Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
SYSTEM AND METHOD FOR IMPLEMENTING SELECTIVE PAGING MODEL FOR USE IN A MULTI-ACCESS ENVIRONMENT
Document Type and Number:
WIPO Patent Application WO/2008/072198
Kind Code:
A2
Abstract:
A system by which paging can be performed to support global reachability in a heterogeneous multi-access environment independently on a particular radio access network architecture. Various embodiments of the present invention provide methods for performing generic paging in heterogeneous multi-access networks based on incoming traffic and its characteristics, producing a topology-based coverage map of dynamic access networks. The framework of the various embodiments of the present invention supports the use of user preferences in the selective paging process; i.e. the most optimal radio access is activated according to user preferences and the current networking environment.

Inventors:
POYHONEN PETTERI (FI)
STRANDBERG OVE (FI)
Application Number:
PCT/IB2007/055065
Publication Date:
June 19, 2008
Filing Date:
December 12, 2007
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
NOKIA CORP (FI)
NOKIA INC (US)
POYHONEN PETTERI (FI)
STRANDBERG OVE (FI)
International Classes:
H04W68/12; H04W8/18
Domestic Patent References:
WO2007100300A12007-09-07
Foreign References:
EP1339250A22003-08-27
US20040185879A12004-09-23
GB2418568A2006-03-29
US20070127498A12007-06-07
Other References:
See references of EP 2103169A4
Attorney, Agent or Firm:
ALBERT, G.Peter (11250 El Camino RealSuite 20, San Diego CA, US)
Download PDF:
Claims:

WHAT IS CLAIMED IS:

1 A method of using an external entity to selectively page a user equipment item in a multi-access environment, comprising using previous knowledge within the external entity of an active radio access technology (RAT) for the user equipment item to request access to the user equipment item through the active RAT's related network, requesting that networks related to at least one additional RAT for the user equipment item provide the external entity with information relating to the at least one additional RAT, receiving the information relating to the at least one additional RAT and notifying a mobile anchor point (MAP) of any changes in the user equipment item's reachability information

2 The method of claim 1 , wherein the requesting of access to the usci equipment item through the active RAT's related network includes requesting location information for the user equipment item

3 The method of claim 1 , wherein the requesting of access to the user equipment item through the active RAT's related network includes requesting a recent radio signal measurement for the user equipment item

4 The method of claim 1 , wherein the radio signal measurement comprises a measurement of a current signal power level

5 The method of claim 1 , wherein the requesting of access to the user equipment item through the active RAT's related network includes requesting a set ot radio signal measurement stored in the user equipment item

6 The method of claim 1, further compπsing requesting that the networks related to at least one additional RAT activate the user equipment item's radio access

7 The method of claim 1 , w herein the notification of changes in the user equipment item's reachibihty information occurs through the transmission of a binding update message

8 The method of claim 1 , wherein the information relating to the at least one additional RAT compnses a current coverage map for each of the at least one additional RAT

9 The method of claim 8, wherein the current coverage maps received tor the at least one additional RAT are formed based on location and signal information tor active nodes

10 The method of claim 8, further composing before requesting that networks related to at least one additional RA Y for the user equipment item provide the external entity with the respective RAT's current coverage map, notifying the user equipment item that it should prepare itself tor communication, and receiving an indication from the user equipment item that the at least one additional RAT has been enabled if necessary

11 The method ot claim 1 , further comprising, before requesting access Io the user equipment item through the active RAT's related network, receiving a request from the mobile anchor point to request the activation of at least one of the user equipment item's RATs

12 1 he method of claim 1 1 , wherein tnggeπng event information is also received along with the request for activation of at least one of the user equipment item's RATs

13 The method of claim 12, wherein the tnggenng event information indicates that the tnggenng event comprised the receipt of a data packet destined for the user equipment item

14 The method of claim 12, wherein the triggering event information indicates that the triggering event comprised a control signal generated by another entity

