Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
SEMICONDUCTOR LIGHT EMITTING DEVICE AND METHOD OF FABRICATING THE SAME
Document Type and Number:
WIPO Patent Application WO/2009/002040
Kind Code:
A3
Abstract:
Provided are a semiconductor light emitting device and a method of fabricating the same. The semiconductor light emitting device comprises: a light emitting structure comprising a first conductive type semiconductor layer, an active layer under the first conductive type semiconductor layer, and a second conductive type semiconductor layer under the active layer; a reflective electrode layer under the light emitting structure, and an outer protection layer at an outer circumference of the reflective electrode layer.

Inventors:
LEE SANG YOUL (KR)
Application Number:
PCT/KR2008/003437
Publication Date:
February 26, 2009
Filing Date:
June 18, 2008
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
LG INNOTEK CO LTD (KR)
LEE SANG YOUL (KR)
International Classes:
H01L33/00; H01L33/40; H01L33/44
Foreign References:
JPH114042A1999-01-06
JP2000114666A2000-04-21
US6744071B22004-06-01
Other References:
See also references of EP 2160772A4
Attorney, Agent or Firm:
HAW, Yong Noke (Hyun Juk Bldg. 832-41 Yeoksam-dong,Gangnam-gu, Seoul 135-080, KR)
Download PDF:
Claims:

Claims

[1] A semiconductor light emitting device comprising: a light emitting structure comprising a first conductive type semiconductor layer, an active layer under the first conductive type semiconductor layer, and a second conductive type semiconductor layer under the active layer; a reflective electrode layer under the light emitting sturcture; and an outer protection layer at an outer circumference of the reflective electrode layer.

[2] The semiconductor light emitting device according to claim 1, wherein the outer protection layer comprises the same semiconductor material as the second conductive type semiconductor layer.

[3] The semiconductor light emitting device according to claim 1, wherein the outer protection layer is formed with a frame form between an outer top of the reflective electrode layer and the second conductive type semiconductor layer.

[4] The semiconductor light emitting device according to claim 1, wherein the outer protection layer comprises at least one of GaN, InN, AlN, InGaN, AlGaN, InAlGaN, and AlInN, and is doped with n-type dopants or p-type dopants.

[5] The semiconductor light emitting device according to claim 1, wherein the outer protection layer comprises an undoped GaN layer.

[6] The semiconductor light emitting device according to claim 1, wherein the light emitting structure comprises an outer groove at an outer circumference of the second conductive type semiconductor layer from the first conductor semiconductor layer.

[7] The semiconductor light emitting device according to claim 6, wherein the outer groove is formed with a depth from the first conductive type semiconductor layer to the depth exposing a part of the second conductive type semiconductor layer or the outer protection layer.

[8] The semiconductor light emitting device according to claim 1, wherein the first conductive type semiconductor layer comprises an n-type semiconductor layer, and the second conductive type semiconductor layer comprises a p-type semiconductor layer.

[9] The semiconductor light emitting device according to claim 1, comprising a conductive support substrate under the reflective electrode layer; and at least one of a first electrode and a transparent electrode on the first conductive

type semiconductor layer.

[10] A semiconductor light emitting device comprising: a light emitting structure comprising a first conductive type semiconductor layer, an active layer under the first conductive type semiconductor layer, a second conductive type semiconductor layer under the active layer, and an outer groove at an outer circumference of each of the layers; and a reflective electrode layer under the light emitting structure.

[11] The semiconductor light emitting device according to claim 10, wherein an outer bottom of the second conductive type semiconductor layer is formed with a frame form at the outer circumference of the reflective electrode layer.

[12] The semiconductor light emitting device according to claim 10, comprising an outer protection layer with a frame form at the outer circumference of the reflective electrode layer.

[13] The semiconductor light emitting device according to claim 12, wherein a width of the outer groove with the frame form is less than a width of the outer protection layer.

[14] The semiconductor light emitting device according to claim 10, wherein a center area and an outer circumference area of the second conductive type semiconductor layer have respectively different thicknesses.

[15] The semiconductor light emitting device according to claim 12, wherein a width of the outer protection layer ranges from 20/M to 600/M, and a thickness of the outer protection layer ranges from 5000A to 500/M.

[16] The semiconductor light emitting device according to claim 10, wherein a width of the outer groove ranges from 10/M to 500/M.

