Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
SILANE-TERMINATED POLYMERS
Document Type and Number:
WIPO Patent Application WO/2022/162106
Kind Code:
A1
Abstract:
The present invention relates to a process for preparing a storage-stable silane-terminated polymer of formula (I) or (II) where D is a linear or branched hydrocarbon group having 1 to 20 hydrocarbon atoms and may optionally be interrupted by heteroatoms selected from the group consisting of oxygen, nitrogen and sulfur, A is a polymer backbone selected from the group consisting of a polycarbonate, a polyester, a copolymer comprising a polyester and/or a polycarbonate and a copolymer comprising at least one ester group and/or carbonate group, R1, R1', R2 and R2' independently of one another are each a linear, branched or cyclic hydrocarbon radical having 1 to 10 carbon atoms and may optionally comprise one or more heteroatoms selected from the group consisting of oxygen, sulfur and nitrogen, n is 1, 2 or 3, x and y are natural numbers between 1 and 10, G is a linear or branched hydrocarbon group having 1 to 20 hydrocarbon atoms and may optionally be interrupted by heteroatoms selected from the group consisting of oxygen, nitrogen and sulfur, F is a linear, branched or cyclic organic radical containing no isocyanate-reactive groups, m is a natural number greater than 1, E is a reactive group reacting with the isocyanate group and selected from the group consisting of NH2, NHR4 and SH, where R4 a linear, branched or cyclic hydrocarbon radical having 1 to 10 carbon atoms and may optionally comprise one or more heteroatoms selected from the group consisting of oxygen, sulfur and nitrogen.

Inventors:
HUBER STEFAN (CH)
ZUBER THOMAS (CH)
BURKHARDT FRITZ (CH)
LERF CLAUDE (CH)
Application Number:
PCT/EP2022/051972
Publication Date:
August 04, 2022
Filing Date:
January 28, 2022
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
MERZ BENTELI AG (CH)
International Classes:
C08G18/42; C08G18/22; C08G18/71; C09D175/06; C09J175/06
Domestic Patent References:
WO2005090428A12005-09-29
WO2010136511A12010-12-02
WO2020035154A12020-02-20
Foreign References:
EP3744748A12020-12-02
US20190031812A12019-01-31
US9321878B22016-04-26
EP3740524A12020-11-25
EP2930197A12015-10-14
US20170240689A12017-08-24
US20200339729A12020-10-29
EP1995261A12008-11-26
EP3744748A12020-12-02
US20190031812A12019-01-31
US9321878B22016-04-26
EP2930197A12015-10-14
US20170240689A12017-08-24
US20200339729A12020-10-29
EP1535940A12005-06-01
EP2009063A12008-12-31
EP2535376A12012-12-19
Attorney, Agent or Firm:
SCHAAD BALASS MENZL & PARTNER AG (CH)
Download PDF:
Claims:
Patentansprüche

1. Verfahren zur Herstellung eines silanterminierten

Polymers der Formel (I) oder (II) durch Umsetzung von einem hydroxyterminierten organischen

Polymer der Formel (III) a)mit einem Isocyanat der Formel (IV)

R23-n(R1O)nSi-D-NCO (IV), oder b)mit einem multifunktionellen Isocyanat der Formel (V)

F-(N=C=O)m (V) und anschliessender Reaktion mit einem Alkoxysilan der Formel (VI)

R2'3-n (R1'O)nSi-G-E (VI) in Gegenwart eines Katalysators, wobei

D eine lineare oder verzweigte Kohlenwasserstoffgruppe mit 1 bis 20 Kohlenwasserstoffatomen darstellt, die wahlweise mit Heteroatomen ausgewählt aus der Gruppe bestehend aus Sauerstoff, Stickstoff und Schwefel unterbrochen sein kann,

A für ein Polymer-Rückgrat steht, das ausgewählt ist aus der Gruppe bestehend aus einem Polycarbonat, einem Polyester, einem Copolymer enthaltend einen Polyester und/oder ein Polycarbonat ist und einem wenigstens eine Estergruppe und/oder Carbonatgruppe enthaltendem Polymer,

R1, R1', R2 und R2' unabhängig voneinander ein linearer, verzweigter oder cyclischer Kohlenwasserstoffrest mit 1 bis 10 Kohlenstoffatomen darstellt, welcher wahlweise ein oder mehrere Heteroatome ausgewählt aus der Gruppe bestehend aus Sauerstoff, Schwefel und Stickstoff umfassen kann, n gleich 1, 2 oder 3 ist, x und y natürliche Zahlen zwischen 1 und 10 sind,

G eine lineare oder verzweigte Kohlenwasserstoffgruppe mit 1 bis 20 Kohlenwasserstoffatomen darstellt, die wahlweise mit Heteroatomen ausgewählt aus der Gruppe bestehend aus Sauerstoff, Stickstoff und Schwefel unterbrochen sein kann,

F ein linearer, verzweigter oder cyclischer organischer Rest ist, der keine gegenüber Isocyanat reaktiven Gruppen enthält, m eine natürliche Zahl grösser 1 ist,

E eine mit der Isocyanat-Gruppe reagierende reaktive Gruppe ausgewählt aus der Gruppe bestehend aus NH2, NHR4 und SH, ist, wobei

R4 ein linearer, verzweigter oder cyclischer Kohlenwasserstoffrest mit 1 bis 10 Kohlenstoffatomen darstellt, welcher wahlweise ein oder mehrere Heteroatome ausgewählt aus der Gruppe bestehend aus Sauerstoff, Schwefel und Stickstoff umfassen kann dadurch gekennzeichnet, dass sowohl die eingesetzten Edukte als auch die Umsetzung frei von einem Zinn- katalysator sind.

2. Verfahren gemäss Anspruch 1, dadurch gekennzeichnet, dass A für ein Polymer-Rückgrat steht, das ausgewählt ist aus der Gruppe bestehend aus einem Polycarbonat, einem Polyester, einem Copolymer enthaltend einen Polyester und/oder ein Polycarbonat und einem wenigstens drei Estergruppen und/oder Carbonatgruppen enthaltendem Polymer, vorzugsweise aus einem Polycarbonat, einem Polyester und einem Copolymer enthaltend einen Polyester und/oder ein Polycarbonat.

3. Verfahren gemäss einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass der Polymerrückgrat eine verzweigte Diol-Komponente enthält, vorzugsweise ausgewählt aus der Gruppe bestehend aus 3- Methyl-1,5-Pentandiol, 2-Methyl-1,3-Propandiol, 3-Ethyl- pentane-1,5-diol, und 2,4-diethyl-1,5-pentandiol, und besonders bevorzugt, dass die verzweigte Diol-Komponente ausgewählt aus der Gruppe bestehend aus 3-Methyl-1,5- Pentandiol, 2-Methyl-1,3-Propandiol, 3-Ethyl-pentane- 1,5-diol, 1,2-Propandiol und 2,4-diethyl-1,5-pentandiol, wobei diese einen Anteil von mehr als 10mol% einer hydroxylgruppenhaltigen Komponente des Polyesters oder des Polycarbonats ausmacht.

4. Verfahren gemäss einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Umsetzung mit einem Isocyanat der Formel (IV)

R23-n(R1O)nSi-D-NCO (IV) erfolgt.

5. Verfahren gemäss einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass das silanterminierte Polymer ein lineares Polymer der allgemeinen Formel (IA) darstellt.

