Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
SWITCHED RELUCTANCE MACHINE
Document Type and Number:
WIPO Patent Application WO/2012/030460
Kind Code:
A2
Abstract:
A reluctance machine includes a stator and a rotor. The stator and rotor have a same number of poles. The rotor is configured to rotate about an axis of rotation. Each stator pole is formed of a primary stator pole and an auxiliary stator pole. The auxiliary stator pole is axially aligned with the primary stator pole in the direction of the axis of rotation. Each rotor pole has a length extending in the direction of the axis of rotation sufficient to at least partially cover the primary stator pole and axially aligned auxiliary stator pole. The primary stator poles are actuated with an alternating magnetic field orientation, and the auxiliary stator poles are also actuated with an alternating magnetic field orientation. The field orientations for the primary and auxiliary stator poles are, however, opposite each other such that a primary stator pole its axially aligned auxiliary stator pole have opposite magnetic field orientations.

More Like This:
JP4604308Electric motor
JP2003189567SYNCHRONOUS RELUCTANCE MOTOR
JP2009207229MOTOR
Inventors:
DIAL DANIEL CHRISTOPHER (US)
Application Number:
PCT/US2011/046275
Publication Date:
March 08, 2012
Filing Date:
August 02, 2011
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
EVERETTE ENERGY LLC (US)
DIAL DANIEL CHRISTOPHER (US)
International Classes:
H02K19/10
Foreign References:
US20080278010A12008-11-13
KR20060032814A2006-04-18
JP2000062471A2000-02-29
US7291945B22007-11-06
US6075302A2000-06-13
Attorney, Agent or Firm:
SZUWALSKI, Andre, M. (1601 Elm Street Suite 300, Dallas TX, US)
Download PDF:
Claims:
WHAT IS CLAIMED IS: 1. Apparatus, comprising a reluctance machine, the reluctance machine comprising: a stator having a plurality of stator poles;

a rotor having a plurality of rotor poles and configured to rotate about an axis of rotation;

wherein each of the stator poles comprises:

a primary stator pole; and

an auxiliary stator pole;

wherein each rotor pole has a length extending in the direction of the axis of rotation sufficient to at least partially cover both the primary stator pole and the auxiliary stator pole. 2. The apparatus of claim 1 wherein the auxiliary stator pole is axially aligned with the primary stator pole in the direction of the axis of rotation. 3. The apparatus of claim 2 wherein axial alignment comprises the auxiliary stator pole and primary stator pole being oriented at a same angular position with respect to each other.

4. The apparatus of claim 2 wherein each rotor pole supports an axial magnetic flux path extending between the primary stator pole and the auxiliary stator pole.

5. The apparatus of claim 1 wherein the rotor rotates about the axis of rotation inside of the stator.

6. The apparatus of claim 1 wherein each of the primary stator poles has a primary stator winding and each auxiliary stator pole has an auxiliary stator winding; and further comprising a circuit configured to actuate the primary stator pole and auxiliary stator pole in a stator energizing phase comprising a primary energizing phase in which a first current is switched to flow from a power supply node through the primary stator winding and an auxiliary energizing phase in which a second current generated by the primary stator winding is switched to flow from the primary stator winding to the auxiliary stator winding. 7. The apparatus of claim 6 wherein each rotor pole supports an axial magnetic flux path extending between the primary stator pole and the auxiliary stator pole during the stator energizing phase. 8. The vehicle of claim 6 wherein the primary energizing phase terminates and the auxiliary energizing phase starts at a point of rotor rotation prior to where a minimized reluctance between the rotor pole and stator pole is reached. 9. The apparatus of claim 6 wherein the second current generated by the primary stator winding comprises an inductive pulse produced from magnetic energy stored in the primary stator winding during the primary energizing phase.

10. The apparatus of claim 6 wherein the primary stator windings are electrically connected such that circumferentially adjacent primary stator poles have opposite winding directions; and wherein the auxiliary stator windings are electrically connected such that circumferentially adjacent auxiliary stator poles have opposite winding directions. 11. The apparatus of claim 6 wherein the circuit configured to actuate comprises a switching transistor having a control terminal and a first conduction terminal, the primary stator winding being coupled between the power supply node and the first conduction terminal and the auxiliary stator winding being coupled between the power supply node and the first conduction terminal, and further comprising a diode coupled in series with the auxiliary stator winding and oriented to block current flow from the power supply node through the auxiliary stator winding. 12. The apparatus of claim 1 wherein each of the primary stator poles has a primary stator winding coupled between a first power supply node and an intermediate node and each auxiliary stator pole has an auxiliary stator winding also coupled between the first power supply node and the intermediate node; and further comprising a circuit configured to actuate the primary stator pole and auxiliary stator pole comprising a switching transistor having a conduction terminal coupled between the intermediate node and a second power supply node to actuate all of the stator poles in a single stator energizing phase. 13. The apparatus of claim 12 wherein the single stator energizing phase comprises a primary energizing phase in which actuation of the switching transistor causes a first current to flow from the first power supply node through the primary stator winding and an auxiliary energizing phase in which deactivation of the switching transistor causes a second current generated by the primary stator winding to flow from the primary stator winding to the auxiliary stator winding. 14. The apparatus of claim 1 wherein the plurality of stator poles form a single energizing phase stator, wherein each of the primary stator poles has a primary stator winding and each auxiliary stator pole has an auxiliary stator winding, and wherein the primary stator pole and the auxiliary stator pole are aligned with each other in the direction of an axis of rotation of the rotor to apply a magnetic attraction force to the rotor during said single stator energizing phase, each rotor pole having a length extending in the direction of an axis of rotation for said rotor sufficient to at least partially cover both the primary stator pole and the axially aligned auxiliary stator pole during the single stator energizing phase. 15. The apparatus of claim 14 further comprising a circuit configured to simultaneously actuate the plurality of stator poles in the single energizing phase, wherein during the single stator energizing phase the primary stator windings of the primary stator poles are initially actuated followed by actuation of the auxiliary stator windings of the auxiliary stator poles. 16. The apparatus of claim 15 wherein the single stator energizing phase comprises a primary energizing phase in which a first current is switched by the circuit to flow through the primary stator winding followed by an auxiliary energizing phase in which a second current generated by the primary stator winding is switched by the circuit to flow from the primary stator winding to the auxiliary stator winding. 17. The apparatus of claim 1 wherein each of the primary stator poles has a first winding, the first windings for the primary stator poles being electrically connected in parallel but with adjacently opposite winding directions so that the plurality of primary stator poles exhibit alternating magnetic orientations about a perimeter of the stator. 18. The apparatus of claim 17 wherein each of the auxiliary stator poles has a second winding, the second windings for the auxiliary stator poles being electrically connected with adjacently opposite winding directions so that the plurality of auxiliary stator poles exhibit alternating magnetic orientations about the perimeter of the stator. 19. The apparatus of claim 18 wherein the electrical connection of the second windings for the auxiliary stator poles connects pairs of the second windings for the auxiliary stator poles in series, with the pairs of windings being electrically connected in parallel. 20. The apparatus of claim 18 wherein the alternating magnetic orientations for the plurality of primary stator poles and the alternating magnetic orientations for the plurality of auxiliary stator poles are arranged oppositely such that in each stator pole the primary stator pole has one magnetic orientation and the axially aligned auxiliary stator pole has an opposite magnetic orientation.

