Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
STRESS TOLERANT PLANTS
Document Type and Number:
WIPO Patent Application WO/2014/191539
Kind Code:
A1
Abstract:
The invention relates to transgenic plants and methods for modulating abscisic acid (ABA) perception and signal transduction in plants. The plants find use in increasing yield in plants, particularly under abiotic stress.

Inventors:
RUBIO MUNOZ VICENTE (ES)
INIESTO SÁNCHEZ ELISA (ES)
IRIGOYEN MIGUEL MARIA LUISA (ES)
Application Number:
PCT/EP2014/061214
Publication Date:
December 04, 2014
Filing Date:
May 29, 2014
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
CONSEJO SUPERIOR INVESTIGACION (ES)
International Classes:
A01H5/00; C12N15/82
Domestic Patent References:
WO2007011681A22007-01-25
Foreign References:
EP1033405A22000-09-06
US20060123505A12006-06-08
US20040216190A12004-10-28
Other References:
K. E. HUBBARD ET AL: "Early abscisic acid signal transduction mechanisms: newly discovered components and newly emerging questions", GENES & DEVELOPMENT, vol. 24, no. 16, 15 August 2010 (2010-08-15), pages 1695 - 1708, XP055143137, ISSN: 0890-9369, DOI: 10.1101/gad.1953910
MARTÃN BEATRIZ ET AL: "A high-density collection of EMS-induced mutations for TILLING in Landsberg erecta genetic background of Arabidopsis", BMC PLANT BIOLOGY, BIOMED CENTRAL, LONDON, GB, vol. 9, no. 1, 14 December 2009 (2009-12-14), pages 147, XP021066514, ISSN: 1471-2229
M. L. IRIGOYEN ET AL: "Targeted Degradation of Abscisic Acid Receptors Is Mediated by the Ubiquitin Ligase Substrate Adaptor DDA1 in Arabidopsis", THE PLANT CELL ONLINE, vol. 26, no. 2, 21 February 2014 (2014-02-21), pages 712 - 728, XP055142559, ISSN: 1040-4651, DOI: 10.1105/tpc.113.122234
Attorney, Agent or Firm:
MARKS & CLERK LLP (Cambridge Cambridgeshire CB2 1LA, GB)
Download PDF:
Claims:
CLAIMS:

1 . A method for increasing yield and/or growth of a plant under stress conditions said method comprising introducing and expressing in said plant a nucleic acid construct comprising a plant DDA1 nucleic acid sequence.

2. A method for reducing a plant response to abscisic acid (ABA), said method comprising introducing and expressing in said plant a nucleic acid construct comprising a plant DDA1 nucleic acid sequence.

3. A method for modulating the interaction of the receptor PYL8 with ABA said method comprising introducing and expressing in said plant a nucleic acid construct comprising a plant DDA1 nucleic acid sequence.

4. A method for reducing seed dormancy said method comprising introducing and expressing in said plant a nucleic acid construct comprising a plant DDA1 nucleic acid sequence.

5. A method for mitigating the impacts of stress conditions on plant growth and yield said method comprising introducing and expressing in said plant a nucleic acid construct comprising a plant DDA1 nucleic acid sequence.

6. A method for producing a transgenic plant with improved yield/growth under stress conditions said method comprising introducing and expressing in said plant a nucleic acid construct comprising a plant DDA1 nucleic acid sequence.

7. A method according to a preceding claim wherein said plant DDA1 nucleic acid sequence is a monocot or dicot plant DDA1 nucleic acid sequence.

8. A method according to a preceding claim wherein said plant DDA1 nucleic acid sequence comprises SEQ ID NO: 1 , 2 or 3 or a functional variant or homolog of SEQ ID NO: 1 , 2 or 3.

9. A method according to claim 8 wherein said homolog has at least 75% 70%, 71 %, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81 %, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91 %, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% overall sequence identity to the nucleic acid represented by SEQ ID NO: 1. 2 or 3 or wherein the peptide encoded by a homolog of SEQ ID NO: 1 has at least 75% 70%, 71 %, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81 %, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91 %, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% overall sequence identity to the amino acid represented by SEQ ID NO: 4.

10. A method according to claim 9 wherein said plant DDA1 nucleic acid sequence encodes a protein which comprises SEQ ID No: 4, 8, 1 1 , 14. 18, 22, 26, 30, 34, 38, 42, 45, 49, 52, 56, 60, 64, 68, 71 , 75, 79, 83, 87, 90, 94, 98, 102, 106, 109, 1 12, 1 15, 1 19, 123, 126, 130, 133, 136, 139, 143, 147, 151 , 155, 159, 163, 166, 169, 173, 177, 181 , 184, 187, 191 or a functional variant thereof.

1 1. A method according to any of claims 5 to 10 wherein said stress is abiotic stress. 12. A method according to claim 1 1 wherein said stress is moderate stress.

13. A method according to any of claims 1 1 or 12 wherein said stress is drought or salinity.

14. A method according to a preceding claim wherein said plant is a monocot or dicot plant.

15. A method according to a preceding claim wherein said plant is a crop plant or biofuel plant.

16. A method according to claim 15 wherein said crop plant is selected from maize, rice, wheat, oilseed rape, sorghum, soybean, potato, tomato, grape, barley, pea, bean, field bean, lettuce, cotton, sugar cane, sugar beet, broccoli or other vegetable brassicas or poplar.

17. A method according to a preceding claim wherein said construct further comprises a regulatory sequence.

18. A method according to claim 17 wherein said regulatory sequence is a constitutive promoter, a strong promoter, an inducible promoter, a stress inducible promoter or a tissue specific promoter.

19. A method according to claim 18 wherein said regulatory sequence is the CaMV35S promoter.

20. A transgenic plant with an altered response to ABA wherein said plant expresses a nucleic acid construct comprising a plant DDA1 nucleic acid sequence.

21. A plant according to claim 20 wherein said plant DDA1 nucleic acid sequence comprises SEQ ID No: 1. 2 or 3 or a functional variant or homolog thereof.

22. A plant according to claim 21 wherein said plant DDA1 nucleic acid sequence encodes a polypeptide comprising SEQ ID NO: 4, a functional variant or homolog thereof.

23. A plant according to claim 22 wherein said homolog has at least 75% 70%, 71 %,

72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81 %, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91 %, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% overall sequence identity to the amino acid represented by SEQ ID NO: 4. 24. A plant according to claim 21 wherein said plant DDA1 nucleic acid encodes a protein which comprises SEQ ID No: 4, 8, 1 1 , 14, 18, 22, 26, 30, 34, 38, 42, 45,

49, 52, 56, 60, 64, 68, 71 , 75, 79, 83, 87, 90, 94, 98, 102, 106, 109, 1 12, 1 15, 1 19, 123, 126, 130, 133, 136, 139, 143, 147, 151 , 155, 159, 163, 166, 169,

173, 177, 181 , 184, 187, 191 or a functional variant thereof.

25. A plant according to any of claims 20 to 24 wherein said construct further comprises a regulatory sequence.

26. A plant according to any of claims 20 to 25 wherein said regulatory sequence is a constitutive promoter, a strong promoter, an inducible promoter, a stress inducible promoter or a tissue specific promoter.

27. A plant according to claim 26 wherein said regulatory sequence is the CaMV35S promoter.

28. A plant according to claim 27 wherein said regulatory sequence is a stress inducible promoter.

29. A plant according to claim 28 wherein said stress inducible promoter is selected from Hahbl , RD29A or rabl7, P5CS1 or ABA- and drought-inducible promoters of Arabidopsis clade A PP2Cs, for example AB11. ABI2, HAB1 , PP2CA, HAM , HAI2 and HAI3 or their corresponding crop orthologs.

30. A plant according to any of claims 20 to 29 wherein said plant is a monocot or dicot plant.

31. A plant according to any of claims 20 to 30 wherein said plant is a crop plant or biofuel plant.

32. A plant according to claim 31 wherein said crop plant is selected from maize, rice, wheat, oilseed rape, sorghum, soybean, potato, tomato, grape, barley, pea, bean, field bean, lettuce, cotton, sugar cane, sugar beet, broccoli or other vegetable brassicas or poplar.

33. Plant according to any of claims 20 to 32 wherein said plant has increased stress resistance.

34. A product derived from a plant as defined in any of claims 20 to 33 or from a part thereof.

35. A vector comprising a plant DDA1 nucleic acid sequence.

36. A vector according to claim 35 wherein said plant DDA1 nucleic acid sequence is a nucleic acid corresponding to SEQ D NO: 1. 2 or 3 or a functional variant or homolog thereof.

37. A vector according to claim 35 or 36 further comprising a regulatory sequence which directs expression of the nucleic acid.

38. A vector according to claim 37 wherein said regulatory sequence is a constitutive promoter, a strong promoter, an inducible promoter, a stress inducible promoter or a tissue specific promoter.

39. A vector according to claim 38 wherein said regulatory sequence is the CaMV35S promoter.

40. A vector according to claim 38 wherein said regulatory sequence is a stress inducible promoter.

41. A vector according to claim 40 wherein said stress inducible promoter is selected from a Hahbi , RD29A or rabl7, P5CS1 or ABA- and drought-inducible promoters of Arabidopsis clade A PP2Cs, for example ABU , ABI2. HAB1 , PP2CA, HAM , HAI2 and HAI3 or their corresponding crop orthologs.

42. A host cell comprising a vector according to any of claims 34 to 41.

43. A host cell according to claim 42 wherein said host cell is a bacterial or a plant cell.

44. The use of a DDA1 plant nucleic acid sequence in reducing a plant response to ABA.

45. The use of a DDA1 plant nucleic acid sequence in reducing seed dormancy. 46. The use of a DDA1 plant nucleic acid sequence in increasing yield/growth of a plant under stress conditions.

47. The use according to any of claims 44 to 46 wherein said plant DDA1 nucleic acid comprises SEQ ID NO: 1 , 2 or 3 or a functional variant or homolog thereof

48. A plant with increased expression of an endogenous DDA1 plant nucleic acid sequence wherein said endogenous DDA1 promoter carries a mutation introduced by mutagenesis or genome editing which results in increased expression of the DDA1 gene.

49. A plant with increased stability of the endogenous DDA1 polypeptide wherein said endogenous DDA1 nucleic acid sequence carries a mutation introduced by mutagenesis or genome editing and which results in increased stability of the

DDA1 protein.

50. A method for increasing expression of a DDA1 plant nucleic acid sequence or improving stability of a DDA1 protein in a plant, producing plants, a method for mitigating the impacts of stress conditions on plant growth and yield and a method for producing plants with improved yield/growth under stress conditions comprising the steps of mutagenising a plant population, identifying and selecting plants with an improved yield/growth under stress conditions and identifying a variant DDA1 promoter or gene sequence.

Description:
Stress Tolerant Plants

Field of the Invention

The invention relates to transgenic plants with improved phenotypic traits, including enhanced growth under stress conditions. The improved traits are conferred by altered ABA receptor signalling. Also within the scope of the invention are related methods, uses, isolated nucleic acids and vector constructs.

Introduction

The ever-increasing world population and the dwindling supply of arable land available for agriculture fuels research towards increasing the efficiency of agriculture. Conventional means for crop and horticultural improvements utilise selective breeding techniques to identify plants having desirable characteristics. However, such selective breeding techniques have several drawbacks, namely that these techniques are typically labour intensive and result in plants that often contain heterogeneous genetic components that may not always result in the desirable trait being passed on from parent plants. Advances in molecular biology have allowed mankind to modify the germplasm of animals and plants. Genetic engineering of plants entails the isolation and manipulation of genetic material (typically in the form of DNA or RNA) and the subsequent introduction of that genetic material into a plant. Such technology has the capacity to deliver crops or plants having various improved economic, agronomic or horticultural traits. A trait of particular economic interest is growth, in that it is a determinant of eventual crop yield.

Plants adapt to changing environmental conditions by modifying their growth. Plant growth and development is a complex process involves the integration of many environmental and endogenous signals that, together with the intrinsic genetic program, determine plant form. Factors that are involved in this process include several growth regulators collectively called the plant hormones or phytohormones. This group includes auxin, cytokinin, the gibberellins (GAs), abscisic acid (ABA), ethylene, the brassinosteroids (BRs), and jasmonic acid (JA), each of which acts at low concentrations to regulate many aspects of plant growth and development. Abiotic and biotic stress can negatively impact on plant growth leading to significant losses in agriculture. Even moderate stress can have significant impact on plant growth and thus yield of agriculturally important crop plants. Therefore, finding a way to improve growth, in particular under stress conditions, is of great economic interest. ABA has a central role in the control of seed germination and the regulation of responses to abiotic stresses, such as drought, high salinity and low temperatures (Chinnusamy et al., 2008; Hauser et al., 201 1 ; Hirayama and Shinozaki, 2010). Plants respond to ABA in many ways, including closing stomata under drought stress, maintaining seed dormancy and inhibiting vegetative growth. For example, mutants with reduced ABA content or displaying insensitivity to ABA are more tolerant to salt stress during germination. ABA inhibits vegetative growth under stress conditions, in particular under drought conditions, when it accumulates to help plant survival through inhibition of other processes, including, stomata opening and plant growth. Thus, stress tolerance comes at the price of reduced growth and thus reduced yield. This has a particular impact on agriculture in temperate climates where limited water availability rarely causes plant death, but restricts biomass and seed yield. Moderate water stress, that is suboptimal availability of water for growth, can occur during intermittent intervals of days or weeks between irrigation events and may limit leaf growth, light interception, photosynthesis and hence yield potential. Leaf growth inhibition by water stress is particularly undesirable during early establishment.

ABA signaling is mediated by the PYR/PYL/RCAR family of ABA receptors, which allow direct ABA-dependent inhibition of clade A phosphatases type-2C (PP2Cs), for instance ABM , HAB1 , HAB2, PP2CA, which are key negative regulators of the pathway (Rubio et al., 2009; Saez et al., 2006). Inhibition of PP2Cs leads to activation of sucrose non-fermenting 1 -related subfamily 2 (SnRK2) kinases, which, in turn, regulate transcriptional response to ABA by phosphorylating specific protein targets, including ABFs/AREBs transcription factors.

The CDD complex is conserved in humans where it has been termed DDD-E2 since it contains, in addition to DDB1 and DET1 , a canonical E2 Ub conjugase (highly homologous to UEV COP10) and a small protein with no obvious motifs called DET1 -, DDB1 - Associated 1 (DDA1 ; (Pick et al., 2007)). Functional characterization of hDDA1 showed it acts as a positive regulator of multiple CRL4s, although the molecular basis of this activity remains completely unknown (Olma et al., 2009).

There is a need for methods for making plants with increased yield, in particular under moderate stress conditions. In other words, whilst plant research in making stress tolerant plants is often directed at identifying plants that show increased stress tolerance under severe conditions that will lead to death of a wild type plant, these plants do not perform well under moderate stress conditions and often show growth reduction which leads to unnecessary yield loss. The invention is aimed at addressing this need by providing transgenic plants and methods for manipulating stress response based on the findings that DDA1 binds ABA receptor PYL8 in vivo and facilitates its proteasomal degradation when overexpressed in plants, and that overexpression of DDA1 mitigates the detrimental effects of ABA on plant growth and germination.

Summary of the invention

The invention is directed to methods for modulating plant response to ABA. In certain embodiments, crop yield is maintained by ablating the detrimental effects of ABA on plant and seed development. In particular, the invention comprises compositions and methods for abolishing, disrupting or delaying ABA signaling or function. The compositions and methods are useful for abolishing, disrupting or delaying ABA function or effect in a tissue-preferred and/or deveiopmentaliy-preferred manner to insulate vegetative and/or reproductive tissue from stress and adverse environmental conditions. This may advantageously alter the developmental time frame of certain tissues so as to minimize effects of abiotic stress. For example, the timing of certain aspects of endosperm development may be altered to avoid negative impacts of abiotic stress.

In a first aspect, the invention relates to a transgenic plant with an altered response to abscisic acid (ABA) wherein said plant expresses a nucleic acid construct comprising a DDA1 nucleic acid, preferably a plant DDA1 nucleic acid. In a second aspect, the invention relates to a product derived from a plant as defined herein. In another aspect, the invention relates to a vector comprising a DDA1 nucleic acid or a nucleic acid construct comprising a DDA1 nucleic acid, preferably a plant DDA1 nucleic acid.

In another aspect, the invention relates to a host cell comprising a vector according to the invention. In another aspect, the invention relates to a method for altering or reducing a plant response to ABA, said method comprising introducing into said plant and expressing a DDA1 nucleic acid or a nucleic acid construct comprising a DDA1 nucleic acid, wherein said DDA1 nucleic acid is preferably a plant DDA1 nucleic acid. In another aspect, the invention relates to a method for modulating the interaction of a PYL receptor, for example PYL8, with ABA said method comprising introducing into said plant and expressing a DDA1 nucleic acid or a nucleic acid construct comprising a DDA1 nucleic acid, wherein said DDA1 nucleic acid is preferably a plant DDA1 nucleic acid. In another aspect, the invention relates to a method for reducing seed dormancy said method comprising introducing into said plant and expressing in said plant a DDA1 nucleic acid or a nucleic acid construct comprising a DDA1 nucleic acid, wherein said DDA1 nucleic acid is preferably a plant DDA1 nucleic acid. In another aspect, the invention relates to a method for increasing yield and/or growth of a plant under stress conditions said method comprising introducing into said plant and expressing a DDA1 nucleic acid or a nucleic acid construct comprising a DDA1 nucleic acid, wherein said DDA1 nucleic acid is preferably a plant DDA1 nucleic acid. In another aspect, the invention relates to a method for mitigating the impacts of stress conditions on plant growth and yield said method comprising introducing into said plant and expressing a DDA1 nucleic acid or acid or a nucleic acid construct comprising a DDA1 nucleic acid, wherein said DDA1 nucleic acid is preferably a plant DDA1 nucleic acid.

In another aspect, the invention relates to a method for producing a transgenic plant with improved yield/growth under stress conditions said method comprising introducing into said plant and expressing a DDA1 nucleic acid or a nucleic acid construct comprising a DDA1 nucleic acid, wherein said DDA1 nucleic acid is preferably a plant DDA1 nucleic acid. In another aspect, the invention relates to a use of a DDA1 nucleic acid or a nucleic acid construct comprising a DDA1 nucleic acid, preferably a plant DDA1 nucleic acid, in altering or reducing a plant response to ABA, improving yield/growth under stress conditions and altering a plants' stress response.

In another aspect, the invention relates to a method for increasing expression of a DDA1 nucleic acid in a plant, preferably a plant DDA1 nucleic acid compared to a control plant.

The term DDA1 nucleic acid as used herein designates any DDA1 nucleic acid from any organism. Preferred organisms are plants. According to the various aspects of the invention, the DDA1 nucleic acid may be AtDDAI , a functional variant or a homolog/ortholog thereof or a functional variant of such homolog/ortholog.

According to the various aspects of the invention, the stress is preferably water shortage, for example drought conditions, or salinity.

In another aspect, the invention relates to a plant with increased expression of an endogenous DDA1 nucleic acid wherein said endogenous DDA1 promoter carries a mutation introduced by mutagenesis or genome editing which results in increased expression of the DDA1 gene. In another aspect, the invention relates to plant with increased stability of the endogenous DDA1 protein wherein said endogenous DDA1 nucleic acid carries a mutation introduced by mutagenesis or genome editing which results in increased a DDA1 protein with increased stability.

In another aspect, the invention relates to a method for overexpressing a DDA1 plant nucleic acid, producing plants, a method for mitigating the impacts of stress conditions on plant growth and yield and a method for producing plants with improved yield/growth under stress conditions comprising the steps of mutagenising a plant population, identifying and selecting a plant with an improved yield/growth under stress conditions and identifying a variant DDA1 promoter or gene sequence. In another aspect, the invention relates to a method for increasing expressing of a DDA1 plant nucleic acid, a method for mitigating the impacts of stress conditions on plant growth and yield and a method for producing a plant with improved yield/growth under stress conditions comprising the steps of altering the DDA1 promoter sequence using genome editing and identifying and selecting plants with an improved yield/growth under stress conditions. In another aspect, the invention relates to a method for increasing stability of a DDA1 plant polypeptide, a method for mitigating the impacts of stress conditions on plant growth and yield and a method for producing a plant with improved yield/growth under stress conditions comprising the steps of altering the endogenous DDA1 nucleic acid sequence using genome editing resulting in a mutant protein with increased stability and identifying and selecting plants with an improved yield/growth under stress conditions.

The invention is further described in the following non-limiting figures. Figures

Figure 1. DDA1 associates with the CDD complex in planta.

(A) Gel filtration fractions obtained in the purification of the CDD complex from cauliflower were separated on a 15% SDS-PAGE gel and subjected to silver staining (upper panel) or to immunoblot analysis (4 lower panels). Antibodies used in each case are shown on the right side. The position of specific protein bands was determined according to data reported by Yanagawa et al., 2004.

(B) Isolation of DDA1 -associated proteins by Tandem Affinity Purification (TAP) techniques. DDA1 -TAP fusion was expressed and purified from transgenic cell cultures. Specific bands obtained were excised, trypsine-digested and analyzed by mass spectrometry.

(C) Proteins identified in (B) are listed. Accession numbers and names of proteins co- purified with DDA1 , together with the number of positive identifications in two independent TAP experiments are shown.

(D-E) DDA1 interacts with DDB1 proteins in yeast two hybrid assays. DDA1 interaction with CDD complex components DDB1 a and DDB1 b (D), and DET1 and COP10 (E) was assessed. Growth of yeast transformed with the indicated constructs on selective plates is shown. Selective media contained different concentrations of 3-amino-1 ,2,4- triazole (3AT; ranging 0.5-10 mM). Previously reported DET1 -DDB1 a interaction was used as positive control. Empty vectors were used as negative controls. (F) DDA1 interacts with the BPA domain in DDB1 a. Interaction of DDA1 with a series of DDB1 a deletion constructs, containing different domain combinations (represented in left panel), was assessed in yeast two hybrid experiments (right panel). Experimental conditions were as in (D-E).

Figure 2. DDA1 -GFP fusion localizes in nuclei and plastids.

(A) Quantitative RT-PCR analysis of DDA1-GFP expression levels in three independent oeDDA1 -GFP lines compared to endogenous DDA1 in wild-type plants.

(B) DDA1 -GFP associates to FLAG-COP10 in vivo. Immunoprecipitation of DDA1 -GFP fusions was performed using total protein extracts prepared from 8-d-old oeDDAI - GFP, oeFLAG-COPI O and oeDDA1 -GFP/oeFLAG-COP10 seedlings. Total extracts (Input) and immunoprecipitates (IP) were subjected to immunoblot analysis with anti- GFP and anti-FLAG. Panels labeled with an asterisk in (B and C) correspond to nonspecific bands used as loading controls.

(C) DDA1 -GFP associates to CUL4 in vivo. Immunoprecipitation assays were performed as in (B) using protein extracts from 8-d-old wild-type (Col) and oeDDAI -

GFP seedlings. Anti-GFP and anti-CUL4 antibodies (Chen et al., 2006) were used to detect DDA1 -GFP and CUL4, respectively.

(D-H) Confocai fluorescence images of roots from 5-d-old oeDDA1 -GFP seedlings. (E) corresponds to a detail of the picture shown in (D). Nuclei were labeled with 4'.6- diamidino-2-phenylindole (DAPI) stain. Merge image (H) shows colocalization of DDA1 - GFP fluorescence and DAPI stain.

(I-N) Confocai images of N. benthamiana epidermal cells expressing DDA1 -GFP and a plastid (l-K) or endoplasmic reticulum (L-N) mCherry fluorescent marker (pt-rk CD3-99 and ER-rk CD3-959, respectively (Nelson et al., 2007)). DDA1 -GFP localizes in both in nuclei and plastids in Arabidopsis roots and tobacco leaves. Stromules can be visualized as protuberances in plastids.

Figure 3. DDA1 is essential for female gametophyte development.

(A) A diagram of DDA1 genomic region shows the position of the G to A mutation identified in dda1-1 plants, which affects the donor splice-site of the second intron and is predicted to impair proper splicing of DDA1 premRNA, yielding a truncated protein.

(B-C) Mature siliques of wild-type and dda1-1 hererozygous plants (showing -15% unfertilized ovules). Arrows indicate collapsed ovules. Scale bars represent 1 mm.

(D) Inflorescence images of 4-week-old wild-type and homozygous dda1-1 plants. dda1-1 lines show undeveloped siliques that do not set seeds. Scale bars represent 1 mm.

(E) Non-pollinated pistils from wild-type and homozygous dda 1-1 plants are undistinguishable. Scale bars represent 1 mm. (F) Homozygous dda1-1 mutants show aberrant ovule development. Nomarski images of cleared ovules from wild-type and homozygous dda1-1 non-pollinated flowers. Scale bars represent 200 μιτι.

Figure 4. DDA1 interacts with ABA receptor PYL8.

(A) Y187 yeast cells transformed with pGBKT7-DDA1 were used to screen a cDNA library prepared from Arabidopsis seedlings in the pGADT7 vector and transformed into AH109 cells. Positive clones included truncated versions of ABA receptors PYL4 and PYL9. Yeast clones were grown in selective media containing different concentrations of 3AT (ranging 0.5 to 5 μΜ). Empty pGADT7 vector was used as negative control. (B-C) DDA1 interaction with full length PYL8 (B), PYL4, PYL5, PYL6 or PYL9 (C) was assessed using yeast two hybrid experiments as in (A). Physical association between PYL8 and other components of the CDD complex (DDB1 a, DDB1 b, DET1 and COP10) was also tested (B).

(D-E) Analysis of DDA1 and PYL8 interaction by BiFC. Confocal images of N. benthamiana epidermal cells expressing different construct combinations as indicated were obtained. Reconstitution of YFP fluorescence indicates that the corresponding DDA1 and PYL8 constructs directly interact. YFP fluorescence, DAPi staining of nuclei, and merged images, including plastid autofluorescence in the far-red channel, are shown. Scale bars represent 10 μιη.

Figure 5. DDA1 -GFP over-expression reduces 3HA-PYL8 accumulation in both seedlings and seeds.

(A) Proteasome inhibitor MG132 stabilizes 3HA-PYL8. 9-d-old oe3HA-PYL8 (T 0 ) seedlings (T 0 ) were treated or not during 2 h with 50 μΜ MG132.

(B, C) Affinity purification of polyubiquitinated 3HA-PYL8. oe3HA-PYL8 protein extracts were incubated with Ub-binding p62 resin or with empty agarose resin (negative control). Anti-Ub was used to detect total ubiquitinated proteins. Anti-HA allowed detection of 3HA-PYL8 and its ubiquitinated forms. Wild-type (Col) protein extracts were used as immunoblot controls. An asterisk indicates the position of a non-specific protein detected by anti-HA.

(D, E) Time course of relative abundance of 3HA-PYL8 in 8-d-old seedlings treated with 10 μΜ cicloheximide (CHX) in the presence or absence of 50 μΜ ABA. Protein level analysis in (E) was carried out using ImageJ software.

(F) Immunoblots showing increased accumulation of 3HA-PYL8 in the presence of proteasome inhibitor MG132.

Immunoblots in (A and F) were performed using anti-HA to detect 3HA-PYL8. Panels labeled with an asterisk show Ponceau staining of Rubisco as a loading control. (G) Immunoblot analysis of 3HA-PYL8 levels in seeds corresponding to oe3HA- PYL8/oeDDA1 -GFP and control (oe3HA-PYL8) plants. Both lines were in the pyl8-1 background. Prior to protein extraction, imbibed seeds were maintained for 24 h in MS media with or without 3 μΜ ABA. Anti-HA and anti-RPT5 antibodies were used to detect 3HA-PYL8 and for loading control purposes, respectively.

(H) Protein level analysis of samples described in (F) was carried out using ImageJ software.

(I) Semiquantitative RT-PCR analysis to assess the expression levels of the oe3HA- PYL8 and DDA 1-GFP transgenes in samples described in (G). ACTIN8 (ACT8) was used as a housekeeping reference gene.

Figure 6. DDA1 over-expressing plants show reduced sensitivity to ABA.

(A) The percentage of seeds that germinated (radicle emergence) in the presence of

0.5 μΜ ABA at 72 h after sowing was compared for wild type (Col), oeDDA1 -GFP and oeHABI (ABA-insensitive control) lines.

(B) Percentage of seeds that germinated and developed green cotyledons and the first pair of true leaves at 5 d. Same genotypes as in A were compared.

(C) Quantification of ABA-mediated root growth inhibition. Same genotypes as in A were compared together with pyl8-1 mutants.

(D, E) ABA-mediated shoot growth inhibition of seedlings that were either germinated on 0.5 μΜ ABA or germinated on MS medium and transferred to 10 μΜ ABA.

Photographs from panel D or E were taken 10 or 20 d after sowing or after transferring seedlings to plates lacking or containing 10 uM ABA, respectively.

(F) Reduced sensitivity to ABA-mediated inhibition of root growth from oeDDA1 -GFP plants compared to Col wild type. Bars correspond to 1 cm.

(G, H) Percentage of seeds that germinated in the presence of 150 mM Nad or 400 mM Mannitol at 5 d after sowing. ABA-insensitive cral mutant plants were used as a control.

(I) Quantification of ABA-mediated shoot growth inhibition as displayed in (E). ABA- hypersensitive hab1-1 abi1-2 double mutants were used as a control (Saez et al., 2006).

(J) Percentage of seeds that germinated and developed green cotyledons at 5 d in the presence of 1 uM ABA and/or 10 μΜ (^-Estradiol (Estr). Genotypes corresponded to wild type (Col) plants, cral mutants (Fernandez-Arbaizar et al., 2012) and plants expressing DDA1 under the control of a β-Estradiol inducible promoter (iDDA1 ). (K) Photographs of plants analyzed in (J) were taken 10 d after sowing. * p<0.01 (Student's t test) with respect to the wild type in the same experimental condition. MS media (MS) was used as a control in all analyses.

Figure 7. Mutants in CDD complex components show enhanced sensitivity to ABA. (A) Percentage of seeds that germinated (radicle emergence) in the presence of 0.5 μΜ ABA at 4 d after sowing.

(B) Percentage of seeds that germinated and developed green cotyledons and the first pair of true leaves at 7 d.

(C) Photographs from representative seedlings taken 10 d after sowing.

(D) Quantification of ABA-mediated root growth inhibition of (1 ) Col wild type compared with (2) hab1-1 abi1-2, (3) det1-1, (4) cop 10-4 and (5) ddb la mutants. Seeds were germinated on MS medium and transferred to 10 μΜ ABA for 10 d.

(E) Photographs of representative seedlings analyzed in D were taken 10 d after transferring seedlings to plates lacking or containing 10 μΜ ABA. * p<0.01 (Student's t test) with respect to the wild type in the same experimental condition.

(F) Immunoblot analysis of 3HA-PYL8 levels in seeds corresponding to wild type (oe3HA-PYL8) and cop 10-4 (oe3HA-PYL8/co f 0-4) plants. Both lines were in the py/8- 1 background. Prior to protein extraction, imbibed seeds were maintained for 24 h in MS media with or without 3 μΜ ABA. Anti-HA and anti-RPT5 antibodies were used to detect 3HA-PYL8 and for loading control purposes, respectively. Lower panels correspond to semiquantitative RT-PCR analyses to assess the expression levels of the oe3HA-PYL8 transgene. ACTIN8 (ACT8) was used as a housekeeping reference gene.

(G) Protein level analysis of samples described in (F) was carried out using ImageJ software.

Figure 8: Alignment of AtDDAI and orthologs in other plants. The average sequence identity is 66%.

Figure 9: Phylogenetic tree. Detailed description

The present invention will now be further described. In the following passages, different aspects of the invention are defined in more detail. Each aspect so defined may be combined with any other aspect or aspects unless clearly indicated to the contrary. In particular, any feature indicated as being preferred or advantageous may be combined with any other feature or features indicated as being preferred or advantageous. The practice of the present invention will employ, unless otherwise indicated, conventional techniques of botany, microbiology, tissue culture, molecular biology, chemistry, biochemistry and recombinant DNA technology, bioinformatics which are within the skill of the art. Such techniques are explained fully in the literature.

As used herein, the words "nucleic acid", "nucleic acid sequence", "nucleotide", "nucleic acid molecule" or "polynucleotide" are intended to include DNA molecules (e.g. , cDNA or genomic DNA), RNA molecules (e.g., mRNA), natural occurring, mutated, synthetic DNA or RNA molecules, and analogs of the DNA or RNA generated using nucleotide analogs. It can be single-stranded or double-stranded. Such nucleic acids or polynucleotides include, but are not limited to, coding sequences of structural genes, anti-sense sequences, and non-coding regulatory sequences that do not encode mRNAs or protein products. These terms also encompass a gene. The term "gene" or "gene sequence" is used broadly to refer to a DNA nucleic acid associated with a biological function. Thus, genes may include introns and exons as in the genomic sequence, or may comprise only a coding sequence as in cDNAs, and/or may include cDNAs in combination with regulatory sequences. Thus, according to the various aspects of the invention, genomic DNA, cDNA or coding DNA may be used. In one embodiment, the nucleic acid is cDNA or coding DNA. The terms "peptide " , "polypeptide" and "protein" are used interchangeably herein and refer to amino acids in a polymeric form of any length, linked together by peptide bonds.

For the purposes of the invention, "transgenic", "transgene " or "recombinant" means with regard to, for example, a nucleic acid sequence, an expression cassette, gene construct or a vector comprising the nucleic acid sequence or an organism transformed with the nucleic acid sequences, expression cassettes or vectors according to the invention, all those constructions brought about by recombinant methods in which either

(a) the nucleic acid sequences encoding proteins useful in the methods of the invention, or

(b) genetic control sequence(s) which is operably linked with the nucleic acid sequence according to the invention, for example a promoter, or

(c) a) and b)

are not located in their natural genetic environment or have been modified by recombinant methods, it being possible for the modification to take the form of, for example, a substitution, addition, deletion, inversion or insertion of one or more nucleotide residues. The natural genetic environment is understood as meaning the natural genomic or chromosomal locus in the original plant or the presence in a genomic library. In the case of a genomic library, the natural genetic environment of the nucleic acid sequence is preferably retained, at least in part. The environment flanks the nucleic acid sequence at least on one side and has a sequence length of at least 50 bp, preferably at least 500 bp, especially preferably at least 1000 bp, most preferably at least 5000 bp. A naturally occurring expression cassette - for example the naturally occurring combination of the natural promoter of the nucleic acid sequences with the corresponding nucleic acid sequence encoding a polypeptide useful in the methods of the present invention, as defined above - becomes a transgenic expression cassette when this expression cassette is modified by non-natural, synthetic ("artificial") methods such as, for example, mutagenic treatment. Suitable methods are described, for example, in US 5,565,350 or WO 00/15815 both incorporated by reference. The methods of the invention involve introducing a polypeptide or polynucleotide into a plant. "Introducing" is intended to mean presenting to the plant the polynucleotide or polypeptide in such a manner that the sequence gains access to the interior of a cell of the plant. The methods of the invention do not depend on a particular method for introducing a sequence into a plant, only that the polynucleotide or polypeptides gains access to the interior of at least one cell of the plant. Methods for introducing polynucleotide or polypeptides into plants are known in the art including, but not limited to, breeding methods, stable transformation methods, transient transformation methods, and virus-mediated methods. Methods are known in the art for the targeted insertion of a polynucleotide at a specific location in the plant genome.

A transgenic plant for the purposes of the invention is thus understood as meaning, as above, that the nucleic acids used in the method of the invention are not at their natural locus in the genome of said plant, it being possible for the nucleic acids to be expressed homologously or heterologously. However, as mentioned, transgenic also means that, while the nucleic acids according to the different embodiments of the invention are at their natural position in the genome of a plant, the sequence has been modified with regard to the natural sequence, and/or that the regulatory sequences of the natural sequences have been modified. Transgenic is preferably understood as meaning the expression of the nucleic acids according to the invention at an unnatural locus in the genome, i.e. homologous or, preferably, heterologous expression of the nucleic acids takes place. According to the invention, the transgene is stably integrated into the plant and the plant is preferably homozygous for the transgene. Thus, any off spring or harvestable material derived from said plant is also preferably homozygous for the transgene.

The aspects of the invention involve recombination DNA technology and in a preferred embodiment exclude embodiments that are solely based on generating plants by traditional breeding methods.

The inventors have characterized Arabidopsis DDA1 (AtDDAI ) and have demonstrated that overexpression of DDA1 in transgenic plants reduces the detrimental effects associated with ABA induced stress response when a plant is exposed to stress conditions.

The inventors have identified the proteins with which DDA1 interacts and demonstrated the function of DDA1 on a molecular level which forms the basis for the phenotype observed in the transgenic plants. The inventors have shown that DDA1 associates with the CDD complex and Cullin 4 Ring Ubiquitin Ligase (CUL4) and is able to interact with specific protein targets. DDA1 was found to physically bind ABA receptor PYL8 in vivo and facilitates its proteasomal degradation. In this way. DDA1 , together with the other CDD components (CONSTITUTIVE PHOTOMORPHOGENIC10 (COP10) and DEETIOLATED 1 (DET1 )), acts as a negative regulator of ABA signaling. ABA treatment attenuates the effect of DDA1 on PYL8 degradation, suggesting that ABA not only activates PYL8 but also prevents its degradation, leading to increased ABA signaling. DDA1 function is also required for proper ovule development, indicating it may recognize additional targets involved in the control of plant reproduction. Thus, DDA1 mediates recognition of specific targets of CRL4 as part of a substrate adaptor module that comprises the CDD complex.

Thus, in a first aspect, the invention relates to a transgenic plant with an altered response to ABA wherein said plant expresses a nucleic acid construct comprising a DDA1 nucleic acid sequence or a functional variant thereof. The DDA1 nucleic acid sequence is preferably an isolated plant DDA1 nucleic acid sequence. As explained elsewhere, this can be genomic DNA, cDNA or coding sequence. In another embodiment, the DDA1 nucleic acid sequence is an animal, for example a mammalian, DDA1 nucleic acid sequence.

The term "functional variant of a nucleic acid sequence " as used herein, for example with reference to SEQ ID No: 1 . 2 or 3 or homologs thereof, refers to a variant gene sequence or part of the gene sequence which retains the biological function of the full non-variant DDA1 sequence, for example confers increased growth or yield under stress conditions when expressed in a transgenic plant. A functional variant also comprises a variant of the gene of interest encoding a polypeptide which has sequence alterations that do not affect function of the resulting protein, for example in non- conserved residues. Also encompassed is a variant that is substantially identical, i.e. has only some sequence variations, for example in non- conserved residues, to the wild type sequences as shown herein and is biologically active. Thus, it is understood, as those skilled in the art will appreciate, that the aspects of the invention, including the methods and uses, encompass not only a DDA1 , for example a nucleic acid sequence comprising or consisting or SEQ ID NO: 1 , 2 or 3 a polypeptide comprising or consisting or SEQ ID NO: 4, or homologs/orthologs thereof, but also functional variants of DDA1 , for example of SEQ ID NO: 1 , 2, 3 or 4 that do not affect the biological activity and function of the resulting protein. Alterations in a nucleic acid sequence which result in the production of a different amino acid at a given site that do however not affect the functional properties of the encoded polypeptide, are well known in the art. For example, a codon for the amino acid alanine, a hydrophobic amino acid, may be substituted by a codon encoding another less hydrophobic residue, such as glycine, or a more hydrophobic residue, such as valine, leucine, or isoleucine. Similarly, changes which result in substitution of one negatively charged residue for another, such as aspartic acid for glutamic acid, or one positively charged residue for another, such as lysine for arginine, can also be expected to produce a functionally equivalent product. Each of the proposed modifications is well within the routine skill in the art, as is determination of retention of biological activity of the encoded products.

Generally, variants of a particular DDA1 nucleotide sequence of the invention will have at least about 50%-99%, for example 85%, 86%, 87%, 88%, 89%, 90%, 92%, 94%, 95%, 96%, 97%, 98% or 99% or more sequence identity or similarity to that particular non-variant DDA1 nucleotide sequence, for example to SEQ ID NO: 1. 2. 3 or to the protein sequence SEQ ID NO:4 or homologs thereof, as determined by sequence alignment programs described elsewhere herein and known in the art. Methods of alignment of sequences for comparison are well known in the art. Thus, the determination of percent sequence identity between any two sequences can be accomplished using a mathematical algorithm, including but not limited to CLUSTAL, ALIGN program GAP, BESTFIT, BLAST, FASTA, and TFASTA. A biologically active variant of a reference DDA1 protein may differ from that protein by as few as 1 - 15 amino acid residues, as few as 1 -10, such as 6-10, as few as 5, as few as 4, 3, 2, or even 1 amino acid residue. In certain embodiments, DDA1 proteins may be altered in various ways including amino acid substitutions, deletions, truncations, and insertions. Methods for such manipulations are generally known in the art. For example, amino acid sequence variants and fragments of the DDA1 protein can be prepared by mutations in the DNA. Methods for mutagenesis and polynucleotide alterations are well known in the art. See, for example, Kunkel (1985) Proc. Natl. Acad. Sci. USA 82:488-492; Kunkel et al. (1987) Methods in Enzymol. 154:367-382; U.S. Patent No. 4,873,192; Walker and Gaastra, eds. (1983) Techniques in Molecular Biology (MacMillan Publishing Company, New York) and the references cited therein. The deletions, insertions, and substitutions of the protein sequences encompassed herein are not expected to produce radical changes in the characteristics of the protein. When it is difficult, however, to predict the exact effect of a substitution, deletion, or insertion in advance of making such modifications, one skilled in the art will appreciate that the effect will be evaluated by routine screening assays.

For example, sequence identity/similarity values provided herein can refer to the value obtained using GAP Version 10 using the following parameters: % identity and % similarity for a nucleotide sequence using GAP Weight of 50 and Length Weight of 3, and the nwsgapdna.cmp scoring matrix; % identity and % similarity for an amino acid sequence using GAP Weight of 8 and Length Weight of 2, and the BLOSUM62 scoring matrix; or any equivalent program thereof.

As used herein, "sequence identity" or "identity" in the context of two polynucleotides or polypeptide sequences makes reference to the residues in the two sequences that are the same when aligned for maximum correspondence over a specified comparison window. When percentage of sequence identity is used in reference to proteins it is recognized that residue positions which are not identical often differ by conservative amino acid substitutions, where amino acid residues are substituted for other amino acid residues with similar chemical properties (e.g., charge or hydrophobicity) and therefore do not change the functional properties of the molecule. When sequences differ in conservative substitutions, the percent sequence identity may be adjusted upwards to correct for the conservative nature of the substitution. Sequences that differ by such conservative substitutions are said to have "sequence similarity" or "similarity". Also, the various aspects of the invention the aspects of the invention, including the methods and uses, encompass not only a DDA1 nucleic acid, but also a fragment thereof. By "fragment" is intended a portion of the nucleotide sequence or a portion of the amino acid sequence and hence of the protein encoded thereby. Fragments of a nucleotide sequence may encode protein fragments that retain the biological activity of the native protein and hence act to modulate responses to ABA.

In one embodiment, the transgenic plant expresses a nucleic acid comprising, consisting essentially or consisting of AtDDAI (CDS, cDNA or genomic DNA as defined in SEQ ID NO: 1 , 2 or 3) or a functional variant thereof encoding a AtDDAI polypeptide comprising, consisting essentially or consisting of SEQ ID NO: 4 or a functional variant thereof. However, the invention also extends functional homologs of AtDDAI . A functional homolog of AtDDAI as shown in SEQ ID NO: 4 is a DDA1 peptide which is biologically active in the same way as SEQ ID NO: 4, in other words, for example it confers increased yield/growth under stress conditions when expressed in a transgenic plant. The term functional homolog includes AtDDAI orthologs in other organisms, preferably other plant species. In a preferred embodiment of the various aspects of the invention, the invention relates specifically to AtDDAI or orthologs of AtDDAI in other plants. AtDDAI homologs/orthologs include homologs in Arabidopsis. Homologs/orthologs of AtDDAI are preferably selected from monocot or dicot plants, for example crop plants as further explained herein.

According to the various aspects of the invention, non-limiting preferred embodiments of homologs/orthologs of AtDDAI as shown in SEQ ID NO: 1 , 2. 3 and 4 include those shown in Fig. 8 and corresponding sequences for nucleic acids (CDS, cDNA or genomic DNA) and peptides according to SEQ ID NOs: 5-191 and also include a functional variants of these sequences. This list is non-limiting and other homologous DDA1 sequences of plants that are described herein, for example other DDA1 from preferred plants, such as crop plants, are also within the scope of the invention. DDA1 orthologs from cereals are one preferred embodiment. AtDDAI orthologs in maize, rice, wheat, oilseed rape, sorghum, soybean, potato, tomato, grape, barley, pea, bean, field bean, lettuce, cotton, sugar cane, sugar beet, canola, broccoli or other vegetable brassicas or poplar are preferred embodiments within the scope of the aspects of the invention. Thus, in one embodiment, the invention relates to a transgenic plant with an altered response to ABA wherein said plant expresses a nucleic acid construct expressing a peptide comprising, consisting essentially or consisting of a sequence selected from a sequence shown herein, specifically from SEQ ID Nos: 4, 8, 1 1 . 14, 18, 22, 26, 30, 34, 38, 42, 45, 49, 52, 56, 60, 64, 68, 71 , 75, 79, 83, 87, 90, 94, 98, 102, 106, 109, 1 12, 1 15, 1 19, 123, 126, 130, 133, 136, 139, 143, 147, 151 , 155, 159, 163, 166, 169, 173, 177, 181 , 184, 187, 191 , 192 or a functional variant thereof. As described elsewhere, according to the invention, variants of a particular DDA1 nucleotide sequence of the invention, including of a homologs/orthologs of AtDDAI as shown in SEQ ID NO: 1 , 2, 3 and 4 have at least about 50%-99%, for example 85%, 86%, 87%, 88%, 89%, 90%, 92%, 94%, 95%, 96%, 97%, 98% or 99% or more sequence identity or similarity to that particular non-variant DDA1 nucleotide sequence. Corresponding nucleic acid sequences encoding these peptides and which can be used in expression constructs according to the aspects of the invention are shown herein.

In one embodiment of the transgenic plants, host cells and vectors of the invention, the homologs from glycine max, rice, sorghum and maize are disclaimed. In one embodiment, the sequences are not one of glycine max, rice, sorghum and maize as shown herein, for example any of SEQ ID Nos: 27-34, 140-147, 152-159 and 170-173.

The homolog of a AtDDAI polypeptide has, in increasing order of preference, at least 25%, 26%, 27%, 28%, 29%, 30%, 31 %, 32%, 33%, 34%, 35%, 36%, 37%, 38%, 39%, 40%, 41 %, 42%, 43%, 44%, 45%, 46%, 47%, 48%, 49%, 50%, 51 %, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 61 %, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71 %, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81 %, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91 %, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% overall sequence identity to the amino acid represented by SEQ ID NO: 4. In one embodiment, the overall sequence identity is at least 66%. Preferably, overall sequence identity or similarity to AtDDAI as shown in SEQ ID NO: 1 , 2, 3 and 4 is 80%, 81 %, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91 %, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99%, most preferably 90%, 91 %, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99%. In another embodiment, the homolog of a AtDDAI nucleic acid sequence has, in increasing order of preference, at least 25%, 26%, 27%, 28%, 29%, 30%, 31 %, 32%, 33%, 34%, 35%, 36%, 37%, 38%, 39%, 40%, 41 %, 42%, 43%, 44%, 45%, 46%, 47%, 48%, 49%, 50%, 51 %, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 61 %, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71 %, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81 %, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91 %, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% overall sequence identity or similarity to the nucleic acid represented by SEQ ID NO: 1 , 2 or 3 or a variant thereof. In one embodiment, overall sequence identity is to the nucleic acid represented by SEQ ID NO: 1 . In one embodiment, overall sequence identity is to the nucleic acid represented by SEQ ID NO: 2. In one embodiment, overall sequence identity is to the nucleic acid represented by SEQ ID NO: 3. Preferably, overall sequence identity is 80%, 81 %, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91 %, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99%, most preferably 90%, 91 %, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99%. The overall sequence identity is determined using a global alignment algorithm known in the art, such as the Needleman Wunsch algorithm in the program GAP (GCG Wisconsin Package, Accelrys).

In one embodiment, the homolog of a AtDDAI polypeptide has, in increasing order of preference, at least 60%, 61 %, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71 %, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81 %, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91 %, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99%, preferably 85%-99% overall sequence identity to the amino acid represented by SEQ ID NO: 192 (DDA1 polypeptide consensus sequence). In one embodiment, a DDA1 homolog comprises one or more of the following domains: PHNFSQLRPSDPS (SEQ ID NO: 193) or a domain with 95%, 96%, 97%, 98%, or 99% to this domain, RTLPPPDQVITTEAK (SEQ ID NO: 194) or a domain with 95%, 96%, 97%, 98%, or 99% to this domain, NILLR (SEQ ID NO:195) or a domain with 99% to this domain and/or KLRPKRAA (SEQ ID NO: 196) or a domain with 98% or 99% to this domain. In a preferred embodiment, the homolog comprises all of these domains or sequences with homologies to these domains as recited above.

Thus, in one embodiment of the various aspects of the invention, the DDA1 polypeptide comprises an amino acid having at least 50% sequence identity to DDA1 and which comprises an amino acid having at least 95% sequence identity to the amino acid represented by SEQ ID NO: 193, an amino acid having at least 95% sequence identity to the amino acid represented by SEQ ID NO: 194, an amino acid having at least 95% sequence identity to the amino acid represented by SEQ ID NO: 195 and/or an amino acid having at least 99% sequence identity to the amino acid represented by SEQ ID NO: 196. in one embodiment of the various aspects of the invention, the DDA1 polypeptide comprises an amino acid having at least 95% sequence identity to the amino acid represented by SEQ ID NO: 193, an amino acid having at least 95% sequence identity to the amino acid represented by SEQ ID NO: 194, an amino acid having at least 95% sequence identity to the amino acid represented by SEQ ID NO: 195 and/or an amino acid having at least 99% sequence identity to the amino acid represented by SEQ ID NO: 196.

Suitable homologs or orthologs can be identified by sequence comparisons and identifications of conserved domains. The function of the homologue or ortholog can be identified as described herein and a skilled person would thus be able to confirm the function when expressed in a plant.

Thus, the nucleotide sequences of the invention and described herein can be used to isolate corresponding sequences from other organisms, particularly other plants, more particularly cereals. In this manner, methods such as PGR, hybridization, and the like can be used to identify such sequences based on their sequence homology to the sequences described herein. Sequences may be isolated based on their sequence identity to the entire sequence or to fragments thereof. In hybridization techniques, all or part of a known nucleotide sequence is used as a probe that selectively hybridizes to other corresponding nucleotide sequences present in a population of cloned genomic DNA fragments or cDNA fragments (i.e., genomic or cDNA libraries) from a chosen plant. The hybridization probes may be genomic DNA fragments, cDNA fragments, RNA fragments, or other oligonucleotides, and may be labeled with a detectable group, or any other detectable marker. Thus, for example, probes for hybridization can be made by labeling synthetic oligonucleotides based on the ABA-associated sequences of the invention. Methods for preparation of probes for hybridization and for construction of cDNA and genomic libraries are generally known in the art and are disclosed in Sambrook, et al., (1989) Molecular Cloning: A Library Manual (2d ed., Cold Spring Harbor Laboratory Press, Plainview, New York).

Hybridization of such sequences may be carried out under stringent conditions. By "stringent conditions" or "stringent hybridization conditions" is intended conditions under which a probe will hybridize to its target sequence to a detectably greater degree than to other sequences (e.g., at least 2-fold over background). Stringent conditions are sequence dependent and will be different in different circumstances. By controlling the stringency of the hybridization and/or washing conditions, target sequences that are 100% complementary to the probe can be identified (homologous probing). Alternatively, stringency conditions can be adjusted to allow some mismatching in sequences so that lower degrees of similarity are detected (heterologous probing). Generally, a probe is less than about 1000 nucleotides in length, preferably less than 500 nucleotides in length.

Typically, stringent conditions will be those in which the salt concentration is less than about 1.5 M Na ion, typically about 0.01 to 1.0 M Na ion concentration (or other salts) at pH 7.0 to 8.3 and the temperature is at least about 30°C for short probes (e.g., 10 to 50 nucleotides) and at least about 60°C for long probes (e.g., greater than 50 nucleotides). Duration of hybridization is generally less than about 24 hours, usually about 4 to 12. Stringent conditions may also be achieved with the addition of destabilizing agents such as formamide.

Thus, the methods, vector and plants of the invention encompass isolated DDA1 homologs/orthologs that modulate the plant response to ABA and which hybridize under stringent conditions to the AtDDAI or AtDDAI homologs/orthologs described herein, or to fragments thereof.

For example, according to the various aspects of the invention, a nucleic acid construct comprising a nucleic acid encoding a DDA1 polypeptide may be expressed in said plant by recombinant methods. In another embodiment, an exogenous DDA1 nucleic acid from a first plant in a plant may be expressed in a second plant of another species as defined herein by recombinant methods, for example AtDDAI may be expressed in a monocot plant, such as wheat. In another embodiment, a nucleic acid construct comprising an endogenous nucleic acid encoding a DDA1 polypeptide may be expressed a plant of the same species. For example, AtDD1 is expressed in Arabidopsis, wheat DDA1 is expressed in wheat, maize DDA1 in maize and barley DDA1 in barley.

In one embodiment according to the various aspects of the invention, the nucleic acid construct comprises a regulatory sequence or element. According to the various aspects of the invention, the term "regulatory element" is used interchangeably herein with "control sequence" and "promoter" and all terms are to be taken in a broad context to refer to regulatory nucleic acid sequences capable of effecting expression of the sequences to which they are ligated. the term "regulatory element" also includes terminator sequences which may be included 3' of the DDA1 nucleic acid sequence. The term "promoter" typically refers to a nucleic acid control sequence located upstream from the transcriptional start of a gene and which is involved in recognising and binding of RNA polymerase and other proteins, thereby directing transcription of an operably linked nucleic acid. Encompassed by the aforementioned terms are transcriptional regulatory sequences derived from a classical eukaryotic genomic gene (including the TATA box which is required for accurate transcription initiation, with or without a CCAAT box sequence) and additional regulatory elements (i.e. upstream activating sequences, enhancers and silencers) which alter gene expression in response to developmental and/or external stimuli, or in a tissue- specific manner. Also included within the term is a transcriptional regulatory sequence of a classical prokaryotic gene, in which case it may include a -35 box sequence and/or -10 box transcriptional regulatory sequences.

The term "regulatory element" also encompasses a synthetic fusion molecule or derivative that confers, activates or enhances expression of a nucleic acid molecule in a cell, tissue or organ. A "plant promoter" comprises regulatory elements, which mediate the expression of a coding sequence segment in plant cells. Accordingly, a plant promoter need not be of plant origin, but may originate from viruses or micro-organisms, for example from viruses which attack plant cells. The "plant promoter" can also originate from a plant cell, e.g. from the plant which is transformed with the nucleic acid sequence to be expressed in the inventive process and described herein. This also applies to other "plant" regulatory signals, such as "plant" terminators. The promoters upstream of the nucleotide sequences useful in the methods of the present invention can be modified by one or more nucleotide substitution(s), insertion(s) and/or deletion(s) without interfering with the functionality or activity of either the promoters, the open reading frame (ORF) or the 3'-regulatory region such as terminators or other 3' regulatory regions which are located away from the ORF. It is furthermore possible that the activity of the promoters is increased by modification of their sequence, or that they are replaced completely by more active promoters, even promoters from heterologous organisms. For expression in plants, the nucleic acid molecule must, as described above, be linked operably to or comprise a suitable promoter which expresses the gene at the right point in time and with the required spatial expression pattern. For the identification of functionally equivalent promoters, the promoter strength and/or expression pattern of a candidate promoter may be analysed for example by operably linking the promoter to a reporter gene and assaying the expression level and pattern of the reporter gene in various tissues of the plant. Suitable well-known reporter genes are known to the skilled person and include for example beta-glucuronidase or beta- galactosidase. The term "operably linked" as used herein refers to a functional linkage between the promoter sequence and the gene of interest, such that the promoter sequence is able to initiate transcription of the gene of interest.

For example, the nucleic acid sequence may be expressed using a promoter that drives overexpression. Overexpression according to the invention means that the transgene is expressed at a level that is higher than expression of endogenous counterparts driven by their endogenous promoters. For example, overexpression may be carried out using a strong promoter, such as a constitutive promoter. A "constitutive promoter" refers to a promoter that is transcriptionally active during most, but not necessarily all, phases of growth and development and under most environmental conditions, in at least one cell, tissue or organ. Examples of constitutive promoters include the cauliflower mosaic virus promoter (CaMV35S or 19S), rice actin promoter, maize ubiquitin promoter, rubisco small subunit, maize or alfalfa H3 histone, OCS, SAD1 or 2, GOS2 or any promoter that gives enhanced expression. Alternatively, enhanced or increased expression can be achieved by using transcription or translation enhancers or activators and may incorporate enhancers into the gene to further increase expression. Furthermore, an inducible expression system may be used, where expression is driven by a promoter induced by environmental stress conditions (for example the pepper pathogen-induced membrane protein gene CaPIMPI or promoters that comprise the dehydration-responsive element (DRE), the promoter of the sunflower HD-Zip protein gene Hahb4, which is inducible by water stress, high salt concentrations and ABA or a chemically inducible promoter (such as steroid- or ethanol-inducible promoter system). The promoter may also be tissue-specific. The types of promoters listed above are described in the art. Other suitable promoters and inducible systems are also known to the skilled person.

In another embodiment, a root-specific promoter may be used. This is a promoter that is transcriptionally active predominantly in plant roots, substantially to the exclusion of any other parts of a plant, whilst still allowing for any leaky expression in these other plant parts. Examples of root-specific promoters include promoters of root expressible genes, for example the promoters of the following genes: RCc3, Arabidopsis PHT1 , edicago phosphate transporter, Arabidopsis Pyk10, tobacco auxin-inducible gene, beta-tubulin, LRX1 , ALF5, EXP7, LBD16, ARF1 , tobacco RD2, SIREO, Pyk10, PsPRi O. In a one embodiment, the promoter is a constitutive or strong promoter. In a preferred embodiment, the regulatory sequence is an inducible promoter, a stress inducible promoter or a tissue specific promoter. The stress inducible promoter is selected from the following non limiting list: the HaHB1 promoter, RD29A (which drives drought inducible expression of DREB1 A), the maize rabl7 drought-inducible promoter, P5CS1 (which drives drought inducible expression of the proline biosynthetic enzyme P5CS1 ), ABA- and drought-inducible promoters of Arabidopsis clade A PP2Cs (ABM , ABI2, HAB1 , PP2CA, HAM , HAI2 and HAI3) or their corresponding crop orthologs. In one embodiment, the promoter is CaMV35S.

Additional nucleic acid sequences which facilitate cloning of the target nucleic acid sequences into an expression vector may also be included in the nucleic acid construct according to the various aspects of the invention. This encompasses the alteration of certain codons to introduce specific restriction sites that facilitate cloning.

In another aspect, the invention relates to a non-transgenic plant with increased expression of DDA1 compared to a wild type plant wherein said endogenous DDA1 promoter nucleic acid or DDA1 nucleic acid carries a mutation introduced by mutagenesis which results in increased expression of the DDA1 gene or increased stability fo the DDA1 protein. The invention also relates to a method for increasing expression of DDA1 , producing plants overexpressing DDA1 , methods for mitigating the impacts of stress conditions on plant growth and yield and methods for producing plants with plant with improved yield/growth under stress conditions comprising the steps of mutagenising a plant population, identifying and selecting plants with an improved yield/growth under stress conditions and identifying a variant DDA1 promoter or gene sequence. In one embodiment such methods include exposing a plant population to a mutagen. Mutagenesis procedures are well known in the art and include without limitation chemical mutagenesis and irradiation. In one embodiment, said chemical mutagen is selected from ethyl methanesulfonate (EMS), methylmethane sulfonate (MMS), N- ethyl-N-nitrosurea (ENU), triethylmelamine, N-methyl-N-nitrosourea (MNU), procarbazine, chlorambucil, cyclophosphamide, diethyl sulphate (DES), dimethyl sulfate, acrylamide monomer, melphalan, nitrogen mustard, vincristine, dimethylnitosamine, N-methyl-N'-nitro-nitrosoguanidine (MNNG), nitrosoguanidine, 2- aminopurine, 7.12 dimethyl-benz(a)anthracene (DMBA), ethylene oxide, hexamethylphosphoramide, bisulfan, diepoxyalkanes (diepoxyoctane (DEO), diepoxybutane (BEB), and the like), 2-methoxy-6-chloro-9 [3-(ethyl-2- chloroethyl)aminopropylamino]acridine dihydrochloride (ICR-170) or formaldehyde. In another embodiment, mutagenesis is physical mutagenesis, such as application of ultraviolet radiation, X-rays, gamma rays, fast or thermal neutrons or protons.

Isolated mutants of the wild type DDA1 gene nucleic acid sequence and DDA1 promoter nucleic acid sequence identified in this way are also included within the scope of the invention. Plants obtained by the method above are also included within the scope of the invention.

In a further aspect, the invention relates to a method for producing a mutant plant expressing a DDA1 variant and which is characterised by one of the phenotypes described herein wherein said method uses mutagenesis and Targeting Induced Local Lesions in Genomes (TILLING) to target the gene expressing a DDA1 polypeptide. According to this method, lines that carry a specific mutation are produced that has a known phenotypic effect. For example, mutagenesis is carried out using TILLING where traditional chemical mutagenesis is flowed by high-throughput screening for point mutations. This approach does thus not involve creating transgenic plants. The plants are screened for one of the phenotypes described herein, for example a plant that shows improved yield/growth under stress conditions. A DDA1 locus is then analysed to identify a specific a DDA1 mutation responsible for the phenotype observed. Plants can be bred to obtain stable lines with the desired phenotype and carrying a mutation in a DDA1 locus.

Another technique that can be used for targeted DNA editing is Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) (U.S. Patent No. 8.697,359, Ran et al incorporated by reference). The CRISPR system can be used to introduce specific nucleotide modifications at the target sequence. Originally discovered in bacteria, where several different CRISPR cascades function as innate immune systems and natural defence mechanisms, the engineered CRISPR-Cas9 system can be programmed to target specific stretches of genetic code and to make cuts at precise locations. Over the past few years, those capabilities have been harnessed and used as genome editing tools, enabling researchers to permanently modify genes in mammalian and plant cells. Thus, the invention relates to a method for generating a DDA1 mutant nucleic acid encoding a mutant DDA1 polypeptide wherein said method comprises modifying a plant endogenous genome using CRISPR. The invention relates to a method for generating a DDA1 promoter mutant nucleic acid wherein said method comprises modifying a plant endogenous genome using CRISPR. The method involves targeting of Cas9 to the specific genomic locus, in this case DDA1 , via a 20nt guide sequence of the single-guide RNA. An online CRISPR Design Tool can identify suitable target sites (http://tools.genome-engineering.org, Ran et al. Genome engineering using the CRISPR-Cas9 system nature protocols, VOL.8 NO.1 1 , 2281 -2308, 2013). Target plants for the mutagenesis/genome editing methods according to the invention are any monocot or dicot plants. Preferred plants are recited elsewhere herein.