6. Verfahren gemäss Anspruch 1 bis 4, dadurch gekennzeichnet, dass das silanterminierte Polymer ein verzweigtes Polymer der allgemeinen Formel (IB)

darstellt, wobei x und y jeweils einer natürlichen Zahl zwischen 2 und 10 entsprechen. 7. Verfahren gemäss Anspruch 6, dadurch gekennzeichnet, dass das silanterminierte Polymer der Formel (IB) im Wesentlichen frei von freien Hydroxylgruppen ist. 8. Verfahren gemäss einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass sowohl die Herstellung des Edukts als auch die Herstellung des silanterminierten Polymers der allgemeinen Formel (I) oder (II) mit demselben Katalysator stattfindet. 9. Verfahren gemäss einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Umsetzung in Gegenwart eines einer titanhaltigen metallorganischen Verbindung stattfindet. 10. Verfahren gemäss Anspruch 9, dadurch gekennzeichnet, dass die titanhaltige metallorganische Verbindung ausgewählt ist aus der Gruppe bestehend aus Bis(ethylacetoacetato)- diisobutoxy-titan (IV), Bis(ethylacetoacetato)- diisopropoxy-titan (IV), Bis(acetylacetonato)- diisopropoxy-titan (IV), Bis(acetylacetonato)- diisobutoxy-titan (IV), Tris(oxyethyl)-amin-isopropoxy- titan (IV), Bis[tris(oxyethyl)amin]- diisopropoxytitan (IV), Bis(2-ethylhexan-1,3-dioxy)- titan (IV), Tris[2-((2-aminoethyl)amino)ethoxy]-ethoxy- titan (IV), Bis(neopentyl(diallyl)oxy-diethoxytitan (IV), Titan (IV)-tetrabutanolat, Tetra- (2- ethylhexyloxy)titanat, Tetra- (isopropoxy)titanat,

Tetrabutyltitanat, Tetraisopropyltitanat, Tetra-2- ethylhexyltitanat und Titanacetylacetonat und Polybutyltitanat, besonders bevorzugt Tetrabutyltitanat und Tetraisopropyltitanat.

11. Verfahren gemäss einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Umsetzung in Gegenwart eines weiteren Katalysators stattfindet, vorzugsweise einem weiteren Katalysator ausgewählt aus der Gruppe bestehend aus Alkalimetall-Carboxylaten,

Erdalkalimetallcarboxylaten, Carboxylaten der

Nebengruppenelemente, Carboxylaten aus der Borgruppe Bleisalze, Phosphorsalze, Phosphorester, Antimonsalze, tertiäre Amine, ionische Flüssigkeiten, organische Säuren mit 1 bis 10 Kohlenstoffatomen und anorganische Säuren.

12. Verfahren gemäss einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Katalysator nach Ablauf der Reaktion nicht entfernt wird.

13. Verfahren gemäss einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass das Polymer-Rückgrat ein Polyester ist.

14. Verfahren gemäss einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass das Isocyanat der Formel (IV) ausgewählt ist aus der Gruppe bestehend aus Isocyanato-propyl-trimethoxysilan, Isocyanato-propyl- methyldimethoxysilan, Isocyanato-propyl-triethoxysilan, Isocyanato-methyl-methyldimethoxysilan und Isocyanato- methyl-triethoxysilan.

15. Zusammensetzung enthaltend ein silanterminiertes Polymers gemäss einem der Ansprüche 1 bis 14 zur Verwendung als

Kleb- Dicht- oder Beschichtungsmaterial, dadurch gekennzeichnet, dass die Zusammensetzung frei von einem Zinnkatalysator ist.

Description:
Silanterminierte Polymere

Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung von silanterminierten Polymeren, die in Dicht-, Kleb- sowie Beschichtungsstoffen eingesetzt werden können und für einen langen Zeitraum lagerstabil sind.

Die silanterminierten Polymere werden nach bekannten Methoden hergestellt. Ein bekanntes Verfahren umfasst beispielsweise die Umsetzung von Polyolen, insbesondere von hydroxylterminierten Polyethern, Polyurethanen oder Polyestern wie auch von hydroxylfunktionellen Polyacrylaten mit Isocyanatoalkylalkoxysilanen.

Eine weitere Methode sieht eine Reaktion der oben genannten Polyole mit Di- oder Polyisocyanaten vor, wobei letztere im Überschuss eingesetzt werden, so dass in diesem ersten Reaktionsschritt isocyanatfunktionelle Polymere erzeugt werden, die dann in einem zweiten Reaktionsschritt mit Alkoxysilanen umgesetzt werden, die über eine alkylgebundene isocyanatreaktive Gruppe verfügen.

Die Reaktion von hydroxylfunktionellen Polymeren mit Isocyanaten wird in Gegenwart von zusätzlichen Katalysatoren durchgeführt, da in dem entsprechenden Reaktionsschritt nur so hinreichend hohe Reaktionsgeschwindigkeiten für eine wirtschaftliche Herstellung der alkoxysilanterminierten Polymere erreicht werden können.

EP 1 995 261 A1 offenbart Alkoxysilangruppen aufweisende Prepolymere auf Basis von speziellen, niedrigviskosen Polyesterpolyolen, die eine besonders hohe Festigkeit aufweisen, ein Verfahren zu ihrer Herstellung und ihre Anwendung als Bindemittel für Klebstoffe, Primer oder Beschichtungen. Wie beispielsweise in WO2005090428 erwähnt, werden zur Herstellung eines OH-funktionellen Prepolymers und für die Verkappung dieses Prepolymers bzw. des Polyesterpolyols Organozinnverbindungen verwendet, um die Reaktion zu beschleunigen. Organozinnverbindungen haben den Nachteil, dass sie die Lagerstabilität des Klebstoffs durch Umesterung des Polyester-Rückgrats negativ beeinflussen. Problematisch an Zinnkatalysatoren ist ausserdem, dass diese nach der Reaktion nur schwer vollständig zu entfernen sind und sowohl toxikologisch als auch ökologisch bedenklich sind.

WO 2010/136511 offenbart silanfunktionelle Polyester, welche als Bestandteil in feuchtigkeitshärtenden Zusammensetzungen wie Klebstoffen, Dichtstoffen oder Beschichtungen auf Basis silanterminierter Polymere eingesetzt werden.

In der Literatur sind verschiedene Verfahren zur Herstellung von silanterminierten Polymeren beschrieben. EP 3 744 748 A1 offenbart ein Verfahren zur Herstellung von silanterminierten Polymeren, wobei die Urethanisierungsreaktion in Gegenwart mindestens eines Katalysators durchgeführt wird, der frei von organisch gebundenem Zinn ist. US2019/0031812 offenbart ein Verfahren zur Herstellung von silanterminierten Polymeren. Die Reaktion wird in Gegenwart von Bismutneodecanoat durchgeführt. US9321878B2 (D3) offenbart Verfahren für das Herstellen von Herstellung von silanterminierten Polymeren in Gegenwart eines zinnfreien Katalysators. EP 2 930 197 offenbart einen silanterminierten Klebstoff zum Verfugen von Fugen in der Marine. Dabei wird die Umsetzung eines Polypropylenetherpolyols mit IPDI und N-(2- Triethoxysilylpropyl)-aminobernsteinsäure-diethylester in Gegenwart eines Titan-Katalysators beschrieben. US2017/0240689 offenbart ein Verfahren zur Herstellung von silanterminierten Polymeren durch Umsetzung von einem Polypropylenglykol mit IPDI, Isocyanatopropyltriethoxysilan und/oder und N-(2- Triethoxysilylpropyl)-2-hydroxypropanamid in Gegenwart von Bismutneodecanoat. US2020/0339729 offenbart ein Verfahren zur Herstellung von silanterminierten Polymeren durch Umsetzung von Polypropylenglykol mit IPDI, 3 Isocyanatopropyltrimethoxysilan und N-(2 Triethoxysilylpropyl)-aminobernst ein-säurediethylester.

Die Verwendung von Bismutkatalysatoren, wie sie z.B. in EP 1535 940 beschrieben ist, führt zu einer hohen katalytischen Aktivität und damit zur Beschleunigung der Umsetzung von Isocyanatsilanen mit dem hydroxyterminierten Polyol. Das Polyol, das mit einer isocyanatfunktionellen Verbindung zur Reaktion gebracht werden soll, muss vor dem Einsatz eines Bismutkatalysators jedoch getrocknet werden, um eine Nebenreaktion der Isocyanatfunktion mit dem andernfalls vorhandenen Wasser zu vermeiden, welche die Aktivität von Bismutkatalysatoren beeinträchtigt. Dieser zusätzliche Aufwand ist ein erheblicher Nachteil der vorgeschlagenen Reaktion. Zudem können Bismutkatalysatoren nicht für die Herstellung von hydroxyterminierten Polyolen, insbesondere hydroxyterminierten Polyestern und hydroxyterminierten Polycarbonaten, verwendet werden.