[17] The semiconductor light emitting device according to claim 10, comprising an n- type semiconductor layer or a p-type semiconductor layer under the second conductive type semiconductor layer.

[18] A method of fabricating a semiconductor light emitting device, the method comprising: forming a light emitting structure on a wafer substrate, the light emitting structure comprising at least a sequentially-stacked first conductive type semiconductor layer, active layer, and second conductive type semiconductor layer; forming an outer protection layer at an outer circumference on the second conductive type semiconductor layer; and forming a reflective electrode layer on the second conductive type semi-

conductor layer and the outer protection layer.

[19] The method according to claim 18, comprising: removing the wafer substrate; forming an outer groove by etching an outer circumference of the light emitting structure after positioning the reflecive electrode layer on a base; and forming a first electrode on the first conductive type semiconductor layer.

[20] The method according to claim 18, wherein the forming the outer protection layer comprises: forming an oxide layer pattern on the center area of the second conductive type semiconductor; and removing the oxide layer pattern after forming the outer protection layer at the outer circumference of the oxide layer pattern, forming a conductive support substrate on the reflective electrode layer.

Description:

Description

SEMICONDUCTOR LIGHT EMITTING DEVICE AND METHOD OF FABRICATING THE SAME

Technical Field

[1] The present disclosure relates a semiconductor light emitting device and a method of fabricating the same. Background Art

[2] A III- V group nitride semiconductor has been variously used for an optical device such as blue/green LEDs (light emitting diodes), a high speed switching device such as a MOSFET (metal semiconductor field effect transistor) and a HEMT (hetero junction field effect transistor), a light source of an illumination or a display apparatus, and the like. In particular, a light emitting device using a III group nitride semiconductor has a direct transition-type bandgap corresponding to the range of visible rays to ultraviolet rays, and can perform high efficient light emission.

[3] The nitride semiconductor has been mainly utilized as a LED or a LD (laser diode), and research for improving the manufacturing process or light efficiency had been conducted.

Disclosure of Invention Technical Problem

[4] Embodiments provide a semiconductor light emitting device capable of spatially insulating each layer with a light emitting structure and a method of fabricating the same.

[5] Embodiments provide a semiconductor light emitting device comprising an outer protection layer at the outer circumference between a light emitting structure and a conductive support substrate and also removing the outer circumference of the light emitting structure, and a method of fabricating the same. Technical Solution

[6] An embodiment provides a semiconductor light emitting device comprising: a light emitting structure comprising a first conductive type semiconductor layer, an active layer under the first conductive type semiconductor layer, and a second conductive type semiconductor layer under the active layer; a reflective electrode layer under the light emitting structure; and an outer protection layer at an outer circumference of the reflective electrode layer.

[7] An embodiment provides a semiconductor light emitting device comprising: a light emitting structure comprising a first conductive type semiconductor layer, an active layer under the first conductive type semiconductor layer, a second conductive type semiconductor layer under the active layer, and an outer groove at an outer circumference of each of the layers; and a reflective electrode layer under the light emitting structure.

[8] An embodiment provides a method of fabricating a semiconductor light emitting device comprising: forming a light emitting structure on a wafer substrate, the light emitting structure comprising at least a stacked first conductive type semiconductor layer, active layer, and second conductive type semiconductor layer; forming an outer protection layer at an outer circumference on the second conductive type semiconductor layer; and forming a reflective electrode layer on the second conductive type semiconductor layer and the outer protection layer.

[9]

Advantageous Effects

[10] According to the embodiments, in case the meterial such as the dielectric is not formed at the outer of the light emitting structure, stress caused by contacting of dielectric at the outer of the light emitting structure can be reduced.

[11] According to the embodiments, in case the dielectric is not formed at the outer of the light emitting structure, fabricating process of the light emitting device can be improved.

[12] According to the embodiments, reliability of the light emitting device can be improved. Brief Description of the Drawings

[13] Fig. 1 is a cross-sectional view of a semiconductor light emitting device according to an embodiment.

[14] Figs. 2 to 11 are views of semiconductor light emitting device manufacturing processes according to an embodiment. Best Mode for Carrying Out the Invention

[15] Hereinafter, a semiconductor light emitting device and a method of fabricating the same according to embodiments will be described in detail with reference to the accompanying drawings. In the following description, when a layer (or film) is referred to as being on/under another layer, its description will be made with reference to the accompanying drawings. The thickness of each layer may be described as one

example, and is not limited to the thicknesses of the accompanying drawings.