Plants obtained through such methods are also within the scope of the invention. In another aspect, the invention relates to a vector comprising a DDA1 nucleic acid sequence or nucleic acid construct comprising a DDA1 nucleic acid sequence. The DDA1 nucleic acid is preferably a plant DDA1 nucleic acid. The DDA1 nucleic acid may comprise SEQ D NO: 1 , 2 or 3 a functional variant or homolog of SEQ D NO: 1 , 2 or 3. Homologs/orthologs of AtDDAI are defined elsewhere herein. Preferably, the vector further comprises a regulatory sequence which directs expression of the nucleic acid. Expression vectors are well known in the art.

The invention also relates to an isolated host cell transformed with a nucleic acid or vector as described above. The host cell may be a bacterial cell, such as Agrobacterium tumefaciens, or an isolated plant cell. The invention also relates to a culture medium or kit comprising a culture medium and an isolated host cell as described above.

The nucleic acid or vector described above is used to generate transgenic plants using transformation methods known in the art. Thus, according to the various aspects of the invention, a nucleic acid comprising a DDA1 nucleic acid, for example SEQ D No. 1 , a functional variant or homolog thereof is introduced into a plant and expressed as a transgene. The nucleic acid sequence is introduced into said plant through a process called transformation. The term "introduction" or "transformation" as referred to herein encompasses the transfer of an exogenous polynucleotide into a host cell, irrespective of the method used for transfer. Plant tissue capable of subsequent clonal propagation, whether by organogenesis or embryogenesis, may be transformed with a genetic construct of the present invention and a whole plant regenerated there from. The particular tissue chosen will vary depending on the clonal propagation systems available for, and best suited to, the particular species being transformed. Exemplary tissue targets include leaf disks, pollen, embryos, cotyledons, hypocotyls, megagametophytes, callus tissue, existing meristematic tissue (e.g., apical meristem, axillary buds, and root meristems), and induced meristem tissue (e.g., cotyledon meristem and hypocotyl meristem). The polynucleotide may be transiently or stably introduced into a host cell and may be maintained non-integrated, for example, as a plasmid. Alternatively, it may be integrated into the host genome. The resulting transformed plant cell may then be used to regenerate a transformed plant in a manner known to persons skilled in the art.

The transfer of foreign genes into the genome of a plant is called transformation. Transformation of plants is now a routine technique in many species. Advantageously, any of several transformation methods may be used to introduce the gene of interest into a suitable ancestor cell. The methods described for the transformation and regeneration of plants from plant tissues or plant cells may be utilized for transient or for stable transformation. Transformation methods include the use of liposomes, electroporation, chemicals that increase free DNA uptake, injection of the DNA directly into the plant, particle gun bombardment, transformation using viruses or pollen and microprojection. Methods may be selected from the calcium/polyethylene glycol method for protoplasts, electroporation of protoplasts, microinjection into plant material, DNA or RNA-coated particle bombardment, infection with (non-integrative) viruses and the like. Transgenic plants, including transgenic crop plants, are preferably produced via Agrobacterium tumefaciens mediated transformation.

To select transformed plants, the plant material obtained in the transformation is, as a rule, subjected to selective conditions so that transformed plants can be distinguished from untransformed plants. For example, the seeds obtained in the above-described manner can be planted and, after an initial growing period, subjected to a suitable selection by spraying. A further possibility is growing the seeds, if appropriate after sterilization, on agar plates using a suitable selection agent so that only the transformed seeds can grow into plants. Alternatively, the transformed plants are screened for the presence of a selectable marker such as the ones described above. Following DNA transfer and regeneration, putatively transformed plants may also be evaluated, for instance using Southern analysis, for the presence of the gene of interest, copy number and/or genomic organisation. Alternatively or additionally, expression levels of the newly introduced DNA may be monitored using Northern and/or Western analysis, both techniques being well known to persons having ordinary skill in the art. The generated transformed plants may be propagated by a variety of means, such as by clonal propagation or classical breeding techniques. For example, a first generation (or T1 ) transformed plant may be selfed and homozygous second-generation (or T2) transformants selected, and the T2 plants may then further be propagated through classical breeding techniques. The generated transformed organisms may take a variety of forms. For example, they may be chimeras of transformed cells and non- transformed cells; clonal transformants (e.g., all cells transformed to contain the expression cassette); grafts of transformed and untransformed tissues (e.g., in plants, a transformed rootstock grafted to an untransformed scion). Thus, the invention relates to a method for producing a transgenic plant with improved yield/growth under stress conditions said method comprising

a) introducing into said plant and expressing a nucleic acid construct comprising a DDA1 nucleic acid sequence, for example a nucleic acid sequence comprising SEQ ID NO: 1 , 2, or 3 a functional variant or homolog of SEQ ID NO: 1 , 2, or 3 b) obtaining a progeny plant derived from the plant or plant cell of step a).

The method may comprise the further steps of:

exposing the plant to stress conditions, such as drought;

- assessing yield/growth;

selecting a plant or part thereof with increased stress resistance/ improved yield/growth;

optionally harvesting parts of the plant.

The invention also relates to plants obtained or obtainable with said method.

In another aspect, the invention relates to a method for reducing a plant response to ABA, said method comprising introducing into said plant and expressing a DDA1 nucleic acid or nucleic acid construct comprising a DDA1 nucleic acid, for example a nucleic acid comprising SEQ ID NO: 1 , 2 or 3 or a functional variant or homolog of SEQ ID NO: 1 , 2, or 3. The DDA1 nucleic acid is preferably a plant DDA1 nucleic acid sequence.

In another aspect, the invention relates to a method for modulating the interaction of the receptor PYL8 with ABA in a plant or in vitro said method comprising introducing into said plant or plant cell and expressing a DDA1 nucleic acid, for example a nucleic acid comprising SEQ ID NO: 1 , 2, or 3 or a functional variant or homolog of SEQ ID NO: 1 , 2, or 3. The DDA1 nucleic acid is preferably a plant DDA1 nucleic acid sequence. The interaction can be modulated by decreasing the presence of PYL8 as it will be degraded by DDA1.

The method may comprise the further steps of:

assessing the interaction of the receptor PYL8 with ABA;

selecting a plant or part thereof with modulated interaction;

optionally harvesting parts of the plant.

In another aspect, the invention relates to a method for increasing yield and/or growth of a plant under stress conditions said method comprising introducing into said plant and expressing a DDA1 nucleic acid, for example a nucleic acid comprising SEQ ID NO: 1 , 2 or 3 or a functional variant or homolog of SEQ ID NO: 1 , 2, or 3. The DDA1 nucleic acid is preferably a plant DDA1 nucleic acid sequence.

The method may comprise the further steps of:

exposing the plant to stress conditions, such as drought;

- assessing yield/growth;

selecting a plant or part thereof with increased yield/growth;

- optionally harvesting parts of the plant.

In another aspect, the invention relates to a method for mitigating the impacts of stress conditions on plant growth, development and/or yield said method comprising introducing into said plant and expressing a DDA1 nucleic acid, for example a nucleic acid comprising SEQ ID NO: 1 , 2 or 3 or a functional variant or homolog of SEQ ID NO: 1 , 2, or 3. The DDA1 nucleic acid is preferably a plant DDA1 nucleic acid sequence. The method may comprise the further steps of:

exposing the plant to stress conditions, such as drought;

selecting a plant or part thereof with increased stress resistance;

- optionally harvesting parts of the plant.

Preferred homologs of SEQ ID NO: 1 , 2, or 3 are listed elsewhere, In one embodiment, the homologous nucleic acid encodes a peptide selected from SEQ ID NO: 4, 8, 11 , 14, 18, 22, 26, 30, 34, 38, 42, 45, 49, 52, 56, 60, 64, 68, 71 , 75, 79, 83, 87, 90, 94, 98, 102, 106, 109, 1 12, 1 15, 1 19, 123, 126, 130, 133, 136, 139, 143, 147, 151 , 155, 159, 163, 166, 169, 173, 177, 181 , 184, 187 or 191 or a functional variant thereof. According to the various aspects of the invention, the stress may be severe or preferably moderate stress. According to the various aspects of the invention, the stress is selected from biotic and abiotic stress. In one embodiment, the stress is drought or water deficiency. In another embodiment, the stress is salinity. In Arabidopsis research, stress is often assessed under severe conditions that are lethal to wild type plants. For example, drought tolerance is assessed predominantly under quite severe conditions in which plant survival is scored after a prolonged period of soil drying. However, in temperate climates, limited water availability rarely causes plant death, but restricts biomass and seed yield. Moderate water stress, that is suboptimal availability of water for growth can occur during intermittent intervals of days or weeks between irrigation events and may limit leaf growth, light interception, photosynthesis and hence yield potential. Leaf growth inhibition by water stress is particularly undesirable during early establishment. There is a need for methods for making plants with increased yield under moderate stress conditions. In other words, whilst plant research in making stress tolerant plants is often directed at identifying plants that show increased stress tolerance under severe conditions that will lead to death of a wild type plant, these plants do not perform well under moderate stress conditions and often show growth reduction which leads to unnecessary yield loss. Thus, in one embodiment of the methods of the invention, yield is improved under moderate stress conditions. The transgenic plants according to the various aspects of the invention show enhanced tolerance to these types of stresses compared to a control plant and are able to mitigate any loss in yield/growth. The tolerance can therefore be measured as an increase in yield as shown in the examples. The terms moderate or mild stress/stress conditions are used interchangeably and refer to non-severe stress. In other words, moderate stress, unlike severe stress, does not lead to plant death. Under moderate, that is non-lethal, stress conditions, wild type plants are able to survive, but show a decrease in growth and seed production and prolonged moderate stress can also result in developmental arrest. The decrease can be at least 5%-50% or more. Tolerance to severe stress is measured as a percentage of survival, whereas moderate stress does not affect survival, but growth rates. The precise conditions that define moderate stress vary from plant to plant and also between climate zones, but ultimately, these moderate conditions do not cause the plant to die. With regard to high salinity for example, most plants can tolerate and survive about 4 to 8 dS/m. Specifically, in rice, soil salinity beyond ECe ~ 4 dS/m is considered moderate salinity while more than 8 dS/m becomes high. Similarly, pH 8.8 - 9.2 is considered as non- stress while 9.3 - 9.7 as moderate stress and equal or greater than 9.8 as higher stress. The DDA1 polypeptides described herein may be used alone or in combination with additional polypeptides or agents to increase stress tolerance in plants. For example, in the practice of certain embodiments, a plant can be genetically manipulated to produce more than one polypeptide associated with increased stress, for example, drought tolerance.

Drought stress can be measured through leaf water potentials. Generally speaking, moderate drought stress is defined by a water potential of between -1 and -2 Mpa. Moderate temperatures vary from plant to plant and specially between species. Normal temperature growth conditions for Arabidopsis are defined at 22-24°C. For example, at 28°C, Arabidopsis plants grow and survive, but show severe penalties because of "high" temperature stress associated with prolonged exposure to this temperature. However, the same temperature of 28°C is optimal for sunflower, a species for which 22°C or 38°C causes mild, but not lethal stress. In other words, for each species and genotype, an optimal temperature range can be defined as well as a temperature range that induces mild stress or severe stress which leads to lethality. Drought tolerance can be measured using methods known in the art, for example assessing survival of the transgenic plant compared to a control plant, or by determining turgor pressure, rosette radius, water loss in leaves, growth or yield. Regulation of stomatal aperture by ABA is a key adaptive response to cope with drought stress. Thus, drought resistance can also be measured by assessing stomatal conductance (Gst) and transpiration in whole plants under basal conditions. According to the invention, a transgenic plant has enhanced drought tolerance if the survival rates are at least 2, 3, 4, 5, 6, 7, 8, 9 or 10-fold higher than those of the control plant after exposure to drought and/or after exposure to drought and re-watering. Also according to the invention, a transgenic plant has enhanced drought tolerance if the rosette radius is at least 10, 20, 30, 40, 50% larger than that of the control plant after exposure to drought and/or after exposure to drought and re-watering. The plant may be deprived of water for 10-30, for example 20 days and then re-watered. Also according to the invention, a transgenic plant has enhanced drought tolerance if stomatal conductance (Gst) and transpiration are lower than in the control plant, for example at least 10, 20, 30, 40, 50% lower.

Thus in one embodiment, the methods of the invention relate to increasing resistance to moderate (non-lethal) stress or severe stress. In the former embodiment, transgenic plants according to the invention show increased resistance to stress and therefore, the plant yield is not or less affected by the stress compared to wild type yields which are reduced upon exposure to stress. In other words, an improve in yield under moderate stress conditions can be observed.

The terms "increase", "improve" or "enhance" are interchangeable. Yield for example is increased by at least a 3%, 4%, 5%, 6%, 7%, 8%, 9% or 10%, preferably at least 15% or 20%, more preferably 25%, 30%, 35%, 40% or 50% or more in comparison to a control plant. The term "yield" in general means a measurable produce of economic value, typically related to a specified crop, to an area, and to a period of time. Individual plant parts directly contribute to yield based on their number, size and/or weight, or the actual yield is the yield per square meter for a crop and year, which is determined by dividing total production (includes both harvested and appraised production) by planted square meters. The term "yield" of a plant may relate to vegetative biomass (root and/or shoot biomass), to reproductive organs, and/or to propagules (such as seeds) of that plant. Thus, according to the invention, yield comprises one or more of and can be measured by assessing one or more of: increased seed yield per plant, increased seed filling rate, increased number of filled seeds, increased harvest index, increased number of seed capsules/pods, increased seed size, increased growth or increased branching, for example inflorescences with more branches. Preferably, yield comprises an increased number of seed capsules/pods and/or increased branching. Yield is increased relative to control plants.

In one embodiment, the methods relate to improving drought tolerance of plant vegetative tissue. In one embodiment, the methods relate to improving drought tolerance of plant non- vegetative tissue.

A control plant as used herein is a plant, which has not been modified according to the methods of the invention. Accordingly, the control plant has not been genetically modified to express a nucleic acid as described herein. In one embodiment, the control plant is a wild type plant. In another embodiment, the control plant is a plant that does not carry a transgenic according to the methods described herein, but expresses a different transgene. The control plant is typically of the same plant species, preferably the same ecotype as the plant to be assessed.

A control plant or plant cell may thus comprise, for example: (a) a wild-type (WT) plant or cell, i.e., of the same genotype as the starting material for the genetic alteration which resulted in the subject plant or cell; (b) a plant or plant cell of the same genotype as the starting material but which has been transformed with a null construct (i.e., with a construct which has no known effect on the trait of interest, such as a construct comprising a marker gene); (c) a plant or plant cell which is a non-transformed segregant among progeny of a subject plant or plant cell; (d) a plant or plant cell genetically identical to the subject plant or plant cell but which is not exposed to conditions or stimuli that would induce expression of the gene of interest or (e) the subject plant or plant cell itself, under conditions in which the gene of interest is not expressed.

During seed development, ABA content increases and regulates many key processes including the imposition and maintenance of dormancy. ABA stimulates dormancy as well as adaptive responses to drought, cold and salt stress. As shown in the examples, DDA1 also controls PYL8 levels in seeds. Overexpressing DDA1-GFP seedlings were less sensitive to NaCI- or mannitol- mediated inhibition of seed germination than the wild type (Fig. 6G-6H), indicating that DDA1 over-expression effect is also evident under stress conditions that increase endogenous ABA levels. Therefore, in another aspect, the invention relates to a method for reducing plant seed dormancy said method comprising introducing into said plant and expressing a DDA1 nucleic acid, for example a nucleic acid comprising SEQ ID No: 1 , 2 or 3 or a functional variant or homolog thereof. The DDA1 nucleic acid is preferably a plant DDA1 nucleic acid sequence. In another aspect, the invention relates to a method for modulating germination said method comprising introducing into said plant and expressing a DDA1 nucleic acid, for example a nucleic acid comprising SEQ ID No: 1 , 2 or 3 or a functional variant or homolog thereof. Thus, the method can be used to advance or initiate germination. The DDA1 is preferably a plant DDA1 nucleic acid sequence. In one embodiment, seed dormancy is reduced and germination is altered under stress, for example moderate stress conditions. The terms "reduce" or "decrease" used herein are interchangeable. Seed dormancy for example is increased by at least a 3%, 4%, 5%, 6%, 7%, 8%, 9% or 10%, preferably at least 15% or 20%, more preferably 25%, 30%, 35%, 40% or 50%

The methods described above preferably contain the step of obtaining a progeny plant derived from the plant or plant cell. The various methods of the invention may also include the additional step of evaluating growth and yield of the transgenic plant and comparing said phenotype to a control plant. In another aspect, the invention relates to the use of a DDA1 nucleic acid sequence, for example a plant nucleic acid, for example a nucleic acid comprising or consisting of SEQ ID NO: 1 , 2 or a functional variant or homolog, a vector comprising a DDA1 nucleic acid sequence, for example a nucleic acid comprising or consisting of SEQ ID NO: 1 , 2 or 3 or a functional variant or homolog in reducing a plant response to ABA and/or increasing yield/growth under stress conditions. The DDA1 nucleic acid is preferably a plant DDA1 nucleic acid sequence. The transgenic plant according to the various aspects of the invention, including the transgenic plants, methods and uses described herein may be a monocot or a dicot plant. The plant DDA1 nucleic acid according to the various aspects of the invention may be a monocot or a dicot plant DDA1 nucleic acid. In one embodiment of the various aspects of the invention, the plant is a dicot plant. A dicot plant may be selected from the families including, but not limited to Asteraceae, Brassicaceae (eg Brassica napus). Chenopodiaceae, Cucurbitaceae. Leguminosae (Caesalpiniaceae, Aesalpiniaceae Mimosaceae, Papilionaceae or Fabaceae), Malvaceae, Rosaceae or Solanaceae. For example, the plant may be selected from lettuce, sunflower, Arabidopsis, broccoli, spinach, water melon, squash, cabbage, tomato, potato, yam, capsicum, tobacco, cotton, okra, apple, rose, strawberry, alfalfa, bean, soybean, field (fava) bean, pea, lentil, peanut, chickpea, apricots, pears, peach, grape vine or citrus species. In one embodiment, the plant is oilseed rape. Also included are biofuel and bioenergy crops such as rape/canola, corn, sugar cane, palm trees, jatropha, soybeans, sorghum, sunflowers, cottonseed, Panicum virgatum (switchgrass), linseed, wheat, lupin and willow, poplar, poplar hybrids, Miscanthus or gymnosperms, such as loblolly pine. Also included are crops for silage (maize), grazing or fodder (grasses, clover, sanfoin, alfalfa), fibres (e.g. cotton, flax), building materials (e.g. pine, oak), pulping (e.g. poplar), feeder stocks for the chemical industry (e.g. high erucic acid oil seed rape, linseed) and for amenity purposes (e.g. turf grasses for golf courses), ornamentals for public and private gardens (e.g. snapdragon, petunia, roses, geranium, Nicotiana sp.) and plants and cut flowers for the home (African violets, Begonias, chrysanthemums, geraniums, Coleus spider plants, Dracaena, rubber plant).

In one embodiment of the various aspects of the invention, the plant is a dicot plant. A monocot plant may, for example, be selected from the families Arecaceae, Amaryllidaceae or Poaceae. For example, the plant may be a cereal crop, such as wheat, rice, barley, maize, oat, sorghum, rye, millet, buckwheat, turf grass, Italian rye grass, sugarcane or Festuca species, or a crop such as onion, leek, yam or banana. In preferred embodiments of the various aspects of the invention the plant is a crop plant. By crop plant is meant any plant which is grown on a commercial scale for human or animal consumption or use.

In preferred embodiments of the various aspects of the invention the plant grain plant, an oil-seed plant, and a leguminous plant.

Most preferred plants according to the various aspects of the invention are maize, rice, wheat, oilseed rape, sorghum, soybean, potato, tomato, tobacco, grape, barley, pea, bean, field bean, lettuce, cotton, sugar cane, sugar beet, broccoli or other vegetable brassicas or poplar.

Polypeptide sequences for a non-limiting list of preferred AtDDAI orthologs comprise or consist of SEQ ID NOs: 8, 1 1 , 14, 18, 22, 26, 30, 34, 38, 42, 45, 49, 52, 56, 60, 64, 68, 71 , 75, 79, 83, 87, 90, 94, 98, 102, 106, 109, 1 12, 1 15, 1 19, 123, 126, 130, 133, 136, 139, 143, 147, 151 , 155, 159, 163, 166, 169, 173, 177, 181 , 184, 187, 191 , 192 or a functional variant thereof. Corresponding nucleic acids are set out herein. Alternatively, the AtDDAI ortholog is a DDA1 isolated from any of the plants defined herein, preferably any crop plant, for example, but not limited to maize, wheat, oilseed rape, canola, sorghum, soybean, potato, tomato, tobacco, grape, barley, pea, bean, field bean, lettuce, cotton, sugar cane, sugar beet, broccoli or other vegetable brassicas or poplar.

In another aspect, the invention relates to a method for increasing expression of a DDA1 nucleic acid in a plant, preferably a plant DDA1 nucleic acid compared to a control plant by incorporating a heterologous nucleic acid which encodes a DDA1 - related polypeptide. In one embodiment, expression is increased by a method comprising; crossing a first and a second plant to produce a population of progeny plants; determining the expression of the DDA1 -related polypeptide in the progeny plants in the population, and identifying a progeny plant in the population in which expression of the DDA1 -related polypeptide is increased relative to controls. In another embodiment, expression is increased by a method comprising; exposing a population of plants to a mutagen, determining the expression of the DDA1 -related polypeptide in one or more plants in said population, and identifying a plant with increased expression of the DDA1 -related polypeptide The methods can comprise sexually or asexually propagating or growing off-spring or descendants of the plant having increased DDA1 - related polypeptide expression.

The term "plant" as used herein encompasses whole plants, ancestors and progeny of the plants and plant parts, including seeds, fruit, shoots, stems, leaves, roots (including tubers), flowers, and tissues and organs, wherein each of the aforementioned comprise the gene/nucleic acid of interest. The term "plant" also encompasses plant cells, suspension cultures, callus tissue, embryos, meristematic regions, gametophytes, sporophytes, pollen and microspores, again wherein each of the aforementioned comprises the gene/nucleic acid of interest.

The various aspects of the invention described herein clearly extend to any plant cell or any plant produced, obtained or obtainable by any of the methods described herein, and to all plant parts and propagules thereof unless otherwise specified. The present invention extends further to encompass the progeny of a primary transformed or transfected cell, tissue, organ or whole plant that has been produced by any of the aforementioned methods, the only requirement being that progeny exhibit the same genotypic and/or phenotypic characteristic(s) as those produced by the parent in the methods according to the invention.

The invention also extends to harvestable parts of a plant of the invention as described above such as, but not limited to seeds, leaves, fruits, flowers, stems, roots, rhizomes, tubers and bulbs. The invention furthermore relates to products derived, preferably directly derived, from a harvestable part of such a plant, such as dry pellets or powders, oil, fat and fatty acids, starch or proteins. The invention also relates to food products and food supplements comprising the plant of the invention or parts thereof. While the foregoing disclosure provides a general description of the subject matter encompassed within the scope of the present invention, including methods, as well as the best mode thereof, of making and using this invention, the following examples are provided to further enable those skilled in the art to practice this invention and to provide a complete written description thereof. However, those skilled in the art will appreciate that the specifics of these examples should not be read as limiting on the invention, the scope of which should be apprehended from the claims and equivalents thereof appended to this disclosure. Various further aspects and embodiments of the present invention will be apparent to those skilled in the art in view of the present disclosure.

All documents mentioned in this specification, including reference to sequence database identifiers, are incorporated herein by reference in their entirety. Unless otherwise specified, when reference to sequence database identifiers is made, the version number is 1 .

"and/or" where used herein is to be taken as specific disclosure of each of the two specified features or components with or without the other. For example "A and/or B" is to be taken as specific disclosure of each of (i) A, (ii) B and (iii) A and B, just as if each is set out individually herein.

Unless context dictates otherwise, the descriptions and definitions of the features set out above are not limited to any particular aspect or embodiment of the invention and apply equally to all aspects and embodiments which are described. The invention is further described in the following non-limiting examples.

Examples

DDA1 is present in vascular plants

To investigate whether DDA1 is conserved across plant families, we searched for DDA1 -related sequences in plant genomic databases (see Methods). We successfully retrieved DDA1 homologs from 49 different plant species and subspecies (Figure 8). On average, 66% aa sequence identity was found between DDA1 ortholog pairs. Phylogenetic analyses showed that DDA1 is conserved in vascular plants, including pteridophyte Sellaginella moellendorffii, and could not be found in algae or in the moss Physcomitrella patens (Figure 9). In the case of Angiosperms, DDA1 was present in both monocots and dicots. In plant diploid species, DDA1 was usually found as a single copy gene, although in some cases (e.g. corn, soybean and cotton) we found two DDA 1 gene copies.

DDA1 is a component of the CDD complex in Arabidopsis

The CDD complex was originally isolated from floral meristems of cauliflower (a Brassica species related to Arabidopsis) using a biochemical purification procedure (Yanagawa et al. , 2004). To determine whether DDA1 co-purifies with the CDD complex, we subjected the original gel filtration fractions, corresponding to the last step of CDD purification, to SDS-PAGE followed by silver staining or immunoblots using a specific antibody raised against recombinant His-tagged DDA1 (Figure 1 A). No additional bands than those previously reported were detected by silver staining of the SDS-PAGE gel. However, DDA1 could be immunodetected in fractions corresponding to the CDD as three protein bands of lower MW (10 KDa) than expected (16 KDa), indicating that, although apparently partly degraded, DDA1 is present in purified CDD samples. To further confirm that DDA1 binds to the CDD complex, we isolated DDA1 - associated proteins using Tandem Affinity Purification (TAP) techniques. For this, C- terminal TAP-tagged DDA1 was expressed and purified from two Arabidopsis cell cultures. The identity of proteins that co-purified with DDA1 -TAP was determined using mass spectrometry analysis. Together with DDA1 , TAP-purified samples contained all CDD complex components (Figure 1 B-1 C). In this regard, DDA1 was incorporated into CDD complexes that contained either DDB1 a or DDB1 b, as both proteins co-purified with DDA1 -TAP. Next, we characterized DDA1 interaction with CDD complex components using yeast two-hybrid assays. In agreement with previous studies in mammalian systems (Jin et al., 2006; Olma et al., 2009; Pick et al. , 2007), we found that DDA1 strongly binds to DDB1 proteins and that this interaction occurs through the β-propeller domain A (BPA) in DDB1 (Figure 1 D-1 F). Association of DDA1 into CDD complexes was likely mediated by DDA1 -DDB1 physical interaction, since we did not observe direct binding of DDA1 to neither DET1 nor COP10 (Figure 1 E). Upon DDA1 - TAP purification, a DCAF protein (encoded by the At5g 12920 locus; Lee et al., 2008) was also co-purified (Figure 1 B-1 C). This DCAF protein interacted with DDB1 a in yeast two hybrid assays but not with DDA1 , indicating that DDA1 - DCAF association is indirect and likely mediated by DDB1 proteins (Figure 1 E).

DDA1 localizes in nuclei and plastids and interacts in vivo with CUL4

DDA1 has been shown to localize in nuclei of mammalian cells (Olma et al., 2009). In order to analyze DDA1 subcellular localization in planta, we first generated Arabidopsis transgenic plants expressing the cDNA of DDA1 fused to GFP under the control of the CaMV 35S promoter (oeDDA1 -GFP). Using these lines, we examined DDA1 -GFP expression levels relative to endogenous DDA1 of wild-type plants by quantitative realtime RT-PCR (q-RT-PCR; Figure 2A). All three independent lines tested displayed high level of DDA 1-GFP expression; ranging from 100- to 1000- fold the endogenous DDA1 transcript level in wild-type plants. Confocal microscopy analysis showed a similar pattern of DDA1 -GFP fluorescence in root cells of all oeDDA1 -GFP lines analyzed (Figure 2D-2E). Thus, similar to previous studies in animals, DDA1 -GFP was observed to localize in nuclei. Interestingly, DDA1 -GFP accumulated in additional vesicular compartments unevenly distributed through the cytoplasm. To unveil the identity of these compartments we transiently co-expressed DDA1 -GFP and different subcellular markers in Nicotiana benthamiana leaves using agroinfiltration techniques. We only found co-localization of DDA1 -GFP and a fluorescent marker of plastids (Figure 2F- 2N). In agreement with our microscopy data, DDA1 is predicted to localize in both nuclei and chloroplasts according to protein subcellular localization prediction tools (SUBA3; http://suba.plantenergy.uwa.edu.au/). To test whether DDA1 -GFP is able to associate with the CDD complex, we crossed oeDDA1 -GFP plants (line 3; Figure 2A) with a previously described 3xFLAG epitope tagged-COP10 expressing line (FLAG- COP10) and conducted immunoprecipitation assays. As shown in Figure 2B, FLAG- COP10 coimmunoprecipitated with DDA1 -GFP. Since DDA1 and COP10 do not directly interact, according to our yeast two hybrid assays (Figure 1 E), we concluded that DDA1 -GFP and FLAG-COP10 were incorporated in the same CDD complexes. Moreover, we detected CUL4 protein in DDA1 -GFP immunoprecipitates using specific anti-CUL4 antibodies (Figure 2C). Taken together, these results indicate that DDA1 , likely as part of the CDD, interacts with CUL4-containing (i.e. CRL4) complexes in plant nuclei, where both complexes are located (Chen et al., 2006; Molinier et al. , 2008: Schroeder et al., 2002; Suzuki et al., 2002).

Null mutation of DDA1 causes ovule infertility

In order to functionally characterize DDA1 in plants, we searched for loss-of-function mutants in different Arabidopsis T-DNA insertion collections. All available lines contained the T-DNA integrated into non-coding regions in the DDA1 gene and displayed transcript levels similar to those of wild-type plants (data not shown), which precluded their use in further studies. Similar results were found when DDA1 gene silencing approaches were followed as all Arabidopsis transgenic lines obtained using two different RNA interference systems (Hilson et al., 2004; Karimi et al., 2002), displayed normal DDA1 mRNA levels (data not shown). We then screened a permanent collection of chemically induced mutants (TILLer; http://www.cnb.csic.es/~tiller/; Martin et al., 2009) from which we isolated a heterozygous line that contained a point mutation (G to A) at the donor splice-site of the second intron (Figure 3A). This mutation, hereafter termed as dda1-1 , is predicted to impair proper splicing of DDA1 premRNA and to yield a truncated translation product lacking the C-terminal half of the protein. In order to remove extraneous mutations, dda1-1 plants were backcrossed with the wild-type seven times. Segregation analyses using the progeny of backcrossed plants showed that the frequency of homozygous dda1-1 plants recovered was much lower (3.84%) than expected (25%), suggesting that loss of DDA1 function causes partial lethality of embryos or reduced gamete transmission efficiency. The latter seems to be the case since the siliques of heterozygous dda1-1 mutants contained a larger number of unfertilized ovules (14.9%), compared to wild-type ones (4.3%), rather than an increased number of aborted seeds (Figure 3B and 3C; ). We aimed to test whether the transmission efficiency of the ddal- 1 mutation through any or both gametophytes (pollen and ovules) was altered. For this, reciprocal crosses between heterozygous dda1-1 mutants and wild-type plants were carried out. Analysis of the F1 progeny showed that the transmission efficiency of the dda1-1 allele through the pollen is reduced significantly, but not through the ovule . However, we observed ovule development defects when homozygous dda1-1 plants were analyzed. Thus, although the homozygous mutants showed normal vegetative development and flowering, they were fully sterile (Figure 3D). Any attempt to fertilize homozygous dda1-1 flowers using wild-type pollen failed, whereas fertilization could be attained when using mutant pollen and wild-type pistils (data not shown), indicating that dda1-1 mutation reduces ovule fertility. Accordingly, dissection of non-pollinated pistils fromhomozygous dda1-1 flowers showed they only contain arrested ovules (Figure 3E- 3F). Taken together, these results indicate that DDA1 plays a role in the control of both gametophytes function, being essential for ovule development.

DDA1 physically interacts with PYR/PYL ABA receptors

The molecular basis of DDA1 activity is unknown. To get insights into its mechanism of action, we searched for proteins that interact with DDA1 . With this aim, we conducted a yeast two-hybrid screen using DDA1 as bait. Thus, the full-length coding sequence of DDA1 fused to the binding domain of GAL4 was used to screen a cDNA library prepared from Arabidopsis seedlings. From over 15 million clones screened, 200 were identified as potential DDA1 interactors. Among them, 20 were subsequently confirmed by retransformation into yeast. Interestingly, among the DDA1 interactors we found two clones corresponding to members of the PYR/PYL/RCAR family of ABA receptors; PYL4 and PYL9 (Figure 4A). The clones isolated in our screen did not correspond to full-length versions of these proteins but rather to truncated ones (PYL4, a a 84-207; PYL9, aa 75-187). We aimed to determine whether DDA1 interacts with full length PYL4 and PYL9 and with other Arabidopsis PYR/PYL/RCAR family members using yeast two hybrid assays. Although we did not observe DDA1 binding to full length PYL4 and PYL9 (Figure 4C), suggesting that additional factors might be required for their interaction, we found that DDA1 strongly binds to PYL8, which we selected for further studies (Figure 4B).

To confirm that DDA1 and PYL8 interact in planta, we performed bimolecular fluorescence complementation (BiFC) assays. N. benthamiana leaves were coinfiltrated with Agrobacterium tumefaciens cells to express DDA1 and PYL8 fusions with the Nor C- portions of the yellow fluorescent protein (YFP). The infiltrated leaves were analyzed under the confocal fluorescence microscope 3 d after infiltration. Physical interaction between DDA1 and PYL8 was revealed by reconstitute of YFP fluorescence in cells coinfiltrated with constructs corresponding to DDA1 :YFPC and YFPNPYL8, whereas expression of DDA1 or PYL8 constructs alone did not restore the YFP fluorescence (Figure 4D). Interaction between DDA1 and PYL8 seemed to occur exclusively in nuclei, since fluorescent signal resulting from their interaction colocalizes with 4',6-diamidino-2-phenylindole (DAPI) staining (Figure 4D).

PYL8 ABA receptor is ubiquitinated and degraded by the proteasome

The CDD complex has been shown to facilitate ubiquitination and subsequent degradation of specific protein targets by the Ub-proteasome system (UPS) (Castells et al., 2010; Chen et al., 2006; Osterlund et al., 2000). To determine whether PYL8 is a substrate of the UPS, we treated Arabidopsis seedlings expressing a 3xHA-tagged PYL8 fusion (oe3HA-PYL8) with proteasome inhibitor MG132. Immunoblots using anti- HA antibodies showed increased 3HA-PYL8 protein accumulation in MG132- treated samples than in mock controls (Figure 5A). Moreover, upon proteasome inhibition several bands of high MW were detected, likely corresponding to ubiquitinated 3HA- PYL8 forms. To confirm PYL8 ubiquitination, Ub-conjugated proteins were purified from oe3HA-PYL8 plants using commercially available p62 resin (which displays affinity for Ub and binds it non-covalently. Immunoblots using anti-HA antibodies showed precipitation of 3HA-PYL8, as multiple high MW bands, when samples were incubated with p62 resin but not when the empty resin was used, indicating that 3HA-PYL8 is modified by poly-Ub chains in planta (Figure 5B-5C).

DDA1 overexpression promotes PYL8 protein degradation

Because PYL8 is targeted for degradation by the proteasome, and DDA1 and PYL8 physically interact, we investigated whether DDA1 mediates PYL8 destabilization. For this, we compared the rate of degradation of 3HA-PYL8 after treatment of plants with cycloheximide (CHX) with that in plants that over-express both DDA1 -GFP and 3HAPYL8 (obtained by crossing between oe3HA-PYL8 and oeDDA1 -GFP line 3; Figure 2A). DDA1 -GFP over-expression increased 3HA-PYL8 degradation over the time compared to oe3HA-PYL8 controls (Figure 5D-5E). In these experiments, treatment of plants from both genotypes with MG132 attenuated 3HA-PYL8 destabilization, further confirming proteasomal control of PYL8 stability (Figure 5F). Interestingly, ABA treatments blocked 3HA-PYL8 degradation although this effect was reduced when DDA1 -GFP was over-expressed. None of these effects on 3HA-PYL8 protein levels was caused by changes in the expression of the corresponding transgene, as indicated by semiquantitative RT-PCR analysis (Figure 5G). It has been previously shown that PYR/PYL/RCAR ABA receptors accumulate in seeds where they mediate ABA inhibition of seed germination (Gonzalez-Guzman et al., 2012). Thus, we tested whether DDA1 also controls PYL8 levels in seeds. Immunoblots of protein extracts from imbibed seeds showed that DDA1 -GFP over- expression decreases 3HA-PYL8 accumulation in both ABA-treated and non-treated seeds (Figure 5H-5J). Again, ABA led to increased accumulation of 3HA-PYL8. Taken together these results indicate that DDA1 and ABA play opposite roles in the control of PYL8 accumulation, whereas DDA1 facilitates PYL8 degradation, ABA prevents its destabilization.

Overexpression of DDA1 reduces plant sensitivity to ABA

Our data indicate that DDA1 facilitates degradation of PYL8, and likely that of other PYR/PYL/RCAR receptors with which it interacts, pointing to a negative regulatory role for DDA1 in ABA signalling. To test this hypothesis, we characterized several ABA responses in oeDDA1 -GFP plants (line 3; Figure 2A), including ABA-mediated inhibition of seed germination, seedling establishment and root, and shoot growth. As a control, we used wild-type and oeHABI (over-expressing the PP2C phosphatase HAB1 ; used as ABA-insensitive control) plants in these experiments. oeDDA1 -GFP plants showed a reduced response to ABA compared to wild-type plants in all cases, except for ABA-mediated inhibition of shoot growth (Fig. 6A-6I). In addition, oeDDAI - GFP seedlings were less sensitive to NaCI- or mannitol- mediated inhibition of seed germination than the wild-type (Fig. 6G-6H), indicating that DDA1 over-expression effect is also evident under stress conditions that increase endogenous ABA levels (Leung and Giraudat, 1998: Seo and Koshiba, 2002). To confirm that reduced sensitivity to ABA is due to DDA1 over-expression and not to an artifact caused by its fusion to GFP, we obtained Arabidopsis plants expressing the cDNA of DDA 1 under the control of a β-estradiol-inducible promoter (iDDA1 ; Fig 6J- 6K). Seed germination rates of iDDA1 plants grown in MS media supplemented or not with ABA or with β- estradiol were completely indistinguishable of those of wild-type plants. However, seedling establishment rate increased in the iDDA1 line compared to the wild-type when both ABA and β-estradiol were added to the media.

Reduced CDD function causes ABA hypersensitivity

Analysis of the effect of reduced DDA1 function in ABA signalling was hindered by the fact that homozygous dda1-1 null mutants were infertile and under-represented in an F2 segregating population (-4% instead of 25%:). Additionally, RNAi approaches did not succeed to silence DDA1, as afore-mentioned. As an alternative, we sought to characterize mutants of other CDD components since DDA1 forms part of the CDD complex. Analysis of ABA responses showed that mutations that yield reduced function of DDB1 , DET1 , or COP10 (note that their total loss of function is lethal; Bernhardt et al., 2010; Schroeder et al., 2002; Suzuki et al., 2002) caused an opposite ABA phenotype to that of DDA1 over-expressing plants. Thus, ddbla, cop10-4 and det1-1 mutants showed increased response to ABA-mediated inhibition of germination and seedling establishment than wild-type plants. In the case of det1-1 mutants, ABA hypersensitivity also extended to root growth responses (Figure 7A-7E). Next, we determined whether ABA hypersensitivity correlates with increased accumulation of PYL8 in plants showing reduced CDD function. For this analysis, we used cop 10-4 mutants as a representative of CDD deficient mutants. Immunoblots of protein extracts obtained from imbibed seeds showed that cop 10-4 mutation increases 3HA-PYL8 accumulation in both ABA-treated and non-treated seeds (Figure 7F-7G). Altogether, these results suggest that cooperation between CDD components exists to control ABA receptor stability and therefore, to regulate ABA responses.

DISCUSSION

Noteworthy, ABA and DDA1 seem to play opposite roles in the control of PYL8 stability; where ABA and DDA1 prevent and promote PYL8 degradation, respectively. Since ABA signaling is obviously strongly dependent on the activity of PYR/PYL/RCAR receptors, an ABAdependent protection mechanism for receptor stability would serve to reinforce and sustain ABA signaling. In this context, DDA1 -mediated degradation of PYL8 could contribute to desensitize the pathway when stress conditions disappear and ABA levels diminish. The molecular aspects underlying ABA-mediated protection of PYL8 are totally unknown. One possibility is that ABA binding-driven changes in receptor conformation disrupt DDA1-PYL8 interaction or PYL8 ubiquitination and/or degradation rates. Thus, it is known that PYL8 interacts in an ABA-dependent manner at least with five clade A PP2Cs in vivo (Antoni et al., 2013; Saavedra et al., 2010). The ternary complexes PP2C-ABA-PYL8 show high stability (Kd around 20-40 nM) and the interaction of PYL8 with ABA and the PP2C generates substantial changes in receptor conformation (Melcher et al., 2009; Santiago et al., 2009). Therefore, it is likely that such complexes protect PYL8 from DDA1 -mediated degradation or effectively compete with DDA1 -PYL8 interaction. Further biochemical and molecular studies should help us to unveil the precise details of such a protective mechanism.

Despite functional redundancy between PYR/PYL/RCAR ABA receptors, PYL8 has a prominent role in mediating ABA signaling at the roots (Antoni et al., 2013). Consistent with DDA1 control of PYL8 function, oeDDA1-GFP plants phenocopied the reduced sensitivity to ABA-mediated inhibition of root growth shown by pyl8-1 mutants. Notably, DDA1 overexpression also altered responses that are regulated by highly redundant PYR/PYL/RCAR family members, including seed germination and seedling establishment (Gonzalez-Guzman et al., 2012), suggesting an ampler role for DDA1 in controlling ABA receptor stability. In agreement with this, PYL4 and PYL9 were identified in a yeast two hybrid-based screen of DDA1 interactors. However, contrary to PYL8 results, full length versions of PYL4 and PYL9 did not bind DDA1 in yeast, which may suggest that additional factors are required for these interactions to occur in vivo. Indeed, we cannot exclude the possibility that DDA1 activity as part of CDD complexes is aided by other subunits, including other DCAF proteins. In fact, our TAP purification CDD complexes have been proposed to play a dual role in regulating CRL4 activity by enhancing the E3 activity of CRL4, likely through its COP10 subunit, and facilitating CRL4 target recognition (Yanagawa et al., 2004; Pick et al., 2007; Olma et al., 2009).

In the latter case, it has been suggested that CDD complexes may act as adaptor modules for additional substrate receptors (Lau and Deng, 2012). Our results on the biochemical and functional characterization of Arabidopsis DDA1 strongly support this model. Thus, we found that DDA1 associates with the CDD complex and CUL4 in vivo and is involved in direct protein target recognition for ubiquitination and subsequent degradation by the proteasome. Although DDA1 association with plant CDD complexes was presumed (Chen et al., 2010), no direct evidence had been provided yet.

Here, we demonstrate that DDA1 is a component of CDD using two approaches. First, we were able to detect DDA1 in biochemically purified CDD fractions. CDD purification yielded partially degraded COP10 and DET1 products, as seems to be the case for DDA1 too, which might have precluded its identification in the study by (Yanagawa et al., 2004). Second, we found all CDD components in TAP-purified DDA1 samples. Similar to its human counterpart, DDA1 association with CDD, and therefore CRL4, is mediated by its interaction with the BPA domain in DDB1 proteins (Jin et al., 2006; Pick et a!.. 2007).

DDA1 biochemical activity has been a matter of discussion since its identification in mammalian systems (Pick et al., 2007; Olma et al., 2009; Chen et al., 2010). One hypothesis was that DDA1 might play a structural role as part of CDD/DDD-E2 complexes. However, DDA1 is apparently not required to maintain the integrity of these complexes, since the CDD complex could be reconstituted in vitro in the absence of DDA1 (Chen et al. , 2006). Another possibility was that DDA1 might be necessary to activate certain CRL4s, by stabilizing DDB1 association with a specific subset of DCAFs. Indeed, immunoprecipitation assays showed that both endogenous and tagged hDDA1 associate with DDB1 , CUL4 and several DCAF proteins, including Constitutively photomorphogenic 1 (COP1 ), AM BRA and Cockayne syndrome A (CSA) in human cells (Jin et al., 2006; Olma et al., 2009; Behrends et al., 2010). However, experimental evidence showing DDA1 -mediated stabilization of DDB1 - DCAF complexes has not been provided. In this study, we propose a different function for DDA1 as a novel type of substrate receptor for CRL4 ubiquitin ligases. In this regard, we identified the first known target of DDA1 activity, the ABA receptor PYL8.

Despite functional redundancy between PYR/PYL/RCAR ABA receptors, PYL8 has a prominent role in mediating ABA signaling at the roots (Antoni et al., 2013). Consistent with DDA1 control of PYL8 function, oeDDA1 -GFP plants demonstrated reduced sensitivity to ABA-mediated inhibition of root growth, as is also the case for pyl8-1 mutants. Notably, DDA1 overexpression also altered responses that are regulated by highly redundant PYR/PYL/RCAR family members, including seed germination and seedling establishment (Gonzalez-Guzman et al., 2012), suggesting a broader role for DDA1 in controlling ABA receptor stability. In agreement with this, we found that DDA1 also interacts in vivo with PYL4 and PYL9, which may represent additional targets for DDA1 . However, we did not observe interaction of DDA1 with PYL5 and PYL6 in yeast two hybrid assays, suggesting that a certain degree of specificity in DDA1 activity may exist. DDA1 function towards ABA receptors is very likely performed in the context of the CDD, as indicated by the increased sensitivity to ABA of mutants of other members of the complex. Accordingly, cop 10-4 plants accumulated higher levels of PYL8 protein than wild-type plants, as it is expected for plants with reduced DDA1 function. However, no other CDD component was able to interact with PYL8 under our experimental conditions, highlighting the specificity and preponderance of DDA1 in ABA receptor recognition. These results are consistent with a model in which the whole CDD complex acts as a substrate adaptor module for CRL4 where DDA1 mediates recognition of specific targets. It is noteworthy that ABA and DDA1 play opposite roles in the control of PYL8 stability where ABA and DDA1 prevent and promote PYL8 degradation, respectively. Since ABA signaling is obviously strongly dependent on the activity of PYR/PYL/RCAR receptors, an ABA-dependent protection mechanism for receptor stability would serve to reinforce and sustain ABA signaling, particularly during the early stages of signaling. However, at later stages, plant desensitization to ABA likely occurs in order to prevent the adverse effects of continuous ABA responses (i.e. growth reduction or stomatal closure). Accordingly, it has been shown that ABA reduces PYL8 gene expression after 3 h of treatment (Saavedra et al., 2010). Interestingly, ABA treatment of oeHA-PYL8 seeds for 24 h also reduced HA-PYL8 transcript levels suggesting the implication of posttranscriptional control of PYL8 mRNA by ABA. Our results on DDA1 further emphasize on the complexity and sophistication of the regulatory network that modulates ABA signaling. Thus, DDA1 -mediated degradation of ABA receptors should also contribute to desensitize the pathway when stress conditions disappear and ABA levels diminish. This regulatory mechanism might be also instrumental to impair ABA signaling during germination since it has been shown that ABA concentration in seeds is reduced upon imbibition The molecular aspects underlying ABA-mediated protection of PYL8 remain unknown. This mechanism apparently does not imply disruption of the PYL8/DDA1 interaction or a reduction of DDA1 levels, but rather a decrease in PYL8 polyubiquitination rates. One possibility is that changes in receptor conformation driven

by ABA-binding limit PYL8 ubiquitination. Thus, it is known that PYL8 interacts in an ABA-dependent manner at least with five clade A PP2Cs in vivo (Saavedra et al., 2010; Antoni et al., 2013). The ternary complexes PP2C-ABA-PYL8 show high stability (Kd around 20-40 nM), and the interaction of PYL8 with ABA and the PP2C generates substantial changes in receptor conformation (Melcher et al., 2009; Santiago et al., 2009). Therefore, it is possible that formation of such complexes may hide specific lysine residues on PYL8 and thereby interfere with its polyubiquitination. Further biochemical and molecular studies should help us to unveil the precise details of such a protective mechanism. Definition of the structural details of DDA1 binding to specific PYR/PYL/RCAR proteins in the presence of CDD and CRL4 complexes, and/or PP2Cs and ABA, will also help to elucidate how DDA1 substrate specificity is attained (note that DDA1 lacks WDxR motifs usually required for substrate interaction) and to better understand the modulation of ABA signaling based on the control of ABA receptor stability.

METHODS

Plant Materials and Growth Conditions

Arabidopsis plants used in this study, including mutants and transgenic plants, were of the Columbia-0 (Col-0) ecotype. Plants were grown in MS media (Murashige and Skoog, 1962) with 1 % sucrose at 21 °C under a 16-h-light/8-h-dark cycle using cool white fluorescent light conditions (100 mmol m-2 s-1 ). Specific treatments were performed as stated in each experiment (see below and figure legends). Mutants cop 10- 4, det1-1, oral, hab1-1 abi1-2, pyl8-1 and transgenic lines oe3HA-PYL8, FLAGCOP10, and oeHABI have been previously described (Antoni et al., 2013; Fernandez- Arbaizar et al., 2012; Peeper et al., 1994; Suzuki et al., 2002; Yanagawa et al., 2004). The T-DNA insertion line corresponding to ddb la was obtained from TAIR (http://www.Arabidopsis.org; SALK_038757). To generate transgenic plants expressing DDA1 , the DDA1 cDNA was amplified using Expand High Fidelity Polymerase (Roche) and Gateway-compatible primers: DDA1 -BF 5'- GGGGACCACTTTGTACAAGAAAGCTGGGTAGAATAGTGAGCAACTTTAAGT CGA-3' (SEQ ID NO: 197) and DDA1 -BR 5'-

GGGGACCACTTTGTACAAGAAAGCTGGGTATAAGCCCTGAGTAGATGAAGA AGAAGACG-3' (SEQ ID NO: 198). PGR products were cloned into the pDONR207 plasmid using Gateway BP reaction kits (Invitrogen) and verified by Sanger sequencing. Then, DDA1 cDNA was transferred, using Gateway LR reaction kits (Invitrogen), to pGWB5 (Nakagawa et al. , 2007) and pMDC7 (Curtis and Grossniklaus, 2003) destination vectors. The resulting plasmids were used to generate oeDDA1 -GFP and iDDA1 lines, respectively. In all cases, plant transformation was performed by transferring the corresponding constructs to Agrobacterium tumefaciens C58C1 (pGV2260) competent cells (Deblaere et al., 1985). Transformation of Arabidopsis plants was performed by the floral dip method (Clough and Bent, 1998). T1 transgenic seeds were selected based on corresponding selection markers and T3 homozygous progenies were used for further studies. Lines oeDDAI -GFP/oeFLAG-COP10, oeSHA- PYL8/py/8-7/oeDDA1 -GFP and oe3H A-PYL8/py/8- i/cop 10-4 were generated by crossing the corresponding homozygous parental lines. F2 segregating progenies of these crosses were selected in the corresponding antibiotics to isolate homozygous plants for each construct. The dda 1-1 mutant was isolated by screening of an Arabidopsis TILLING (Targeting Induced Local Lesions IN Genomes) mutant collection (TILLer Martin et al., 2009; http://www.cnb.csic.es/~tiller/). The dda1-1 mutant, originally identified in a Landsberg erecta background, was introgressed into the Col-0 ecotype after seven sequential crosses. Plants harbouring the dda1-1 mutation (either homo- or heterozygous mutants) could be identified by their distinctive restriction pattern compared to wild-type plants after genomic PGR using specific primers 5 ' - CTGGGTTTTGCTGCTTACTTGG-3' (SEQ ID NO: 199) and 5 - TCCTACG AAATCCTGTGTTATG-3 ' (SEQ ID NO:200), and subsequent digestion with Hp/? I (Roche). For BiFC experiments, N. benthamiana plants were grown in soil in the green house at 22°C under 16-h-light/8-h-dark photoperiod prior to agroinfiltration of leaves with the corresponding constructs.

Quantitative and semiquantitative RT-PCR

Quantitative RT-PCR experiments were performed using RNA extracted from Col-0 wild-type and oeDDAI -GFP plants. Three biological replicates, consisting of tissue pooled from 15-20 plants from different plates, were taken. RNA extraction and cleanup was done with RNeasy mini kit (Qiagen) and DNase digestion to remove genomic DNA contamination. cDNA was synthesized from 1 pg of total RNA using a high-capacity cDNA reverse transcription kit (Applied Biosystems). Ten pL from one-tenth diluted cDNA was used to amplify DDA1 and the housekeeping gene ACTIN8 using FastStart Universal Probe Master (Roche). Primers used were: DDA1 -RTF 5'- CCCTCCGATCCTTCTAATCC-3', DDA1 -RTR 5'- (SEQ ID NO:201 )

GCTGCGTATAAGAATGTTTTTCAC-3', ACT8-F 5'- (SEQ ID NO:202) GGTACTGGAATGGTTAAGGC-3' and ACT8-R 5'- (SEQ ID NO:203)

GTCCAACACAATACCGGTTG-3' . (SEQ ID NO:204)

Quantitative PCRs were performed in 96-well optical plates in a 7300 Real Time PGR system (Applied Biosystems). The PGR conditions were as follows: 2 min at 50°C, 10 min at 95°C and 40 cycles of 15 s at 95°C and 30 s at 60°C.

Semiquantitative PGR experiments from seedlings were performed using RNA prepared as afore-mentioned. RNA extraction from seeds was carried out as previously described (Onate-Sanchez and Vicente-Carbajosa, 2008). cDNA from all tissues was synthetized as described above. Five μΙ_ of one-fifth diluted cDNA was used to amplify DDA 1- GFP, 3HA-PYL8 and the housekeeping gene ACTIN8 using the following primer: HA-F

5'-CTATGACGTCCCGGACTATGCA-3\ PYL8-R 5 - (SEQ ID NO:205)

GGTGAAGAGAGATGATTGAAG-3', DDA1 -2F 5'- (SEQ ID NO:206)

TCGTCCCTCCGATCCTTCTAATCC-3', GFP-R 5 - (SEQ ID NO:207)

CTTGCCGTAGGTGGCATCGC-3', ACT8semi-F 5'- (SEQ ID NO:208)

GGTACTGGAATGGTTAAGGC-3', ACT8semi-R 5'- (SEQ ID NO:209)

GTCCAACACAATACCGGTTG -3' (SEQ ID NO:210). The PGR conditions were as follows: 1 min at 94°C, 35 cycles of 15 s at 94°C, 1 min at 58-62°C, and 1 min 30 s at 72°C, and finally, 5 min at 72°C. 25

TAP assays

Cloning of a GS-tagged DDA1 fusion under the control of the constitutive cauliflower tobacco mosaic virus 35S promoter and transformation of Arabidopsis cell suspension cultures were performed as previously described (Van Leene et al., 2007). TAP of protein complexes was done using GS tag (Burckstummer et al., 2006) followed by protein precipitation and separation, according to Van Leene et al. (2008). For the protocols of proteolysis and peptide isolation, acquisition of mass spectra by a 4800 ALDI TOF/TOF Proteomics Analyzer (AB SCIEX), and MS based protein homology identification based on the TAIR genomic database, we refer to Van Leene et al. (2010). Experimental background proteins were subtracted based on approximately 40 TAP experiments on wild-type cultures and cultures expressing TAP-tagged mock proteins GUS, RFP and GFP (Van Leene et al., 2010).

Microscopy analysis

For ovule observations, pistils from not-pollinated Arabidopsis flowers were opened longitudinally and observed using a Leica M165FC stereomicroscope. Photographs were taken with a Leica color camera DFC295. Then, pistils were cleared in chloral hydrate (2 mg mL-1 ) and ovules were observed under a Leica DMR microscope with differential interference contrast (DIG) optics (http://www.leica.com). Photographs were taken with an Olympus DP70 camera. To analyze DDA1 -GFP subcellular localization, images of 5-d-old oeDDA1 -GFP Arabidopsis roots and of Nicotiana leaves agroinfiltrated with DDA1 -GFP and different organelle markers (Nelson et al., 2007), were visualized by a confocal microscope at 495-610 nm (Leica). To visualize nuclei, roots and Nicotiana leaves were submerged in a DAPI solution (1 pg mL-1 DAPI in 100 mM phosphate buffer, 0.5% Triton X-100).

Yeast two hybrid experiments

The full length DDA1 cDNA was cloned into the pGBKT7 (Gal4 DNA binding domain, BD; Clontech). This construct was used to screen a whole seedling cDNA library (Bustos et al., 2010) prepared in the pGADT7 vector (Gal4 activation domain, AD, Clontech) to detect DDA1 -interacting proteins. To confirm protein interactions, plasmids were co-transformed into Saccharomyces cerevisiae AH109 cells, following standard heat-shock protocols (Chini et al., 2007). Successfully transformed colonies were identified on yeast synthetic drop-out lacking Leu and Trp; these colonies were resuspended in water and transferred to selective media lacking Ade, His, Leu and Trp. Plates without His were supplemented with different concentrations of 3-amino 1 ,2,4- triazole (3AT; ranging 0.5-10 mM). Yeast cells were incubated at 30°C during 6 days. Empty vectors were co-transformed as negative controls. To test the DDA1 interaction with specific DDB1 a domains, DDB1 a truncated versions were generated and cloned into the pGADT7 vector as follows: BPA (aa 16-350), BPB (aa 387-704), BPA+BPB (aa 16-704), BPC (aa 704-1002) and BPB+BPC (aa 350- 1002). Full length DDB1 a was used as a positive control.

BiFC experiments

Different combinations of A. tumefacines clones expressing fusion proteins YFPN:PYL8/DDA1 :YFPC were co-infiltrated into the abaxial surface of 3-week-old N. benthamiana plants as described (Voinnet et al., 2003). The p19 protein was used to suppress gene silencing. The empty vectors were used as negative controls. Fluorescence was visualized in epidermal cells of leaves after 3 d of infiltration using a Leica sp5 confocal microscope. Nuclei were visualized after submerging the leaves in a DAPI solution (1 pg mL-1 DAPI in 100 mM phosphate buffer, 0.5% Triton X-100).

Genetic analysis

To examine gametophytic transmission of the dda 1-1 mutant allele, reciprocal test crosses were performed between wild-type (Col-0) and heterozygous dda 1-1 mutant plants. Seeds harvested from crosses were germinated and grown on soil, and genomic DNAs from the F1 progeny were analyzed by PGR using the primer combination to detect the dda1-1 mutation. Transmission efficiency (TE) of the mutant allele via each type of gamete (TE male and TE female) was calculated as described previously (Howden et al., 1998).

Protein extraction, co-immunoprecipitation assays and immunoblots

For protein extraction from seedlings, proteins were extracted in buffer containing 50 mM Tris-HCI pH 7.4, 150 m NaCI, 10mM MgCI2, 1 mM PMSF, 0, 1 %NP-40 and 1 x complete protease inhibitor (Roche). After centrifugation at 16.000 g at 4°C, the supernatants were collected. This step was repeated twice. For protein extraction from seeds, seeds were frozen in liquid N2 and then homogenized in buffer containing 7 urea, 2 M thiourea, 4% 3-[(3-cholamidopropyl)dimethylammonio]-1 -propanesulfonate (CHAPS; w/v), 18 mM Tris-HCI pH 7.5, 0,2% Triton X100, 1 x complete protease inhibitor (Roche). After 10 min incubation at 4°C with rotation, DTT was added to protein extracts (14 mM final concentration), prior to 20 min incubation at 4°C. Extracts were clarified by centrifugation as afore-mentioned. Protein concentration in final supernatants was determined using a Bio-Rad Protein Assay kit. For in vivo co- immunoprecipitation assays, normalized seedling protein extracts were incubated with 5 μΙ anti-GFP antibody (Living colors Full length A.V. Polyclonal Antibody, Clontech) for 1 h at 4°C with rotation. 10 μΙ of protein A-coupled beads (prewashed twice with 0.1 M Glycine pH 2.7) were added to the samples and incubated for an additional hour at 4°C with rotation. After washing three times with 500 sL extraction buffer, samples were denatured, separated on SDS-PAGE gels and transferred onto polyvinyl idene difluoride (PVDF) membranes (Millipore). Membranes were probed with different antibodies: anti- GFP-HRP (for DDA1 -GFP detection, Milteny Biotec), monoclonal Anti-FLAG M2 (for FLAG-COP10; Sigma), anti-CUL4 (Chen et al., 2006). For immunodetection of 3HA- PYL8, anti-HA-HRP (Roche) was used. To confirm equal protein loading, membranes were stained with Ponceau reagent or immunoblotted using anti-RPT5 (Kwok et al., 1999).

CDD complex was purified as previously described (Yanagawa et al., 2004). For the analysis of purified CDD complex fractions, proteins in each fraction were separated onto 15% SDS-PAGE gels. Silver staining and immunoblots using anti-DDA1 antibodies were performed to visualize specific protein bands. For anti-DDA1 production see below.

Purification of recombinant proteins and antibody production

Recombinant His-DDA1 protein was expressed in the Escherichia coli BL21 (DE3) strain carrying a pET28-HisT7DDA1 construct. Bacteria were cultured in LB at 37 " C to an optical density at 600 nm of 0.6, at which time protein expression was induced with 0.2 mM isopropyl-D-thio-galactopyranoside for 3 h. Cell lysis was performed using a French Press and lysates were clarified by centrifugation at 16,000 g for 30 min at 4°C. His-DDAI protein was purified from lysates with Ni-NTA-agarose beads under denaturing conditions (Qiagen) and eluted with a pH gradient as described by the manufacturer. Protein concentration in final eluates was determined using Bio-Rad Protein Assay kit. To raise anti-DDA1 antibodies purified His-DDA1 protein was introduced into two rabbits (1 mg/each). Rabbit preimmune serum was kept to check for anti-DDA1 specificity.

Affinity purification of ubiquitinated proteins.

