Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
THERMALLY TREATING A COMPONENT
Document Type and Number:
WIPO Patent Application WO/2021/175663
Kind Code:
A1
Abstract:
The invention relates to a method for thermally treating a component (2), having the steps of: a) heating the component (2) in a first continuous furnace (3) that is divided into a first zone (6) and a second zone (7), which adjoins the first zone and through which the component (2) passes afterwards, in the transport direction (r) of the component (2), wherein the first zone (6) and the second zone (7) together extend over at least 70% of the first continuous furnace (3) in the transport direction (r) of the component (2), the average temperature in the first zone (6) lies below the AC3 temperature (TAC3) of the component (2), and the average temperature in the second zone (7) lies above the AC3 temperature (TAC3) of the component (2), b) transferring the component (2) from the first continuous furnace (3) into a temperature control station (4), and c) thermally treating the component (2) in the temperature control station (4). A first region of the component (2) is exposed to a temperature which on average lies above the AC3 temperature (TAC3) of the component (2), and a second region of the component (2) is cooled. By virtue of the aforementioned thermal treatment which varies from section to section, the component (2) obtains a ductility which varies from section to section, said ductility being advantageous in B pillars for motor vehicles for example. The different temperatures (Tz1,Tz2) in the zones (6, 7) of the first continuous furnace (3) cause the regions of different ductility to be separated from one another in a particularly defined manner.

Inventors:
WINKEL JÖRG (DE)
REINARTZ ANDREAS (DE)
WILDEN FRANK (DE)
Application Number:
PCT/EP2021/054443
Publication Date:
September 10, 2021
Filing Date:
February 23, 2021
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
SCHWARTZ GMBH (DE)
International Classes:
C21D1/19; C21D9/00; C21D9/46; F27B9/02; F27B9/40; F27D19/00
Domestic Patent References:
WO2019011650A12019-01-17
Foreign References:
DE102017120128A12019-03-07
DE102013107870A12015-01-29
DE102016202766A12017-08-24
Attorney, Agent or Firm:
HEINE, Christian (DE)
Download PDF:
Claims:
Ansprüche

1. Verfahren zum thermischen Behandeln eines Bauteils (2), umfassend: a) Erwärmen des Bauteils (2) in einem ersten Durchlaufofen (3), welcher in Transportrichtung (r) des Bauteils (2) in eine erste Zone (6) und eine an diese anschließende und von dem Bauteil (2) später durchlaufene zweite Zone (7) unterteilt ist, wobei sich die erste Zone (6) in Transportrichtung (r) des Bau teils (2) über mindestens 70 % des ersten Durchlaufofens (3) erstreckt, wobei eine Durchschnittstemperatur in der ersten Zone (6) unterhalb der AC3- Temperatur (TAc3) des Bauteils (2) liegt, und wobei eine Durchschnittstempe ratur in der zweiten Zone (7) oberhalb der AC3-Temperatur (TAc3) des Bau teils (2) liegt, b) Transferieren des Bauteils (2) von dem ersten Durchlaufofen (3) in eine Tem perierstation (4), c) thermisches Behandeln des Bauteils (2) in der Temperierstation (4), wobei ein erster Bereich des Bauteils (2) einer Temperatur ausgesetzt wird, die im Durchschnitt oberhalb der AC3-Temperatur (TAC3) des Bauteils (2) liegt, und ein zweiter Bereich des Bauteils (2) gekühlt wird.

2. Verfahren nach Anspruch 1, weiterhin umfassend: d) Transferieren des Bauteils (2) von der Temperierstation (4) in einen zweiten Durchlaufofen (5), e) thermisches Behandeln des Bauteils (2) in dem zweiten Durchlaufofen (5).