21. The apparatus of claim 1 further comprising a drive circuit configured to simultaneously actuate the stator poles. 22. The apparatus of claim 21 wherein the drive circuit comprises a switching transistor having a control terminal and a first conduction terminal, and wherein each of the primary stator poles has a first winding, the first windings for the primary stator poles being electrically connected in parallel between a more positive reference node and the first conduction terminal of the switching transistor. 23. The apparatus of claim 22 wherein the first windings for the primary stator poles are electrically connected in parallel but with adjacently opposite winding directions so that the plurality of primary stator poles exhibit alternating magnetic orientations about a perimeter of the stator. 24. The apparatus of claim 22 wherein each of the auxiliary stator poles has a second winding, the second windings for the auxiliary stator poles being electrically connected between the more positive reference node and the first conduction terminal of the switching transistor, and wherein the electrical connection of the second windings includes a series connected diode circuit wherein an anode of the diode circuit is connected with an orientation towards the first conduction terminal of the switching transistor and a cathode the diode circuit is connected with an orientation towards the more positive reference node.

25. The apparatus of claim 24 wherein the diode circuit comprises a diode connected in series with each second winding for the auxiliary stator pole. 26. The apparatus of claim 24 wherein the second windings for the auxiliary stator poles are electrically connected with adjacently opposite winding directions so that the plurality of auxiliary stator poles exhibit alternating magnetic orientations about the perimeter of the stator. 27. The apparatus of claim 26 wherein the electrical connection of the second windings for the auxiliary stator poles connects pairs of the second windings for the auxiliary stator poles in series, with the pairs of windings being electrically connected in parallel. 28. The apparatus of claim 27 wherein the alternating magnetic orientations for the plurality of primary stator poles and the alternating magnetic orientations for the plurality of auxiliary stator poles are arranged oppositely such that in each stator pole the primary stator pole has one magnetic orientation and the axially aligned auxiliary stator pole has an opposite magnetic orientation. 29. The apparatus of claim 22 further comprising a cooling system, the cooling system comprising:

a thermally conductive box having a surface to which the switching transistor is mounted, the box further having a first port and a second port; a radiator having a first port coupled to the first port of the thermally conductive box and having a second port;

a fluid pump coupled between the second port of the thermally conductive box and the second port of the radiator. 30. The apparatus of claim 22 further comprising a power supply having a first terminal coupled to the more positive node and a second terminal coupled to a second conduction terminal of the switching transistor. 31. The apparatus of claim 30 further comprising a speed control circuit coupled between the second terminal of the power supply and the second conduction terminal of the switching transistor. 32. The apparatus of claim 22 further comprising a snubber diode coupled in series with the first conduction terminal of the switching transistor. 33. The apparatus of claim 1 wherein the plurality of stator poles consists of N stator poles and wherein the plurality of rotor poles consists of N rotor poles, wherein N is an even integer, and further comprising: a drive circuit configured to simultaneously actuate the N stator poles. 34. The apparatus of claim 33 wherein simultaneous actuation of the N stator poles comprises: a simultaneous actuation of the primary stator poles for the N stator poles; and a simultaneous actuation of the auxiliary stator poles for the N stator poles. 35. The apparatus of claim 34 wherein the primary stator poles for the N stator poles are simultaneously actuated in a first phase responsive to actuation of a switching transistor coupled in series with windings for both the primary stator poles and the auxiliary stator poles. 36. The apparatus of claim 35 wherein the auxiliary stator poles for the N stator poles are simultaneously actuated in a second phase responsive to de-actuation of the switching transistor coupled in series with windings for both the primary stator poles and the auxiliary stator poles. 37. The apparatus of claim 36 wherein the windings for the primary stator poles are coupled in parallel with the windings for the auxiliary stator poles. 38. The apparatus of claim 37 further comprising diode circuitry coupled in series with the windings for the auxiliary stator poles to block current flow in the windings for the auxiliary stator poles during the first phase and permit current flow in the windings for the auxiliary stator poles during the second phase. 39. The apparatus of claim 1 wherein the apparatus is an electric vehicle and the reluctance machine is a power plant adapted to supply torque for causing rotation of at least one drive wheel of said electric vehicle.

40. The apparatus of claim 39 wherein said rotor is configured to rotate a shaft supplying said torque for causing rotation of at least one drive wheel of said electric vehicle. 41. The apparatus of claim 39 further comprising a transmission coupled between the reluctance machine power plant and the at least one drive wheel. 42. The apparatus of claim 39 further comprising a battery bank for supplying electrical power to the power plant. 43. The apparatus of claim 1 wherein the reluctance machine comprises M reluctance machines stacked on a common axis of rotation, wherein M>1, each one of the M reluctance machines comprising:

a stator having N stator poles per individual reluctance machine;

a rotor having N rotor poles per individual reluctance machine and configured to rotate about the axis of rotation;

wherein each of the N stator poles within the individual reluctance machine comprises:

a primary stator pole; and

an auxiliary stator pole, wherein the auxiliary stator pole is axially aligned with the primary stator pole in the direction of the axis of rotation; wherein each rotor pole has a length extending in the direction of the axis of rotation sufficient to at least partially cover both the primary stator pole and axially aligned auxiliary stator pole. 44. The apparatus of claim 43 wherein the stator poles in a first of the M reluctance machines are angularly offset from the stator poles in a second of the M reluctance machines. 45. The apparatus of claim 43 wherein the rotor poles in a first of the M reluctance machines are angularly offset from the rotor poles in a second of the M reluctance machines. 46. The apparatus of claim 43 wherein the rotors rotate about the axis of rotation inside of the stators. 47. The apparatus of claim 43 wherein the apparatus is an electric vehicle and the reluctance machine is a power plant adapted to supply torque for causing rotation of at least one drive wheel of said electric vehicle. 48. The apparatus of claim 47 wherein said rotor is configured to rotate a shaft supplying said torque for causing rotation of at least one drive wheel of said electric vehicle. 49. The apparatus of claim 47 further comprising a transmission coupled between the reluctance machine power plant and the at least one drive wheel.