15 The method of claim 1 , wherein the information relating to the at least one additional RAT is received separate from a paging execution cycle

16 An external entity configured for use in selectively paging a user equipment item in a multi-access environment , comprising a processor, and a memory unit communicatively connected to the processor and including computer code for using previous knowledge within the external entity of an active radio access technology (RAT) for the user equipment item to request access to the user equipment item through the active RAT's related network, computer code for requesting that networks related to at least one additional RAT for the user equipment item provide the external entity with information relating to the at least one additional RAT, computer code for, after receiving the information relating to the at least one additional RAT, notifying a mobile anchor point (MAP) of any changes in the user equipment item's reachability information

17 The external entity of claim 16, wherein the requesting of access to the user equipment item through the active RAT's related network includes requesting location information for the user equipment item

18 The external entity of claim 16, wherein the requesting of access to the user equipment item through the active RAT's related network includes requesting a recent radio signal measurement for the user equipment item

19 The external entity of claim 18, wherein the recent radio signal measurement comprises a measurement of a current signal power level

20 The external entity of claim 16, wherein the requesting of access to the user equipment item through the active RAT's related network includes requesting a set of radio signal measurements stored in the user equipment item

21 The external entity of claim 16, wherein the memory unit further comprises computer code for requesting that the networks related to at least one additional RAT activate the user equipment item's radio access

22 The external entity of claim 16, wherein the notification of changes in the user equipment item's reachibility information occurs through the transmission of a binding update message

23 The external entity of claim 22, wherein the information relating to the at least one additional RAT compπses a current coverage map for each of the at least one additional RAT

24 The external entity of claim 23 wherein the current coverage maps received for the at least one additional RAT are formed based on location and signal information for active nodes

25 The external entity of claim 22, wherein the memory unit further compπses computer code for, before requesting that networks related to at least one additional RAT for the user equipment item provide the external entity with the respective RAT's current coverage map, notifying the user equipment item that it should prepare itself for communication, and computer code for processing a received indication from the user equipment item that the at least one additional RAT has been enabled if necessary

26 The external entity of claim 16, wherein the memory unit further compπses computer code for, before requesting access to the user equipment item through the active RAT's related network, processing a received request from the

mobile anchor point to request the activation of at least one of the user equipment item's RyVTs

27 The external entity of claim 26, wherein triggering event information is also received along with the request for activation of at least one of the user equipment item's RATs

28 The external entity of claim 27, wherein the triggering event information indicates that the tπggeπng event compπsed the receipt of a data pdcktt destined for the user equipment item

29 The external entity of claim 27, wherein the triggering event information indicates that the tπggeπng event compπsed a control signal generated b> another entity

30 The external entity of claim 26, wherein the information relating to the at least one additional RAT is received separate from a paging execution cycle

31 A computer program product, embodied in a computer-readable medium, for using an external entity to selectively page a user equipment item in a multi-access environment, compπsing computer code for using previous knowledge within the external entity of an active radio access technology (RAT) for the user equipment item to request access to the user equipment item through the active RAT's related network, computer code for requesting that networks related to at least one additional RAT for the user equipment item provide the external entity with information relating to the at least one additional RAT, computer code for, after receiving the information relating to the at least one additional RAT, notifying a mobile anchor point of any changes in the user equipment item's reachability information

32 A system configured to implement a selective paging model for use in a multi-access environment compπsing

a user equipment item configured to communicate with other devices using a plurality of radio access technologies (RATs); an external entity in at least selective communication with the user equipment item; and a mobile anchor point (MAP) configured for at least selective communication with the external entity, wherein the external entity is further configured to save information regarding the plurality of radio access technologies used by the user equipment item.

33. The system of claim 33, wherein the external entity is further configured to save information regarding current coverage maps for the plurality of radio access technologies used by the user equipment item.