[16] Fig. 1 is a cross-sectional view of a semiconductor light emitting device according to an embodiment.

[17] Referring to Fig. 1, a semiconductor light emitting device 100 comprises a first conductive type semiconductor layer 102, an active layer 103, a second conductive type semiconductor layer 104, an outer protection layer 107, a reflective electrode layer 108, a conductive support substrate 110, and a first electrode 112.

[18] The first conductive type semiconductor layer 102 may be realized with an n-type semiconductor layer, and the n-type semiconductor layer may be formed of at least one layer by using a III- V group compound semiconductor. The n-type semiconductor layer may be formed of one among GaN, InN, AlN, InGaN, AlGaN, InAlGaN, and AlInN, and is doped with n-type dopants. The n-type dopants comprise a IV group element such as Si, Ge, Sn, Se, and Te.

[19] The active layer 103 is formed under the first conductive type semiconductor layer

102. The active layer 103 is formed with a single quantum well structure or a multi quantum well structure. The active layer 103 comprises a quantum well layer formed of InGaN and a quantum barrier layer formed of GaN alternately, for example. Here, an In Ga N quantum well layer is adjusted through O≤x≤l. A p-type/n-type cladding x 1-x layer may be formed on/under the active layer 103.

[20] The second conductive type semiconductor layer 104 is formed under the active layer 103. The second conductive type semiconductor layer 104 may be realized with at least one of p-type semiconductor layer, and is doped with p-type dopants. The p- type semiconductor layer may be formed of one of a compound semiconductor such as GaN, InN, AlN, InGaN, AlGaN, InAlGaN, and AlInN. The p-type dopants comprise a II group element such as Mg, Zn, Ca, Sr, and Ba.

[21] A structure of the first conductive type semiconductor layer 102, the active layer 103, and the second conductive type semiconductor layer 104 may be defined as a light emitting structure 105.

[22] A transparent layer (not shown) may be formed under the second conductive type semiconductor layer 104. The transparent electrode layer may be formed of one of materials such as ITO, ZnO, IrOx, RuOx, and NiO. In the semiconductor light emitting device 100, the first conductive type semiconductor 102 is realized with an n-type semiconductor layer and the second conductive type semiconductor layer 103 is realized with a p-type semiconductor layer, or vice versa. Also, a n-type semiconductor layer or a p-type semiconductor layer is formed under the second conductive

type semiconductor layer 103. Accordingly, the semiconductor light emitting device 100 may be realized with one of an n-p junction structure, a p-n junction structure, an n-p-n junction structure, and a p-n-p junction structure.

[23] Additionally, each layer of the semiconductor light emitting device 100 is a compound semiconductor using a M-V group element, and may be applied to a GaN series semiconductor, a GaAs series semiconductor, an InGaAlP series semiconductor, and an AlGaAs series semiconductor.

[24] In addition, the reflective electrode layer 108 is formed under the second conductive type semiconductor layer 104, and the conductive support substrate 110 is formed under the reflective electrode layer 108. Here, the reflective electrode layer 108 serves as a p-type electrode, and the p-type electrode becomes an ohmic contact in order to stably supply current to the second conductive type semiconductor layer 104. Here, the reflective electrode layer 108 may be formed of a single layer or a multilayer having one among Ag, Ni, Al, Rh, Pd, Ir, Ru, Mg, Zn, Pt, Au, Hf, a combination thereof. The conductive support substrate 110 may be formed of copper or gold. Materials of the reflective electrode layer 108 and the conductive support substrate 110 may vary and are not limited to the above materials.

[25] The first electrode 112 is formed on the first conductive type semiconductor layer

102. Because the conductive support substrate 110 and the reflective electrode layer 108 serve as a second electrode, a vertical type semiconductor light emitting device can be realized.

[26] In addition, the outer protection layer 107 is formed on the outer of the reflective electrode layer 108. The outer protection layer 107 may be formed with a frame form between the outer of the reflective electrode layer 108 and the second conductive type semiconductor layer 104. Here, the reflective electrode layers 108 may be formed with the same area contacting the conductive support substrate 110 in order to obtain electrical efficiency.