Isolation of ubiquitinated proteins was performed as previously described (Manzano et al., 2008) with small modifications. Briefly, proteins were extracted from oe3HA-PYL8 plants using buffer Bl (50 mM Tris-HCI pH = 7.5; 20 mM NaCI; 0.1 % NP-40 and 5 mM ATP) plus plant protease inhibitors cocktail (Sigma), 1 mM of PMSF and 50 μΜ MG132. Protein extracts were incubated with 40 μΙ_ pre-washed p62-agarose (Wilkinson et al., 2001 ) or the agarose alone at 4°C during 4 h. Afterwards, the beads were washed 2 times with 1 ml. Bl buffer once more with 1 mL buffer Bll (Bl plus 200 mM NaCI) and proteins were eluted by boiling into 50 μΙ_ SDS loading buffer. The eluted proteins were separated by SDS-PAGE and analyzed by immunoblotting using anti-Ub (Boston Biochem) to detect the presence of ubiquitinated proteins or anti- HAHRP (Roche) for 3HA-PYL8 detection.

In vivo protein degradation assays

Seedlings were grown in MS solid media for 8 d and then transferred to liquid MS media containing 50 μΜ cicloheximide (CHX; Sigma) in the presence or absence of 50 μΜ ABA (Sigma). The effect of proteasome inhibition was tested by adding 50 μΜ MG132 (Sigma) to the liquid MS. Whole plant samples were harvested at specific time points as indicated. Protein extraction and immunoblots were performed as afore30 mentioned. ImageJ v1 .37 software (http://rsb.info.nih.gov/ij) was used to analyze protein band intensity.

Seed germination and seedling establishment assays.

After surface sterilization of the seeds, stratification was conducted in the dark at 4°C for 3 d. Next, approximately 100 seeds of each genotype were sowed on MS plates lacking or supplemented with 0.5 μΜ ABA, 150 mM NaCI or 400 mM Mannitol. In the analyses of iDDA1 lines, β-estradiol was added to media at 10μΜ final concentration as stated. To score seed germination, radical emergence was analyzed at 72 h and 96 h after sowing. Seedling establishment was scored at 5 and 7 d as the percentage of seeds that developed green expanded cotyledons and the first pair of true leaves. Root and shoot growth assays.

Seedlings were grown on vertically oriented MS plates for 4 to 5 d. Afterwards, 20 plants were transferred to new MS plates lacking or supplemented with 10 μΜ concentration of ABA. The plates were scanned on a flatbed scanner after 10 d to produce image files suitable for quantitative analysis of root growth using ImageJ v1 .37 software. As an indicator of shoot growth, the maximum rosette radius was measured after 20 d.

ACCESSION NUMBERS

Sequence data from this article can be found in the Arabidopsis Genome Initiative database under the following accession numbers: DDA1 (At5g41560), DDB1A (At4g05420), DDB1B (At4g21 100), COP10 (At3g 13550), DET1 (At4g10180), CL/L4(At5g46210), PYL8 (At5g53160), PYL4 (At2g38310), PYL9 (At1g01360). Accession numbers are incorporated by reference.

References

Antoni, R., Gonzalez-Guzman, M., Rodriguez, L., Peirats-Llobet, M., Pizzio, G.A., Fernandez, M.A., De Winne, N., De Jaeger, G., Dietrich, D., Bennett, M.J., et al. (2013). PYRABACTIN RESISTANCE1 -LIKE8 plays an important role for the regulation of abscisic acid signaling in root. Plant physiology 161, 931 -941 .

Burckstummer, T., Bennett, K.L., Preradovic, A., Schutze, G., Hantschel, O., Superti-Furga, G., and Bauch, A. (2006). An efficient tandem affinity purification procedure for interaction proteomics in mammalian cells. Nature methods 3, 1013-1019.

Bustos, R., Castrillo, G., Linhares, F., Puga, .I., Rubio, V., Perez-Perez, J., Solano, R., Leyva, A., and Paz-Ares, J. (2010). A central regulatory system largely controls transcriptional activation and repression responses to phosphate starvation in Arabidopsis. PLoS genetics 6.

Castells, E., Molinier, J., Drevensek, S., Genschik, P., Barneche, F., and Bowler, C. (2010). det1 -1 -induced UV-C hyposensitivity through UVR3 and PHR1 photolyase gene over- expression. The Plant journal : for cell and molecular biology.

Clough, S.J., and Bent, A.F. (1998). Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. The Plant journal : for cell and molecular biology 16,

735-743.

Curtis, M.D., and Grossniklaus, U . (2003). A gateway cloning vector set for high-throughput functional analysis of genes in planta. Plant physiology 133, 462-469.

Chen, H ., Shen, Y., Tang, X., Yu, L, Wang, J., Guo, L, Zhang, Y., Zhang, H., Feng, S., Strickland, E., et al. (2006). Arabidopsis CULLIN4 Forms an E3 Ubiquitin Ligase with RBX1 and the CDD Complex in Mediating Light Control of Development. The Plant cell 18, 1991 -2004. Chini, A.. Fonseca, S., Fernandez, G., Adie, B., Chico, J.M., Lorenzo, O., Garcia-Casado, G., Lopez-Vidriero, I., Lozano, F.M., Ponce, M.R., er al. (2007). The JAZ family of repressors is the missing link in jasmonate signalling. Nature 448, 666-671 .

Chinnusamy, V., Gong, Z., and Zhu, J.K. (2008). Abscisic acid-mediated epigenetic processes in plant development and stress responses. Journal of integrative plant biology 50, 1 187-1 195. Deblaere, R., Bytebier, B., De Greve, H., Deboeck, F., Schell, J., Van Montagu, M., and Leemans, J. (1985). Efficient octopine Ti plasmid-derived vectors for Agrobacterium-mediated gene transfer to plants. Nucleic acids research 13, 4777-4788.

Fernandez-Arbaizar, A., Regalado. J.J., and Lorenzo. O. (2012). Isolation and characterization of novel mutant loci suppressing the ABA hypersensitivity of the Arabidopsis coronatine insensitive 1 -16 (coi1-16) mutant during germination and seedling growth. Plant & cell physiology 53, 53-63.

Hauser, F., Waadt, R., and Schroeder. J.I. (201 1 ). Evolution of abscisic acid synthesis and signaling mechanisms. Current biology : CB 21, R346-355.

Hirayama, T., and Shinozaki. K. (2010). Research on plant abiotic stress responses in the post- genome era: past, present and future. The Plant journal : for cell and molecular biology 61, 1041-1052.

Howden. R., Park, S.K., Moore, J.M., Orme, J., Grossniklaus, U., and Twell, D. (1998). Selection of T-DNA-tagged male and female gametophytic mutants by segregation distortion in Arabidopsis. Genetics 149, 621-631 .

Kwok, S.F., Staub, J.M., and Deng, X.W. (1999). Characterization of two subunits of Arabidopsis 19S proteasome regulatory complex and its possible interaction with the COP9 complex. Journal of molecular biology 285, 85-95.

Lau, O.S., and Deng, X.W. (2012). The photomorphogenic repressors COP1 and DET1 : 20 years later. Trends in plant science 17, 584-593.

Manzano, C, Abraham, Z., Lopez-Torrejon, G., and Del Pozo, J.C. (2008). Identification of ubiquitinated proteins in Arabidopsis. Plant molecular biology 68, 145-158.

Martin, B., Ramiro, M., Martinez-Zapater, J.M., and Alonso-Blanco, C. (2009). A high-density collection of EMS-induced mutations for TILLING in Landsberg e recta genetic background of Arabidopsis. BMC plant biology 9, 147.

Murashige, T., and Skoog, F. (1962). A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia Plantarum 15, 473-497.

Nakagawa, T., Kurose, T., Hino, T., Tanaka. K., Kawamukai, M., Niwa, Y., Toyooka, K., Matsuoka, K., Jinbo, T., and Kimura, T. (2007). Development of series of gateway binary vectors, pGWBs, for realizing efficient construction of fusion genes for plant transformation. Journal of bioscience and bioengineering 104, 34-41.

Nelson, B.K., Cai, X., and Nebenfuhr, A. (2007). A multicolored set of in vivo organelle markers for co-localization studies in Arabidopsis and other plants. The Plant journal : for cell and molecular biology 51. 1 126-1 136.

Olma, M.H., Roy, M., Le Bihan, T., Sumara, I., Maerki, S., Larsen, B., Quadroni, M., Peter, M., Tyers, M., and Pintard, L. (2009). An interaction network of the mammalian COP9 signalosome identifies Dda1 as a core subunit of multiple Cul4-based E3 ligases. Journal of cell science 122, 1035-1044.

Onate-Sanchez, L., and Vicente-Carbajosa, J. (2008). DNA-free RNA isolation protocols for Arabidopsis thaliana, including seeds and siliques. BMC research notes 1, 93. Peeper, D.S., van der Eb, A.J., and Zantema, A. (1994). The G1 /S cell-cycle checkpoint in eukaryotic cells. Biochimica et biophysica acta 1198, 215-230.

Pick, E., Lau, O.S.. Tsuge, T.. Menon, S., Tong, Y., Dohmae, N., Plafker, S.M., Deng, X.W., and Wei, N. (2007). Mammalian DET1 regulates Cul4A activity and forms stable complexes with E2 ubiquitin-conjugating enzymes. Molecular and cellular biology 27, 4708-4719.

Rubio, S., Rodrigues, A., Saez, A., Dizon, M.B., Galle, A., Kim, T.H., Santiago, J., Flexas, J., Schroeder, J. I., and Rodriguez, P.L. (2009). Triple loss of function of protein phosphatases type 2C leads to partial constitutive response to endogenous abscisic acid. Plant physiology 150, 1345-1355.

Saez, A., Apostolova, N., Gonzalez-Guzman, M., Gonzalez-Garcia, M.P., Nicolas, C, Lorenzo, O., and Rodriguez, P.L. (2004). Gain-of-function and loss-of-f unction phenotypes of the protein phosphatase 2C HAB1 reveal its role as a negative regulator of abscisic acid signalling. The Plant journal : for cell and molecular biology 37, 354-369.

Saez, A., Robert, N., Maktabi, M.H., Schroeder, J. I., Serrano, R., and Rodriguez, P.L. (2006). Enhancement of abscisic acid sensitivity and reduction of water consumption in Arabidopsis by combined inactivation of the protein phosphatases type 2C ABI1 and HAB1. Plant physiology 141, 1389-1399.

Suzuki, G., Yanagawa, Y., Kwok, S.F., Matsui, M., and Deng, X.W. (2002). Arabidopsis COP10 is a ubiquitin-conjugating enzyme variant that acts together with COP1 and the COP9 signalosome in repressing photomorphogenesis. Genes & development 16, 554-559.

Van Leene, J., Hollunder, J., Eeckhout, D., Persiau, G., Van De Slijke, E., Stals, H., Van Isterdael, G., Verkest, A., Neirynck, S., Buffel, Y., et al. (2010). Targeted interactomics reveals a complex core cell cycle machinery in Arabidopsis thaliana. Molecular systems biology 6, 397. Van Leene, J., Stals, H., Eeckhout, D., Persiau, G., Van De Slijke, E., Van Isterdael, G., De Clercq, A., Bonnet, E., Laukens, K.. Remmerie, N.. et al. (2007). A tandem affinity purification- based technology platform to study the cell cycle interactome in Arabidopsis thaliana. Molecular & cellular proteomics : MCP 6, 1226-1238.

Van Leene, J., Witters, E., Inze, D., and De Jaeger, G. (2008). Boosting tandem affinity purification of plant protein complexes. Trends in plant science 13, 517-520.

Voinnet, O., Rivas, S., Mestre, P., and Baulcombe, D. (2003). An enhanced transient expression system in plants based on suppression of gene silencing by the p19 protein of tomato bushy stunt virus. The Plant journal : for cell and molecular biology 33, 949-956.

Wilkinson, C.R., Seeger, M., Hartmann-Petersen, R., Stone, M., Wallace, M., Semple, C, and Gordon, C. (2001 ). Proteins containing the UBA domain are able to bind to multi-ubiquitin chains. Nature cell biology 3, 939-943.

Yanagawa, Y., Sullivan, J.A., Komatsu, S., Gusmaroli, G., Suzuki, G., Yin, J., Ishibashi, T., Saijo, Y., Rubio, V., Kimura, S, et al. (2004). Arabidopsis COP10 forms a complex with DDB1 and DET1 in vivo and enhances the activity of ubiquitin conjugating enzymes. Genes & development 18, 2172-2181 . Sequence listing

SEQ ID NO: 1 AtDDAl nucleic acid sequence, CDS

ATGGCGTCGATTCTGGGTGATTTGCCTTCCTTTGATCCTCACAATTTCAGTCAACATCGT CCCTCCGATC CTTCTAATCCCTCTAAGATGGTTCCTACCACCTATCGTCCTACTCACAACCGTACACTTC CACCACCAGA TCAAGTGATAACTACAGAAGTGAAAAACATTC ATACGCAGC TCTATCAACGAGCTGAAGAAAAG TA AGACCAAAGAGACCGGCTACAGATCATCTGGCAGCGGAGCACGTGAACAAGCATTTCCGT GCTGCGTCTT CTTCTTCATCTACTCAGGGCTTATAA

SEQ ID NO: 2 AtDDAl nucleic acid sequence, cDNA

GTCTGAAGAGAAGGAAAGATCATCAATCACGATTCCAATGGCGTCGATTCTGGGTGATTT GCCTTCCTTT GATCCTCACAATTTCAGTCAACATCGTCCCTCCGATCCTTCTAATCCCTCTAAGATGGTT CCTACCACCT ATCGTCCTAC CACAACCGTACACTTCCACCACCAGATCAAGTGATAACTACAGAAGTGAAAAACATTCT TATACGCAGC TCTATCAACGAGCTGAAGAAAAGTTAAGACCAAAGAGACCGGCTACAGATCATCTGGCA GCGGAGCACGTGAACAAGCATTTCCGTGCTGCGTCTTCTTCTTCATCTACTCAGGGTTTA TAAAAAACTT AAGTTCAAGCCTATAACAATGGTCATTTGTATGAGTACCTCTTATTAGTGTTTTCAATGT AGAAAAAAAA AGATAAGAGCAGTTCATGAGAGAAATGTAGTGAAAATGTGTGTGTACATAACATTAATGT TTCTTTTATT TCTTGACTTAAAG TGCTCACTATTCA

SEQ ID NO : 3 AtDDAl nucleic acid sequence, genomic DNA

GTCTGAAGAGAAGGAAAGATCATCAATCACGATTCCAATGGCGTCGATTCTGGGTGATTT GCCTTCCTTT GATCCTCACAATTTCAGTCAACATCGTCCCTCCGATCCTTCTAATCCCTCTGTTAGTTTC TTCCCCCAAA TTCAATTTTTCAATTTTACGGATCTGAGTTAGGCTTTACTTGGTCGTATTGGAAAAAAAA TGTGTCCTTT GTTGATTCAAAGAGATGTAATTCGAATGTGTATCTGGGTTTTGCTGCTTACTTGGTCAGT TCCAAAAAGT TCCATCTTTTCAATTATCATCGAGTTTGCTGTTGGATCTTGTGAAAAACCAATACAAATT AGCCATTTTT GTCAGATTGATTGATCTTAGAATCATAATTCTGATTCCATTTGGCCATAATTTAGCTGCT AAGTGACGAA GACAAGTTTCAACTAGCTTGTATCAGTTAAAGATTAGAGTTTTGATCTGTTATCGAAGGT TTGAGTTTTT TGTTCATGTTTTCTTGCAGAAGATGGTTCCTACCACCTATCGTCCTACTCACAACCGTAC ACTTCCACCA CCAGATCAAGGTGAAACAAAAAATCGTGCT TTTGAAAAACCTTGCGTG T TTCGGCTAGAGAT TT AGAATTTCGTTACATTTTATATATAGTGTCAAAGATTTGTCTTATGAAGTTGTGATCTTG AACTTGCTTT GATTGAGTGATTTAGTTACTGTCTTTACTATGTATCACTTCTTAGAATCTCTAGGCAAAT TGGTGTTAAT CAGATTCAACAGTCTCGAGTTTTCACAGATCATGTCTTATGTTTTTACTAATTTGTATCT TGTTCGTTAT GGTTGTAGTGATAACTACAGAAGTGAAAAACATTCTTATACGCAGCTTCTATCAACGAGC TGAAGAAAAG GTGAAACAGCTCTCAACTCTCATTCCTCATAGTTTGTGATTCTTTGATTCAAATCTCCGT TGTTTCCCTC GTATATATAGTTCATAACACAGGATTTCGTAGGAAAATAGACAAAAGAAAACGATATAGA ACAATCTTGA ACTTCTTCAGATAACAAAACTGTTGATTTTGGTTGTGTTATCCGAAATCTTAATTTGTTT TGTCAAATTT GTCAAT GCAG AAGACCAAAGAGACCGGC ACAGATCATCTGGCAGCGGAGCACGTGAACAAGCA T CCGTGCTGCGTCTTCTTCTTCATCTACTCAGGGTTTATAAAAAACTTAAGTTCAAGCCTA TAACAATGGT CATTTGTATGAGTACCTCTTATTAGTGTTTTCAATGTAGAAAAAAAAAGATAAGAGCAGT TCATGAGAGA AATGTAGTGAAAATGTGTGTGTACATAACATTAATGT TC TTTATTTCTTGACTTAAAGTTGCTCACTA TTCACT

SEQ ID NO : 4 AtDDAl (Arabidopsis thaliana) peptide sequence

MASILGDLPSFDPHNFSQHRPSDPSNPSKMVPTTYRPTHNRTLPPPDQVITTEVKNILIR SFYQRAEEKL

RPKRPATDHLAAEHVNKHFRAASSSSSTQGL

SEQ ID NO: 5 Arabidopsis lyrata, CDS

ATGGCGTCGATTCTGGGGGATTTACCTTCCTTCGATCCTCACAATTTCAGTCAACATCGT CCCTCCGATC CTTCTAATCCCTCTAGGATGGTTCCTACCACCTATCGTCCTACTCACAATCGTACACTTC CACCACCAGA

TCAAG GATAAC ACAGAAGTGAAAAACATAC ATACGCAGC TCTATCAACGAGCTGAAGAAAAG A

AGACCAAAGAGACCGGCTACAGATCATCTGGCAGCCGAGCACGTGAACAAGCATTTC CGCGCCGCGTCTT

C TC C TCTAC CAGGGC ^i

SEQ ID NO : 6 Arabidopsi s lyra ta , cDNA

ACGATTCCAATGGCGTCGATTCTGGGGGAT TACCTTCC TCGATCC CACAATTTCAGTCAACATCGTC CCTCCGATCCTTCTAATCCCTCTAGGATGGTTCCTACCACCTATCGTCCTACTCACAATC GTACACTTCC ACCACCAGATCAAGTGATAACTACAGAAGTGAAAAACATACTTATACGCAGCTTCTATCA ACGAGCTGAA

GAAAAGT AAGACCAAAGAGACCGGC ACAGA CATC GGCAGCCGAGCACGTGAACAAGCA TTCCGCG CCGCGTCTTCTTCATCTTCTACTCAGGGCTTATAAAAAACTTACCCTGGTGAGCCTATGA TAATGGTCAT

TGTGTATGAGTTC TATTAGCAT TTCAATGTAGAGAAAGAAAGAAAGAAAGATAAGAGCAGTTCATG SEQ ID NO: 7 A dopsi s lyra ta , gDNA

ACGATTCCAATGGCGTCGATTCTGGGGGAT TACC TCCTTCGATCC CACAATTTCAGTCAACATCGTC CCTCCGATCCΊ 1 TCΊ 5 A TCCCTCTGTT¾GTTTCTTCCCCAATTCTC¾TCTTCG¾TTTTTTCTTTCTTCCAA

TTCTTCAACTCTCGGATGAAAATTTCAGATGTCTTCTGATTCTGTTTTGTCTGAATT CGTATGAGAACTC T TTTATACAGATC GAG TCGGT ACTTTGGTCG A TGAAAAAAATG GATCCAA T GATAATT CAAATTGT CAA G GAA G ATTCGAATGTGTATCTAGGTTTGCTTGTTTACTTGATCTGATCCAAAA GTTCCATGTTTTCATCGATTTTGCTGTTGGATCTTGTGAGAAACCTAGACAAAAAGTAGC CATTTTTGAC iLj 1 llnl 1 jri1 L.1 l/l i.'i 1 L ^ -fi1 ll^lbl 1 L-L-L 1 ib l 1 L-L-L ^ -fi 11 L^ 1 Lrr 111n L I L IrrO

TTTTTGATCAGTTATCGAAGATTTGAGTTTTGTTCATGTTTTCTTGCAGAGGATGGT TCCTACCACCTAT

CGTCCTACTCACAATCGTACACTTCCACCACCAGATCAAGGTGAAACAAAATTGCAG TTTTTTATTTATT

TTAAATCTTGCGTGTTCTTCGGCTAGAGATTTTAGAACTTTGTTACATTTTGTAGTC TAAAATTGGCCTT

TTAAAGTTGTGATCTTGGCTAGAGACTGATCTTGAACTTGCTTTGATTGAGCAATCT AGTTACTGTCTTT

ACCATGGATCACTTCTTAGAATCTCTAGGCAAATTGTTGTTAATCGGATTCAACAGT CTCCAATTTTCAC

GGGTCACGTCTATGTTTTTGTTTG T GGTTGTAGTGATAACTACAGAAGTGAAAAACATACTTATACG

CAGC TCTATCAACGAGC GAAGAAAAGGTAAAACAACTCTCATTCC CATAG TGTGATTCTTTGATT

CAAATCACCGTTGTTTCCCTCGTATATATAGTTCGTAGGAAAATAGACAAAAGAAAA CGATATAGAACAA

ATCT GAAC TCTTCAGATAACAAATCTGTTGAT T GGTTGTGAATTATCCAAAATCT TATG T

TTTTGTCAAATTTTTCATTTGCAGTTAAGACCAAAGAGACCGGCTACAGATCATCTG GCAGCCGAGCACG

TGAACAAGCATTTCCGCGCCGCGTCTTCTTCATCTTCTACTCAGGGCTTATAAAAAA CTTACCCTGGTGA

GCCTATGATAATGGTCATTGTGTATGAGTTCTTATTAGCATTTTCAATGTAGAGAAA GAAAGAAAGAAAG

ATAAGAGCAG TCATG

SEQ ID NO: 8 Arabidopsis lyrata

MASILGDLPSFDPHNFSQHRPSDPSNPSRMVPTTYRPTHNRTLPPPDQVITTEVKNILIR SFYQRAEEKL RPKRPATDHLAAEHVNKHFRAASSSSSTQGL

SEQ ID NO: 9 Brassica napus , CDS

ATGGGGTCGATTCTGGGAGATTTGCCGTCCTTCGATCCTCATAATTTCAGTCAACATCGT CCCTCTGACC

C CTAATCCCTCTAGGATGGTTCCAACAACCTATCATCCAACCCACAACCGTACTCTTCCAC CTCCACA TCAAGTGATAACTACGGAAGTAAAGAACATACTCATACGCAGCTTCTATCAGCGAGCTGA AGATAAGATG

AQ¾rr¾AAGAGACCGGCTTCAGAACATCTGGCCGGTGAGCACGGTAACAAGCATT TCCGTGCCTCTTCAT CTACTCAGGGTTTATAA

SEQ ID NO: 10 Brassica napus, cDNA

GGTTTCT GCCGGTCCCTGAGGTTAA CACGAGGA CGG A ACCTAGTCTCCTT AGCTT

CACCGAAGCGACAGCTC TCTAGCTCC CAAGCGAAGAAGAAGGTGAAGATGGTGAGAAGAGGAAGAA.GA

AGAAAAAGGATAAGAAGAAGATTGCTACTGAAGGAGAGGTGCAAACAGAAGAGGCGA AGAAAGGGTTTAT

GQATAAGCTCAAG AGAAGCT CCAGGACACGGAAAGAA CCCGAA ATGACTCAGCCGTTGCGGC GCA

CCGGTTGT GCTCCTCCTGTGGAGGAAGCGCATCCGGCTGAGAAGAAGGGGATCTTGGAGAAGATTAAA G

AGAAGC TCCAGGATACCACTCAAAGACCG TGAGGAGGAGAAGAAAGATGATCACTGAAAACATGAATA

CTAATGATGATGAGAGACATCTCGTGTTGTTTGTGATGGATGATTATCATCTTTTTC TTTTGTGCTGTTG

AAGTTTGTTGGCTTCTTTATAGTTTATTTTGCAGTTTCCCTATTTTTCTCTTTGTTG TGTGTTTAGTGTA

TGG CAAGGTA T GAAG TA GAA TCC GA

SEQ ID NO: 11 Brassica napus

MGSILGDLPSFDPHNFSQHRPSDPSNPSRMVPTTYHPTHNRTLPPPHQVITTEVKNILIR SFYQRAEDK RPKRPASEHLAGEHGNKHFRASSSTQGL

SEQ ID NO: 12 Brassica oleracea , CDS

ATGGGGTCGATTCTGGGAGATTTACCGTCCTTCGATCCTCACAATTTCAGTCAACATCGT CCCTCCGACC CTTCTAATCCCTCTAGGATGGTTCCAACAACCTATCATCCAACTCACAACCGTACTCTTC CACCTCCACA TCAAGTGATAACTACGGAAGTAAAGAACATACTCATACGCAGCTTCTACCAACGAGCTGA AGATAAGATG AGACCAAAGAGACCGGCTTCAGAACATCTGGCGGGTGAGCACGGGAACAAGCATTTCCGT GCTTCCTCAT

Ci~iTCTGC CAGGGT ATAA

SEQ ID NO: 13 Brassica oleracea , cDNA

ATGGGGTCGATTCTGGGAGATTTACCGTCC TCGATCCTCACAATTTCAGTCAACATCGTCTATGGGGTC

GATTCTGGGAGATTTACCGTCCTTCGATCCTCACAATTTCAGTCAACATCGTUCCCT CCGACCCTTCTAA

TCCCTC AGGATGGTTCCAACAACC ATCATCCAACTCACAACCTCCCTCCGACCCTTCTAATCCCTCTA

GGATGGTTCCAACAACCTATCATCCAACTCACAACUCGTACTCTTCCACCTCCACAT CAAGTGATAACTA

CGGAAG AAAGAACA C CATACGCCTCG AC C CCACCTCCACA CAAGTGATAAC ACGGAAG A

AAGAACATACTCATACGCUAGCTTCTACCAACGAGCTGAAGATAAG

SEQ ID NO: 14 Brassica oleracea

MGSILGDLPSFDPHNFSQHRPSDPSNPSRMVPTTYHPTHNRTLPPPHQVITTEVKNILIR SFYQRAEDK RPKRPASEHLAGEHGNKHFRASSSSAQGL

SEQ ID NO: 15 Brassica rapa, CDS

ATGGGGTCGATTCTGGGAGATTTGCCGTCCTTCGATCCTCACA.ATTTCA.GTCAACATC GTCCCTCCGA.ee

CTTCTAATCCCTCTAAGATGGTTCCAACTACCTATCATCCAACTCACAACCGTACTC TTCCACCTCCACA

TCAAGTGATAACTACGGAAGTAAAGAACATACTCATACGCAGCTTCTATCAGCGAGC TGAAGATAAGATG

AGACC AAGAGGCCGGC TCAGA CATCTGGCGGGTGAGCACGG ACAAGCATT TCGTGO TCCTCAT

CATCTGCTCCGGGTTTATAA

SEQ ID NO: 16 Brassica rapa, cDNA CTTCTAATCCCTCTAAGATGGTTCCAACTACCTATCATCCAACTCACAACCGTACTCTTC CACCTCCACA TCAAGTGATAACTACGGAAGTAAAGAACATACTCATACGCAGCTTCTATCAGCGAGCTGA AGATAAGATG AGACCAAAGAGGCCGGCTTCAGAACATCTGGCGGGTGAGCACGGTAACAAGCATTTTCGT GCTTCCTCAT CATCTGCTCCGGGTTTATAA

SEQ ID NO: 17 Brassica rapa, gDNA

CCACACATGTTCTTTTGGTACGTGGATACCTTCTCATGCAACAAATGATATGTTATTTTT GGGTGGTTTG AATGATTTGTTTACCGATCTATAGTCATTTTTTTCTGTGTTTTATTCTTACCATCACAAG ATCACTTTCT

GATACA A AA AAAAC A GTCC CAAACGCT AA CC GAAA AC AC CATC CAAAC ACTCAACTTTAAAAATTTATATGAATATATAACCGAAAGATAAGTATTTTAGTGTCAAAA TCATTTTTAA

GCTTTTTCCATGCACTAATATATATAAAA¾AX¾ACCGAAATGTTATAATTTTGTG TTATAGTX¾TAGTTATT

AAGGTTTATAACAAGTCATAAACTAAACCTTAAAAATCTAAATTGATAAGATATTCA TATAAAATGTTTT TTTCAGGCTGGTTCTAGAGTGAGCCCAGCGGAAAGCCCATATAAGTCTTTCTATTATCTC TACTTCCCTT GCGATTCCGAGAAGGAAGATCGCAGAGCTCAAATTCCAAAATGGGGTCGA TCTGGGAGAT TGCCGTCC TTCGATCC CACAATTTCAGTCAACATCGTCCC CCGACCCTTCTAATCCCTCTGTAAGTCCTTCCCTGA TTTTTAACTGTAATCATTTTGAATTTGGCTAAAATCGGATCTGAGAATAATATGAATTGA GACTTGGTTT CTAAATCTGATTCAAATATTGATATTTTCGAATTTTGTTTCAATGAGAGATTGGAAGAAT GTTACTGGGG GGCTTGTTTTGGGTTACATATTCATCTATTTTTTCTATTGGACCTTTGTGAGGAATCAAG AAAGTAATCG TT T TTC TCTAACCAGATTGATTGATC TACATGT GTTCCATTCTCAT TTGATTGCATGTTGTTGT TAAATTAACAATC T T GTATGATC ACAGAAGATGGTTCCAACTACCTATCATCCAACTCACA

TTGTCTTTATTGAGTGATCTTATTATAGACAACTTTGAAGGACTATC T ACCJ¾GGA TCACT TTTTT

TGTTCGTAGAGAGTATTGAGTCTTCATGGATTATAGATAGTTCATTCCTAGTTTGCT ACGGTTTATATTC

TCTTCTTCTTTTTGTGTCAGTGATAACTACGGAAGTJ¾AAGAACATACTCJ¾TAC GCAGCTTCTATCAGCGA

GC GAAGATAAGGTACTAAA TTCTAAAATTCAACATGTGCGGTATAGAACAAGTCCTCAAACTCT T C

TTTTTTTTTTTTGTTTTTTGCGAAAAGCAGATGAGACCAAAGAGGCCGGCTTCAGAA CATCTGGCGGGTG

AGCACGGTAACAAGCATTTTCGTGCTTCCTCATCATCTGCTCCGGGTTTATAAAAAG CTTCTCCTGCTTC

CAAAGCCTGGCTATAATGGTCGTCACTTGTGCTACTCTTCTTATTAGTGTTT TT ACAAAGAATGCTT

TGAATGTAGAGAGAAAAGATGAGAGCAGCTCACTATGTGATTGCAGGGAAAATGTTG TATGAGTTATATG

TACATAAC ATTTATGTTTT TATTTT TiHATTTTAAfiAT ATTCGTCCAAATCAC ATTGTTAGCTTTTGTCTC

TTC AGAATGTAAACTGAATTC TGT TGCTTCCAACGAAT AC AGAGGAATCTGAGAGTAGTGGCAC

TCACTAGCCATAGTGATATCCCCGACTTTTTGTTCGCATGTTTCTCCTCACCTTGTA ACGAGCACAAGTA

CTTGTTATACACTGCAGACCATTTTCCATGATTTATTTTTTGTTGATGATGTGGGTT TCTACAGGAGCTG

T TCC GAAGTGGA CC AAGC AGATCCCTTAG TGAAGAGGATGAGCGACACTA A CTGAATTCAT

TTGCAAGGGAAATGATGACCAGGTGATTGAATTGTGGTGTACAGACCATGGCAGAGA AAGAAGAAGAAGA

AGACGGCCTGGTGAAATCTAATG

SEQ ID NO: 18 Brassica rapa

MGSILGDLPSFDPHNFSQHRPSDPSNPSKMVPTTYHPTHNRTLPPPHQVITTEVKNILIR SFYQRAEDKM

RPKRPASEHLAGEHGNKHFRASSSSAPGL

SEQ ID NO: 19 Capsella rubella, CDS

ATGGCGTCGATTCTTGGAGATTTGCCT CCTTCGATCCTCACAATTTCAGTCAACATCGTCCCTCTGATC CTTCTAATCCCTCTAGGATGATTCCTACAACTTATCGTCCTACACACAACCGTACACTTC CACCACCAGA

TCAAGTGATAACTACGGAAGTGAAAAACATAC ATACGCAGC TCTATCAACGAGCTGAAGAGAAGT G AGACCAA?GAGACCGGCTTCAG¾CCATCTGGCAGCCGAGC¾TGGG¾AC¾AGC¾TT TCCGCGCTGCTGCGT

C C TCG CAAC AC CAGGGA TATAA

SEQ ID NO: 20 Capsella rubella, cDNA

TCTTGAAC C GAAGAGAAGGi¾AACA ATCACGCACACCACGA CCAATGGCGTCGA C TGGAGAT TTGCCTTCCTTCGATCCTCACAATTTCAGTCAACATCGTCCCTCTGATCCTTCTAATCCC TCTAGGATGA TTCCTACAACTTATCGTCCTACACACAACCGTACACTTCCACCACCAGATCAAGTGATAA CTACGGAAGT GAAAAACATAC ATACGCAGC C ATCAACGAGCTGAAGAGAAGT GAGACCAAAGAGACCGGCTTCA

rrA T r r r T ΑΓ ΑΠ ΑΤΤΤΓΓ Γ ΓΤ^ Τ^Γ^Τ ΤΤΓΤΤΓ^ΤΓΑΑΓΤΆΓΤΓΆ GATT ATA ^AAACTTTCCCTGCTTCAAAGCCTTGTAAGTTGTAACAATGGTCCTTTGi^ATGTGTTCT T AT TAGTGTTTTCAATGTAGAGAAAAAAGATAAGAGCAATTCACGAGTGGAATGTACATAACA TTGATGTTTC

SEQ ID NO: 21 Capsella rubella, gDNA

TCTTGAACTCTGAAGAGAAGGAAACATTATCACGCACACCACGATTCCAATGGCGTCGAT TCTTGGAGAT TTGCCTTCCTTCGATCCTCACAATTTCAGTCAACATCGTCCCTCTGATCCTTCTAATCCC TCTGTTAGTT

CTTTCTTCCCCCTA.ATTCTCACTCTTTCATCTTCGACTTCTTTTTTTTTTAGTTCC TTTTCTTCGCTTCT TAGATGAAAGTGCTTAGCTGTTCTATGATCTGTGTTTTGTCTGAATTCGTCTGAGAACTC TTCAAACTAT

TCAATTCTACGGATCTGAGTTCGT TTAC TGGTCGTA GTGAAAAAAATATGTATCT TG TGATCA AAATTTGATATTCAAATTGTTTAAAGAGTATACATTCGAATGTGTGTATTTGGTTTTGCT GGTTACTTGA TCTGATCCAAAAGTTCTTCTTTTTCATTAATCTTGTGAGAAACCAAGAAAAGAAAAAAAG CCATTTTTGG

TC TGCTGAATGATC TAGAATCATAATTTTGATTCAATTGGCC TAGTTAGCTCCTAAGTTA ATGACA AGATC TG TA CTCATATCAAC AC AGTATGAAAC CATTT AT TA T TGA GAGCGAA AGA AGATT T GATC TAAATTAAAGAT TGAGCT TGTTCATAT TC TGCAGAGGATGAT CCT ACAAC ATCG CCTACACACAACCG ACAC CCACCACCAGA CAAGG GAAACAAAGAATCGCGG T T TAA TTGCATGTTCTTAGGC AG AGA TCGAA T GTT ACA TATAG G CTAAAAT TGGCCTTTTGAAGTTGTGATCTTGGCTAGAGACTGATATTTGAACTTGCTTTGATAGAGC GATCTAGCTA CTCTGTTTACCATGAATCACTTCTTAGATCTCTAAGGCAACTGGGAGTTAATCAGATTAC AATAGTCTCG AGTTCCCACACATCTACGCCTTTACTAATGTGTACCTTGTTTGTTTTGGTTGTAGTGATA ACTACGGAAG TGAAAAACATACTTATACGCAGCTTCTATCAACGAGCTGAAGAGAAGGTAAACCAACTCT CATTCGTCTT TAAGTTCTTGATTCTTTTATCCAAATCATTTCCCTCATATAGTCTTATAACACAGGATTT CTTAGGAAAA CAGACAAGAACGATATCGATCAAATC AAAC CTTCAGATAACCAAACTGTTGGTT TGATTGT A TCCTAAATCTCAGTTCCTTTTTTTTTTGTAATATTTATTATTTGCAGTTGAGACCAAAGA GACCGGCTTC AQACCATCTGGCAGCCGAGCATGG A CAAGCATTTCCGCGCTGCTGCGTC TCTTCGTCAACT CTCAG GGA TATAAAAAACT TCCCTGCTTCAAAGCCTTGTAAGTTGTAACAATGGTCCTTTGAATGTGTTCTTA TTAGTGTTTTCAATGTAGAGAAAAAAGATAAGAGCAATTCACGAGTGGAATGTACATAAC ATTGATGTTT CTTTT¾.TATTTTAC

SEQ ID NO: 22 Capsella rubella

MASILGDLPSFDPHNFSQHRPSDPSNPSRMI PTTYRPTHNRTLPPPDQVITTEVKNILIRSFYQRAEEKL

RPKRPASDHLAAEHGNKHFRAAASSSSTTQGL

SEQ ID NO: 23 Thellungiella halophile, CDS

ATGGCGTCGATTCTGGGTGA TTGCC TCC TTGATCCTCACAATTTCAGTCAACATCGTCCCTCCGATC CTTCTAj¾TCCCTCT/"iGGATGGTTCCAACTj¾CTTfitTCATCCTi-iCTCACAAC CGTACACTACCACCACCAGA TCAAGTGATAACTACCGAAGTCAAAAACATACTTATACGCAGCTTCTATCAACGAGCTGA AGAAAAGTTG

AGACC A A CCGGCTTCAGAGC TCTGGCGGGT GC CGGG AC GCATTTCCGTGCTTC TCAT CTACTCAGGGA.TT TAA

SEQ ID NO: 24 Thellungiella halophile, cDNA

GAAGAAGAGAAGGAAACATCCGCAAATTCGAAATGGCGTCGATTCTGGGTGATTTGCCTT CCTTTGATCC

TCACAATTTCAGTCAACATCGTCCCTCCGATCCTTCTAATCCCTCTAGGATGGTTCC AACTACTTATCAT

CCTACTCACAACCGTACACTACCACCACCAGATCAAGTGATAACTACCGAAGTCAAA AACATACTTATAC

GCAGCTTCTATCAACGAGCTGAAGAAAAGTTGAGACCAAAGAGACCGGCTTCAGAGC ATCTGGCGGGTGA

GCACGGGAACAAGCATTTCCGTGCTTCATCATCTACTCAGGGATTATAAAAGCTTTC AACCCTATAATAG

TCATGTTGTATGAGTCTTTTGTTAGTGTTCTTATTAGTGGGTTGTTTACAAAGTGAA TGCCTTTAATGGT

AGAAAAAAAGATAAGAGCAGCTCTTGTAACAGGATTGTAGAGAAAATGTGTATCCTG AAACAGAGTGTTC

CTCATAGACTTTGGTGGAAACATGCTGTTTGTATTTTCCTGTACAGTTACATTCAAA TA TCC TTTGA

SEQ ID NO: 25 Thellungiella halophile, gDNA

GAAGAAG G AGGA ACATCCGC AATTCGAAATGGCG CGAT CTGGG GATTTGCCTTCCTTTGATCC

TCACAATTTCAGTCAACATCGTCCCTCCGATCCTTCTAATCCCTC GTATGT C TCCCTC ATTTTCAG

TCAAACACTCTCATTTTTTCGGTGAATTTGGGTAGAATCGGATCTGAGTTCGATTTA ATTAGTTTTCCTG

AAAATTGTGGATTGAGTCTCAGTTTCCTTAATCTGGAATCTGATCCAATTTTGATCA TGTTGGATCCTGT

GAGAAACCATCAAACCAAGAAAG AGCAATT T TTTTCTCACCAGATTTGATTTCTGAATCAGAATTCT GTTTCCACTGGCCTTAATTAGCTGT AATTACT AATTCTGTTATCTCATATCAGA GAAAAGTTTTCA TTTTTATTGCATATAACAGTTGAATTTAAAAGAGCTTAAAGATTAGGAATTTTTTTTAAT ATCTGTTATC GAAGATTTTGAGTTTTTGTTCAATGTTTTTTTTTTTTGAAACAGAGGATGGTTCCAACTA CTTATCATCC TAXTCACAACCGTACACTACCA.CCACCAGA.TCAAGGTAAAATAAAAAAGTCA.eeTTT TTTTTGGTCTTGC CTTCTTCAGTAACTACGTTATATATAGTCTACATGTGGCCTTGAACTTGTGATGTTGGCC AGAAACTGAT CCTGAACTTGTATTAAGTGAGTTATCTGATTATGAAGAACTATCTTTCACATGATTCACT TCTTiGAATA GACTCGGAGA TTGAACTCGTGACAAATGGGTGCTAATCAAATACAATATAG CT GAGTT TATGGATA GCTCATTGCTGATTTTCTAGATTTCATCTCTTTATTCCGTTGATTTTTTGTGGCAGTGAT AACTACCGAA GTCAAAAACATACTTATACGCAGCTTCTATCAACGAGCTGAAGAAAAGGTGATAGAGATT CAATCCTCAA AGTTTCTT ATTTTTTTTATTTATTTGAATCGTTCATCCTCCTCGTAGTTCATAACXAAGCTAGTTTCT T AGGAAGAAAT GTTTTACCG GTGAGATATAGAACAAGTG AAACTCTG TTTTTGTGGGTCAAAT TGTCATTTGCAGTTGAGACCAAAGAGACCGGCT CAGAGCATCTGGCGGG GAGCACGGGAACAAGCATT TCCGTGC CATCATCTACTCAGGGAT ATAAAAGCTTTCAACCCTATAATAGTCATGTTGTATGAGTCT TTTGTTAGTGTTCTTATTAGTGGGTTGTTTACAAAGTGAATGCCTTTAATGGTAGAAAAA AAGATAAGAG CAGCTCTTGTAACAGGATTGTAGAGAAAATGTGTATCCTGAAACAGAGTGTTCCTCATAG ACTTTGGTGG

SEQ ID NO: 26 Thellungiella haiophila

MASILGDLPSFDPHNFSQHRPSDPSNPSRMVPTTYHPTHNRTLPPPDQVITTEVKNILIR SFYQRAEEKL RPKRPASEHLAGEHGNKHFRASSS QGL SEQ ID NO: 27 Glycine max 1, CDS

ATGGATTCTCTGATTGGTAATTGGCCATCCTACGATCCTCACAACTTCAGTCAGCTTCGA CCTTCCGATC

CTTCTAGTTC TCTAAAATGATGCCGGCCACTTACCATCCTACTCACAACAGGACTCTTCCAGCACCTGA TCAAGTGATAAGTACTGAAGCCAAAAACATCCTCATGAGACATATTTATCAGCATTCTGA GCAGAAGTTG

AATCCAAA AGAGCTGCATCTGATAACCTTC TACCAGAGCATGGATGCAAGCAACCTAGGGT CCA GCTGA

SEQ ID NO: 28 Glycine max 1, cDNA

GGATTTTTCAGCTTTTCATTTTGCCCCACCTTCTCCTTTCATCTCACAATCATAACTTGA GTTGAGCACG

TTCCCGAGACATCTCAAATTTCCTCTGCTGAGAATTTCACAAGTTTATGAGCCACAA GTGCAAATGGGAA

TGAAATGAAGAATGGGGTTTAGAGTTAGTCAAGACAAGTGGTGTGGTGTCCTATGTT ATGACTGCACACA

TGTGAAGTGAAGTAGAGACTATTCAGTCCACAGCAGCTGTTTCTAGTGTGTGTGTCA TTGCATTCCTCAT

CCTT TCC CTTT TTCACGCCTTAA TTCTTTCTCTC TTCTCCCTCTTCCTC C GGA ^ A TTGGAiGCA,

TCAGCCAGCACTCTATGGATTCTCTGATTGGTAATTGGCCATCCTACGATCCTCACA ACTTCAGTCAGCT

TCGACCTTCCGATCCTTCTAGTTCTTCTAAAATGATGCCGGCCACTTACCATCCTAC TCACAACAGGACT

CTTCCAGCACCTGATCAAGTTCCAACAGTGATAAGTACTGAAGCCAAAAACATCCTC ATGAGACATATTT

ATCAGCATTCTGAGCAGAAGTTGAATCCAAAAAGAGCTGCATCTGATAACCTTCTTT TACCAGAGCATGG

ATGCAAGCAACCTAGGGTTTCCAGCTGACACTTGCCCGTTTCCATTGACCTTTGTGA TCGTGAGCAAGTT

TCCAAAAGA CAGAAC ACAAGAG GAACTTACAAGAG GG GC GT GGAAC C GAAC A T

TGGCAGC A A AGACT GGGAGCG GTGAAAATAAACCC G AA GCCCATCAAAG T ACCA GAAT

GAAATAATGATATGCTTTTGTTGTTTATTTTTGTGTCATGCTTGTTGTACTCTACCC ACAACTGATTGTC

CACAATAGTTGGGAAGAGATAAGTGCTTGATTGAGGATTTTCAAAATCTATCTATCT TTTGGACTCAGGA

GCATATTCTGGGGCCATAATGTTCTCCATCTAACTACAATTATTTATATGGCGCTTT T

SEQ ID NO: 29 Glycine max 1, gDNA

GGATTTTTCAGC TTTCAT T GCCCCACC TCTCCTTTCATC CACAATCATAAC TGAGTTGAGCACG TTCCCGAGACATCTCAAATTTCCTCTGCTGAGAATTTCACAAGGTAATGTCTCACACTCA CACCGATTTT TTGCACCCAACT TTTGTGCTGTG TTAGATTCTGATTATTTC CACGCTTCCACATATGCCCCCATTGC TGTTTTCCAATTGGTTTCTCCTACCAGTACCAGGTGGTTTATTCAACCAATAGTGGATCT TCAATTTATT GGTTTCAGTGTTCTTGTATGTGTGTGTGTTTTCATTTTGATGAATTCATGGTAAGCCTAA TAATATGTAT TC ATTAATTGATAAT AAAGTTCAGAT TTGGTGAAT CATACA GGGAAGATAGT TAGGT AATTTTCTCATTGTTTTTAAAAGGGTGTTCAC TGTCCCTTTTCCATGAATTGCAGTTTATGAGCCACAA G GCAAA GGGAA GAAA GAAGAATGGGGT AGAG AGTCAAGACAAG GG G GG G CC ATG ATGACTGCACACATGTGAAGTGAAGTAGAGACTA CAGTCCACAGCAGCTGT CTAGTGTGTGTGTCA TTGC TTCCT 1 CATCC R T r r ! PTCC1 i C R I U P r r R I !r r r rCACGCCI'Ί?ΑΑΪTTCTTTCTCTCTTTCTCCCTCTTCCTCTCT GGAATTTGGAGCATCAGCCAGCACTCTATGGATTCTCTGATTGGTAATTGGCCATCCTAC GATCCTCACA ACTTCAGTCAGCTTCGACCTTCCGATCCTTCTAGTTCTTCTGTAAGTTGCTGTTGTTGTT GTCTATGAAA TTGATAATCC GGTAATAATTACTCATTCCAAGTATGCAAATGTATGCT TGT AGAGCATGTT GGT T TCTGTTGCAAAA.GTATCGTTTGAGGCAAAATTAATTTTGTTAACGAACCAAGACCCTTG CTTTTGCGTTG AATTTGCATTGGAATGTGTGTCAACATTTCCAACTGAAAACCAAACATGCACTCAATTGT TGAAAAATCT GATTGTGTATGATTCTGAGTTTTTGGT TACTACTATCTATTTGCATTGATCCCGGTTGAAAGATTAGTG AAGGAAGGGATATTAGCCTCTTTTTCTTAATTTCCCAACCCCCTTGAGGACAAAATTTGG TTGTTGTCCA TAAATATAAGAAC TC TCTACTTGCAACT TGAATCCCAC AT CAAAT TGAGAATA TGTTAAATT

T/JAGA GGTACATGGTAGHGTCAGACATTAG GATG GTAGATTAGAAAACCTG ATTTGCAATCTTT AGϊΑΤΤT ATGTTTGCTTCTTTT G CiHH. AGGTAGAGTATTTGTTGACi^TTCTAACTGTTATTAC AC TTGGA GGTCATAATTCACAATAGAGTAACAGCATTGTGCAATTTG GTGT GAAGTC TCACCA TGA TGTTATATGCAGCATTGTCTGTGGGAACATGTCCATTTAATCTCAATAACTATACTGTTT TTCTTTCTTC GCTATTCTGCAAAGTTTCTGTAAAGGATTTTAAAGTTTGAAACTTTTCCAGCATGGGATG ATTTTCTTTT TCCTTTTTTGTTTCTTGTCATTTTTTACTCTGAAAGTAGTACTGTATAACTTGGCTTTCT GTTCAATATT GTAACAACAATTATCTTCAGTGACAAAAGTGTTTTACTTTTATTTCTAATTAGTTGAAAA AACTAGAGTT ATATGTAATTTGTCCTTTACAGCATATCAGTTTCCATGATAGCCTGACACAAATTTAGTT GTTTTCACAG

TATAAAACTACAAGCAAATACATATTGCCCATGAAATTTGAAAATGAAGGAGACCAT TGGATTCATTTGA

TACCT TGCTGAAGCG ACAAGTATG ACACCA ACA ACAAATTCTGG ATGTTT TTAACAAT AGATAHCGTGTTTCTTCTCTAGTTGATTACATTTGATAAGiHAGGAiHGCTCAAGTATGA GTiTGACAGATT TGATCTTGGAGATAAACATACTGAATGGGTCACTGTTATTCCTTACCTTCTTGCTAACCA AGTCATGAAT

AAACCAAGCATATTTAAGGCCAACTTC ATGAAAC TGC ACTCATTT GTTCTAAAATGTATTAA GGJM CACCTAATGATA AT TCATTCACACTT GAAGA GAAAT T iTTTTAiCjH-CAGAAA^ GATG CCGGCCACTTACCATCCTACTCACAACAGGACTCTTCCAGCACCTGATCAAGGTAGTCAG GATAACTTTC TTC ACTAATGCT TGCTC GTATTTATTTGAT GA AATCTGTTGAAAAAC GTATTA TCCT TGGAT TATTCCCTTCATCATGTTTTTGGAGGAGTATCCAAACTGGATGCATTAAATCTATTAATT TTTTGTTTGC CACACACAAGTTTA AGTAGAGCTTCTCCAATGTATATGAACTCAAATTGGGTTC TAACTCTCACATAG TGGGTGCCTGTTGCCACATAGGATTTAAGAACACTCACTATTTTCACTCCGAAGTTAAAA CTCAACTTGA T AT AT TAATGG AAGCAACC GTAGAAGGGTTC C ATAATAAC C AG CA T C C CAATGTTATTTTTCAAGTTGCTTAACTTTTGTTTTTTTAriTTTCGGTrGr\CTCriATG GTGTTTTCTAATT CAAAGTTTGCTAACC GTTG-ri GTTCCAACAG GA AAG AC GJ¾AGCCAAAAriCATCC Ci^.TGAGACAT ATTTATCAGCATTCTGAGCAGAAGGTTAGTGACTTGATGGTTAAAGAGCATGTGTTTTGG TGCAGTTAGG TATGCATATGCTTGATGCTCATJ¾ACCTTTTGTGTTTTTCAGTTGAATCCAAAAAGAGC TGCATCTGATAA CCTTCTTTTACCAGAGCATGGATGCAAGCAACCTAGGGTTTCCAGCTGACACTTGCCCGT TTCCATTGAC CTTTGTGATCGTGAGCAAGTTTCCAAAAGATCAGAACTTACAAGAGTGAACTTACAAGAG TTTGGTGCTT GTTTGGAACTCTGAACTATTTTGGCJ¾.GC ATATAGACTTGGGAGCG G GAJMAA AAACCC GT AA GC CCATCAAAGTTTACCATGAATGAAATAATGATATGCTTTTGTTGTTTATTTTTGTGTCAT GCTTGTTGTA CTCTACCCACAACTGATTGTCCACAATAGTTGGGAAGAGATAAGTGCTTGATTGAGGAT TCAAAATCT ATCTATCTTTTGGACTCAGGAGCATATTCTGGGGCCATAATGTTCTCCATCTAACTACAA TTATTTATAT

SEQ ID NO: 30 Glycine max 1

MDSLIGNWPSYDPHNFSQLRPSDPSSSSKMMPATYHPTHNRTLPAPDQVISTEAK ILMRHIYQHSEQKL

NPKRAASDNLLLPEHGCKQPRVSS

SEQ ID NO: 31 Glycine max 2, CDS

ATGGAT CTCTGC GGTAATTGGCCATCC TTGATCCTCACAACTTCAGTCAGCTTCGACCTTCCGATC CTTCTAG C TCTAGAATGACGCTACCCACTTACCATCCTACGCACAGCAGGACCCTTCCAGCACCTGA TCAAG GATAAG ACAGAAGCCAAAAATATCC CG GAGACACAT ATCAACATGCTGAGGAGAAG G AAACCAAAAAGAGC GCATCTGATAACC GCC GATCATGGATGCAAGCAACC AGGG TTCTAGTT

GA

SEQ ID NO: 32 Glycine max 2, cDNA

GTTGTAAGGGTGGCTGGAATTTTCAGCTTTTCATTTTGCCCCCACCTTTTCCTTTCATTT CACTATCATT

ACTTGAGTTGAGCACGTTCCCGAGACATC CAAATTTCCTC GCTGAGAATTTCACGAGTTTATGAGCCA

CAA TGCA-^iG GGGAACGAAGAATGGGGTTTGGAG TAG TGGAC/^AG GG G GG G GG G CC T

GTAATGAGTGCACATATGTGAAGTGAAAATTCCTCATCCTTTTCCTCTTTTTTCACG CCTTAATTTCTCT

CTCTCTGGAATTTGGAGCAACAGCCAGCACTCTATGGATTCTCTGCTTGGTAATTGG CCATCCTTTGATC

CTCACAACTTCAGTCAGCTTCGACCTTCCGATCCTTCTAGTTCTTCTAGAATGACGC TACCCACTTACCA

TCCTACGCACAGCAGGACCCTTCCAGCACCTGATCAAGGTAACACGACGAACTTTCT TATGATTCCTCCA

GCAAATTAGCCATGCTTTGTCCCGTATTTACTTGACTGATCATTTTTTGGAAAAATG TATTTTTCCTTTG

GATTATTACCTTCATCATGTTTTTGGAGGAAAATCCAAACTACATGCATTAAACCTG TTACTTAAACTGA

TTTTCTGTCTAGCTCAAGTCTTGTTAGGGTAGACTGACTGGTGTTTTGTAATTGAAA GTTTTGCTTGAAA

ATTGTTCAAACAGTGATAAGTACAGAAGCCAAAAATATCCTCGTGAGACACATTTAT CAACATGCTGAGG

AGAAGGTTAGTGACTCTTGATGGTTAAACACACATGTGTTTTGGTGCAGTTAGGTTT GCACATGCTTGAT

GCCCATAACCTTTTGTATTTTTTCAGTTGAAACCAAAAAGAGCTGCATCTGATAACC TTTTGCCTGATCA

TGGATGCAAGCAACCTAGGGTTTCTAGTTGACAGTGGCCATCAACCAACTGTTGTAT GTGATTGTGAGTA

AGT TCCAAAAATATATCCTTAGAAGAGTTTGGTGC GT TAGAATTTGAACGA TGGCCAGT ATA

TAGACTTGGGAGTGTGTAAACATAAACCTAATAATCAGTCAAAATTTAAACTGAATG AAACAATGACGAT

TTCATTGTGTATGTTTATGCCATATCATTAACAACTGATCGTGCAAGTATCTTTTGT ACTCGC

SEQ ID NO: 33 Glycine max 2, gDNA

GTTGTAAGGGTGGCTGGAATTTTCAGC TTTCATTTTGCCCCCACCTTTTCCTTTCATTTCACTATCATT ACTTGAGTTGAGCACGTTCCCGj¾GiCATCTCjiAATTTCCTCTGCTGAGAATTTCfiC GAGG iA G CTCG CACTCACCATTTTTTTGCAGCCAACTTTTTTACTGTGTTTGGATTCTGATTATTTCTCAC GCTTCCACAT ATGCCCCTATTGCTGTTTTCCAATTTGGTTTCTCCTACCAGTATCAGGTGGTTTATTCAA CCAACAGTGG ATCTTCAATTTGTTGGTTTCAGTGTTCTTGTATGTGTGTTTTCATTTTGATGAGTTCATG GTGAGCCTAA TAATCTGTATTCTGTATTAATTTGATAATTAAAGTTCCAATTTTTAGTGAATTTTCATAC ATTGGAAAGA

GTGGTGTCCTATGTAATGAGTGCACATATGTGAAGTGAAAATTCCTCATCCTTTTCCTCT TTTTTCACGC CTTAATTTCTCTCTCTCTGGAATTTGGAGCAACAGCCAGCACTCTATGGATTCTCTGC TGGTAATTGGC CATCCTTTGATCCTCACAACTTCAGTCAGCTTCGACCTTCCGATCCTTCTAGTTCTTCTG TAAGTTGTTG TTGTATATGAAATTGATAATCCTAGTAATAATTACTCATTCCAAGTATGCAAATGTATGC TTTCTCAATT GTTGAAAGTCTGATTGTGCGATGCTGAGTTTTTGGTTTAATGCTTTCTATTTGCATCGAT CCCCCGTTGA

A^TATCAG GAAGGAAGGGA ATTTGCC ΤΛ TCCCAACCCCC TGAGGACAAAA TTGGTTG TiACA

TTAAGATGGTAAGTGGTAGAGTTAGACTAGAGAAGTGTAGAATAGAAAACCTGTATT TGCAATCTTCAGA ATTTTAAGTTTGCTTCTTGTTGTCAAAAGGTAGAGTATTTGTTGACATTCTAAATGTTAT TGCTACTACT

TAG\ATGATCr\TAATTCATAATAGAGTr CAGCATTGTGCTriTTTGTTGTGCCCGAGATTGAATTCTTCA

CCAT GGTGTTATATGTAGCATGTATGTGGGAACATATCCATTTAATCTCAATAAC TTACTG TATTCT TTTTTTATTTTTCCTCTT ATTTTGTGCGGTTCTGCAAAAGTTTCCGTAAAGGATTTTAAAGTTTGAAAC A TCTAATCAGTCTCCGTGTTACCTTGACACAAATTTAGTCGTTCTTGTCTTTTCCATAGAT TTGCTAA TTGCTAATCTACAAACTTACAAGCACATACATATTACCCATGAAATTTAGCGGTTGAAAA TTGAAAAAAT GAAGGAGATCATTGGATTCATTTGGTACCTTTGCTTACACCGTGCATACAAATTCTTGTT TTATGTTTAA CAATA GTGATATGTGA ATGC CTC AATCCAT GCAT TGA AAGAAGGAAGCTCAAGCA GAGTCA GCTTTGATCTTGGAGGTTAACACACTGAATGAGTCACATTTATTCCTTACCTTTTTCTAA TCAAGTCTGG GATAAACCAACATAT AAGGCCAAC TC TTATGCAACTTC A C TGTTCTAAAGTGCATCATGG GTCACCTAATGATATATAATTTTATAAGCGTTATGAAGATGAAATTTCTCTAATTTCATA CAGAGAATGA CGCTACCCACTTACCATCCTACGCACAGCAGGACCCTTCCAGCACCTGATCAAGGTAACA CGACGAACTT TCTTATGATTCCTCCAGCAAATTAGCCATGCTTTGTCCCGTATTTACTTGACTGATCATT TTTTGGAAAA ATGTATTTTTCCTTTGGATTATTACCTTCATCATGTTTTTGGAGGAAAATCCAAACTACA TGCATTAAAC CTGTTACTTAAACTGATTTTCTGTCTAGCTCAAGTCTTGTTAGGGTAGACTGACTGGTGT TTTGTAATTG AAAGT TTGC TGAAAA G CAAACAGTGATAAGTACAGAAGCCAAAAATATCC CGTGAGACACATT TATCAACATGCTGAGGAGAAGGTTAGTGACTCTTGATGGTTAAACACACATGTGTTTTGG TGCAGTTAGG T TGCACATGC GATGCCCATAiCCTTT G AT TTTTCAG TGAAACCAAAAAGAGCTGCATCTGA A ACCTTTTGCCTGATCATGGATGCAAGCAACCTAGGGTTTCTAGTTGACAGTGGCCATCAA CCAACTGTTG TATG GATTG GAG AAG T CCriAAAi-iTATA CC AG.riA.GAGT TGG GC GT .iG.iA. TTGAiCG ATTTTGGCCAGTTATATAGACTTGGGAGTGTGTAAACATAAACCTAATAATCAGTCAAAA TTTAAACTGA ATGAAACAATGACGA TTCA GTGTATGTT ATGCCATATCAT AACAAC GATCGTGCAAGTATCTTT

SEQ ID NO: 34 Glycine max 2

MDSLLGNWPSFDPHNFSQLRPSDPSSSSRMTLPTYHPTHSRTLPAPDQVISTEAK ILVRHIYQHAEEKL KPKRAASDNLLPDHGCKQPRVSS

SEQ ID NO: 35 Phaseolus vulgaris , CDS

ATGGAGTCTGTACTGGGTAATTGGCCGTCCTATGACCCTCACAACTTCAGTCAGCTTCGA CCTTCCGATC CTTCAAGTTCTTCTAAAATGGCACCGGCCACTTACCATCCTACTCACAGCAGGACCCTTC CACCATCTGA TCAAGTGATAAGTACTGAAGCCAAAAATATCCTCCTGAGACATATCTATCAGCATGCTGA GGAGAAGTTG AAACCAAAAAGAGCAGCACCTGATAACCTTTTACCAGAGCATGGATGCAAGCAACCTAGA GTTTCCAGCT