3. Verfahren nach einem der vorstehenden Ansprüche, wobei die Durchschnitts temperatur in der ersten Zone (6) des ersten Durchlaufofens (3) im Bereich von 10 bis 30 K unterhalb der AC3-Temperatur (TAC3) des Bauteils (2) liegt und/oder wobei die Durchschnittstemperatur in der zweiten Zone (7) des ersten Durchlaufofens (3) im Bereich von 10 bis 30 K oberhalb der AC3-Temperatur (TAC3) des Bauteils (2) liegt.

4. Verfahren nach einem der vorstehenden Ansprüche, wobei eine Verweildauer (tZ2) des Bauteils (2) in der zweiten Zone (7) des ersten Durchlaufofens (3) im Bereich von 10 bis 30s liegt.

5. Verfahren nach einem der vorstehenden Ansprüche, wobei in Schritt c) das Küh len des zweiten Bereichs des Bauteils (2) mit einer Verzögerung (tv) von 0,5 bis 15 s nach Abschluss von Schritt b) beginnt.

6. Verfahren nach einem der vorstehenden Ansprüche, wobei in Schritt c) der erste Bereich des Bauteils (2) einer Temperatur ausgesetzt wird, die im Durchschnitt

170 bis 250 K oberhalb der AC3-Temperatur (TACS) des Bauteils (2) liegt.

7. Verfahren nach einem der vorstehenden Ansprüche, wobei das Bauteil (2) in Schritt c) über eine Verweildauer (tTs) im Bereich von 10 und 30 s in der Tempe rierstation (4) verbleibt. 8. Vorrichtung (1) zum thermischen Behandeln eines Bauteils (2), umfassend:

- einen ersten Durchlaufofen (3), welcher in Transportrichtung (r) des Bauteils (2) in eine erste Zone (6) und eine an diese anschließende und dieser nachgeord- nete zweite Zone (7) unterteilt ist, wobei sich die erste Zone (6) in Transportrich tung (r) des Bauteils (2) über mindestens 70 % des ersten Durchlaufofens (3) er- streckt,

- eine dem ersten Durchlaufofen (3) in Transportrichtung (r) des Bauteils (2) nachgeordnete Temperierstation (4),

- eine Steuereinrichtung (8), die dazu eingerichtet ist, in der ersten Zone (6) des ersten Durchlaufofens (3) eine Durchschnittstemperatur unterhalb der AC3- Temperatur (TAc3) des Bauteils (2) einzustellen, und in der zweiten Zone (7) des ersten Durchlaufofens (3) eine Durchschnittstemperatur oberhalb der AC3- Temperatur (TACS) des Bauteils (2) einzustellen.

Description:
Thermisches Behandeln eines Bauteils

Die Erfindung betrifft ein Verfahren und eine Vorrichtung zum thermischen Behandeln eines Bauteils, insbesondere eines Stahlbauteils für ein Kraftfahrzeug.

Insbesondere in der Automobilindustrie ist es bekannt, Stahlbauteile durch ther- mische Behandlung gezielt zu härten. Dazu werden Stahlbauteile wie beispielsweise B-Säulen bereichsweise unterschiedlich thermisch behandelt. Entsprechend entsteht eine bereichsweise unterschiedliche Duktilität, was für das Crashverhalten derartiger Bauteile vorteilhaft ist. So können Insassen durch einen harten Bereich der B-Säule auf Höhe der Sitze geschützt werden, während weiche Bereiche im oberen und unteren Bereich der B-Säule durch Verformung Energie aufnehmen.

