Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
SEMICONDUCTOR DEVICE STRUCTURE AND MANUFACTURING METHOD THEREOF
Document Type and Number:
WIPO Patent Application WO/2013/013471
Kind Code:
A1
Abstract:
Provided are a semiconductor device structure and a manufacturing method thereof. The method comprises: forming a semiconductor substrate (101) of a local silicon on insulator (SOI) structure and having a local buried isolation dielectric layer; forming a fin (107) on the silicon substrate (101) above the local buried isolation dielectric layer; forming gate stacking structures (108, 109) on a top portion and a side surface of the fin (107); forming a source/drain structure in the fin (107) at two sides of the gate stacking structures (108, 109); and performing metallization. The method uses a traditional top-down process based on the quasi plane, achieving desirable compatibility with a complementary metal-oxide-semiconductor transistor (CMOS) plane process, facilitating integration and miniaturization, and inhibiting the short-channel effect.

Inventors:
ZHOU HUAJIE (CN)
XU QIUXIA (CN)
Application Number:
PCT/CN2011/083326
Publication Date:
January 31, 2013
Filing Date:
December 01, 2011
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
INST OF MICROELECTRONICS CAS (CN)
ZHOU HUAJIE (CN)
XU QIUXIA (CN)
International Classes:
H01L21/336; H01L29/78
Foreign References:
CN101477986A2009-07-08
KR100833595B12008-05-30
US7449373B22008-11-11
US7534669B22009-05-19
Attorney, Agent or Firm:
HANHOW INTELLECTUAL PROPERTY PARTNERS (CN)
北京汉昊知识产权代理事务所(普通合伙) (CN)
Download PDF:
Claims:
权 利 要 求

1、 一种半导体器件结构, 包括:

鳍片, 该鳍片位于局部埋层隔离介质层上, 同时鳍片的底部通过体接触 与衬底相连, 所述鳍片具有位于源漏之间的沟道区域;

局部埋层隔离介质层,该局部埋层隔离介质层将鳍片除通过体接触与衬 底相连的区域与衬底隔离开;

体接触,该体接触将至少所述鳍片的所述沟道区域的一部分与衬底形成 直接的物理和电学接触;

栅电极, 栅电极的方向与鳍片的方向垂直, 鳍片与栅电极相交的区域形 成沟道;

栅电极与鳍片之间存在栅介质;

源漏区域, 位于沟道区域及栅电极的两侧。

2、 一种制备方法, 包括:

形成具有局部埋层隔离介质层的局部绝缘体上硅(SOI )结构的半导体 衬底;

在所述局部埋层隔离介质层上方的硅衬底上形成鳍片;

在所述鳍片顶部和侧面形成栅堆叠结构;

在所述栅堆叠结构两侧的鳍片中形成源 /漏结构;

金属化。

3、 根据权利要求 2所述的方法, 其中, 形成具有局部埋层隔离介质层 的局部绝缘体上硅(SOI ) 结构的半导体衬底的步骤包括:

在半导体衬底上形成介质层;

光刻、 刻蚀所述介质层形成介质层岛及体接触孔;

在半导体衬底上形成一层非晶硅材料;

将非晶硅材料转变为单晶材料并进行化学机械抛光( CMP )形成局部绝 缘体上硅(SOI )结构半导体衬底。

4、 根据权利要求 3所述的方法, 其中, 所述介质层包括 Si02、 TEOS、 LTO或 Si3N4, 厚度为 20-100nm。

5、 根据权利要求 3所述的方法, 其中, 在半导体衬底上形成一层非晶 硅材料步骤中, 所述非晶硅材料的形成可以采用低压化学气相淀积

( LPCVD )、 离子束溅射等方法; 所述非晶硅材料的厚度为 200nm-1000nm。

6、 根据权利要求 3所述的方法, 其中, 所述将非晶硅材料转变为单晶 材料并进行化学机械抛光(CMP )形成局部绝缘体上硅(SOI ) 结构半导体 衬底的步骤中, 可以采用横向固相外延(LSPE )技术、 激光再结晶法、 卤 素灯或条形加热器再结晶等方法将非晶硅材料转变为单晶材料。

