Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
TETRAHYDROCANNABIVARIN FOR USE IN THE TREATMENT OF NAUSEA AND VOMITING
Document Type and Number:
WIPO Patent Application WO/2014/170649
Kind Code:
A1
Abstract:
The present invention relates to the use of tetrahydrocannabivarin (THCV) in the treatment of nausea and vomiting. Preferably the THCV is isolated and / or purified from cannabis plant extracts. Preferably the nausea and / or vomiting is caused by the effects of a medication such as a chemotherapeutic agent.

Inventors:
ROCK ERIN (CA)
PARKER LINDA (CA)
DUNCAN MARNIE (GB)
STOTT COLIN (GB)
Application Number:
PCT/GB2014/051159
Publication Date:
October 23, 2014
Filing Date:
April 14, 2014
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
GW PHARMA LTD (GB)
International Classes:
A61K31/352; A61P1/08
Foreign References:
GB2478595A2011-09-14
GB2494461A2013-03-13
Other References:
R G PERTWEE: "The diverse CB1 and CB2 receptor pharmacology of three plant cannabinoids: Delta(9)-tetrahydrocannabinol, cannabidiol and Delta(9)-tetrahydrocannabivarin", BRITISH JOURNAL OF PHARMACOLOGY, vol. 153, no. 2, 1 January 2008 (2008-01-01), BASINGSTOKE, HANTS; GB, pages 199 - 215, XP055125148, ISSN: 0007-1188, DOI: 10.1038/sj.bjp.0707442
ERIN M ROCK ET AL: "Evaluation of the potential of the phytocannabinoids, cannabidivarin (CBDV) and [Delta] 9 -tetrahydrocannabivarin (THCV), to produce CB 1 receptor inverse agonism symptoms of nausea in rats", BRITISH JOURNAL OF PHARMACOLOGY, vol. 170, no. 3, 17 September 2013 (2013-09-17), pages 671 - 678, XP055125112, ISSN: 0007-1188, DOI: 10.1111/bph.12322
Attorney, Agent or Firm:
HARRISON GODDARD FOOTE LLP (Merchant Exchange17-19 Whitworth Street West, Manchester M1 5WG, GB)
Download PDF:
Claims:
CLAIMS

1. The phytocannabinoid tetrahydrocannabivarin (THCV) for use in the treatment of nausea and / or vomiting.

2. The phytocannabinoid tetrahydrocannabivarin (THCV) as claimed in claim 1 , wherein the nausea and / or vomiting is caused by the effects of a medication.

3. The phytocannabinoid tetrahydrocannabivarin (THCV) as claimed in claim 2, wherein the medication is a chemotherapeutic medicine.

4. The phytocannabinoid tetrahydrocannabivarin (THCV) as claimed in any of the preceding claims, wherein the THCV are present in an effective human daily dose to reduce or relieve nausea and / or vomiting.

5. The phytocannabinoid tetrahydrocannabivarin (THCV) as claimed in claim 4, wherein the effective human daily dose of THCV is between 1 mg and 2000 mg.

6. The phytocannabinoid tetrahydrocannabivarin (THCV) as claimed in claim 5, wherein the effective human daily dose of THCV is between 10 mg and 1000 mg.

7. The phytocannabinoid tetrahydrocannabivarin (THCV) as claimed in any of the preceding claims, wherein the cannabinoids are packaged for use for an extended treatment period. 8. The phytocannabinoid tetrahydrocannabivarin (THCV) as claimed in claim 7, wherein the extended treatment period is at least 7 days.

9. The phytocannabinoid tetrahydrocannabivarin (THCV) as claimed in any of the preceding claims, in combination with one or more other medicinal substances.

10. The phytocannabinoid tetrahydrocannabivarin (THCV) as claimed in any of the preceding claims, wherein the THCV is in an isolated or substantially pure form.

11. The phytocannabinoid tetrahydrocannabivarin (THCV) as claimed in any of claims 1 to 10, wherein the THCV is in the form of a botanical drug substance.

12. The phytocannabinoid tetrahydrocannabivann (THCV) as claimed claim 11 , wherein all or a substantial proportion of tetrahydrocannabinol (THC) has been removed.