GA

SEQ ID NO: 36 Phaseolus vulgaris, cDNA

CGGAGGTGATGAGTAGCTCCAAATGATGATCAGTTGGTAATGGTGGCTGCAATTTTCAGC TTTTCCTTTT CCTTTTCTTTCACTTCTCAACCAAACCATAACATAACTTAACTTAACTTTATCACATTCT TCATAGATCT GAAATCCCTTCTCAGAATTTCACAGGTTTACCAGCATCCTGTGCAAGTGGGAATGAAGAA TTGGGTTTAG AGTTAGGACAAGGGGTGTGGTGTGGTATCCTATGCAATTGGTGCACACATGTGATGTGAA GTTCAGTCCA CAACAGCTGTTTTTGGATTGGGTTTTGTGTTGTGTGTCATTGTCTTCCTCATCCATTTCC TCTCTTTTTT CACGCCTTAATCTCTCTCTCTGAAATTTGGAGCAGCAACCGCCACTCTATGGAGTCTGTA CTGGGTAATT GGCCGTCCTATGACCCTCACAACTTCAGTCAGCTTCGACCTTCCGATCCTTCAAGTTCTT CTAAAATGGC ACCGGCCACTTACCATCCTACTCACAGCAGGACCCTTCCACCATCTGATCAAGTGATAAG TACTGAAGCC AAAAATATCCTCCTGAGACATATCTATCAGCATGCTGAGGAGAAGTTGAAACCAAAAAGA GCAGCACCTG ATAACCTTTTACCAGAGCATGGATGCAAGCAACCTAGAGTTTCCAGCTGACACATGTCAT TGACCATATG TTGCATGTGATTGTGAACTACTTTCCTATAGATATACCCTTATTTTTCAAGAGAGTTTGG TCCTAGTTTC AAATTGTGAACTATTTGCCAATTATACACTGGGGAGTTTTGTAAATACAAAGCCTGTTAT TGCCCATCAA AATTTACAGTGAACGATATTTTTGTGCCATGCCTTATTGTGCTAGACAGGTAACAACTGA TTGTCCACAT TAGTTAGGAAGAGATTCGTGCTTTAGTTAAAGATTTTCAAAATGCATCTGAGTCTTTTGG ACTCAGGAGT ATGCTTGTGCCATA

SEQ ID NO: 37 Phaseolus vulgaris, gDNA

CGGAGGTGATGAGTAGCTCCAAATGATGATCAGTTGGTAATGGTGGCTGCAATTTTCAGC TTTTCCTTTT

GAAATCCCTTCTCAGAATTTCACAGGGTAATTTATTGTCTCACACTCACCAATTTTT CTACTGTCTTCCG ACTCAGATTATTTCTAACGCTTACACTTCTCCTGTTAGTGTTTTTCCAATATCTGCTTCA TTCAACAAAT ACTGGATCTTCAATTTTTTTGTTTTCAGTGTTCTTGTATGTTTGTGTTTTCATTTTGACG ACTTCATCAG

TGAGCCTGTGTATTGATTCATAATCTGATATAGTTCAGAGTTCTGGTGAATTTTATT TCTCTTGCATTGG GAAGATGATGTTAGGGATTTTTCTCCTTTTTTCTTTAATTGGAATTCACTTACCCCTTTT TCTTAATTTG CAGTTTACCAGCATCCTGTGCAAGTGGGAATGAAGAATTGGGTTTAGAGTTAGGACAAGG GGTGTGGTGT CPiTAΤΓΓΤATGCAATTGGTGCACACATGTGATGTG^AG T AGTC AΓΆΆΓAGPTGT TGGATTGGGT TTTGTGTTGTGTGTC¾TTGTCTTCCTC^TCC¾TTTCCTCTCTTTTTTCI^CGCCTT¾ ¾TCTCTCTCTCTGI^ AATTTGGAGCAGCAACCGCCACTCTATGGAGTCTGTACTGGGTAATTGGCCGTCCTATGA CCCTCACAAC

CCTGGTAATAACTCATTTTGATGCAAATGTATGCTTTGTCACTTGTTGAGAAATCTG ATTGTTTGTGATT CTGAA TTTTGGTTTACTACTGTCTAATC ACAAT AT GGGTTGGAAA TTAGGGAAGAGACAATTGT 1 ^i i 77i-ri

TTCTTCTAGTTAACACACTTCCATATTTGAATCCCATCTTCTAATTTTGAAACTGTTCGT CAATGTTTTA

AGTTGGTACATGGTAGAGAAGTTATAGTGTAGAAGAACATGTATTTGCAATCGTTAC ATTT TAGTTTGT TTC TATCGCAAGGGACAGAGTA TC GACA C GA GTTA AC AA CATAATAGGC A TGGCATTGTGCAAT TGTTG CACCTGACGTTGAAGTCTTCACCAT GATGTTATATGCCGC TGTCT TTGGGGACATATCCATTTAGTCTCAATAACTTCACTGTTTATCCTTTTTCCCCCTCTACA TCTTTTTTGC

TGTTTCTTGTTCTTTTTCACTCTAAACATAATGCTGTTAAATTTGGTTTTCTTGTTC AATATTGTAGCAA CAATAAATTCTTCTATTTAAAATAACTATTTCACTTTTTTAAAAATAGTTAGAAAGGCTA GTTTTATACG TAATTTGTCCTTTATATTATAAGAAATATCTTTCTAGCTTTCAGGCATATATTAGTTTCC ATTAGCCTGA

CACAA TTTJ¾G TGC CAAAATACCT TGCTGAATGTAGTT T C TTTCCT TCCAAAGATTCTTAG

AAAGGTAAGATGTTTCTCTATTCAATTATATTTGATAAGAAAGAAGCTCAAATAAGA GAATGACTGGTGT

GATATCGAAGATAAACACACGGAATGAGCTACTGTTATTCATTTCCTTTTTCCTAAC CAAGCCATGGATA

AACAAAGCAGTTTTAGGGCCAACTTCTTTGTGCATACATGGATTGAAGTTTGCAACT TAAGTTTGAATGA

AC TrtTGTTACGAAC AAG TGGTAAAJ¾CAACT TG C TTCTTCCA TTCAArt.C .AAATTTC AAT C

AGACTTGAGGCAAAACTCAGTTTACAATCCTACAACCTGAAAATCAAGCAAGAGATT TTCTCAGATTTAG

TTTTTGAATGCATGTTAGGGGTCTCTCAACTGAAAACTAAACGTGCCTTTTTTGTAC CTCTGGCACTCTT

A TT C GAAGTGTACTATGGATCAC AATCATATATT TCAT GCTC C GAAGATGAAAC TCT

ATTTTCATGCAGAAAATGGCACCGGCCACTTACCATCCTACTCACAGCAGGACCCTT CCACCATCTGATC

AAGGTAGTCAGTATAACTTTTTCTACTTCCGTGGCAATGCTTTGCTCTGTTTTTATC TGATCGATAATCC

GTTTGAAAA TGTATTTTCCTTTAftTCCTGATCTTGG GGAGGAGCCAAACTAGA GC TT AACCTA

ACTTTAACTTATTTTTCTCTGTTTGCCACACACAAAAAGTTTTGTGTATATAGAAAG GTAACAAACATGA

AAAACATTGGTTGCAGGT TTAGTT TTC TTTTTTGACAGATGTACATCCCTCATT TCTGTCACTCT

TGTTTTTAATTTGGGTAGAGTTATTACTGGGTGTTTTGTAACTGAGGGTTTGCTAAC TTGCTGAAATTTG

TTCTGAC/^GTGATAAGTACTGAAGCCAA^iAriTATCCTCCTGAG CATiTCTATCAGCATGCTGAGGAGAA

GGTTAGTGACTCTTGAAAGTTAAATCCAATATGTTTTGGTACAGTTAGGTCAGCACi TGGTTGTACACAT

TCCTACCCTCCACTCATCAGCCCACAGGGATCTAATAGATGTCAATGATCTTTCATC TTTTCAGTTGAAA

CCAAAAAGAGCAGCACCTGATAACCTTTTACCAGAGCATGGATGCAAGCAACCTAGA GTTTCCAGCTGAC

ACATGTCATTGACCATATGTTGCATGTGATTGTGAACTACTTTCCTATAGATATACC CTTATTTTTCAAG

AGAGTT GGTCCTAGTTTCAAATTGTGAACTATTTGCCAATTA ACACTGGGGAG TTTGTAAATACAAA

GCCTGTTATTGCCCATCAAAATTTACAGTGAACGATATTTTTGTGCCATGCCTTATT GTGCTAGACAGGT

J¾ACAJ¾CTGATTGTCCACATTAGTTAGGAAGAGATTCGTGCTTTi^GTTj¾AAGAT TTTCAAAATGC^TCTGA

GTCTTTTGGACTCAGGAGTATGCTTGTGCCATA

SEQ ID NO: 38 Phaseolus vulgaris

MESVLGN PSYDPHNFSQLRPSDPSSSSKMAPATYHPTHSRTLPPSDQVISTEAK ILLRHIYQHAEEKL KPKRAAPDNLLPEHGCKQPRVSS

SEQ ID NO: 39 Medicago truncatula, CDS

ATGGATTCTGTCCTTGGTAATTTGCCATCTTATAACCCTCACAATTTCAGTCAGATTCGA CCTTCAGATC CTTCTAGTTCTTCTAAAATGACAATAACTACTTACCATCCTACTCACGACAGGACCCTTC CACCACCTGA TCAAGTGATAAACACTGAAGCAAAAAATATTCTCCTAAGACATATTTATCAGAACGCTCG GGAAAAGTTG

AAACCAAAAAGAGCTGCAGCTGGTAACCTTTTACCAGAACATGGATGCAAGCAACCT AGGGTTTCCACCT GA

SEQ ID NO: 40 Medicago truncatula , cDNA

TTAACGAGTTCATGTGTAGGATACAGTTGGTTTTGGTGACCAGGTTAAACGGGTCGGATT CGTGAAAGTG

GATCA GATTGGAGGGTAAACC TAC TGGTCA TTCAGTCC TAGTGGTC AGTGT TTTTTCTCTTC TAAC CGCGGTTG AACAGCAG ATGAATACTCACCCCTGGTAAAAA G^ CG AACTACJ¾TJ¾GC GGC

CGAAAGAGCAAAAGT TTCATC T C C CATG GAGGAGGACAACGT CCAGAGAGATC CAATA

ACTAATTCATAATTACTCCACTAGGGTAATATTGCCTAACGCTTATTCATGTTCATG ATTTTTCAATTTT

TTTTTC CJ¾CTCTTTTGiTTTGTTTTGTGCCTT GAAA TTTGATC AATAGGTAGCAATTCATGGATTC

TGTCCTTGGTAATTTGCCATCTTATAACCCTCACAATTTCAGTCAGATTCGACCTTC AGATCCTTCTAGT

TCTTCTAAAATGACAATAACTACTTACCATCCTACTCACGACAGGACCCTTCCACCA CCTGATCAAGTGA

TAAACACTGAAGCAAAAAATATTCTCCTAAGACATATTTATCAGAACGCTCGGGAAA AGTTGAAACCAAA

AAGAGCTGCAGCTGGTAACCTTTTACCAGAACATGGATGCAAGCAACCTAGGGTTTC CACCTGACAGTGT

TCATTGACCAACTAGTGCATGCAGTTCTCAGCTACTTTCTCGAATGATATATACTCT TATTTTATTACCA

AGATTTTGGTGCTTGTTTGAAATTGTAAACTATTATTAGTCCGCTACATACTTGGAG TGTGTAAATTTGA

CAACTCCCCCACCAATCAATCAATATATACAACAACTGAAATTATCATGC TATTGTGTATAT T T

SEQ ID NO: 41 Medicago truncatula , gDNA

TTAACGAGTTCATGTGTAGGATACAGTTGGTTTTGGTGACCAGGTTAAACGGGTCGGATT CGTGAAAGTG GATCATTGATTGGAGGGTAAACCTTACTTGGTCATTTCAGTCCTTAGTGGTCTAGTGTTT TTTTCTCTTC TTAACTCGCGGTTGTAACAGCAGTATGAATACTCACCCCTGGTAAAAATGATCGTAACTA CA.TAGCTGGC CGAAAGAGCAAAAGTTTTCATCTTTTTTCTCTCATGTTGAGGAGGACAACGTTCCAGAGA GATCTCAATA ACTAATTCATAATTACTCCACTAGGGTAATATTGCCTAACGCTTATTCATGTTCATGATT TTTCAATTTT TTTTTCTCACTCTTTTGATTTGTTTTGTGCCTTTGAAATTTTGATCAAATAGGTAGCAAT TCATGGATTC

TGTCCTTGGTAATTTGCCATCTTATAACCCTCACAATTTCAGTCAGATTCGACCTTC AGATCCTTCTAGT TC TCTGTAAG ATCA ATT CC TTAAT TATCAAAATATAGTTA GATAATC TGGTAGAGC T AT C^iACCATGCA ¾TTTAT G ATTATTCTG TTGTGT¾TGATCCTGTGTTTT ^ i GCTAAT

ATAAGCCGGTC GTAGG TA TAATTTAA TGGACCAA TCAAAATTATAATATGGTATCACAGCC TATGCAAAATCCGTCGGGTTACCTGCTATCAGATCACCACTTTCAAACCACTCGGGGCTT CAAGTTGTCA ACCAGCAAGGCCGGGTTATAATCAGTGTTAAGAATTAGCATTAAGCTATAGTACATGAGC TTGGAGCTGA TG ACCT TACCGAGGGTGTGTTTGGTTCTAGGGTGACAAAAAT GAT TTGACTAAATTGATTTTACAA AATTGACTTTGGTTGGAAGTGAATTGAAGGTAAAACGAGTTATGTTTGGATACATTCATT AAAAAAATTA TTT ATCAGTTT TGTTTTGGA CAGA TTGC T TG GGCTT A TTGTCAAAAAAATTGGCAAT TTATTTTATCTTACCACGGTAAC GAAATATTAGC TTTAGG AGA TGATTT GGGGCTGGA CGAT TTTAAAGCTATAAGTTAAACATAACAATTTATTTGTCAAATC AGTCAAAT TGATTCTGGGAGGTACAA ACATGGAACCAAAGACAGGTTAAAATGTACTATATGCTTAACCAAGCAATACATGCATAG AGAGACTTGT CATACAGCTTATCTTATCCTAGTAATACTTTTCTCCCACTCCCTTGTGCTTTCCTTACTC TCTTTACATA ATTGGCAGAGTATTTCTTCAATTTTTAAGTTTATACTTTGCAGAGCTTGAGATGAAAAAC TTATATTTGC AAAC TAGGAATTTAAGTTTGT TGTTT ATTCCATGGAGGAGTATCTCGTGACATGTTGATTGGT T CCAAGTTACTTGGATGACCATAACTTATAATAGAATAATGATGTGGTGGTGCAATTTGGG TCAGCCCTAT TGT GTATGCAGCATTG CTTTTAGAAGATATCCTTTTCATTGGAATAACTTAAACTGTTTGTCAAAATA AGCGTAAAGGAATTGAATGTTTAAAACTTTTCAAACATGGCATGATATTCTTTTTTTCCC TTAGTTACTA CTCATTTCATTC AAAACTGATACTGTGAAT TAAC TTCTTT CCAAATTGTAGCTTAGATAAATTC T CAGTAACAGAAGAGTTTTACTGTT TTTCTAATTAGTTGGAAAACCTAGAATTA ACGTATTTGTATTTT CTATCAATAACAAAATATCTCCCCGGCTTTCAGCCATATCAGTTTCCAATGATACCCTGT CATATAATCA GTTGTTTTCATATTTTACAATCTGATGATTATTGTTGTTATTGTTTTTTCTATAGATTTG TTTAACATAT AC GC AATGAC TTATTATCGATATAATGAACCGTTAGCTGTTGCAAATCGAGGTCTTTGGATTCAT TATATACCTCTGCTAAAGGATATAAAGTATGTTCACAGAATGTATAAGTGATCGTTGCTT TATGTTAACA AAA TATTGATGGGGAAGATGC CCTCTAGTCAACTGGATTTGTCTAGGAAGCTTAAATATAAAAGGTTC GATCTTGAAGTGCAAAATACTGAATGGGTCACATTTTTTCCTTGCCTTCTTTCTCACCAA GTGAGGAGCA TACCAATTTCGGGAGCGTGGTGTGTCATGTCGTGTGTGTGTTGTTTCTGATTCGTTTGTA AAGTGAAATT CACTATTTTAAAATAAGTGTTTTCGGGTTCAACCGTTTTTTCTTATTCAACTTGTTACTC TTTCTGTTCC

CAGAAAATGACAATAACTACTTACCATCCTACTCACGACAGGACCCTTCCACCACCT GATCAAGGTAGAC

AAGAGCTTTCTTCTACTTCTGTTGTAATGTTCTGCTATTAG TGA TGA AA CTA TGAAAAATTGTA TCTTTCCTCTGGATTATTCTTTTCCCCTATATCACTATTTGGAGGAAAAGAATTGAAAAC AGAAAATGTT

TCCACAAACCAAATGTACCATTACAATTTTAACTGTGGTTGCAGTTTTTCTTCTTTA CGAAGCTGTATGC

TGCAAATTTTCTCTCAGCGTTATTCTTTTGATTGATTTGGGATACTGTGATTGAGGG TTTTCTAACTTGT

GGAAAATTCTTTTGACAGTGATAAACACTGAAGCAAAAAA A TCTCCTAAGACA ATTTATCAGAACGC TCGGGAAAAGGTTAGTTTTGAAAGTTTGTTTTAGCACAGGTAAGGTAGGTATGCACATGA ATGTGCAATA CTCATACATCACCATATAGTGGCCCAACTGAACTGCTGCATATGTCCATTT TCA TGCAG GAAACCA AAAAGAGCTGCAGCTGGTAACCTTTTACCAGAACATGGATGCAAGCAACCTAGGGTTTCC ACCTGACAGT GTTCATTGACCAACTAGTGCATGCAGTTCTCAGCTACTTTCTCGAATGATATATACTCTT ATTTTATTAC CAAGATTTTGGTGCTTGTTTGAAATTGTAAACTATTATTAGTCCGCTACATACTTGGAGT GTGTAAAT T

T

SEQ ID NO: 42 Medicago truncatula

MDSVLGNLPSYNPHNFSQIRPSDPSSSSKMTITTYHPTHDRTLPPPDQVINTEAK ILLRHIYQNAREKL

KPKRAAAGNLLPEHGCKQPRVST

SEQ ID NO: 43 Arachis hypogaea, CDS

bbLfiLL bLLnL AbLA iLlni bAbAAbA Ab lxH bAbbA bbbjA a A ΑΑΠΑΠΓΤxΠΓΑΤxΓΓΠΑΤxΑ ΑΓΠ xΠΑ xΑΠΠΠΠΑΠΠΑΤΠΠΑΤxΓΠΑ AΑΓΑΑΓΓΑΑΠΠΠΤΤΤxΓΑΑΓΠΤx

GA

SEQ ID NO: 44 Arachis hypogaea, cDNA

lb

AbbbAbb lib lb Iribbrtl bnbnnbnbbbf 1n bri bnbb bn1 1 1 1 LL lib

ATCCAAACAACCAAGGGTTTCAACGTGAAAATTTTTCTTTGACCAACAAATGATGAATAT GGTTTGTGAA CAACTCT TCAGAAGTCAGATATGCCC TATGTAACAAAGAAGAC TTGGCATGTTTGGTATTGTAAACT

ATCTTTTCAAGTATAGAGTTGGTTAGCCCCAGCATAATTATTCAGTGAATGAAGTGA GATAGTGATTATG

AATTTCATTGTAGATTTTGTGCT

SEQ ID NO: 45 Arachis hypogaea

MDSVLGNWPSYDPHNFSQLRTSDPSRSSKMAPATYHS IHNRDVPPADQVINTEHKNILLREIYRRAEEKL TPKRAASDNLIPEHGSKQPRVST

SEQ ID NO: 46 Populus trichocarpa, CDS

ATGGGGTCTTTGCTTGGTGACTGGCCTTCATTTGACCCTCATAACTTTAGCCAACTTCGA CCTTCTGATC CTTCTAATCCTTCTAAAATGACTCCTGCCACCTATCATCCTACTCATAGCCGGACTCTTC CCCCACCTGA TCAAGTGATAACTACTGAAGCAAAAAATATTCTGCTGCGAAATTTCTATGAGCGAGCTGA AGAGAAGTTG AGACAAAAGAGAGCTGCCTCTGAACATCTAATGCCAGAGCATGGATGCAAGCAGGCTAGG GCTTCTACCT CATAA

SEQ ID NO: 47 Populus trichocarpa, cDNA

ATGGGGTC T GC TGGTGAC GGCC TCAT TGACCCTCATAACTT AGCCAACTTCGACCTTCTGATC

~ ' ί~ ί ?~ ' ί

TCAAGTGATAACTACTGAAGCAAAAAATATTCTGCTGCGAAATTTCTATGAGCGAGC TGAAGAGAAGTTG AGACAAAAGAGAGCTGCCTCTGAACATCTAATGCCAGAGCATGGATGCAAGCAGGCTAGG GCTTCTACCT

CATAA

SEQ ID NO: 48 Populus trichocarpa, gD A

T CAAATGCA AA CCAC G GAGTTTAA A GGAT GGAA CAA A CAAAGTC ATCCATATGGT

CAAAAAAAATTAGCCAGGATAAAAAGAAAAGCATAACTAATGATCTCACTCGGTGGT CATATGATGACCC

GG GAA. CTG GT TGTACACAAC CTAC TGCA GCTCAACAG AGAACAAT ^ HAGCAAGCCCTGC

TCAGTCAACCAATTGGCACACTGGGCAGTGATGTGGTTTGTATTTACAACGAGAGTC GACATGCCAGACT

ATTAAGTAACATACGAAAGCTTATTATGAGGTAGAAGCCCTAGCCTGCTTGCATCCA TGCTCTGGCATTA

GATGTTCAGAGGCAGC C CT GTCTCAACTGCAACAAGAACGGGAATGACAAGCTAAAATAAGTACG

CGTCCAATGGGTGCACAAATAGAAGAGAAAGATCAAATATGTGAAAACATTTTAATT TACCAACCTTCTC CAGC CGC CA AGAAATTTCGCAGCAGAA A T TGCTTCAG GT ATCACTGCCAAAGGAG T

TAAGCCAGATTAACCGCAGATTATGAAATCACCTTCAGATAAAATGAAGAACAAAAA ACTGAATTACAAT

AACAAAATGCAGGAAGTTCAGCTGATCAAACTTGCATAAGCATGTCATAATCAATTG CACATCATCCCAA

GCTTTTCAGAATGCCCAGGCAATATCCATGATGATACAAAAGAAGGCCCATGGAAAT TCTTCGCCATCCC

AAGTGGTTAATCATGGTCAAAGACCAACTCATGGAGCAAGAGGCATGCAGATTAGAG ATAGTGAAACTGC

TCCATCCAGCACTGAAACATGTAAAAT CAACATCGATTGCAGAAAACCCCCCCGAC TTAGGCCAGATG

C TTGTCACTCACATCCAAAGTAAACTAAAGCTCC TGTTGTTTTATTAGGATGTTATAATGAGATTGCA

CCAGTTTTATCCAGAATGTCGTATTGATTTCTCCCAACTTCATGCACACCATGGACT TTGAAAGGGCGGC

CCCAAGCCTTTACAAGAATCTATGCCGGTTTTGCTCATGCATGATTGTTGGATTCAA TCTCCCCACCTCC

TGATGAACAGGAATCGGAAGATAGATCAAAGAGCAAAACGCTAGCA C AAGC CATCAAACATTTACAT

TCATAACAAGAGAGACATTATGATAACATGCACCTTTGAATAACATGTCCAGATAAA GATGTCAAATTTG

GCAGCCATATTTAAAGGTCATCCCATGTCTTAGAAAACAAAATATGCCAGGTATTCC CTATCTTCACCCA

AACAGAAAATTTGGGGAGAAGAAACTGCAAGCAGATAGAAAGTTCTGTTCTTTACCT TGATCAGGTGGGG

GAAGAGTCCGGCTATGAGTAGGATGATAGGTGGCAGGAGTCATTTT

SEQ ID NO: 49 Populus trichocarpa

MGSLLGDWPSFDPHNFSQLRPSDPSNPSKMTPATYHPTHSRTLPPPDQVITTEAKNILLR NFYERAEEKL RQKRAASEHLMPEHGCKQARASTS

SEQ ID NO: 50 Populus tremula, CDS

ATGGGGTC TGCTTGGTGAC GGCCTTCATTTGACCCTCATAACTT AGCCAACTTCGACCTTCTGATC CTTCTAATCCTTCTAAAATGACTCCTGCCACCTACCATCCTACTCATAGCCGGACTCTTC CCCCACCTGA TCAAGTG TAACTACTGAAGCAAAAAATATTCTGCTGCGAAATTTCTATGAGCGAGCTGAAGAGAAGT TG AGACAAAAGAGAGCTGCCTCTGAACATCTAATGCCAGAGCATGGATGCAAGCAGGCTAGG GCTTCTACCT

SEQ ID NO: 51 Populus tremula, cDNA

GATTGTATGGAC TATAAAGACTAAGAAAT TATCATGCCAACCTGCGGAGGTTGGTTCTAGAATCAGAC CATTGTTGTC C CATAATCTCTCTATCTCGCATTCTAATGGGGTC TTGCT GGTGACTGGCCTTCATT TGACCCTCATAACTTTAGCCAACTTCGACCTTCTGATCCTTCTAATCCTTCTAAAATGAC TCCTGCCACC TACCATCCTACTCATAGCCGGACTCTTCCCCCACCTGATCAAGTGATAACTACTGAAGCA AAAAATATTC TGCTGCGAAA T CTATGAGCGAGC GAAGAGAAG TGAGACAAAAGAGAGCTGCCTC GAACATC AAT GCCAGAGCATGGATGCAAGCAGGCTAGGGCTTCTACCTCATAATAAGCTTTCGTATGTTA CTTAATAGTC TGGCATGTCGACTCTCATTGTAAATACAAACCACATCACTGCCCAGTGTGCCAATTGGTT GACTGAGCAG GGCTTGCTTA

SEQ ID NO: 52 Populus tremula MGSLLGDWPSFDPHNFSQLRPSDPSNPSKMTPATYHPTHSRTLPPPDQVITTEAKNILLR NFYERAEEKL

RQKRAASEHLMPEHGCKQARASTS

SEQ ID NO: 53 Linum usi tatissimum, CDS

ATGGGGTCTATGCTTGGTGACTTGCCTTCATTTGACCCCCACAACTTCAGCCAACTTAGA CCCTCCGATC CTTCCAATCCGTCCAAAATGACTCCTGCAACCTATCATCCAACACACAGTCGTACTCTTC CACCACCTGA

TCAGG ATGGC ACTGAAACGAAGAATATCC T Ai\GAAACTTCTACAAGCGCGCTGAAGAGAAGATG AGACCGAAGCGAGCTGCACCAG GAGCCTTATACCGGATCATGGTGGCAAGCAGGCGAGGCCTTCTACCT CAAGCTAA

SEQ ID NO: 54 Linum usi tatissimum, cDNA

ATGGGGTCTATGCT GGTGACTTGCCTTCA TTGACCCCCACAACTTCAGCCAACTTAGACCCTCCGATC CTTCCAATCCGTCCAAAATGACTCCTGCAACCTATCATCCAACACACAGTCGTACTCTTC CACCACCTGA CAGG A GGCTA.C GAAACGAAGAATATCCT TAAGAAACTTC ACAAGCGCGC G AGAGAAGATG AGACCGAAGCGAGCTGCACCAGAGAGCCTTATACCGGATCATGGTGGCAAGCAGGCGAGG CCTTCTACCT

CAAGCTAA

SEQ ID NO: 55 Linum usi tatissimum, gDNA

ATGGGGTCTATGCTTGGTGACTTGCCTTCATTTGACCCCCACAAC TCAGCCAAC TAGACCCTCCGATC CTTCCAATCCGTCCGTAAGCTCACACTTTTTCCCCCATCTTTCATTTACCGCCCCAACCT TTTCTTTTTC CTTGAATTGTGTTGAATCTTGAGAGTTGATTCGGTTCGCATCTGAAGTTCTGATTTTTTC TTTGATTTAG TCTCAATTTTTCCTATCCGAGTGCTACi^TATGACCCTAATATGGGTTGAGiACTGATGA ATT i G TT TTTTAATCCAATGAGTTTATCGGTTGTTTCCCCCTTTCTTCTTGAGGTTTGGTATCCGTC TTTTGTCGAA TGCTAGGGCTAATATTCGAATTAGATTCCATCTATTAGACTTTTCAGTGAAATTTGCTTG ATTCTTCAAT TGAATACTAGGAACGAGTCAAATTTTTGCGATGCAGAATGTA TGCTATTCTCAATTTGCCTAATGXH TT TAATCTGCCTATTATTATCGCTGTTTATATTCCTGGATCTTTTTGTTCGAATTAGGGCTC TCGTTGGCAA

GT ATTACTGTAACTGCT CTCCAGAAGTTCCATAGAA AAT GCATCCATAAT TGA AGGACGAGTT

GAT TAAGAAAA.AT AAG TTGACAGTCAACAAAGGATTGATTGTGA AC GAAATGCAGAATGTAGG

TAGGCTAATTAGGACTTAGGAATGATAAAAGTTCGCTTCTTCATGTAAATGAAGAGA TGTGCATCAAGGA

TAAAGGCCATCTTAATACTCGTAGGTTGAGTCTTTTTTAAGAATAATGCAGTTGCTG ATGCGGCAAGAAA

/iAG AAGCTAGTTGAAGAAGAAAGGAGTCAGAAATGTATAGA ATT CC TCCC TGAG ATTTCTCT

TCTCTGTAACTGCTTATTGCTTCAAAGTTTTGGCCCTTGTTCTAATAATCACAACCT TTCTATAGGAACA

TCTAATGGCTAGTGCTTGATAATTCCATGTATATACCTCTTACTGACATGCTTGTAT TTTGGTTACCATT

TCTGTTGGTTTAAGTCGTCAAATGGCATAGATTCAATAGGGCAC CATAAACAAGTAACTACAATGCATA

CTAGAGTAGGTGTCTGAATGCATTGCAAGCTTCCAACATTTGGTTGTTCAGGAACTC TGGAATTGTTCCA

CTAGCATGTTCAATGCAAGATATTCATGTTCAGTGTTAAACTGTGTAAGTGAGGAGA GTTTAATTCATTG

TACGCATGCCTTGGGGGTGTCAGTACGAGGAT TAAGCTCAAT TATCAAGTCTGTCATTAAAC AG AC

TTCAGCAGGGACTTGACCTGTCAATAATC GTCA ATGAATGCTATCATGTTCGTCAGTTTTAAGGAAGA

GAAACTCTTTAAATGTGCTTATCATGAAGTTATTGGATTCGGTTTTATTTATTCTGA CATTTTCCTACGA

TCATTTGCAGAAAATGACTCCTGCAACCTATCATCCAACACACAGTCGTACTCTTCC ACCACCTGATCAG

GGTAATGACTAGCTTTCCTTTATAATTTGTGTTTCCTGCCTTAAAAGTTTCCACCTT TTGTAGAAAGAAC

GTGGTGTT CAACACTTGACTACTCAAGGGATAGTAATTGT AATTACTT TTTAACTGTG TTATCGGG

CATGGGGACATT GAAG TC ATAGT TAAAACATCTTA TGCAAC CAAAATCCTTCAAC TCCATAA

GTAATAGC AACCTAGAGAACTCAAGG CTCTAACCCAG TGAAGCGGTTCGA T AATCTGCATACA T

CTTTTCCATCGCTATCGGTTTCTGTTTCACATTAGAAGTGAGTCTCTCCGATTAAGT CCTCGAATCTCTG

GCCTAGCTAGTTGGCCGCGCTTAGGAAAAGTCTGCTACTTTTAAATCTGTGTCGTAA AGCAAGCTTGATT

AGCTGAGCCCA TCAAGGTCTCTAGTTCATGTTCC TGTTCTGGCTCTTTTGCAGTTATGGCTACTGAAA

CGAAGAATATCCTTTTAAGAAACTTCTACAAGCGCGCTGAAGAGAAGGTTTGAGTCA CTCATTGGCATCG

CATTGTTAGCCTTGGTTTCATATGTACATTATTATTTGCAACGATGTGTATGTCACT GAGCTTATTTGTG

TTTTTCCAGATGAGACCGAAGCGAGCTGCACCAGAGAGCCTTATACCGGATCATGGT GGCAAGCAGGCGA

GGCCTTCTACCTCAAGCTAA

SEQ ID NO: 56 Linum usi tatissimum

MGSMLGDLPSFDPHNFSQLRPSDPSNPSKMTPATYHPTHSRTLPPPDQVMATETKNILLR NFYKRAEEKM RPKRAAPESLIPDHGGKQARPSTSS

SEQ ID NO: 57 Ricinus communis , CDS

ATGAGC CTCTGCTGGGTGACTGGCCGTCT TTGACCCTCACAACT ACCCAACTTAGACCGACTGATC CTTCTAATCCTTCTGTAATGACTCC GCTACTTATCATCCAACTCATAGCCGGACTC TCCACCACCCGA TCAAGTGATAACTACTGAAGCCAAAAATATCCTTCTGAGAAACTTCTATGAGCGAGCTGA AGAGAAGTTG AGAACAAAAAGAGCTGCCTCTGAAAATCTAATACCGGAGCATGGATGCAAGCAGCCTAGG GCTTCTACCT CATGCTAA

SEQ ID NO: 58 Ricinus communis , cDNA

ATGACTCCTGCTACTTATCATCCAACTCATAGCCGGACTCTTCCACCACCCGATCAAGTG ATAACTACTG AAGCCAAAAATATCCTTCTGAGAAACTTCTATGAGCGAGCTGAAGAGAAGTTGAGAACAA AAAGAGCTGC CTCTGAAAATCTAATACCGGAGCATGGATGCAAGCAGCCTAGGGCTTCTACCTCATGCTA A SEQ ID NO : 59 Ricinus communis, gD A

TT Rra K¾RR AR¾¾Rrrr ARRr Rr TRr¾ rr^TRrTrrRRT2TT2R2 TTTr2R2ff;rJRrTr T

TTTGTTCTCAACTGCATAGAGAAAAAATACCAATATGAAGCTAGAAGTATGTGTAGC AATCAGATAAAGC

AAATGC A ATC GAATTATGTGACAT GTGTATCA AACCAACC C CTTCAGCTCGCTCA AGAAG T TCTCAGAAGGA A T T GGC TCAGTiiGTTATCACTGCCAA CAAACAAATGAATCACAAAATT TTCTTTTGATCATTCAATACCATAAACTGTATTATAATATCAGAAAAACAGAAGCTAGGA AAGTTCAGCT GATTAAACTTGCTTAAAATTTAAAATCTAGACACCAACCCTGTAGTACAAGCTTTTCAAA ATGTCCCTAA AATATCAACAG GAAAAACAC AA AAGACCCA AACAT T ATGCAA C GGCTGAAATCGGGGA TGGCAAGCAACTTATGGAGGCAAAAGGCAAGCAGTATCAGATGTATGTGAATCCAACATT GATCTCAAAG TCCATCCC C AGCA CAAA ATA GTGAA CCAACA GATC CAAAGTCCATCCCCC AGCAC AAAT ATATGTGAATCCAAGGGCTCTATCCAGCAATGAATATGTGTGAACCCAACATTGATTTCA AAATTATCCA CCCCCTAGCATAAAACTGAATGCATGTCACTCATATTTAAATGTTAGACAATAGCCCTTA CCAATTCATG GATATAGAATAATCACAAAGTGACATTGGGTCATCGGAATAA TCC GATCCCAAGTCCCACTCTCACA

TCAAACTTGAATAGCTTGGATCATTTTTCAGCAGTACCTAGGTCTTGAGGTCTTGAG GAGTTAGACTAGA

CTCTAGAGGAGC CAACATCATGTCCTCACGCATGG TGTCAGACTCAATCTCTCTACTCTGATCATGCA AATATATTCTTGTTTATCCTAGATTTTTGCATTTTAGTACACTTTCTTAGTCCAAGGAGG TTTTTCTTTC

CCA CT ATTCTG GTAC AGAGCAT GTT TGAACAAC AAC C ATCCAAGAAAATAATAG GAAGAGCAGAAGCATCTCCGAATAGCATGAGTAAGCTTAAGAAAGAAGTTAACAGGTAGA TGAAATTGCA AAGGCTGGCATTTAGCAGAGACAAGCATACGTCACACACAACACCAGAAACAAAACACAT TTACACACTC

ATG ATGA AAATCACAGGATAACiiAC AGT CCAGCATTCAAAGAATCACACACCAACTAA TC AC C TGA CGGG GG GGAAG G CCGGCTATGA GGi GATAAG AGC GGA CAT

SEQ ID NO: 60 Ricinus communis

SSLLGDWPSFDPHNFTQLRPTDPSNPSVMTPATYHPTHSRTLPPPDQVITTEAKNILLRN FYERAEEKL RTKRAASENLIPEHGCKQPRASTSC

SEQ ID NO: 61 Theobroma cacao, CDS

ATGGGGTCTATGCTCGGTGACCTGCCGTCGTTTGACCCCCATAACTTCAGCCAACTTCGT CCCTCCGATC CTTCTAATCCTTCTAAAATGACACCTGCCACCTACCGCCCTACTCATAGCCGGACTCTTC CACCACCTGA CCAAGT ATAACTACTGAGGCCAAAAATATACT ATAAGAAA TCTATCAGCGTGCTGAGGAGAAG TG AGACCAAAGAGAGCAGCCACTGAACATCTAATACCAGAGCATGGATGCAAGCAACCTAGG GCTTCTACCT

CATAG

SEQ ID NO: 62 Theobroma cacao, cDNA

ATCATCCAGCACTAGTACGAAAAAGGCTGAGTC AGAATCGGGGCAGGCATTG TGTGG TTCTCTCCCA

TTTTCTCAATTGTCCCAATCTCTCTCCGGAGATTTTCTGGGTGCAGAAACCAGCATA TTCTTTTTCCCCA

ATGGGGTCTATGCTCGGTGACCTGCCGTCGTTTGACCCCCATAACTTCAGCCAACTT CGTCCCTCCGATC

CTTCTAATCCTTCTAAAATGACACCTGCCACCTACCGCCCTACTCATAGCCGGACTC TTCCACCACCTGA

CCAAGGTATTGAACTGATATTT TC CCTTGTT TTACTTGTGAAACAATAT CCCGAGGAAATATAAGA

TATTATTGGCCTTATAAACTGTCTGCAATGGTACCTTCTAGGATGTTGAATGTTGAC TTCTGTTTGAGAG

CAGCAAGTGCTGGAAATTATGTGGAGATGTCTGAATTGGAACTGGATATGATGTCAT TTTTCTGTAAAAA

TGGTATTGCCTTGACAAATGGGCTTCAAATAATTGCAAAACCCACCCCCACTACGAT CTCCAACAAGTCC

ATTTTGTTGCCTAATCCTCGTATCATAACCGCCAGGCATCATAATAACATCCTACAA TCAGCATCATCAT

CATCATCTTCTTCAGCTTTTACTCTTACAGCTTCAATTTCACCGGGTGCTACTTCGG TTGCAGTCGATGG

ACCCACCACCTCCACGAAACCTTCCAAGTCTTTGCCGTTTAGAGTGGGCCATGGCTT CGACCTTCATCGT

TTGGAGCCTGGCTACCCTTTGATCATTGGTGGGATTGATATTCCTCATGATAGAGGC TGCGAGGCTCATT

CGGATGGAGATGTGCTGCTTCATTGTGTTGTGGATGCAATACTGGGAGCTTTAGGGC TTCCTGATATAGG

GCAGATATTTCCTGACTCTGATCCCAAGTGGAAAGGAGCTCCATCTTCTGTCTTTAT CAAAGAAGCTGTG

AGACTCATGCATGAAGTAGGCTATGAGATTGGAAACTTAGATGCCACCTTAATTCTT CAAAGACCAAAAT

TAAGTCCACACAAGGAGGCTATCAAAGCCAACTTGTCTGAGCTGCTGGGAGCCGACC CATCTGTTGTCAA

TCTTAAAGCAAAGACTCATGAGAAGGTCGACAGTCTTGGTGAAAATCGAAGTATTGC AGCCCATACTGTG

GTCCTACTGATGAGGAAGTAAATATAGGTCTCGGATATCAGTCTCGAGTATGGAAAT TGTATGGCATACC

ATGAGCATTAGTTGTAAAACTGCCATAAATTATGGCATTGCTAAGTATGAAAGCTTG ATGTGTTTGGTTG

GACCACAATGTTAGAGTTGTGTTTTCAACATTTTACCAAAACGACTTGAACAACAAC GATGTGAGTTAAC

GAGTGAACCTACATCTACAACACGGTACCGTGTGAGTCAAATCTGTCGGACCTTTAT TGCGGAATTAATT

CGGGAAACAAATTTTTTTTTTGAAA

SEQ ID NO: 63 Theobroma cacao, gDNA

T TTCTCAATTGTCCCAATCTCTCTCCGGAGA TTTC GGGTGCAGAAACCAGCATAT CTTTTTCCCCA ATGGGGTCT TGCTCGGTG rrTGrrGTCGTTTGArrrrrATAΑΓΤΤΓ GPr ΑΓΤΤΓ ΤΓΓΓΤΓΓ ΤΓ C C AATCCTTCTGTAAGTATCCCAGAATCCT T TAAACCCAACCCCA AACAAAAA ACATGAAAA TATGAATTCTTTTCTGGTATGATCTGAATAAGTTGTTCGTTTCAACTGTTCTGATACTGC AATGAAACCC ACATGCGGTTTTAGATGAGTAGTGAAGAACTGTTAGATTTTTATGATTAGGTTTCAAGGT TTACCCAGAT ATGATGTTGGTGGATTCTTTTCTCAAAGCGCTTTTCTGAATTTGGACCTTAAAAAATGCT GTAGTCCATA TAATCAGTTAGTCGTCAGAAGCTTTTTGGATAAAGTTCGTTTGTGGTTACAAATGAATAT CTTGCTTTTG TATTTATAGGGGTTAAATGATTCTCGGAATTTCTACTCCGGTGTTATTACACGTTTAGTG CTTTTGTTGT TTGCATTGCAAGATACATTTAACAC TAGTATGTTTATTAATTTGAATGAATGGAATGTAATATGGTGATG TTACCATGTGAAGCATCTAAGTTATGCAAATAGGACTTGTTATTATCTGTTTGCTAAAAT GACAAAGATC TTTATACAGCACAAGCATTAGCGTGGAAATGCTTTCTTGTATGGGAATGGCAGTTTCCTT AAAATTGTAG GGTAACTATTCATGAGCTTGTGATTTTGACCACTGCATGCTACTGTCAGCTTCTAAATCT ACCAAGATTT TAAGTTCATGCTCTAGAAGCTTTTCAGATCTTCCTGTGTACTTGGTAGTTTAAGTTCTTA AGACTGGTTC TTAACAATGATCi'iAGAAGT TC TATATT TCAGATCT TCCTGTGTAC TTGGTAGTTGHAAGT TTGT TTCTAT

GGACATGCTATTGACAGAACGCATGAAATTGAGCTTTTGCATTCTAACTTGGGCACC GTTTTACTGGTGA CGTAT GAGATAA G IT TGTG GATGAC AT TGGGC AG CGC GAAAA A TGAAATG C AGGAGA AAAGAGAGAAGGTGAAGGGAAAGCCCAAAAGGAACGAGAGA AT AGATCACCCT T CT TCC AT CTTCTTCTTT AC GGTCTACCTCCTGATCATTTTCTTGAAATTCTCACTAAATTCTAGTTTTGTTTAG A C GAAT TGTATAGGGTAATA AATTGCCGAAAAGAG TCAG AAGGCAGGGT TCACCTGGTAAAG AAGCTGCATGGTGAATTTTGAATTGCTGTCCTCTAGCACATGGTGCACTACAGGATATCA ATTTCCTTTC ATiH.GCATGC ACATG AGGC AT AT G A AT A G A C AT T GT TTC AA AG T AT AG GGT C CCTGCCTAAC GTTA AAGGT TCCGA AAGTAAGAGT GTTGAAATGTCCAAAGGGTA AGAACATTT TTCACCAGACTTTCTATCCTTTTTAGCTATTTTAGCATGTGAGATGCTATGCTAATGGAT GGAGTTCATA

TGGTCTTTTAACAAAATTACACTTGTCTTTTTGCTTTCAGATTGATAGGTTGGTCTT TTAACAAATTACA CT TACT TGTATGGT TTGT TACTTTGCTTGAATATTTTAGGAGCATAAAATGCTTCTCCTTACTTTTCAGT CATGTTAAGAATTGAT GCACT TAAC TTTG ACTTAATC TCTCTTTTTGGC AGAAAATGACACCTG

CT TGTT TT TACT TGTGAAACAAT AT TCCCGAGGAAAT AT AAG ATATT AT TGGCC TT AT AAAC TGTC TGCA ATGGTAACATGATAACCTT GGT GGC GA TCT CAGAC TTGTCTACATGGTGATAA A AT TTAA

TTGAGAGCAGCAAGTGCTGGAAATTATGTGGAGATGTCTGAATTGGAACTGGATATG ATGTCATTTTTCT GTAAAAATGGTATTGCCTTGACAAATGGGCTTCAAATAATTGGTATTGGACTGAGAACTT GATTTTTACA TGGCACTCTATGCTTGCTACCACTGCTACTTGCTTACATTTTTTTTGTCATCTGTCTCTG AAATGGTGGA ATTGCTTTACCTTGTTTCTTTAGTTCT TGTTTCCTTCTGCAGTAATCTAAATGTCGTAGAGTACTCATC TGGAA TGTTCATCTTCTCTCAGTTTCATT TGATATCGACGAAGAATGGAGA TCTAATTGGAAACCA G GA TGi"i GCG AC TGAT GAAA TGC GT T GA^G TATC A GGjH.'iTGAAA GT TAJ¾G GT A GCGTG TCTAAATTGCC GTGC ACAAACACAAAGGCAC TACTAAATGAGA TGCATTCTGGTGCAGT GCCACAGCTCATTGGCTTAAATTCTTGATTTCTTATCCTTGTTTTTTTAATTGACCTGTG AACATTTTCT T TGTGTAAiCTGACC C CAAACiH.C TCAACAGT ATAAC ACTGAGGCCAAAAATA AC TA AAGA AATTTCTATCAGCGTGCTGAGGAGAAGGTTAGTAAATTGTTTATGATTTTTCATGTTATA ACACTGCATT CAAATAA TCAGTCACTGTTACAAAT CAAGGACACATGCATGCACCT GAGAGTGGGTGTCTGGGT C ATTTAGTTTCTTTTTGCTTTTCTCATTGCAGTTGAGACCAAAGAGAGCAGCCACTGAACA TCTAATACCA

Ρ,ΆΡ,Γ ATG ATGP AAGG A ΑΓΓΤ A GrTTrTArrTPAT AGTGGT ATG A ATTTTPTTGGGTTGrTTTGAT GC TC A G AAA G AT TCTCri A AAATGTGTTG AGAAAC TGTGCGGCfiGT TG G AAAACGGGAC ACCACACATGTACATTTTGTGTGTAGAAATCiAAC TAT/iGCTGGG ATCCCAATAACAAGGAGTG TC TGTTTAGTTTTACATGTTCCGTTTGGTATTTCATTCCATGTGGCGTGGCTAAATTGCTGA AAAGCTAAAT CCA G A GC CA A A GATG GCACAG GCATC C AAGTAA ACAGG T GAATATA GC TGGGCTCAAGGAGCTGCATATTTTAATATAATATCCATGCTCCTGTTGCTTATGAAGTTA GTTTATGCCT GTTTCAATTACATAAATTGAAGGTTTTCCCTGTGGGGTTACAGAAGATAAGAGTAGTTTG GGAATCAACT GAGATTCAAAACAACAGGTAGAGGTACGGTAGTGTGTTGCATCACTTCTTAACAGAATAT TCCATGAGGT TTAAGACTTAAAGATCTGATGACCATTCATGTTTCACGGAGTTAAGGGTCGTTTTCTGTC TAGGGTCTCC CAAATTTGGCAACATTAGGCCTCTCAAAGTCTTGAGTTTGGCACCAATTAGCCCACACGC AATATCCTGA TGAAAAAACG T CCGAACAGT AC TGAGAATG GGGACA iAA CA ATA GCAG GGCTG GT GC ACTTGAATGAATTTCGGTAAACACATTGGAAATGGGCCATTCACCGGAGTTGCACCCAGC GGTTGACAAA TGGAAAGTAGACAACGAATGATATTATTTGGTTCCTGCAATTAAATACCTACCTTTAAAA TAAAAATTAA GGAAAAAAAAAGGAAACAAA AC GCCACAAATACCAAAAAAGAGAAAAAAAAAAAAAAAGGAAAAGGA AAAACGAAGGGAACCCACGAAACAGAGTCAACAAAGAAACTGAAACTACTCCACAAAGAA ACAGAGCCTT TTCTCTGCCAAAGCAAAGATTTCAACAGCTATGGCCACTCACTTTTACAGTTGTTCTCCA ATTCCAGCAA AACCCACCCCCACTACGATCTCCAACAAGTCCATTTTGTTGCCTAATCCTCGTATCATAA CCGCCAGGCA TCATAATAACATCCTACAATCAGCATCATCATCATCATCTTCTTCAGC T ACTCT ACAGC TCAATT

TTAGAGTGGGCCATGGCTTCGACCTTCATCGTTTGGAGCCTGGCTACCCTTTGATCA TTGGTGGGATTGA TATTCCTCATGATAGAGGCTGCGAGGCTCATTCGGATGGTATGTTCACATTCCAATCGTC CAATTTTGCT

I! XX I! 111 1 11111 11 1 11 1 1 11 AATTTATCAAAGTTCTTTTTTTTAAACCCCGTATATGTTTTCTCGGAATCTGTATCTCTT GGTTGTATTA TC GT AAATTATCCACAA TGC TTGATGCTAACTATATGGGGA TAACGTGTTGCAGGAGATGTG CTGCTTCATTGTG TGTGGATGCAATACTGGGAGCTTTAGGGC TCCTGATATAGGGCAGATAT TCC G ACTCTGATCCCAAGTGGAAAGGAGCTCCATCTTCTGTCTTTATCAAAGAAGCTGTGAGTA ATTTTGGGTA ATTTTGAGAAATTCGTTTTTTTTTTTTGGGTATTTTATTTTCAGTGTATGCTTTGACTGG TTCACTGTTG GATACCTTAAAAACAGAGTTCATAACACACAGACACACACAAAAGAAAAAAAAGCTTTAT TTGCCATACT ATGAAACTTCTACTTAAAATCTGGCCTCAACTTGGACGGATTGTGTTAGGTTGGGAGAAG GGTCCTATAT TAGAACAC TAGTACTCTATGAACTCTTGTTGAAGAGAAAGTAAACGAAAAGGCAACACAGAGCTGAAT TA TGCAATTATTTATTTTGGGTGCATAGTTAAGGAAGGAAAATATTAATCATTCTGAAAGTC ATAGGCTCCA ATAATGTACTTTGACACAACATTTAAGTATAAAAATCTTATGAAATATCCTTTTTAGCCT TGTTGATAAG AAAAATAAAATAAAAAGGAA CCT GAG GGATTGGACAGAC TACACAGTCAGT TGTAGTCAACCC AT AT ATGAT AGC ACCAC TTi-iT TGATCTCT TGAGGGGC ATGGCTGGTT AAT TTCT ATCTGC TT AGAiAC AAAAACTGAGTCTGCTAGTTCATAGCATTTGGTAATTTGTATTAGATGCATTAGCAGAAC AAATCAATAG AGGGCTGCCTGTATTGAGGAGTGGAGAAGTGAGTATGATACTGCTGCATCAGAGCAAAAC TCTGATTGTC TGACACTGATAGTGACTTTCCAACCACAATGCAATGAACCTTGTACTTTATGTGATACAA TGAATCTAAC AGTGCAATGAATCTTTCTTCAGAACAGCTTAACTTGTGTATGGATGGAAATTGTATTAAG TTCTTTATTG TCGACTGTACTTACTGATAAGGGCATGTGCATGTATATAACTGAAGAAAATTCTGTATAA CCTTGTATTC TGCCTAGCCTGCAAAGTAA ACT TGTGCAGATGCACC GTAAACATGATGT GACTTAAAAG TA GGTAAAATAAGTTAATAAAAGTTGATGCTTTTAAGAGCAATGTATCGGGTATGATATTGC TTCACTTTTG AATTCTGTAAAATC C GATGC TTTTGGACAGTGAC TCACCAACCACAATTCAATGAACCT TCTTCA GAAC AGCC TAA TTGT TTGTGAT TGGAAATAGAATCAAC TT TT TATT AT TGACTGAAC TATTGC AT AT TC ATGTATGTGCATGAAAACCCTGTATAACCTTAAATTTGTATTTATCCATCTTCCAAACTG ATGCTATATG C GATGCCAG C AGGC G AAAGTAAAAAGC ATA ACATCT A GCCATA GC CATC TAGAAG CTCATGTAGTTGTCCCTTTGTATAGTATAGTGGAGGATCCTTGCTGAACCTGCATTTGCA TGTATAGTGA ATTCAGTCAGAGAAGAGACTAAAGCCCTGTTGGGAGCACAGGCTAGTGTGGTGGGATTCC CCCCCAAAAT GGCACTGGACCCATATGGCTCTCACTCCTAAATAGCCTCTAAATCAATAATGTGTTCTCC TAATGCCTCT

TAATGTGAGGTTGCCAACCTTAAA TGGTAGGATAGATCTATCTTGAG TGACCTAGAAC GGCA AAGG AAGAATGATTAACCGCAAACTACAAAGCTGGGGAACTGTAATGATCTGAGTCCAAGCACC ACTGGCCCAA CAACTTTTTGAGCCTAAACCTCGTAGTTCTTAAAAGTTTAAGCTGAAGTTACTCTTAGTG ATTGACTTAG ACTCTTATATAGGTTTTAACAATCACATTTGCATCTAATGTGGGATTGGGTATCAC TATCTCACTCACTC AAATCCTTGATGTCCTCATCAAGGCCACACATCACAATCACAATCACAATCAAAGCCCAC TCTACAGGAT CAAACATCTCACCAGCACAATGTGAAAGTCCACACCAAACAAACACATGTTCTAATACCA ATTATAATGT TCTGGGTCTAAGCACCACCAGCTTAACAACTTCTCAGACTTAAACCATGTTCTATTACCA TTTATTCTTT

AGACCCTTCTATAAGGCTTAATAATCACATTCACATATGATGTGATAGGAGCAAATG ACAACATGATCAC TT TGAAATGTGG TGTGGATGTGGATGj¾CCCACriAAC TGAT TTGATT-MAGGAAACTGATATT TT TACT TT CTACTTTATACTGAA CAAATC AGAAATTAGTGATAAATAAC AAATA TTA ATCAG TGAAGAAC TCC GAC TAAGTTTGTGCAGACCAA A GCTAAGCATGATCAAACAGAAATAATAGAGTATTATG AAA

TTAGTCATGCTAGGCTTTCATTGTTTATATCTTCCATTCTAGGAATATAGGATTATG TCTCCAATTTTAG CTGTTCATACAATTTAAATTAATCATACTCATACCCTGCAGCATGGTTTTTTTCAGGTGA GACTCATGCA TGAAGTAGGCTATGAGATTGGAAACTTAGATGCCACCTTAATTCTTCAAAGACCAAAATT AAGTCCACAC AAGGAGGC TATCAAAGCCAACTTGTCTGAGC GCTGGGAGCCGACCCATCTGTTGTCAATCTTAAAGCAA AGACTCATGAGAAGGTCGACAGTCTTGGTGAAAATCGAAGTATTGCAGCCCATACTGTGG TCCTACTGAT GAGGAAGTAAATATAGGTCTCGGATATCAGTCTCGAGTATGGAAATTGTATGGCATACCA TGAGCATTAG TTGTAAAACTGCCATAAATTATGGCATTGCTAAGTATGAAAGCTTGATGTGTTTGGTTGG ACCACAATGT TAGAGT GTGT TCAACAT TACCAAAACGAC TGAACAACi-iACGATGGTAAG T GACGAGGCTAC GGTTTCCCGATTGGTCATTAGTCTATGACGTTTGTCAAAGGCTCAAAACATGAAGTAGAA TACAGACCAA AGTCAAATTAAGCGTTTATATCTATGTTCTAAACAGTTTCCCAACTTCAATGTTGAATTC CTAGTTTCTG CTGCATTAAAGTGACTATGGCTGCGTTCACGTGTTCAACTTTGGTGAATTCACCGGTTTC CTGATTGAAT TTGAATTGTTCTCAAGTTCCACATTAAACCATCATATGCGTGACTACCATGAATTTCACA TGAC TATTGA TTGACGTTTGGTGTGTTTTCTCTTTTCAAATATTGTTTGCTGCATGCGCCCAACACGAAA AC TACGAAGG AAATATGAATTGTATTTTTGGAAACTTTTTTGTTGTTTTGTTGGACAAGGAATGAGAATG TTCCCCTCAC CCTCAGGTCAAAGTAGAAGCCGATTTTAAAACTCTCTGACCATTGCCAATTAATCCCATT TTTCTGATGA TTTTCCCGATATGATTGTCGCCGTATGTTCATGTTTATGGAGTGTCATCCACTAAGAATA ACCCAGAAAA AGTCCC CAAGACCAT TCAGAGGCGGAATTCAGACTC TTGTAACTGGT T TCAAATAGCCAAAGTGT

TTAATTACAAGCTTTCAACTCAAACTGAAAGAGAAAGTTAGGCAAGTGGGTCGATTT GGTCGCCTATGAA GGCTTCA AC GC AC ATCTCTGA CA C CTTACCCTGAGAB C CAGGAG AAT ACCCCCC AC CGC CGGCC CCCC T GAG AC TGACAAAGC TGTAJMCC AAGT AGCAJMC TTGT AG -¾GCCJ¾CCAAGGAT TG TCTTCTTCTAGTTCCAAAACTTGTCATATGTTCCCTGGAGAAAAGGCTGAATGTCTCCAA ACTCAATATT TTGTGTAACTTTCTGCCGATGTCACACGATTAATTGTTCTGTACTTTATCATGTTGAATA CTACTGGGTA TCAATAGCGGCAGT GGAGAACAAAGTAAATT TAAAAAAG TAAAGAGGAA CC AACAAGG

AAGGGAGTATTAAATGCATGAAGAAGGTAACGTTGCAGTCAAAGGTTGATAGAGGAA GTAAGCTAATTAA CCCAGCTGACAAAGTAATTAATTAGCTGGTAATACAGAAAATCTTGATCAAATCTTCCCT TGAAAGATGA

AGGCATCAACGGAGATA AAAAGGAT AGC TAGC TGTGTAATCCAACTGTGC CAAAGGGAC ACA AGAAATAAAAAAATGGGGATAGGCACAATAAAGAATTGAATGCTTATGTCAGATCAGACC CGGCCAATTA TGCCACCATCGCTCGTTGCCCTTTCTCGGCACTCTTTTGAGTAAACACTATTAATATAGC ATTTATAAAA TGGGGCCATAGAGAGTTGAATTATTCTATAGAAAGGGCCATAGCAGATAAGCCAGATTGG GACCTTCTAC

TGAATTGATCCAGGCACACAGCAAAA TTGi-iCACA A AAAAGGT CTC CGC GTT CAAGTCC C

CCAATC GAAGTCGGTC CAATT TTACAA AAT TA GTCGGTGA ACGGAT TCCAT TAA

ATACTTAGTAAAGCAATGGAATGCCTCCTGATGTCGCTATGCTTTCTGCAAATACTC TAATCCTGGGTTA

CAACCAATCCTC AGAAGTGTCCAC CCACTAATC TGATTCCAC TCAAAGTCAT GAACTAATCAG

ATGACT CACCT AATCA GT AAGCAGACACTAAGCAAGAGGGTCCAAAGGG TGGGAGAACAGCAC

CAATGACTTGCAATAGTTGTCTGCACCAGCCCTGCCTCTGATCACCTGAGATGGCTC GTGCTCCATGTTT

AACATATGAGAATGGAGCTCAGTAAAATGCCCACATGGGCGAGGCAAGCCGAAAGCT GAATCTCTTCATT

GACAAAGri GATTACCCTTGACCTTACT T C AAGTACTAGTA GA AA CACiH. GGGi.CGG TCTG A

GTTCACTTTGTGACTTGCAGTGAGTTAACGAGTGAACCTACATCTACAACACGGTi^ CCGTGTGAGTCiAA

TCTGTCGGACCTTTATTGCGGAATTAATTCGGGAAAC Α/ TTTTTTTTTG AA

SEQ ID NO: 64 Theobroma cacao

MGSMLGDLPSFDPHNFSQLRPSDPSNPSKMTPATYRPTHSRTLPPPDQVITTEAKNILIR NFYQRAEEKL

RPKRAATEHLIPEHGCKQPRASTS

SEQ ID NO: 65 Manihot esculenta, CDS

ATGGGGTCTATGCTCGGTGAC GGCCTTCC TTGACCCTCATAACT TAGCCAAC TAGACCTACTGATC C TCCAATCCCTCGAAAATGACACCTGCTAC TATCATCCTACTCACAGCCGGACTC TCCGCCCCCTGA TCAAGTGATAACTACTGAAGCCAAAAATATTCTTCTGAGGAACTTCTATGAGCGGGCGGA AGAGAAGTTG AG CCAAAGAGAGCTGCCTCTGAAAATCTA/iTACCAG GCATGGTTGCHAGCAGCCTAGGGCCTCTiCTT CATGCTAA

SEQ ID NO: 66 Manihot esculenta, cDNA

ATGGGGTCTATGCTCGGTGACTGGCCTTCC TGACCCTCATAACTTTAGCCAACTTAGACCTACTGATC CTTCCAATCCCTCGAAAATGACACCTGCTACTTATCATCCTACTCACAGCCGGACTCTTC CGCCCCCTGA TCAAGTGATAACTACTGAAGCCAAAAATATTC TCTGAGGAACTTCTATGAGCGGGCGGAAGAGAAG