34. A method of using an external entity to selectively page a user equipment item in a multi-access environment, comprising: using previous knowledge within the external entity of an active radio access technology (RAT) for the user equipment item to request access to the user equipment item through the active RAT's related network; and obtaining, upon request, information related to at least one additional RAT for the user equipment item from networks related to the at least one additional RAT, wherein the information is received separate from a paging execution cycle.

35. An external entity configured for use in selectively paging a user equipment item in a multi-access environment, comprising: a processor; and a memory unit communicatively connected to the processor and including: computer code for using previous knowledge within the external entity of an active radio access technology (RAT) for the user equipment item to request access to the user equipment item through the active RAT's related network; and computer code for obtaining, upon request, information related to at least one additional RAT for the user equipment item from networks related to

the at least one additional RAT, wherein the information is received separate from a paging execution cycle.

Description:

SYSTEM AND METHOD FOR IMPLEMENTING A SELECTIVE

PAGING MODEL FOR USE IN A MULTI-ACCESS

ENVIRONMENT

FIELD OF THE INVENTION

[0001] The present invention relates generally to radio access technologies (RA I s) More particularly, the present invention relates to paging mechanisms for use with a wide variety ot different RATs

BACKGROUND OF THE INVENTION

[0002] This section is intended to provide a background or context to the invention that is recited in the claims The descπption herein may include concepts that could be pursued, but are not necessarily ones that have been previously conceived or pursued Therefore, unless otherwise indicated herein, what is described in this section is not pπor art to the descπption and claims in this application and is not admitted to be pnor art by inclusion in this section

[0003] Wireless communication systems arc used to provide communication services such as voice, packet data, etc Wneless communication systems may comprise multiple-access systems that are capable of supporting multiple users by sharing available system resources Examples of such access systems include Code Division Multiple Access (CDMA) systems, Time Division Multiple Access (TDMA) systems, and Frequency Division Multiple Access (FDMA) systems A CDMA system may implement a RAT such as Wideband CDMA (W-CDMA), CDMA2000, etc Typically, not all RATs have conventionally supported built-in paging mechanisms for providing reachability Additionally, whenever paging mechanisms are supported, they are typically defined to be RAT-specific functions that are only used in legacy architectures Furthermore, paging is also typically only incorporated for specific mobility arrangements, the inclusion of heterogeneous mobility arrangements into a common paging environment has not been conventionally implemented Still further, clients that do not belong to a mobility system typically

are not capable of entenng into an idle mode without loosing IP connectivity and ; or context.

[0004] In light of the above, it would be desirable to provide a system for enabling selective paging m a heterogeneous multi-access environment, supporting both mobile cellular and non-mobile cellular access.

SUMMARY OF I HE INVENTION

[0005] The present invention provides a system by which paging can be performed to support global reachability in a heterogeneous multi-access environment independently on a particular radio access network architecture and its paging mechanism(s). 1 he present invention provides methods for performing generic paging in heterogeneous multi-access networks based on incoming traffic and its characteristics, producing a topology-based coverage map of dynamic access networks. The framework of the vaπous embodiments of the present invention supports the use of user preferences in the selective paging process; i.e. the most optimal radio access is activated according to user preferences and the current networking environment. Additionally, with the various embodiments of the present invention, relative coverage information can be gathered separately from the paging execution cycle

[0006] These and other advantages and features of the invention, together with the organization and manner of operation thereof, will become apparent from the following detailed descπption when taken in conjunction with the accompanying drawings, wherein like elements have like numerals throughout the several drawings described below.

BRIEF DESCRIPTION OF THE DRAWINGS

[0007] Figure 1 is a depiction showing the function of a paging system in accordance with various embodiments of the present invention; [0008] Figure 2 is a perspective view of a mobile telephone that can be used in the implementation of the present invention, and

[0009] Figure 3 is a schematic representation of the telephone circuitry of the mobile telephone of Figure 2.