[27] The outer protection layer 107 may be formed of one among compound semiconductors such as GaN, InN, AlN, InGaN, AlGaN, InAlGaN, and AlInN, and also may be formed of a layer that is doped with the n-type dopants, the p-type dopants, or no dopant, that is, an undoped semiconductor layer (e.g., an undoped GaN layer). Additionally, the outer protection layer 107 may be formed of the same material as the second conductive type semiconductor layer 104 and may be comprised as a structure of the second conductive type semiconductor layer 104.

[28] The outer protection layer 107 may be insulated from a metal material such as the

conductive support substrate 110 or the reflective electrode layer 108, such that electrical reliability of the light emitting structure 105 can be improved. Moreover, because the outer protection layer 107 is formed of a III- V compound semiconductor, stress caused by contacting the second conductive type semiconductor layer 104 can be reduced.

[29] The outers of the first conductive type semiconductor layer 102, the active layer 103, the second conductive type semiconductor layer 104 are etched in a frame form. That is, the light emitting structure 105 comprises an outer groove 106 where a circumference area of each of the layers 102, 103, and 104 is etched. The outer groove 106 serves as a damper by moving the outer wall of the light emitting structure 105 toward the inside.

[30] Furthermore, since an additional dielectric may be not formed on the outer groove

106, limitations due to the insulating material can be resolved and an electrical short circuit does not occur at each of the layers 102, 103, and 104 of the light emitting structure 105 even when it is used for many hours. That is, it may not be necessary to prevent an interlay er short of the light emitting structure 105 by forming an additional dielectric (e.g., SiO , epoxy, etc.) at the outer of the light emitting structure 105.

[31] If a dielectric (e.g., SiO , epoxy, etc.) is formed at the outer of the light emitting structure 105, the dielectric may be exposed to a heat for hours such that thermal expansion or stress occurs during aging. Therefore, shrink or crack may occur at the dielectric. Accordingly, it is impossible to normally function to protect the outer of the light emitting structure 105.

[32] According to this embodiment, because the outer groove 106 is formed with an open structure without forming a dielectric at the outer of the light emitting structure 105, more improved effect can be achieved. That is, the outer protection layer 107 disposed under the outer of the light emitting structure 105 prevents the swelling of metal foreign substances at the reflective electrode layer 108 or the conductive support substrate 110, which is caused by aging or thermal expansion. Furthermore, because the outer wall of the light emitting structure 105 is disposed more inward than the outer groove 106, an interlay er short circuit of the light emitting structure 105 due to metal foreign substances can be prevented.

[33] The outer protection layer 107 may be formed with a predetermined thickness Tl

(for example 5000 to 500 urn) and a width Wl (for example, 20 um to 600/M). The thickness Tl or the width Wl of the outer protection layer 107 may vary according to a chip size, and thus is not limited thereto.

[34] The depth of the outer groove 106 of the light emitting structure 105 is the depth Dl exposing the second conductive type semiconductor layer 104 or the depth D2 exposing the outer protection layer 107.

[35] Moreover, the width W2 of the outer groove 106 of the light emitting structure 105 is formed with the minimized value (e.g., 10/M to 500/M) for electrical characteristics of the light emitting structure 105. Here, the width W2 satisfies W2 < Wl.

[36] Figs. 2 to 11 are views of semiconductor light emitting device manufacturing processes according to an embodiment.

[37] Referring to Figs. 2 and 3, a first conductive type semiconductor layer 102 is formed on a wafer substrate 101, an active layer 103 is formed on the first conductive type semiconductor layer 102, and a second conductive type semiconductor layer 104 is formed on the active layer 103.

[38] Here, the nitride thin layer grows on the wafer substrate 101 by using an E-beam evaporator, physical vapor deposition (PVD), chemical vapor deposition(CVD), plasma laser deposition (PLD), a dual-type thermal evaporator, sputtering, or metal organic chemical vapor deposition (MOCVD), but is not limited thereto. Hereinafter, one example in which the MOCVD is used for growing the nitride thin layer is described for convenience of description.

[39] The wafer substrate 101 may use at least one of sapphire (Al O ), SiC, Si, GaAs,

GaN, ZnO, Si, GaP, InP, and Ge, and may be formed of a substrate having conductive characteristics. At least one among a buffer layer and an undoped semiconductor layer (not shown) may be formed between the wafer substrate 101 and the first conductive type semiconductor layer 102.