Aufgabe der vorliegenden Erfindung ist es, ausgehend vom beschriebenen Stand der Technik ein Verfahren zum thermischen Behandeln von Bauteilen vorzustellen, mit dem Bereiche des Bauteils besonders scharf voneinander getrennt thermisch behan delt werden können. Zudem soll eine entsprechende Vorrichtung vorgestellt werden. Diese Aufgaben werden gelöst mit dem Verfahren und der Vorrichtung gemäß den unabhängigen Ansprüchen. Weitere vorteilhafte Ausgestaltungen sind in den abhängigen Ansprüchen angegeben. Die in den Ansprüchen und in der Beschreibung dargestellten Merkmale sind in beliebiger, technologisch sinnvoller Weise miteinander kombinierbar. Erfindungsgemäß wird ein Verfahren zum thermischen Behandeln eines Bauteils vorgestellt. Das Verfahren umfasst: a) Erwärmen des Bauteils in einem ersten Durchlaufofen, welcher in Transportrich tung des Bauteils in eine erste Zone und eine an diese anschließende und von dem Bauteil später durchlaufene zweite Zone unterteilt ist, wobei sich die erste Zone in Transportrichtung des Bauteils über mindestens 70 % des ersten Durch laufofens erstreckt, wobei eine Durchschnittstemperatur in der ersten Zone unter halb der AC3-Temperatur des Bauteils liegt, und wobei eine Durchschnittstempe ratur in der zweiten Zone oberhalb der AC3-Temperatur des Bauteils liegt, b) Transferieren des Bauteils von dem ersten Durchlaufofen in eine Temperierstation, c) thermisches Behandeln des Bauteils in der Temperierstation, wobei ein erster Be reich des Bauteils einer Temperatur ausgesetzt wird, die im Durchschnitt oberhalb der AC3-Temperatur des Bauteils liegt, und ein zweiter Bereich des Bauteils ge kühlt wird.

Mit dem beschriebenen Verfahren kann ein Bauteil thermisch behandelt werden. Bei dem Bauteil handelt es sich vorzugsweise um ein Stahlbauteil. Der Stahl ist vorzugs weise 22MnB5. Beispielsweise ein Bauteil für ein Kraftfahrzeug, insbesondere eine B- Säule, kann mit dem beschriebenen Verfahren thermisch behandelt werden. Nach der thermischen Behandlung wird das Bauteil vorzugsweise in einer Presse pressgehärtet und insoweit warmumgeformt. Das Verfahren umfasst vorzugsweise als weiteren Schritt, dass das Bauteil nach der thermischen Behandlung in eine Presse transferiert wird und dort pressgehärtet wird. In dem Fall handelt es sich bei dem beschriebenen Verfahren um ein Verfahren zum thermischen Behandeln und Presshärten eines Bau teils.

Das Bauteil hat vorzugsweise eine Materialstärke von mindestens 1 mm, insbe sondere im Bereich von 1 bis 4 mm. Die Materialstärke des Bauteils ist vorzugsweise über das gesamte Bauteil konstant. Alternativ kann das Bauteil auch eine bereichs weise unterschiedliche Materialstärke aufweisen. Beispielsweise kann es sich bei dem Bauteil um ein „Tailor Rolled Blank (TRB)" handeln, bei dem lokal unterschiedliche Materialstärken durch lokal unterschiedliches Walzen erhalten werden. Auch kann es sich bei dem Bauteil um ein „Tailor Welded Blank (TWB)" handeln, bei dem lokal un terschiedliche Materialstärken erhalten werden, indem mehrere Bleche zusammenge schweißt werden. Auch eine Kombination von TRB und TWB ist möglich. Weiterhin kann das Verfahren gleichermaßen auf Bauteile mit und ohne Beschichtung ange wendet werden. Als Beschichtung kommt insbesondere eine Al/Si-Beschichtung in Betracht.

In Schritt a) wird das Bauteil in dem ersten Durchlaufofen erwärmt. Unter einem Ofen ist eine Einrichtung zu verstehen, die in ihrem Innern auf eine einstellbare Tempe ratur gebracht wird und in die ein Bauteil eingebracht werden kann. Mit der Zeit nimmt das Bauteil die im Innern des Ofens herrschende Temperatur an. Die Wärme wird also von dem im Ofen befindlichen Gas, bei dem es sich insbesondere um Luft handeln kann, auf das Bauteil übertragen. Ein Durchlaufofen ist ein Ofen, durch den das Bauteil hindurch bewegt werden kann, wobei das Bauteil während des Durchlaufens des Ofens erwärmt wird.