7、 根据权利要求 2所述的方法, 所述在所述局部埋层隔离介质层上方 的硅衬底上形成鳍片的步骤包括:

电子束曝光正性抗蚀剂并刻蚀所述局部埋层隔离介质层上方的硅衬底 至埋层隔离介质层以嵌入所述半导体衬底形成至少两个凹槽,所述凹槽之间 形成鳍片。

8、 根据权利要求 7所述的方法, 其中, 所述鳍片的厚度为 10-60nm。

9、 根据权利要求 2所述的方法, 其中, 所述在所述鳍片顶部和侧面形 成栅堆叠结构的步骤包括:

在鳍片的顶部和侧面形成栅介质层和栅电极材料;

光刻、 刻蚀形成栅电极堆叠结构。

10、 根据权利要求 2所述的方法, 其中, 在所述栅堆叠结构两侧的鳍片 中形成源 /漏结构之前, 所述方法进一步包括:

在鳍片的两侧形成一次侧墙;

进行倾角离子注入, 以在所述鳍片中形成源 /漏延伸区; 或

进行倾角离子注入, 以在所述鳍片中形成晕环注入区。

11、 根据权利要求 2所述的方法, 其中, 所述在栅堆叠结构两侧的鳍片 中形成源 /漏结构步骤包括:

在鳍片的两侧形成二次侧墙;

离子注入形成源漏掺杂;

形成源漏硅化物。

12、 根据权利要求 1至 11中任一项所述的方法, 其中, 所述半导体衬 底为体娃衬底。

Description:
一种半导体器件结构及其制造方法

[0001]本申请要求了 2011年 7月 27日提交的、 申请号为 201110212808.2、 发明名称为"一种半导体器件结构及其制造方 "的中国专利申请的优先权, 其全部内容通过引用结合在本申请中。 技术领域

[0002]本发明属于半导体技术领域,尤其涉及一 种体硅鳍型场效应晶体管的 制备方法。 背景技术

[0003]随着集成电路产业按照 Moore定律持续向前发展, CMOS器件的特征 尺寸持续缩小, 平面体硅 CMOS 结构器件遇到了严峻的挑战。 为了克服这 些问题, 各种新结构器件应运而生。 在众多新结构器件中, 鳍型场效应晶体 管 (FinFET )被认为是最有可能替代平面体硅 CMOS器件的新结构器件之 一, 成为国际研究的热点。

[0004] FinFET结构器件初期主要制备在 SOI衬底上, 工艺较体硅衬底而言 较为筒单。 但是 SOI FinFET存在制备成本高, 散热性差, 有浮体效应, 与 CMOS工艺兼容性差等缺点。 为了克服 SOI FinFET存在的问题, 研究人员 开始研究采用体硅衬底来制备 FinFET器件, 即 Bulk FinFET。 但是一般的 Bulk FinFET结构器件较 SOI FinFET器件而言仍然具有以下缺点: SCE效应 抑制效果不理想; 沟道底部的鳍片内仍然会形成泄漏电流路径造 成泄漏电流 较大; 杂质剖面控制困难。

[0005】为了克服以上问题, 推动 FinFET结构器件尽快获得应用, 需要进一 步开展这方面的研究工作。 这对于 FinFET结构器件的应用以及半导体产业 的发展具有重要意义。 发明内容

[0006】本发明的第一方面是一种半导体器件结 , 包括: 鳍片, 该鳍片位于 局部埋层隔离介质层上, 同时鳍片的底部通过体接触与衬底相连, 所述鳍片 具有位于源漏之间的沟道区域; 局部埋层隔离介质层, 该局部埋层隔离介质 层将鳍片除通过体接触与衬底相连的区域与衬 底隔离开; 体接触, 该体接触 将至少所述鳍片的所述沟道区域的一部分与衬 底形成直接的物理和电学接 触; 栅电极, 栅电极的方向与鳍片的方向垂直, 鳍片与栅电极相交的区域形 成沟道; 栅电极与鳍片之间存在栅介质; 源漏区域, 位于沟道区域及栅电极 的两侧。