DETAILED DESCRIPTION OF VARIOUS EMBODIMENTS

[0010] The present invention provides a system by which paging can be performed to support global reachability in a heterogeneous multi-access environment independently on a particular radio access network architecture and its paging mechanism(s). The present invention provides methods for performing generic paging in heterogeneous multi-access networks based on incoming traffic and its characteristics, producing a topology-based coverage map of dynamic access networks. This generic paging uses a radio access network-specific paging mechanism or mechanisms. The framework of the various embodiments of the present invention supports the use of user preferences in the selective paging process; i.e. the most optimal radio access is activated according to user preferences and the current networking environment. Additionally, with the various embodiments of the present invention, relative coverage information can be gathered separately from the paging execution cycle.

[0011] Figure 1 is a depiction showing the function of a paging model constructed in accordance with various embodiments of the present invention. Figure 1 shows how generic paging can be performed according various embodiments in heterogeneous multi-access networks based on incoming traffic and its characteristics. for example. Figure 1 also shows how topology-based coverage maps of dynamic access networks may be produced according the embodiments of the present invention.

[0012] "X", represented at 100 in Figure 1 , is an external entity, from the point of view of the user equipment (UE) 1 10, that is aware of the relevant UE's logical and/or physical resources. A user also may control this external entity 100 and provide, for example, various user preferences and policies to control the behavior of the external entity 100. The UE 1 10 is also responsible for maintaining its "RAT status" in the external entity 100 so that, when needed, the external entity 100 is capable of

contacting the UE 1 10 This status information may contain, for example, required contact address parameters

[0013] As depicted in Figure 1, the user's Mobile Anchor Point (MAP)120 that provides a global Layer 3 (L3) reachability for the user is tnggered either by a data packet intended for the user's UE 100 (represented at 200) or a control signal generated by an external control/user plane entity (represented at 203). Alternatively, the external entity that is aware of user's UE resources (such as the radio accesses which are supported by the UE 1 10, e g., RAT 2 and RAT 3 -related networks, identified herein at 140 and 150) may be also triggered by a control signal generated by an external control/user plane entity, as represented at 206. [0014] At 210 in Figure 1, the MAP 120 contacts the external entity 100 and requests that the external entity 100 activate one or more of the UE's radio accesses according to related preferences/policies The MAP 120 may also provide additional information about the trigger. For example, if a received data packet was a trigger, then some information about traffic type could be provided to the external entity 100 [0015] At 220 in Figure 1 , the external entity 100 is aware of the UE's active radio access (referred to herein as RATi) and contacts the RAT r related network 130 in order to request access to the UE 110 It should be noted that the identification of UE's 1 10 over different RATs can be performed, tor example, in various RAT- specific ways It should also be noted, that, depending on the nature of RATi, the UE's radio may be in an idle state, potentially requiring the first related network 130 to perform RATO-specific paging to "wake up" the UE 1 10 and activate its RAT 1 The external entity 100 may also request the UE's current location info, a current signal power level for the UE 110, or other radio measurements At this point, the external entity could request only a recent radio measurement, or a set of such measurements stored in the UE 1 10 A set of measurements could be used, for example, in order to determine how the measured radio signal strength has changed, e.g , whether it is decreasing or increasing A set of measurements, along with location information from the UE 110 can also help to build up and maintain coverage maps, i e in loc(x,y), a certain RAT can possess an average signal strength of M'

|0016] At 230, the external entity 100 sends a message to the UE 110 via the first related network 130, notifying the UE 110 that it should prepare itself for communication. If necessary, the external entity 100 may also ask for updated location information from the UE. The UE therefore enables other RATs at its disposal, designated herein as RAT 2 and RAT 3 as necessary. At 240, the UE 1 10 replies to the external entity, indicating that RAT 2 and RAT 3 are enabled. |0017] At 250, the external entity 100 requests the RAT 2 and RAT 3 -related networks 140 and 150 provide their current respective coverage maps, and the coverage maps are therefore provided to the external entity 100 in response. In a highly dynamic radio access network, this map can be formed based upon active nodes and their location and signal information. If necessary, the external entity 100 may request that the RAT 2 -related network 140 activate the UE's radio access and, depending on the state of the UE's radio and the type of RAT, a RAT-specific paging may need to be performed. This is represented at 260.