50. A method for actuating a single phase switched reluctance machine, said reluctance machine including a stator having a plurality of stator poles, each stator pole comprising a primary stator pole and an auxiliary stator pole, the method comprising:

simultaneously actuating the primary stator poles;

then using magnetic energy stored in the primary stator poles to simultaneously actuate the plurality of auxiliary stator poles. 51. The method of claim 50 wherein each of the primary stator poles has a primary stator winding and each auxiliary stator pole has an auxiliary stator winding, and said method comprising actuating the primary stator pole and auxiliary stator pole in a stator energizing phase comprising:

passing a first current through each of the primary stator windings during a primary energizing phase; and

passing a second current generated by the primary stator windings through each of the auxiliary stator windings during a subsequent auxiliary energizing phase. 52. The method of claim 51 wherein said reluctance machine further includes a rotor including a plurality of rotor poles, each rotor pole having a length extending in the direction of an axis of rotor rotation sufficient to at least partially cover both the primary stator pole and the auxiliary stator pole, said method further comprising generating in each rotor pole, during at least the subsequent auxiliary energizing phase, an axial magnetic flux path extending between the primary stator pole and the auxiliary stator pole.

53. The method of claim 52 further comprising terminating the primary energizing phase and starting the auxiliary energizing phase at a point of rotor rotation prior to where a minimized reluctance between the rotor and the stator pole is reached. 54. The method of claim 50 wherein the steps of simultaneously actuating comprise simultaneously actuating the plurality of stator poles in the single energizing phase, wherein during the single stator energizing phase the primary stator poles are initially actuated followed by actuation of the auxiliary stator poles. 55. The method of claim 54 wherein actuating in the single stator energizing phase comprises actuating in a primary energizing phase which passes a first current to actuate the primary stator poles; and actuating an auxiliary energizing phase which actuates the auxiliary stator poles using a second current generated by the primary stator poles.

Description:
SWITCHED RELUCTANCE MACHINE

BACKGROUND

Technical Field

[1] The present invention relates generally to a reluctance machine and, in particular, to a switched reluctance machine (motor and/or generator).

Description of Related Art

[2] Reluctance machines are well known in the art. These machines operate on the tendency of the machine's rotor to move to a position where the reluctance with respect to the stator is minimized (in other words, where the inductance is maximized). This position of minimized reluctance occurs where the rotor pole is aligned with an energized stator pole. When operated as a motor, energizing the stator pole generates a magnetic field attracting the rotor pole towards the stator pole. This magnetic attraction produces a torque causing the rotor to rotate and move towards the minimized reluctance position. Conversely, when operated as a generator, torque applied to the rotor is converted to electricity as the rotor pole moves relative to the magnetic field of the energized stator pole.

[3] Reference is now made to Figures 1A and IB which illustrate the general configuration and operation of a simple single phase switched reluctance machine of the 6/6 topology. The reference to "6/6" indicates that the machine has six rotor poles and six stator poles. The reference to "single-phase" indicates that there is only one stator energizing phase, and thus each of the six poles on the stator are energized simultaneously.

[4] Considering now specifically the operation of the machine of Figures 1A and IB as a motor, the stator 10 includes six poles 12. The rotor 18 is mounted to a shaft 20, and the shaft is supported by a housing and bearings (not shown) that allow for rotational movement of the rotor relative to the stator 10. The rotor 18 also includes six poles 22. The stator poles 12 and rotor poles 22 are salient poles, as is known in the art.

[5] Each stator pole 12 is wound with a winding 14. The windings 14 for the six stator poles 12 are electrically connected in parallel and current is supplied thereto from a switched power supply 16. The winding direction for each stator pole winding 14 is indicated using an "x" and "·" nomenclature, where "x" indicates movement of charge into the page, and "·" indicates movement of charge out of the page. So, it will be noted with the windings 14 oriented as illustrated in Figures 1A and IB, the magnetic field orientation of the stator poles when actuated alternates /N-S-N-S-N-S/ with respect to each stator pole around the circumference of the stator 10. [6] The magnetic flux paths 17 are shown with respect to the actuated stator poles 12. These paths flow from a first stator pole, cross the air gap to a first rotor pole, and flow from the first rotor pole through the web of the rotor to a second rotor pole adjacent the first rotor pole, cross the air gap to a second stator pole adjacent to the first stator pole, and flow from the second stator pole back to the first stator pole.

[7] Figure 1A shows the approximate angular orientation of the rotor 18 when a switched power supply 16 that is coupled to the windings 14 of the stator 12 poles may be actuated. Current is supplied to the stator pole windings 14 so as to simultaneously energize the six poles 12 of the stator 10. The six rotor poles 22 are attracted to the energized stator poles 12, producing a torque 24 on the shaft 20 and causing the rotor to rotate. The rotor poles 22 move towards the energized stator poles 12 in an effort to minimize the reluctance.

[8] As the rotor poles 22 move towards the position of minimized reluctance (i.e., when the rotor pole 22 is aligned with the stator pole 12) as shown in Figure IB, the switched power supply 16 is de-actuated. Angular momentum is preserved and the rotor continues to rotate such that the rotor pole 22 passes by the de-energized stator pole 12. After a delay period which allows the rotor pole 22 to move sufficiently away from the stator pole 12 (i.e., move closer to the next stator pole), the switched power supply 16 is actuated again (see, Figure 1A), and the process repeats.

[9] It will be noted that proper operation of the motor is dependent on the timing of switched power supply 16 actuation and thus the actuation of the stator poles. That timing of actuation is driven by the angular position of the rotor poles relative to the stator poles. Thus, the motor further includes an angular position sensor 26 coupled to the shaft 20 to detect the angular position of the rotor poles relative to the stator poles. The angular position information output from the angular position sensor 26 is supplied to the switched power supply 16 to assist in controlling the timing of switched power supply 16 actuation of the stator poles 12.

[10] Single-phase motors are believed to have limited use because of concerns with, among other issues, start-up, limited maximum output torque, variations in output torque (known as torque ripple), energy and heat dissipation, and noise. However, single -phase motors advantageously need a relatively more simple control system than is used in multi-phase reluctance motors, and are preferred over multi-phase motors in many applications for this reason. There is accordingly a need in the art for an improved single-phase switched reluctance motor which addresses the limitations and concerns of prior art single-phase configurations while maintaining the advantages of simple control.

SUMMARY

[11] In an embodiment, a reluctance machine comprises a stator having a plurality of stator poles and a rotor having a plurality of rotor poles. The rotor is configured to rotate about an axis of rotation. Each of the stator poles comprises: a primary stator pole and an auxiliary stator pole. Each rotor pole has a length extending in the direction of the axis of rotation sufficient to at least partially cover the primary stator pole and axially aligned auxiliary stator pole.

[12] In an embodiment, the auxiliary stator pole is axially aligned with the primary stator pole in the direction of the axis of rotation. [13] In an embodiment, the primary stator pole and auxiliary stator pole have separate windings.

[14] In an embodiment, the windings for the primary stator poles are electrically connected in parallel.

[15] In an embodiment, the pairs of the windings for the auxiliary stator poles are electrically connected in parallel.