WO 2020/035154 offenbart, dass eine Umsetzung mit einem Bismutkatalysator mit Wassergehalten von weniger als 250 ppm möglich ist, ohne die Aktivität massiv einzuschränken. Damit kann der Trocknungsaufwand zwar eingeschränkt, aber nicht vermieden werden. Zudem weisen Kleb-, Dicht- und Beschichtungsstoffe, welche mittels Bismutkatalysatoren hergestellte Polymere enthalten, bei der Lagerung eine deutliche Erhöhung der Viskosität und somit eine schlechte Lagerstabilität auf.

Aufgabe der vorliegenden Erfindung ist es, ein effizientes Verfahren zur Herstellung eines silanterminierten Polymers bereitzustellen, das eine ausgezeichnete Lagerstabilität aufweist.

Die Aufgabe wird durch das erfindungsgemässe Verfahren gelöst.

Bevorzugte Ausführungsformen sind Gegenstand der abhängigen Ansprüche.

Überraschenderweise wurde festgestellt, dass durch das erfindungsgemässe Verfahren ein silanterminiertes Polymer der Formel (I) oder (II) hergestellt werden kann, welches in Kleb-, Dicht- und

Beschichtungsstoffen eine ausgesprochen hohe Lagerstabilität aufweist.

Durch das erfindungsgemässe Verfahren kann der Abbau des Polymer-Rückgrats, der ausgewählt ist aus der Gruppe bestehend aus einem Polycarbonat, einem Polyester, einem Copolymer enthaltend einen Polyester und/oder ein Polycarbonat und einem wenigstens eine Estergruppe und/oder Carbonatgruppe enthaltendem Polymer, vermieden werden. Diese Polymer- Rückgrate können durch die Gegenwart eines Zinnkatalysators abgebaut zu werden, was durch das erfindungsgemässe Verfahren vermieden werden kann. Der Abbau der Polymerkette - oder bereits ein Bruch der Polymerkette des silanterminierten Polymers führt zu einer deutlichen Reduktion der mechanischen Eigenschaften nach Lagerung der Masse. In der vorliegenden Erfindung wurde festgestellt, dass bereits Spuren eines Zinnkatalysators, der bei der Eduktherstellung verwendet wurde, zu einem solchen Abbau führen kann. Daher ist es ganz zentral, dass auch die eingesetzen Edukte frei von einem

Zinnkatalysator sind.

Erfindungsgemäss wird das silanterminierte Polymer der Formel (I) durch Umsetzung von einem hydroxyterminierten organischen Polymer der Formel (III) mit einem Isocyanat der Formel (IV)

R 2 3-n (R 1 O) n Si-D-NCO (IV), hergestellt und das silanterminierte Polymer der Formel (II) durch Umsetzung von einem hydroxyterminierten organischen Polymer der Formel (III) mit einem multifunktionellen Isocyanat der Formel (V)

F-(N=C=O) m und anschliessender Reaktion mit einem Alkoxysilan der Formel (VI)

R 2' 3-n (R 1' O) n Si-G-E (VI) erhalten.

Die Umsetzung erfolgt in Gegenwart eines Katalysators. In den Verbindungen der allgemeinen Formeln I und II steht

- D für eine lineare oder verzweigte

Kohlenwasserstoffgruppe mit 1 bis 20

Kohlenwasserstoffatomen, die wahlweise mit Heteroatomen ausgewählt aus der Gruppe bestehend aus Sauerstoff, Stickstoff und Schwefel unterbrochen sein kann,

- A für ein Polymer-Rückgrat steht, der ausgewählt ist aus der Gruppe bestehend aus einem Polycarbonat, einem Polyester, einem Copolymer enthaltend einen Polyester und/oder ein Polycarbonat und einem wenigstens eine Estergruppe und/oder Carbonatgruppe enthaltendem Polymer,

- R 1 , R 1 ', R 2 und R 2 ' unabhängig voneinander für einen linearen, verzweigten oder cyclischen

Kohlenwasserstoff rest mit 1 bis 10 Kohlenstoffatomen, welcher wahlweise ein oder mehrere Heteroatome ausgewählt aus der Gruppe bestehend aus Sauerstoff, Schwefel und Stickstoff umfassen kann,

- n für 1, 2 oder 3,

- x und y für natürliche Zahlen zwischen 1 und 10,

- F für einen linearen, verzweigten oder cyclischen organischen Rest, der keine gegenüber Isocyanat reaktiven Gruppen enthält, d.h. insbesondere weder primäre noch sekundäre Amingruppen enthält,

- G für eine lineare oder verzweigte Kohlenwasserstoffgruppe mit 1 bis 20 Kohlenwasserstoffatomen, die wahlweise mit Heteroatomen ausgewählt aus der Gruppe bestehend aus Sauerstoff, Stickstoff und Schwefel unterbrochen sein kann,

- m für eine natürliche Zahl grösser 1,

- E für eine mit der Isocyanat-Gruppe reagierende reaktive Gruppe ausgewählt aus der Gruppe bestehend aus NH 2 , NHR 4 und SH, wobei R 4 ein linearer, verzweigter oder cyclischer Kohlenwasserstoffrest mit 1 bis 10 Kohlenstoffatomen darstellt, welcher wahlweise ein oder mehrere Heteroatome ausgewählt aus der Gruppe bestehend aus Sauerstoff, Schwefel und Stickstoff umfassen kann.

Erfindungswesentlich ist, dass beim erfindungsgemässen Verfahren sowohl die eingesetzten Edukte als auch die Umsetzung selbst frei von einem Zinnkatalysator sind. Unter dem Ausdruck Zinnkatalysator wird jede Zinnionen und/oder metallorganische Zinnverbindungen enthaltende Verbindung verstanden, welche die Herstellung der eingesetzten Edukte oder die Umsetzung beschleunigen kann. Typische Zinnkatalysatoren sind zum Beispiel Tributylzinn, Dibutylzinnoxid, Dioctylzinnoxid, Dibutylzinndilaurat, Dioctylzinndilaurat, sowie Fettsäuresalze von Zinn wie beispielsweise Zinn (II)stearate oder Zinn(II)laurate. Es wurde festgestellt, dass nicht nur bei der Umsetzung selbst, d.h. bei der Reaktion des hydroxyterminierten organischen Polymer der Formel (III) und des Isocyanats der Formel (IV), respektive bei der Umsetzung des hydroxyterminierten organischen Polymers der Formel (III) und des multifunktionellen Isocyanats der Formel (V) und der nachfolgenden Reaktion mit dem Alkoxysilan der Formel (VI) keine Zinnkatalysatoren eingesetzt werden dürfen, sondern insbesondere auch die Edukte, d.h. das hydroxyterminierte organische Polymer der Formel (III), das Isocyanat der Formel (IV), das multifunktionellen Isocyanat der Formel (V) und das Alkoxysilan der Formel (VI) frei von Zinnkatalysatoren sein müssen, um eine lagerstabile Dichtmasse zu erhalten.