13. The phytocannabinoid tetrahydrocannabivann (THCV) in combination with a chemotherapeutic agent.

14. The phytocannabinoid tetrahydrocannabivann (THCV) as claimed in claim 13, wherein the chemotherapeutic agent is a cannabinoid chemotherapeutic agent. 15. The phytocannabinoid tetrahydrocannabivann (THCV) as claimed in claim 13, wherein the chemotherapeutic agent is a non-cannabinoid chemotherapeutic agent.

16. A pharmaceutical formulation comprising the phytocannabinoid tetrahydrocannabivann (THCV) in an amount between 1 and 2000 mg in combination with a chemotherapeutic agent.

Description:
TETRAHYDROCANNABIVARIN FOR USE IN THE TREATM ENT OF NAUSEA AND

VOMITING

[0001] The present invention relates to the use of tetrahydrocannabivarin (THCV) in the treatment of nausea and vomiting. Preferably the THCV is isolated and / or purified from cannabis plant extracts.

BACKGROUND TO THE INVENTION

[0002] Side effects of the CB^ receptor inverse agonist/antagonist, rimonabant (SR141716; SR), in humans include nausea and depression (de Mattos Viana et ai , 2009; Despres, 2009). The nausea produced by SR and another compound AM251 (McLaughlin et ai , 2005) is the result of the inverse agonism at the CBi receptor (Sink et ai, 2008). Equivalent doses of AM251 produced conditioned gaping in rats.

[0003] The conditioned gaping model (see Parker et ai , 2008 for review) has been shown to detect the nauseating side effect of several compounds, including selective serotonin reuptake inhibitors (SSRIs), phosphodiesterase-4 inhibitors and CBi receptor inverse agonists

(McLaughlin et al., 2005; Sink et ai , 2008).

[0004] As well as producing nausea on their own, the CBi receptor inverse agonists (at subthreshold doses that do not produce nausea on their own), SR (Parker ei a/., 2003) and AM251 (Limebeer et ai , 2010), potentiate the nausea produced by the toxin lithium chloride (LiCI).

[0005] Phytocannabinoids have recently become candidates for therapeutic applications, however their usefulness may be limited if they exhibit nausea producing effects. Much of the research on phytocannabinoids has concentrated on the psychoactive compound, THC and, the primary non-psychoactive cannabinoid, cannabidiol (CBD), found in marijuana. Low doses (0.5 mg/kg THC and 5 mg/kg CBD) of both of these compounds have been shown to suppress toxin-induced conditioned gaping in the rodent model of conditioned nausea (Limebeer & Parker 1999; Parker et ai, 2002; Parker et ai , 2003).

[0006] The effects of phytocannabinoid tetrahydrocannabivarin (THCV) in the rodent model of conditioned nausea were unknown.

[0007] Recent work with both plant-derived THCV and synthetic THCV (0-4394) has elucidated its behavioural effects and mechanism of action. In vitro, THCV acts as a CBi and CB 2 receptor antagonist (Thomas et ai, 2005).

[0008] In vivo, THCV has also been shown to act as a CBi receptor antagonist at low doses (<3 mg/kg) (Pertwee et ai , 2007). THCV shares the ability of AM251 to reduce the food intake and body weight of non-fasted and fasted mice (Robinson et ai , 2007).

[0009] THCV has been shown to suppress seizure activity (Hill et ai , 2010), reduce inflammation and inflammatory pain (Bolognini et ai , 2010), reduce weight due to hypophagia (Riedel et al. , 2009), it is also able to reduce Parkinson's disease symptoms, as well as disease progression (Garcia et al., 2011). Therefore, further examination of potential nauseating side effects of THCV is important.

[0010] The patent GB2384707B describes the anti-emetic effect of CBD and CBDA using the suncus murinus model of nausea.

[0011] The applicants have evaluated whether the phytocannabinoid produced nausea and potentiate toxin-induced nausea. Because it is known that THCV can behave as a CB1 antagonist and shares the ability of SR and AM251 to reduce food intake in vivo it was likely that this phytocannabinoid would produce nausea and potentiate toxin-induced nausea.

[0012] Surprisingly the applicants have discovered that THCV neither produced nausea nor potentiated toxin-induced nausea and more significantly at high doses actually acted as an antiemetic. As such THCV is a potential candidate for use in the treatment of nausea and vomiting.