SEQ ID NO: 67 Manihot esculenta, gDNA

ATGGGGTCTATGCTCGGTGACTGGCCTTCCTTTGACCCTCATAACTTTAGCCAACTTAGA CCTACTGATC CTTCCAATCCCTCGGTACGTATGCTCCCTATCTATCCTTTTAACTCCTCAAATCATTTTA AGTTGTATAT ATATGTTTTTTTTGTTTAATGATCCGTCTAGTTTATCTTAATTCTTTGCTGAGTTTTGTG CCTCCTAGTG GTTCAGATAAGGTTTTGGCTTGAGTTTAACAGCTATCAAATAAAATTTAGATTTTGGCGA TTCTTTCTAA TCCCATTTTTAGATTGCTTTCTGGGTTTACTTAGCTGAGCTATGTTAATGGGGCCTGATT AGGAAAAATT GGTCCTATTATTATAGACACGTTAAATTTCTGGATTTATGTAGTTTTTTTTTTTTCATTA TTAGATTGGG TTTTCCTGCGGGAGATGCAAGTTGAAAAGATTTTTGGCTGTTCAAAATGTAGTATTCCTA TTCAACTTTT TTGTTAATTTTGGTTAGATTGGCATTTGCAGCACACGGATTATGAGACATGTAGATTGTG AATTCATGAG ATGGGACAATGTCTTTTGTGGTAAAGCTAATAATGTTACGGCTTTGAAAATCAGATCTTA GATTGTGGGA AATTACCTCGTTGTTAGGTCCAAGCAGCTGTAATGAGGACTTATCTAAATTCAACTGCAA TTTGAAATTG TGAGTGTATCTAATGGCAATTTGAACATTAATGATATGAATATCAAATGTTGCATGTGAG CATAAGCTGC ATTTTATTCAAAATAATGTACCAGATCCAGCGAGATTGAGATGCTTTTATTTGTGAATGT GTTGGTTTCA AAAAGCTGGTGTCGCTAAGACTAAGCTACCAACTCCTTAAAGCAAGAAACATCTTCTGCA TTCTGTATGC TCACCTGCATGAGTAGACTTTTACATTCCAATTATTCATTAGCTAAATACATTAGTTGTT TGACTGTGAG TTAATTTTTTTTTCTGATGTTATTATTTATTGTCAAATGAATTATGCATGCCTCATTTTT TCTTAGATTC AACCTCGCATTGATTATGGCCCATAGCCAACTAGATTTGCTTGATAAATTTGGCACCATT ATATCTTTAA AGGTAAGTATGTAAATGAAGTGGAATAGAAAGGTCTTCGCCCTACTATTTCTTTGCTTCC CTGATCCTTC ACCTTCTTACTGCGTCTGCTGTTCAGTTGTATACATTCCCAAAACAATTTCTTTGCTTTA TTCTCTCAAG TGAAATAGAAACACTTCTGGCCAATATATGAAGCATTAGCTCTTTTACCATGCAAACCGA TGGTCCATCA ACTATGAAGTTCGAAAATTTGACATGTCCCATAGTTAATGAATTTTGTAGATTATTTGTG TAGATAATCG GGTAAATCCTTTTGGAATGTGAATTCTCATACATATTGTTGATTTTGGGAAACAAGCTAG GGCTCATTTT GCAGCTTCTCCAGCTGAGGCAAAATATTTGGTTTGATACTGTAATAGCAACTATATTAAG TTTTGAAATA ACCAGAAAAAAAAAAAAAAGAAAAGGCAACAAATAGAGGAGTCAAGCCTGCGTATATAAG AGGAACAGGA CGAATATCACAGTACTCTATTTACCTGTTGATATACCTACGCTAAGATGAAATTCTTTTT TTAAACCATC TAAGCATATAGGCACTTGTATAAACGTTTGCTTGTTTGTTATTAACTTTGTGATATTGTT CTCTGTGCGC TTTGATGGTTACACTTGTGATATTGTTCTCCATGTGCTTTGATGGTTACACTTCTGGATT GGTGCCTGCC ATTAGAATTGGTCTTATTAATTCGGAAATCTCTAAAGCAAGTGATTGTGTCCTATATGAT ATCCTCTAGT GCTTACAAGTTCTGGGATGAGGCTGCTGTGCTATGGCAGTTTGACTGTTAAAATTTCCAT TTCAAGATAT AAAGAAAATATGGTTTGTGAAACATGTGTGCTGGTTAGTGATGAACCTTAAATATACGAC TCAATACATT

GTCCCATCT TCCAGATTGATAATGTTTCAT GTTTGTCAACTTTAGGTCTAC TGAAATGCTTCTCATC

ACATTTTCAATGATTCTTATTCTGAGAATGGAATGAACTTCTATTCTTATTTAGAGT TATAATTATCTTT

TATGCTTTTCTGTAGAAAATGACACCTGCTACTTATCATCCTACTCACAGCCGGACT CTTCCGCCCCCTG

ATCAAGGTAATAAACAAGACTTTCCAATTTTCATCTTCAGGAACTTGTTTTCCATAA ATATAAGGAAAAT

TTGTTTGCCATGTAATGCCATTTGAATATTTTTGCAAGATATTTTTTTTTTCGGGTA GTGATATTGCATG

AGTTTGTATTTCTGTTGTATCTCTTTCACTGTATGAAAATACGTTATAATATATTAA ATGCCAACGATTG

CAACGCCATGTATGATCTATCTATTAAATTCTTTGCATCAAGTCATATTTACAAATT TATGCAGATGTCG

CAGTCTCTTTTGTTTGAAAACATTGTGAAGCTACTGTAGCATTAAGCTTGTTCTTGG TATCTAGAAATAC

TTCTCT GA TCTTAGAAATGAGTGGAATAGAAACACTTCCTTGAGCTAAGAATGCGTGCTAAAATGG

AAAATCTAGCAAATATAAGCATAAAATCACACAGGGTGAGTAGGAAGATTGAAC AGATTCCCATGCGCG

AGGGAAAAAATGTTGTGATGAGATTAC ATATTGAAAGAA ATT TTCTTAGTTGG TAGCATTTTAAG

TGACTTGAGCCTACTTGAAAAATCAAGAAACCAACATTGATTAATCTTTTTAGTTCA ATGATAAAGGTTG

AGTTGAGCTCAAGCTCGACTTGGATTTAAACAGCCAAACTTGAACATTGTGATGCTT GACCAAAGACCCA

GGAGTTGTGACCAGTTCACAAGCTACGTGATATGTGTGAAGCAACCTTGGATGTTAT ATAACCACTTAAA

TGAACAGATGTTTTCATTTAATGCTCGGGAGATATTTTAAGGTAAATGTGGGATTCA GATCCATTACTGG

ACGGACCAGTTTGGCTCCCTGTAATCTGCATGCCTTTTCCCTCTATGAGTTGCTTAT CAATGTTAATTGC

AATCTGGACACTATAAAGACCTTTGTTGGCTTTTGTCACTGTGCATATTGTAAGGTC ATACTCAAAAGCT

TGAGCTACAGAGGTTGTGTTTAGATTTCAAAAACTTGAGCAAGTTTGGTGGTTGCAC TTTTGATTTTGTA

ATGCAGT TTTCTCGTATATGGTGACGAT TCC CAT TGTCTGAAATCATCTTGCCAGTGATAACTACT

GAAGCCAAAAATATTCTTCTGAGGAACTTCTATGAGCGGGCGGAAGAGAAG

SEQ ID NO: 68 Manihot esculents

MGSMLGDWPSFDPHNFSQLRPTDPSNPSKMTPATYHPTHSRTLPPPDQVITTEAKNILLR NFYERAEEKL RPKRAASENLIPEHGCKQPRASTSC

SEQ ID NO: 69 Hevea brasiliensis, CDS

CTTCCAATCCATCGAAAATGACTCCTGCTACTTATCATCCTACTCACAACCGTACTCTTC CACCACCTGA TCAAGTGATAAC ACTGAAGCCAAAAATATTCTTCTGAGAAACTTCTATGAGCGAGCTGAAGAGAAGTTA

CATGCTA

SEQ ID NO: 70 Hevea brasiliensis, cDNA

CTATCGCTCTTCCTCTTCTGATATCTTTCTCTGTCTAGATTTGGCCACCGAAACCCCGCA TTCCATGGGG

TCTATGCTCGGTGACTGGCCTTCCTTTGACCCTCACAACTTTAGCCAACTTAGACCC ACTGATCCTTCCA

ATCCATCGAAAATGACTCCTGCTACTTATCATCCTACTCACAACCGTACTCTTCCAC CACCTGATCAAGT

GATAACTACTGAAGCCAAAAATATTCTTCTGAGAAACTTCTATGAGCGAGCTGAAGA GAAGTTAAGACCA

AAGAGAGCTGCCTCCGAAAATCTAATACCAGAGCATGGTTGCAAGCAGCCTAGGGCT TCTACTTCATGCT

AAGCTTTGTTTACTGTTGGAAGTACAACATGCCGGTTGTCAATGTAAATACAAGTCA AGTCATGTCATGT

CATGCCAAATGTGTCAATTTGTGTGAAAGGGATTTGCTTGCGCAATGCTCTGAACTT TAGAGCCATACAT

GTAGATATGTGTGTAGAAGTGAGATTTACAGCTGAGTAATCAAATATAA

SEQ ID NO: 71 Hevea brasiliensis

GSMLGDWPSFDPHNFSQLRPTDPSNPSKMTPATYHPTHNRTLPPPDQVITTEAKNILLRN FYERAEEKL RPKRAASENLIPEHGCKQPRASTSC

SEQ ID NO : 72 Gossypi urn raimondii 1 , CDS

ATGATGGGGTOT TG0T0GGTGA00 G00GT0ATT GA00000A0AA0 T0AG00AA0TT0GT000 00G ATCCTTCTAATCCTTC AAAGTGGTACCTACCACC ACCGCCCCACACATAGCCGGACTTCTCCACCTCC TGATCAAGTTATAACTACCGAAGCCAAGAATATACTTATTAGAAATTTTTACCAGCGTGC AGAGGAGAAG TTGAGACCGAAGAGAGCTGCTACTGAACACCCAACACCGGAACATGGATGCAAGCAACCT AGGGCATCCA CCACATGA

SEQ ID NO: 73 Gossypium raimondii 1, cDNA

GTTTATTATTAATTAAATAAATTATAGAAGAATTTTGAAGTCCCCAGCATTAGCGGGGAT CCATGCTAGT

TATATAAGCATCAATTTACCCATTAATGATCCAGCTTCAGCACAAAGAAGGCTGATT CTAGAACCGAGTC

AGCCATTGTCCTTTTTTTCTCTCTCTTGGCCGGGTTCTCTTTGTAATCTCCGGTGAT TTTTTGGGTGCAA

GCCACAAAACCAGCAATTTTTTCTTCTTTTCCGATGATGGGGTCTATGCTCGGTGAC CTGCCGTCATTTG

ACCCCCACAACTTCAGCCAACTTCGTCCCTCCGATCCTTCTAATCCTTCTAAAGTGG TACCTACCACCTA

CCGCCCCACACATAGCCGGACTTCTCCACCTCCTGATCAAGTTATAACTACCGAAGC CAAGAATATACTT

ATTAGAAATTTTTACCAGCGTGCAGAGGAGAAGTTGAGACCGAAGAGAGCTGCTACT GAACACCCAACAC

CGGAACATGGATGCAAGCAACCTAGGGCATCCACCACATGGTCATAATGAGATTTTC TTTTGGTTTTTCA

ATGCTCATCTAAATGTATCTTCTCATACCAAATGTGTGTTGTAGAATCTGTGAGGAA AGTTGCTTTGCAC

ATTGTTGTTAATCAGGATGCCATGCTTGTGCATTGTATGTGTACAAATTAAACTCAT AGGTTAATCAATA

ACAAGAAGTGTTGTTATGTTTCTGCATTCTCTTCTGGGTATTATTGATTCTTGTCGG C

SEQ ID NO: 74 Gossypi urn raimondii 1, gDNA GTTTATTATTAATTAAATAAATTATAGAAGAATTTTGAAGTCCCCAGCATTAGCGGGGAT CCATGCTAGT

TATATAAGCATCAATTTACCCATTAATGATCCAGCTTCAGCACAAAGAAGGCTGATT CTAGAACCGAGTC

AGCCATTGTCCTTTTTTTCTCTCTCTTGGCCGGGTTCTCTTTGTAATCTCCGGTGAT TTTTTGGGTGCAA

GCCACAAAACCAGCAATTTTTTCTTCTTTTCCGATGATGGGGTCTATGCTCGGTGAC CTGCCGTCATTTG

ACCCCCACAACTTCAGCCAACTTCGTCCCTCCGATCCTTCTAATCCTTCTGTAAGTA ACCTCATAATCCC

TTTTAACCTAACCCCATTTTCCATAACATGTGAATTTTGTTTCTGGGTTTGAATTGC AATGAATTAATCC

CCACATGCAGTTTAGATAAATAGTGAAAAACCTTTTAAATTTTTATGTTTATGTTTC TCGGTTTACCCTG

ATATGATGTTATTGTTATCTGTTTTTTTTTTTTGTGAAAAGTATTTATTATTCATGA ATTTCGGACCTTA

ATTGTCAGAATCTTTTTGGATAAAGTTGTTTGTGGTTACAAATGACTAGGGGTTTAA CTTTAAATGTTTC

ATAGAATTCCAACTCTGTTATTCCTACACTTTGTTTTTTTTAATGGTTTGCATTGCA AGATATATTATTT

ATTATTTAGATGTTGATTAATCTAATTGATTGTTGTGTAATGCTTCTATATGAAGCA TGTAAATAATGCT

AATACTTGTTATTATTTGTTTGCTAAAGTTATAGTTATATGTTCACACAAGGATCAT GCTTCTTCTTTTT

TTTTTGCATGGGATGATGATGGATTTTCCTTTAAAACTTCAAGTTCATGCTTTCGAA GCTTTCTTATCTT

GCTGTGTATGTGGTAGTTTTTGTTCTTAGAGCTGGTTCTTAACAATGGTAACAAAGA CAAGTTCTATGAT

TAAGACACAAATGAGAATTTGTTTCTATGTGGGTATACATATGCATAGACAATTAGA TATTTAGACATAT

TGGTATTTATGTATTGGTTTTTTTGTTCCAGTGGTTTACAGTGGTTCCTTGCCTATC TGTTTAACCATTT

TTGAGTAAGCTTAGACTGGTTGAAAGGTCGAAATGGTTTAAAAAAAAAAAAAAAACA ATTTTCACCTTCC

CTTCTATC T GAGCTATTTCAGCATGTGAGATGCTATAATG TCATGGAGTTCATA TGAGCTCCTC

TATGTTTTAATCTGAACAGTTATATTATGATAAATGAGTCTTTTTGCTCTCATTGGT TAGCCTTTAACTA

AAATTACAGACTTCCCTTGTATGGATTTTATTTTGCTTGAACATTTTCGGGGCATAA TTTGCTTGAATTT

TTTTTTGCTAGAAAGTGGTACCTACCACCTACCGCCCCACACATAGCCGGACTTCTC CACCTCCTGATCA

AGGTATCGAACAAATATTCTCTTTCTCCTTTTTTTCACTACGAAAACAATATTCTAT TCTGAGTTAAAGT

AAGATACTATTGGCGCTTTAAACTGTTTGTGGTGATAATATGGTAACTTTGGTTGGT TAAATTACTTTCA

GGCTTTATCCACAAAGCATGCCATTGCCATATTACATGATAATTATTAGTCTGGGTT TCCTTCTAGGATG

TTGAATGTTGACTTATGTTTGAGACCATCCAGTGCTGGAAAATTACATTGATATGTC TGAATTGGAACTT

GATATGAAATAATTTTTCTGAAAACCTTGTGTTGTGTTCTCCCTTTGCATCCTTTTT TTCTTTCTCTCAG

ATTTCTTGATTGGTAGTGATTTGGTTCATCTGTCTAACTTTGGTTGACACTGAGCAG CAAAGTGTTTTGG

ATATTTCAGGTTCAAATCACAACAAATTGGTATTGAAGTAAATTATTAGAAATCAAT TGGTGTTGTCTTT

CGTAATAGCTTTTGGTAATGC AGCATTAGCAAGAGCT TGGTGTGAGAATGTCATTGAAGATGGATGAA

AAATTCAGTGTTAGAAAAGTAGTCTTATTACGGTTCGTTTCTTTTTTCAAGTTTTTT TTATTGGTAAAAC

TCAGTTTATCAGTCTAATTTCTAAGTGGATTACTTTTAGCAGCTTCTGCTTCAATGT GTTTTGGATATTT

TTGGTCTGAATCCCAGAAAACTGGGGTCGAGCAAATTCTTGGAAATTGATTGGCTTT CAATCTAGCACTA

GGGAAGAGTT GATGCGGGATGATGTCGAATATGGATGTCAACTAA TGATGGTAGAAAAGA TTAGC

CTTTGTCATGTAAAAGTAGAGTTGTTCTTATCTCCTTCTCAATAGCCATTGTTGTGT AAGATCAACTCTT

ACACGCCAAACGTTACAATATTTTTTACTATCAAATTTGTTAACATCCATCTTTGAT GTCATCCTTTTAC

CCAAACACTTGC AATCT AAGATTATCGAAAGCCATGACGAAATGATTGTTATTGCACCCGAACTC TG

CTAGTCTTAAGATTATGGATAAGCTCACACCACAAAATGCCTCAACCGGATTCCCAA GTGTTTCTCATTA

GCTAATGATAGTACACAACTAAAACCTGACCCAAGAGACAATTTACGAAACTTAAAA TCTTATCTTTTCA

TTCTTTTCATTTTCACTCTCTCATCCCTTTGCCAAAACCAAGCATCAGTGCACCCCT GCCATCTTTAATT

GTCAACACCCAACCTCATGTCCCAATTGCCAACTTGTCTTACACTTTGCAAACTTCT TTAGTTGAAAATT

TCGGCTAGTTTCAATAAATATAAAGGTACTAGTGATTGAAATTGCA TATGATGCAAAATGGCACAGC C

ATTCTCTAAATCCTCGAGTTTTTAAGTTGAATACGATTTTTAGTTCACCTTTGAACA GCTTTTTTATTGG

AGACTGACTTCTGAAGCACTTTTTTACAGTTATAACTACCGAAGCCAAGAATATACT TATTAGAAATTTT

TACCAGCGTGCAGAGGAGAAGGTCAGTAATTCATTTATGATTTTCCATAGTCATAGT TTGAAACTCATAG

ACACATGCATAAACTTTGAGAGTGAGCGTGTTGATACTTCATTTTGATTCTTACTGC CGTTATCATTGCA

GT GAGACCGAAGAGAGC GCTACTGAACACCCAACACCGGAACATGGATGCAAGCAACCTAGGGCATCC

ACCACATGGTCATAATGAGATTTTCTTTTGGTTTTTCAATGCTCATCTAAATGTATC TTCTCATACCAAA

TGTGTGTTGTAGAATCTGTGAGGAAAGTTGCTTTGCACATTGTTGTTAATCAGGATG CCATGCTTGTGCA

TTGTATGTGTACAAATTAAACTCATAGGTTAATCAATAACAAGAAGTGTTGTTATGT TTCTGCATTCTCT

TCTGGGTATTATTGATTCTTGTCGGC

SEQ ID NO: 75 Gossypi um raimondii 1

MMGSMLGDLPSFDPHNFSQLRPSDPSNPSKWPTTYRPTHSRTSPPPDQVITTEAKNILIR NFYQRAEEK

LRPKRAATEHPTPEHGCKQPRASTT

SEQ ID NO: 76 Gossypi um raimondii 2, CDS

ATGGGGTC ATGCTCGGTAACCTCCCGTCCT TGACCCCCACAACTTCAGCCAACTTCGTCCCTCCGATC CTTCTAATCC TCTAAAATGGTTCC TCCACCTACCGTCCCAC CATAGCCGGACTCTTCCACCACCTGA TCAAGTTATAGCTACTGAGGCCAAAAATATACTTATTAGAAATATCTACCAGCGTGCTGA GGAGAAATTG AGATCGAAACGTGCTGCCACAGAACATCTAATACCAGAGCATGGATGCAAGCAAACAAGG CCTTCCACCT

CTTAG

SEQ ID NO : 77 Gossypi um raimondii 2, cDNA TAAGCCACATAGCTCTTTAAATACACATCAAATTACGGATTACTCATGAAGCAATAGCCC AACACAGGGC

TGATTCTAGAACCAGGTCAGGCATTATGGTGGTTTCTCTCTCATCTTGTCAATCATA TGCATCCCAATCT

CTCTGACATTTTAGGTGCAGGCCAGAAACCATCGTTTCATTCTTCCCCAATGGGGTC TATGCTCGGTAAC

CTCCCGTCCTTTGACCCCCACAACTTCAGCCAACTTCGTCCCTCCGATCCTTCTAAT CCTTCTAAAATGG

TTCCTTCCACCTACCGTCCCACTCATAGCCGGACTCTTCCACCACCTGATCAAGTTA TAGCTACTGAGGC

CAAAAATATACTTATTAGAAATATCTACCAGCGTGCTGAGGAGAAGGTTAGTAGTAT TGAGATCGAAACG

TGCTGCCACAGAACATCTAATACCAGAGCATGGATGCAAGCAAACAAGGCCTTCCAC CTCTTAGTTGTAA

CTCTTCGTTTTTTTCTTTGAGGCTGGTGTAAATGTATCTTCTCATATCAAATGTGTT GTAAACTGTGAAA

AAAAGTTGCTTACCCACTGTTGTAGACTGGGACACCATACATACGTGTATATTTTGT GTATAAATCAAAC

TTATAAATGGTTATCATTATAATTTTTATGGCGACCACTGTTATTTGTAGTTCA

SEQ ID NO: 78 Gossypi urn raimondii 2, gDNA

TAAGCCACATAGCTCTTTAAATACACATCAAATTACGGATTACTCATGAAGCAATAGCCC AACACAGGGC

TGATTCTAGAACCAGGTCAGGCATTATGGTGGTTTCTCTCTCATCTTGTCAATCATA TGCATCCCAATCT

CTCTGACATTTTAGGTGCAGGCCAGAAACCATCGTTTCATTCTTCCCCAATGGGGTC TATGCTCGGTAAC

CTCCCGTCCTTTGACCCCCACAACTTCAGCCAACTTCGTCCCTCCGATCCTTCTAAT CCTTCTGTAAGTA

TCCTTGTCATCCTTTTTCAACCCAACTCCAGTTTCCAAAATACATCCCATATGTATT TTATTTCTGGGTT

TTACCTGAATAACTTGTTTATTTTAGCTGTTCTGATATTGCATCAAAACCCCATATG CAGTTTACATGAG

TAGTAAACTTTTGTTACATTTTATGATTTGGTGGGTTTACCCAGATATGAACTACGG ATTTCTTTTTATG

AGTAAATTTCCTAAATTCTTACCTTAATGCTATTGCCCATATTATCGGTTACTTCTC AGAACCTTTATGG

ATAAAGTTGTTTGTGGTTTCAAATAAATATATTTGCTTCCCGATCTATATTGGCTTT AAATGATTCATGT

AATTCCAACTCTGGTGTTATTACACATTAGTCATTTTATTGTTTGCATTGCAAGATG CATTTATTATTAG

GATGTTGATTAAACTGATGGAATCAAGTTTAATATGGTAAACTTTCTATGCAAAGAA TCTAAGTAATGCT

AATAGTAAAACTTTTTTTTTTTTGCTAAAGTAACAAAGATCTTTGCCAACAACCTCT TGGCCTAATGGCA

AGAGTATTAGGTTGTGAGGCATGAGAGCTTGGGTTCCATCCCAAGCAACCCCATCCC CAACCCAATTATA

AAAAAAAAAGAAAAAAGAAAAAGAAGTGACAAAGATCTTTATACAACACCAGTATAA ACTTGGAAATGCT

TTCTTGCACTAGATAATAATAGGAGTTTCCTTAAGATGGAAGTCTCTATTCTTTGAG AGCTTGAGATTTT

CTCCAGTGT CAGTT AAAACTAC AAGACT AAGTTCATGC TTAGAAGCTTTCCAGATA GATGT

GTAGTTGGTAGTTTTAGTTCTTACAAGTTAAGACCGGATCTTAACAGTTATCATGTA GTTCTTTGTTTTA

T AAGATACTAGC GAGAAT TGTGTCTATGTGGCCATATGCATAGGTATACTTGTAGACAATAAT TA

TTTATATGTATCTATATTTGTTTCCATAGTTTGCAGTGATTCCTTGCTTCTGTTATA ATGTTTCCGGTTA

AGATCATAACAGTTGAAAGGTCCAAATGGTGTTGTTATGACTGTGAATTTGGAATTC AGTCACGGATGAT

GGATGAGAAAATTCCTCAAGCTCATCACAGGGAGCCTAACCTTAGAACTTGTTACAG AGAAAACCCAGAT

CTCTTTTCAGGGTTTTGATAAAAATTCGACTTCAGTTTTATTATTCCATTCTTCTCA GTTTTATTACATA

ATTAGGATTTTTTTTTTGGAAAGGAAAGAAATCAATTGAAATAAAATCTCAATCGAG ATACCTGAGGATA

AACTGAAATAACATATTAAAATCATAATTGAGAAACCTGAGCCTTAATTAGAGAACC CAAATTGATGGCC

TATCCTAACATAGGTTTGGTCCACAGAGCATCCACAATAGGCGTACAACAATTTTCT CCTGCTTCTTATC

CTTTTAAGCTAT TTAGTATGTGAGATATAAGC ATTCTACGGAGTTCATCTTGAACTCCTC ATGTTTT

TAAATGAACAACTTATGACAAAGTAGTCTTTTTGCTGTCATGGATTGGTCTTTAACA AAATTACACTGGC

TTCACTTGTATGGTTTGTTACTTTGTTCAAACATTTTAGATGCATAACACACTTCTT ATTTTTAAGTCAT

GTTAAAGAGTTGATTGCACTAATATTTTATATTCTAACATTTTCTTTTTGGCTAGAA AATGGTTCCTTCC

ACCTACCGTCCCACTCATAGCCGGACTCTTCCACCACCTGATCAAGGTATCGAACGG ATATTCTTTCTCC

ATGTTTTTACTTTTGAAACAATAGATCATTTTGAGTTAAAGAGAGATATTCTTGGCA CTTTAAACTTTTT

GTGATGAAAATATGGTAACCTTTAGTTGTGAATACTTTCAGGCTCTACCCATATGGT GATAAATTGATAA

TATAT TCATAATGTGTGTCGTATAGCTCTGGCAACTTTTTGGC AGGTTACTTTCAGGGATGTTGAAT

GTTAAGTTGATGTTTGAGAGCAGAAGTGCTGGAAAAGTATGCTGAGATGTCTGAATT GAACTTATTAATA

CATGATTTAGTTTTGTTGGAAAAATGGTATTTTCTTCACAAATGGGCTTCAAATAAA TAGCTATGGATTG

AGAAA TGATCTTTATGTAGCACTTAATGGATGCCATTGCTACTATTTGTCACACT T T TATA

ATCTTCCTCTGAAATGGTGGAATTGATTTATCTTGTTTGTTTAGTTCTTTGTTTCCT TCAGTAATCTATA

CGCCATAGATTGATTATTTGAAATTCTTCATCTTCTCTCACTTTTGCTTTGATTGAT ATCAACAAAGAAT

AGAATTTTTTTTATCAGAAAAATCATTAGTTGCTTTACATGATTGAAATTGTTTTTG AAGTTTTAACAAC

CAGAATGAACGTGTTTGAGGTTCTTATCCGTACACGTGTTATGCTACTGATATAAAG GCACCAGTGGTTG

GAATTTCATTCTGTTGCAAAATGCCACAGCTCATTGACTTAAATTCTTGACTTTCTT TATATTTTTTTCC

CATATATGATTGACCTGTCGAATACTTTTTAACAGTTATAGCTACTGAGGCCAAAAA TATACTTATTAGA

AATATCTACCAGCGTGCTGAGGAGAAGGTTAGTAGTAGTAGGTTTTCCTTCTTTTGA TGTTATAATACTG

CATATACAAATAATTTAATCATCGTAAATAGAAATACACAGGCACATGCATGCACAG ATAATTCATCTAG

TTTCTTACTGCTTTCCCATTGTAGTTGAGATCGAAACGTGCTGCCACAGAACATCTA ATACCAGAGCATG

GATGCAAGCAAACAAGGCCTTCCACCTCTTAGTTGTAACTCTTCGTTTTTTTCTTTG AGGCTGGTGTAAA

TGTATCTTCTCATATCAAATGTGTTGTAAACTGTGAAAAAAAGTTGCTTACCCACTG TTGTAGACTGGGA

CACCATACATACGTGTATATTTTGTGTATAAATCAAACTTATAAATGGTTATCATTA TAATTTTTATGGC

GACCACTGTTATTTGTAGTTCA

SEQ ID NO : 79 Gossypi um raimondii 2 MGSMLGNLPSFDPHNFSQLRPSDPSNPSKMVPSTYRPTHSRTLPPPDQVIATEAKNILIR NIYQRAEEKL

RSKRAATEHLIPEHGCKQTRPSTS

SEQ ID NO: 80 Vitis vinifera, CDS

ATGGGGTCTACATTGGGCGACTGGCCTTCGTTCGACCCTCACAATTTCAGCCAGCTTCGG CCCTCCGATC CTTCAAATCCATCAAAGATGATCCCTGCCACGTATCATCCTACTCACGATCGGACCCTTC CACCACCTGA TCAAGTGATATCCACTGAAACCAAAAACATCCTTCTTAGACATTTCTACCAGCGCGCTGA AGAGAAGTTG AGACCAAAGAGAGC GCC CAGAACACCTGACACCAGAGCATGGATGCAAGCAACCCAGAGCTTCTGCCT CAGACTGA

SEQ ID NO: 81 Vitis vinifera, cDNA

CGGGACTGGAAAGAATGGCGCCAAAACGACGTCGTTTGTTGTATTTGCAACCGTTCGCGA TAACTCCTGC GTAGAATCCAGACGACTGCGAACATCAGGTGCCTCTGTCATCCGGCTCTCTCTCATGGGG TCTACATTGG GCGACTGGCCTTCGTTCGACCCTCACAATTTCAGCCAGCTTCGGCCCTCCGATCCTTCAA ATCCATCAAA GATGATCCCTGCCACGTATCATCCTACTCACGATCGGACCCTTCCACCACCTGATCAAGT GATATCCACT GAAACCAAAAACATCCTTCTTAGACATTTCTACCAGCGCGCTGAAGAGAAGTTGAGACCA AAGAGAGCTG CCTCAGAACACCTGACACCAGAGCATGGATGCAAGCAACCCAGAGCTTCTGCCTCAGACT GAGCTTTTCT CCATTGGGAAGTCAAATATCGTCTTCAGCTTGTATATAACTATATATGTATTCCCATACT CAAATGTGTA AACTGAAAGAAGAC TGC TATCATTATCGCAAAAAATGC TAGCCACAGGCTAGTAGATGTTGGGTGT AAAAATCAGATTAAGATATAGCTGGATTATTCCCATCCCAGACAGTGAAATTATGAAATT GTCTTTCTTC TCATA

SEQ ID NO: 82 Vitis vinifera, gDNA

CGGGACTGGAAAGAATGGCGCCAAAACGACGTCGTTTGTTGTATTTGCAACCGTTCGCGA TAACTCCTGC GTAGAATCCAGACGACTGCGAACATCAGGTGCCTCTGTCATCCGGCTCTCTCTCATGGGG TCTACATTGG GCGACTGGCCTTCGTTCGACCCTCACAATTTCAGCCAGCTTCGGCCCTCCGATCCTTCAA ATCCATCAGT ATGCTTTGGCTTTATCTAAATTTTATTCATTTATTTATTTATTTTGGGTTTCTCTTCACT CGATTTGATT GTGTGCACAGATGCATTTCATCATTCTTCTTCCATAGTTGCATCTTAGGTTTTCTGGGTG CCCCTGGCTG AGTTCATTAGAATTTCAGGGGCTTGTTGAATTCAAAATATGTATAACCTTTCGTTTCTGA ATTTGGACCC TAATCTGTTGTATAGCACTGATCAATCAAGCACTGTGTGTGGAAAATGTTCTGGTTTGAG AGTTCTTAAG TCAAGTAGTAGTATTAGACTATTATCCTTTCTGATTATGGCTGAAGC ATTGAC C C TGGTACGTGGA AATAAGATTTGGGAATGGGAAATCTATCCATTTCCCGTTTGTTACCGTGATTGGATTTCT TATTAGAAAT TAGAAATGGGGATAGGAACATGGAAACCAAAACCCACCCTTTTAGAATTTTGATTCCTCT CTTCAACATG GCAATCTGATTCACTTCGATTCCGATTTATACTTCCATTCCTATTCCCAAGTCTCATTTT TGGTCTCACC TGATGGCAACAAAACTGATCTTTCTAGATTTTGTTTGCTCATGTTATTGTTTAATCTTTC AGCTTATTGA TCAACATTTTTCTCCTTTCAAGAATCCATTTTAGGCCCTTATTCCTAACTGTTTAATGAT GAGTCCAACA TATCTTTTCCTC ACTT TCCATGTACTAAATGCTTATGC TGTAGAAAATGAACACTCGTTAGCATGAA TTATAATTTAACCAAGGCATATGTTCATTTATTAATTTAGACTTGACAATGCACTGGAAA TCTCTGAATT GGTTTGAAGCTGTTAAGGGGTTCCAATAGC TATAAAAC ATTGAAGA TGAAAAAAGGTCTATTGATGT ATGCTAATG CAAATAGAT TGTTCAGGACTAGATTATGTTATAATTTTTAGTGAATTTGTCTGAATAT CTGCTCTTTATTTGTTTACCCTTGTTGTTTATTCAGTCTAGCCCATTTTCTGACATGGTG TAAGGGTAAT TGTTTCTGAGACACATGCCAACCCAGTTTAAGCTCTGTTTCCCTGCTAATGGGAGAGTTG GACTACAACA TAGCAGGTTGGGTCAGGTTAAAGATTTAACCGAGGGTCAATCTTATGCATAAAGGCTCAG TCATTGGCTA AGCTCAACCTGTGCTCCAGCAGTAGTTGCTTAACCTGGGTTGAACCCAAGTAATTTTTTA TCTTGAGTGA TGTGGGTCAGGGTTAGGTGAGGTTTGGTTGGGTTAAATTAGGCTTTTGGTTGCCAAAGAA AGGTCAAATG CAGGTTGTGCTTTTTCAAAATAACTAAAGGAGAAGAGGAGTGTGTATTAACAAAATTTAG ACGGCAGCAT TAGCAATGTGGTGATGGTGATCAGAGATGGCATGATGCAAAATTGGTGATGGGGAAGATT GGTGGGTCTG TGGTTTCCCACATGATACTTTGAGAGAAAATGATATTGATTTGAGAGTTTATCAGCAAGG GTTATTTGCT TTA TTCTTAAGTCACAAACTCTATTGAAAACCCCAAATGAAACAACGAATGCACAAGAGGTCA GATTC AGGTTACTCAACACCTCAGACCCAATCCACCACCAAAGTAAAATTGTTTTGGAGATTTTC CTGCCCATGC AGCTCCCATGGATCAGG TGGGTGGGC CAAATCTGCCTAAGT GGAGCTCTATATGAGGGGACTATT C TTTGAAGACAAAATGAAAAGTAAGCATTCATTGAATGTAAGCAAGCAATCATTATTGTGA AACGTACTTT ATAGCGCATTCATTGTGAATTATAGTTGTGGCTACTTGCTTGTGGTTTTCACTCTCTTAT TCTCTTGGAA AACAAGGACCAGGGGAATGAGGGGTGAGT TCCTTGCAAGTACTAAGGGGTGAAATGCAC AATTATT G TAG ATTTGGATATATGT ATTAGGCTTAGATTTGATTACAAT TAGC AGTGATTATTTTGGAATATT TTCTTTTTGTTTCTGTTTAAGATACATACTGAATTTAACCCGTGTTTATTTTTGTGGAAA TTAATTCCAC CTTTTCTACAATCTGTCAAAGATATTTCCCCCAATTGCAATAAAGTGCATTGTCTTTATT TTTCTTAAGA TGCATTTATGT TGTATCAGAAGATGATCCCTGCCACGTATCATCCTACTCACGATCGGACCC TCCAC CACCTGATCAAGGTAATGGACTCCTTAGTCTTTCATTTTTGGATTTTTTTTCTTTTTTTT CATTTGTTTG TTTGATTTATTTATTTACTTTTTGGGAAGGTGTGGTTGGTATATCCACATATTGATAATC ATTGTAATAA ATCCATATAGAAACTGGTTGATGCTACTGGATCTCGTCTAATTATTTGGTGATGTTATTG TGAATATTTT GTTT TAACATGTCTTTTGAC GGTATGCCT T TTGC CTTGAGAATATT AAC AGAGGGACAGATG TTTGCCCCAATTCAACACCATTATGTTGCAAAATGAAACAATTTTAACAGTGTTAATCCA TGAAGTTATA TGGGCATCCACTTTTCTTTATGGGGAAACCCTAGATAAATAGGCTTCAGAATCACATTTA GATTGGAAAC ATACATTTATTTGTAGTGCCTGTAGTTAAATAAAATTGGGAGGTTTCTCCCCACTTACAC TGAATTTGAA

TCCAACATCCTTC ACAGAAACCTATAGTCTCCTAGTGATATGATATCCT GATGTGTACTCCAGAAAG

CACAAGTTCAAAAAAAAAAGGGGGGGAAAGACTTGTATGTGAACTTCAGATCTTAAA CTTGATGCCAGAG

GATTGAGGTAATAGGGGAATTCAAATCCTAAATGCATGACCATCTCATGATGTGCAT GATGTGGGTGCTT

TACTCATTTCTTGCTTCATAAGTAGTCATAACATGACAGGTACACTTGTGGTAACCT TGGTCACTGAGGC

TCAAGCCTTAAGGTTAACCATCAAGGGCCTCAAAGCAATTCTTTGTGATGCTGGCCT GGAGGCATAGGGG

TGTCCACCACATTGATTGTCCTTTATAGTTGTTGTTCAATGTTCTTTGATAAGTTTC AGGTGAGTCTCTT

TAAACTATTACTCTTTTTATCTTCAGGGTTGTCATTGCACTTCCATCAAACAGTATT TCAAAGTACAGAT

GGTC CAGTGAAAATTTCAACTATGATTTAAAAAAAAGGTCCTAATGCCCTGTAGTTGTGCAACT GAC

ATCTTATTACTTTAAGAAGATTCTCAAATAAAGGTTCTAAATTTGCTGCACTTTGGG GTTTGAAATCTGA

TTTCAATAACAGTGAAAGAAAGGCGTAATTGCAGCATTTTTGTATTTGAAACCTATT CAATGAAAGGTGA

TCATGTTGGGGTGCAATAATGCCCACTCTTAGGCCTGGGATAAATCTCCCAAATGAT GGTGATGTTGAAT

ACCATAAAAGGCTTGACCTATCTCATTGGATACCAATTGGTTTTCAAATGAGATGGT CAGAGCCTGATTC

AAGAATTTGTATAAGAGCCAATGTCATAGGTTTGGCTCATGGGAGCCTCTTTTTGGG TTACACAAATGAG

GCTAAATACCATAAAAGGTTTGTCCTACATTCACTGGACATTAATTGGTTTTCAAAT GAGATGATTGGAG

TCCGGTCCAAGAAACTAAGTAACTCTACTTCCTGTAATTTGGATGTTTGCTTCATAA AGTTTGATTCTAC

CTAGCCACTTTAGTTTCATCTTGCATCTCACCCATCTAAATCCTCATGGCAGTGATA TCCACTGAAACCA

AAAACATCCTTCTTAGACATTTCTACCAGCGCGCTGAAGAGAAGGTTAGAATTCAGT TCCTTATGTTGAA

TCAATAAGCACACATAGCAGAACCTAGTTTTTTTAGCAACTCATTTCCTTCCTACCT GCAGTTGAGACCA

AAGAGAGCTGCCTCAGAACACCTGACACCAGAGCATGGATGCAAGCAACCCAGAGCT TCTGCCTCAGACT

GAGCTTTTCTCCATTGGGAAGTCAAATATCGTCTTCAGCTTGTATATAACTATATAT GTATTCCCATACT

CAAATGTGTAAACTGAAAGAAGACTTGCTTTATCATTATCGCAAAAAATGCTTAGCC ACAGGCTAGTAGA

TGTTGGGTGTAAAAATCAGATTAAGATATAGCTGGATTATTCCCATCCCAGACAGTG AAATTATGAAATT

GTCTTTCTTCTCATA

SEQ ID NO: 83 Vitis vinifera

MGSTLGDWPSFDPHNFSQLRPSDPSNPSKMI PATYHPTHDRTLPPPDQVIS ETK ILLRHFYQRAEEKL

RPKRAASEHLTPEHGCKQPRASASD

SEQ ID NO: 84 Malus domes tica, CDS

ATGGGGTC T GTTCGGTGAC GGCCGTCGTACAACCCTCACAACTTCAGCCAGCTCCGACCATCCGATC CTTCAAACCCTTCTAAAATGACACCTGCAACCTACTATCCTACTCACAACCGGACTCTTC CGCCACCTGA TCAAGTGA AAC AATGAAGCCAAGAATATCCTT TGAGGCACATGTATCAGCATTCTGAAGAGAAG TG AGACAAAAGCGGGCAGCGCCAGAAAAACTCTCACCGGAGCCTGTATGCAAGCAACAGAGG TATTCTGTCT CAGA AC GCC AA

SEQ ID NO: 85 Malus domes tica, cDNA

ATGGGGTCTTTGTTCGGTGACTGGCCGTCGTACAACCCTCACRRCTTCRGCC^GCTCCGA CCR CCGATC ΓΤΤΓA ΆΠΓΠΤΤΓΤΠAATGTPATTGTΑΆATTTG A TGPT GAGTGnTGGPTGrTTTGrTGTTGGAPr

TGCTTTTGGTCACGGCCCCAGATTAGGATGGAATGTTCATTGCTCAAGTAATATTTA TAGCCTTTCATGG

GTCCCTAGGAAAATGACACCTGCAACCTACTATCCTACTCACAACCGGACTCTTCCG CCACCTGATCAAG TGATAACTAATGAAGCCAAGAATATCC TGAGGCACATGTATCAGCATTC GAAGAGAAGTTGAGACA AAAGPGGGPAGPGPPAGAAAAAP P PAPPGGAGPPTGTATGPAAGCA P G GGT TTPTGTPTPAGAT

¾CTGCCT-iA

SEQ ID NO: 86 Malus domestica , gDNA

ATGGGGTCTTTGTTCGGTGACTGGCCGTCGTACAACCCTCACAACTTCAGCCAGCTCCGA CCATCCGATC CTTCAAACCCTTCTGTGAGT TTCACTTTCTGAAATTCTGAATCAAACCCC TTTTCCACC TCTTAT C AAGCTGAATAGTCGTGCAAAGATTTTCGTTTTTGTTGAAGTTCTTGATTTTTCTGAATTG GGTGGTTCTT

A.TTCAGTTAAAGGTGAGGAATTGTGGTTTTTCTGTCTGCATCA/iG TTATTTCTGGGACCTGTTTGAAT TTCATAGGAAATTTGGAGTAATTTTTGTAATTAGTTATAAC AGGAGATTTTTGTGCAGATTTTACTTCT AAG T A GG AA CG AA GATGT GCAGCAATGTCAT GTAAA TTGTAA GG AAAG GTGTGTAG CTTAATATAAATATAGAATTTCAGGTCATAAATTTACCACTTTTGTTGAATTTCACAATC CTGAAATCGG CTT^,ATGA ^ TGGTTAAGATGGTGCGACTGTTTGGAATTGGATCATCGTC GAJ¾ TATGC ATATGT TGATTTTGTGATCAATGAACAA.TAAGCTGTTGTTGCTTG GJMT TG AATA T GGATCTAArTTACGT TCGATATTTCTGTTAATCACTTCACTGATCTCTAAAAGTTTCGTGCTTTGTTATTGCATT GATCTTATAT AAGTGTAATTATCAAGATTGGTGCTTTGTTCCAGTTACGATAT CTGTACTGTATTGCTCAATTCTCATA GAGTTCGTAAGAATTTTGAAATCAGAAGCATAATTCATAGCTATGCAATATCTCATAATT TTTAACATTC GGATTGAAGTTACATGGTTAA TTACCATTTTCATGAj¾GCTGA TCi^C GGCTTTCTTAGTT¾¾GGT¾GA AATAC AGCi"i TTi-LAriGAGCG CCTAAA TAGTTTTGCCTTCCTGA-iTCCGAGCTATAGAGAATi-iTCCGC ATAACCTGTCAGATATAAGGTGTTT TC TGTCTTCTGATTGGCGGGTTC TGTCAAAACCAACCCAAAA CCAAAACCAATCGGTAATGGGTGGAGAGACCTGAT CAAGT TAAAC GTGAGATGTGTGGTTAC A AT TCTCATCATTGCCATTCACGTATAGTGGAACTAAGACCAACACGTGTGGTTAGCAATGTT AGGGCACATG AAGTGTGTGTGAACAAAGACACGGAATGAA TGTCCACTGCCATGTTTAA T TCAACATAAACTTCTGG TGCTTGAGCTTTTTCCGG/AA/ TGGTTGATi-iTGTGCT TAGCTGAATTTTGGATTTGTTTCAf-iACCAACTG AGCTGGCATTGTGGGCCACTAGGACGAAATCACTGAAAACGTTACAATGTTACAAACATA GAAATATAGT AAGTCGGAGAAAATTACACGTGCTCTTTACATCTCATACTCTAATTATAGAGAGAAGCAC GATTTTTGGT AAAAGGTTGCTTCGTGATGATTCTGAGTCATACGTTCATACATTCTGGTGGGTATCAGCC ATTGTTTGGC TTGAGTTAGTGTTGATGTAGTGAAACGAGCCTATCTAATGAAAATTATCTCTCTGTTCCA ACCACCAGAC AGTA A A TGAGC A ATTCTGCTAA AG AT ATAAACAATT AAT ACAGCTGAAGAGTGCTGG

CTGCTTTGCTGTTGGACCTGCTTTTGGTCACGGCCCCAGATTAGGATGGAATGTTCA TTGCTCAAGTAAT

AT A AGCC TCA GGGTCCCTAGGG AC CG AGA GCA C CAAAAACTGAAGGGA ATAATCAA

TC AATTATTGC TC TGTTC TAGCAGCCAAAAGAAAAAAGGAAAACGAGAAGATGTTATGAG TA

TGCTATGATGTAAAGTGATCAAAGTCAAATGCATTC TTCTTC T TAAGTAATGC TCCATTT TGT

CTGTAGAAAATGACACCTGCAACCTACTATCCTACTCACAACCGGACTCTTCCGCCA CCTGATCAAGGTA

TTAATGAATTTGTATTTCCTTAGTGTTTCATTCTGGATTGTTATTCTTTTCTATTAT TTCCCTATTTTTC

CCATTTCTGTTGATTAATTTTCCTTTCCGTGTTGTATTATTGTGACTCTTTGAGAAA GGTCCATTCTAGT

TAG AAGC TAAAATAAATCC GAAAACTGCAAG GATCTG C GGACGTGGT TGACTCTAG

ATATTCGTTAGGCAATGTGAAATCGTGTAGTTTGACAACGTGAAATTGACCCTATCA AAACCCCTTTGCA

GTGATAACTAATGAAGCCAAGAATATCCTTTTGAGGCACATGTATCAGCATTCTGAA GAGAAGGTACTTG

ATCAGCATTACATCCGCACTTGACGCCCGGTTTCCCCCTTTTCACATGAATGCTTAC ATACACATGATTG

AGAGAGTGAGAGAGGC C TC AGT TCATGGACT TTCATTGCAGT GAGACAAAAGCGGGCAG

CGCCAGAAAAAC C CACCGGAGCC GTATGCAAGCAACAGAGGTA CTGTCTCAGATACTGCCTAA

SEQ ID NO: 87 Mains domestica

MGSLFGDWPSYNPHNFSQLRPSDPSNPSK TPATYYPTHNRTLPPPDQVITNEAKNILLRHMYQHSEEKL

RQKRAAPEKLSPEPVCKQQRYSVSDTA

SEQ ID NO: 88 Prunus persica, CDS

CCGATCCTTCCACTCCTTCTAAAATGACACCTGCTACCTATCATCCAACTCACAGCCGGA CCCTTCCCCC

ACCTGATCAAGTGATAACCACCGAAACCAAAAATATTCTTTTGAGGCACATGTATCA GAATGATGAAGAG

AAGTTGAGACAAAAGCGAGCTGCATCAGAACATCTTTTACCAGAGCATGGATCCAAG CAACTTAGGGCTT

CTGTCTCAGATAATGCATAA

SEQ ID NO: 89 Prunus persica, gDNA

TTTTGCATTATCTGAGACAGAAGCCCTAAGTTGCTTGGATCCATGCTCTGGTAAAAGATG TTCTGATGCA GC CGCT TTGTCTCAACTGCAATAAACAGTCCATGAAAAAAC AGGAGAAAGCCTCTCTCTCTCTCTCT CAATGTATGTCCGCAGTTGTGTGCAATGGGGAAAAGGGGGCATAAAGTACTCATGTAATA CTTATACTCA CCTTCTCTTCATCATTCTGATACATGTGCCTCAAAAGAATATTTTTGGTTTCGGTGGTTA TCACTGCAAA GGGTTCAGACAGG AATT CATTT GTGAAACAGCACGA AGCAAATTGCTAATCAATCTCAAGGGTA AAAACTACACCCATAACAGTCAACTTTCAGTTGTCAGGATTAATTTCAAAGCTTAACTGG AATGGCCTTT CTTAAAGAATCATGAGTTGTTGATACAGGAACTAAGCCAATGGGTAAGGATCCAGAATGA AACAATGAGG AGTTATAAAGTTTTCATTATTACCTTGATCAGGTGGGGGAAGGGTCCGGCTGTGAGTTGG ATGATAGGTA GCAGGTGTCATTTTCTACAGATAAATGGAAGCATAA TT AAACAAAGAAAGAGAATGCGTTTAATTCTG ATCTATTTGCATCATAAACCTAACTCATGACATGTTCTTTTTGTTTCCTTTTTAAAATTT GTGGTTGTTG AAAGAACAAGCAAATAACAAATTTTGCATTAGTTAAATATGTTCAAATTCTGAAGATGCA TCCGTGAGCG CCCGAGCGACGTACAACAATCTATAATCTGGATTTGTGACCGGAAATAGGTCCAACAATG AAGCACCCAG AACTCTACAGCTGTAAATGATAACTTTATAAAATTATTAGCAGAATATAAGCTAAACTGC AGAATAGTCT GGTGGTTTTGGAACAGAGAAACAT TTCCATCAGATAGGCCTGTT CACCACATCAACACTAATGAAGCT AAATGATGGTTCATACACACCAGAATGTATGTTTCAGACACATCACTAAGCAACCTTCTA CCAGGAATCC TGA CTCTCTACAAGTTGGC AGACT AAAAGTT TGC CTTCGG CATCTCATAGCACTGAGTCCTA CTGTAACACAGAATCTTCACCTTAACTTTGAGAAATGCTATTATTCTTAAGTATTGGGAA GTAATGTATA AATAGAA TTATAAGTAGAAAACAATATT CGGACTTCC CACTAAATTTCTATGTTGAAAACATCAA GCAATATGTCCTAGTGGCCCACAATGTCAGCCCAGTTGGTTTGAAACAAATCCAAGATTT AGTTACCTAG CATGCATCAACTATTTTTGGAAACACTTAGGGTTTTCTTAATGTATAAAGTCTAAGCCAC TCTGCATATT TTCATTGGTTTTGGATGGACTAACATGGCACCAAAGTGCACAGTTGGTCATGTGTCAGAC CCGTTTTGGT CGTACGTGCTTCAAGTCACCTAAGATAATTAATGCATGTGTTATACTAAACGCGAAAGAG AATGCAGAGG ATATAGAAACTTGAAACTTAATATATACGAATCCCAGGCCTCTCCACCCAATTACTAATT GTGGGATGCT TGAACTCAAGAGTTTCTAAACAACTTACAAACTAGAAGAAAAAGTAAACACCTTATATCT GGCAGGTATT TATGGGGAT TCTCTATAGCCCATATTTAGGAATGATAAACATAA CGGACGCTGT TAAATAC AGA ACTTCTACCTTAGCTTAGAAACGGACTAAATGAGCTTCATGCATATGGTAAATTAATCAT GCAGTATCCA TGATCCCATATCATTCCAATATATGATATTTCAATCCAACTGCTATAAAATCTGAAGTTA AAAATAATGC ATCTGATTTCAAAT TC GTGAAC CTACAAGAC AGAGCAC ATATGTTAGC GCAGAACAAAGCATC AATCCTAATAAATATAAGACCAACGTAATAACAAAGCATGAAACTTTCGGAGATCCGGGA AGTGAAACAA TGCGCGTAG TTAAGTGAAAGACTACAAATCAGAGACATCAAAGCACAAACAACAGCAGCATA TGTTCC CTGATCCAAATATCAAACGAATAGCATTTCTTATGAATTCATATGAGATATGGAAGAAAA CAAATGAAAA TATACAAGAAGATGTTCCAATTCAAACCACACTCATTTGCACACGATTTATTACAATGAA AGATTTATCA TTTCAATGACATTGCTGCAACATCATTTACCATAAAATATAAATAAAATAAAAAGAAGCA AAATCTGCAC TAAAATCTATCTTTTTGGATGTACAAACAAAAATCATTTCAAACTTTCCATAAAATTCTT TCAAACTTTC CATAAAATTCAAACCGGGTCTCGAAATTTTTTGATGAAAATAACAGGAAGCCCTTACCTT GAGCTGAACA

GTATCATAAAAGGCAGAATCTTTTTTTCCCACAACAACTCAGTTCAGAACAATCAAC AACTTCAGCAATT

TCACCATAACAGATGTACAAAACCAAACAAAAAGAAAGCAAAGAACTTCACAGGTAA AGAAAAATCAAAG

CTTTGCATGTTTATATACAGCTTAAAAGAAAAAGAATGGCAAATTGGGTTTGATTGA GATGCTGAAAACT

CACAGAAGGAGTGGAAGGATCGGCGGGCCGGAGCTGGCTGAAGTTGTGAGGGTCATA TGACGGCCAGTCA

CCGAACAAAGAACCCAT

SEQ ID NO : 90 Prunus persica

MC^T FfinW ^ Yn H TF ^OT

RQKRAASEHLLPEHGSKQLRASVSDNA

SEQ ID NO: 91 Fragaria vesca, CDS

ftTGGGTTCTTTGTTCGGCAAOTGGCCCTOATATGACCOTCBC¾ACTTOAGCC¾G CTOOGACCCTCGGATC CCAC ACTCCTTCTAAAATGACTCCTACAACCTATCATGCTACCCACAACCGGACCCTTCCGCCA CCCGA

C jiGTGATA GTACTGAATCCAAGAACATTCTTCTG\GGCACATGTATCAGCAGCATGCTGAAGAGAAG TTGAGACAAAAGCGAGCTGCATCAGAAAACCTTTTACCAGAGCATGGATCAAAGCAACTT AAGGGTTCTG

TCTCAGATAAGTCCTAA

SEQ ID NO: 92 Fragaria vesca, cDNA

GGTGGGACAAGAAAGAATTAGAACAGGATCGTAGGCTCTATATAAAATGGCACACATGGA TTGATTCATA GATACCAACTCTGTGCATAATTCAGGGTTTGTCTCTAGAAACCAACAGGCCATTCTCTCT GTTTCCGATT TGGTTTGCTGCATTTCATTTCATGGGTTCTTTGTTCGGCAACTGGCCCTCATATGACCCT CACAACTTCA GCCAGC CCGACCC CGGATCCCAC ACTCC TCTAAAATGAC CCTACAACCTATCATGCTACCCACAA CCGGACCCTTCCGCCACCCGATCAAGTGATAAC ACTGAATCCAAGAACATTC CTGAGGCACATGTAT CAGCAGCATGCTGAAGAGAAGTTGAGACAAAAGCGAGCTGCATCAGAAAACCTTTTACCA GAGCATGGAT CAAAGCAACTTAAGGGTTCTGTCTCAGATAAGTCCTAACAAGCAAAACTGCCTTTATCAC TTCCAACTGC TCATTTGTTCTCACATGGATACTGGAAGTTCAGCATTCCCATCAGTGTGAATATTAGTGT CACAGGCAAA AGATGTGTAGACTGTACCCTGTCGTAGATAGAAGGGGTATTTGATTGCACTTAGTTGTAA AAGTTGCTTC ACTAGACATGTAGACTTGCGTGTACGAATTAGATTACAGCT TAAACAAATAAAATGAATAGTTACAAGG TTTGCTTGTGTTCTGGTTCTATATGTCTTTACAAATGTTAGTTCCATGCTCATTTAAATC GAATGAAGAA CATGCTTCCCCCAAAATTGCTTGTATCACGTGACTGCGGGTTTGGAAAATACATAAAACT GATAAAAGAC AGCATATGTCAAC

SEQ ID NO: 93 Fragaria vesca, gDNA

GGTGGGACAAGAAAGAATTAGAACAGGATCGTAGGCTCTATATAAAATGGCACACATGGA TTGATTCATA GATACCAACTCTGTGCATAATTCAGGGTTTGTCTCTAGAAACCAACAGGCCATTCTCTCT GTTTCCGATT TGGTTTGCTGCATTTCATTTCATGGGTTCTTTGTTCGGCAACTGGCCCTCATATGACCCT CACAACTTCA GCCAGCTCCGACCCTCGGATCCCAC ACTCC TCTGTAAGTCT CAC CTCCCAATAACCAATCT GAT TTGATTTGATTTCTTGTCAAAGTTTTCTGCTTTAATCGTCTTGTTTAATAAGATGTAGTG TTTGTTGCCA AGTTCTGTTTGTTTTGCTCTTTCTGAACCAAGTTGTGTGAAAAGAAGGTTGCTTTTTGTT GTAATCTTAT TCAGTTCTAGATGAGGGCTTCTGGGTATGTGCATTAAGAAACTTTTGAGGCCCAGTTTGA ACTGTATCAG AATTATGGGTTCTGGTAGTAACTATAATCTTGGTTCTTGTCAAGAATAGTGTAAGTAAAT ACAGAATTCT AGCATCCCAAGAACTTATCAGTTCTTGAATTGTCACTAGATTAGCTTAATCCATATATTA CAGTCCCTTA TGTTGCTCGAGTTAGTCAGAATTTATCAGATGGATTTTCTGTTTGAGCTTTTGATCATTG AACAATGTGT TGATCTTAGTTATGGCTTACTGTGATTGTTAACAATCATGTCAATTAGATCATCATTCCT CCGTAAAGTT TCATTCTTTTTTACTATATTGATACAATTAAAAATGTTTCCAGCCAAATGAAGCTTTGTT CTTCAGTTAA CATATAGTGTTGTATTCAAATCTTAGAGTTCACAAGAAATTTGCAAACAGATGCATCAGT TACAACTAAG TGCAGTTTGATATATTTTGGCATTTGGACCTCTTCTACATGGCAATGATGAGTGATTATA GCTTCTACTG ATGAATATTCCATATACATGAAGCTCATTTAATACCTTGCTAAGTTACAGAGGGAGAACT AGTATTTGTA AAGATGCGTATTAGGTTTTTCCTTCCTATATATGGCTGTTATAGAAAATATCTCCAGAAT TGTCTGCCAG ATAGAATGCGTTTAATAAGGTTTTGTTGTATTTAGTAAGATATTTTGCCTTTCCTTATAC CTAGAAGACA ACTTAGCAACATTTATGTTTAAGGTGAAGGTTATGTTTCTTGTATGACTGATTGCTAAGA AAAGAATGAA TTGAAACTGCTAAGAGTTTATACCTACCTTGTAAAGAGAAACAGGATTCTCAGTGAATAG GTTGCTTAAC AATACTCTGAGACACATGTTAGTATGGGTATCAACCATCATTCAGCTTGGCTAATTGGCT TAGTGTTGAT GAGGTGAAAAAGTCATATCTGATTCCATTTACCAGAATACATATTATATCTCATATATAC TAATAATTAC AGCTGCAGCATATTGGCTACTTATTCTGATCACGAATCTAGATTAGAAGGGAAATTGAAG TATTAATTAT AGCTTGCCATAGGTCTCTCATCAAAATTTGAAAATGATGTGAATCAATGCTTGCATGTCA TGATTTATGG CTATGATTGCAAAGTGATTGGAAGTAAATGCTTTTTTTCTTTCTTAAAATCATGTCTCCA TCTGTCTGTA GAAAATGACTCCTACAACCTATCATGCTACCCACAACCGGACCCTTCCGCCACCCGATCA AGGTAATGAA CAAATATTTCTATCCCTTAGCTTCAATAATAGCTTCAGACCTAAAAAATAAGCTTTAATA ATAGCCTTTT GTTTGACGTCACATTTACTGTTGTGAGCATTTGGTTCCTGCATCATTATTCAGGATCTTT AAGAACGATC CCATCAGGGGTGTTGTTTTACAATTGTAAACTTACCTGATTGGAACCCCTTTGCAGTGAT AACTACTGAA TCCAAGAACATTCTTCTGAGGCACATGTATCAGCAGCATGCTGAAGAGAAGGTACTAATC CCTTTATGCC TCCTTTTTCCGACTGCTTACATTTGCTGAAGTGCACACAACTGAGATTAGTAAGAGAGAA GCTTTATTCT AGTTTTCATGACTTCTTGCTGCAGTTGAGACAAAAGCGAGCTGCATCAGAAAACCTTTTA CCAGAGCATG GATCAAAGCAACTTAAGGGTTCTGTCTCAGATAAGTCCTAACAAGCAAAACTGCCTTTAT CACTTCCAAC

TGCTCATTTGTTCTCACATGGATACTGGAAGTTCAGCATTCCCATCAGTGTGAATAT TAGTGTCACAGGC

AAAAGATGTGTAGACTGTACCCTGTCGTAGATAGAAGGGGTATTTGATTGCACTTAG TTGTAAAAGTTGC

TTCACTAGACATGTAGACTTGCGTGTACGAATTAGATTACAGCTTTAAACAAATAAA ATGAATAGTTACA

AGGTTTGCTTGTGTTCTGGTTCTATATGTCTTTACAAATGTTAGTTCCATGCTCATT TAAATCGAATGAA

GAACATGCTTCCCCCAAAATTGCTTGTATCACGTGACTGCGGGTTTGGAAAATACAT AAAACTGATAAAA

GACAGCATATGTCAAC

SEQ ID NO: 94 Fragaria vesca

Ft P S I\i L L P E ti S P L P S S D P S

SEQ ID NO: 95 Citrus Clementine, CDS

ATGGGCTCTATGCTCGGCGACTGGCCCTCTTTTGACCCTCACAACTTCAGCCAACTTCGT CCCTCCGATC CCTCTAATCCGTCTAAACTTACACCTGCCACCTATCGTCCTAC CACAGCCGTACTCTTCCACCACCTGA CCAAG GA TAC ACTGAAGCCAAAAATATTCTCATGAGAAAT TCTATCAGCGAGCTGAGGATAAG G AGACCAAAAAGAGCTGCCTCAGAGCATCTAATTCCAGAGCATGGATGTAAGCAACTTAGG GCTTCTACGT