Bei der Herstellung von hydroxyterminierten Polyestern und Polycarbonaten, d.h. eines hydroxyterminierten organischen Polymers der Formel (III) mit einem Polyester- oder einem Polycarbonat-Rückgrat, ist der Einsatz von Zinnkatalysatoren weit verbreitet. Diese verbleiben zumindest in Spuren als aktive Katalysatoren im Prepolymer zurück, welches dann als Edukt zur Herstellung von silanterminierten Polymeren eingesetzt wird. Die Zinnkatalysatoren führen in den aus den Polymeren hergestellten Dicht-, Kleb- oder Beschichtungsstoffen zu einem Abbau der Polymerkette des silanterminierten Polymers und damit zu einer deutlichen Reduktion der mechanischen Eigenschaften nach Lagerung der Masse, insbesondere in einer deutlichen Reduktion der Shore- A-Härte und/oder der Zugfestigkeit. Die Kleb-, Dicht- und Beschichtungsmassen, in welchen die erfindungsgemässen silanterminierten Polymere eingesetzt werden, sind für mehrere Monate lagerstabil. Es wird keine Beeinträchtigung der mechanischen Eigenschaften beobachtet, insbesondere auch bei Lagerung der Kleb-, Dicht- oder Beschichtungsmassen bei höheren Temperaturen wie bespielsweise bei 50°C.

Vorzugsweise betrifft das vorliegende Verfahren die Herstellung eines silanterminierten Polymers der Formel (I) durch Umsetzung von einem hydroxyterminierten organischen Polymer der Formel (III) mit einem Isocyanat der Formel (IV)

R 2 3-n (R 1 O) n Si-D-NCO (IV), da diese Umsetzung nur einen Reaktionsschritt umfasst und daher kostengünstiger ist.

In einer Ausführungsform betrifft das silanterminierte Polymer ein lineares Polymer der allgemeinen Formel IA wobei R 1 , R 2 , D und n die gleiche Definition wie oben haben. Lineare silanterminierte Polymere werden besonders bevorzugt für Dicht- und Beschichtungsstoffe verwendet, bei welchen eine höhere Elastizität benötigt wird, wie beispielsweise für Fugenmassen, elastische Klebstoffe, Flächenabdichtungen oder im Marinebereich beispielsweise für das Verfugen von Teak.

In einer zweiten Ausführungsform betrifft das silanterminierte

Polymer ein verzweigtes Polymer der allgemeinen Formel IB

wobei R 1 , R 2 , D, n, x und y die gleiche Definition wie oben haben. Vorzugsweise ist das silanterminierte Polymer der Formel IB im Wesentlichen frei von freien OH-Gruppen, d.h. y und x sind im Wesentlichen identisch und die Differenz von y-x ist demnach etwa 0. Verzweigte silanterminierte Polymere der Formel IB werden insbesondere bevorzugt für Kleb-, Dicht- und Beschichtungsmassen verwendet, bei denen eine höhere Shore A Härte und eine höhere Vernetzungsdichte benötigt wird, wie beispielsweise bei hochmoduligen Klebstoffen, Flächenabdichtungen oder Bodenbeschichtungen.

Vorzugsweise werden auch bei der Umsetzung keine Bismut- und/oder Zinkkatalysatoren eingesetzt, da diese Katalysatoren eine schlechte hydrolytische Stabilität aufweisen, zu Nebenreaktionen führen können oder/und aufwändig zu handhaben sind. Insbesondere können Bismut- und/oder Zinkkatalysatoren nicht für die Herstellung des hydroxyterminierten Polymers, insbesondere für Polyester und Polycarbonate, verwendet werden. Gemäss der vorliegenden Erfindung wird jedoch bei der Umsetzung vorzugsweise derselbe Katalysator wie bei der Herstellung des hydroxyterminierten Polymers verwendet, was aus ökologischen und ökonomischen Gründen vorteilhaft ist. Zudem weisen Kleb-, Dicht- und Beschichtungsstoffe, welche mittels Bismutkatalysatoren hergestellte Polymere enthalten, bei der Lagerung eine deutliche Erhöhung der Viskosität und somit eine schlechte Lagerstabilität auf. Vorzugsweise wird für das erfindungsgemässe Verfahren wenigstens ein Katalysator verwendet, der sowohl für die Herstellung des hydroxyterminierten Prepolymers wie auch für die Reaktion des Isocyanatosilanes mit dem hydroxyterminierten Polymers verwendet werden kann und der die Lagerstabilität der daraus hergestellten Kleb- Dicht- und Beschichtungsstoffe nicht negativ beeinflusst. Besonders bevorzugt handelt es sich bei dem wenigstens einen Katalysator um eine titanhaltige metallorganische Verbindung, welche gegebenfalls noch mit weiteren Katalysatoren wie Lithiumverbindungen kombiniert werden kann. Dieser weitere Katalysator kann wahlweise auch erst bei der Umsetzung des hydroxyterminierten Prepolymers und des Isocyanatosilans zugegeben werden. Diese Katalysatoren beeinflussen die Lagerstabilität der daraus hergestellten Kleb- Dicht- und Beschichtungsstoffe nicht negativ und müssen nicht aufwändig aus dem Polymer entfernt werden.

Die titanhaltigen metallorganischen Verbindungen, die vorzugsweise als Katalysatoren bei dem erfindungsgemässen Verfahren eingesetzt werden, enthalten bevorzugt Liganden, welche ausgewählt sind aus

- einer Alkoxygruppe wie beispielsweise Isobutoxy, n- Butoxy, Isopropoxy, Ethoxy und 2-Ethylhexoxy;

- einer Sulfonatgruppe, wie beispielsweise aromatische Sulfonate, deren Aromaten mit einer Alkylgruppe substituiert sind und

- einer Carboxylatgruppe, wie beispielsweise

Carboxylate von Fettsäuren;

- einer Ketoestergruppe, wie beispielsweise

Acetessigesterderivate; und

- einer Dialkylphosphatgruppe, wobei alle Liganden identisch oder voneinander verschieden sein können.

Alternativ oder zusätzlich weisen die titanhaltigen metallorganischen Verbindungen als Liganden besonders bevorzugt mindestens einen mehrzähnigen Liganden auf, der eine Chelatierung ermöglicht. Der mehrzähnige Ligand ist bevorzugt ein zweizähniger Ligand.

Besonders bevorzugt sind die titanhaltigen metallorganischen Verbindungen ausgewählt aus der Gruppe bestehend aus Bis (ethylacetoacetato)-diisobutoxy-titan (IV), Bis(ethyl- acetoacetato)-diisopropoxy-titan (IV), Bis(acetylacetonato)- diisopropoxy-titan (IV), Bis(acetylacetonato)-diisobutoxy- titan (IV), Tris(oxyethyl)-amin-isopropoxy-titan (IV), Bis [tris(oxyethyl)amin]-diisopropoxytitan (IV), Bis(2- ethylhexan-1,3-dioxy)-titan (IV), Tris[2-((2-amino- ethyl)amino)ethoxy]-ethoxy-titan (IV), Bis (neo- pentyl(diallyl)oxy-diethoxytitan (IV), Titan(IV)-tetra- butanolat, Tetra-(2-ethylhexyloxy)titanat, Tetra-(iso- propoxy)titanat, Tetrabutyltitanat, Tetraisopropyltitanat, Tetra-2-ethylhexyltitanat und Titanacetylacetonat und Polybutyltitanat. Besonders bevorzugt sind aufgrund des guten Preis-Leistungs-Verhältnisses Tetrabutyltitanat und Tetraisopropyltitanat.

Das hydroxyterminierte organische Polymer der Formel (III) hat vorzugsweise ein Polymer-Rückgrat A ausgewählt aus der Gruppe bestehend aus Polyestern, Polycarbonaten und Copolymeren enthaltend einen Polyester und/oder ein Polycarbonat. Unter dem Ausdruck «Copolymere enthaltend einen Polyester und/oder ein Polycarbonat» werden Polymere verstanden, die aus zwei oder mehr Monomereinheiten zusammengesetzt sind. Der Ausdruck beinhaltet nebst alternierenden Copolymeren und Pfropfcopolymeren insbesondere auch Blockpolymere, die aus längeren Sequenzen oder Blöcken jedes Monomers bestehen und über Linkerverbindungen miteinander verknüpft sein können. Bevorzugte Kombinationen von Blöcken sind

- Polyester und Polycarbonate

- Verschiedene Polyester

- Polyester und Polyether sowie

- Polycarbonate und Polyether.