Bei dem ersten Durchlaufofen handelt es sich vorzugsweise um einen Rollen herdofen. In dem ersten Durchlaufofen wird das Bauteil vorzugsweise durch Brenner, insbesondere Gasbrenner, erwärmt. Dadurch kann das Bauteil eine besonders gleich mäßig verteilte Temperatur erhalten. Insbesondere wird nicht lediglich eine Schicht an der Oberfläche des Bauteils erwärmt. In dem ersten Durchlaufofen wird das gesamte Bauteil erwärmt. Das Bauteil wird von dem ersten Durchlaufofen vollständig aufge nommen. Zudem kann mit einem Durchlaufofen eine Erwärmung um eine besonders große Temperaturdifferenz erreicht werden. Mit einem Durchlaufofen kann ein Bauteil insbesondere von Raumtemperatur auf eine Temperatur im Bereich der AC3- Temperatur des Bauteils erwärmt werden. Eine derart umfangreiche Erwärmung ist mit vielen anderen Erwärmungsmethoden nicht oder jedenfalls nicht ohne unverhältnis mäßig großen Aufwand möglich.

Die Erwärmung in einem Durchlaufofen steht insbesondere im Gegensatz zu einer Erwärmung durch die sogenannte „direct energization". Damit wäre es nur schwer möglich, das Bauteil gleichmäßig und um einen ausreichend hohen Betrag zu erwär men. Beim direct energization kommt es vielmehr auf die Schnelligkeit der Erwärmung an. Zudem ist beim direct energization ein Kontakt mit dem Bauteil erforderlich. In Schritt a) des beschriebenen Verfahrens erfolgt das Erwärmen vorzugsweise kontakt los. Das schließt nicht aus, dass das Bauteil mit Transportrollen durch den ersten Durchlaufofen bewegt wird und insoweit in Kontakt mit den Transportrollen steht. Das Erwärmen ist kontaktlos, wenn der Wärmeeintrag in das Bauteil überein Gas und/oder über Wärmestrahlung erfolgt.

Der erste Durchlaufofen und auch die übrige für das Verfahren verwendete Vor richtung werden mithilfe einer „Transportrichtung des Bauteils" beschrieben. Das ist die Richtung, mit der das Bauteil durch die Vorrichtung und deren Elemente bewegt wird. Die Transportrichtung des Bauteils ist also insbesondere die Richtung, mit der das Bauteil durch den ersten Durchlaufofen bewegt wird. Bei Betrachtung entlang der so definierten Transportrichtung hat der erste Durch laufofen eine erste Zone und eine zweite Zone. Dass der erste Durchlaufofen in Trans portrichtung des Bauteils in diese beiden Zonen „unterteilt" ist, bedeutet, dass der ers te Durchlaufofen bei Betrachtung entlang der Transportrichtung des Bauteils nur diese beiden Zonen aufweist. Quer zur Transportrichtung des Bauteils erstrecken sich die Zonen vorzugsweise jeweils über den gesamten ersten Durchlaufofen.

Das Bauteil durchläuft zuerst die erste Zone und anschließend die zweite Zone.

Bei Betrachtung in T ransportrichtung ist die zweite Zone der ersten Zone insoweit nachgeordnet. Die erste Zone und die zweite Zone grenzen unmittelbar aneinander an. Die erste Zone grenzt an einen Einlass des ersten Durchlaufofens an, die zweite Zone grenzt an einen Auslass des ersten Durchlaufofens an. Über den Einlass kann das Bauteil in den ersten Durchlaufofen eingeführt werden. Überden Auslass kann das Bauteil den ersten Durchlaufofen verlassen.