[16] In an embodiment, the separate windings for the primary stator poles and auxiliary stator poles are electrically connected in parallel. Current flow in the windings for the auxiliary stator poles, however, is restricted to a direction opposite current flow in the windings for the primary stator poles.

[17] In an embodiment, a switching transistor is coupled in series with the windings for the primary stator poles and the windings for the auxiliary stator poles.

[18] In an embodiment, actuation of the transistor causes current flow in the windings for the primary stator poles during a first phase of stator actuation, while deactivation of the transistor causes current flow in the windings of the auxiliary stator poles during a second phase of stator actuation.

[19] In an embodiment, the primary stator poles are simultaneously actuated and produce magnetic fields with alternating magnetic field orientations. In an embodiment, the auxiliary stator poles are simultaneously actuated and produce magnetic fields with alternating magnetic field orientations. In an embodiment, the alternating magnetic field orientations for the primary stator poles are opposite the alternating magnetic field orientations for the auxiliary stator poles. [20] In an embodiment, when a primary stator pole and axially aligned auxiliary stator pole are actuated, each produces a magnetic field and the produced magnetic fields have opposite orientations.

BRIEF DESCRIPTION OF THE DRAWINGS

[21] A more complete understanding of the method and apparatus of the present invention may be acquired by reference to the following Detailed Description when taken in conjunction with the accompanying Drawings wherein:

[22] Figures 1A and IB (previously discussed) illustrate the general configuration and operation of a simple single phase switched reluctance machine of the 6/6 topology;

[23] Figure 2 illustrates the general configuration of a single phase switched reluctance machine of the N/N* topology;

[24] Figure 3 illustrates a cross-sectional view taken along lines 3-3 of Figure 2;

[25] Figure 4 illustrates a spacer ring member for use in making a laminated stator;

[26] Figure 5 illustrates a stator pole ring member for use in making a laminated stator;

[27] Figure 6A illustrates the winding of the primary stator poles;

[28] Figure 6B illustrates the winding of the auxiliary stator poles;

[29] Figure 7A illustrates the parallel circuit connection of the windings for the primary stator poles of Figure 6A;

[30] Figure 7B illustrates the serial/parallel circuit connection of the windings for the auxiliary stator poles of Figure 6B; [31] Figure 8 illustrates a schematic diagram of a drive circuit for the switched reluctance machine;

[32] Figures 9A-9D illustrate operation of the motor;

[33] Figure 9E illustrates magnetic flux paths with respect to the rotor and stator poles;

[34] Figure 10 illustrates a partial cross-section and side view of an assembled switched reluctance machine;

[35] Figures 11 A and 1 IB illustrate a partial cross-section and side view for alternative arrangements of an assembled stacked multiple switched reluctance machine;

[36] Figure 11C illustrates angular offsetting of the stator poles for an assembled stacked multiple switched reluctance machine as shown in Figure 11 A;

[37] Figure 12 illustrates a schematic diagram of a drive circuit for the switched reluctance machine of Figures 11a and 1 IB;

[38] Figure 13 illustrates a schematic diagram of an angular position sensor and drive control circuit used in Figures 8 and 12;

[39] Figure 14 illustrates a heat dissipation configuration;

[40] Figures 15 and 16 illustrate use of the switched reluctance machine as described herein as the power plant for an electric vehicle application.

DETAILED DESCRIPTION OF THE DRAWINGS

[41] Reference is now made to Figure 2 wherein there is shown a schematic end view of a first embodiment of a single -phase switched reluctance machine. The single phase switched reluctance machine is generally of the N/N* topology, in this exemplary implementation N=6, but it will be understood that N could be any even integer (preferably N being greater than or equal to six, although N=2 or N=4 may be suitable in small or light duty applications). The reference to "N/N*" indicates that the machine has N rotor poles and N* stator poles, wherein the "*" designation indicates that each of the N stator poles comprises the combination of a primary stator pole PSP and an axially aligned auxiliary stator pole ASP (the axial alignment being in the direction of the axis of rotor rotation). The reference to "single-phase" indicates that there is only one overall switched stator energizing phase. The specific energization process for the primary stator poles PSP and auxiliary stator poles ASP will be described in more detail below.

[42] The stator 110 of the switched reluctance machine is illustrated in an exemplary manner to include N=6 six stator poles 112. The rotor 118 is mounted to a shaft 120, and the shaft is supported for rotational movement relative to the stator 110. The rotor 118 is formed from at least one spoked web member 124, with a rotor pole 122 mounted at the distal end of each spoke of the spoked web member 124. Thus, the rotor 118 includes N=6 rotor poles 122 corresponding to the N=6 stator poles 112.

[43] Each stator pole 112 comprises a primary stator pole PSP and an axially aligned auxiliary stator pole ASP (neither shown explicitly here, see Figure 3). Illustration of the windings for the stator poles 112 is omitted in Figure 2 because the primary stator pole PSP and axially aligned auxiliary stator pole ASP are separately wound and this cannot be adequately illustrated with the view of Figure 2. More detail on the separate windings provided for the stator poles 112 (i.e., the primary stator pole PSP and auxiliary stator pole ASP) is provided in Figures 3, 6 A and 6B. [44] Reference is now made to Figure 3 which illustrates a cross-sectional view taken along lines 3-3 of Figure 2. The shaft 120 rotates about an axis 126. Although not shown in Figure 3, the two opposed ends of the shaft 120 are supported for such rotation by an end housing and bearing system in a manner well known to those skilled in the art (see, Figures 10, 11A and 11B). The shaft 120 may be made of any suitable material, including 1045 steel. The spoked web member 124 is mounted to the shaft and retained to be rotated with the shaft 120 without slipping. An appropriate fastening mechanism and keying system, as is well known to those skilled in the art, may be used to secure the spoked web member 124 to the shaft 120. The spoked web member 124 may be made of any suitable material, including mild or low hysteresis steel, aluminum or composite materials. Importantly, and unlike prior art implementations, the spoked web member 124 need not be made of a material which supports magnetic flux. Openings 128 (see, Figure 2) are provided in each spoke of the spoked web member 124 to reduce the overall weight of the rotor 118 and position a greater proportion of the rotor's overall weight towards the perimeter of the rotor. One rotor pole 122 is mounted to the distal end of each spoke of the spoked web member 124. Each rotor pole 122 extends in an axial direction parallel to the shaft 120. Figure 3 specifically illustrates the use of two spoked web members 124 to support opposite ends of each one of the N=6 rotor poles 122, but it will be understood that just a single spoked web member 124 could instead be used. Each rotor pole 122 may be made of any suitable material, including mild or low hysteresis steel, provided that the material supports a magnetic flux path in and along the length of the rotor pole 122 extending in the axial direction. Solid bar stock is preferred for the rotor pole 122, but laminated materials stacked parallel to the axial direction could also be used to form a suitable rotor pole. [45] The stator 110 is formed of a lamination of ring members, wherein the laminated materials are stacked perpendicular to the axial direction. The ring members include a spacer ring member 140 (see, Figure 4) and a stator pole ring member 142 (Figure 5). The ring members 140 and 142 may be made of any suitable material, including low hysteresis steel or other conventional laminate steel. The lamination of ring members to form a stator 110 with stator poles 112 is well known to those skilled in the art. Openings 125 are provided about the perimeter of the ring members 140 and 142 to assist in alignment and lamination of the stator ring members to form the stator 110. These openings further support the passage of a fastening means, such as a long bolt, when assembling the ring members together to form a stator.