Der Ausdruck «Copolymer enthaltend einen Polyester und/oder ein Polycarbonat» steht für ein Copolymer, welches wenigstens einen Block aus einem Polyester und/oder einem Polycarbonat enthält und weitere Blöcke beinhaltet. In einem solchen Copolymer ist der Polyester-Anteil oder der Polycarbonat- Anteil mindestens 10 Gew.%, vorzugsweise mindestens 25 Gew.% und am meisten bevorzugt mindestens 50 Gew.%. Grundsätzlich ist das Risiko eines Abbaus des Polymer-Rückgrats umso grösser, je höher der Polyester- und/oder Polycarbonat-Gehalt ist.

Beispiele dafür sind die oben genannten bevorzugten Kombinationen. Bevorzugte Linkerverbindungen sind Urethan-, Ester- und Amidverbindungen, besonders bevorzugt Urethanverbindungen.

Das Polymer-Rückgrat A enthält eine oder mehrere Ester- und/oder Carbonatgruppen. Vorzugsweise enthalten sie mehr als 2, besonders bevorzugt mehr als 10 Ester- und/oder Carbonatgruppen. Unter die Definition des Polymer-Rückgrats A fallen innerhalb der vorliegenden Erfindung auch Polymere, die mit einer Linkerverbindung verlängert werden, wie beispielsweise Polymere, die endständig mit einem Diol verlängert werden, Polymere, welche mittels eines Diisocyanates oder Dicarbonsäuredichlorids dimerisiert oder oligomerisiert wurden und Copolymere, welche mittels Diisocyanaten oder Dicarbonsäuredichlorids copolymerisiert wurden. Solche Polymere können 1, 2 oder vorzugsweise 3 und mehr Ester- und/oder Carbonatgruppen innerhalb des Polymerrückgrats aufweisen. Je höher die Anzahl der Ester- und/oder Carbonatgruppen ist, desto höher ist das Risiko eines Polymerrückgrat-Abbaus mit den entsprechenden Stabilitätskonsequenzen für das finale Endprodukt.

Der Ausdruck hydroxyterminiert steht für Polymere, die am Molekülende freie Hydroxygruppen tragen, y ist eine natürliche Zahl von 1 bis 10. In einer bevorzugten Ausführungsform ist y = 1 und entspricht dann einem α,ω-dihydroxyterminierten organischen Polymer, d.h. einem Polymer mit zwei terminalen OH-Gruppen. Wenn y grösser als 1 ist, weist das hydroxyterminierte Polyol mehr als zwei terminale OH-Gruppen auf, d.h. es handelt sich um ein Polyol, dessen OH-Gruppen dazu bestimmt sind, mit dem Isocyanat der Formel IV zu reagieren. Im Falle von verzweigten hydroxyterminierten Polymeren sind die OH-Gruppen vorzugsweise nicht unmittelbar am Polymer-Rücken, sondern am Ende von Seitenketten des Polymer-Rückens angebracht. Sie können beispielsweise durch Umsetzungen mit Polyolen oder Polycarbonsäuren erhalten werden. Sowohl lineare als auch verzweigte hydroxyterminierte organische Polymere sind dem Fachmann bekannt und auch kommerziell erhältlich. Polycarbonate können beispielsweise durch die Reaktion von Diolen, wie Propylenglykol, 1,4-Butandiol oder 1,6-Hexandiol, Diethylenglykol, Triethylenglykol oder Tetraethylenglykol oder Gemischen aus zwei oder mehr davon mit Diarylcarbonaten, beispielsweise Diphenylcarbonat oder Phosgen, erhalten werden. Unter den Ausdruck Polyester fallen aber auch Polyesterpolyole, die durch Umsetzung von niedermolekularen Alkoholen oder Mischungen daraus, insbesondere von Ethylenglykol, Diethylenglykol, Propandiol, Dipropylenglykol, Neopentylglykol, Hexandiol, Butandiol, Pentandiol, Hexandiol, Propylenglykol, Glycerin oder Trimethylolpropan mit Caprolacton entstehen und deren terminale Hydroxygruppen dann die Hydroxygruppen des organischen Polymers der Formel III darstellen. Besonders bevorzugt enthält das Polymerrückgrat eine verzweigte Diol-Komponente. Besonders bevorzugt handelt es sich bei einer solchen verzweigten Diol-Komponente dem niedermolekularen Alkohol, welcher zur Herstellung des Polyesters oder Polycarbonates verwendet wird, um ein verzweigtes Diol ausgewählt aus der Gruppe bestehend aus 3- Methyl-1,5-Pentandiol, 2-Methyl-1,3-Propandiol, 3-Ethyl- pentane-1,5-diol, 1,2-Propandiol und 2,4-diethyl-1,5- pentandiol, da die daraus hergestellten Polymere eine besonders gute Verarbeitbarkeit und Beständigkeit aufweisen.

Besonders bevorzugt ist A ein Polycarbonat ausgewählt aus der Gruppe bestehend aus Polypropylencarbonat, Polycyclohexencarbonat, Poly(4,4'-isopropyliden- diphenylcarbonat), Poly(4,4'-diphenyl-1,1'-cyclohexan- carbonat) und Poly (Propylen-Cyclohexen)-carbonat oder ein Polyester ausgewählt aus der Gruppe bestehend aus Poly(ethylenterephthalat) (PET), Poly (ethylennaphthalat) Poly(propylenterephthalat), Polybutylenterephthalat (PBT), Polycyclohexylendimethylen-2,5-furandicarboxylat (PCF), Polybutylenadipat- coterephthalat (PBAT), Polybutylensebacat- coterephthalat (PBSeT), Polybutylensuccinat- coterephthalat (PBST), Poly-butylen-2,5-furandicarboxylat-cosuccinat (PBSF), Poly-butylen-2,5- furandicarboxylat-coadipat (PBAF), Poly- butylen-2,5-furandicarboxylat-coazelat (PBAzF), Poly- butylen-2,5-furandicarboxylat-cosebacat (PBSeF), Poly- butylen-2,5-furandicarboxylat-cobrassylat (PBBrF), Polybutylensuccinat (PBS), Polybutylenadipat (PBA), Polybutylensuccinat-coadipat (PBSA), Polybutylensuccinat- cosebacat (PBSSe), Polybutylensebacat (PBSe) oder ein Polyesterpolyol aus mindestens einer hydroxylgruppenhaltigen Komponenten, ausgewählt aus zum Beispiel, 1,2-Propandiol, 3- Methyl-1,5-Pentandiol, 2-Methyl-1,3-Propandiol, 3-Ethyl- pentane-1,5-diol, 2,4-diethyl-1,5-pentandiol, Neopentylclycol und 1,1,1-Trimethylolpropan und Mischungen davon, und mindestens einer carboxylgruppenhaltigen Komponente, ausgewählt aus aliphatische Säuren mit zwei Carboxylgruppen wie Bernsteinsäure, Glutarsäure, Adipinsäure, Pimelinsäure, Suberinsäure, Azelainsäure, Sebacinsäure, Dodecandisäure, Brassylsäure und Dimersäuren, oder Dialkylester von Säuren mit zwei Carboxylgruppen wie Dimethylester, Diethylester, Dipropylester und Dibutylester oder Carbonsäurechloriden wie beispielsweise Acryl- oder Methylsäurechlorid; alicyclische Dicarbonsäuren wie 1,4-Cyclohexandicarbonsäure oder Dialkylester Säuren mit zwei Carboxylgruppen wie z.B. Dimethylester, Diethylester, Dipropylester und Dibutylester; aromatische Säuren mit zwei Carboxylgruppen wie Phthalsäure, Isophthalsäure, Terephthalsäure und Naphthalindicarbonsäure oder Dialkylester von Säuren mit zwei Carboxylgruppen, wie Dimethylester, Diethylester, Dipropylester und Dibutylester und dergleichen. Von diesen Beispielen werden Adipinsäure, Azelainsäure, Sebacinsäure, Terephthalsäure, Isophthalsäure und Naphthalindicarbonsäure bevorzugt eingesetzt. Auch möglich ist die Verwendung von cyclischen Carbosäurenanhydride wie zum Beispiel Phthalsäureanhydrid, Maleinsäureanhydrid, Bernsteinsäureanhydrid oder mit einer Seitengruppe wie zum Beispiel 3-Methyl-glutarsäure-anhydrid. Auch können aliphatischen Dicarbonsäure oder deren Ester mit Seitengruppen verwendet werden, wie zum Beispiel 2,4-Diethyl-Glutaralsäure, 2,4-Methyl-Glutaralsäure, 3-Methyl-Glutaralsäure, Methylmalonsäure. Besonders bevorzugt sind Polyesterpolyole und Polycarbonate, die als hydroxylgruppenhaltigen Komponente einen Anteil von > 10mol% eines verzweigten Diols wie beispielsweise 3-Methyl-1,5-Pentandiol, 2-Methyl-1,3- Propandiol, 3-Ethyl-pentane-1,5-diol, 1,2-Propandiol, 2,4- diethyl-1,5-pentandiol enthalten, da diese sich als sich als besonders stabil erwiesen erwiesen haben. Besonders bevorzugt ist der Anteil des verzweigten Diols >50 mol% des eingesetzten Diols. Als bevorzugte Dicarbonsäure werden aliphatische Dicarbonsäuren eingesetzt. Die Diole wie auch die Dicarbonsäuren können erdölbasiert oder auch aus nachwachsenden Rohstoffen hergestellt worden sein.