[40] Referring to Fig. 3, the first conductive type semiconductor layer 102 may be realized with an n-type semiconductor layer, and the n-type semiconductor layer may be formed of at least one layer by using a III- V group compound semiconductor. The n-type semiconductor layer may comprise one of GaN, InN, AlN, InGaN, AlGaN, InAlGaN, and AlInN and is doped with n-type dopants. The n-type dopants comprise a IV group element such as Si, Ge, Sn, Se, and Te.

[41] The active layer 103 is formed on the first conductive type semiconductor layer 102.

The active layer 103 is formed with a single quantum well structure or a multi quantum well structure. The active layer 103 comprises a quantum well layer of InGaN and a quantum barrier layer of GaN alternately. Here, the In Ga N well layer may be x 1-x adjusted through O≤x≤l. A p-type/n-type cladding layer may be formed above/under the active layer 103.

[42] A second conductive type semiconductor layer 104 is formed on the active layer 103.

The second conductive type semiconductor layer 104 may be realized with a p-type semiconductor layer of at least one layer and is doped with p-type dopants. The p-type semiconductor layer may comprise one of compound semiconductors such as GaN, InN, AlN, InGaN, AlGaN, InAlGaN, and AlInN, and the p-type dopants comprise a II group element such as Mg, Zn, Ca, Sr, and Ba.

[43] A structure of the first conductive type semiconductor layer 102, the active layer 103, and the second conductive type semiconductor layer 104 may be defined as a light emitting structure 105. Additionally, a transparent electrode layer (not shown) may be formed of one of materials such as ITO, ZnO, IrOx, RuOx, and NiO.

[44] In the semiconductor light emitting device 105, the first conductive type semiconductor 102 is realized with an n-type semiconductor layer and the second conductive type semiconductor layer 103 is realized with a p-type semiconductor layer, or vice versa. Moreover, a transparent electrode, an n-type semiconductor layer, or a p-type semiconductor layer may be formed on the second conductive type semiconductor layer 104. Accordingly, the semiconductor light emitting device 105 may be realized with one of an n-p junction structure, a p-n junction structure, an n-p-n junction structure, and a p-n-p junction structure.

[45] Referring to Figs. 3 and 4, an oxide layer pattern 109 is formed on the surface of the center area Al of the second conductive type semiconductor layer 104. The oxide layer pattern may be formed of one among SiO , SiO , SiN , and SiO N .

2 x x x y

[46] An outer protection layer 107 is formed on the surface of an outer area A2 of the second conductive type semiconductor layer 104. The outer protection layer 107 may be formed of a single layer or a multilayer comprising one of compound semiconductors such as GaN, InN, AlN, InGaN, AlGaN, InAlGaN, and AlInN. The outer protection layer 107 also may be formed of a layer that is doped with the n-type dopants, the p-type dopants, or no dopant, that is, an undoped semiconductor layer (e.g., an undoped GaN layer). Moreover, if the outer protection layer 107 is doped with p-type dopants, it is formed of the same material as the second conductive type semiconductor layer 104.

[47] If the outer protection layer 107 is an undoped GaN layer, a predetermined thickness

Tl can be achieved by supplying NH and TMGa or TEGa at a growth temperature of 800 0 C to 1000 0 C.

[48] In one chip, the width Wl of the outer protection layer 107 is 20/M to 600/M, and its thickness Tl is 5000 to 500/M. The width Wl and the thickness Tl of the outer

protection layer 107 may vary according to a chip size.

[49] Once the outer protection layer 107 is formed, the oxide layer pattern 109 formed on the center area Al of the second conductive type semiconductor layer 104 is removed. That is, the osde layer pattern 109 may be removed by wet etching or dry etching.

[50] Fig. 5 is a plan view of the wafer substrate of Fig. 4.

[51] Referring to Fig. 5, the second conductive type semiconductor layer 104 and the outer protection layer 107 are formed on the wafer substrate 101. The outer protection layer 107 is formed on an entire area except for the center area Al of the second conductive type semiconductor layer 104 of each chip 10OA, and an outer area of the second conductive type semiconductor layer 104 has a frame form at boundaries Ll and L2 of each chip 10OA.

[52] Referring to Fig. 6, a reflective electrode layer 108 is formed on the second conductive type semiconductor layer 104 and the outer protection layer 107. Here, the reflective electrode layer 108 serves as a p-type electrode, and the p-type electrode becomes an ohmic contact in order to stably supply current to the second conductive type semiconductor layer 104. Here, the reflective electrode layer 108 may be formed of a single layer or a multilayer having one among Ag, Ni, Al, Rh, Pd, Ir, Ru, Mg, Zn, Pt, Au, Hf, a combination thereof. A conductive support substrate 110 may be formed of copper or gold. Materials of the reflective electrode layer 108 and the conductive support substrate 110 may vary and are not limited to the above materials.