[0007】本发明的第二方面是一种制备方法, 包括: 形成具有局部埋层隔离介 质层的局部绝缘体上硅(SOI ) 结构的半导体衬底; 在所述局部埋层隔离介 质层上方的硅衬底上形成鳍片; 在所述鳍片顶部和侧面形成栅堆叠结构; 在 所述栅堆叠结构两侧的鳍片中形成源 /漏结构; 金属化;

[0008】为了实现上述目的, 本发明的主要步骤包括: 形成具有局部埋层隔离 介质层的局部绝缘体上硅(SOI ) 结构的半导体衬底; 在所述局部埋层隔离 介质层上方的硅衬底上形成鳍片; 在所述鳍片顶部和侧面形成栅堆叠结构; 在所述栅堆叠结构两侧的鳍片中形成源 /漏结构; 金属化;

[0009]优选地, 形成具有局部埋层隔离介质层的局部绝缘体上 硅(SOI )结 构的半导体衬底的步骤包括: 在半导体衬底上形成介质层; 光刻、 刻蚀所述 介质层形成介质层岛及体接触孔; 在半导体衬底上形成一层非晶硅材料; 将 非晶硅材料转变为单晶材料并进行化学机械抛 光( CMP )形成局部绝缘体上 硅(SOI )结构半导体衬底;

[0010]优选地,所述介质层包括 Si0 2 、TEOS、LTO或 Si 3 N 4 ,厚度为 20-100nm。

[0011】优选地, 在半导体衬底上形成一层非晶硅材料步骤中, 所述非晶硅材 料的形成可以采用低压化学气相淀积(LPCVD )、 离子束溅射等方法; 所述 非晶硅材料的厚度为 200nm-1000nm。

[0012]优选地, 所述将非晶硅材料转变为单晶材料并进行化学 机械抛光 ( CMP )形成局部绝缘体上硅(SOI ) 结构半导体衬底的步骤中, 可以采用 横向固相外延(LSPE )技术、 激光再结晶法、 卤素灯或条形加热器再结晶 等方法将非晶硅材料转变为单晶材料。

[0013]优选地,所述在所述局部埋层隔离介质层 上方的硅衬底上形成鳍片的 步骤包括: 电子束曝光正性抗蚀剂并刻蚀所述局部埋层隔 离介质层上方的硅 衬底至埋层隔离介质层以嵌入所述半导体衬底 形成至少两个凹槽, 所述凹槽 之间形成鳍片。

[0014]优选地, 所述鳍片的厚度为 10-60nm。

[0015】优选地, 所述在所述鳍片顶部和侧面形成栅堆叠结构的 步骤包括: 在 鳍片的顶部和侧面形成栅介质层和栅电极材料 ; 光刻、 刻蚀形成栅电极堆叠 结构。

[0016]优选地,在所述栅堆叠结构两侧的鳍片中 形成源 /漏结构之前,所述方 法进一步包括: 在鳍片的两侧形成一次侧墙; 进行倾角离子注入, 以在所述 鳍片中形成源 /漏延伸区;或进行倾角离子注入, 以在所述鳍片中形成晕环注 入区。

[0017]优选地,所述在栅堆叠结构两侧的鳍片 中形成源 /漏结构步骤包括:在 鳍片的两侧形成二次侧墙; 离子注入形成源漏掺杂; 形成源漏硅化物。

[0018]优选地, 所述半导体衬底为体硅衬底。

[0019]从上述技术方案可以看出, 本发明有以下有益效果:

[0020] 1、 本发明提供的这种半导体器件结构及制备方法 , 在体硅衬底上实 现了鳍型场效应晶体管器件的制备, 克服了 SOI FinFET器件存在的自加热 效应和浮体效应, 降低了制备成本;