[46] The stator 110 is different from prior art laminated stator configurations in that each included stator pole 112 comprises a primary stator pole PSP and an axially aligned auxiliary stator pole ASP. The primary stator poles PSP are formed from a first lamination 144 of a plurality of stator pole ring members 142 (Figure 5). The auxiliary stator poles ASP are formed from a second lamination 146 of a plurality of stator pole ring members 142 (Figure 5). It will be noted that the first lamination 144 includes more stator pole ring members 142 (Figure 5) in the stack than the second lamination 146. Thus, the primary stator poles PSP are larger (i.e., axially longer) than the axially aligned auxiliary stator poles ASP. The first lamination 144 forming the primary stator poles PSP is separated from the second lamination 146 forming the axially aligned auxiliary stator poles ASP by a third lamination 148 of a plurality of spacer ring members 140 (see, Figure 4). The stator 110 is completed by a fourth lamination 150 of a plurality of spacer ring members 140 (see, Figure 4) mounted to the first lamination 144 (this fourth lamination 150 separating the first lamination 144 for the primary stator poles PSP away from a first end of the machine), and a fifth lamination 152 of a plurality of spacer ring members 140 (see, Figure 4) mounted to the second lamination 146 (this fifth lamination 152 separating the second lamination 146 for the auxiliary stator poles ASP away from a second end of the machine). Laminated construction with respect to the primary stator poles PSP (first lamination 144) and with respect to the axially aligned auxiliary stator poles ASP (second lamination 146) is preferred so that the supported magnetic flux paths in the stator are restrained in the radial and circumferential directions.

[47] As mentioned above, each rotor pole 122 extends in an axial direction parallel to the shaft 120. The rotor poles 122 have an axial length substantially equal to a combined axial length of the PSP first lamination 144, ASP second lamination 146 and spacing third lamination 148. In other words, each rotor pole has an axial length sufficient to substantially and simultaneously cover the primary stator pole PSP and auxiliary stator pole ASP.

[48] The primary stator pole PSP and the axially aligned auxiliary stator pole ASP of each included stator pole 112 are separately wound. Details of this separate winding are provided below with respect to Figures 6 A, 6B, 7 A and 7B.

[49] Reference is now made to Figure 6 A which shows the first lamination 144 for the primary stator poles PSP (made of a plurality of stacked stator pole ring members 142). Each primary stator pole PSP is wound with a winding 160. The windings 160 for the six primary stator poles PSP are electrically connected in parallel (see, also, Figure 7A). The winding direction for each winding 160 is indicated using the "x" and "·" nomenclature (as described above). With the illustrated winding orientation, it will be noted that the magnetic orientation of the primary stator poles PSP when actuated alternates /S-N-S-N-S-N/ around the circumference of the stator 110. The windings 160 for the primary stator poles PSP are also shown in Figure 3.

[50] Reference is now made to Figure 6B which shows the second lamination 146 for the auxiliary stator poles ASP (made of a plurality of stacked stator pole ring members 142). Each auxiliary stator pole ASP is wound with a winding 162. The windings 162 for pairs 180 of the six auxiliary stator poles ASP are electrically connected in series (see connection 164) and the resulting three pairs 180 of windings 162 are connected in parallel (see, also, Figure 7B). The winding direction is again indicated using the "x" and "·" nomenclature. With the illustrated winding orientation, it will be noted that the magnetic orientation of the auxiliary stator poles ASP when actuated alternates /N-S-N-S-N-S/ around the circumference of the stator 110. Importantly, this magnetic orientation is opposite (or reversed from) the /S-N-S-N-S-N/ of the primary stator poles PSP (Figure 6A) such that the primary stator pole PSP and its axially aligned auxiliary stator pole ASP for a given stator pole 112 have opposite magnetic orientations (for example, for one stator pole 112, the included primary stator pole PSP will have an N orientation and the axially aligned auxiliary stator pole ASP will have an S orientation, or vice- versa). The windings 162 for the auxiliary stator poles ASP are also shown in Figure 3.

[51] Reference is now made to Figure 7A which illustrates the parallel circuit connection of the windings 160 for the primary stator poles PSP of Figure 6A. The windings 160 are connected in parallel between a first node 170 and a second node 172. When the primary stator poles PSP are actuated, current flow 182 through the windings 160 is in a direction from the first node 170 towards the second node 172. Each winding 160 has a first end 174 and a second end 176. It will be noted that the end (174 or 176) which is connected to the first node 170 alternates with respect to adjacent ones of the primary stator poles PSP. Likewise, the end (174 or 176) which is connected to the second node 172 alternates with respect to adjacent ones of the primary stator poles PSP. The alternating connection of the first end 174 and second end 176 to the first node 170 and second node 172 produces alternating winding orientations for the primary stator poles PSP (as is shown in Figure 6A) so that the magnetic orientation of the primary stator poles PSP when actuated alternates /S-N-S-N-S-N/ around the circumference of the stator 110.

[52] Reference is now made to Figure 7B which illustrates the series/parallel circuit connection of the windings 162 for the auxiliary stator poles ASP of Figure 6B. Pairs 180 of the windings 162 are connected in series by connection 164. The pairs 180 are then connected in parallel between the first node 170 and the second node 172. Each series connection of two windings 162 includes a pair of series connected zener diodes 178 oriented with their anodes pointing towards the second node 172 and their cathodes pointing towards the first node 170. This configuration of the zener diodes 178 precludes current flow through the series connected windings 162 in a direction from the first node 170 towards the second node 172, but permits current flow in the opposite direction (the reason for this is discussed in detail below, as is the reason for connecting pairs 180 of windings 162 in series). When the auxiliary stator poles ASP are actuated, current flow 184 through the windings 162 is in a direction from the second node 172 towards the first node 170. Each winding 162 has a first end 174 and a second end 176. It will be noted that the series connection 164 of the second ends 176 of the pairs of windings 162 produces alternating winding orientations for the auxiliary stator poles ASP (as is shown in Figure 6B) so that the magnetic orientation of the auxiliary stator poles ASP when actuated alternates /N-S-N-S-N-S/ around the circumference of the stator 110 (this being the opposite of the /S-N-S-N-S-N/ configuration for the primary stator poles PSP).