BRIEF SUM MARY OF THE DISCLOSURE

[0013] In accordance with a first aspect of the present invention there is provided the phytocannabinoid tetrahydrocannabivarin (THCV) for use in the treatment of nausea and / or vomiting.

[0014] Preferably the nausea and / or vomiting are caused by the effects of a medication.

[0015] More preferably the medication is a chemotherapeutic medicine.

[0016] Preferably the THCV is present in an effective human daily dose to reduce or relieve nausea and / or vomiting.

[0017] The human dose equivalent (HED) can be estimated using the following formula:

HED = Animal dose (mg/kg) multiplied by Animal K m

Human K m

The K m for a rat is 6 and the K m for a human is 37.

[0018] More preferably the effective human daily dose of THCV is between 1 mg and 2000 mg. More preferably still the effective human daily dose of THCV is between 10 mg and 1000 mg. Most preferably greater than or equal to 50 mg, through 75 mg, through 100 mg, to 150 mg of THCV.

[0019] Preferably the THCV is packaged for use for an extended treatment period.

[0020] More preferably the extended treatment period is at least 7 days.

[0021] The THCV may be provided in combination with one or more other medicinal substances.

[0022] The THCV may be in an isolated or substantially pure form. Alternatively the THCV may be in the form of a botanical drug substance (BDS). [0023] When the THCV is in the form of a BDS, preferably all or a substantial proportion of tetrahydrocannabinol (THC) has been removed.

[0024] In accordance with a second aspect of the present invention there is provided the phytocannabinoid tetrahydrocannabivarin (THCV) in combination with a chemotherapeutic agent.

[0025] Preferably the chemotherapeutic agent is a cannabinoid chemotherapeutic agent, alternatively the chemotherapeutic agent is a non-cannabinoid chemotherapeutic agent.

[0026] In accordance with a third aspect of the present invention there is provided the phytocannabinoid tetrahydrocannabivarin (THCV) in an amount between 1 and 2000 mg in combination with a chemotherapeutic agent.

[0027] In this specification the following terms are used and are intended to have the following meanings / definitions:

[0028] "Cannabinoids" are a group of compounds including the endocannabinoids, the phytocannabinoids and those which are neither endocannabinoids nor phytocannabinoids, hereafter "syntho-cannabinoids".

[0029] "Endocannabinoids" are endogenous cannabinoids, which are high affinity ligands of CB1 and CB2 receptors.

[0030] "Phytocannabinoids" are cannabinoids that originate in nature and can be found in the cannabis plant. The phytocannabinoids can be present in an extract including a botanical drug substance, isolated, or reproduced synthetically.

[0031] "Syntho-cannabinoids" are those compounds capable of interacting with the cannabinoid receptors (CB1 and / or CB2) but are not found endogenously or in the cannabis plant. Examples include WIN 55212 and SR141716 (rimonabant).

[0032] An "isolated phytocannabinoid" is one which has been extracted from the cannabis plant and purified to such an extent that all the additional components such as secondary and minor cannabinoids and the non-cannabinoid fraction have been removed.

[0033] A "synthetic cannabinoid" is one which has been produced by chemical synthesis this term includes modifying an isolated phytocannabinoid, by for example forming a

pharmaceutically acceptable salt thereof.

[0034] A "botanical drug substance" or "BDS" is defined in the Guidance for Industry Botanical Drug Products Guidance, June 2004, US Department of Health and Human Services, Food and Drug Administration Centre for Drug Evaluation and Research as: "A drug derived from one or more plants, algae, or microscopic fungi. It is prepared from botanical raw materials by one or more of the following processes: pulverisation, decoction, expression, aqueous extraction, ethanolic extraction or other similar processes." A botanical drug substance does not include a highly purified or chemically modified substance derived from natural sources. Thus, in the case of cannabis, BDS derived from cannabis plants do not include highly purified Pharmacopoeial grade cannabinoids

[0035] The structure of the phytocannabinoid THCV is as shown below:

[0036] For the purpose of this invention the term 'treatment' is intended to encompass reducing vomiting and nausea. Such agents are often known as "antiemetics". Antiemetics are typically used to treat or reduce vomiting and / or nausea caused by illnesses such as gastroparesis, migraine, rotavirus, vertigo, viral gastroenteritis and other illnesses that cause nausea and / or vomiting, motion sickness, or the side effects of medications such as opioid analgesics, general anesthetics and chemotherapy. A therapeutically effective amount is an amount of

phytocannabinoid that achieves this aim.