SEQ ID NO: 96 Citrus Clementine, cDNA

GGCTAAGC AAGTCTAGAATCGTGCGGGGCATTGTGCTCGTGGGCGCTCTCTCTCTCTCTCTTTCTCTG T GTCTGTCTGTCTGTCTGTCTGTCTGTCTGTCTGTCTGGTGGTGGCTCTTGAAATTAGATT AGGGTGCATA AACCGGCATTTGCAATGGGCTCTATGCTCGGCGACTGGCCCTCTTTTGACCCTCACAACT TCAGCCAACT TCGTCCCTCCGATCCCTCTAATCCGTCTAAACTTACACCTGCCACCTATCGTCCTACTCA CAGCCGTACT CTTCCACCACCTGACCAAGTGATTACTACTGAAGCCAAAAATATTCTCATGAGAAATTTC TATCAGCGAG CTGAGGATAAGTTGAGACCAAAAAGAGCTGCCTCAGAGCATCTAATTCCAGAGCATGGAT GTAAGCAACT TAGGGCTTCTACGTCAAACTGAGATGGACGCATGCAACTAGGCTTCCACCTTACATAAGT TTTCCTGCTT TACCCAGGAACCCAACTGTTACTAAATTTCCATGGGTGTGTGTGTGTGTGTGTGTATCTC GTAATGGTGT CATATATATTGTAATC G GAGTTCAGATATGTACATT TTTGTGTAC TAATAATATTTGC TGGGTGA TCCCTTTTACAAGGTTCCGGGATGATCAGTTAATACTTTGCACTCCTTCCTGTGCTGGTA TCATTTTATG TGAATGACTGATGCAGGCCTTCACATCACATGCACATTTAATTGCATGAGGCTAGTGTGT TTATATATGG GTTTGCTGCATTTGATTTT

SEQ ID NO: 97 Citrus Clementine, gDNA

GGCTAAGC AAGTCTAGAATCGTGCGGGGCATTGTGC CGTGGGCGCTCTCTCTCTCTCTC TCTCTGT GTCTGTCTGTCTGTCTGTCTGTCTGTCTGTCTGTCTGGTGGTGGCTCTTGAAATTAGATT AGGGTGCATA AACCGGCATTTGCAATGGGCTCTATGCTCGGCGACTGGCCCTCTTTTGACCCTCACAACT TCAGCCAACT TCGTCCCTCCGATCCCTCTAATCCGTCTGTACGTACT CAC ATACCCATTT TTTTGTCC AATGATT AATTTTC ATCAATCAGAAATAAGCAAAATAC TACAGAGCTGATCCTGATAAGATT C GGAGCTTGT GCAGTGAAATAAATTATTATCTTTTTCTAGAGTCGGTTCTGGGTATTTCTCATGTGAATT ATTAGAGTCT ATTAAAGATTTAAAAAAGAAAAAAAAAGAGCACATCATTTGGGTAGCTTATGCTTCCTGT TGTGCATTAA AGAAAAAAGTGCCATTTTAAAAGTCTGGTAGTGTAGATATTGTTGTGGTGTTTGTTTTTC ATTTTGATGC ATCCTAGCTTGGGATGTCTGGTTCGATCAAATCTAGTGTAATCACAGAAATGTTGGTTGA TGATGACTTT AACTGCAGCATTTCTAGTAGGTTAATTGTGGTGTCTACTTTGTGACTATGGTGTTAAATG CTATTGATGT ATGCTTAGTTTTTCTATGAAGTTGTGGAGGTGTAACATATCAGATTGATCTTTCACTTAG AAGCTTTGGC GGCCGC AACCAGAAGTTGTCAGAGTC CCTACCTAAGAGGCATTGTGTATATT CAACATGCTTACCCA AGCAAACTTAGTGCATGTTTGGGATTGTCATGGATTTTCAAACAATCACTTATTTGAGAA TCTACTTGCC AATTGTGCATGTTACTAGTCGTTTAAGTTGTTGGAAACAAATTGCTGCATTGATACCTAC GTTAGAATCT TTTTAATTATGCTTTGCCTATATTATTTTAATTTAGTTAGGCAAGATTTTTGGTTGTAGC CCTTGTCAAG AGAGCCGATATCTTGATTGAGAATTTGCTCAAGGATGATACTGACAGAAATGGTAGCTGG ATAGCTTATT GTGATAATTAATCATCAGAGATGTTGAATCATGGCAAGATTGAAGAGAGAGATTTGTAAA TGATGACATT AACTTCTT AACCTAC T TGGCTCTTGGAAGTGACATAA GGTATTGAAATAATGGACACAC AATGA AGTATGACTCTGAGGTCGTGAACATGTAGAGAACTTATATGTAGGAGCAAAATCAGGAAG AGGGATAGAG TGAGTTAATGATCGAGTATTTTATTGGCGCACCCTCTTGTTCTGTCCTCTATTTTATGTT CTTCTGCCTC TTGATTGC TC GT TTATCTTCAGTTTGATCCGAGTTTCAATGAAGAAATGGCCACGGTAAC TAAATA ACTTAAGACACTC TGTT GGAAAGTTGTTATTGCG TGCATTAGAT ATATGATACAT TGA TCAACA TGAATTTTGATATCTTTACTCGC AACATATATAT AATATATTTAATTGGC TAAAGA TACTG TGTT AAATCAATGACCCATCAAATAAGGTGAACCAAGTTCTCTCATGTATAATTTCCTTTTTTT GTGTCTGTCT AGAAACTTACACCTGCCACCTATCGTCCTACTCACAGCCGTACTCTTCCACCACCTGACC AAGGTATTGA CACAATCTTTGTATCTCCTTATTGCATCAAAAGCTTCTTGCCAGAAGGGTTATTCCTGGC TTTTTGAATC ATCTGCTGTATCATATACATAGTAATCTTTAAATTGATTTTGTGACAATTCCTCTCTTCA CGTGGTGTAT ATTTTCATGATACGATCTTTCAATCTGTTAAACTTGTTTTGCTAGGTTTGGTTTCATGGA TGATGTTGAA AT TTTATGTTTGTGTATATCAATGCCAGCACTTCCATACATGCTGAATCCATTAACTATCT TTAGAA AATATTGATGGTGTACAACTATATATGGATAAGCCAGTTTGGTTTTTAGAAAAGACTGAA AAATTAGGGT AGAGACTCTCTATTATAACAGAGAGATCATGATTGCTTGGGTAGTAAAAGAATTCTTTAT TTAAATCTTG ACCAAGATGCGATTATTAATGGGATTGTAGTTGTGCGTTTGTCTGTTGTCAATGTGTACA TTGTATGTAA

TTCTGGTAGAAC TACT T GTTATAGCTTCCCATGC GTTTTTGTTTCGCCACATAATTACTATGGAGA

CAAATAGACAATGAACAC GT TTTGGCAGTGATTAC ACTGAAGCCAAAAATATTCTCATGAGAAAT T

CTATCAGCGAGCTGAGGATAAGGTTAGTATCATTTAAGATGTATCTTGTGCCAGTAC ATGTGTAGCAAGA

GAGTGAATTTACAAACACTTCTTTAACTTCTTCCTCTCTTTTGGCAGTTGAGACCAA AAAGAGCTGCCTC

AGAGCATCTAATTCCAGAGCATGGATGTAAGCAACTTAGGGCTTCTACGTCAAACTG AGATGGACGCATG

CAACTAGGC CCACCTTACATAAGT TCC GCT TACCCAGGAACCCAAC GTTACTAAAT CCATG

GGTGTGTGTGTGTGTGTGTGTATCTCGTAATGGTGTCATATATATTGTAATCTGTTG AGTTCAGATATGT

ACATTTTTTGTGTACTAATAATATTTGCTTGGGTGATCCCTTTTACAAGGTTCCGGG ATGATCAGTTAAT

ACTTTGCACTCCTTCCTGTGCTGGTATCATTTTATGTGAATGACTGATGCAGGCCTT CACATCACATGCA

CATTTAATTGCATGAGGCTAGTGTGTTTATATATGGGTTTGCTGCATTTGATTTT

SEQ ID NO: 98 Citrus Clementina

MGSMLGDWPSFDPHNFSQLRPSDPSNPSKLTPATYRPTHSRTLPPPDQVITTEAKNILMR NFYQRAEDKL

RPKRAASEHLIPEHGCKQLRASTSN

SEQ ID NO: 99 Citrus sinensis, CDS

ΑΤΠΠΠΓΤΠΤΑΤΠΓΤΓΠΠΓΠΑΓΤΠΠΓΓΓΤΓΤ ΤΤΤΠΆΓΓΓΤΓΑΓΑ ΑΓ ΤΓARPPA ΑΓΤΤΓΠΤΓΓΓΤΓΓΠΑΤΓ CCTCTAATCCGTCTAAACTTACACCTGCCACCTATCGTCCTAC CACAGCCGTACTCTTCCACCACCTGA CCAAGTGATTAC ACTGAAGCCAAAAATATTCTCATGAGAAAT TCTATCAGCGAGCTGAGGATAAG G AGACCAAAAAGAGCTGCCTCAGAGCATCTAATACCAGAGCATGGATGTAAGCAACTTAGG GCTTCTACGT CZ-I/AACTGA

SEQ ID NO: 100 Citrus Clementine, cDNA

TGCGGGGCATTGTGCTCGTGGGCGCTCTCTCACTCTCTCTTTCTCTGTGTCTGTCTGTCT GTCTGTCTGT

CTGTCTGTCTGGTGGTGGCTCTTGAAATTAGATTAGGGTGCATAAACCGGCATTTGC AATGGGCTCTATG

CTCGGCGACTGGCCCTCTTTTGACCCTCACAACTTCAGCCAACTTCGTCCCTCCGAT CCCTCTAATCCGT

CTAAACTTACACCTGCCACCTATCGCCCTACTCACAGCCGTACTCTTCCACCACCTG ACCAAGTGATTAC

TACTGAAGCCAAAAATATTCTCATGAGAAATTTCTATCAGCGAGCTGAGGATAAGTT GAGACCAAAAAGA

GCTGCCTCAGAGCATCTAATACCAGAGCATGGATGTAAGCAACTTAGGGCTTCTACG TCAAACTGAGATG

GACACACGCAACTAGGCT CCACCT ACATAAGTTTTCCTGCTTTACCCAGGAACCCAACTGTTAC AAA

TTTCCATGGGTGTGTGTGTGTGTGTATCTCGTAATGGTGTCATATATATTGTAATCT GTTGAGTTCAGAT

ATGTACATTTTTTGTGTACTAATAATATTTGCTTGGGTGATCCCTTTTAC

SEQ ID NO: 101 Citrus Clementine, gDNA

TGCGGGGCATTGTGCTCGTGGGCGCTCTCTCACTCTCTCTTTCTCTGTGTCTGTCTGTCT GTCTGTCTGT CTGTCTGTCTGGTGGTGGCTCTTGAAATTAGATTAGGGTGCATAAACCGGCATTTGCAAT GGGCTCTATG CTCGGCGACTGGCCCTCTTTTGACCCTCACAACTTCAGCCAACTTCGTCCCTCCGATCCC TCTAATCCGT CTGTACGTACTTCACTATACCCATTTTTTTTCCTTAATGATTAATTTTCTCATCAATCAG AAATGAGCAA AATACTACACAGCTGATCCTGATAAGATTTTCTGGAGCTTGTGCAGTGAAATAAATTATT ATCTTTTTCT AGAGTCGGTTCTGGGCATTTCTCATGTGAATTATTAGAGTCTATTTAAGATTTAAAAAAG AAAAAAAAAG AGCACATCATTTGGGTAGCTTATGCTTCCTGTTGTGCATTAAAAAAAAAAAAGTGCCATT TTAAAAGTCT GGTAGTGTAGATATTGTTGTGGTGTTTTTTTTTCATTTTGATGCATCCTAGCTTGGGATG TCTGGTTCGA TCAAATCTAGTGTAATCACAGAAATGTTGGTTGATGATGACTTTAACTGCAGCATTTCTA GTAGGTTAAT TGTGGTGTCTACTTTGTGACTATGGTGTTAAATGCTATTGATGTATGCTTAGTTTTTCTA TGAAGTTGTG GAGGTGTAACATATCAGATTGATCTTTCACTTAGAAGCTTTGGCGGCCGCTAACCAGAAG TTGTCAGAGT CTCCTACCTAAGAGGCATTGTGTATATTTCAACATGCTTACCCAAGCAAACTTAGTGCAT GTTTGGGATT GTCATGGATTTTCAAACAATCACTTATTTAAGAATCTACTTGTCAATTGTGCATGTTACT CGTCGTTTAA GTTGTTGGAAACAAATTGCTGCATTGATAGCTACGTTAGAATCTTTTTAATTATGCTTTG CCTGTATTAT TTTAATTTAGTTAGGCAAGATTTTTGGTTGTAGCCCTTGTCAAGAGAGCCGATATCTTGA TTGAGAATTT GCTCAAGGATGATACTGACAGAAATGGTAGCTGGATAGCTTATTGTGATAATTAATCATC AGAGATGTTG AATCATGGCAAGATTGAAGAGAGAGATTTGTAAATGATGACATTAACTTCTTTAACCTAC TTTTGGCTCT TGGAAGTGACATAATTGGTATTGAAATAATGGACACACTGATGAAGTATGACTCTGAGGT CGTGAACATG TAGAGAACTAATATGTAGGAACAAAATCAGGAAGGGATAGAGTGAGTTAATGATCGAGTA TTTGATTGGC GCACCCTCTTGTTCTGTCCTCTATTTTATGTTCTTCTGCCTCTTGATTGCTTCTTGTTTT ATCTTCAGTT TGATCCGAGTTTCAATGAAGAAATGGCCACGGTAACTAAATAACTTAAGATACTCTTGTT TGGAAAGTTG TTATTGCGTTGCATTAGATTATATGATACATTTGATTCAACATGAATTTTGATATCTTTA CTCGCTAACA TATATATTAATATATTTAATTGGCTTAAAGATTACTGTTGTTAAATCAATGACCCATCAA ATAAGGTGAA CCAAGTTCTCTCATGTATAATTTCCTTTTTTTGTGTCTGTCTAGAAACTTACACCTGCCA CCTATCGCCC TACTCACAGCCGTACTCTTCCACCACCTGACCAAGGTATTGACACAATCTTTGTATCTCC TTATTGCATC AAAAGCTTCTTGCCAGAAGGGTTATTCCTGGCTTTTTGAATCATCTGCTGTATCATATAC ATAGTAATCT TTAAATTGATTTTGTGACAATTCCTCTCTTCACGTGGTGTATATTTTCATGATACGATCT TTCAATCTGT TAAAC TGT TTGC AGGT TGGTC CATGGATGATGTTGAAATT T ATGTTTGTGTATATCAATGCCA GCACTT CATACATGC GAATCCAT AACTATC T AGAAAATA GATGGTGTACAACTATATATGG ATAAGCCAGTTTGGTTTTTAGAAAAGACTGAAAAATTAGGGTAGAGACTCTCTATTATAA CAGAGAGATC ATGATTGCTTGGGTAGTAAAAGAATTATTTATTTAAATCTTGACCCAGATGCGATTATTA ATGGGATTCT AGATGTGCGTTTGTCTGTTGTCAATGTGTACATTGTATGTAATTCTGGTAGAACTTACTT TTGTTATAGC TTCCCATGCTGTTTTTGTTTCGCCACATAATTACTATGGAGACAAATAGACAATGAACAC TGTTTTTGGC AGTGATTACTACTGAAGCCAAAAATATTCTCATGAGAAATTTCTATCAGCGAGCTGAGGA TAAGGTTAGT ATTATTTAAGATGTATCTTGTGCCGGTACATGTGTAGCAAGAGAGTGAATTTACAAACAC TTCTTTAACT TCTTCCTCTCTTTTGGCAGTTGAGACCAAAAAGAGCTGCCTCAGAGCATCTAATACCAGA GCATGGATGT AAGCAACTTAGGGCTTCTACGTCAAACTGAGATGGACACACGCAACTAGGCTTCCACCTT ACATAAGTTT TCCTGCTTTACCCAGGAACCCAACTGTTACTAAATTTCCATGGGTGTGTGTGTGTGTGTA TCTCGTAATG GTGTCATATATATTGTAATCTGTTGAGTTCAGATATGTACATTTTTTGTGTACTAATAAT ATTTGCTTGG GTGATCCCTTTTAC

SEQ ID NO: 102 Citrus sinensis

MGSMLGDWPSFDPHNFSQLRPSDPSNPSKLTPATYRPTHSRTLPPPDQVITTEAKNILMR NFYQRAEDKL

RPKRAASEHLIPEHGCKQLRASTSN

SEQ ID NO: 103 Cucumis sativus, CDS

ATGGGGTC ATGCTCGGTGACCTGCCGTCATATGACCCTCACAAC TCAGCCAACTCCGACCCTCTGATC CTTCAACTCCTTCTAAGATGATTCCTACAACCTATCATCCAACCCACAGTAGGACCCTTC CCCCACCAGA TCAAGTTATAAATACTGAGGCCAAAAATATACTTATACGACACATTTATCAGCATACAGA AGAAAAGTCA

AGAACAAAGAGACCTGCAGCCGAGCATCCCATGCCCGAGCACGGAAGCAAGCAACCA AGAGCATCTACTA CCAACACT CAAA TGA

SEQ ID NO: 104 Cucumis sativus, cDNA

AGTTGTAAATCCAATGGCGATGTGATTCCTAATGATTCCCTTCTAGAAAAACCACTTCTT CTTCCTTTTT

CTTCTTCATCTTCTTCTTCTCCTCTGTAGATTTCGAACAATCAACATATATTCAGCA GCATTTTCATGGG

GTCTATGCTCGGTGACCTGCCGTCATATGACCCTCACAACTTCAGCCAACTCCGACC CTCTGATCCTTCA

ACTCCTTCTAAGATGATTCCTGCAACCTATCATCCAACCCACAGTAGGACCCTTCCC CCACCAGATCAAG

TTATAAATACTGAGGCCAAAAATATACTTATACGACACAT TATCAGCATACAGAAGAAAAGTCAAGAAC

AAAGAGACCTGCAGCCGAGCATCCCATGCCCGAGCACGGAAGCAAGCAACCAAGAGC ATCTACTACCAAC

ACTTCAAATTGAGCTTGGGAGGACATTTTCCTCCAACAAATTAAAGCTATTCATGTT GTGATAGATGACT

CCTGTATAATGAGAGTGAATTGCCTGCTCACTGAAGAAGAAACGGCTCGGCCAGACA TTTACATGTTGTA

TATAGATTTTACTCCTTGTAAGATTACCCTAAACTCAACCACATCAAATTGTTGTCA AAATCATAAAACT

CAGTTGAAGAATTGTAACTATATGCGTGTGCTTCCAAACAATATTATTGGAGGCCTC CTTCCTATAAAGC

AAAAGATCCTCACCTTGTTCTTTTTCCTGGTTTGGAT

SEQ ID NO: 105 Cucumis sativus, gDNA

AGTTGTAAATCCAATGGCGATGTGATTCCTAATGATTCCCTTCTAGAAAAACCACTTCTT CTTCCTTTTT CTTCTTCATCTTCTTCTTCTCCTCTGTAGATTTCGAACAATCAACATATATTCAGCAGCA TTTTCATGGG GTCTATGCTCGGTGACCTGCCGTCATATGACCCTCACAACTTCAGCCAACTCCGACCCTC TGATCCTTCA ACTCCTTCTGTAAGTTCTCAATAATGGCCTAATCATCATACCCTTTCTTTCTCTTCTTCT AATTCATTTC TCTATTTCTTTAAACCCTTCACTCCTTTTCTTGATCTTGGGTGTTTCCCTCCGTTTTGCA TGATTCTTTG TTTCGTTTCTATTAATGGGAAGTTGCTCGACTTGTGGTAGGGTGTGAATTGTGATGGGGT TCTGATTAAA TTTAACCTCCTCTTGATCTTCTTTGCTCTTTCGTTGTTGGGGCTCAGCTAATTTTTGGTT GGGATTATTG GCATTATTGATCTGTTTTTTGTTGTTGTCTTATTTGGAGATTCCCATTGCGTGATACTTG GAAAATCTTG AATTTTGGCATGTGGGTTCTTTGTTTAGGCATGTTTGTAGATGTGGGTTACAATTAAGTT CCGCATTTGA CGTGTTTGAATGTTCTATGAATTTTCCAAATGTTTCTCGTAGGTAGAAGTTGAACTTTGT TTACCCCCCC ACTTCCCCACCCTGTTGGAACAAATGAATCAGATGGTGTTTTTGTTTTAATTTTCACTCT CTCTAGGTAT TATAATC GTGAAGTCAATCCTCTGAAAGAAACGGTTCCGTTAACCCAGTCGCAAAGAATTCGCTATA T CATGATACGAAGGGGACAGAAATCTGAAGGAACAATAGCACTGAGTTACCGATCTTCCGG AGAAACGATT CTATTTAATTCTCATATGTAGCCCATCTTCAAGTTTCGGAATTCTACGATTAGGATCCCT AGTGCTTTTA CCCTTTGAATGGAGCAGCC GCAACCAATTTAAGCTATCTC TCCTTTGAATATAATAAAACTCAT GGG CCAAAATGAAAAGCCCTTGAATTGCAGGGTTATGAATTTCTTCTATACTGCGAATAGTTA TGCTATGCTC ATGCTTTCTCTGATTTCTTGAGTGGTTTACACTTTGCTTTCAAGGGTTTAAACTTAAACG TCCCAATTAA ATACTTGATATAAAGTTTGAAGTTATTCAAACAGTACTCCTTTGAGCCACTTTAGTATTT TTTTGCCTTT GTCCTTCTGCCCTGAATGGAAATATTTAGATAATGCAGAAGGATTAACAACTCTAAGAAA CATTAGTGAG AACTGAGAAGCTGTTGACTGAAGAGATTCTAAAAGCATCTCAACTAAAGCTACCAGATGT GGTATCCCTT TTGGATATAAAGAAAGGAAGCAAATAGTTTATAGTTTCTACATTAAAGTAAGGTCAAATC AAATTCTCCT TGTAATTGTGTGTACAAACTTGTGCATGCTTTGGATTTATCTCCCATCTTTGAATTGATC TCAAATCCGA CACCTCATGGGTGGCCATCCCTTGTTAATTTGCGGTAGATTGAGTGAACATGTGAGTGGA AGAGCTGCTG TCTGGATCAACTAAAATGC TTCATTCAAAGCTTAATCTGCGCTATAATGCAACATATTGTTTACTGTAT CTGCTAGCTGCAAGTAAAGTAGAACAAGAAGATGAATTAACTATT T CAATGTAAGGAATAAGTTGATG TTGGAATTACAATGCTAAGTTGGTTTTATTTTTATGTAGAAGATGATTCCTGCAACCTAT CATCCAACCC ACAGTAGGACCCTTCCCCCACCAGATCAAGGTAAGCAAGAAAAGTTGT CTTCACTACTCTACCGATAA CTTTGTATCTTGCTCGGATAACAGTATTCTTTAGTCAGTAGTTTTCCACTGTTGGCTTTA GTTTCCATCT TTCTTCTGCTTTTTACTCAAAAAAGAACTCCTCACTGATTTTTACTGCAGTTATAAATAC TGAGGCCAAA AATATACTTATACGACACATTTATCAGCATACAGAAGAAAAGGTTAGTAAAAGAAATCTG TTATGCTTTG ATCTGAAATACAATCCATACATGTAGTAAGCTACCTTGTGAGACCACTCACCCATTCCCT GTGGAC TCC CCTGGTCTTTGTAATGGCAGTCAAGAACAAAGAGACCTGCAGCCGAGCATCCCATGCCCG AGCACGGAAG CAAGCAACCAAGAGCATC ACTACCAACAC TCAAAT GAGCTTGGGAGGACATTTTCCTCCAACAAATT AAAGCTATTCATGTTGTGATAGATGACTCCTGTATAATGAGAGTGAATTGCCTGCTCACT GAAGAAGAAA CGGCTCGGCCAGACATTTACATGTTGTATATAGATTTTACTCCTTGTAAGATTACCCTAA ACTCAACCAC ATCAAATTGTTGTCAAAATCATAAAACTCAGTTGAAGAATTGTAACTATATGCGTGTGCT TCCAAACAAT ATTATTGGAGGCCTCCTTCCTATAAAGCAAAAGATCCTCACCTTGTTCTTTTTCCTGGTT TGGAT SEQ ID NO: 106 Cucumis sativus

MGSMLGDLPSYDPHNFSQLRPSDPSTPSKMI PTTYHPTHSRTLPPPDQVINTEAK ILIRHIYQHTEEKS RTKRPAAEHPMPEHGSKQPRASTTNTSN

SEQ ID NO: 107 Cucumis melo ssp. melo CDS

ATGGGGTCTATGCTCGGTGACCTGCCGTCATATGACCCTCACAACTTCAGCCAACTCCGA CC TCTGATC

CTTCAACTCCTTCTATGATTCCTGCGACCTATCATCCAACCCACAGTAGGACCCTTC CCCCACCAGATCA AGTTATAAATACTGAGGCCAAAAATATACTTATACGACACATTTATCAGCATACAGAAGA AAAGTCAAGA ACAAAGAGACCTGCAGCCGAGCATCCCATGCCCGAGCACGGAAGCAAGCAACCAAGAGCA TCTACTACCA

SEQ ID NO : 108 Cucumis melo ssp. melo cDNA

AATGGCGATGTGATTCCTAATGATACCCTTCTAGAAAAACCACTTCTTCTTCCTTTTTTT CTTCTTCATC TTCTTCTTTTCCTCTGTAGATTTCCAACAATCGTCTTATATTCAGCAGCATTTTCATGGG GTCTATGCTC GGTGACCTGCCGTCATATGACCCTCACAACTTCAGCCAACTCCGACCTTCTGATCCTTCA ACTCCTTCTA TGATTCCTGCGACCTATCATCCAACCCACAGTAGGACCCTTCCCCCACCAGATCAAGTTA TAAATACTGA GGCCAAAAATATACTTATACGACACATTTATCAGCATACAGAAGAAAAGTCAAGAACAAA GAGACCTGCA GCCGAGCATCCCATGCCCGAGCACGGAAGCAAGCAACCAAGAGCATCTACTACCAACACT TCAAATTGAG CTTAGGAGGACATTTCCTTCCAACAAAGTTAAAGCTATTCATGTTGTGATAGATGAGTCC TGTATAATGA GAGTGAATTGCTTGCTCACTGAAGAAGAAACGGCTCGGCCCGACATTTACATGTTGTATA TAGATTTTAC TTCTTGTAAGATTGCCCTAAACTCAACCACATCAAATTGTTGTGAAAATCATAAAACTCA GTTGAAGAAT TGTAAC ATATGCGTGTGC TCCAAACAATATTAT GGAGGCCTCCTTCCTATAAAGCAAAAGATCCTCA CCTTGTTCTTTTTC

SEQ ID NO: 109 Cucumis melo ssp. melo

MGSMLGDLPSYDPHNFSQLRPSDPSTPS IPATYHPTHSRTLPPPDQVINTEAKNILIRHIYQHTEEKSR TKRPAAEHPMPEHGSKQPRASTTNTSN

SEQ ID NO : 110 Castanopsis sieboldii, CDS

ATGGGTTCTCTCTTTGGTGACTGGCCGTCATTTGACCCTCACAACTTCAGCCAACTCCGA CCCTCCGATC CTTCTAGTCCTTCTAGAATGACACCTGCAACCTATCATCCTACTCACAGCCGCACGC TCCACCACCTGA TCAAGTGATCACTACTGACGCCAAAAACATTCTCTTAAGGCACATCTATCAACGTACTGA AGAGAAGGAT PTGAGAPPGA APA AGPTGPGPPAGAA ATPTTG APPTGAG ATGGATGPA G APP AGGGPATPTT ΓΓΑΡΤΤΓΓΤΚΓΤΠΑ

SEQ ID NO : 111 Castanopsis sieboldii, CDS, cDNA

CATTGTGCTCTCT CTCTCTCCCCCTAGATTTTTTGTGCCGAAAGAAACCAGCATTTTATGGGTTCTCT

CT TGGTGACTGGCCGTCATTTGACCCTCACAACT CAGCCAACTCCGACCCTCCGATCCTTCTAGTCCT

TCTAGAATGACACCTGCAACCTATCATCCTACTCACAGCCGCACGCTTCCACCACCT GATCAAGTGATCA

CTACTGACGCCAAAAACATTCTCTTAAGGCACATCTATCAACGTACTGAAGAGAAGG ATCTGAGACCGAA

GAGAGCTGCGCCAGAACATCTTGTACCTGAGCATGGATGCAAGCAACCTAGGGCATC TTCCAGTTCCTGC

TGAGCCCTTATCTTGTTATATGGAACCCCAAAATAGTTAATTCGTGTAAATGTTTTT GTCATGCCAAATA

TGCGTGAGTTTCTTGTGGGTTGAAAAGGGGTTTTATTTTGCTTGATCATTGCTGTAA GCAGCTTAACCAG

AAGTGTAGATTTTGTGTGTATAATTCATAAATACTATAGAGTTGGGTGATCCCTATT ACAGTTTACATGG

ATGATGAAATGAAAGTAATAGATATTATT

SEQ ID NO : 112 Castanopsis sieboldii

MGSLFGDWPSFDPHNFSQLRPSDPSSPSRMTPATYHPTHSRTLPPPDQVITTDAK ILLRHIYQRTEEKD

LRPKRAAPEHLVPEHGCKQPRASSSSC

SEQ ID NO: 113 Actinidia setosa, CDS

ATGGGTTrTTTGrTPGGGGΑΓΤ ΓΓΤΤΓΓΤΤΓ ΑΓΓΓΤΓδΓAACTTCAGrr ΆΓΤΓΓΠΆΓΓΓΤΓΓ ΆΤΓ

CT CAAATCC TCAAAAATGACGCCTGTCACTTATCATCCTACTCATGATCGGACCATTCCACCCCCTAA TCAAGTGATTTC TCCGA GCCj¾ AAi. A C TCTGCGGCATTTCTj^iTCAGCGTGCCG^GGACAAGCTG AGAPPAAAGAGAQPTGPGTPGGA PTTPTGAPAPPPGAAPAPGGAGGP AGPATPP GGGPPTPGGPTT

PTGPTTPA&AAGPGPPTPPPTGPTGA

SEQ ID NO : 114 Actinidia setosa, cDNA

CCCCAAACCACTCCATTGTTCTCTTCCTTTATCTCGATTCTTCCATTGAAATCGCAGCTT CCAATCCATG GGTTCTTTGCTCGGGGACTGGCCTTCCTTCGACCCTCACAACTTCAGCCAACTCCGACCC TCCGATCCTT CAAATCCTTCAAAAATGACGCCTGTCACTTATCATCCTACTCATGATCGGACCATTCCAC CCCCTAATCA AGTGATTTCTTCCGAAGCCAAAAATATACTTCTGCGGCATTTCTATCAGCGTGCCGAGGA CAAGCTGAGA

CCAAAGAGAGCTGCGTCGGAACTTCTGACACCCGAACACGGAGGCAAGCATCCCAGG GCCTCGGCTTCTG

CT CAAAAGCGCCTCCCTGCTGAGCTT CCTGCTATTGC TGAAGAATATCTCAAGAGTCAAG TC ATT

GAATGTCATTGTGAATATTCCCATCATCATATTACCAATTTGTGTTTTCCGCAATTA TAAAGGGTATTTC

TGTGCTCATTGTACATTTTGCATGTATAAACTCCAGTTGTTCACCTTCCCCTTTTCA AGTGCTGATGTAG

AATCTAGTCTCATCGCATGCTTCTCCCCTTTGCCTGTGTTGGGCATTACATAGTCGT

SEQ ID NO: 115 Actinidia setosa

MGSLLGDWPSFDPHNFSQLRPSDPSNPSKMTPVTYHPTHDRTI PPPNQVISSEAK ILLRHFYQRAEDKL RPKRAASELLTPEHGGKHPRASASASKAPPC

SEQ ID NO: 116 Solanum tuberosum, CDS

ATGGGGTP ATGTTTGGTG ATGGPrrTPS TTG ΓΓΓΤΓΆΓΆATΤΤΓίλ ΓΓΆΠΓΤΤΓΠΓΓΓΤΤΓΤΠΑΤΓ CCTCAACTCCTTCTAGAATGACACCCGTGACTTATCGCCCTACTCATGATAGGACTCTTC CTCCACCAAA TCAAGTTATTAGTTCAGAAGCCAAAAATATACTTCTGAGACACCTAGAGCAGCGTGCTGA AGAGAAGTTG

AGACCAAAGCGAGCTGCGGCTGAAAATCTGGCACCCGAGCATGGGTCGAAGCATCTT AAGGTATCCAACT GA

SEQ ID NO: 117 Solanum tuberosum, cDNA

CACAATATATATATTTGTGCTCTCTCTTTAAAGAGTGGCATTGTTCTCTGGATTCTTCCC ATTTTGGGTG

CTATGGGGTCAATGTTTGGTGAATGGCCCTCAATTGACCCTCACAATTTCAGCCAGC TTCGCCCTTCTGA

TCCCTCAACTCCTTCTAGAATGACACCCGTGACTTATCGCCCTACTCATGATAGGAC TCTTCCTCCACCA

AATCAAGTTATTAGTTCAGAAGCCAAAAATATACTTCTGAGACACCTAGAGCAGCGT GCTGAAGAGAAGT

TGAGACCAAAGCGAGCTGCGGCTGAAAATCTGGCACCCGAGCATGGGTCGAAGCATC TTAAGGTATCCAA

CTGAGATGCTTTTCTTTTTGGTGCTACCCCCGGGCGGGAAGAAGATGAGGTAATGCG AAACAGGACGATA

CACAACTTGGTTTTAGAAGAGTAACTAACTTC AAATAGG AAAATCTTCTGGTTTTCTGCATATTTCT

GTAAATAT GCTGTAATGATGCAGATGCATGTTG TGTAAAACTATGAAGAGC GTTTATCACTAGTCA

TATAGCAAATGAGATGTACACTAGAGAAAATGTTGTTGGATGAGATT C CTGCATGAGTAT GATAAAT

GTTTCATGCTGAGGGTTTATCGGAAACAA

SEQ ID NO: 118 Solanum tuberosum, gDNA

CACAATATATATATTTGTGCTCTCTCTTTAAAGAGTGGCATTGTTCTCTGGATTCTTCCC ATTTTGGGTG CTATGGGGTCAATGTTTGGTGAATGGCCCTCAATTGACCCTCACAATTTCAGCCAGCTTC GCCCTTCTGA TCCCTCAACTCCTTCTGTAAGAACCCTTTTCATTTTTTTTCAATTTTTTTTTATATAAAA CTTAAATCTT TGATTTTTTTTAACACCCTTTTCCCCATTCAATCTGTTTTTTGAATTCTACTGTGTTTTT AGCTGATTTA TGTTCGACCCATTTTTGTCTGATAGCAAAAAATGCATTCTTGGGATAATTTTAGCTGATT TGTGTTCCTG AATGGAGCAGAATGAAATCCAGCTAAT TGGGACTGAAATGTTGTTGA TA TTGTTGACCCAT T G CTATGTTTGTTTTATGCAAAAAAAAAAAAAAAAGTGTTGGAACAATTTTGTGGGTGTATT TGAAAAATTC TTGATCTTTTCAAGTTAGAGTTTTTATTTGGAGAAACTTTGATTTGTGTTAAGAGATCAA TTGTTTAGTA TTTGAAATGAAATGGGTCCGAACGGATCAGAATGAATATGTATATATAGGGAGAGAATTC ATATAGCTGA AGTGTTGAACCTAGCTAATTTGGGATTGAGATGTATTACGTTTCCCTCTGTTTTAATTTG TTTGTCTTAC TTTCCTTTTCAGTTTGTTTAAAAAAGAATGTCTCTTTACTTTTTTGTCAGCTCTTTAATT TCAACTTTCA AGAT AGAAGGCA T TGGTATATTCTACGTATG TGAGTTTAAGTCTACTTTACT TCGTAAGCTCCGT GTCAAGTCAAAATTAGACAAACAAATTGAAAAAGAGGGAGTATTAGTTAATTGACTGTCG TTTTTTGCAT GCTTATGTGGTGTTGTGTTACTAAAGCTAGCATAAAATACTCTGATTTAGGCTTAAGGCT GATATTTCAG TTTGAGAATGTTTTCTGATGTAATGATGTTTGATTTGCAAATGGGCTATAGGGTTACCAT AATGGTGCCT AATCTATAAAAGAGTGATATTTAAGCTATATGTAATTTAATGCGGATTTTGTATAAGTGT ATTCTAGTTT TGGTGCATTAACTTCTATCAGATAGACGGCATATACATATATCAATGCGTGTGGAGATAT CATATTACCT CAAGCAATAATGTGGATCATTATTTATCGGAAAAATGAAACAACAAGAAGAATTGAGTAC AATCTATGTA GCTGTCTTCTTGATGGTTTGGTGGTGTCTAGGTTTAATTTGTCGCTTCTGTGAGACTTAA TTGCATGCTA TGCTCAGCTTTGTGTAAACAATCCCTCTTTGCTAGTGTAGACTCACACCACGTGGCATTT GCTGCCATAA TACATTGTACACTAGCTTAATGATAATTGCGTATTAGATTGTTATCTATTATGACATTGG TTATAAGCAT GCACTGCTTATGTTACTGTTATTTCAGTTACTCTTACTTCTGAACGCATATTGATAAATA TGTAGGAGAG GAATCAGAAAACAATAATATTCTAAGACTTCGTAGAAAAGATATATAATACTTGTTTCAA TGTATTTTTA CTATCTGTTGCTTCATTTTTCTTTGTATCTTGTCATCTTTTTCTTCCCTCCCCGGACACC ACTTGTGGGA TTCCATTGGGTATGTTGTTGTTGTTGTTGTAGGGTATAACATGTTAGTATGAAATGTCTT ACTCTCAAGA GAAGCGGAAAAAAGAAGCCTTATCGGCTCTTGTATTACCATAACAACATTTTCATTAACT GATACAACTT TTTTCCTTTTTTGAGTTCCTTCTTACCTTTTCTCATTGTGCTTCTTGGCTCCTTGAATAT GATCCCATTG ATCCTTCGGCTTTCAAGCCTCAAGAAGCAATTGAAGACCTCATCTTCGTCCCCCGTTATG TCGACCAATC GTTTACCTCGCTTTAATGTAGTTCTTTTGATCCACGCTGAAGCTACCACCTTTAATCCTT TATCTGTGGT GGCTAATTTAATTGCTTGGAGAGAAGTGAGAAGGTTGATTTTCTTCTTGTGGTGACAGTC TTTTTCTCAG TGGTGCCATGCTTTGCTTCTATTTACAGCATTCACTTTAATTTCTCTAGAACCGTGTATG TTACAACACT AGGTTTATGATTTACCTTGTGAGCTTTTGATGTAGAAGAGCTGCAAATTATTTGAAGCAT CTATTATCCA CAATAAACTTTTTCTATATTATTGTTGTGTATACAGTCTGGTCTCCCTATTTCCTTGCCC TTTCCCCCCT TTCTGGTAGTTAAAACTTAAAAACAAAAATAATGAAGGTAAATATAGTGGAGTGTTTGAA GATAAAGTTA CTTGGATAACTCATACATTGAGGCTCATTATGTCTCCAAAGGAGTTGTCGTGAAGCTGAA TTTGTGAAGT

TAC AC ACTTAC ATAATGGTTTCC ATAACAATCGGC TGAGGGACTCTC TCACGGGAAGTCATGC

CTGGGCAAGGGTAGTACTAGGATGGGTGACCCCCAAGGAAGTCCTTGTGTTGCATCG TTGCTTTGAATGG

CATGATAAGTGAAGTGAACTAACATTTGTAATCTGCATATGCACTTCCAAATCTCTT TAAAAATTATTAT

AGCATTACATAAGTGTTCCATGATGAAGTTATTTGTTGGTAAACCTTTTGTACTTTG ACTTTTAGTAGCT

GAAACAATCTCTCTG TTCT TTTCCAGT TCGAGGATACTAGT TT T TT T TCCAC ATCTA

ATCCTGTGTTCTTTCTTTTTCTAGAGAATGACACCCGTGACTTATCGCCCTACTCAT GATAGGACTCTTC

CTCCACCAAATCAAGGTAAATCAAGAACATGATTCTTTTTGTTTCTTACACATCTTT TGATATCATAATT

TACAT TATCTT TAGTTGCTCT ACCCTCTACCTTTATCAGGTATTTGGATTATATACATTTGAC AGA

ATCCTTGAGCCAAGGGTTTGTCAGAAATAGACTCTCTACCTTCCAAGGTAGGGGTAG GGTCTCTATGCAC

AC ACCCTCCTCAGACCCCACTTATGGGATTACATTGGGCATGTTG TGTTGTATATATTTGACTATACT

AACCTCCCACCCTTCCTCCCTAAGTGGATGGTGAATGGAATAACTTTAGCTCAGCTG CTGTTATTGGTTA

TTCTTATGAGTTGGTCCTTAGAATTAAGCCAGTCATCCTCTTGAGGATTTGAACTTC AGTTTATTCACTT

TAGAAGTTGTTTCAACCTCAAATGATTGTGTCGCAAAAGCATTGGGCCCGGATCAAT AAGGTTGCCAACT

GGCAATGAGTTGTTTATGAGTAGCAGAATCAAGCACCCGTAATTACTAGTTTTGAAT TTTTCGCTCCGGC

T TTGTGAAGATAAACAGTCTAAAAAGTTCTCTGTGGATGC AGTGTTGAGGC TTCATCGAAACAAAGA

GTGAGACCTGTCTGGTGCTTTTTTCTATGTTAGTCAGGTGAAAGTAAATAGATTAGT GTATTAAGTAAGG

CACTGCTAAAGCCTCTATTCCCGTTTTTTGAGCGATAAAACTCTTAGCTTCCAGCAA GCTAGGTGCATAA

GCTTTTTTTACTACATAAAAGATTCCAAGAAATGCAGGCAGGGTAGAGCTCGGCAGA GGGTTCGAGAATA

GGGTAGGGTAGGGTCCTTAAGATTCAATAAGAAAGAGTGTGCCTTTAAAGCAAATAA TGCAGCCCTTTTC

TTTCCTCATATGGCTATATTTAATTCAAAACTCCTGTAAATGTGTGTGTTTACAAGT GACAATTTGTCAT

G CATCTCC GTTATGAAAT GTGGTTTAATTCTTTCGGATAATAT ATAATTATCT GCCCCACTACC

ACATCTCTATACTCGACTAAGAATGATTTCAATTGCACTAGGATAAACTACTTTTCA ATAGCTTTAATTG

CATCATCTTATGTAAGATCCTATTACCGAAAAGGAAAAAAGGGAATTCTCTTTGGTT GTAACATTTGGTA

AATATAGTATCAATAGCCATCTAAAGTACATTCATGTTATTGGTATTAAACTTTTAT GAGGATGCACATA

TTCGTGAGCCGAGGGTCTATCGAAAACAACTTCTCTACCTTTGAAGGTATGGGTAAG TTGCATACACACC

ACCCTCCCCAGACCTAATCATGAAAATCTAATGTAATGTGCACGTTTGTTTGTCGGT TTACTTTCTCATG

CTTCATCTCAATCT TTCT TTTTC TA GAATCTCGATTAATCAGATAAGGGAAGTATACTAGA A

TGAATTGCGTGAGC TAAAACT TGCAC TAAGGTATGC ATATC AAC CAACATATAC AATGACC

TGCATTTGAATTTCCAGTTAT AG CAGAAGCCAAAAATA AC CTGAGACACCTAGAGCAGCGTGCT

GAAGAGAAGGTCAGTATTCATTTTGATCGACATTTATTCCTTCTTTTGATGGATATT TGGCAATTTGTAA

TTGTGTTATATTGTGAGGATTCATCTTAAAGTGACTAGTTTTACAATGGCTATCAAC CTATTGCAATGTT

TCTCCTTTATCCAGTCTTGTGACCGACAATATGAGCAAACTCACACATAATCAATGA GGATTCGTATAAC

CAACCCTAGCTTCCTTGGGATTGAGGTGTTGTTGTTGTGAAATGTGTTCTATCCCTT TACGGTTAAAATG

CTTTTTTGTGTTGTAGTTGAGACCAAAGCGAGCTGCGGCTGAAAATCTGGCACCCGA GCATGGGTCGAAG

CATCTTAAGGTATCCAACTGAGATGCTTTTCTTTTTGGTGCTACCCCCGGGCGGGAA GAAGATGAGGTAA

TGCGAAACAGGACGATACACAACTTGGTTTTAGAAGAGTAACTAACTTCTAAATAGG TTAAAATCTTCTG

GTTTTCTGCATATTTCTGTAAATATTGCTGTAATGATGCAGATGCATGTTGTTGTAA AACTATGAAGAGC

TTGTTTATCACTAGTCATATAGCAAATGAGATGTACACTAGAGAAAATGTTGTTGGA TGAGATTTCTCTG

CATGAGTATTGATAAATGTTTCATGCTGAGGGTTTATCGGAAACAA

SEQ ID NO: 119 Solanum tuberosum

MGSMFGEWPS IDPHNFSQLRPSDPSTPSRMTPVTYRPTHDRTLPPPNQVISSEAKNILLRHLEQRAEEKL RPKRAAAENLAPEHGSKHLKVSN

SEQ ID NO: 120 Solanum lycopersicum, CDS

ATGGGGTCAATGT TGGTGAATGGCCTTCAATTGACCCTCATAATTTCAGCCAGC CGCCC TCTGATC CCTCAACTCCTTCTAGAATGACACCGGTGACTTATCGCCCTACTCATGACAGGACTCTTC CTCCACCAAA

TCAAGTAA AG CAGAAGCCAAAAG ATACTTC GAGACACC AGAGCAGCG GCCGAAGAGAAG TG AGACCAAAGCGAGC GCGGC GAAAATC GGCACCCGAGCATGGATCGAAGCATCT AAGGTA CCAACT GA

SEQ ID NO : 121 Solanum lycopersicum, cDNA

AACCCACAATATATATATTTGTGTTTTCTCTTTAGAGAGTGGCATTGTTCTCTGGATTCT TCCCATTTTG GGTGTTATGGGGTCAATGTTTGGTGAATGGCCTTCAATTGACCCTCATAATTTCAGCCAG CTTCGCCCTT CTGATCCCTCAACTCCTTCTAGAATGACACCGGTGACTTATCGCCCTACTCATGACAGGA CTCTTCCTCC ACCAAATCAAGTAATTAGTTCAGAAGCCAAAAGTATACTTCTGAGACACCTAGAGCAGCG TGCCGAAGAG AAGTTGAGACCAAAGCGAGCTGCGGCTGAAAATCTGGCACCCGAGCATGGATCGAAGCAT CTTAAGGTAT CCAACTGAGATGCTTTTCTTTTCGGTGCTACCCCTGGGCGGGAAGAAGATGAGGTAATGC GGTTGCAAAC AGGACGATACACAACTTGGTTTTAGAAGATTAACTAACTCTTCTAAATAGGTTAAAATCT TCTGGTTTTT CTGCATATTTCTGTAAATATGACTGTAATGATGCAGATACATGTTGTTGTAAAACTATGA AGAGCTTGTT TGTCAAGTAGTCATATAGCAAATGAGATGTACACTAGATAAAATGTTGTTAGATGAGTAT TGATAAATGT TTCCCTCCGAGGATTTATCGGAAACAACCTCTGTGATCCGTCCTCTGTGACCCTAGAAAA TGATATTTTA TCATAATGATCAAACTTTTTAACATTGA SEQ ID NO: 122 Solanum lycopersicum, gDNA

AACCCACAATATATATATTTGTGTTTTCTCTTTAGAGAGTGGCATTGTTCTCTGGATTCT TCCCATTTTG GGTGTTATGGGGTCAATGTTTGGTGAATGGCCTTCAATTGACCCTCATAATTTCAGCCAG CTTCGCCCTT CTGATCCCTCAACTCCTTCTGTAAGAACCCTTTTCATTTTTTTTCTATTTTTTTTTTCAT ATAAAACTTC AATCTTTGATTTTTTCTGAACACCCTTTTCCCTATTCAATCTGTTTTTTTGAATTTTAAT GTGTTTTTTA GCTGATTTATGTTCGACCCATTTTTGTCTGATAGCAAAAAGATGCATTCTTGGACAGTTT TAGCTGATTT CATT GTGTTCCTGAATGGAGCAGAATGAAATCCAGCTGGTACTATGTGTTAAT C CCGTT TAAGAAC GTCTCTTT CTTTTGTCAGCTCTTTAATTTCAACTTTCTACTGACATGTCTAAGGCCACAAGATTAAA AAAGAGCAATTTTGGTACTATGTCTGTTAATTTAAGACCACAAGTTTCAAAAGTTTACTT TACTTTCTTA AACTCCGTAGAGGCAAACAAATTGAAACGGAGAGAGTAGTTTATTGATTGTCATTTTTTG CGTGTTTATG TGGTGTTATGTTACTTAAGCTCTCTGATTTAAGCTTAAGCCTTATGTTTCAGTTTGAGAA TGTTTTCTGA TGTAATGATGTTTGCTTTGTAAATGAGATATAGGGTTACGGTAATGGTGCATAATCTATA GAAGAATGAT ATTTATGCTTTTAAGTAAATTCAACGTGGATTTGGATTAAGTATATTCTAGTTTTGGTGC ATTAACTTCT ATGGGATAGATGGCATATACATATATCAATGCCTGTAGAGATCTAATGTTATCTCAAGCA ACAATGTGGA TCATTATTAATCAGAAAAATGAAACAACGAGAAGAATTGAATAGAATCTATGTAGTTGTC TTATTGATGG TT GGCATAGTCTAAATTTGTCTCTTGTGTGAGAC TAATTGCACGC ATGCTCAGCT TGTATAAACGA TCTTCTTTGATGGTGTAGAGTGTAGACTCACACCACTTGACATTTACTGCCATATTACAT TGCACTCTAG TTTAATGATAACCACATACAGATTGTTATCTATTAAGGCATTGATTGTAAGTATGCACTG CTTATGTTAC TGTTATATTTCAGTTATTCTTCTGAATGCAGATTGATAAATATGTAGGGGAGGAACAGAA AACCATGTTA TCCTAAAACTTTAAAGAAAAGATACATAATACTTGTTTCAATGTGTTTTTACTATCTGTT GCTTCTTTTT GCTTTGTATCTTGATATTTTACTGTCATTTTTTTCTCCCTCCCCAGATACCACTTGTGAG ATTCCATTGG GATGTTGTTGTTGTTGTGGGGTATATCATGTTAGTATGAAATGTCGTACTCTTAAGAGAG GCGGAAAAAA GAAGCCTTATCAGAACTTCTATTACCATGACAATTTTCATTAACTGATGCAGCTTTTTTC CTTTTTTGAG TTCCTTCTTACCTTTTCTTCTTGTGCTGCTTGGCTCCTTGAATATGATCTGCCCATTGAT CCTTCAGCTT TCAAGCCTCAAAAAGCACTTGACGACCTCATCTTCATCCCCCGTTAGTTAACCAATTGTT TACCATGCTT TAATGCATTTCT GATCCACGTCGAAGCTGCCACCT TTCGTGGTGGCTAAT AA TGCTTGAACA GAAGTGAGAAGGTCAATTTTCTTCTTGTGGTGACGGTCTTTTTCTCAGTAGTGCCATGCT TTGCTTCTTT TTACACCATTCACTTTAA TCCTCTAGAATCGTGTATGTTACAGCACTAGGTTTATGATT ACC TGTGA GCTTTAGATGTAGAAGAGCTGCAAATTATTTGAAGCATCTATTATCCACAATGAACTTTT TCTGATTATT GTTGTGTATGCAGTCTGGTCTCCCTTTTCGTTGCCCTTTTTTCCCCTTTCTGGTAGTTAT CACAAAAATA AGGAAGGTAAATATAGTTGAGTATTTGAAGATAAAGTTACTTAGATAACTCATACATTGA AGATCATTAT GTCTCCAAAGGAGTTGTCATGAAGCTGAATTTGTGAAGTTCCTTACTACTTACTATAATG GTTTCCTATA ATAATCGGCTTCTGGGACTCTCTTCTCTGGAAGTCATGCCTGGGCAAGAGTAGCACCATA ATGATTGACC CCCAGGAAGTCCTCGTGTTGCATAATTGCTTTGAATGGCATGATAAGTAAAGTGAATTAA CATTTGAAAC CTGCATATGCACCTCAAAATCTCTTTAAGAATTATTAGAGTTACATAAGTGTTACATGAT GAAGTTATTT GTTGAACTTTTGTACTTTCGCTTTCAGTAGCTGATTTTTGTCCAGTTTTGAGGATACTAG TTATTTTATT TATCCACTTATCCAATTCTGTGTTCTTTCTATTTATAGAGAATGACACCGGTGACTTATC GCCCTACTCA TGACAGGACTCTTCCTCCACCAAATCAAGGTAAATCAAGAAAATGA T T T GTTCCTTAGACGT CTTTGATATCATAATTTACATTTATCTATTGGTTGCTCTTACCCTCTACCTTTATCAGGT TTTCGGATTA TATAGATT GAC AGAATCC GAGCCGAGGTT TGTCAGAAATACCTCTCTACC CCAAGGTAGGGGT AAGGTCTCTATACACACTACCCTCCTCAAACCTCACTTGTTTAATATGGATAAAAATAAT AATACCAATA ATAGAAAACAATACTCCTATATTTTTTGGTTAATAAATAAAAATGGTTGAAATAATAAAG ATAGTGATTG GACATTA TGGACAAGA TTACCTAATCTAC T TCAAAATTAAAATCTTTATTCAAAGAGACACAAGA CTAATTATTCATTAAGGCAAGGGATTTAATATTGGATCTCTAAAGTCTTAAATAACTAAA TCAAGGTGAT ATTGATCCATTTTAATCATGATTAATTACAACTGCTCAACGCTTAAACATCCAACAATGT GTCAGAGTGA TACGTATAAAGTATTGTTGGATGTTATTGTCCAACAATACTTTATATTTGGGCATGTTAT TGTTGTATAT ATTTGACTAGAATCCTACCCTTCCTCCCTAAGTGAATGGTGAATGGAATAACTTTAGCTC AGCTGCTGTT ATTGGTTATTCTTATGAGTTGGTCTTTAGAATTAAGCCAGTCATCTCTTGAGGATTTGAA CTTCAGTTTA TTCACTTTAAAAGTTGTTTCAACCTCATATCATTTTGTGTCGCAAAAGCATTGGGCATGG ATCAATAAGA ATGTCAATTGGCAATGAGTTGTATATGGGTAGCAGAATCAAGCACCCCTAATTACTAGTT TTGGATTTCA AGCACCCCTAATTACTAGTTTTGGACCTTCTCCCTCTGCTTCTGGTTTTGGTGAAGGTAA AATAGTCTAA GAAGTTCTCCGAGTATGTCTGTGTTGAGGCTTTCATCGAAACAAAGAGTGAGGCCTGCCT GGTGTTTTTT CTATGTTAGTCAGGTGAAAGGATTGGTTCACTATAAATAGTTTAGTGTATTAAGTAAGGC ACTACTAAAG CCCCCATTCCCCTTTTTGGGCGATAAAACTCTTAGCTTCCAGCAAGCTAGGTGCATAAGC TTTTTTTATT ACATAAAAGATTCCAAACAATGCAGGCAGGGTAGAGCTCGGCAGAGGGTTCAAGAATTGG GTAGGGTAGG GCCCTTAAGATTCAATAAGAAAGAATATGCCTTTCAAGAAAATAATGCAGCTATTACCTT TCCTCATATG GCTATATTTAATTTACAACTCCTGTAAATGTGTGTGTTTACAAGTTACAGTTCTCATGTT CATCTCCATT CCCTTTTAGAAATCTTGGTTTAGTTCTATCGGATGATATTATAATTATCTTGCCGCGTTA CCACATTTCT ATACTCAACTAAGATTGATTTCACATGCACTAGGATAAACTACTTTTCAATAGCTTTAAG ATGCATCATC TTTTTTTATTTAGACATGGCTAGTAACTATATGTAAGATCCTGTTACCGAAAAGGAAAAA AAGGGATTTC TCTTAGGTTAAACAATTGGTAAATATAGTATCATAGCCATCTAAAGTACATTCATGTTAT TGGTTAAAAA ACTTTTATGAGGATATGCACATATTCGTGAGCCAAGAGTCTATTGGAAACAGCCACTCTA CCTTCACAAG GTATGGTAAGGTTGCGTATACACCACCCTCCCCAGACCTAATCATCAAAATCTAATGGAA TGCGCAAGTT TGTTTGTCAGTTTACTATCTCATGCTTCATCGTCAATCTTTTCTTTTAATTGAATCTCAA TTAATCAGAT AAGAGGAGAAATATATTGGATATGAATTGCATGTGCTTAAAGCTTTTGCACTTAAGCTAT GCTATTTCTG ATTCAACATATACTAATGACCTGCATCTGAATTTCCAGTAATTAGTTCAGAAGCCAAAAG TATACTTCTG AGACACCTAGAGCAGCGTGCCGAAGAGAAGGTCAGTGTTCGTTTTGATCGACATTTATTC CTTCTTTCGA TGAATAT GGCAATT GTAATTGTG ATATTGTGAGGAT CATC TAAAGTGACTAGTTTTACAATGG CTATCAACCTATTGCAATTCTTCTCCTTTATCCAGTCTTGTGACCGACAATATGAGCAAA CTCACACATA ATCAATTGAGGATTGAGGCGT GTTGCTATCCCTTTACGG AAAATGCT C GTGTTGCAGTTGAGA CCAAAGCGAGCTGCGGCTGAAAATCTGGCACCCGAGCATGGATCGAAGCATCTTAAGGTA TCCAACTGAG ATGCTTTTCTTTTCGGTGCTACCCCTGGGCGGGAAGAAGATGAGGTAATGCGGTTGCAAA CAGGACGATA CACAACTTGGTTTTAGAAGATTAACTAACTCTTCTAAATAGG AAAATC CTGGT T TC GCATATT TCTGTAAATATGACTGTAATGATGCAGATACATGTTGTTGTAAAACTATGAAGAGCTTGT TTGTCAAGTA GTCATATAGCAAATGAGATGTACACTAGATAAAATG TGTTAGATGAGTA TGATAAATGTTTCCCTCCG AGGATTTATCGGAAACAACCTCTGTGATCCGTCCTCTGTGACCCTAGAAAATGATATTTT ATCATAATGA TCAAACTTTTTAACATTGA

SEQ ID NO: 123 Solarium iycopersicum

MGSMFGEWPS IDPHNFSQLRPSDPSTPSRMTPVTYRPTHDRTLPPPNQVISSEAKS ILLRHLEQRAEEKL RPKRAAAENLAPEHGSKHLKVSN

SEQ ID NO: 124 Ni cotiana tabacum, CDS

CCTCCACCCCTTCTAGAATGACACCCGTGACTTATCGTCCTACTCATGATAGGACTCTTC CGCCACCAAA TCAAGT A AG TCAGAAGCCAAAAATATAC TC GAGACAC TAGAGCAGCGTGCTGAAGAGAAG G AGACCGAAACGTGCTGCGACTGAAAATCTTACACCAGAGCATGGATCTAAGCATCTTAAG GCATCCATCT GA

SEQ ID NO: 125 Nicotiana tabacum, cDNA

GGCTTTGCCAACATCAATATTTTGTCCAACCCACCATATATTTTGCAGCTTCTATTTACC TCCGGTGTCT

AAAACAGTGGCATTATTCTCTCGATTCTTCCCGTTAATAATTCAATGGGGTCAATGC TAGGTGATTGGCC

TTCTTTTGACCCTCACAATTTCAGCCAGCTTCGCCCTTTCGATCCCTCCACCCCTTC TAGAATGACACCC

GTGACTTATCGTCCTACTCATGATAGGACTCTTCCGCCACCAAATCAAGTTATTAGT TCAGAAGCCAAAA

ATATACTTCTGAGACACTTAGAGCAGCGTGCTGAAGAGAAGTTGAGACCGAAACGTG CTGCGACTGAAAA

TCTTACACCAGAGCATGGATCTAAGCATCTTAAGGCATCCATCTGAGTTGCTTCTCT TTTTGTGCTACTC

CTGGGGCGGGAAGAAGATGAGAAAATGCCAAGTGTGACAGTTTCAAGTCGGATGGTA CACAACTTGGTTT

TGAGAAATGACTTCTAAATAGGTTTGACGTCTTCGGGTTTTCTTCATATTTCTGTAA ATATTGTTTTAAT

GGCAGAGATGCATGTTGTTGTAAAATTGA

SEQ ID NO: 126 Nicotiana tabacum

MGSMLGDWPSFDPHNFSQLRPFDPSTPSRMTPVTYRPTHDRTLPPPNQVISSEAK ILLRHLEQRAEEKL RPKRAATENLTPEHGSKHLKASI

SEQ ID NO: 127 Eucaliptus grandis, CDS

ATGGGT CTATCCTGGGCGAC TGCCGTCGT CGATCCTCACAACTTCAGCCATTTCAGGCCCTCCGATC CCTCCAACCCTTCCAAAATGACGCCAACAACCTATCATCCCACCCACAGCAGGACTATTC CACCACCTGA TCAAGTGATAACTACTGAATCCAAAAATATTCTGATAAGAAATTTCTATCGGCGTGCTGA AGAAAAGATG

AGACCAAAACGGGCTGCCTCTGAATTTCTTGC CA/G/i-rt.CCAGGATGCAAGCAACCAAGGGCTTCCA GA

SEQ ID NO: 128 Eucaliptus grandis, cDNA

GGAGTTTTCGGTGGCATTAAGGCTTCATGTTTTCACGACGGATTATTTCTTTCGTCCATA GATTTGTGTC TATACTTCGGAGCGTCTCGTGTCGGGGGAGTATTAATGAGCTTTCGTCGTAAGGTCAGAC ACGACCGTCC

TGTCCTGT TCCAGGCAACTCCAGCACCAGCAGCGAGGCTGA TCTAGAATTTAAGGCCATCGTCTCTCT

CTCTCTCTCTCTCTGGATTCGAGGGGGGAACACTGTGCAGAGGTTCTGCATTCACTC TTTCATGGGTTCT

ATPPTGGGPGAPTTGPPGTPGTTPGATPPTP AP AAPTTP AGPP ATTTPAGGPPPTPPGATPPPTPP AAPP

CTTCCAAAATGACGCCAACAACCTATCATCCCACCCACAGCAGGACTATTCCACCAC CTGATCAAGTGAT

AACTACTGAATCCAAAAATATTCTGATAAGAAATTTCTATCGGCGTGCTGAAGAAAA GATGAGACCAAAA

CGGGCTGCCTCTGAATTTCTTGCACAAGAACCAGGATGCAAGCAACCAAGGGCTTCC ATGACCACCTCAG

ATACCCCATAATGAGCTTCTGCATCGGGGTTTGCGACATGAGAAGTTCAGCAGTCTG CACTCATTGAGTG

TATATATACTGCTGTAATATCAGACTGGTCTGTAGGCTTGGCATCTGCCTATTTTAA TGGTATGTGGTTG

PTGAPPTTGTGTPTGTTATTTGPTGATGPTGGTTGGTTTPTGTGA AGPGPPTTTTGGGGGATGP AP

AGCCTCTCCCACCGTGTACATTGGAAATAATCAATCCTTGATTTTCACCATCTCAAT AAA

SEQ ID NO: 129 Eucaliptus grandis, gDNA

GGAGTTTTCGGTGGCATTAAGGC TCATGT TTCACGACGGATTATTTCT TCGTCCATAGATTTGTGTC

TATACTTCGGAGCGTCTCGTGTCGGGGGAGTATTAATGAGCTTTCGTCGTAAGGTCA GACACGACCGTCC TGTPPTGT TPP AGGP A P PPAGP GP AGP GGPTGAT TP TAGAATTTAAGGPPA TPGTPTPTPT LiLlL-lLlL ' il-l^l bbn11 bnb 1 bbbnnbnb lbloL-i rib 11 b 1 bLn11 bnb Ι ΐ 11 bn1 u 11 b 1