[53] Reference is now made to Figure 8 which illustrates a schematic diagram of a drive circuit 200 for the switched reluctance machine. A power supply 202 has a more positive node 204 and a more negative node 206. The more positive node 204 could be a positive supply node, and the more negative node 206 could be a ground node. Conversely, the more positive node 204 could be a ground node, and the more negative node 206 could be a negative supply node. The more positive node 204 is coupled to the first node 170. Coupled between the first node 170 and the second node 172 is a capacitor 210 (optional but recommended to retard a high frequency runaway condition). Also coupled between the first node 170 and second node 172 is the primary stator poles PSP winding circuit shown in Figure 7A and the auxiliary stator poles ASP winding circuit shown in Figure 7B. Figure 8 does not illustrate all of the windings 160 and 162 as shown in Figures 7 A and 7B. Rather, only four of the windings 160 and four of the windings 162 are shown to simplify the drawing.

[54] Figure 8 further illustrates the shared electrical and magnetic connection relationship of the primary stator poles PSP winding circuit (Figure 7A) and the auxiliary stator poles ASP winding circuit (Figure 7B) relative to the first node 170 and second node 172. The format of the winding connections and orientations in Figure 8 is different from that shown in Figures 7A and 7B in order to simplify the circuit drawing and assist in making the operation of the circuit 200 more understandable. With respect to the physical implementation in forming the primary stator poles PSP and the auxiliary stator poles ASP, the windings 160 and 162 are drawn with different orientations (left and right) to indicate the use of alternate winding directions. Each winding 160 and 162 is further provided with a labeled arrow (N- or S- ). The arrow direction is consistent with the direction of current flow when the respective stator poles are actuated. The label (either "N" or "S") indicates the orientation of the magnetic field produced in response to that direction of current flow (noting again that the magnetic orientation alternates /S-N-S-N-S-N/ around the circumference of the stator 110 for the primary stator poles PSP, and alternates /N-S-N-S-N-S/ around the circumference of the stator 110 for the auxiliary stator poles ASP). Still further with respect to the physical implementation, Figure 8 includes a labeled dashed bi-directional arrow (N^- ->S or S^- ->N) 210 indicating the axial alignment between one primary stator pole PSP (with winding 160) and its axially aligned auxiliary stator pole ASP (with winding 162), as well as indicating the magnetic coupling between one primary stator pole PSP and its axially aligned auxiliary stator pole ASP. As will be discussed below, that magnetic coupling is provided through the axially extending rotor pole 122. Thus, the bidirectional arrow 210 may be understood to represent a rotor pole 122. The label (either "N" or "S") on the end of the bi-directional arrow 210 indicates the orientation of the magnetic field in the rotor pole 122 when the primary stator pole PSP and auxiliary stator pole ASP are actuated.

[55] An axially aligned 210 primary stator pole PSP and auxiliary stator pole ASP define one stator pole 112 as is shown in Figures 2 and 3. It will be noted that when actuated, the primary stator pole PSP has one magnetic field orientation (for example, N) while its axially aligned auxiliary stator pole ASP has the opposite magnetic field orientation (for example, S). The two ends of the rotor pole 220 (schematically represented by the bi-directional arrow 210) will have opposite magnetic field orientations (S and N, respectively, for this example) and thus will be attracted to the stator pole 112. It is this attraction which produces torque causing rotation of the rotor.

[56] The second node 172 is coupled to the drain D of an n-channel power switching MOSFET 212. An optional snubber diode 208 may be inserted between the second node 172 and the drain D of the n-channel power switching MOSFET 212. A speed control circuit 214 is coupled between the source S of the MOSFET 212 and the more negative node 206 of the power supply 202. The speed control circuit 214 may comprise, for example, an Alltrax speed controller. The gate G of the MOSFET 212 is coupled to the output of a drive control circuit 216. The drive control circuit 216 generates a gate drive signal to control switching on/off of the MOSFET 212. Changes in state of the gate drive signal are produced in response to information relating to the angular position of the rotor. This obtained angular position of the rotor is detected by an angular position sensor 218. The sensor 218 in a preferred implementation comprises an optical sensor coupled to the shaft of the rotor. Such optical sensors are well known to those skilled in the art (see, also, Figure 13).

[57] The general functional operation of the MOSFET 212, drive control circuit 216 and angular position sensor 218 will now be described. The angular position sensor 218 detects the angular position of the rotor, and more specifically detects the position of the rotor poles relative to the stator poles. Responsive to detection by the angular position sensor 218 of a desired relative position relationship between those poles (such as the position shown in Figure 9A), the drive control circuit 216 generates the gate drive signal with a state to turn on the MOSFET 212. Assuming that the speed control circuit 214 is also activated, current will flow from the more positive node 204 of the power supply 202 towards the more negative node 206. This current flows through the windings 160 and simultaneously activates the primary stator poles PSP. In this mode, the zener diodes 178 prevent current from flowing through the windings 162 of the auxiliary stator poles ASP in a direction from the first node 170 to the second node 172 (i.e., these stator poles are not actuated).

[58] At this point, the motor is operating in a manner generally similar to that shown and described above with respect to Figures 1A and IB. The rotor poles 122 are attracted to the energized stator poles 112, and more particularly to the primary stator poles PSP, producing a torque on the shaft 120 as the rotor poles 122 move towards the energized stator poles 112 in an effort to minimize the reluctance. However, unlike the implementation of Figures 1A and IB, the magnetic flux paths do not primarily run through the spoked web member 124, but rather run along the length of the rotor poles 122 and through the (un-actuated) auxiliary stator poles ASP. This flux configuration is described in detail below and illustrated in connection with Figures 9B, 9C and 9E where the auxiliary stator poles ASP are actuated.

[59] When the angular position sensor 218 detects that the rotor poles 122 have moved close to the position of minimized reluctance, for example where the rotor pole 122 is nearly, but not completely, aligned with the stator pole 112 (such as the position shown in Figure 9B), the drive control circuit 216 turns off the MOSFET 212. This isolates the second node 172 from the more negative node 206 of the power supply 202. A large high voltage inductive pulse is then generated at the second node 172. In prior art implementations, this large high voltage inductive pulse is typically dissipated and the stored magnetic energy in the stator windings is wasted. In the motor embodiment described herein, however, the stored magnetic energy is put to more productive use. [60] The large high voltage inductive pulse at second node 172 has a voltage magnitude that is sufficient to forward bias the zener diodes 178 (thus actuating the auxiliary stator poles ASP). The generated inductive pulse is accordingly dumped through the pairs of series connected windings 162 for the auxiliary stator poles ASP. Because of the size of the inductive pulse, a large impedance must be present in the dumping circuit path. This large impedance is provided by connecting two of the windings 162 for the auxiliary stator poles ASP in series. It will, however, be understood that the windings 162 for the auxiliary stator poles ASP could instead be connected in parallel (similar to that of the windings 160 for the primary stator poles ASP) provided that a single winding 162 presented a sufficiently high impedance value in relation to the high voltage inductive pulse.