BRIEF DESCRIPTION OF THE DRAWINGS

[0037] Embodiments of the invention are further described hereinafter with reference to the accompanying drawings, in which

[0038] Figure 1 shows the mean number (± sem) of gapes at test elicited by 0.1% saccharin solution previously paired with each compound during the drug-free test trial.

[0039] Figure 2 shows the mean number (± sem) of gapes elicited by 0.1% saccharin solution previously paired with LiCI during the drug-free TR test trial.

DETAILED DESCRIPTION

[0040] The compounds SR141716 (SR) and AM251 produce nausea and potentiate toxin- induced nausea. Here, the phytocannabinoid, tetrahydrocannabivarin (THCV) was evaluated to determine whether it also produced nausea and potentiated toxin-induced nausea.

[0041] The Examples below demonstrate the effectiveness of the phytocannabinoid in the rodent model of conditioned nausea.

[0042] If a compound produces nausea it is expected to: 1) produce conditioned gaping reactions to a novel flavour with which it is paired (Example 1), and 2) enhance the nauseating effects of another toxin, i.e., producing potentiation of LiCI-induced conditioned gaping

(Example 2). [0043] If THCV does not produce gaping and does not enhance LiCI-induced gaping, it is likely that this compound will be useful in the treatment of nausea and vomiting.

EXAMPLE 1 : THE POTENTIAL OF THCV TO PRODUCE CONDITIONED GAPING

Materials and Methods

[0044] Animals: Procedures were according to the Canadian Council on Animal Care (CCAC). The protocol was approved by the Institutional Animal Care Committee, which is accredited by the CCAC.

[0045] Naive male Sprague-Dawley rats, obtained from Charles River Laboratories (St

Constant, Quebec) were single-housed in shoebox cages in the colony room at an ambient temperature of 21° C with a 12/12 light/dark schedule (lights off at 8 AM) and maintained on ad- libitum food and water.

[0046] Drugs and Materials: All cannabinoid compounds were prepared in a vehicle (VEH) of ethanol/Cremophor (Sigma)/saline (SAL; 1 :1 : 18) and administered intraperitonally (i.p.). LiCI (Sigma) was prepared in a 0.15 M solution with sterile water and administered i.p. at a volume of 20 ml/kg (127.2 mg/kg) in Example 2.

[0047] SR was prepared at 2.5, 10 and 20 mg/kg and administered at a volume of 2 ml/kg. CBDV was prepared at 2.5 and 10 mg/kg and administered at a volume of 2 ml/kg. A high dose of CBDV was prepared at 200 mg/kg and administered at a volume 10 ml/kg. THCV was prepared at 2.5, 10 and 20 mg/kg and administered at a volume of 2 ml/kg. AM251 was prepared at 10 mg/kg and administered at a volume of 2 ml/kg. THC was prepared at 2.5 and 10 mg/kg and administered at a volume of 2 ml/kg.

[0048] Procedures: Rats were implanted with intraoral cannulae under isofluorane anesthesia. Following recovery from surgery (at least 3 days), the rats received an adaptation trial in which they were placed in the taste reactivity (TR) chamber with their cannula attached to an infusion pump for fluid delivery. Water was infused into their intraoral cannula for 2 min at the rate of 1 ml/min.

[0049] The TR chambers were made of clear Plexiglas (22.5 x 26 x 20 cm) that sat on a table with a clear glass top. A mirror beneath the chamber on a 45 ° angle facilitated viewing of the ventral surface of the rat to observe orofacial responses.