Vorzugsweise ist das hydroxyterminierte organische Polymer bei Raumtemperatur flüssig. Darunter wird eine Viskosität bei 20°C von 1 bis 10 6 mPa*s verstanden. Diese Viskosität ist optimal für die Handhabung der erfindungsgemässen Zusammensetzung, insbesondere bei der Herstellung von Dichtmassenzubereitungen. Dies gilt insbesondere für hydroxyterminierte Polymere, die als Polymer-Rückgrat ein Homopolymer eines Polycarbonates oder Homopolymer eines Polyesters haben. Generell haben die erfindungsgemässen Polyester eine relativ tiefe Viskosität und sind kostengünstig. Daher sind sie für einige Anwendungen geeigneter als die erfindungsgemässen Polycarbonate.

Vorzugsweise weist das hydroxyterminierte organische Polymer ein mittleres Molekulargewicht von 1'000-20'000g/mol, insbesondere 2'000-12'000g/mol auf, da die Handhabung dieser Polymere optimal ist. Unter "Molekulargewicht" versteht man im vorliegenden Dokument die molare Masse (in Gramm pro Mol) eines Moleküls. Als "mittleres Molekulargewicht" wird das zahlenmittlere Molekulargewicht Mn einer polydispersen Mischung von oligomeren oder polymeren Molekülen bezeichnet, welches üblicherweise mittels Titration der Säure- und OH-Zahl bestimmt wird. Die OH-Zahl (Hydroxylzahl) ist ein Mass für den Gehalt an Hydroxygruppen in Polymeren und ist eine dem Fachmann bekannte Grösse. Die Säurezahl ist ein Mass für den Gehalt an Säuregruppen in Polymeren und ist eine dem Fachmann bekannte Grösse.

Die erfindungsgemäss eingesetzten hydroxyterminierten organischen Polymere der Formel (III) können handelsübliche Verbindungen sein, welche zur besseren Handhabung gegebenfalls mit einem Weichmacher oder Lösungsmittel verdünnt sein können. Es ist jedoch wichtig, dass sie zinnfrei hergestellt werden, da bereits Spuren eines Zinnkatalysators im hydroxyterminierten organischen Polymer der Formel (III) die Lagerstabilität des silanterminierten Polymers und insbesondere der daraus hergestellten Kleb-, Dicht- und Beschichtungsmassen negativ beeinflussen. Vorzugsweise wird bei der Herstellung des hydroxyterminierten organischen Polymers und des silanterminierten Polymers derselbe Katalysator verwendet, sodass dieser nicht vom hydroxyterminierten organischen Polymer entfernt werden muss, was prozesstechnisch sinnvoll und ökologischer ist. Vorzugsweise wird der Katalysator in Mengen von 0.5 bis 500 ppm des hydroxyterminierten organischen Polymers der Formel (III) eingesetzt.

Die erfindungsgemäss eingesetzten Isocyanate der Formel (IV)

R 2 3-n (R 1 O) n Si-D-NCO (IV) sind handelsübliche Produkte bzw. können nach in der Siliciumchemie gängigen Verfahren hergestellt werden. Ri und R2 sind unabhängig voneinander ein linearer, verzweigter oder cyclischer Kohlenwasserstoffrest mit 1 bis 10 Kohlenstoffatomen, welcher wahlweise ein oder mehrere Heteroatome ausgewählt aus der Gruppe bestehend aus Sauerstoff, Schwefel und Stickstoff umfassen kann, n kann den Wert 1, 2 oder 3 haben, wobei die Werte 2 oder 3 bevorzugt sind, da die daraus hergestellten silanterminierten Polymere eine besonders ausgeglichene Reaktivität aufweisen.

Vorzugsweise sind R 1 und R 2 unabhängig voneinander Alkylreste, wie ein Methyl-, Ethyl-, n-Propyl-, iso-Propyl-, n-Butyl-, iso-Butyl-, tert.-Butyl-, n-Pentyl-, iso-Pentyl-, neo-Pentyl- , tert.-Pentylrest, n-Hexylrest, n-Heptylrest, Octylreste, n- Octylrest, iso-Octylreste, 2,2,4-Trimethylpentylrest, n- Nonylrest, Decylreste, n-Decylrest, Dodecylreste oder ein n- Dodecylrest. Sie können aber auch Alkenylreste darstellen, wie ein Vinyl- oder ein Allylrest; Cycloalkylreste, wie ein Cyclopentyl-, Cyclohexyl-, Cycloheptylrest und Methylcyclohexylreste; Arylreste, wie der Phenyl- und der Naphthylrest; Alkarylreste, wie o-, m-, p-Tolylreste, Xylylreste und Ethylphenylreste; Aralkylreste, wie der Benzylrest, der α- und der β-Phenylethylrest. Beispiele für substituierte Reste R 1 sind Alkoxyalkylreste, wie z.B. Ethoxy- und Methoxyethylreste.

Bevorzugt handelt es sich bei Rest R 1 und R 2 jeweils unabhängig voneinander um einen Kohlenwasserstoff rest mit 1 bis 6 Kohlenstoffatomen, besonders bevorzugt um einen Alkylrest mit 1 bis 4 Kohlenstoffatomen, insbesondere um den Methyl- oder Ethylrest.

D steht für eine lineare oder verzweigte Kohlenwasserstoffgruppe mit 1 bis 20 Kohlenwasserstoffatomen, die wahlweise mit Heteroatomen ausgewählt aus der Gruppe bestehend aus Sauerstoff, Stickstoff und Schwefel unterbrochen sein kann. Vorzugsweise ist D ausgewählt aus der Gruppe bestehend aus Methylen, Ethylen, Propylen, Butylen, Methylenoxid, Ethylenoxid und Propylenoxid und besonders bevorzugt aus Propylen oder Methylen, das dies zu Polymeren mit einer besonders ausgeglichenen Reaktivität führt.

Beispiele für Isocyanate der Formel (IV) sind Isocyanato- methyl-dimethylmethoxysilan, Isocyanato-propyl- dimethylmethoxysilan, Isocyanato-methyl-methyldimethoxysilan, Isocyanato-propyl-methyldimethoxysilan, Isocyanato-methyl- trimethoxysilan, Isocyanato-methyl-triethoxysilan und Isocyanato-propyl-trimethoxysilan, wobei Isocyanato-methyl- methyldimethoxysilan, Isocyanato-propyl-methyldimethoxysilan, Isocyanato-propyl-trimethoxysilan, Isocyanato-propyl- triethoxysilan und Isocyanato-methyl-triethoxysilan bevorzugt sind.