[61] The magnetic flux paths with respect to the actuated primary stator poles PSP, actuated auxiliary stator poles ASP and the rotor poles 122 are shown in Figure 9B (for the primary stator poles PSP), Figure 9C (for the auxiliary stator poles ASP) and Figure 9E for the stator and rotor poles together. These paths flow from a first primary stator pole and cross the air gap to a first end of a first rotor pole (path segment 500), flow along the length of the first rotor pole to a second end of the first rotor pole (path segment 502), cross the air gap to a first auxiliary stator pole (that is axially aligned with the first primary stator pole) (path segment 504), flow from the first auxiliary stator pole in the stator laminations to a second auxiliary stator pole adjacent thereto (path segment 506), cross the air gap from the second auxiliary stator pole to a first end of a second rotor pole (path segment 508), flow along the length of the second rotor pole to a second end of the second rotor pole (path segment 510), and cross the air gap from the second rotor pole to a second primary stator pole (that is adjacent to the first primary stator pole) (path segment 512), and flow from the second primary stator pole in the stator laminations to the first primary stator pole adjacent thereto (path segment 514). Figures 9B and 9C additionally show the portion of the magnetic flux paths which pass axially along the length of the rotor pole 122 in a separate breakout, while these paths are shown in context with the stator magnetic flux paths in Figure 9E.

[62] The rotor poles 122 continue to be attracted to the energized stator poles 112, at this point actively to both the primary stator poles PSP and the auxiliary stator poles ASP, producing a continued torque on the shaft 120 as the rotor poles 122 continue to move towards the energized stator poles 112 in an effort to minimize the reluctance.

[63] At this point, because the MOSFET 212 has been turned off, and because the inductive pulse has been completely dumped and put to work through the windings 162 of the auxiliary stator poles ASP, the stator poles 112 are now de-energized. Angular momentum is preserved and the rotor continues to rotate such that the rotor pole 122 passes past the de- energized stator pole 112. After a delay period which allows the rotor pole 122 to move sufficiently away from the stator pole 112 (i.e., closer to the next stator pole as shown in Figure 9A), the angular position sensor 218 again senses that the rotor is in the desired relative position relationship, the drive control circuit 216 turns on the MOSFET 212, and the process repeats.

[64] Speed of rotor rotation can be controlled by changing the current supplied to the windings 160 of the primary stator poles PSP. This is accomplished by operation of the speed control circuit 214 to adjust the voltage drop from the source S of the MOSFET 212 to the more negative node 206 of the power supply 202. [65] Reference is now made to Figure 10 which illustrates a partial cross-section and side view of the switched reluctance machine 400 as described above. End housing members 182 and 184 are provided at opposite ends of the machine. A bearing system 186 is installed on each housing member to support rotation of the shaft 120. One end of the shaft 120 is coupled to an angular position sensor 190. Such sensors are well known to those skilled in the art. In a preferred implementation, the sensor 190 is implemented as an optical light gap sensor. A slotted wheel is mounted to the shaft, with the slots having a known positional relationship relative to the positions of the rotor poles and stator poles. Light is projected onto the wheel to pass through the slots. A light sensor detects the light passing through the slots in the wheel, and the detected light provides information concerning position of the rotor poles. See, also, Figure 13.

[66] The machine 400 as shown in Figure 10, when configured as a motor, is not self- starting because the rotor could stop rotating at a position where the rotor poles were aligned with the stator poles (the minimized reluctance position). To address this issue, the motor of Figure 10 could further include a parking magnet which attracts the rotor poles to a position offset from the stator poles and from which starting is possible. Alternatively, the rotor poles could be shaped with a configuration that permits self-starting from any rotor position including when aligned with the stator poles. Parking magnet and self-starting rotor pole shape solutions are well known to those skilled in the art.

[67] In a further embodiment, multiple switched reluctance machines 400 (one such machine 400 as is shown in Figure 10) can be stacked on a common shaft 120. By angularly offsetting the multiple machines from each other, the stacked machine presents a motor configuration that is self-starting because the rotor poles of at least one of the machines 400 will be sufficiently offset from the stator poles to allow for magnetic attraction and torque generation. For example, the angular offset could be introduced by angularly offsetting the stator poles and keeping the rotor poles in alignment. This configuration is shown in Figures 11A and 11C. In Figure 11 A it will be noted that dotted boxes are used to indicate the location of the angularly offset stator poles 112, while Figure 11C illustrates that angular offset. Alternatively, the angular offset could be introduced by angularly offsetting the rotor poles and keeping the stator poles in alignment. This configuration is shown in Figure 1 IB. An angular offset of 360/(M*N) degrees between each of the included machines 400 is acceptable (when M is the number of machines 400 in the stack). In the implementation of Figures 11A and 11B, the angular offset may, for example, comprise 10-25 degrees. Figures 11A and 11B specifically illustrate a preferred angular offset between machines 400 of 20 degrees (360/(3*6)).

[68] End housing members 182 and 184 are provided at opposite ends of the machine. A bearing system 186 is installed on each housing member to support rotation of the shaft 120. One end of the shaft 120 is coupled to a set of angular position sensors 192. Such sensors are well known to those skilled in the art. In a preferred implementation, the sensors 192 are each implemented as an optical light gap sensor. A slotted wheel is mounted to the shaft, with the slots having a known positional relationship relative to the position of the rotor poles relative to the stator poles. Light is projected onto the wheel to pass through the slots. A light sensor associated with each machine 400 detects the light passing through the slots in the wheel, and the detected light provides information concerning position of the rotor poles. See, also, Figure 13. [69] Reference is now made to Figure 12 which illustrates a schematic diagram of a drive circuit for the switched reluctance machine of Figures 11A and 11B. Because multiple switched reluctance machines 400 are present, multiple drive circuits are required. Each drive circuit is of the type shown in Figure 8 and previously described. The circuit of Figure 12, however, shares speed control 214 across the three machines, and the angular position sensors 218 provide position information relative to each of the machines 400.

[70] Reference is now made to Figure 13 which illustrates a schematic diagram of an angular position sensor 218 and drive control circuit 216 used in Figure 8 and 12. One circuit as shown in Figure 13 is needed for each machine included in the stack of Figures 11A and 11B. The angular position sensor utilizes a slotted wheel 500 is mounted to the shaft 120 of the switched reluctance machine. A fork-type optical sensor 502 is positioned to straddle the slotted wheel 500. An example of such a sensor is a Pepperl & Fuchs GL10-RT/32/40A/98A sensor. The sensor 502 is powered from a first voltage supply 504. A capacitor CI is connected across the supply terminals of the first voltage supply 504. The output of the sensor 502 is applied to a voltage divider formed by resistors Rl and R2 connected in series. An output of the voltage divider is applied to the input of an opto-isolated FET driver circuit 506. An example of such a driver circuit 506 is an Avago ACNW3190 integrated circuit. The driver circuit 506 is powered from a second voltage supply 508. A capacitor C2 is connected across the Vcc and Vee supply terminals of the second voltage supply 508. The supply 508 further provides a ground terminal. The output of the opto-isolated FET driver circuit 506 is applied through a resistor network R3 and R4 to the common gate terminals of a push-pull FET driver circuit 510. The circuit 510 includes an n-channel FET Ml connected in series with a p-channel FET M2 between the Vcc and Vee supply terminals of the second voltage supply 508. The output of the push-pull FET driver circuit 510 (taken at the connected source terminals of FETs Ml and M2) is applied through resistor R5 to gate terminal (G) of the switching transistor 212 (Figures 8 and 12).