[0050] On the day following the adaptation trial, the rats received a conditioning trial during which they were intraorally infused with 0.1 % saccharin solution for 2 min at the rate of 1 ml/min. Immediately after the saccharin infusion, they (n=10/ group, except AM251 with n=6) were injected with either: VEH (1/1/18: alcohol/cremaphor/saline), 10 mg/kg SR, 20 mg/kg SR, 10 mg/kg AM251 , 10 mg/kg THCV, 20 mg/kg THCV, 10 mg/kg CBDV or 200 mg/kg CBDV. [0051] Seventy two hours after the conditioning trial, the rats were returned to the TR chamber and intraorally infused with 0.1 % saccharin solution and their orofacial reactions were video recorded with the feed from the video camera fire-wired into a computer. The video tapes are later scored (at ½ speed) by a trained observer blind to the experimental conditions for the behaviour of gaping (large openings of the mouth and jaw, with lower incisors exposed). The videotapes were scored by 2 trained raters, resulting in an extremely high inter-rater reliability score (r = 0.97).

Results

[0052] The CB 1 inverse agonists/antagonists, SR and AM251 , produced more conditioned gaping reactions (nausea-like reactions) than any other group and none of the other drugs tested produced gaping that differed from VEH controls.

[0053] Figure 1 presents the mean (± sem) number of gapes displayed by the various groups in Example 1. The one-way analysis of variance (ANOVA) revealed a main effect of group, (7, 74) = 4.9; p < .001 .

[0054] By LSD comparison tests, all doses of the CBi inverse agonists/antagonists (SR and AM251) produced significantly more conditioned gaping when paired with saccharin solution than any of the other compounds (p's < 0.05).

[0055] As well, none of the other compounds (at any dose tested) significantly differed from VEH controls. SR produced marginally more gaping at 20 mg/kg than at 10 mg/kg (p = 0.057).

[0056] At all doses tested, THCV did not produce apparent inverse agonist properties when compared with VEH, but SR and AM251 both produced the inverse agonist effect of nausea that is not produced by receptor neutral C i antagonists. Conclusion

[0057] The results of Example 1 revealed that when explicitly paired with a novel saccharin solution, neither CBDV (10 or 200 mg/kg) nor THCV (10 or 20 mg/kg) produced the nausea-like profile of conditioned gaping produced by the CB^ receptor inverse agonists, SR and AM251.

[0058] Since conditioned gaping in rats is produced only by compounds that produce nausea and emesis in other species (see Parker and Limebeer, 2008), these results suggest that THCV should not cause nausea, an effect that appears to be caused by the CB^ inverse agonist effects of SR and AM251.

EXAMPLE 2: THE POTENTIAL OF THCV TO POTENTIATE CONDITIONED GAPING

CAUSED BY LiCI Materials and Methods

[0059] Animals and Drugs and Materials were as described in Example 1 above.

[0060] Following recovery from intraoral cannulation surgery, the rats received the adaptation trial to the TR test as described in Example 1 above. On the day of conditioning (saccharin palatability test), the rats were injected with VEH (n=10), 2.5 mg/kg SR (n=10), 2.5 mg/kg THC (n=6), 10 mg/kg THC (n=7), 2.5 mg/kg THCV (n=10) or 10 mg/kg THCV (n=6), 2.5 mg/kg CBDV (n=10) or 200 mg/kg CBDV (n=13). Thirty min later, each rat was intraorally infused with 0.1% saccharin solution while their orofacial responses were video recorded from the mirror beneath the chamber. Immediately following the 2 min intraoral infusion of saccharin, the rats were injected with 20 ml/kg or 0.15 M LiCI.

[0061] Seventy-two hours later, the rats received a drug-free test trial, during which they received a 2 min intraoral infusion of 0.1 % saccharin solution and the frequency of gaping was measured. The videotapes were later scored (at 1/2 speed) by an observer blind to the experimental conditions for the hedonic reaction of tongue protrusions (at conditioning and testing). As well, to determine other non-specific effects of the drug during conditioning, the conditioning tapes were scored for bouts of active locomotion (forward movement of paws on the floor of the cage).

Results

[0062] Figure 2 presents the mean (± sem) number of conditioned gaping reactions during the drug-free test, 72 hr following the conditioning trial. The one-way ANOVA revealed a significant group effect, F(7, 62) = 8.0; p < 0.001.

[0063] Subsequent LSD tests revealed that only Group 2.5 SR displayed potentiated LiCI- induced gaping reactions relative to group VEH (p < 0.025).

[0064] Significantly the group that received 10 mg/kg THCV displayed no gaping reactions (p < 0.001).