Das erfindungsgemässe Verfahren zur Herstellung des silanterminierten Polymers der Formel (II) erfolgt durch Umsetzung von einem hydroxyterminierten organischen Polymer der Formel (III) mit einem multifunktionellen Isocyanat der Formel (V)

F-(N=C=O) m und anschliessender Reaktion mit einem Alkoxysilan der Formel

(VI)

R 2' 3-n (R 1' O) n Si-G-E (VI), wobei auch hier sowohl die eingesetzten Edukte als auch die Umsetzung frei von einem Zinnkatalysator sind.

Als multifunktionelle Isocyanate der Formel (V) eignen sich insbesondere Isocyanate mit zwei oder mehr, bevorzugt 2 bis 10, Isocyanatgruppen im Molekül. Hierfür kommen die bekannten aliphatischen, cycloaliphatischen, aromatischen, oligomeren und polymeren multifunktionellen Isocyanate in Betracht, wobei diese keine gegenüber Isocyanat reaktiven Gruppen enthalten, d.h. insbesondere keine freien primären und/oder sekundären Aminogruppen aufweisen. Ein Vertreter der aliphatischen multifunktionellen Isocyanate ist beispielsweise Hexamethylendiisocyanat (HDI); ein Vertreter der cycloaliphatischen multifunktionellen Isocyanate ist z. B. 1- Isocyanato-3- (isocyanatomethyl)-3, 5,5-trimethylcyclohexan. Als Vertreter der aromatischen multifunktionellen Isocyanate seien genannt: 2,4- und 2,6-Diisocyanatotoluol sowie das entsprechende technische Isomerengemisch (TDI); Diphenylmethandiisocyanate, wie Diphenylmethan-4,4'- diisocyanat, Diphenylmethan-2, 4'-diisocyanat, Diphenylmethan-2,2'-diisocyanat sowie die entsprechenden technischen Isomerengemische (MDI). Ausserdem sind zu nennen Naphthalin-1,5-diisocyanat (NDI) sowie 4,4',4" Triisocyanatotriphenylmethan.

Alkoxysilane der Formel (VI) sind vorzugsweise ausgewählt aus der Gruppe bestehend aus 3-Aminopropyltrimethoxysilan, 3- Aminopropyldimethoxymethylsilan, 3-Amino-2-methylpropyl- trimethoxysilan, 4-Aminobutyltrimethoxysilan, 4-Amino- butyl- dimethoxymethylsilan, 4-Amino-3-methylbutyltrimethoxysilan, 4-Amino-3,3-dimethylbutyl-trimethoxysilan, 4-Amino-3,3- dimethylbutyl-dimethoxymethylsilan, 2-Aminoethyl- trimethoxysilan, 2-Aminoethyl-dimethoxymethylsilan, Aminomethyltrimethoxysilan, Aminomethyldimethoxymethylsilan, Aminomethylmethoxydimethylsilan und 7-Amino-4-oxaheptyl-di- methoxymethylsilan, N-(2-Aminoethyl)-3-aminopropyltrimethoxy- silane, N-(2-Aminoethyl)-3-aminopropylmethyldimethoxysilane, N-(2-Aminoethyl)-3-aminopropyltriethoxy-silane, 3-[2-(2- Aminoethylamino) -ethylamino]-propyltrimethoxysilan, 3-[2-(2- Aminoethylamino)-ethylamino] -propyltriethoxysilan, 3-[2- (2- Aminoethylamino) -ethylamino]-propylmethyldimethoxysilan,

[3-(1-Piperazinyl)propyl]triethoxysilane, [3-(1-Piperazinyl) propyl]trimethoxysilane, [3-(1-Piperazinyl) propyl]methyldimethoxysilane, N- (n-Butyl) -3- aminopropyltrimethoxysilan, N- (n-Butyl) -3- aminopropylmethyldimethoxysilan, N- (n-Butyl) -3- aminopropyltriethoxy silan, N-ethyl-aminoisobutyl- trimethoxysilan, N-ethyl-aminoisobutylmethyldimethoxysilan, N-Cyclohexyl-3-aminopropyltriethoxysilan, N-Cyclohexyl-3- aminopropyltrimethoxysilan, N- Cyclohexylaminomethyltriethoxysilane, N- Cyclohexylaminomethyltrimethoxysilane, N- Cyclohexylaminomethyldimethoxymethylsilane, Bis(trimethoxysilylpropyl)amine, 3-

Mercaptopropyltrimethoxysilane, 3-

Mercaptopropyltriethoxysilane, 3-

Mercaptopropylmethyldimethoxysilane.

Zur Beschleunigung der Urethan- bzw. Harnstoffbindung kann gegebenfalls ein weiterer Katalysator, welcher die Lagerstabilität der Produkte und der daraus hergestellten Kleb-, Dicht- oder Beschichtungsstoffe nicht negativ beeinflusst, eingesetzt werden.

Bevorzugt besteht dieser Katalysator aus

- Alkalimetall-Carboxylaten wie beispielsweise

Lithiumneodecanoat, Lithiumethylhexanoat, Lithiumlaurat, Lithiumstearat Kaliumneodecanoat, Kaliumethylhexanoat oder Kaliumlaurat;

- Erdalkalimetall-carboxylate wie beispielsweise

Calciumtrimethylhexanoat, Calciumneodecanoat,

Calciumlaurat, Strontiumethylhexanoat oder

Strontiumlaurat;

- Carboxylate der Nebengruppenelemente wie beispielsweise

Cobaltethylhexanoate, Cobaltstearate, Cobaltlaurate, Cobaltneodecanoate, Manganethylhexanoate,

Manganstearate, Manganlaurate, Eisenstearate,

Eisenethylhexanoate, Eisenlaurate, Kupferstearate, Kupferlaurate, Kupferneodecanoate, Kupferethylhexanoate,

- Carboxylate aus der Borgruppe wie zum Beispiel Indium-, Aluminiumsalze,

- Salze aus der Kohlenstoffgruppe wie zum Beispiel

Bleisalze,

- Salze aus der Stickstoffgruppe wie zum Beispiel Phosphorsalze und Phosphorester oder Antimonsalze;

- Tertiäre Amine wie zum Beispiel Tributylamin, 1,4-

Diazabicyclo [2,2,2]octan, 1,8-Diazabicyclo [5.4.0]undec-

7-en, 1,5-Diazabicyclo [4.3.0]non-5-en, N,N-Bis-(N,N- dimethyl-2-aminoethyl)-methylamin, N,N-

Dimethylcyclohexylamin, N,N-Dimethylphenlyamin oder

Ethylmorpholinin;

- ionische Flüssigkeiten wie zum Beispiel ionische

Flüssigkeiten auf Basis von Ammonium, Imidazolium, Phosphonium, Pyridinium, Pyrrolidinium, oder Sulfonium;

- kurzkettige organische Säuren mit 1 bis 10 Kohlenstoffatomen wie Essigsäure und

- anorganische Säuren wie Phosphorsäure und deren Halbester, so zum Beispiel Butylphosphat, Dibutylphosphat und Propylphosphat.

Diese weiteren Katalysatoren können einzeln oder auch in Kombination eingesetzt werden.

Ganz besonders bevorzugt sind die weiteren Katalysatoren ausgewählt aus der Gruppe bestehend aus Lithiumneodecanoat, Lithiumethylhexanoat, Lithiumlaurat, Lithiumstearat, Manganethylhexanoat, Manganneodecanoat, Manganlaurat, Manganstearat, Cobaltethylhexanoat, Cobaltlaurat, Cobaltstearat und Cobaltneodecanoate. Besonders bevorzugt wird der weitere Katalysator zusammen mit einer titanhaltigen metallorganischen Verbindung kombiniert.