[0021] 2、 本发明提供的这种半导体器件结构及制备方法 , 非常容易在体硅 衬底上形成局部绝缘体上硅结构, 很容易制备与衬底相隔离的鳍片结构, 大 大降低了制备 Bulk FinFET器件的难度;

[0022】 3、 本发明提供的这种半导体器件结构及制备方法 , 制备工艺筒单可 行, 易于集成, 与平面 CMOS工艺兼容性好。 附图说明

[0023]通过以下参照附图对本发明实施例的描 述,本发明的上述以及其他目 的、 特征和优点将更为清楚, 在附图中:

[0024] 图 1-7示出了根据本发明实施例的方法制备半导体 器件的流程中对应 的各结构剖面图;

[0025]附图标记说明:

[0026] 101 , Si衬底; 102 , 介质层; 103 , 体接触孔; 104, 非晶硅层; 105 , STI隔离层; 106, 凹槽结构; 107 , 鳍片; 108, 栅介质层; 109, 栅电极。

[0027】应当注意的是, 本说明书附图并非按照比例绘制, 而仅为示意性的目 的, 因此, 不应被理解为对本发明范围的任何限制和约束 。 在附图中, 相似 的组成部分以相似的附图标号标识。 具体实施方式

[0028】 以下, 通过附图中示出的具体实施例来描述本发明。 但是应该理解, 这些描述只是示例性的, 而并非要限制本发明的范围。此外,在以下说 明中, 省略了对公知结构和技术的描述, 以避免不必要地混淆本发明的概念。

[0029]在附图中示出了根据本发明实施例的层 结构示意图。这些图并非是按 比例绘制的, 其中为了清楚的目的, 放大了某些细节, 并且可能省略了某些 细节。 图中所示出的各种区域、 层的形状以及它们之间的相对大小、 位置关 系仅是示例性的, 实际中可能由于制造公差或技术限制而有所偏 差, 并且本 领域技术人员根据实际所需可以另外设计具有 不同形状、 大小、 相对位置的 区域 /层。

[0030] 图 1 ~ 7详细示出了根据本发明实施例制备半导体器 的各步骤对应 的结构剖面图。 以下, 将参照这些附图来对根据本发明实施例的各个 步骤予 以详细说明。

[0031]首先参考图 1 ,在半导体衬底 101上形成介质层 102。所述介质层 102 可以包括: Si0 2 、 TEOS、 LTO、 Si 3 N 4 或其他介质材料, 在本发明的实施例 中优选为 Si0 2 , 可以通过热生长形成, 厚度约为 20-100nm。 所述半导体衬 底 101可以是半导体制造领域中常用的衬底材料, 对于本发明的实施例, 优 选采用体 Si衬底。

[0032]接着如图 2A和 2B所示, 在半导体衬底 101上形成介质层岛 102,和 体接触孔 103。 图 2A为沿半导体衬底 101表面示意图; 图 2B为沿 AA,方向 的剖视图。 形成所述介质层岛 102,和体接触孔 103的方法为: 采用光刻或电 子束曝光抗蚀剂并反应离子刻蚀介质层 102形成介质层岛 102, 和体接触孔 103。

[0033] 图 3为在半导体衬底上形成一层非晶硅层 104的示意图。所述非晶硅 层 104的形成方法可以包括: 低压化学气相淀积( LPCVD )、 离子束溅射等; 在本发明的实施例, 优选采用 LPCVD方法。 所述非晶硅层 104的厚度约为 200nm-1000nm。

[0034]接着如图 4所示,将非晶硅层 104转变为单晶硅层 104,并化学机械抛 光(CMP )形成具有局部埋层隔离介质层的局部绝缘体 硅(SOI ) 结构的 半导体衬底。 所述非晶硅层 104转变为单晶硅层 104,的方法可以包括: 横向 固相外延(LSPE )技术、 激光再结晶法、 卤素灯或条形加热器再结晶等; 在本发明的实施例, 优选采用 LSPE技术。 所述 LSPE技术外延的过程为: 首先,将直接与半导体衬底 101相接触的非晶硅层 104在垂直方向进行垂直 固相外延, 将其转变为单晶硅层 104,; 然后, 将介质层岛 102,上方覆盖的非 晶硅层 104进行横向固相外延将其转变为单晶硅层 104,;最终将所有的非晶 硅层 104都转变为单晶硅层 104,。