[71] In operation, the fork-type optical sensor 502 detects the presence of a slot in the rotating slotted wheel 500. That detection is supplied to the input of the opto-isolated FET driver circuit 506 providing signal isolation and generating at its output a corresponding detect signal. The detect signal turns on transistor Ml of the push-pull FET driver circuit 510 (transistor M2 is off) and a gate drive signal is generated which turns on the switching transistor 212 (Figures 8 and 12). When the slot in the rotating slotted wheel 500 is no longer detected by the fork-type optical sensor 502, this detection is signal isolated through the opto-isolated FET driver circuit 506 which generates a corresponding no-detect signal. Responsive to the no-detect signal, transistor M2 of the push-pull FET driver circuit 510 is turned on (transistor Ml is off) and a gate drive signal is generated which turns off the switching transistor 212 (Figures 8 and 12).

[72] Reference is once again made to Figures 8 and 12. The switching transistor 212 must be a high voltage and high current device. Indeed, for the large currents present when the switching transistor 212 is turned on, it may be preferable for the switching transistor 212 to be implemented as a plurality of parallel connected transistor devices, where current is divided between the included devices. Accordingly, it will be recognized that switching transistor 212 as illustrated represents one or more actual transistor devices. Nonetheless, the switching transistor 212, in handling high current and high voltage, will generate a significant amount of heat. It is critical that this generated heat be dissipated. [73] Referring now to Figure 14, there is illustrated a heat dissipation configuration for the switching transistor 212. A thermally conductive box structure 600 with an open (and perhaps baffled) interior is provided. Attached to one side 602 of the box structure 600 is the switching transistor 212. Of course, if multiple devices are required for implementing the switching transistor 212, there will be multiple devices attached to the side 602 of the box structure 600. The illustration of single device in Figure 14 is exemplary only. The box structure 600 includes two ports 604 and 606. The port 604 is coupled 608 to a first port 610 of a radiator 612. The radiator 612 may be of any known design including, for example, radiators of the type conventionally used in automobiles. The port 606 is coupled 614 to one side of a fluid pump 616. The other side of the fluid pump 616 is coupled 618 to a second port 620 of the radiator 612. The radiator 612 may include a fan 622 for circulating air across the fins of the radiator. The box structure 600, coupling lines, and radiator 612 are filled with an appropriate coolant. This coolant may be any suitable coolant fluid. In a preferred embodiment the coolant fluid is polyethylene glycol.

[74] Reference is now made to Figure 15 which illustrates use of the switched reluctance machine SRM as described herein as the power plant for an electric vehicle application. The switched reluctance machine SRM as described herein may be used in place of an internal combustion engine in an automobile. The shaft 120 of the switched reluctance machine SRM is coupled, for example, to a conventional automobile transmission which drives one or more axles of the vehicle. Although illustrated in Figure 15 in a rear- wheel drive configuration, it will be understood that the switched reluctance machine SRM could be used in other driver configurations including front wheel drive and all-wheel drive. Power for switched reluctance machine SRM operation is supplied from a battery bank. The battery bank may utilize any type of batteries. Lead acid batteries comprise one option for use in the battery bank. Another option is to use lithium-based batteries. Nicad batteries may also be used. Advantageously, the implementation may utilize the existing radiator for the vehicle (see, Figure 14). Thus, the switched reluctance machine SRM could be configured with shaft 120 mating to a conventional automobile transmission and the switched reluctance machine SRM simply being swapped in place of the internal combustion engine. This would allow a legacy vehicle designed for an internal combustion engine power plant to be retrofitted into an electric vehicle application using the switched reluctance machine SRM power plant.

[75] Figure 16 illustrates an alternative implementation. In this implementation, a separate switched reluctance machine SRM is provided for each wheel of the vehicle (either 2 wheel drive or 4 wheel drive). The driver circuitry would be connected to actuate each switched reluctance machine SRM (where each SRM may include one or more stacks with M >= 1). The switched reluctance machine SRM may, for example, directly drive its associated wheel. Alternatively, a gearing and/or transmission system may be implemented between the switched reluctance machine SRM and its associated wheel. In this implementation, it may further be advantageous to implement the switched reluctance machine SRM with the stator inside the rotor. In other words, the stator would be located in the center of the machine and the rotor would be positioned around and rotate about the stator. The implementation would then permit the rotor to be configured as a structural component of the wheel of the vehicle.

[76] The preferred switched reluctance machine SRM for use in an automobile application like that of Figure 15 would comprise one of the stacked implementation shown in Figures 11 A and 1 IB. A switched reluctance machine SRM of this type configured as a motor has been built and tested for use in an electric vehicle application. The motor has M=3 machines 4000, each machine having N=6 stator poles, N*=6 rotor poles, a stator diameter of 6-18 inches, a rotor diameter of 2-12 inches, a rotor pole length of 2-6 inches, a PSP length of 0.5-3 inches, an ASP length of 0.25-2 inches, and a pole width of 0.75-3 inches. The motor, when configured with a stator diameter of 14-18 inches, a rotor diameter of 9-12 inches, a rotor pole length of 4 inches, a PSP length of 2 inches, an ASP length of 1.5 inches, and a pole width of 2 inches and tested with a battery bank of sixteen 6V lead acid batteries (a total of about 100 volts), produced a maximum speed of 2200 rpm, a maximum torque of 60 ft.-lbs. and a maximum power consumption of 18 K- watts. With this output, the switched reluctance machine SRM is an acceptable power plant replacement for many four and six cylinder internal combustion engines.

[77] Other applications may utilize single stack or double stack switched reluctance machine SRM configurations (a single stack configuration being illustrated in Figure 10). A switched reluctance machine SRM with a larger stack (i.e., M>3) may also be used for heavier duty (larger torque and power) applications provided sufficient space is available for the installation.

[78] Although the embodiments illustrated and described herein relate to a reluctance machine where the rotor is inside the stator, it will be understood that the disclosed reluctance machine could alternatively be configured with the stator inside the rotor.

[79] Although preferred embodiments of the method and apparatus of the present invention have been illustrated in the accompanying Drawings and described in the foregoing Detailed Description, it will be understood that the invention is not limited to the embodiments disclosed, but is capable of numerous rearrangements, modifications and substitutions without departing from the spirit of the invention as set forth and defined by the following claims.