[0065] The groups that received 2.5mg CBDV (p = 0.08) or 2.5mg THCV (p = 0.07) showed marginally attenuated LiCI-induced gaping reactions relative to group VEH.

[0066] The groups that received 200mg CBDV (p < .05), 2.5mg THC (p < 0.02) or 10mg THC (p < 0.01) significantly attenuated the LiCI-induced gaping reactions.

[0067] 2.5mg THCV (p = 0.07) showed marginally attenuated LiCI-induced gaping reactions relative to group VEH.

[0068] This pattern of results suggests that the only compound that enhanced LiCI-induced nausea was 2.5 mg/kg of SR141716.

[0069] At a dose of 10 mg/kg, THCV actually eliminated LiCI-induced nausea, to a much greater degree than an equivalent dose of THC, with the added benefit that THCV is not psychoactive like THC. A dose of 200mg/kg CBDV produced a statistically significant antinausea effect, but this effect was less than that produced by the high dose of THCV.

Conclusion

[0070] This Example evaluated the potential of THCV to potentiate nausea produced by LiCI. At doses sub-threshold for producing nausea on their own (2.5 mg/kg), both SR (Parker and Mechoulam, 2003) and AM251 (Limebeer et al., 2010) pre-treatments prior to a saccharin-LiCI pairing potentiated the nausea produced by LiCI, as shown by potentiated gaping displayed in the subsequent drug-free test trial 72 hours after conditioning.

[0071] The group that was pre-treated with 2.5 mg/kg SR showed potentiated gaping relative to all other groups

[0072] The THCV, CBDV or THC pre-treated groups displayed attenuated LiCI-induced gaping reactions relative to VEH.

[0073] Interestingly, the group that received 10 mg/kg THCV showed no gaping reactions during intraoral infusion of saccharin that had been previously paired with LiCI, suggesting that it completely blocked LiCI-induced nausea, an effect evident with drugs that are anti-nausea agents such as ondansetron.

[0074] At a low dose (2.5 mg/kg) THCV acts as a CB 1 receptor antagonist (Thomas et al, 2005) and does not enhance LiCI-induced nausea evidenced as potentiation of gaping (like AM4113), suggesting that it is a neutral antagonist.

[0075] On the other hand, at a higher doses of THCV (e.g. 10 mg/kg), LiCI-induced gaping was suppressed.

Overall Conclusion

[0076] In conclusion, at all doses tested, unlike SR and AM251 , THCV neither: 1) produced conditioned gaping on its own when explicitly paired with saccharin solution, nor 2) potentiated LiCI-induced conditioned gaping.

[0077] THCV produced an anti-nausea-like effect in Example 2; that is THCV blocked LiCI- induced nausea at a dose greater than 2.5 mg/kg (in rats). This would equate to a human equivalent dose of greater than 0.4 mg/kg.

[0078] Taken together, these results suggest that that THCV may be a promising therapeutic, devoid of symptoms associated with CB 1 receptor inverse agonism and without the

psychotropic effect associated with CB 1 agonism.

[0079] THCV is as such a potential candidate for use in the treatment of nausea. References

Beyer CE, Dwyer JM, Piesla MJ, Piatt BJ, Shen R, Rahman Z, et al. (2010). Depression-like phenotype following chronic CB1 receptor antagonism. Neurobiol Dis 39: 148-155.

Bolognini D, Costa B, Maione S, Comelli F, Marini P, Di Marzo V, et al. (2010). The plant cannabinoid Delta9-tetrahydrocannabivarin can decrease signs of inflammation and

inflammatory pain in mice. Br J Pharmacol 160: 677-687.

de Mattos Viana B, Prais HA & Daker MV (2009). Melancholic features related to rimonabant. Gen Hosp Psychiatry 31 : 583-585.

Despres JP (2009). Pleiotropic effects of rimonabant: clinical implications. Curr Pharm Des 15: 553-570.

Garcia C, Palomo-Garo C, Garcia-Arencibia M, Ramos J, Pertwee R & Fernandez-Ruiz J (201 1). Symptom-relieving and neuroprotective effects of the phytocannabinoid Delta-THCV in animal models of Parkinson's disease. Br J Pharmacol 163: 1495-1506.