[0035]接着如图 5所示在半导体衬底 101上形成 STI隔离结构 105。

[0036] 图 6A示出了沿半导体衬底 101表面的示意图, 图 6B和 6C分别为图

6A中沿 AA,和 BB,方向的剖视图。 如图 6B、 6C所示, 对所述单晶硅层 104, 进行刻蚀形成凹槽结构 106, 同时两个相邻凹槽之间形成鳍片 107。鳍片 107 的底部通过体接触 103,与衬底相连。 该体接触有利于消除器件的浮体效应, 同时该体接触 103,还有利于器件沟道处的散热, 提高器件的性能。 刻蚀形成 所述凹槽结构 106的方法例如可以是: 采用电子束曝光正性抗蚀剂并反应离 子刻蚀形成陡直的宽度约为 200-400nm的凹槽结构 106。 凹槽的形状只是示 例, 本发明对此不做限制。 所述鳍片 107的厚度为 10-60nm。

[0037]接着参考图 7A、 7B和 7C, 在整个衬底上形成栅介质层材料 108和 栅电极材料 109, 然后刻蚀形成栅电极叠层结构。 图 7A示出了沿半导体衬 底 101表面的示意图, 图 7B和 7C分别是沿图 7A中 AA'和 BB'方向的剖视 图。 所述栅介质层材料 108可以是普通栅介质材料, 例如 Si0 2 , 或者是其他 的高 k介质材料, 例如 SiON和 HfA10N、 Hf aON、 HfSiON、 A1 2 0 3 等, 在 本发明地实施例中优选 HfSiON, 可通过低压化学气相沉积、 金属有机化学 气相沉积或者原子层淀积等方法形成, 栅介质的等效氧化层厚度为 5至 100 A。 所述栅电极材料 109可以是难熔金属 W, Ti, Ta, Mo和金属氮化物, 例 如 TiN, TaN, H , MoN等或其他材料, 栅电极材料可采用低压化学气相淀 积, 金属有机化学气相沉积、原子层淀积或其他方 法形成, 厚度可选为 2000 至 5000 A。

[0038]接着,在所述栅堆叠结构两侧的鳍片中形 成源 /漏结构之前,所述方法 进一步包括: 在鳍片的两侧形成一次侧墙; 进行倾角离子注入, 以在所述鳍 片中形成源 /漏延伸区;或进行倾角离子注入, 以在所述鳍片中形成晕环注入 区。

[0039]接着, 可以在栅堆叠的侧壁上形成栅侧墙。 栅侧墙的形成可以参照常 规技术, 这里不再赘述。

[0040]接着,在栅堆叠两侧的半导体衬底中进行 离子注入形成源 /漏区并形成 源漏娃化物。

[0041]最后, 金属化形成互连结构将电极引出。 金属化的形成可以参照常规 技术, 这里不再赘述。

[0042]此外, 本发明的实施例能够在体硅衬底上实现了半导 体器件的制备。 该方法采用传统的基于准平面的自顶向下工艺 , 制备工艺筒单可行, 与 CMOS平面工艺具有良好的兼容性, 并且易于集成。

[0043]在以上的描述中, 对于各层的构图、 刻蚀等技术细节并没有做出详细 的说明。 但是本领域技术人员应当理解, 可以通过现有技术中的各种手段, 来形成所需形状的层、 区域等。 另外, 为了形成同一结构, 本领域技术人员 还可以设计出与以上描述的方法并不完全相同 的方法。

[0044]以上参照本发明的实施例对本发明予以了 说明。 但是, 这些实施例仅 仅是为了说明的目的, 而并非为了限制本发明的范围。 本发明的范围由所附 权利要求及其等价物限定。 不脱离本发明的范围, 本领域技术人员可以做出 多种替换和修改, 这些替换和修改都应落在本发明的范围之内。