[0018] If the UE's locator (i.e., its IP address) has changed due to the deployment of a new RAT, then at 270 it notifies its MAP 120 about this change in order to update the UE's reachability information. For example, if a MAP 120 represents a Home Agent of Mobile IPv6, then this notification may comprise a binding update message, At this point and as represented by 280, the MAP 120 is then capable of forwarding a received and buffered data packet to the UE 1 10 in the even that the original trigger comprised a data packet that was destined for the user's UE 1 10. [0019] It should be noted that the example illustrated in Figure 1 does not depict the use of local L3 mobility. However, the MAP 120 could be also used for local mobility management, in which case the MAP 120 provides for local L3 reachability instead of global reachability.

[0020] Figures 2 and 3 show one representative electronic device 12 within which the present invention may be implemented. It should be understood, however, that the present invention is not intended to be limited to one particular type of electronic device 12 or other electronic device. It should also be noted that the components described with regard to the electronic device could be incorporated as necessary into any of the devices necessary for the successful implementation of the present

invention The electronic device 12 of Figures 2 and 3 includes a housing 30 a display 32 in the form of a liquid crystal display, a keypad 34, a microphone 36, an ear-piece 38, a battery 40, an infrared port 42, an antenna 44, a smart card 46 in the form of a UICC according to one embodiment of the invention, a card reader 48, radio interface circuitry 52, codec circuitry 54, a controller 56 and a memory 58 Indmdudl circuits and elements are all of a type well known in the art, for example in the Nokia range of mobile telephones

[0021 ] Communication devices used in the implementation of the present invention may be stationary or mobile as when earned by an individual who is moving The communication devices may also be located in a mode of transportation including, but not limited to, an automobile, a truck, a taxi, a bus, a boat, an airplane, a bicycle, a motorcycle, etc A communication device may communicate using various media including, but not limited to, radio, infrared, laser, cable connection, etc [0022] The vaπous embodiments descπbed herein are descπbed in the general context of method steps or processes, which may be implemented in one embodiment by a computer program product, embodied in a computer-readable medium including computer-executable instructions, such as program code, executed by computers in networked environments A computer-readable medium may include removable and non-removable storage devises including, but not limited to, Read Only Memory (ROM), Random Access Memory (RAM), compact discs (CDs), digital versatile disc (DVD), etc Generally, program modules include routines, programs, objects, components, data structures, etc that perform particular tasks or implement particulai abstract data types Computer-executable instructions, associated data structures, and program modules represent examples of program code for executing steps of the methods disclosed herein lhe particular sequence of such executable instructions or associated data structures represents examples of corresponding acts for implementing the functions descπbed in such steps

[0023] Software and web implementations of vaπous embodiments can be accomplished with standard programming techniques with rule based logic and other logic to accomplish the various database searching steps or processes, correlation steps or processes, compaπson steps or processes and decision steps or processes It

should be noted that the words "component" and "module," as used herein and in the following claims, is intended to encompass implementations using one or more lines of software code, and/or hardware implementations, and/or equipment for receiving manual inputs

[0024] The foregoing description of embodiments of the present invention has been presented for purposes of illustration and description, lhc foregoing description is not intended to be exhaustive or to limit embodiments of the present invention to the precise form disclosed, and modifications and variations are possible in light of the above teachings or may be acquired from practice of the present invention The embodiments discussed herein were chosen and described in order to explain the principles and the nature of vaπous embodiments and its practical application to enable one skilled in the art to utilize the present invention in various embodiments and with various modifications as are suited to the particular use contemplated. The features of the embodiments described herein may be combined in all possible combinations of methods, apparatus, modules, systems and computer program products