbesondere 20 mal dem Durchmesser des Drahtes liegt.

Eine Weiterbildung sieht vor, dass an der Position der Krimpung am gekrimpten Draht an der Außenseite eine Druckspannung vorhanden ist, die bis 20 - 40 pm unter die Oberfläche des Drahtes reicht, bevor dort die Spannung zu Zugeigenspannungen werden.

Eine Weiterbildung sieht vor, dass die Zugfestigkeit des gezogenen Drahtes Rm zwischen 3000 und 4200, insbesondere 3200 und 4000, weiter bevorzugt zwischen 3400 und 3800 MPa beträgt und die Streckgrenze des gezogenen Drahtes zwischen 2500 und 4000, insbesondere 2900 und 3800 und bevorzugt 3000 und 3450 MPa beträgt. Eine Weiterbildung sieht vor, dass der Draht einen Durchmesser von 0,12 bis 0,17 mm besitzt und eine dreidimensionale Krimpstruktur aufweist, wobei der Biegeradius 0,24 bis 0,34 mm beträgt, wobei die Amplitude beträgt 0,14 bis 0,2 mm beträgt und die Wellenlänge zwischen 2 und 4 mm liegt.

Die Erfindung soll anhand eines Beispiels erläutert werden, wobei die Tabelle gemäß Figur 1 die entsprechenden Daten aufzeigt.

Ein Draht mit einem Durchmesser von 0,15 mm wird mit einer dreidimensionalen Krimpstruktur versehen, wobei der Biegeradius das Doppelte des Durchmessers, nämlich 0,3 mm beträgt. Die Amplitude, die sich hieraus ausbildet, beträgt 0,17 mm, während die Wellenlänge 3,1 mm ist. Die notwendige Dehnung an der Außenfaser beträgt 20 %, wobei die werkstoffbedingte Fließgrenze 1,7 % beträgt. Dem entsprechend ist der plastische Dehnungsanteil 18,3 %. Der sich daraus ergebende Abstand von der Mittellinie bis zur Fließgrenze beträgt 5,61 pm, während der Abstand des vom Rand bis zur Null-Spannungs-Linie 35,36 pm beträgt. Die am Ende verbleibende Restdehnung in der Außenfaser beträgt nach Entlastung nach dem Biegevorgang minus 1,6 % (Kompression).

Das Fließgrenzenverhältnis Re zu Rm beträgt 90 %, wobei die Zugfestigkeit des gezogenen Drahtes Rm 3600 MPa betrug. Die Streckgrenze des gezogenen Drahtes beträgt 3240 MPa.

Unter den vorgenannten Bedingungen hat sich an der Außenfaser eine Eigenspannung von 453 MPa eingestellt, welche auch dadurch verursacht wurde, dass während der Strukturierung einer Streckspannung von 8 Newton aufgebracht wurde. Man erkennt, dass somit auf die Zugfestigkeit Rm des gezogenen Drahts von 3600 MPa während der Strukturierung eine Spannung in Längsrichtung gebracht wurde, die etwa 12,6 % beträgt und eine Vordehnung um 0,2% bewirkt.

Vorhandene Eigenspannungen in der Außenfaser eines gezogenen Drahtes können bis nahe an die Streckgrenze des Drahtes reichen, werden aber bewusst im letzten Ziehschritt durch eine finale kleinere Umformung etwas abgebaut. Beispielhaft wird eine Zugeigenspannung von 1500 MPa angenommen, die aber bis in eine Tiefe von etwa 3 pm auf Null absinkt. Die Eigenspannung mit ihrer maximalen Vordehnung von 0,8% führt zu einem rascheren Erreichen der Fließgrenze und verliert damit ab Beginn der plastischen Verformung sofort ihren Einfluss auf die finalen Drahteigenschaften.