Hill AJ, Weston SE, Jones NA, Smith I, Bevan SA, Williamson EM, et al. (2010). Delta- Tetrahydrocannabivarin suppresses in vitro epileptiform and in vivo seizure activity in adult rats. Epilepsia 51 : 1522-1532.

Limebeer CL, Litt DE & Parker LA (2009). Effect of 5-HT3 antagonists and a 5-HT(1A) agonist on fluoxetine-induced conditioned gaping reactions in rats. Psychopharmacology (Berl) 203: 763-770.

Limebeer CL, Parker LA (1999). Delta-9-tetrahydrocannabinol interferes with the establishment and the expression of conditioned rejection reactions produced by cyclophosphamide: a rat model of nausea. Neuroreport 10: 3769-3772.

Limebeer CL, Vemuri VK, Bedard H, Lang ST, Ossenkopp KP, Makriyannis A, et al. (2010). Inverse agonism of cannabinoid CB1 receptors potentiates LiCI-induced nausea in the conditioned gaping model in rats. Br J Pharmacol 161 : 336-349.

McLaughlin PJ, Winston KM, Limebeer CL, Parker LA, Makriyannis A & Salamone JD (2005). The cannabinoid CB1 antagonist AM 251 produces food avoidance and behaviors associated with nausea but does not impair feeding efficiency in rats. Psychopharmacology (Berl) 180: 286-293.

Parker LA, Limebeer CL (2008). Cannabinoids in the management of nausea and vomiting In: Kofalvi A (ed). Cannabinoids and the Brain. Springer: NY, pp 259-273.

Parker LA, Mechoulam R (2003). Cannabinoid agonists and antagonists modulate lithium- induced conditioned gaping in rats. Integr Physiol Behav Sci 38: 133-145.

Parker LA, Mechoulam R & Schlievert C (2002). Cannabidiol, a non-psychoactive component of cannabis and its synthetic dimethylheptyl homolog suppress nausea in an experimental model with rats. Neuroreport 13: 567-570.

Parker LA, Mechoulam R, Schlievert C, Abbott L, Fudge ML & Burton P (2003). Effects of cannabinoids on lithium-induced conditioned rejection reactions in a rat model of nausea.

Psychopharmacology (Berl) 166: 156-162.

Parker LA, Rana SA & Limebeer CL (2008). Conditioned nausea in rats: assessment by conditioned disgust reactions, rather than conditioned taste avoidance. Can J Exp Psychol 62: 198-209. Pertwee RG, Thomas A, Stevenson LA, Ross RA, Varvel SA, Lichtman AH, Martin BR, Razdan RK (2007) The psychoactive plant cannabinoid, A 9 -tetrahydrocannabinol, is antagonized by A 8 - and A 9 -tetrahydrocannabiviarin in mice in vivo. Br J Pharmcol, 150: 586-594.

Riedel G, Fadda P, McKillop-Smith S, Pertwee RG, Piatt B & Robinson L (2009). Synthetic and plant-derived cannabinoid receptor antagonists show hypophagic properties in fasted and non- fasted mice. Br J Pharmacol 156: 1154-1 166.

Sink KS, McLaughlin PJ, Wood JA, Brown C, Fan P, Vemuri VK, et a/. (2008). The novel cannabinoid CB1 receptor neutral antagonist AM4113 suppresses food intake and food- reinforced behavior but does not induce signs of nausea in rats. Neuropsychopharmacology 33: 946-955.

Sink KS, Segovia KN, Sink J, Randall PA, Collins LE, Correa M, ef a/. (2010). Potential anxiogenic effects of cannabinoid CB1 receptor antagonists/inverse agonists in rats:

comparisons between AM4113, AM251 , and the benzodiazepine inverse agonist FG-7142. Eur Neuropsychopharmacol 20: 112-122.

Thomas A, Stevenson LA, Wease KN, Price MR, Baillie G, Ross RA, et al. (2005). Evidence that the plant cannabinoid Delta9-tetrahydrocannabivarin is a cannabinoid CB1 and CB2 receptor antagonist. Br J Pharmacol 146: 917-926.

Thomas A., Baillie GL, Phillips AM, Razdan RK, Ross RA, Pertwee RG (2007). Cannabidiol displapys unexpectedly high potency as an antagonist of CB1 and CB2 receptor agonists. Br J Pharmacol 150: 613-623.