Der Katalysator wird bevorzugt in einer Menge von 1 bis 1'000 ppm zugegeben, besonders bevorzugt 5 bis 500 ppm und ganz besonders bevorzugt 5 bis 200 ppm. Besonders bevorzugt sind die linearen silanterminierten Polymere ausgewählt aus der Gruppe bestehend aus wobei

A ein Polymerrückgrat gemäss der obigen Definition darstellt. Die Reaktion wird vorzugsweise bei Temperaturen zwischen 50°C und 150°C, besonders bevorzugt bei 60°C bis 120°C und vorzugsweise bei Normaldruck durchgeführt.

Die erfindungsgemäss hergestellten, vernetzbaren Zusammensetzungen eignen sich ausgezeichnet als Abdichtungsmassen für Fugen, einschliesslich senkrecht verlaufender Fugen, und ähnlichen Leerräumen, z.B. von Gebäuden, Land-, Wasser- und Luftfahrzeugen, oder als Klebstoffe oder Verkittungsmassen, z.B. im Fensterbau oder bei der Herstellung von Vitrinen, sowie zur Herstellung von Schutzüberzügen oder von gummielastischen Formkörpern sowie für die Isolierung von elektrischen oder elektronischen Vorrichtungen. Insbesondere geeignet sind die erfindungsgemässen Zusammensetzungen als Abdichtungsmassen für Fugen mit möglicher hoher Bewegungsaufnahme. Die erfindungsgemässen Kleb-, Dicht- und Beschichtungsstoffe weisen im Vergleich mit Standardprodukten eine signifikant bessere Bewitterungsstabilität auf. Durch die signifikant bessere Bewitterungsstabilität sind die erfindungsgemässen Beschichtungsstoffe insbesondere für Dachabdichtungen und Flächenabdichtungen oder zur Beschichtung von anderen Oberflächen, die einer starken Bewitterung ausgesetzt sind, geeignet.

Für die Vernetzung der erfindungsgemässen Zusammensetzung reicht der übliche Wassergehalt der Luft aus. Die Vernetzung kann bei Raumtemperatur oder, falls erwünscht, auch bei höheren oder niedrigeren Temperaturen, z.B. bei -5 bis 10°C oder bei 30 bis 50°C, durchgeführt werden. Die Vernetzung wird bevorzugt bei Normaldruck durchgeführt.

Die erfindungsgemässen silanterminierten Polymere können auch als 2-Komponentensystem formuliert werden. Dabei enthält die zweite Komponente neben Hilfsstoffen auch Wasser, welches nach der Mischung mit der ersten Komponente die Tiefendurchhärtung stark beschleunigt. Entsprechende 2-Komponentensysteme sind dem Fachmann bekannt und sind beispielsweise in EP2009063 oder EP2535376 beschrieben, deren Inhalt durch Verweis einbezogen wird.

Die erfindungsgemässen Zubereitungen können noch weitere Hilfs- und Zusatzstoffe enthalten, welche ebenfalls keine Zinnkatalysatoren enthalten dürfen. Zu diesen Hilfs- und Zusatzstoffen gehören beispielsweise weitere silanterminierte Polymere, Weichmacher, Stabilisatoren, Antioxidantien, Füllstoffe, Reaktivverdünner, Trockenmittel, Haftvermittler und UV-Stabilisatoren, rheologische Hilfsmittel, Farbpigmente oder Farbpasten und/oder gegebenenfalls auch im geringen Umfang Lösungsmittel. Solche Hilfs- und Zusatzstoffe sind dem Fachmann bekannt.

Beispiele

Beispiel 1 (erfindungsgemäss)

234 g Polyesterpolyol P-4010 (Kuraray Co, Ltd), das unter Verwendung eines Organotitanat-Katalysators (Titan (IV)- isopropoxid) synthetisiert wurde und eine Hydroxylzahl von 28,7 mg KOH/g aufweist, wurde unter Rühren auf 90°C erhitzt. 22.4 g (Trimethoxysilyl)propylisocyanat wurden zugegeben und bei 90°C gerührt. Nach 90min wurde mittels FT-IR kein freies Isocyanat mehr nachgewiesen. Der erhaltene Trimethoxysilan- terminierte Polyester wurde für die Formulierung des Klebstoffs verwendet.

Beispiel 2 (erfindungsgemäss)

229g Polyesterpolyol SS 4080 (Songstar), das mit einem Organotitanat-Katalysator synthetisiert wurde und eine Hydroxylzahl von 29.4 mg KOH/g aufweist, wurde unter Rühren auf 90 °C erhitzt. 22.4 g (Trimethoxysilyl)propylisocyanat wurden zugegeben und bei 90°C gerührt. Nach 90min wurde mittels FT-IR kein freies Isocyanat mehr nachgewiesen. Der erhaltene Trimethoxysilan-terminierte Polyester wurde für die Formulierung des Klebstoffs verwendet.

Beispiel 3 (nicht erfindungsgemäss)

240g Polyesterpolyol SS 4080S (Songstar), das mit einem Organozinn-Katalysator synthetisiert wurde und eine Hydroxylzahl von 28.0 mg KOH/g aufweist, wurde unter Rühren auf 90°C erhitzt. 22.4 g (Trimethoxysilyl)propylisocyanat wurden zugegeben und bei 90°C gerührt. Nach 600min wurde mittels FT-IR kein freies Isocyanat mehr nachgewiesen. Der erhaltene Trimethoxysilan-terminierte Polyester wurde für die Formulierung des Klebstoffs verwendet.

Beispiel 4 (nicht erfindungsgemäss)

229g Polyesterpolyol SS 4080 (Songstar), das mit einem Organotitanat-Katalysator synthetisiert wurde und eine Hydroxylzahl von 29.4 mg KOH/g aufweist, wurde unter Rühren auf 90°C erhitzt. 63mg Dibutyltindilaurat als Zinn-Katalysator und 22.4g (Trimethoxysilyl)propylisocyanat wurden zugegeben und bei 90°C gerührt. Nach 90min wurde mittels FT-IR kein freies Isocyanat mehr nachgewiesen. Der erhaltene Trimethoxysilan-terminierte Polyester wurde für die Formulierung des Klebstoffs verwendet.

Beispiel 5 (nicht erfindungsgemäss)

240g Polyesterpolyol SS 4080S (Songstar), das mit einem Organozinn-Katalysator synthetisiert wurde und eine Hydroxylzahl von 28,0 mg KOH/g aufweist, wurde unter Rühren auf 90°C erhitzt. 75mg Dibutyltindilaurat als Zinn-Katalysator und 22.4g (Trimethoxysilyl)propylisocyanat wurden zugegeben und bei 90°C gerührt. Nach 90min wurde mittels FT-IR kein freies Isocyanat mehr nachgewiesen. Der erhaltene Trimethoxysilan-terminierte Polyester wurde für die Formulierung des Klebstoffs verwendet. Die Ergebnisse sind in Figur 1 (Tabelle 1) wiedergegeben.

Die Stabilität des finalen Klebstoffs ist nur gegeben, wenn bei der Herstellung des hydroxyterminierten Polyesters, die Reaktion mit dem Isocyanatsilan wie auch die Formulierung als Kleb- Dicht- oder Beschichtungsmaterial keine Zinnkatalysatoren anwesend sind. Ansonsten nimmt die Shore A Härte (gemessen nach DIN 53505) wie auch die Zugfestigkeit (gemessen nach DIN 53504) bereits nach 4 bis 8 Wochen Lagerung der Dichtmasse bei Raumtemperatur in einer Kartusche deutlich ab. Bei höheren Lagerungstemperaturen nehmen die mechanischen Eigenschaften in Anwesenheit eines Zinnkatalysators noch deutlich schneller ab.

Die nachfolgenden Tabellen zeigen die Stabilität der Zusammensetzungen nach 8 und nach 32 Wochen:

n.c steht für Normalklima, 23°C, 50% relative Feuchtigkeit, * bedeutet keine Vernetzung innerhalb der angegebenen

Aushärtungszeit.