Ά ΓΓ ΠΠΠΓ ^Γ Π ΓΓ^ Π ΓΠΆ ΓΓ ΓΆ Ά^Γ ΓΑΠΓ Α ΤΓ ΠΠΓΓΓΤΓΓΠ^ΤΓΓΓΤΓ ΑΆΓΓ

CTTCCGTGAGTTCCCCGTCTTTCTCTTGGCCCTCCGCCTTGTTCCCTTTTTATTTTT TGGGTGGCGTGTG CTTCGT TAGTTTCCTCAATTTC GCTGC GCTACCGATGCGTGTGATTCT TTTC TGTCGCTGTCCTT AGTCTAATTTTTCGTGGTGGAAGATGATGAAGAATTTGCATAGGAGAAGTGAGGTTTCCT CAGCTTCCAT GTCCGAAC GAGGGG T AGCAGCAGAGATCA TGATGGAGCTGGGTTCACCCGT TTGCGGCTTAA CTGGGGCAAAATCACAACTTTGTTCCGGCTGAATGAGTTCTTGGCTTATATCTTAATTCT TCTAGTTGAT TTTAGCCGGGTCTAGGATTCGGACTGATTGGGACGGTAATGCTTGTTCTTAGAGATAGTG TTTTTATACA TTTTGGACGCATTGAGTTCCTCAATTTCTGCTACCGATGAGAATGATTCTTTTCTTGTCT CTGTTGTTAG CAT T T GG GG J¾AAGA GATGAGGAATTGCATAGGAAJ¾AG GJ¾A G CC CGGC CCATG C TGIACTGAGGGG A TTA CAGTAGAGATCGTTTGATZ^GAG TGGGTTCTGCACATTTTGTGGC ΑΛΛ GGGGCAAAATCACAAC TTA CAAGC GAATGAGTTC AGC GATGTC AATTC CTAG GA T CAGCCAGGGC AGGA TCGGACTGGTTGGGACAGCAATGCTTGTTCTTAGAGAAGTGTCT TATACATAT TCGACACATTGAGTTCCTCAATTTCTGCTATTGATGCGTGCGATTCTTTCATTGTCTCTG TTCTTAGTCT ATTTTTCAGTGGCCAAAGATGATGAAGAATTGCATAGGAGAAGTGAAGTGTCCTCGGCTT CCATGTCCAG ACTGAGGGGT TTTATCAGTAGAGGTCATTTGATAGAG TGGCTTCTGCGCGTTTTGTGGCTTGAATGGG GGCAAAATCACAAGTTTATTCCATCTGAATTAGTTCTTAGCTTATGTCTTGATTCTTCTA GTCGATTCTC GCTGGGGACCAGTTGGGACAGCGATGCTTGT CTTAAAAAAGTGT TTTTTATACTTCTTCGACGCA G AGAATATGTTGCCTTGCCATGGCTTACCACATCTTATCTATCTTGTGATGAGATTTTTCT GGTCTTCTTG GCTCTGCRCTGCTCFTB TGCTAGTTC AAACC GAGAB ¾RACTGGG¾¾TT«GGGCGGTR»CGAGAAGTC

TTTAGCACAAATTTGGCTGCTCATGTCATGTCCTTTGTAACAGAGCCATAAGCTTTA AGCCAACGAGCCA

TTGTAGT TGGCCAGATGGGCAX^CAGTGCTGCA ^ TCTTTGTGACTGGTTTGGAACA ^ TGGTGT TTA ^ TA ^ GT

TTGTAGGGATGATTTGATCTTGAGGAGATGTAGAGTAACTTCTCCTTTGAAATTCCG GCAAATTAGTTGT ACTTGTGCAGAATTCCTGAAGTACTTTAAGAAACTATAATCACATAACAAGTTTCTGGTC TTTTGAATAA

G TCC TCTTGG AGAGAA C TATGGTAGTTCTTTTCAAGA AGGAGGT A ATCAGGACATCA

~iCTGATCTAAGCTACACCTATCAAnnTTAAAGGGCCnTACATTGTGTTCAnATTTA -iTTTTAAGTTATTA A GxHCCGGACGGAACC GAAAT ACACC CA G GCAG TTGC GTTGGCAAT CAGC G CCAAC AA TGACACAGCTTGTGTCTGGTGATTGGTGAATAAAGTGAGCTCTCTTCAA.TTCCTTCTAG GTCGAGGAAGC AGAT GA TAAATCACCTTGTGGATGACAAAGATC CTT GCTTTA AACTGATGTC A GCAGGAA CGCTG T TGTTAC GATTGGAACAAGAAATi¾.GCATGGACCCGAGA AAGATGATT GAACA AGC TT ACTTACAA CAAATGTTATA GTAGAAAATGACGCCAACAACCTATCATCCCACCCACAGCAGG AC ATTCCACCACCTGATCAAGGTAATAATGAATTAGATATGCATCTCCAGCACTTTTTGCTC ATTGATT TAATGTCGATGTTGAGCTCTTTAGCTGATTGAGAAGAGAATGTCACTTTTATGTGGAAGA TAAGCATTTT TTCCATTTCAGTTTTTGGAGATGTGGTTCTCATCCTCTTATTGCGATGACCCTGACTTGG TTGCAACTCC TTCCAGTGA AACTAC GAATCCAAAAA A TC GA AGAAAT CTATCGGCGTGC GAAGAiiAAGGT AGTCATTCA ATGAAACCAGAAT TGATAACC ACA AGCACGTGCC C CTCATGCATCC TGCAT TTCGCATCCATAGACTACGCATGCTACGTGGATGAATGTTCGCATGCATTTGCACTC CA TGGTGGAT GTCTGCCTTACACACACAAAAACACACAGATGCTTTCCATTGCTGATTAGTTTTTGTCAA TATCAGATGA GACCAAAACGGGCTGCCTCTGAATTTC TGCACAAGAACCAGGATGCAAGCAACCAAGGGCT CCATGAC CACCTCAGATACCCCATAATGAGCTTCTGCATCGGGGTTTGCGACATGAGAAGTTCAGCA GTCTGCACTC ATTGAGTGTATATATACTGCTGTAATATCAGACTGGTCTGTAGGCTTGGCATCTGCCTAT TTTAATGGTA GTGG TGCTGACCTTGTGTC GTTATTTGCT ATGCTGG TGG TTCTGTGAAGAAAGCGCCTT TGGG

GGATGCACAGCCTCTCCCACCGTGTACATTGGAAATAATCAATCCTTGATTTTCACC ATCTCAATAAA

SEQ ID NO: 130 Eucaliptus grand!s

MGSILGDLPSFDPHNFSHFRPSDPSNPSKMTPTTYHPTHSRTI PPPDQVITTESK ILIRNFYRRAEEKM RPKRAASEFLAQEPGCKQPRASMTTSDTP

SEQ ID NO: 131 Lactuca serviola, CDS

bbbbbbnii.bb 1 bz-ib^ l^xbjrbib 1 bb b 1b^br-T lb bbb- bb bnbbnnbrtn1 bbxiribbn1 x-i-rib-ibb11

CTTCAGATCCTCTATCATG

SEQ ID NO: 132 Lactuca serviola, cDNA

7¾ 7\ 7\ φφ 7\ -i 7 1 7 ·.

i-ibrxririb 1bbb-Π1 lri1 bbbbbb 1bibi 1 b 1 b 1 bbbrib lbl iri 1 bbn 11 1rtri1 bbbb 1 bb 1 bbn11 b 11

A x--ri l d.n ¾. bin 1 li-ibrl-i1bi1 bAA 1 b-rt 1 b i^bbririb lbl Ib nb nb 1 bi¾bbiiAb 1 A1A1 b 11 b

7 \p 7 i ? Φ ΡΤΐ 7 1 pp 7 \

bbb 1 bribrirllbl bb nbbbbnbbiinbnn1 bbriribbiri.1 bbnτ 7 \ 7 1

r bribb llbφllbllbn τ ιbn \ 7\ bb 1 bb lblnl bn τ \ 1 bn 1bbn11 bn1bnb ln.nl bnblnl bb i bbn1nnn1 bi1nn1 bbnl 1bbnbnl 1bnl lnMini In11 bb 1 blbb lbblnlnlblblbl Iblnlbl 11 1 bbbnnbb nl bnbnI nnbbbn 1 lbl In SEQ ID NO: 133 Lactuca serviola

MGSWIVGNWPSFDPHNFSQLRPNDPSAPSKKTPITYHPTHERTLPPPDQVISSDAKNILL RQFYERGDEK LRPKRAAPENLAPEQECKHPRGSSSDPLS

SEQ ID NO: 134 Helianthus exilis CDS

ATGGGGTCGTCGTGGGATGTTGGTAATTGGCCTTCTTTCGACCCCCACAACTTCAGCCAA CTTCGCCCCA

ACGATCC CCGCCCCTTCCAAGAAGACACCAATTACTTATCATCCAACTCATGAACGGACTCTTCCAC C CCCCGACCAAGTAATATCTTCGGAAGCCAAAAACATATTGCTGAGGCAATTCTATCAGCG TGGTGATGAG

\GTTGAGACC^AAGAGAGCTGCTCCCGAGJ¾ATCTTTC.^iCCGGAGCAAGAATGCj¾ AGCACCCTAGAGCTT

CATTTGCTTCATCTTCCGAGCCTCCAAAATGA

SEQ ID NO: 135 Helianthus exilis cDNA

GAATTCGTATGCGTATGCACATCATCAATCTATCTTCCGATCTGCTGCTGCTGCTGCGAA TCTAATAATC

rzQQ CTfZ x TGGGGTCGTOGTGG A GTTGGTAA TGGCC TOT TOGS rrrCC^C CTTCP COAACT

TCGCCCCAACGATCCTTCCGCCCCTTCCAAGAAGACACCAATTACTTATCATCCAAC TCATGAACGGACT

CTTCCACCCCCCGACCAAGTAATATCTTCGGAAGCCAAAAACATATTGCTGAGGCAA TTCTATCAGCGTG

GTGATGAGAAG GAGACCAAAGAGAGCTGC CCCGAGAATC TCACCGGAGCAAGAATGCAAGCACCC

TAGAGC TCATTTGC TCATCTTCCGAGCCTCCAAAATGAGGCATACTCACCT TC GCACAATGATGTA

AATAG C TC CTGC GAGTGTTGATACC GTTG GTG G TTTAG GAGGTATGAT CGAG GAAT

CGTTTGCATCTTGGTGTGTACTTTCAGCTATACAGACTTGTACATTTCTATATTTAT AAACAGGCAGATA

ACTAAATATGCAAAACAACATCCTTGGCAT

SEQ ID NO: 136 Helianthus exilis

GSSWDVGNWPSFDPHNFSQLRPNDPSAPSKKTPITYHPTHERTLPPPDQVISSEAKNILL RQFYQRGDE

KLRPKRAAPENLSPEQECKHPRASFASSSEPPK

SEQ ID NO : 137 Helianthus annuus CDS

ri bbb Ibblbbi ftl ll l iri bU i Ι ΐ i bbribbbbb^b iib b bb iib b bbbb ribbn lbbi ibb bbb 1 b nj brunun^nLLnn i ir i bri bbririb Ibril bnn b i b

bbb iibbrlrlbi l ½-i iri 1L1 b r brr ^ i bb 1 Uri briri 1 b iri 1 b bbi 1 bb 1 br i

AAGTTGAGACCAAAGAGAGCTGCTCCCGAGAATCTTTCACCGGAGCAAGAATGCAAG CACCCTAGAGCTT

br briIbl bn b bbriririri bft

SEQ ID NO: 138 Helianthus annuus CDS

m] \ ρ?.

bo iri οbribri bri briri bbri ibl b b ri i^blbbi bb r Τ i In T lnl biιbbbbbb oriri lbbibbi bj i ll lriri uLL llbl li boribbbbbribririb briobbririb bobbbbririboriibbi i l bb bbb 11 bbriioririoribribbxAAl Irib 11 1 LAI bbririb 1 bri 1 oririboorib Ibl i bbribbbbbboribb i o iri rtlAl i 1 booririobbririririribrilAl Ibtl bflbbbAAl b ir nbbbbbb orii bAbiiAb orio ibbriri iorioriob bbbbbbbribAh Ibil bnbbbbnbbriribnnl bb ribbn b lAbnbb br l 1 bob i bri b bbbnbbb UU i-rii-ri bAbbbnlAb U iLU ibl UriL-r il bi i Ab ibl b iL, U i j bj ri l ibbriinlbi ibibibibibi irib rirlbibj i i brii i bj bjririibbi bbni l Ibbibibi

ACTTTCAGCTATACAGACTTGTACATTTCTATATTTATAAACAGGCAGATAACTAAA TATGAC SEQ ID NO : 139 Helianthus annuus

ITYHPTHERTLPPPDQVISSEAKNILLRQFYQRGDE

SEQ ID NO: 140 Zea mays 1 CDS

ATGGGGAGCCCTCTGGGCGGGTGGCCGTCATACAACCCGCACAACTTCAGCCAGTTGGTC CCTGCCGACC

CCTCCGCGCAGCCCTCGAATGTCACACCAGCCACTTATGTTGCGACCCACAGGACAG ATCCGCCACCCAA

TCAAGTGATAACCACGGAGGCCAGGAACATCCTGCTGAGGCACTTGTACCAGAAATC CGAGGAGAAGCTG

AGGCCAAAGAGAGCTGCGGCGGACAACCTCGCTCCGGAGAACAACAACAAGAAGCAG CCCAGGGGACCTG

TGGGCGACGTCGGGGGCCAGTCGAGCGCAAGAAGCTGA

SEQ ID NO: 141 Zea mays 1 cDNA

CTTTTTCCCCGAAACCAAAACAGAAAAAAAGTAAAGTCCTGCTGGCAGCTGTCAACCACC CGTGGTCCCG TGGAAGAGAAGAGAGCATCGCCGGACCCGGGGACGGCGCGCCGAGAAGGAACAAAAGAAG ACGGCGGCGG GGCGGAGATGGGGAGCCCTCTGGGCGGGTGGCCGTCATACAACCCGCACAACTTCAGCCA GTTGGTCCCT GCCGACCCCTCCGCGCAGCCCTCGAATGTCACACCAGCCACTTATGTTGCGACCCACAGG ACAGATCCGC CACCCAATCAAGGGCGTGTTATTTGTGAGCAACTGGACAATTCAAAACATCTGAATGGGT ACTTCAGCCA CAGACTTCTGGTGAGGTGCAGTGATAACAGCAGAGATATCCCAATTTGTATAGCAGATAA ATTGATAACC ACGGAGGCCAGGAACATCCTGCTGAGGCACTTGTACCAGAAATCCGAGGAGAAGCTGAGG CCAAAGAGAG CTGCGGCGGACAACCTCGCTCCGGAGAACAACAACAAGAAGCAGCCCAGGGGACCTGTGG GCGACGTCGG GGGCCAGTCGAGCGCAAGAAGCTGAAGACGCACAGCTGGTGGCCGTCCTCCCCTGCTTCT CATCTATCGG TGTCATGCAGCCTGCATCTCTCACTCACAGCTGAGCTGGTAGCTGGTGGTGGTTGCCCTC CCCTCCCCTG TGCGTCCTCTTCGCCTCTCACGTCTCGTATGTACGTATGGTATGACCAGGAGAGCTAGTT TGCATACAAT GGATATACTGGATGTGCATAGCCACCTGAGACGAGACGAGACGGGACTGGACGAGGTCGG TGCGTGCCAT TTCACACGGCAC ACCGCACTAGTCTGTGCGGCAGCC CTCTC CTC C CTCTCTCTCTCTCTCTCTCT CTCTCTCTCTCTCTCTCATCCTCTGCAATGCAAAAATATGGATGCGCCCATGCTG SEQ ID NO: 142 Zea mays 1 gD A

CTTTTTCCCCGAAACCAAAACAGAAAAAAAGTAAAGTCCTGCTGGCAGCTGTCAACCACC CGTGGTCCCG TGGAAGAGAAGAGAGCATCGCCGGACCCGGGGACGGCGCGCCGAGAAGGAACAAAAGAAG ACGGCGGCGG GGCGGAGATGGGGAGCCCTCTGGGCGGGTGGCCGTCATACAACCCGCACAACTTCAGCCA GTTGGTCCCT GCCGACCCCTCCGCGCAGCCCTCGGTCGGTCAGCCGTCAGCAACTTGCCTTCCTGGCGAT CTGGCCTCTA GTATCATGATGTACTGCTAGGCTCCGTACTTCCTGCTAAGCTTACACAACCATGGATATG TCTAATTGAC CGTGCTCGGCTGACCTGTTTCTTTTCTCTGCTGTCTGGTGTCGTCGCGAGAAAAAAAAAA CTCTCTTTTT TTATCCCGCAGTATCACTTTCGGGCAGGAGGCAGTAATCGGTGCCCGTATTCAGGGGCGG ACCCAAGTAG GGTCGAGTGAGGGCAATCGCTCGTTTCTTTGTTCTAAATACTGAATCTAGATTTTCGCTA TAAGGTTCTC TACTCAGTCATATTCTGTCTTGGGTCCGCCCCAGTGACGGATCTACACCCCGGGCCATTC GGTCCGTGGC CCGGGGTTTGATCCATGTAGCTATATATATGTCTCTATTTAATATGGTATAAGATATTTA AAATAAAATG AAGAGAAGATAATTTGGTAGATTTGGTCTGGGTCATAGAAAAATTCTGGATCTGGTCCGC GTCTACCCGT ATTGTTAGTTTTTGCTGGAATTTTGGTATGTATGGATGGAGAAATGGGGTCTCACCGTTT GATTTTAGTT CAACTGCCAAAGACCTGTTGAATTTGAGGGGACTGTCTGGCGAATTTCCAAACGCATGGT CTGGTTTTCT CATGGTCATGTCTACCCTGGGCAGATTCAGTTGATGTGGTACTGATGAACTAACTGTAGT TCAGTTCATG GGCTGCTAATGC ACCCGC ACCGGTTGAT TT ATAACGTCAGAAATTCATGCTAGCAATTGACATTAT GAATGATATATCCATTTCACCTGGTGGTAATGTTAGTTCTTTTTCCTTTCCCTGTGTGTT TCTCATCAGA ATGTCACACCAGCCACTTATGTTGCGACCCACAGGACAGATCCGCCACCCAATCAAGGTA AACCCTTTCC ATGTCCTAAGCCAATGATGTTCTGCTGCATCCATCAGCAAATTTGTCCCATCTGATTTCC TAGTTTTGCA TTTGCACGTAA CATATCGTACAATTCC T CACAT AAGCCAAGAATCCCGCTAT TTGT TATCGTA GTGTTTTTTACATTACATTGCAAAATAGGTTTCATGAGCTGTTTCGTCTGAACTGACGTT CTTCAGTTAG ATGACTCTCTTTGCTTCAATGGAGCATGATTAGCCATAAGCTTTTGTGCATGGGGTTGAA ATGTAGAACG TGTCTGCCAGTCACAGATGGTGGTATCAGCCATAGCGACAGACTGACAGAAGCTCTGAAT ACCTTATCCT ACACAAATGACGCCTCTGCAACTCTTCTGTGTTTAGTGTTTAGCTGAACCCAGCAGCTCT GAACTTCCTC GTTGTTGC AGTAATCAGAA CAGAAGTTAATACTCCCTCTGTTTCAAAATATAAT TGTT TAGACTA AACATACATTCATAAATTAACCTATGAATGTGGTTTGTATGTATGTCTACATTCATTATT TTTCATTCGA ACGTGGACAGAAAAAAAAGAGGGCTAAAAAGAAATATATTTTGGGACAGATGGAGTATAT TTTGGGACAG ATGGAGTAGATATGATCGATAACTCAGCAGTTGCTGTCTTAGCCATGTACTCCAATACAA TAAATACACA ACGTTGCAAGTACTAACAGTTCCAGGCTACCAGCTTTGACTATGCGATTCCATATAACAT TCTTTCTTTG TTGCAAAATCCTTCAGCAATTATAGTGTTATGCCTTCAAAGAACGCAGCTGGGAAACATT GCCTGTTGTA TTTAGGAAGTTCTAGATTCTGAAGGTCAGCTTTCTTATTTTACTGAAAGTCTGAAACACA CTGACTATTA ACACATTAATATTGATTCATCTAGTCACATCAAATGGTAAATTGATTTGTGACACTAATC CAGATTAATG CATAGTAAGTATTCACCTCGAATACAGTAGATCAACAGAGGTGAGATTATACCATAGCCT ATAATCTCTC TTGATATCTCAGCATTTGGCATGGCTTATACATATTATGGCTGAGTTGTTTTGTGCCTTT TGTACCGTTT TTGTCTGGAATATGCAGGAGGACTGCATATCGTTGCATTCATAGAATAAAGAGAGGGGAA AGACCCCCCC CCCCGTACAACACACCCAAGCCACCCAAAGATCTCACCAGGAAAAAAACAGCAAGCAGAC GACCGACCCA CACAGATCTACCTAAACCGGCAGACCCAGAGGGCGGATAGATTTTTTGGCCCCAGCCATA GAACAAAACA GCACCTCATCCTTTTGTTCCGTTGTGTAGGTTCCTTAGGAGATTTGCAGTGTTTTACATA CTTAATCTCC AAAACACTTTCTTATAGCACGAGAACGAGGAAGAAAAGTTTGGGTTAATTACTGCTTTAT GGATCAGGGA TGCTGGCGTTCAAAATCAACCCAGACACCAGTTAAATGCATCCATCATAATAATAGACCT TAAGAGTGGA TTCTCTGGACTTTTTCAGTAAAGTTCGGAGCCTTTCGATCATATGAAAATGCTATCCACA TGGAGCTCTA GAACTGAGATGACCTTGAGAGAAGTTAGGTTAATTTACTACTGAATGATAGCCTAGTAAT CACACCGACT AGGATTTTTTGGCCTGAACACTCTAGTTGTCAGTTTCTGTAACATATGTCGCTCTTTGCT GCGGTCATTC TCTGGTCCCGGACAATTTACCAGGTTAAGTGAAACCACCGGAAGCCCTTATTGAATTCGT GCCTTTTGGC GCGGCTGATTCCACATCCCGTCGGTGGAAAATATAGTCGTGTGCTGCCTACCAACTGCAT AAAAAGGTCC CGAAAGAAACAAACAGGCTATGATTGTGCGTTTATATGGAGCTCATGACATATTTTCAGG GCGTGTTATT TGTGAGCAACTGGACAATTCAAAACATCTGAATGGGTACTTCAGCCACAGACTTCTGGTG AGGTGCAGTG ATAACAGCAGAGATATCCCAATTTGTATAGCAGATAAATGTACTGAACAAACCGTGGGCA TTCTTTTAAC TATATACATGCATGACAATTCTTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTTCC AAATTTCCTT GTACCTATCATACCACTGCATTATTTTATATATGTATATAGGTCCATAGTTCACAGTACT TGAGGATCAA TGACTGCTTCCTACAGACTACTGCGGACTGAATCGCGCCCTGGAATTGCAGTGATAACCA CGGAGGCCAG GAACATCCTGCTGAGGCACTTGTACCAGAAATCCGAGGAGAAGGTGAGCAGCTACTGCTA CTGCTAGTAA GAC TCACTATCACGCACGGC ACATAAAACCACATCACCGATAAAGGT AAAACCCTGTCC GAACTGT AGCTGAGGCCAAAGAGAGCTGCGGCGGACAACCTCGCTCCGGAGAACAACAACAAGAAGC AGCCCAGGGG ACCTGTGGGCGACGTCGGGGGCCAGTCGAGCGCAAGAAGCTGAAGACGCACAGCTGGTGG CCGTCCTCCC CTGCTTCTCATCTATCGGTGTCATGCAGCCTGCATCTCTCACTCACAGCTGAGCTGGTAG CTGGTGGTGG TTGCCCTCCCCTCCCCTGTGCGTCCTCTTCGCCTCTCACGTCTCGTATGTACGTATGGTA TGACCAGGAG AGCTAGTTTGCATACAATGGATATACTGGATGTGCATAGCCACCTGAGACGAGACGAGAC GGGACTGGAC GAGGTCGGTGCGTGCCATTTCACACGGCACTACCGCACTAGTCTGTGCGGCAGCCTCTCT CTCTCTCTCT CTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCATCCTCTGCAATGCAAAAATATGGA TGCGCCCATG CTG

SEQ ID NO: 143 Zea mays 1

MGSPLGGWPSY PHNFSQLVPADPSAQPSNVTPATYVATHRTDPPPNQVITTEARNILLRHLYQKSEEKL RPKRAAADNLAPENNNKKQPRGPVGDVGGQSSARS

SEQ ID NO: 144 Zea mays 2 CDS

ATGGGGAGCCCTCTGGGCGGGTGGCCGTCATACAACCCGCACAACTTCAGCCAGTTGGTC CCTGCCGACC

CCTCCGCGCAGCCCTCGAATGTCACACCAGCCACTTATGTTGCGACCCACAGGACAG ATCCGCCACCCAA

TCAAGTGATAACCACGGAGGCCAGGAACATCCTGCTGAGGCACTTGTACCAGAAATC CGAGGAGAAGCTG

AGGCCAAAGAGAGCTGCGGCGGACAACCTCGCTCCGGAGAACAACAACAAGAAGCAG CCCAGGGGACCTG

TGGGCGACGTCGGGGGCCAGTCGAGCGCAAGAAGCTGA

SEQ ID NO: 145 Zea mays 2 cDNA

GTAACCATCCTTTTCCCAGACCAAAACAGAAGAAAGGAAAGTGCTACTGGGCATTGGCTA CTGGCCTACT GCCAAC ACCCGTGGGGTCCCGTGGAAGAGAAGAGAGCATCGCCGGAGTTGGGGTCGGCGCGCCGAC GAG GAACAAAAGAAGACGGCGGTGGGGCGGAGATGGGGAGTCCTCTGGGCGGGTGGCCGTCTT ACAACCCGCA CAACTTCAGCCAGCTCGTCCCGGCCGACCCATCCGCACAGCCCTCGAATGTCACACCAGC CACTTATGTT GCGACCCACAGGACTGATCCGCCACCCAATCAAGTGATAACAACGGAGTCGAGGAACATC CTGCTGAGGC ACTTCTACCAGAAATCCGAGAAGCTGAGGCCCAAGAGACCTGCCCCGGACAACCTCGCTC CGGAGAACAA CAACAGCAACAACAAGCAGCCCAGGGGACCGGTCGGCGACGTCGGTGGGCAGTCGTCGAG CGCGAGAAGC TGAAGCCACAGCTGGTGGCCGTCCACTCCTCCCCCTGCCTGCTTGTTTCTCATCTCTGGG TTTCGTCATG CAGAGGCAGAGGCAGATGCAGCCCTGTGTTGTCCTCTTCGCTCCTCACGTCTGTACGTAC GACCCAAAGA GCTACTAACCTAATCTGAAGTTAGGGTTACATACATGGATATCGGATAGATGGGTGTACA TAAGCACCTG AGAGCAGTGTTGTGTTATCCTAAATGCTAAACGGTAAACAGTCGTTCAACATCCTCTGTG TTTAGCGTAT AA

SEQ ID NO: 146 Zea mays 2 gDNA

GTAACCATCCTTTTCCCAGACCAAAACAGAAGAAAGGAAAGTGCTAC GGGCAT GGCTACTGGCC ACT GCCAAC ACCCGTGGGGTCCCGTGGAAGAGAAGAGAGCATCGCCGGAGT GGGGTCGGCGCGCCGACGAG GAACAAAAGAAGACGGCGGTGGGGCGGAGATGGGGAGTCCTCTGGGCGGGTGGCCGTCTT ACAACCCGCA CAACTTCAGCCAGCTCGTCCCGGCCGACCCATCCGCACAGCCCTCGGTCAGCAACTTGCC CTTCCTGGCG ATCTGGCCTCTAATATCATGCTGTGCTGCTTGGCTCCGTACTTCCTGATGAGCTTACACA AGCTTGAGTA TGTTTAATTGGCCGTGCTCATCTGCGCTTGGCTTATTTCTTTTCTCTGGTTTATGGCGTC GTTGAGGAAA ATATCTTTAAAAAAAAATCCGTAGTATCGTTTTCGGGCAGGAGGCAGTAATCGGTGATTC GGTGCCCGTG TTGTTAGTTTTTGCTTGGAATTTTAGTATGAATGGCTAGAGAAATGGAGCCTCGCTGTTT GATTTTAGTT CAATTGCCAGAGACCTGTTCAATTTGAGGGGACTGTCGGCCCAATGTCCAAATATCTGGT CTGGTTTTCT CATGGTCATGTCATGTCTACCTGAGTATATTCAGCTGATGTAGTGCTGATGGACTAACGG TAGTTCAGTA TTTCAGTTCATGGGATGCTAATGCTACCAGTTAATTTTTATAACGTCAGAAATTCGTGCT AGCAACTTGT ATTATGAGTGGTATATTCATTTAACATGGTGCTAATGTTGGTTCTTTTTTCTTTCCCTGT GCATTTCTCA TCAGAATGTCACACCAGCCACTTATGTTGCGACCCACAGGACTGATCCGCCACCCAATCA AGGTAACCCC TTTCCATGTCCTTAAGCGGAGCCAACGATATTCTGCTCCACCCATCAGCGAGTTTGCCCC ATCTGATTTT CTAGGTATCATTTGCATAAAATCCATGCCGTGCAATTGCTTATTCGCA AAGCTAAGAATCCCTTTTTT ATTATTCTAGTGCTTTGCGTGTTACATTGCAAAATAGGTTTCCTGGGCTGTTTCATCTAA GGCAACGACT GCTATGCAAGCAGTCCTTCTTTGCAAGCGTGCAAGCAAATCATCTGATCCATTAGATTAC GATTCAACCA CAGATACAACCATGATTTGTTAGGATTTTTTTATAAAGATTATTGAGCTGGTGGTGGAAG GGTTTAAGTG TTAAATGTGACCTACGGTTGGATCACGATCTAATGGATCAGATGGTTTGCTTGCACGTTT GCACAGAAGG ACTGCTTGCATAGCAGTCGATGCCTTCATCTAAACCGACGTTCTTCAGGTAGATGACTCT CTTTGCCTTC AACGGAGCATTATTAGCCATAAGCTTTTGTGCATGGGGTTGAAATGTAGAACGTGTCTGC AAGTCACAGA TTGTGGTATCAGCCATAGTGACAGAAGCTCTGAATACCGTATCCTACATAAACTGTGCCT CTGCAACTCT TCTGTGTTTAGTGTTTAACTGAACCCAGTAGCTCTAAACTTCCTCGTTGTTGTCAGTAAC CAGAACTCAA AAGCTAATAGATATGGTAGATAATTCAGCAGTTGC GTCTTTAGACATGTACTCCAGACAATAAATGCAT AACC TCCTTGCTGGCAAATTTACCAGTTCCAAGAGCTAACAGTTCCAGGCTACCAGCT TGACTATATG G C TATAACCTTCTCTCTTTGTTGCAAAATCCTGTAC AAT CTAGCCTATGCCTTCAAAACCACAAC TAGAAAACATGGTCTGCTGTATTCAGAAAAT TTAGATTCTGAAAGCTAGCT TC ATT TACTGAAAG TCTTCCGAAACACTGAATATTTAATCACAGCCTAAAATTCGCTCCCATGGGGAGTCGAAC CCAGGACCTG AGGAGCGTTACTCAGACCACCTAACCAACTCGGCTAGATCCCCTTTCGCTTTTCAATGCC TCTCTAACCT TAGATTCTTGTATCACACGCACAAAGTACCTATTGGTATCATCAAAAGAGTCACAACTAA AAGGTCGTGT CCTCATCCTCCCCGTAACCCCATTGACCAGTTTGTCAAAATACTCTTGTCATATATATCT GGTCTCATCT GCCTTCACTAAGATGTGCTCTATT ATCCT AATGCACTTAACT TGT GAAGTC CTTGTC TTCTCT CACGGACCCTAGCCATCCTATATATGTCTTACTCACAAGTTGGTAAAGGTTATCGTATGC CCTATTCTTT GCCACACT ACAAGTCG T TGCGGTCTTCC TGCTAGC TATAC TCTCTATGTTGTCCACACTCTTGA CATGGTACAAACGTTTGTAGCATTATTTATTCTCCTTAATAGCCCTTTGGTTTTCCTCAT TCCAACTTCA AGCGTCTTTAGCTTCACCTCCACTCTCTTTGGTTGCTCCACACACCTCTGAGGCCACCTT CCGAATACAG GTTACCATCTTCTCCAATATGTTGTTTCTGTCATCTTCTTGCTTTCAAGTGTCCTCTTTG ATGGCTCTTT CCTTGGAGACTCCTGATGTCTCTTATTTCAGTTTTTACCACTTTGTTCTCACAATCTTGG TTTGTTTATC

CATATGTGCACACACCTAAAAAATGGAAGACCGCAACCACAAACTTATGTTGGTAGA CATCACACTCCTT

TGGTATCACCTTGCAGTC AAGCATGCTCG TTATCCTC CTTC GTGAGGATAAAGTCAATCTGACTA

GTG CTGGGC TTTGGCCAC ATT TAGGTCAATAAATGGGATTCTCTCTTC AAAGAAACTAGTGGT

TATC GTCGAGAATCT TCAACAG TAATTTGTGTGGTGGTG TGCGAGATCAAAGAACTAAAAGTAAA

AGCACAAGAGACAATATTTAGACTGGTTCGGGCTCTCGTCGTGAGATAATACCTCAC GTCCAGTATTATG

GTGGCTATGCTTACGATCTGTTGTGCTCTGCCCTCTTGGGGCGCCTCGCCCCTCCTT TTATAGTTGGAGG

GGTGCGGTTACAAGAAAACGTGTGGTCGTACTAGACAAGGACTCGGACCTAAAAGTC C CGGTTACAAGG

ATCCCTATCATCGCTATAATGGC TCCCTTATAAATCGGGTA TACCGTTACAATGAAGATATGACCCAT

ATATCGTACAAACCCTACAATCTTCCTTATTTGCTCGACCACGTAGACTTTATCCCG ACATGTGGATTAG

GTTCTCCTGAAAGTCTGAGACCGAGTCCAAGTCCTAGACTGAGTCCGAGTTGGGCCC ACAAGCCAACACC

T AGGATCAACGTACCTATGGTACCCCTTGTATATATTG TTACACTATCAATAGGTCAAAAGCTACTA

CAAAGTTTAAGATTTCCTCTCCCTCTTGGTTTGTACTAGTATACCTAAAACCTCCAC CTACATGTTCATT

GTGATCTCCTATGCAAAGCTCCTCACTAATATGTAGAGCTCTAAACATGCCATCGAA GTCTTCCTACCAC

TCTCATCGTCGTCTACTTGAGAAGTATACTCGCTAATTACATT AAGACCAAATCATCCATGGTAAGCTT

GACTAAGATAATTGTATTTCCTTCCCTTTTCACATCCATCACACCGTTCTAGATGCT CTTATCAATTAAA

ACTCCCTACTTCATTTCTATTTGCAGCTATCCATATGTACCAAAGCTTAAAACCGGT ATTGTCCACCCCC

TTCGTCTTCTGACCCTTCCATTTAGTCTTATGGACACACAAGATATTTACATGTCTC TTAGTCATTATCT

CAACTAACTCCTTTATAGCTCA ACCTGTAAGCGACCCTATATTCCAGCTGCCTAAAAAGATTATAGTT

TGTTCCATCCAC AGC T CTTCCCCT TGCACCTACGATGATGTGAAGACCCTTACATATTTTTTTACT

ATATCTGGGCACTTATCATAATCTTCCTTTGCCATGGTTTGGGACCTGCTATATTGA GACAACATAGGCG

GATTTTATATACTTAATCTCCAAAAGACTTTGAATCTTAGAACCTGAGAAAGAGGAA GAAAAGTTTGAGT

TAATTGGTTCTTTATGGGTCAGGGATGTTGGTGTTCAAAATGAACCCAAGGACCAGA TAATGCATCCATC

AAAGAGTGGAGCATCTAAGGCTTCGTCATAATGATCACACTGACTAGAAATTTTGCT TGAGCACTCTGGT

TGTCGATCTCCGTAACATATGTCGCTGTTTGTTGCGGTCGTTTCCCTGGTCCTGAAC AATTTACCAGGTT

AGGCGAAGCCACAGGAAGTCCTTATTGAATTTGTGCCTTTTGGCACAGTCGATTCCA CATCCTGTCGGTG

GAAATATTATTGTGTGTGCTGCTGCCTACCATGTGCCAGCTGCATAAAAGGCCCCGA AAGGAACAAACTC

TGATTGTGCCTTTTATCTGCGGCTGATGACATGTTTTTGGAAGATGTTATTTGTGAA CAATTGAGTATAT

CCAAAACATCTGAAGGGATACTTAGGGGCTGTTTGGTTCGTGGCTAAATGTGCCACA CTTTGTCTAAGAT

TAGTCGTTCGAATTGAAGAACTAACCTTAGGCAGAAAAGTTAGTTAAAGTGTGGCAA GTTAGCTATCAAA

CCAAACAGACCTTTAATCCTGGACTACCGCCGGCACTTGAGCCACAGACTTCTGGCG AATTGCAGGGATA

TCCCAAT GTAGCAGAAAAATGAACTGAACAGATCGTTGGGTCC TCAACTATATCCCTGAAAATTC C

TCTCTTTTAAATTTTCTTGTACCTATCAGTTATCACGCCACTGCATTGTTTTGTTTA TATAGGCCCGTAG

TTCACAGTAGTTCATGCTCAATAACTGGTTCCTACCAATTACTGTGGGGGCACTAAT CCGTTCCTGTGGA

ATTGCAGTGATAACAACGGAGTCGAGGAACATCCTGCTGAGGCACTTCTACCAGAAA TCCGAGAAGGTGA

GCTGGTACTGCTAGCAAGTACCATGAAACCAGATGACCGAAACGAATCTAAGCTTGA AATCCTGTCCTGA

ACTGTAGCTGAGGCCCAAGAGACCTGCCCCGGACAACCTCGCTCCGGAGAACAACAA CAGCAACAACAAG

CAGCCCAGGGGACCGGTCGGCGACGTCGGTGGGCAGTCGTCGAGCGCGAGAAGCTGA AGCCACAGCTGGT

GGCCGTCCACTCCTCCCCCTGCCTGCTTGTTTCTCATCTCTGGGTTTCGTCATGCAG AGGCAGAGGCAGA

TGCAGCCC GTGTTGTCCTC TCGCTCCTCACGTC GTACGTACGACCCAAAGAGCTACTAACCTAATCT

GAAGTTAGGGTTACATACATGGATATCGGATAGATGGGTGTACATAAGCACCTGAGA GCAGTGTTGTGTT

ATCCTAAATGCTAAACGGTAAACAGTCGTTCAACATCCTCTGTGTTTAGCGTATAA

SEQ ID NO: 147 Zea mays 2

MGSPLGGWPSY PHNFSQLVPADPSAQPSNVTPATYVATHRTDPPPNQVITTEARNILLRHLYQKSEEKL

RPKRAAADNLAPENNNKKQPRGPVGDVGGQSSARS

SEQ ID NO: 148 Brachypodi urn distachyon, CDS

ATGGGAAGCCCACTGGGCGGCTGGCCGTGCTACAGCCCGCAGAACTTCAGCCAGCTCGCC CCGGCCGACC

CCTCCGCGCAGCCATCGAATATCACACCAGCCACTTACATAGCGTCACATAGGACAG ATCCACCTCCCAA

TCAAGTAATTACAACCGATCCCAAGAACATCCTGCTGAGGCATTTTTACCAACAGTC AGAGAGCAAGGTG

AGGCAGAAGAGAGCTGCGCCGGACAATCTCGCCCGGCATAACGACAAGCAGCCGAGG GGCCCCTTCGCCA

ACGGTGGAAGCCTGGCGAGCACAAGAAGCTGA

SEQ ID NO: 149 Brachypodi urn distachyon, cDNA

TGGGAAGCCCACTGGGCGGCTGGCCGTGC ACBGCCCGCAGAACTTC GCCAGCTCGCCCCGGCCGACC CCTCCGCGCAGCCATCGAATATCACACCAGCCACTTACATAGCGTCACATAGGACAGATC CACCTCCCAA TCAAGTAATTACAACCGATCCCAAGAACATCCTGCTGAGGCATTTTTACCAACAGTCAGA GAGCAAGGTG AGGrAGAAGAGAGrTGCGCCGGACAATCTCGCCCGGCATAArGACAAGCAGCCGAGGGGC CCCTTCGCC ACGGTGGAAGCCTGGCGAGCACAAGAAGC GAGGATCAGAGCTGGTGGTTCTCCTGATCTCCTCTGCATT GCAGTGTCCTTTGCTGCCGCATGCCACACTGCAGCCCTCATGCCATAAGCGTTGCCAGTC TCTCATTTAA CATGGTACGCGTGATCAAAACAACGGGGAGCCTTTACATGCAGGCAATGTACTGATGTAC ATAGACAGGC ATATTCTTGGTCTTATTCTCACCCACTCGGTGCGGTTGGTTATCTTTGACAGGGCACTAT AATTGCAGAC TTTTTCTGTAGATAATGTGCCCACACCACCACCATGGGACGACGCTCCCCCCAACTTGTA CTTTTGGTGA AATAATTTATCATCATCATCATCATCATCTCATTGCCTCTGTAATTGATCTATGTACACT TTAGAT SEQ ID NO: 150 Brachypodium distachyon, gDNA

ATGGG GCCCACTGGGOGGOTGGCCGTGCTAC GCCOGOAGAACTTCAGCCAGCTCGCCCCGGCOGACC CCTCCGCGCAGCCATCGGTCAGTCAGCGCCTCC TTTCGCTG TGCGC ACCACAT^TCATACT GTCGT GGATCCCATGTGTGCTTGAATTGGAGACTACTCCATCGATTCCACAAGTTGTATTATGCT TGCGCAAATT TGTT GTGCC AGA GGA AGGAA TrC CGC ArAGAAAG AGGGTTCGTGTCTGC GTACOTGAT

GCAGTAACAGGxGTCGCTCCTACTGTGCTTCTTTGATGAAATTGTAGTACACATAGG TGGCTAAATACTG TAG T TTACA TGAAGTCCTGATTGCCGAACTATTGGATCCTATTCAAGTATTCAGAGGGCTT GGCAC AATGACTAAGCATTTAGGTTTAGGTTTTAGCTTCTCTCATTTGTTAGTACATTGAGTATA TTCATTTGGT GTAGTCCTAACTATTAACGGGTTTATTGCGGTTGCTATTTTTATGCATACTACAGGTCAG ATATTCAGTT GCCATGGTGCTAATGATACTAGTTATTCCTGTGTTTTCTGTAATGCCTTGTAGGCTTATA GTCAGAAAAT AAAAGGCAGAACACAAAAATAAAAATAAAAATATATCATGCTAGCAACTTATACTGTGGG CAATAGTAGA TATATTATTTGGTGA.CCTGGTGCTAA.TGTTAATTCTCATTTCTTTGTGTTTCTCGCCA GAATATCACA.ee AGCCACTTACATAGCGTCACATAGGACAGATCCACCTCCCAATCAAGGTAACTCCATCCC CCGCTTCTTC TACCAATGTCTCTGGTCTGTGCTGCTTCTGCTTCTCCC T TACAAATC AGTCTGACTGATTTCCTCGT TAGGCCTTTGTGCATAACTTAATGTAATTGCTCCTTCGCATTACGTCAAATTATCTTTAC GATGGTATTT CACAGGGCAAAAAATATGTCCCATAAACTGTTTGATCAACTAAGCCTTATGTTTAGCCAT GAGAATCCGT AAACCATATTATGTTCTCAATAATGTAGAAGTAGACGCGCCTTGGTTCTGCTAGGCCAAG CGCCATAGGA TTTGGGAGGGCGTTCCTAAATTCTGCAATTTTATGATGTTGATTAGCAACAGTACTGTCT ATGATGTGGG ATCTGTGCTGGAGATATTATGCTGCCACAGCCCACATGTCCAAAGGTGATGTGGACAAGT GTTTAGATTC CCAACCATCACCGTGCCACATTAACTGCAGTATTGTATCGAAGGTAGTATTTTCTGCATA TCCTAACAAA

TCACTCGAACTTCTGATTCTTTTAAACACiGTTAACATTGGTAAGGCGGTAJ¾.TT GC \TGGATAH.TGATT CAAC AGACCTGTTTTCAACTTAACTACTCGCTTTGCTGACCCAACAGCAGCTCTCTATATTTCA TCTAC TGTATTTTTGTCGTGCAAATGTCCAGGTACTAGCCTTTTCCCAATGTTAAATATATCTTT ACAAAATCTC ACT TGTGAAAAATA TTGTTCTATCATGCAT CAAGATTAGGAAAACATGATCCCAAAT T AC GAG ACACATAGGCTAACAGCACATTTGTAAGGTCGAAACAACTACATAGTTACTGTTCATCTC AATTGCAATA GTGCAACAGAGTTGAGAGACATGTCACATATGGCCATCGATGTTGGTGATCAAACTTCCT TGCAAACACT CAAi-iTGCTTGTAACAGTTx-i//xTGTCTCTGGGAGAATCCCTTGTGGAGATGCAGAG GTGTTTTCTGTTATG GGTGi^TGC TTCAAGTGTAGACCAGTTXGAGCATTA^iATATTCCTTCACAATCGTTCCTTTTTCC TTTC CTTGACTATCTCAGGGTTTGGCATGTAGTATGTAGGTTATGTACTTAATGGCCCATGGCT ATATTGCCGG ACCTTTCATACTTTAATGTAGGTACGCAGGGATGTCCACATGATCTTTGCACTGATATAT CGTCTAAGTC TCCCAAGTTAACTGTTCTCTCGGAGCATGAGGAAGAGGAAGACAAGGTGTAGTTAAAAAA TACTTAAATG TG CAGCAGGGATGTCAACC TGAAi-iGTAGAAATGGTi-xGGATCTTCAAGGTTCCCTTC/xAGTTGA/xTTGT GGCGTACTCCCAATGAAAATTCCTTCAACGTGGAGTGCTTGTAGTGAGAGGTCGTTGAGA GGAATTGCTT GGGTTGAGTTGAAGGGGCAATCGGTTGCCTATGATGAATCAACAAAACTGGTTGGATATT AGGCTCAGAG GTTTCGTAGAGCACACCATGGTACTTTCTATGACATTTCATGGGCCATTTACCGGGGTCT TTTTTTCTGG GGCCTAATCA/xTTTA GA GCCAGGC GxACTGCCTA GTCTCTG CTGCTTTCAAGAAAAGA ATATTT ACAATACATCAAACTAAGATATTTTTAGGCAGAGAAATATGCTGACGAACCGAACACTCT AACGACATTA TGTGCC AGGGTGCCACCAGCATA TGTGAAGGAGATAT TGTTAACAAAC GAGAAATATGCAA GA-iCAi.A CA AAG AGACAC iACCC A AC G iG TCCGAG TTCTGGCA ATCCT CAAAG ATGTTCTTTTTGGTATATTGTAGGGATCGAGCAGGTCCTCTATTGCCAGCTTCTTTCAAT ATTTATAATA AC AATTATGTTTCTGGTAGAAACACTCGCCAAACAAATTGCTAATGGAACTAACCGCCAGTT ATATGTT TTGCATATC T GAATGCA TAGT A ACATATG TCAGAGTAGC CAGACTCAATGGCTGCCCCTTG TTTTCTTCTTCTTTTTTGCCTTTTCGTTAATTTATATTCGTTGGAGGCACTCATCCACTC TCACCGTAAT TGTTGCAAATCTTCTATGTCCAT TTCTTATGCTCTATGAAAACCACCTTTGCGGTGTCTCGACTGTTTA TGC Gri AATC G CCCC GGAAACTGCAG AA ACAACCGATCCCAAGAACATCC GC GAGGCATT

TTACCAACAGTCAGAGAGCAAGGTGAGCTAAGCCACCCAAGACACTGATGAAGAACA GATAGATTAAAAA

TACCGTCGAATAATAAAATCTTAATCTCAACA ATA A TC TCGTATC CA CCATAGGTGAGGCA

GA GAGAGCTGCGCCGGACAATCTCGCCCGGCATAACGACAAGCAGCCGAGGGG

GGAAGCCTGGCGAGCACAAG AGCTGAGGATCAGAGC GGTGGTTCTCC G TCTCCTCTGCA GCAGT GTC TTGCTGCCG TGCCA CTG GCCCT TGC T GCGTTGCC GTCTCT T TGG

TACGCG GATCAAAACAACGGGGAGCCT TACATGCAGGCAA G CTGA GTACATAGACAGGCATA T

CTTGGTCTTATTCTCA.CCCA.CTCGGTGCGGTTGGTTATCTTTGACAGGGCACTAT AATTGCAGA.CTTTTT CTGTAGA.TAA.TGTGCCCA.CACCACCACCATGGGACGACGCTCCCCCCAACTTGTACT TTTGGTGAA.A.TAA TTTATCATCATCATCATCATCATCTCATTGCCTCTGTAATTGATC ATGTACACT TAGAT SEQ ID NO: 151 Brachypodium distachyon

MGSPLGGWPCYSPQNFSQLAPADPSAQPSNITPATYIASHRTDPPPNQVITTDPKNILLR HFYQQSESKV RQKRAAPDNLARHNDKQPRGPFANGGSLASTRS

SEQ ID NO: 152 Oryza sativa ssp. Japonica CDS

¾TRG¾QAGCTCCCTGGGCGGCTGGCCGTCC A AACCCGC A AC TCAGC AGGTCGTCCCCGCCGACC CCTCCGCGCAGCCCTTGAATGTCGTACCAGCCACTTACATTGCAACACACAGGACGGATC CACCTCCCGG

TCAAGTGATAACAACAGACCCCAAGAACATCCTGTTGAGGCATTTTTATCAAAAATC CGAGGAAAAGTTG AGGCCAAAGAGAGCTGCACCAGACAACCTGACCCCACAGAACAACGGCAAACAACCAAGA GGCCCTCTCT CTGATGGTGGTGGTAGCCAGGCAACTGCAAGTGGTAGAAGCTAA SEQ ID NO: 153 Oryza sativa ssp. Japonica cD A

QQCGGCGA GGAGPGCTCCC GGGCGGCTGGCCGTCCTPC ACCCGCAAAACTTCAGCCAGGTCGTCCCC GCCG CCCCTCCGCGCAGCCC TGAATGTCGT CCAGCCACTTAC T GCAAC CAC GGACGG TCC C

CTCCCGGTCAAGTGATAACAACAGACCCCAAGAACATCCTGTTGAGGCATTTTTATC AAAAATCCGAGGA AAAG GAGGCCAAAGAGAGC GCACCAGACAACC GACCCCACAGAACAACGGCAAACAACCAAGAGGC

CCGGCATCTCTTGTGCTGCTGAACTGACAGCATGCATGTCATACTACCTGTATGTAT GTGTGTGTGCTTG CAGGCfiTjriTGCTTAC AGTAG G CJMTCATC C C TG G GA GATCAAAAGAGC CCCCATGCAT G ACA CACCCTCATCC CAGTGTCAGTGCGGCACC GATACGG CTAGCACT TTGCAGTC T T

ATGCCGACACTAGCACAACTTGATGAAACCATTTTTCCCTACATAATTGCCTCAGCG TCAGCTTTCCAAA

GGCTGAAAGTGATCATTGCCTCTCTTA

SEQ ID MO: 154 Oryza sativa ssp. Japonica gDNA

RPA AAGGGTGGAGAA CCAAGAGGGGGCGTCGCCGGAGTCGGAGTCGG G CGTCACGGCGAGCTCCGC QPQGCGATG A AGCTCCCTGGGCGGCTGGCCGTCCTACAACCCGCAA ACTTCAGCCAGGTCGTCCCC GCP ACCCCTCP CGC CCPTTG P TP GCCCCTP TGACTCT TCΓΓΓCPTP CTCGC ATC A TCTCTGTGCTTAGCTGTCGTGATCTCATGCCTCCGACCGCCAAGTACAATTCAGAATTAG GTTGATTGTG TTGATGATGCCATGAATTGTGTGCCTGATCCCTCACGCCGGAGCTTTACCTCTAGTCAGT CCTATTGTGT GTCAGAGCGTGTGTCTGAAATTCCAGTGCGCATGATTAACAAAAGGTGGTTAGTACTATT TGTTTCTAAG TCCCAATGCCAAATAGTTGGATCATAATATCTCATTTGGGAGGTATTTGTGAATCATGGA TTATACATTT AGGATTTGGTTTCTCTCATGGCCAACGCCCTTTAAGGTTTCAGTTGTGGTGATGAATTAC TAGTCGGTTT TTGCTCCGAATGTCATTCCAGGCAGCCACTTGCATTGTAATTTGCAAAGCATATATTCAG TTTGTCATAT TTGTGTTTCTCGTCAGAGTATCAAGCTGGTAACTTATTCTCTGGAGTCCGGACATGTTGC ATTGGTGCGA AACTGCCAATAC TATCCC AT T TGTG TCAGAATGTCGTACCAGCCAC ACATTGCAACACA CAGGACGGATCCACCTCCCGGTCAAGGTATCTTGCTCCCTTG TTCTTTTACCAATGC GATTTCCCTGT GCTGCTCCTCACTTCTGAGTGTGTGG CCTAAACGTTCAAATGTGTATAGTTGAATGTGACTGCTCATT CACATTGCATCAAATTCCTTTTACAGTAGTACTCTACATGGCATAGCAGATCCTCTGAGT TGTTTGGTCT GAGCCAi^jiAAGTGACTATCTTGCCTTTCATGGCTGGCATATTTAAC CC^A C^ CTATACTGTTTTC G TAATGCAGCCTCTTTAGTATCTTCTGAGTGATAGATCCATGAATAGATTCTGTTGGACTG TTAGATATGT CTTCAAAGTCAATATTTTT GCATTCCCTAGGACTGTAGTTTTGGCTTC TGA ATGTAACTCACATACA

GCTTCAAAGCAAACTTTTCTCTTGGAGTATGAC TTATGAGGGAGAGCAGAAAAGGTTGAGAGTCAGAGA GCCAGGGCCTAGCCGGCAAACTGGAAAGACCAACTAAACCTGATCTTACACCTTCATAGT TGAGTCCCCT

TGAA GATTTGi¾.TAAGTTAAATGCTTTTATAA TTTAGCAATCriAA TTTGGAATAz~iCACATGCTAGAG CA CA CTATTTGGACTAGAGGTTGGAGTTTCCTAATGATGAATCAACATi-iATTTAGTATTTTC GCCTCA GAGACTTTGCTCTGACCCACTATGTGTACCTATTACAATTTTGTATGAGCATTCTGTTAA GTCCTTTTTT

^ CTCCTAGCCTAA CT TTGGCAGGCCAGGCCG^ACCACCAAACATCCTGG TGCTTTCAGGCCTGTCC

ACTGAACTATCTCCAGATTTCAGGTACAGGTATTCAGTAAAAAATTGATTGCATGCT GCTTACCATCTCC ACAAAAGAAAAATGAAAGAAAACTATAGGCAAGCTGGGCAATTTATTAGTAAGGAGCAAA TGAACTGGCC AACCAAAGCAACCTCTCATATTAGTCATCTTCCTCTAGTGCTGCCAACATAGTTTTATTG AAGTGTTCTG

TTTATGCCATAT GCCAATATGAT TGGATGG TACATT ATAGAACACAGTT TTCTTC CGACTCATT GCCCG GTGCCTGT GGCAGAGGCCAAAGATGTAAACCATTTCCA TATCTAAAAAAAAAGAACA TGTT TTTAGATATTCTATGTAAACATTGTACTTCATTGGTCCGTTGCAGGCATGGAGCTAGTTC CTTAGTTTCC AGTTTATTCAGGGGCTGTTCAGATTGATGCCATTTTCAACCA ATCAT TTT GGCAAAGTTGCCAAAAA TGTGCCTACATTTGGTTTGTTGCCAAATTTTGGTAAATACATAAGAAATCCTGCCAAAAT TTTGGTAATA TTGTCAACTTGCTAAAATTTTAGGTAAGGTTTATTTTGGCAACAATCTGAACAGCCCCTC CGTATTTTTG CTGCCTATTCCCTCTTGAATTTCCTGTGCATGGGATATTGC TCTGATAGTGGTGAA TC TGAGTGC T TAG CA AGAGCAAG T AA AG ATAGCCCAC GC AAC CCAAT CA C A AGCCAATC AA AG CCAAT CATACAA AGTTGC TAC A ACTATTAATATATGG CACACC GTCATACATACA GCG CT TAGAGTCCGCGATGCAGC GGCTACAGATCTATAGCCCGCTGCTCTTCTCTC CATCCTTTC C CAT A AAATATGTTTACAGCTGGCTAATAGCCTGCTATTGTACCTGCTCTTAGATATTTTCGTAG TCGATCAGAC TCGATAGTTGCTCGCTCTCTTTACCTCGTTTTGGTTCTTTCTGGGCTCTCGTCCATTCCT ACCAGAACTA CCCCAACTATTCCAAGTTTTCTTTTTTACTGTACAGAAATCACCTCTTTTTTTTTTGTTG CTATTTTCAC TATTTCCCTGACCGTTTGTGTCTGGAATCGCAGTGATAACAACAGACCCCAAGAACATCC TGTTGAGGCA TT TTATCAAAAATCCGAGGAAAAGGTGCGCTGCTAAGAGCCTAAGACTCTCACAAAGGTTAC ATAAATC AGTATGGAACATCTATTTATCAACGCT TATCTTGACTGTAGT GAGGCCAAAGAGAGCTGCACCAGACA ACCTGACCCCACAGAACAACGGCAAACAACCAAGAGGCCCTCTCTCTGATGGTGGTGGTA GCCAGGCAAC TGCAAGTGGTAGAAGCTAAAACGCAGCTGTTGTTCTCTCCGGCATCTCTTGTGCTGCTGA ACTGACAGCA TGCATGTCATAC TACCTGTATGTATGTGTGTGTGCTTGTTCAGGCATATGCTTACTAGTAGTGTCATCAT CTCTCTTGTGTGATTGATCAAAAGAGCTCCCCATGCATGTACATACACCCTCATCCTCAG TGTCAGTGCG GCACCTTTGATACGGAACTAGCACTATTGCAGTCTTTTATGCCGACACTAGCACAACTTG ATGAAACCAT TTTTCCCTACATAATTGCCTCAGCGTCAGC TCCAAAGGC GAAAGTGATCATTGCC CTCTTA SEQ ID NO: 155 Oryza sativa ssp. japonica

MESSLGGWPSYNPQNFSQWPADPSAQPLNWPATYIATHRTDPPPGQVITTDPKNILLRHF YQKSEEKL RPKRAAPDNLTPQNNGKQPRGPLSDGGGSQ

ATASGRS

SEQ ID NO: 156 Oryza sativa ssp. Indica CDS

ATGGAGAGCTCCCTGGGCGGCTGGCCGTCCTACAACCCGCAAAACTTCAGCCAGGTCGTC CCCGCCGACC

CCTCCGCGCAGCCCTTGAATGTCGTACCAGCCACTTACATTGCAACACACAGGACGG ATCCACCTCCCGG

TCAAGTGATAACAACAGACCCCAAGAACATCCTGTTGAGGCATTTTTATCAAAAATC CGAGGAAAAGTTG

AGGCCAAAGAGAGCTGCACCAGACAACCTGACCCCACAGAACAACGGCAAACAACCA AGAGGCCCTCTCT

CTGATGGTGGTGGTAGCCAGGCAAC GCAAGTGGTAGAAGC AA

SEQ ID NO: 157 Oryza sativa ssp. Indica A cDNA

TCCGGGTCACCACGCGTCGCGGACGCGTGGGGGGGGCGTCGCCGGAGTCGGAGTCGGAGA CGTCACGGCG

AGCTCCGCGGCGGCGATGGAGAGCTCCCTGGGCGGCTGGCCGTCCTACAACCCGCAA AACTTCAGCCAGG

TCGTCCCCGCCGACCCCTCCGCGCAGCCCTTGAATGTCGTACCAGCCACTTACATTG CAACACACAGGAC

GGATCCACCTCCCGGTCAAGTGATAACAACAGACCCCAAGAACATCCTGTTGAGGCA TTTTTATCAAAAA

TCCGAGGAAAAGTTGAGGCCAAAGAGAGCTGCACCAGACAACCTGACCCCACAGAAC AACGGCAAACAAC

CAAGAGGCCCTCTCTCTGATGGTGGTGGTAGCCAGGCAACTGCAAGTGGTAGAAGCT AAAACGCAGCTGT

TGTTCTCTCCGGCATCTCTTGTGCTGCTGAACTGACAGCATGCATGTCATACTACCT GTATGTATGTGTG

TGTGCTTGTTCAGGCATATGC TAC TAGTAGTGTCATCATCTCTC TGTGTGATTGATCAAAAGAGCTCC

CCATGCATGTACATACACCCTCATCCTCAGTGTCAGTGCGG

SEQ ID NO : 158 Oryza sativa ssp. Indi ca A gDNA

ATGGACGTCAGCCAAGCCACCGAAGAGCAACTTCCTTCACACGGCCAGCACCAGAGCTCC TTGGAAGAGA CTGCAACATGTCATCATTGCCGAGCGTCGCCGCACCCCCATCAGCAAGCAGCTTCGACTT CATTAGCAGA AACAACCGAAGAGCGTGTTACCCACCACAAGAAAGAAGCGGACCCAAGAAGGCGAAGGCC TCACCGAACA AAAGCTTACCTTGATATACCACTCCATTTGGACAAATTGTGGAGAATCCGAACTCTCCCA CGACTGTCCT CCACGAGTCCATGGTCGCTGGAAAAGGGTGGAGAAACCAAGAAAAGAGGGGGCGTCGCCG GAGTCGGAGT CGGAAACGTCACGGCGAGCTCCGCGGCGGCGATGGAGAGCTCCCTGGGCGGCTGGCCGTC CTACAACCCG CAAAACTTCAGCCAGGTCGTCCCCGCCGACCCCTCCGCGCAGCCCTTGGTCGAATGTCGT ACCAGCCACT TACATTGCAACACACAGGACGGGTCCACCTCCCGGTCAAGGCCAGGCCGAACCACCAGAC ATCCTGGTTG CTTTCAGGCCTGTCCACTGAAATATCTCCAGATTTCAGTGATAACAACAGACCCCAAGAA CATCCTGTTG AGGCATTTTTATCAAAAATCCGAGGAAAAGTTGAGGCCAAAGAGAGCTGCACCAGACAAC CTGACCCCAC AGAACAACGGCAAACAACCAAGAGGCCCTCTCTCTGATGGTGGTGGTAGCCAGGCAACTG CAAGTGGTAG AAGC AA