[53] Referring to Figs. 7 and 8, the wafer substrate 101 disposed under the first conductive type semiconductor layer 102 is removed using a physical and/or chemical removing method. For example, the removing method of the wafer substrate 101 may be performed through laser lift off (LLO). That is, when a laser of a predetermined wavelength is projected on the wafer substrate 101, heat energy is concentrated on the boundary between the wafer substrate 101 and the first conductive type semiconductor layer 102, such that the wafer substrate 101 is separated.

[54] Here, when a buffer layer or/and an undoped semiconductor layer (not shown) is formed between the wafer substrate 101 and the first conductive type semiconductor layer 102, a wet etchant is injected at a specific layer for removal. Thus, the wafer substrate 101 can be separated.

[55] A polishing process may be performed through Inductively coupled Plasma/Reactive

Ion Etching (ICP/RCE) on the bottom of the first conductive type semiconductor layer 102 where the wafer substrate 101 is removed.

[56] Referring to Fig. 9, when the conductive support substrate 110 is disposed under the

light emitting structure 105, the first conductive type semiconductor layer 102 is disposed on the uppermost layer.

[57] An outer groove 106 is formed at an outer area of the light emitting structure 105.

The outer groove 106 is formed from the outer area of the first conductive type semiconductor layer 102 to a predetermined depth of the second conductive type semiconductor layer 104 by using mesa etching process. Here, the mesa etching process may be performed a dry or wet etching method.

[58] The outer groove 106 is etched with the depth Dl exposing the second conductive type semiconductor layer 104 or the depth D2 exposing the outer protection layer 107. Accordingly, the outer groove 106 is formed from the outer area of the first conductive type semiconductor layer 102 to a predetermined depth of the second conductive type semiconductor layer 104. Therefore, an electrical short circuit is prevented at each interlay er of the light emitting structure 105. The width W2 of the outer groove 106 is 10/M to 500/M , which is less than the width Wl of the outer protection layer 107. The width W2 of the outer groove 106 may vary according to the size of a chip.

[59] Fig. 10 is a plan view of Fig. 9.

[60] Referring to Fig. 10, the outer groove 106 is formed in a frame form at the outer area of each chip 10OA. Because the outer groove 106 is formed with a predetermined depth D2 at the outer area and the boundary area of the chip, this may be used when each chip IOOA is separated.

[61] Referring to Fig. 11, a first electrode 112 is formed on the first conductive type semiconductor layer 102. Additionally, at least one of the first electrode 112 and a transparent electrode (not shown) may be formed on the first conductive type semiconductor layer 102.

[62] In the description, it will be understood that when a layer (or film) is referred to as being on or under another layer, it can be directly or indirectly on or under the other layer.

[63] Any reference in this specification to one embodiment, an embodiment, example embodiment, etc., means that a particular feature, structure, or characteristic described in connection with the embodiment is comprised in at least one embodiment of the invention. The appearances of such phrases in various places in the specification are not necessarily all referring to the same embodiment. Further, when a particular feature, structure, or characteristic is described in connection with any embodiment, it is submitted that it is within the purview of one skilled in the art to effect such feature, structure, or characteristic in connection with other ones of the embodiments.

[64] Although embodiments have been described with reference to a number of illustrative embodiments thereof, it should be understood that numerous other modifications and embodiments can be devised by those skilled in the art that will fall within the spirit and scope of the principles of this disclosure. More particularly, various variations and modifications are possible in the component parts and/or arrangements of the subject combination arrangement within the scope of the disclosure, the drawings and the appended claims. In addition to variations and modifications in the component parts and/or arrangements, alternative uses will also be apparent to those skilled in the art. Industrial Applicability

[65] According to the embodiments, in case the meterial such as the dielectric is not formed at the outer of the light emitting structure, stress caused by contacting of dielectric at the outer of the light emitting structure can be reduced.

[66] According to the embodiments, in case the dielectric is not formed at the outer of the light emitting structure, fabricating process of the light emitting device can be improved.

[67] According to the embodiments, reliability of the light emitting device can be improved.