SEQ ID NO : 159 Oryza sativa ssp. indi ca

MESSLGGWPSYNPQNFSQWPADPSAQPLNWPATYIATHRTDPPPGQVITTDPKNILLRHF YQKSEEKL

RPKRAAPDNLTPQNNGKQPRGPLSDGGGSQATASGRS

SEQ ID NO: 160 Hordeum vulgar e CDS

ATGGG AGCCTGCTGGGCGGCTGGCCGAGCC AC AACCCTCA A CTTCAGCCAGCTCGTCCCGGCCGACC

CCTCCGCCCAGCCCACGAATATCACACCAACAACTTACATTGCAACACATAGGACAG ATCCACCTCCAAA TCAAGTGATCACGACGGAGCCCAGGAACATCCTGCTGAGGCATTTCTACCAGAACTCTGA GAACAAGCCG

GCGGAAGCCAGTCGAGCACGAGAAGCTAA

SEQ ID NO: 161 Hordeum vulgar e cDNA

GCACGAG ACCA ACCGTCGGC A AAAA AGGGCAGAGCTTGGCCGGAGCGAGAGACGGCGC A CGTCGCG

GGCGGCGGCAGCGGCG ATGGG AGCCTGCTGGGCGGCTGGCCGA CC AC ACCCTCAGA A fTTCAGCC G

CTCGTCCCGGCCGACCCCTCCGCCCAGCCCACGAATATCACACCAACAACTTACATT GCAACACATAGGA

CAGATCCACCTCCAAATCAAGTGATCACGACGGAGCCCAGGAACATCCTGCTGAGGC ATTTCTACCAGAA

CTCTGA A ACAAGCCGCGGCCGAAGAGGGCCGCCCCGGA AGCGTTGCCCTGCGC ACGGCAAGCAGGCG

AGGAGCCTCGCCGACGGCGGAAGCCAGTCGAGCACGAGAAGCTAAACAAGCAGGCGA GGAGC

SEQ ID NO: 162 Hordeum vulgar e gDNA

A GGGA &GCC GCTGGGCGGCTGGC^ AC TCAGCC A GOTOGTOCOGGOOGACO

ΓΓΤΓΓίίΓΓΓΆΠΓΓΓΆΓίΐΠΤΓΠΠΤΓΑΠ ΓΓΓΓΓΤΤΓΓΓΤΤΓΓΓΤΓΓΓΓΤΓΓΓΤΓΤΓΓ ΤίίΠΓΑΠΤΤΓΓΠΤΠ TCTrTTr TrrT TrrT rrrrGT ΑΓΓ ΑΓ CTGCT GGT TGC Pr AGTCGGAGGGCGrrT ΑΤΤΓΓ A r AGGTTTCAGGTGCCATGC TGCTTGCTTGCTTGCACAAGTGCGGAGTTC TCGGTGCCC AA AGGGGAG rRQQQTrTGCTGCCTGAGCCAGG AT GGAG TACTCGCACTGTGCGTGTGTGCGTr CCAC GG ATT TCAGAGGGATCTTGCACAGTGAATAAGCATTTAGGTTTTGGTTTTGGTTTTGGTTGTGGT GGTTGTTGCT

ATGTGTACTGCAGGTCATATGTTCAGTTGATCTGGTGTTATGTATGCTAGTTTTCCT GTGTTTCTTGTCA GAA GAC AGAAT CAGAAATAGAAAAGGCAGGCCGAAAGAAAGAAAAAAAAAAC A CATGC AGCAC TACAATGTTGCAAGTGTATTGGTATTTGGTTGACATGGCGCTAATGCTGATCCTCATTGT TTGTGTTTGT TTCTCACCAGAATATCACACCAACAACTTACATTGCAGCACATAGGACAGATCCACCTCC AAATCAAGGT AAACTCTTCCCATATTTATTCAACCAATGTCTCTTTGCTGCTTATACGTTCTGCGAATTT AACCTGCCTG GCTTCCCCT TGCT TTTGCGCGTGATTGAATGTACGCCCCTCTGCACTGCGTCAAA TCTGTATTCCCC ATGGCAAAATAGGTTTCAGGAACTGATTGATTTGAACTAAAAACTGTATAGGTAGATGGG TATCTTTTCA T CAGGAGGGCATCA A TTAGCCATGAGAG CCATATTA G CCCAATAATG CGAAAGGGCA GGGT TGATTCTGCTAGGCCAAACACCATATCAT TCGCAGGATGT CCTAAA TATAATT GGCTCCTTT TTT TATGA GTTAT TTGGCAATGG ACTGGCGATGTCATGGGATTCTGTAC CAAG AA ATGG CCACA TGTCCAGATGTGATATGTACTCAACCAC C AA TCCCCATTGACATGCTAC TAATC CCATAATAT ATTGTATCCAAGGTGCTATGTTCTGCATGTCCTACACAAATGGTGGCAATCTTATTTGCC AACAGTGACT GGACACATAATACGCTAATAATAGTGGTCTCCTCCTGCCCTCACTTGAGCCCCTGGTCTG TAAGAATCAC GGTTTGTGPPGGTAAGTGGTGATTAPPAGPAAA AGP ATGGATGA AAPTPGGTTAPAPPTGTT AAAP

ACTGTATAAGACTGAACTGCTCACCTCGATTACGTAGCAGTAGTTCGATTTATTTCA TCTCCTACAGCTT

TTCATTCGAATGTCCi^GTTATTGGi^CCGTGTCCTATATTAGGTCTTCACAAAjri TATCj¾AAATATCACTTT GAAAATATTGTCTATTCCATTGAGACATTCCAAGATTACGAAAGCATGCTCCCCAATTAT TCTGAGTCAC A AG AACGGCACATTAGTAAGGTTCAGACAGC AAATAC TAGT TCATC AAAATACAGTAGCTT AATGAGA GTGA CATGTCA TGGCCATCG GTTGGTAATTGAAC C TCAGCAAACTCTGiAGTT CTTGCAACAGTTAAATGTCACTGATTTACATGATTTGGGTGATTTGGAAGGAACGGACTG TCGTGTCTTT CATAACAAGGCCCTGCAGCC TTGGATGTGGCCGTAATAATTCAAGAGGAGGTAGTGCAGTGGCCATGGG CATATGCCTTCTCCCATGATACCAGGCATAGTTGCAATTCCCTTGCTTTGGCTTCTTTGC TACCCTAGCG TGTTTGGGTTTTGCCTTTTGCCCTTTATTATATATTTTGTATATTACTTGTTTTAATTTC AATCTATATG AATGGGAAGAGCACCTCCCTTTTCCAAAATTAGTCGTACATTTCATTATAGGTCTGCAGG TTGCACTGTT ACAAATTCTTAATCCACA GTTAGTTTTTCTCTTGGGAGCATGAGGAAGAGGAGGriCATAGCAGTGATGT CAGACTTACAT TTACACC TAAAGGAGATTC TAATGTTCCC CAAGTTGAA C TAGAGAACT CATACTGAGAGTGCCTTCGACAAGGAGATATAGCAGCACTCGGTCCTTGAGAGGAATTGG TTGAGTTGAG GAAAGAGGCAAGCAG GCCT¾A GAT x~ii"iTCATGAATA AGG GGG CTCGGT CAT¼.GGCTTA. GG CCCATTGTCTGGTGCCTAATAAATTTATTAGGCTAGGCTGAACTGCCAAAAATCCTGGCA CATCGGCCCA GC GGCGGTCAGTGAAA T TATTGCATACTCCTAACGAACTC ACAAAGAAAGGTTAAT TCAATAAT AAGAACTATATGATTGATTTCCTTTAAAAAATCGACATAATATTTTTAAGAGCAGAGTGC ACTGACAGAG CAAGCACCTGCTACATTATGTGCCATTTTTCGGCGTTGCGAGCATAAATTGTGAAGAAGT TATCAGTTGC TAACATTGAGAAGTAGACAAGAACTAAAATCATCTGAATAGACCCTTAACACTGAACTTG CAAGTTTCAG AGCTGTGCCACAGATTTTGGTTAGCTGAAATGCACTGAACACTCGATTTGGTTCATTGCA GGGATCGAGT TGCTTCCTTTTATTGCCAGCTTGTGTCAACATTTCGTGATATACACATTTTCTTATGAAA TTCCTGTGTG GCAAACTATTCTTCCGGCAGATAGATTGGCTAAACAAGCTGCTAATGAAACGGACTGCTA GTTATGTGTT GACAGAACCTCCT TCTAAAAAAAAGTTATGTG GAGTGTGTCGGTGTTGCGTGCCTCG GAGTGAT TAGTTTTGCATATATGTATGTTCCAAGTAGATAAGCCTCTGGCTGCTCCCGTCGAGTTAA TCTGTACTCC GP GAP ATP AGPPPTGPG P GPAGT P PGAPGG PPP GGAAPATPPTGP GAGGPATTTPT

ACCAGAAC C GAGAACAAGG GAGCTACCAGCACTCTGACGAAGAAGAGTAGG AGACCGGCAACCG T TTr rAAr rr TAT rTr^T Tr r rr r rC rr rrrr r TT rrr r

GP APGGP AGPAGGPGAGGAGPPTPGPPGAPGGPG A PPAGTP GP PGAGAAGP AAPAAGPAG

GPGAGGAGPP PPGPTGPAGTPAP T TPTGP TTGTGTG

SEQ ID NO: 163 Hordeum vulgare

MGSLLGGWPSHNPQNFSQLVPADPSAQPTNITPTTYIATHRTDPPPNQVITTEPRNILLR HFYQNSENKP RPKRAAPESVALRNGKQARSLADGGSQSSTRS

SEQ ID NO: 164 Triticum aestivum CDS

ATGGGAAGCCCGCTGGGCGGCTGGCCGAGCCACAACCCGCACAACTTCAGCCAGCTCGTC CCGGCTGACC

CCTCCGCCCAGCCCACGAATGTCACACCAACAACTTACATTGCAGCACATAGGACAG ATCCACCTCCAAA

TCAAGTGATCACGACGGAGCCCAGGAACATCCTGTTGAGGCATTTCTACCAGAACTC GGAGAACAAGCCG

AGGCCGAAGAGGGCCGCCCCGGAGAGTGCCTCCGTGCGCAACGGCAAGCAGGCGAGG AGCCCCGCCGAGG

ACGGAAGCCAGTCGAGCACGAGAAGCTGA

SEQ ID NO: 165 Triticum aestivum cDNA

PPAPGPGTPPGPAA TGTPGGPAAAGAGAGPPTGGPPGGA PGA GAPGGPAP PAP TPGPGGTPGPG

GAPGGPGGP GPGGPG TGGGAAGPPPGP GGGPGGP GGPPG GPPAP APPPGPAPAAPTTP GPPAG PTPGTPPPGGPTG PPPPTPPGPPPAGPPP PG TGTPAP PP APAAPTTAPATTGPAGPAPA GGA CAGATCCACCTCCAAATCAAGTGATCACGACGGAGCCCAGGAACATCCTGTTGAGGCATT TCTACCAGAA

CTCGGAGAACAAGCCGAGGCCGAAGAGGGCCGCCCCGGAGAGTGCCTCCGTGCGCAA CGGCAAGCAGGCG AGGAGPPPPGPPG GGAPG A GPPAGTPGAGP P GPT A PPAGGGPTGGTGTTP GTP TGP p

LLbl/LbLL 1 u L iUlLi i-ri lblbl bj ii-i lb lbbl L-ri liil l 11 bj i1111 Ljri'jrlrirlbjbj l ll bbnbbb

ATGCACGCATGCACTGCACATACATGTGGGCCAGGCCTAGT

SEQ ID NO: 166 Triticum aestivum

MGSPLGGWPSH PHNFSQLVPADPSAQPTNVTPTTYIAAHRTDPPPNQVITTEPRNILLRHFYQNSENKP RPKRAAPESASVRNGKQARSPAEDGSQSSTRS

SEQ ID NO: 167 Triticum turgidum ssp. Durum CDS

ATGGGAAGCCCGCTGGGCGGCTGGCCGAGCCACAACCCGCACAACTTCAGCCAGCTCGTC CCGGCTGACC CCTCCGCCCAGCCCACGAATGTCACACCAACAACTTACATTGCAGCACATAGGACAGATC CACCTCCAAA TCAAGTGATCACGACGGAGCCCAGGAACATCCTGTTGAGGCATTTCTACCAGAACTCGGA GAACAAGCCG AGGCCGAAGAGGGCCGCCCCGGAGAGTGCCTCCGTGCGCAACGGCAAGCAGGCGAGGAGC CCCGCCGAGG ACGGAAGCCAGTCGAGCACGAGAAGCTGA

SEQ ID NO: 168 Triticum turgidum ssp. Durum cDNA

A ATTCGGCACGAGGGGACGGCGGCAGCGGCGATGGGAAGrrrGCTGGGrGGrTGGrrGAGC rACA ΑΓΓΓ

GCACAACTTCAGCCAGCTCGTCCCGGCTGACCCCTCCGCCCAGCCCACGAATGTCAC ACCAACAACTTAC

ATTGCAGCACATAGGACAGATCCACCTCCAAATCAAGTGATCACGACGGAGCCCAGG AACATCCTGTTGA

GGCATTTCTACCA ACTCGGA AA A GCCGAGGCCGAAGAGGGOCGCCCCGGAGAGTGCCTCCGTGOG

CAACGGCAAGCAGGCGAGGAGCCCCGCCGAGGACGGAAGCCAGTCGAGCACGAGAAG CTGAACCAGGGCT

GGTGTTCTTGTCTTGCGCCGCCGCCGTGGCATCTCTGAATCTCTGAATCTCCTCATA TGTTTGATTTTGA

G AGGTGTTTGCACGOATGCACGCATGO CTGCACATACATGTTGGCOAGGOCTAGTGOGGGGTGA AO

CGGCATGGCACCACTGCAGTCTCT TCTCCTTTGTGTAGATAATAATAATGTGGCCGCACCAGCACACCA

ACA G ACTACTGTAGTAGCGC GTATAATA TGGATGAT CCC

SEQ ID NO: 169 Triticum turgidum ssp. durum

MGSPLGGWPSHNPHNFSQLVPADPSAQPTNVTPTTYIAAHRTDPPPNQVITTEPRNILLR HFYQNSENKP RPKRAAPESASVRNGKQARSPAEDGSQSSTRS

SEQ ID NO: 170 Sorghum bicolor CDS

ATGGGGAGCCCCCTGGGCGGGTGGCCGTCGTACAACCCGCACAACTTCAGCCAGCTCGTC CCTGCCGACC

CCTCCGCGCAGCCCTCGAATGTCACACCAGCCACTTATGTTGCGACCCACAGGACAG ACCCGCCACCCAA

TCAAGTGATAACAACGGAGGCCAGGAACATCCTGCTGAGGCACTTCTACCAGAAATC TGAGGAGAAGCTG

AGGCCAAAGAGAGCTGCTCCGGACAACCTCGCTCCGGAGAACAACAACAAGCAGCCC AGGGGACCTGTGG

GCGACGTCGGGGGCCAGTCAAGCGCAAGAGGCTGA

SEQ ID NO: 171 Sorghum bicolor cDNA

TGTAACCATCACTCTTTTTCCCCGAAACCAAAACGAAAAAAAAAAGAAAGTGCTGCTGGC TGCTGCCAAC

CACCCGTGGTCCCATGAAGAGAGCATCGCCGGAGTCGGGGACGGTGCGCCGAGAAGG AACAAAAGAAGAC

GGCGGCGGGGCGGAGATGGGGAGCCCCCTGGGCGGGTGGCCGTCGTACAACCCGCAC AACTTCAGCCAGC

TCGTCCCTGCCGACCCCTCCGCGCAGCCCTCGAATGTCACACCAGCCACTTATGTTG CGACCCACAGGAC

AGACCCGCCACCCAATCAAGTGATAACAACGGAGGCCAGGAACATCCTGCTGAGGCA CTTCTACCAGAAA

TCTGAGGAGAAGCTGAGGCCAAAGAGAGCTGCTCCGGACAACCTCGCTCCGGAGAAC AACAACAAGCAGC

CCAGGGGACCTGTGGGCGACGTCGGGGGCCAGTCAAGCGCAAGAGGCTGAAGCCACA CAGCTGGTGCTGG

TGCCCGTCCTCCCCTGCCTCTCATCTCTCGGTGTCATGCAGATGCAGCCTGCATCTC TCGCTCACATGTC

ACAGCTGGTGGTTGTTTCTCCCCTGTGCGTCCTCTTCGCCTCTCACGTATGTACGTA TGACCCAAAGAGC

TGAGGTATACATACCTGGATGGTTGGATGGATGTACATAACCACCTGAGACGAGACA AAGCTCGGTGCGT

GCCATTTCACATGGCACTAGGTGTGCTGCAGCCTCTCCTTTTCATCCTCTACAATGC AAAAATATGGATG

TGCCCATGCTGCTATGCTAGC AGCCCTACTCCCCCTGTGC TTGGATCGTGCACCGCGTCAGCAGCT T

TTGAAAGGCTGGTGGTGATGATTGCACTCTGAAAATCCCCGTCTTCTGCTGTCAGAT TATAC ATACGCT

GCTGCCGTGCAGCTGCTGCTGCGCCAGCCAGGGGCAGCCA

SEQ ID NO: 172 Sorghum bi color gDNA

TGTAACCATCACTCTTTTTCCCCGAAACCAAAACGAAAAAAAAAAGAAAGTGCTGCTGGC TGCTGCCAAC CACCCGTGGTCCCATGAAGAGAGCATCGCCGGAGTCGGGGACGGTGCGCCGAGAAGGAAC AAAAGAAGAC GGCGGCGGGGCGGAGATGGGGAGCCCCCTGGGCGGGTGGCCGTCGTACAACCCGCACAAC TTCAGCCAGC TCGTCCCTGCCGACCCCTCCGCGCAGCCCTCGGTCGGTCAGCAACTTGCCCTTCCTGGCG ATCTGGCCTC TAGTATCATGCTGTAATGCTAGGCTCCGTACTTCCTGACGAGCTTAGATAAGCTCGAATA TGTTTAATTG ACCGGGTTCATCTGCGCTTGGCCTGTTTCTTTTCTCTGGTTTCAGGTGCCGTCGAGAAAA AAAAATCTCT CT TTTTAATCCCGTAGTATCACT CGGGCAGGAGACAGTAATCGGTGCCGGTA TGTTAGT TTGG CTGAAATTTTGGTATGGATGGCTGGAGAAATGGGGTCTCACTGTTTGATTTTAGTTCAGC TGCCAAAGAC CTGTTCAATTTGAGGGGACTGTCTGGCCAATTTCTGAACATCTGGTCTGGTTTTCTCATG GTCATGTCTA CCCTGGGTAGATTCAGTTGATGTGGTACTGATGGGCTAATGGTAGTTCAGTTCATGGTTG CTAATGCTAC CGGTTGATTTTCTACAACGTCAGAAATTCGTGCTGTCAACTTATATTATGAATTATATAT GTCCATTTCA CCTGGTGCTAATGTTAGTTCTTTTTTCTTTCCATGCGTGTTTGTCATCAGAATGTCACAC CAGCCACTTA TGTTGCGACCCACAGGACAGACCCGCCACCCAATCAAGGTAACCCCTTTCCATGTCCTTA AGCCAATGGT ATTCTGCTGCATGTAATTGATGCCGTACAATTGCTTATTCGCAATAAGCCAACAAGCCCC TTTTTTTTGT TTATTGTAGTGCTTTGTATGTTAATTGCAAAATAGGTTTCATGAGCTGTTTCGTCTGAAC TGACATTCTT CAGGTAGATGACTCTCTTTGCTTCAATGGAGCATGATTAGCCATAAGCTCCTGTGCATGT GTAGAATGTG TCTGCAAGTCACAGATGGTGGTATCAGCCACAGTGAACAGAAGCTCTGAACGCCTTAATC CTTATCCTAC ACAAACGACGCCCTCTGTAGCTTTGCTGTGTTTACCTGAACCCAGGTGCTCTGAACCTCG ATCTTGTTGC TGGTAATCTGAACTCAGAATAGTAGATATGGTAGATAATTAGCAGTCGCTGTCTTAGCCA TATACTCCAA TACAATACAATACATTACCTTCC TGC GGCTAAT TACCAG TGCAAGTACTAACAGTACCAGGCTACC AGCTTTGATTATGCGATTTCATATAATTTTCTTTCTCTGTTGCAAAATCTTATAGCAATT CTAGCGTTAA GCCTTAAAAAAACACAACTGGGAAACATTGCCTGTTGTATTTTGGAAATTTTAGATTCTT AAGGCTAGCT TTCT ATTTTACTGAAAGTCTGAAACACACTGACAACTATCAACAAATTAATATTGATTCATCTA GTCAC AGCAAATGGTAAA TGTT TTGACGGTAATTCAGACTACTGCATAGTTAGTG CACCTCGAATACAGT AGTCCAGCAGAGTTGAGATTTATACCATAGCTGATCATCGCTCTAGATATCTCAACATTT GGCATGCTAA TGGCCTTCTGTGGCTTATACTATTCTATGCCTGAGTTGGTTTGCCTTTGTTCCATCGTGT AGGTTGCTTG GGAGATTTACAC GT T CC TCAAATAT TTC AGAGCATGAGAAAGCGGAAGAAAAGTTTGAG TA ATTGGTGCTTTATGGATCAGGGATGTTGGTGTTCAAAATGAACCCATAGACTAGTTAAAT GCATCCATCA TAATATACCTTAAGAGTGGAGTCTCTAAGACTTCAGTAAAGTTGGAGCCTTCCATTTGAA AATGCAATCC ACAGAGTTCTAGAACTGGGATGACC TGAGAGAAGTTAGG TAAT TACTACTAAATGGTAGCCTAATGG TCACA TGAC AGGAATT GGCTTGAACACTCTGGTTGTCAATTTGTATAACAATATGTCGC CTTTGTT GTGGTCATTCTCTGGTCCTGAACAATTTACCAGGTTAGGCGAATCCACAAGAGGTCCTTA TTGAATTCGT GCCTTTTTGGCACAGCTGATTCCACATCCTGTCGGTGAAAATATAATTATGTGCTGTCTA CCAGCTGCAT AAAAGGTCCCAAAAGGAACAAGCTATGATTGTGCCTTCATCTGGGGGCTAATGACATATT TTTCGGAGAT GTTATTTGTGAACAATCGAACAATCCATAACATTTTAAAGGATACTTAATCCTGAACTAT TGCCAGCACT TCAACCACAGAC TCTGGTGAATTGCAGTGATAACAGGC AACAGCAGAGATATCCCAA TTGTGGCAGA TAAATTACTAACAAATCATGGGCAT C T AAC ACATGCC GACAATTCTCTCCTTTTAG TCCTT T ACTTATCATACTGCTGCATTATTTTATATATATGTCCATAGTTCACACTAATTTAGGCTC AATAACTGCT TCCTACCATATCAGTGTA TTACTT CAATTC TGTGGGGACACTGATATGTTCCCGCTAAAA GTCAC AAACCCCCCAATTCCTTTCTCAACTTTGCTGCATGAAAACCAACCTTGTTATATTTTTAC CTCTTACTGC GGACTGAATCGCACCCTGGAATTGCAGTGATAACAACGGAGGCCAGGAACATCCTGCTGA GGCACTTCTA CCAGAAATCTGAGGAGAAGGTGAGCTGCTACTGCTAGTAAGACTTCACCATCAAGGCTAC ATAAAACCAC ATCACTATAGAATCTAAGCTTGAAATCCTATCCTGAACTGTAGCTGAGGCCAAAGAGAGC TGCTCCGGAC AACCTCGCTCCGGAGAACAACAACAAGCAGCCCAGGGGACCTGTGGGCGACGTCGGGGGC CAGTCAAGCG CAAGAGGCTGAAGCCACACAGCTGGTGCTGGTGCCCGTCCTCCCCTGCCTCTCATCTCTC GGTGTCATGC AGATGCAGCCTGCATCTCTCGCTCACATGTCACAGCTGGTGGTTGTTTCTCCCCTGTGCG TCCTCTTCGC CTCTCACGTATGTACGTATGACCCAAAGAGCTGAGGTATACATACCTGGATGGTTGGATG GATGTACATA ACCACCTGAGACGAGACAAAGCTCGGTGCGTGCCATTTCACATGGCACTAGGTGTGCTGC AGCCTCTCCT TTTCATCCTCTACAATGCAAAAATATGGATGTGCCCATGCTGCTATGCTAGCTAGCCCTA CTCCCCCTGT GCTTTGGATCGTGCACCGCGTCAGCAGCTTTTTGAAAGGCTGGTGGTGATGATTGCACTC TGAAAATCCC CGTCTTCTGCTGTCAGAT ATACTATACGCTGCTGCCGTGCAGCTGC GCTGCGCCAGCCAGGGGCAGCC A

SEQ ID NO: 173 Sorghum bi color

MGSPLGGWPSYNPHNFSQLVPADPSAQPSNVTPATYVATHRTDPPPNQVITTEARNILLR HFYQKSEEKL RPKRAAPDNLAPENNNKQPRGPVGDVGGQSSARG

SEQ ID NO: 174 Setaria italica CDS

ATGGGGAGCCCTCTCGGTGGGTGGCCGTCGTACAATCCGCGCAAC TCAGCCAGCTCGTCCCGGCCGACC

CCTCCTCTCAGCCCTCGAATGTCACACCAGCCACTTACATTGCAACTCACAGGACAG ATCCGCCTCCCAA

TCAAGTGATAACAACAGAGCCCAGGAACATCCTGTTGAGGCACTTCTACCAGAAATC CGAGGAGAAGCTG

AGGCCAAAGAGAGCAGCTCCTGACAATCTCGCTCCAGAGAACAACAACAAACAGCCC AGGGGCCCTGTCG

CCGATGTTGGAAGCCAGTCAAACGCAAGAAGCTGA

SEQ ID NO : 175 Setaria italica cDNA

ATGGCCTGTTCGGTAGTGCTGGCTGCTGCGCTGCTGC GCTACAGTCAGCGT CAACACAGCGAGTGGCT GGCTCGCTGGGCTGCTGCAGCTGCCGCAGCCGGCCGAAAAAAGTGCAGCCGAATATCTGC CAAGGAACAC GCACAGGTCCTTCACGGATCTTGTTTTTCGGTTTTACAGGCAAGTAGGCAACCATCGCCC GTTCTTTGAC CCCGTCGGAGTTCAGATGATCGTGGCCGTGGCCGTTCAGCGATCAGGAGCTGGAAGACGA TGTGAGGGGA GCTTCGCCGGAGTTAGAGACGGCGCGGCGATTCCGGCTCAACAAACCACCAGGGGAACAA GAGGGGCGGC GGCGTGGAGATGGGGAGCCCTCTCGGTGGGTGGCCGTCGTACAATCCGCGCAACTTCAGC CAGCTCGTCC CGGCCGACCCCTCCTCTCAGCCCTCGGTCGAATGTCACACCAGCCACTTACATTGCAACT CACAGGACAG ATCCGCCTCCCAATCAAGTGATAACAACAGAGCCCAGGAACATCCTGTTGAGGCACTTCT ACCAGAAATC CGAGGAGAAGCTGAGGCCAAAGAGAGCAGCTCCTGACAATCTCGCTCCAGAGAACAACAA CAAACAGCCC AGGGGCCCTGTCGCCGATGTTGGAAGCCAGTCAAACGCAAGAAGCTGAATACAGCTGGTG CTTGTCCTCC CCTGCGTCTCTCAATGCCGTGTGCAACCTGCATGCTGCATGCCAGCTGAAGCCCTGGTCC TCTTGATCCA AAGAGCTACGCTCATTACATGCATGAATGTACATAACAACCTCCCCCCTTTCCCTCCAAC ATTGGTTTGT TATTTGTTAGCGACTGGTGGCTGCATTTTAGTGACAGATTTTAGTAAAGAAAAAGGATGG TTCGGCATGA AAAGATAGCCGCT TCTC TGCTTATGCAATACTCCGTACAATTTAGTAAAATATAGACACTAT GTA SEQ ID NO: 176 Setaria italica cDNA

ATGGCCTGTTCGGTAGTGCTGGCTGCTGCGCTGCTGCTGCTACAGTCAGCGTTCAACACA GCGAGTGGCT GGCTCGCTGGGCTGCTGCAGCTGCCGCAGCCGGCCGAAAAAAGTGCAGCCGAATATCTGC CAAGGAACAC GCACAGGTCCTTCACGGATCTTGTTTTTCGGTTTTACAGGCAAGTAGGCAACCATCGCCC GTTCTTTGAC CCCGTCGGAGTTCAGATGATCGTGGCCGTGGCCGT CAGCGATCAGGAGCGTGGGCCTGCTAGTCCAAGT TGGGCCACGACCACGCACTGACGAGCGTATGGCCGGTCTGGGCCAGATAGCGCTATGGGC CGCAACAAGA TTCTTTTTTTCTCCCAAAAAGGGAGGTGGAAAAAAAAAGAAAACGAAAAGTGCTAACCAC CAGTGGAAGA CGATGTGAGGGGAGCTTCGCCGGAGTTAGAGACGGCGCGGCGATTCCGGCTCAACAAACC ACCAGGGGAA CAAGAGGGGCGGCGGCGTGGAGATGGGGAGCCCTCTCGGTGGGTGGCCGTCGTACAATCC GCGCAACTTC AGCCAGCTCGTCCCGGCCGACCCCTCCTCTCAGCCCTCGGTCGGTCAGCACTTCCCCCTC TTTGGCGATC TCGTCTCCAATACACCGCACTGACTCTCTCCATAGTTCCTGATGATCTTGCATAAGCTTG AATATTTAGT TAGGAGGTATTGGTTGGTGCTTGGTCAGTGACATCTGTGGACTCTTGTATCCACAATAAA AAACTTCCTT TTGTACTGCTTTCAGGCAGGGAGCATGAATCAATGGTCGTATGGTTCGATTCTGCTGAAA CCACAGTATG GATGGTTTGAGAAAGAGGGTATCGATGTTTGTTTTTAGTTCATCTGCCAGAGACCCGGCT CAGTTTCAGT GAATTTTCTGCATACTGTCCAAACAGTTAGGTCTTGGTTTTGTCATGGCTGCCCTGATAA GATTCAGTTG ATGTTGTACTTATCGATTGATGGTGGTTCTTTTTGTGTTTCTAATCGTACTCCATCACCA GCAGCTCATA TGGCACATATATATATCCAT TAGAGTGGCCCTAATGCTAT AT TAG TT GTATTC GACTGAGCT TGATGCTGACAAGTGAGAACTTATACTATGAAAGATATATTCGGTTGACCTCATGCTGAC TGTTTTTTCC CCTTTCCATGTGTATCTCATCAGAATGTCACACCAGCCACTTACATTGCAACTCACAGGA CAGATCCGCC TCCCAATCAAGGTAACACCTTTCCATGTTCTCGAACCAACGTTCGTGTGCTGCTCCCTTA AATGTATCCT ATTTTATTTGCTCATTGTCCACTTGCATGCAATTGAGGCCATGTAATTACTGTTCATAAC TTCATATTAT GCCGACAATTTCTT TCTACGTATTGTCGTACTATGTAAGC CCGTGTTGCAAAATAGGTCTCC GAACT GTTTGGTCTGAACTGAAAGTTCTGTAGGTAGATGGCTCTCTTATCTTTCAGGAACGGAGC ATGTTTCTCC AAACATTTTGCGCCTCAGGGTAGAGTGCTGCAAGTCGCAAAGAGTGATACCAGCCATAAT GACTGAACTA CTGAACACCTTATCCTACACAAATGATGACCTCTGCTACGTTTCCCCAACCTATAGTCCA AAAGTTCCTC GCTGCCACTAGTATCAGCAGC GAATGCTATGATTG TTT CAATAGTAGC GTCTTAACCATGGCGCA GTATAGCACTACTTGCCTCACTTGCCAATTTACCAGCTGCAACTGTCAGTAGTACCAGGC TTTATGTGAT TTATTAAATGCTGTTTGTTTCTTGCAAAAAGCCCAGGTACTGCCCCTTCTCACCAAAGTT TACATTCAAA CTTAATTAGGAAACCTTTTTTTGTTACATTAGGAAATTCTGAGAACTGATTGATACTCGC TTGGTACAGT CCCCGTTCGAGGAGGCCACCCACCTAGGCTTGAAACTGGGTGCTTGCAAAATGTTTGTGT GTGTACCTCT GCTTTCATCGAGTTTCCCGGTCAGCCACAGTTTTGCACTCCCGTTCTTGAAACAAAGCAT GGGGGATTTC ATCTTCCCATGGTCAAGTTTTTTTTAAGTAGGAAATTCCAATTTATGAAGGTATGTTTCT TAGTTGTACT AAAACACATTGGCTAACAGCATATTAGTATTTCTCTTGGGTTTGATCTCCATATGAGTGG CTGGGTTTTT ATGCTGGC CGCCAAGCCTATCACAACCCCCCTCCTCC TTATCCGGGC ATGT GAAACAACACAGGCT GACAGGCAGAGTTCTTGGTATGTCCATGTGTAGCTTATCTATATTGCTGCCAAGTTGGTT TGCCTTCTGT TCAGACATCTAGATCCCTCAGAACCATTGCCCTGATCTATATGGTAAGTGCCCGAAAGAA TATTGATATT GGAGCATGAGGAAGATGAATAAAGGTTGGGTAAGTAGCGTTCAAAGGCGAGGGTGGAGCA AGGGTGTTGG TGT TAAGATGGAACAACATGCCAGTTAAACGCCATTGGAGCCGTCCAGGTGAAATGCCATCCA CATAGA GTGCTAGAACTGCGATATCCT GAGAGTAGTAGTAAACTAATGGTCAAACTGATTAGGTTGTTGGCTTAA ACACTCTGGTTTGTCAATTTCTATTACATCTCACCCTAAACATTTACCAGGCGACACAAA ACCAGAAGAA GTCCTTATTGCATCCAGGCCTTTTGGCTCAGCCATGTCCTCTGCATGTTGGTGAAAACTT GATGGTGCAC TGCTGACCAAGTGTACCAAAAAAAAAGATCAAAGATAGAAACAAACTAT CT TTTAAGGAGCAAAAGGT ACTGATAGATAAAAGCATACTAGGTGCCCATTCGGCCATTCCTGGGGCTGGTGAGGCGAT GAAATATTAT TGGAGAAGTTTTGTGTGAACAATTTAAATCATTTGGAGGGA AC TAACTCTGAACTATTTTA TAAGTA CCATGCCTAGATGTTACAGTCATGGAGTTGATTCCTTAAAAGTTGTTGGCAGATTCTATT TCTCTGTCTA TTTCATTGTGGAAGTTGTATGTGGCCAAGTTAATTTCCAAGTTTTGGCAGATACACTCAA TAAAAAAATC GTTGGTGTTTCTTTAACCAATATATCTGCCAGTTATGTGTGTTTTCTGTTTATGTGACTG CATTCGTTTA TAGATATGCTACACTTCATATTTGATCAGGCTGACCAAGTGCTTTCTATTATTTCATTTT ATTGAATTTT AATTCCTCTGAGGCACTCATGAACTTCCTCTAAAATTGTCATAGATTGCCCAATTCCTTT CTCTTCTCCA CTGCACCAAAACCATCTACCTGGTGTTGTATTTTTCTGCTTCCTGAATTCAGTAATTGAT GAATCGTGCC CTGGGATTGCAGTGATAACAACAGAGCCCAGGAACATCCTGTTGAGGCACTTCTACCAGA AATCCGAGGA GAAGGTAAGCTGTTCCATCAAGGCTGCATATACGCCACATCACAATGGAATCTAATCATC TATGCTTAAA TCCTGTCCTGGACTCTAGCTGAGGCCAAAGAGAGCAGCTCCTGACAATCTCGCTCCAGAG AACAACAACA AACAGCCCAGGGGCCCTGTCGCCGATGTTGGAAGCCAGTCAAACGCAAGAAGCTGAATAC AGCTGGTGCT TGTCCTCCCCTGCGTCTCTCAATGCCGTGTGCAACCTGCATGCTGCATGCCAGCTGAAGC CCTGGTCCTC TTGATCCAAAGAGCTACGC CAT ACATGCATGAATGTACATAACAACCTCCCCCC TCCC CCAACAT TGGTTTGTTATTTGTTAGCGACTGGTGGCTGCATTTTAGTGACAGATTTTAGTAAAGAAA AAGGATGGTT CGGCATGAAAAGATAGCCGCTTTTCTCTTGCTTATGCAATACTCCGTACAATTTAGTAAA ATATAGACAC TATTTGTA

SEQ ID NO: 177 Setaria italica MGSPLGGWPSYNPRNFSQLVPADPSSQPSNVTPATYIATHRTDPPPNQVITTEPRNILLR HFYQKSEEKL

RPKRAAPDNLAPENNNKQPRGPVADVGSQS ARS

SEQ ID NO: 178 Panicum virgatum CDS

ATGGGGAGCCCACTCGGCGGGTGGCCGTCGTACAACCCGCACAACTTCAGCCAGCTCGTC CCGGCCGACC

CCTCCGCTCAGCCCTCGAATGTCACACCAGCCACTTACATTGCAGCTCACAGGACAG ATCCACCTCCCAA

TCAAGTGATAACAACAGAGCCCAGGAACATCCTGCTGAGGCACTTCTATCAGAAATC TGAGGAGAAGCTG

AGGCCAAAGAGAGCAGCTCCAGACAATCTCGCTCCGGAGAACAACAACAAACAGCCC AGGGGTCCCGTCG

CCGATGTTGGAAGCCAGTCAAACGC AGAAGCTGA

SEQ ID NO: 179 Panicum virgatum cDNA

AAGGAAAGCGCTAACCACCAGCGGCAGACGAAGTGAGGGGAGCATCGCCGGACGCCGGAG TCAGAGACGG

CGCGGCGATTCCGGCTCAACGAACCACCAGGGGAACAAGACGGGCGGTGGCGGCGCG GAGATGGGGAGCC

CACTCGGCGGGTGGCCGTCGTACAACCCGCACAACTTCAGCCAGCTCGTCCCGGCCG ACCCCTCCGCTCA

GCCCTCGAATGTCACACCAGCCACTTACATTGCAGCTCACAGGACAGATCCACCTCC CAATCAAGTGATA

ACAACAGAGCCCAGGAACATCCTGCTGAGGCACTTCTATCAGAAATCTGAGGAGAAG CTGAGGCCAAAGA

GAGCAGCTCCAGACAATCTCGCTCCGGAGAACAACAACAAACAGCCCAGGGGTCCAT GGAATACAAAACC

GCTCGATAATCGCGATTATCGGTGAAATTTACCGTTACCGATGTTGACTGATATCGG TTTTCAATTGATT

TT CGATGGAT CGATCCAAAT TCAAAAATTCAAAGAAATT ATAACTAGTGTGGAAAAAA TCTATA

AAAAACTAGAGCCTCTCTATAGTCTAGAATGATGTCACATATTAAAAACAACCACCG TTTG TAGACAA

AAAAATGTTTCCAATACTAAAGCCTGATAATTGATGCAAATCCATCGATAATCAATG CAAATCAGTTGAT

ATTCAACAATTTTGGTTGATTTTCTATTTCCTTTCACCAACTTGACCAAATATGCAT GGGGTATTTACTA

TATTGTTGTATATTATGCTACAAATGGATGGTTATACTGATAATTTCCAATGTAGAT TAGTGTTAAATAT

TAGTGGTGGGAAGAAAGACTTCAATGTTGACTTGTTGTTAAATCAGTTAGGATACAA TAGGCTTCAATGT

TGACTATAATATGTATGC TATACTAAAAAAAACTATGTCTAACTGGT

SEQ ID NO: 180 Panicum virgaturn gDNA

AAGGAAAGCGCTAACCACCAGCGGCAGACGAAGTGAGGGGAGCATCGCCGGACGCCGGAG TCAGAGACGG CGCGGCGATTCCGGCTCAACGAACCACCAGGGGAACAAGACGGGCGGTGGCGGCGCGGAG ATGGGGAGCC CACTCGGCGGGTGGCCGTCGTACAACCCGCACAACTTCAGCCAGCTCGTCCCGGCCGACC CCTCCGCTCA GCCCTCGGTCGGTCAGCACTTCCCCTCTTTGGCGATCTCGTCTCTAATATACAGTAATTG ACTGTCTCCA TACTTCCTGATGATGC GCATAAGC TGAATAGGTTAGCTAGGACGTATTAGTGGGTGCTTGGCCTGTGC TGTGACAACTGCGGCCTCTTGTTATCTTGTATCTGCAATAAAAACTTCTTTAGTACTGTA CTGCCTTTAT GCAGCCAGGAAGCAGGATGATCGTATTGTTCGATTCTGCTGAAGTCGCGGTATGGATGGC TGGAAAAGGA GGGTATAAATGTTTGTTTTTAGCTCATCAGCCAGATACTCGGCTCAATTTTAGTGAATTT TCTGCATGAT GTCCAAAAATTATTAGGTCTTGGTTTCTCATGGCTGCCCTGACAAGATTCAGTTGATGTA GTGTTGTCCT AATCGATTAATGCTAGTTCTTTTAGTGTTTCTGATCACACTGTACCGCCAGCGGCTCACA TGGCAAAGCA CATATATATCCATTTAGAGTGACTCTAATGTTATTAGGTAGTTTTTATGTTCTTAACAGA ACTTCATGCT GACAAGTGATAATTTAGGCTATGAAAGATATACTCTGTTGACCTCATGCTGATGCTGATG GTATGTTTCC TTTCCTTGTGTATCCCATCAGAATGTCACACCAGCCACTTACATTGCAGCTCACAGGACA GATCCACCTC CCAATCAAGGTAACTCCTTCCCATGTTCTTGAAAAAATGTTCTGTGTGCTGCTACCTGCT GTAAATGTAT CTTATTTTATTTTCTCACTGTGCATTTTCCCGCAATTGAGATCATGCAATTACTTGTTCG CAATAAGCCG AGAATTTCTTTTCTGTCTATTTTAGTACTATGTAAGCTCAATATTGCAAAGTAGATCTTG TGAACCCGTT TGGCAAAAGTTCTTAGCATGTTTCTCCATAAGATTCTTTGCTCATGGTATATTGTGTCTG CAAGTCACAG AGGTGATATATTAGCCATGATGACTGAACTACTGAACACCTTATCCTACACAAATGATGG TC CCCCTCT GCTATGTCTCCCCAATCTATAGACCATAATTTTCCTTGC GCCACTGGTAATCAGCAGCTGAAAGCTATG ATTGAT GTTGGCTGTC AACCATGTGCAGTATAATAC AATTGTCTTACTGCCCATTTACCTGCTGTA AGTGTCAGTAGTACCAGGTACTGCCCCTTTTTCAATATCAAAGTTTTACCAGGTAATGCA TGCAGTGCAA TTTTTCT GATCTACATGGACAACAATTCAAT TGCTAAATACTGCACATATAGTACTGA CCAAAAT CTGAGGATGCTACTGATCTCTCACATTATAGACCTATCAGCTTGACAAGTAGTATTCCAA AATTATTCTC AAAGCTGC TGCACTCAGATTGGCCAAGAGTTTGGACACAC AATCTCAAGGAATCAAAGTGCT TATT CGAAGGAGTATCCATGATAACTTCTTATACACACAAAATCTCATTCGAGCTCTACATAAA GATGGCAGGC CCTCCCTTTTTATTAAGCTGGACATTGCAAAGGCTTTTGACACTGTGCGATGGAATTATC TGATGGAGGT GTTAGAGAAACTTGGGTTTGGTCACAAATGGAGGGGCTGGATTTCTTTACTGCTATCAAC TGCCACTTCC TCGGTCTTAGTCAATGGAGCACAAACTCCAAAATTTAAGCACATGATCAGGTTAAGGCAG GGAGACCCTT TGTCTCCAATGCTTTTCATCCTGGCACTTGAACCTTTGCAACACTTGCTGGCTTTAGAAG AAGCTTCGGG CAACCTATCACCAATACACACAAATATGGCAACGTTAAGAATAAGTTTATTTGCCGATGA TGCTGCAGTT TTTCTAAACCCAGTGAAAGAAGAGATTGATGTGATCAAAGAGGTATTTCAGGCATTTGGA AATGCTTCTG GACTGAAGGTGAACTTAAGTAAAAGTGCTATCTATCCTATTAGATGTGAGGGCATTGATC TTGAAGAAGT ACTGCAGAATTTCCCATGCCAAATAAAAGCCTTCCCCTGCAAGTACCTGGGACTACCAGT GAGTACAAGG TGTCTAAGAAGAATTGAGGTGCAACC TTAT TGACAAAA GCAGCTAGGCTGCCAGCATGGAAGGGGA AGCTTTTGAATAGAGCAGGCTGGTTGACTTTGGTAAAGTCTGTACTCGCCGCAGTGCCAA TTTATTTCCT CACGGTGTTTCCTCTTAAGAAATGGGCCTTAAAGAAAATTGATAGACTGAGAAGAGCCTT TCTTTGGAGA GGAACTGAGGAGGCCCGTGGTGATTACTGCTTGGTCAATTGGAAGAAGGTAATGCTACCA AAGGAGATGG GAGGGCTCGAGTATTGGATCTAAGTTGTTTTGGGAGAGCTCTAAGATTGCGTTGGTTGTG GTACGCTTGG

ACAGAGCCTGACAGACCTTGGGTGGGATCGGCACCACCATGTGATGAGGTGGATAAA CAACTTTTCAGAG

CAAGCACAATTGTTCAGTTGGGGGATGGTAACAAAGCTTCTTTCTGGAAATGTAGCT GGTTAAATGGAAG

GGCCCCTAGGGACATTGCACCTGGGCTGTTTAAGTTGGCTTGGAGAAAGAATAGAAC TGTAAGAGAAGAC

ATCATAAATCAGCAATGGACAAGGGGGCTCTGTAGAATGGATTCAGTTGAGTTAATG TCACAGTTTGTGG

TTCTTTGGGATGCAGTACAGCAGGTTCAGTTGACGGATAGGCCGGATGAGATAGTCT GGAGATGGACAGC

TAATGGGGCTTATACTTCAAAGTCTGCTTATCTTGCTCAACTCAAGGGAACTTTTTG TACATTTGATGCC

CAATCAATCTGGCATGCACATGCTGAAGGGAAACACCGCTTCTTTGCTTGGCTTCTA GTGCAAAGCAAAA

TATTAACGGCCGACAAGC GGTCGC AGGAATTGGCTGTGTGACACTAATTGTGCT TGTGTGACCAAGT

TCATGAAACAGCTGCACATCTGTTTGCATTGCTCTTATGCTAAGCAGGTCTGGCTCG CGATGAGCAACTG

GACATCAGGCGCCATACACATACTGGCGGTTCAAGACGAGGGGGTCGAGGATTGGTG GAACAGAAGCTTA

GCGTTGCTACCGGTGGCACAGAAACGCTCAGTTGCGGCCATCTTGATGTACACTTGC TGGAATTTGTGGA

AAGAAAGGAACAGGAGAGTGTTTGACCAAAAATGTTTGCAGCCACATGAAGTTGTCC AGCTGATCAAGGA

AGAAGTCAACCTGAGAAGGGTGGCTTGTGGCACACCCATGGTGTTCTAGTTGGTTTT CATGTTTAGAGGA

TTCTTGTTTAGAGGAGGGTTAATGTTTTTATGTAAATTAAACTCTTATTGAACTCGC TTGCTTCCTTCTT

AAATGCATCGGCAGCGCTCCTGCCAAACTTTCAAAAAAAAAAGTTTTACCTTAAAAA ACTAATTAGGAAA

CCTTCTCTGTTACATTAGGGAATTCCAAAAAGCAATCATACTTGCTTTCTACAGTCT CCTTCGAGGAGGT

CACCCACCTAGCCTCAAACCTGGGTGCTTGCAAAATGTGTGTACCTCTCTGAGAACT GAAAGAACAAGTT

TCCTGGTCAGCCACGGCCGGGTCCTCCCCTTCTTGAAACAAAGCCAGGGGGAATTCA TCTTGCCATGGTC

AAGTTCTTTCTAATAACTTTGCATTAGGAAATTCCAATTTATGAAGGCATGCTTCAT AGTTTTACTGAAA

CATATTGGCTAACAGCACATTAGTATTTCTCTTGGGTAGCTCGGTTTCATCTCCATA TGAAACCACAAGA

AATCCTTGTTGCATTCAGGCCTTTTGGCCCAGTCATGTCCTCCGTGTGTTGGTGAAA ACTTGATAGTGCG

CTGCTGACCAAGTGTACCAAAAGACAAACGAACGAAAGAAAGAAAGAAACAAGCTAT TCTTGTTAAGGAG

CGAGAGGAGGTGGTAGAAGAAAAGCATGTGCCTTATTCTGGGGCTGATGAGGCAATG AGATACTATTGGA

TTAGTTTT ATGTGAACAATTCAAATCATTTGGAGGCATACTTGAATCTGAACTATACCTCAGAC TCAG

GCACAAACTTCTGGTGGTGAATATTTATTAAATACCATGCCTAGATGTTACAGGCAT GGAGTTGAATCCT

TAAAAGCTGTTGACAGATTCTATTTCTGCTGTCTACTTTCCTTAAGGAAGTTGTATG CGGACATGTTTAT

TTCCAAGTTTTAGCAGATACATTCAATGAATAATTCGTTGGTGTTTTGTTAACCAAT ATATCTTCTTTTC

ATTATGTGAGTGCATTCGTCTATAGATATGC ACACTCATGTTAGATCAGACTCAAGAAGCGC TATAT

AAAAGTCATCCATGTTGTATTTTTACTGCTTCCTTAATTCATTGATTGACAAATCGT GCCATTGGAATTG

CAGTGATAACAACAGAGCCCAGGAACATCCTGCTGAGGCACTTCTATCAGAAATCTG AGGAGAAGGTAAG

CTGTTCCATCAAGGCTGTACAGATCACATGACTATGGAATCTAACCATCTATACCTT AATCCTGTCCTGA

ACTTTAGCTGAGGCCAAAGAGAGCAGCTCCAGACAATCTCGCTCCGGAGAACAACAA CAAACAGCCCAGG

GGTCCATGGAATACAAAACCGCTCGATAATCGCGATTATCGGTGAAATTTACCGTTA CCGATGTTGACTG

ATATCGGTTTTCAATTGATTTTTCGATGGATTTCGATCCAAATTTCAAAAATTCAAA GAAATTTATAACT

AGTGTGGAAAAAATTCTATAAAAAACTAGAGCCTCTCTATAGTCTAGAATGATGTCA CATATTAAAAACA

ACCACCGTTTGTTTAGACAAAAAAATGTTTCCAATACTAAAGCCTGATAAT GATGCAAATCCATCGATA

ATCAATGCAAATCAGTTGATATTCAACAATTTTGGTTGATTTTCTATTTCCTTTCAC CAACTTGACCAAA

TATGCATGGGGTATTTACTATATTGTTGTATATTATGCTACAAATGGATGGTTATAC TGATAATTTCCAA

TGTAGATTAGTGTTAAATATTAGTGGTGGGAAGAAAGACTTCAATGTTGACTTGTTG TTAAATCAGTTAG

GATACAATAGGC TCAATGTTGACTATAATATGTATGCTTATACTAAAAAAAACTATGTCTAACTGGT

SEQ ID NO: 181 Panicum virgatum

MGSPLGGWPSYNPHNFSQLVPADPSAQPSNVTPATYIAAHRTDPPPNQVITTEPRNILLR HFYQKSEEKL

RPKRAAPDNLAPENNNKQPRGPVADVGSQSNARS

SEQ ID NO: 182 Phyllostachys edulis CDS

ATGGGGAGCCCCCTGGGTGACTGGCCGTCCTACAACCCGCACAACTTCAGCCAGCTCGTC CCGGCCGACC

CCTCCGCCCAGCCCTCGAATGTCACACCAGCCACGTACATTGCGACGCATAGGACAG ATCCACCTCCCAA

TCAAGTGATAACAACTGACTCTAGGAACATCCTGTTGAGGCATTTTTATCAAAAATC CGAGGAGAAGTTG

AGGCCAAAGAGAGCCGCACCGGACAATCTTACCCTGCAGAACAATTGCAAACAGCCA AGGGGCCCTGTTG

CCGATGGTGGAAGCCAGTCAAGTAGTAGAAGCTAA

SEQ ID NO: 183 Phyllostachys edulis cDNA

GAAGAGGAAGAAGAAGAAGAAGAAGAAGGAAGCATCGGCGGTGGCGTCGCGGCGATGGGG AGCCCCCTGG GTGACTGGCCGTCCTACAACCCGCACAACTTCAGCCAGCTCGTCCCGGCCGACCCCTCCG CCCAGCCCTC GAATGTCACACCAGCCACGTACATTGCGACGCATAGGACAGATCCACCTCCCAATCAAGT GATAACAACT GACTCTAGGAACATCCTGTTGAGGCATTTTTATCAAAAATCCGAGGAGAAGTTGAGGCCA AAGAGAGCCG CACCGGACAATCTTACCCTGCAGAACAATTGCAAACAGCCAAGGGGCCCTGTTGCCGATG GTGGAAGCCA GTCAAGTAGTAGAAGCTAAATCACCGCCAGTGTTCTCCTCTCCTGCATCTCTTACGGTCG TTGCGGCTGC TGCTGATGCATGTCATGCTACCTGTGTGGCTGTGTGCTTGTTCAAGCATGCGAAGCCCTC TCATTTCTCA TGTATTATCAAAAGAGCTTGGATGCATGTACATACCCTTCAGCGAGCCCCTCAGTGCGGT ACCTTTCACA TGGCACTACTGCAGTCTC TC GAATATAATGTGCCCACACTAGCCAAC TGTGCTT GATTGAAACAA AACCATGGCTCCATAATTGCGTTGCTTC SEQ ID NO: 184 Phyllostachys edulis

MGSPLGDWPSYNPHNFSQLVPADPSAQPSNVTPATYIATHRTDPPPNQVITTDSR ILLRHFYQKSEEKL RPKRAAPDNLTLQNNCKQPRGPVADGGSQSSSRS

SEQ ID NO: 185 Picea glauca CDS

ATGGGGTCATTGCTTGGAGATTGGCCCTCCTATAATCCGCACAATTTCAGTCAGTTGAGG CCGTCGGATC CCTCGCATCCCTCGCAA GACACCGGTCAC TACTATCCTAC CATAATAGAACAGCACCCCCAGCACA CCAAGTAATTTCAACTGAGGCTACAAATATCCTTTTAAGGCAGTTTTATCAGCGAGCAGA AGAGAAGTTG AAGGCAAAGAGGCCGGCCTCTGATGCTCTTGTACAAGAACACATGAACAAGCACCCCAAG AGCTGA

SEQ ID NO: 186 Picea glauca cDNA

AAGACACATGGATCGGTTCTGCACATGCAGCCGCGAGGATCTGCGTCCAGGCAGTGGCTG GAGACGGCCC

CTCCACCTG TATTCGCGTCAAGAAACGGACTCTCCCTGCGCAGAAACTGGAGACCATAGCAGAAGAATC

CTGCTGTTTCGAAGACCCTGAAAGCATCGAGCCTGATTCCCCGTCACAGACACGGGC GTCAGCTTTGAGA

TTTGGGCAGAGCGGCTACGAAATCATCGAGCCCGATTCCCCGTCACAGACACGGGCG TCAGCGTTGAGAT

TTGGGCAGAGCGGTTATGAAAGCTTCGAGCCCGATTTCCCGTCACAGATACGGGCGT CGGCGTTGAGATC

TGGGTAATGACGGGTTCTGTTTTTCTGCTGTATTGGTTGAGTGGGTTGCCGTCAAGT GACGATTCTAGAC

TGACGGGGGGTTAAGCGTGTTTCGGGCTCAAATGGGTTTTTTTATTTTATGTAATTT GTCAGAAATTTTC

TCCATCGGCGATCGTATGGATCAAGATGGCAGTTATCTCCTCGTGTACAGTGGAATT TTCTGTTGTCAAT

CTCATGTACATAATTTGGAATTTTCTGTTGTCAATCTCATGTACATAATTCGTGGAT ATAGTGGAATCGG

AATTTTCTGTACGTC

SEQ ID NO: 187 Picea glauca

MGSLLGDWPSYNPHNFSQLRPSDPSHPSQLTPVTYYPTHNRTAPPAHQVISTEATNILLR QFYQRAEEKL KAKRPASDALVQEH NKHPKS

SEQ ID NO: 188 Selaginella moellendorffii CDS

ATGGGTTCCTTGCTGGGCGATCTTCCTTCGTACAACCCGCACAATTTCAGCCAGTTGAGA CCATCGGATC CTTCTCATCGCTCCCAACTCACACCGCTCACTTATCACGCTACTCACGACCGGACGATGC CTCCGGCGGA TCAAGTCATC CCACTGAAGC ACCAACAT TTGCTGAGGCAC TCTATCAAAAAGCCGATCACAAGC C AAGTTGAAGCGCTCGGCCACCGATTCGCCTCTCGGGGATCACAAGCGTCCCAAGAGCACA ACTTGCGCTC CAGAGAAGAGATGA

SEQ ID NO: 189 Selaginella moellendorffii cDNA

GGCTCTTTTCCATGTCATAGGAGGAGGAGAGAAGGGACATTCTTTTAGCTGCGGGGTTGC GATCGATCGA GCGAGAGGGAATCGGTGTGCGCCTTAAAATCCTGGTCGC CTATCGGATAGAAGCGAGCGATCGTGTCGC TTGCGCTCGAAGGGTAGGGTTTTTGGTTCTCCCAGAGTGTAGGTAGGGCTTTGCAATGCC GCTGCGCCTC CTCCTCTAGAAGCGCGCAGATCTATCGTCTTCGTCGAGTAGCAACGCAAAGCGAAAAAAG AGGTTTTCTT TTCGCGAGGATCACAATGGGTTCCTTGCTGGGCGATCTTCCTTCGTACAACCCGCACAAT TTCAGCCAGT TGAGACCATCGGATCCTTCTCATCGCTCCCAACTCACACCGCTCACTTATCACGCTACTC ACGACCGGAC GATGCCTCCGGCGGATCAAGTCATCTCCACTGAAGCTACCAACATTTTGCTGAGGCACTT CTATCAAAAA GCCGATCACAAGCTCAAGTTGAAGCGCTCGGCCACCGATTCGCCTCTCGGGGATCACAAG CGTCCCAAGA GCACAACTTGCGCTCCAGAGAAGAGATGATCGCGAGTTCTCCCTGTACTTAACAAGCCCG CGATGGAAAA AAAAACAGAGGT GGC ACACAGGTTTGATGAGCAGAATCCATTT CTCGATCTCTAAGCTTGTGAATAT CTAGATCGACAATGGTAACTTTCTTTTAGAAA

SEQ ID NO: 190 Selaginella moellendorffii gDNA

GGCTCTTTTCCATGTCATAGGAGGAGGAGAGAAGGGACATTCTTTTAGCTGCGGGGTTGC GATCGATCGA

GCGAGAGGGAATCGGTGTGCGCCTTAAAATCCTGGTCGCTCTATCGGATAGAAGCGA GCGATCGTGTCGC

TTGCGCTCGAAGGGTAGGGTTTTTGGTTCTCCCAGAGTGTAGGTAGGGCTTTGCAAT GCCGCTGCGCCTC

CTCCTCTAGAAGCGCGCAGATCTATCGTCTTCGTCGAGGTATGTGGAGTAATCTCTC CTTGTTCTTCCCC

TCTTCTCATTAGCTCTTTTCATTCATCAGTAGCAACGCAAAGCGAAAAAAGAGGTTT TCTTTTCGCGAGG

ATCACAATGGGTTCCTTGCTGGGCGATCTTCCTTCGTACAACCCGCACAATTTCAGC CAGTTGAGACCAT

CGGATCCTTCTCATCGCTCCGTAAGAGATCGACGAGCATTTTCTCTTCGGTTTTTCT TCTCTTCGTGTTT

TCTTCGTTGTTCTTGCTTGACTGACCACCATTTCTTTTTTTTTTTTCTTTTTTTTTT TGCAGCAACTCAC

ACCGCTCACTTATCACGCTACTCACGACCGGACGATGCCTCCGGCGGATCAAGGTAA CCATCACCATAGC

TTCGCGAATTTGAGCTAACTTTGCTTTCTTTGCAGTCATCTCCACTGAAGCTACCAA CATTTTGCTGAGG

CACTTCTATCAAAAAGCCGATCACAAGGTAAGTTCTTCCCGATCAATGCTATGATTC ATTCATCACTCAC

TCGAGTGTATGCAAGCAGCTCAAGTTGAAGCGCTCGGCCACCGATTCGCCTCTCGGG GATCACAAGCGTC

CCAAGAGCACAACTTGCGCTCCAGAGAAGAGATGATCGCGAGTTCTCCCTGTACTTA ACAAGCCCGCGAT

GGAAAAAAAAACAGAGGTTGGCTACACAGGTTTGATGAGCAGAATCCATTTTCTCGA TCTCTAAGCTTGT

GAATA CTAGATCGACAATGGTAACTTTCTT AGAAA

SEQ ID NO: 191 Selaginella moellendorffii

MGSLLGDLPSYNPHNFSQLRPSDPSHRSQLTPLTYHATHDRTMPPADQVISTEATNILLR HFYQKADHKL

KLKRSATDSPLGDHKRPKSTTCAPEKR

SEQ ID No: 192 DDA1 consensus sequence MGSSS [LM] LGDWPSFDPHNFSQLRPSDPSSNPSKMTPATYHPTHSRTLPPPDQVITTEAKNILLRHFY Q RAEEKLRPKRAASENLLAPEHGCKQPRGPVAS [ ST ] SDTQSSASGRS