Die Durchschnittstemperatur in der ersten Zone liegt unterhalb der AC3- Temperatur des Bauteils; die Durchschnittstemperatur in der zweiten Zone liegt ober halb der AC3-Temperatur des Bauteils. Das Bauteil wird also in dem ersten Durch laufofen zuerst vergleichsweise langsam auf eine Temperatur unterhalb der AC3- Temperatur erwärmt und anschließend kurzzeitig einer Temperatur oberhalb der AC3- Temperatur ausgesetzt. Vorzugsweise wird das Bauteil in der zweiten Zone auf eine Temperatur oberhalb der AC3-Temperatur erwärmt. Wenn die Verweildauer des Bau teils in der zweiten Zone hinreichend lang ist, kann dies die in der zweiten Zone einge stellte Temperatur sein.

Es ist bevorzugt, dass die Temperaturen in der ersten Zone und in der zweiten Zo ne jeweils konstant sind. Dadurch wird das Bauteil innerhalb der Zonen gleichmäßig erwärmt. Zu beachten ist aber, dass kurzzeitige und/oder lokal begrenzte Tempera turänderungen innerhalb des ersten Durchlaufofens für die Erwärmung des Bauteils nahezu keine Relevanz haben. Das liegt daran, dass sich die Temperatur des Bauteils vergleichsweise langsam an die Temperatur im ersten Durchlaufofen anpasst. Um die ser Tatsache Rechnung zu tragen, sind die Zonen über die jeweilige Durchschnitts temperatur definiert. Die Durchschnittstemperatur in der ersten Zone liegt unterhalb der AC3-Temperatur, die Durchschnittstemperatur in der zweiten Zone oberhalb der AC3-Temperatur. Die erste Zone wird also beispielsweise nicht dadurch unterbrochen, dass die Temperatur in einem kleinen Bereich oberhalb der AC3-Temperatur des Bau teils liegt. Entsprechendes gilt für die zweite Zone. Als Durchschnittstemperatur ist der Durchschnitt der Temperatur zu verstehen, der das Bauteil in der jeweiligen Zone aus gesetzt wird. Das ist die Temperatur in einer Bauteilebene des ersten Durchlaufofens, also der Ebene, in der das Bauteil durch den ersten Durchlaufofen transportiert wird. Insbesondere sollen im Falle eines gasbefeuerten ersten Durchlaufofens lokal erhöhte Temperaturen im Bereich der Brenner außer Acht gelassen werden, sofern diese von dem Bauteil beabstandet sind.

Die erste Zone erstreckt sich in Transportrichtung des Bauteils über mindestens 70 % des ersten Durchlaufofens, vorzugsweise sogar über mindestens 80 %. Es hat sich herausgestellt, dass es genügt, wenn das Bauteil zunächst vergleichsweise langsam aufgewärmt wird und anschließend nur kurz einer Temperatur oberhalb der AC3- Temperatur ausgesetzt wird. Entsprechend ist es bevorzugt, dass die erste Zone deut lich länger ausgebildet ist als die zweite Zone. Durch eine derartige Erwärmung wird ein besonders kleiner Übergangsbereichs zwischen den Bereichen unterschiedlicher Duktilität erhalten. Die Bereiche unterschiedlicher Duktilität sind also besonders scharf voneinander abgegrenzt. Das ist insofern überraschend, als dass ein Zusammenhang zwischen der Ausdehnung des Übergangsbereichs mit der Art und Weise der Erwär mung vor Einstellen einer Temperatur oberhalb von AC3 bisher nicht bekannt war.

Es genügt, dass sich die Zonen nur durch die eingestellte Temperatur voneinan der abgrenzen. Darüber hinaus ist es nicht erforderlich, dass sich die Zonen unter scheiden oder dass Grenzen zwischen den Zonen als solche erkennbar sind. Zudem ist es möglich, dass auf verschiedene Weisen eine erste Zone und eine zweite Zone in dem ersten Durchlaufofen definiert werden können. Es ist ausreichend, wenn es eine mögliche Zuweisung einer ersten Zone und eine mögliche Zuweisung einer zweiten Zone gibt, wobei alle für die beiden Zonen aufgestellten Bedingungen jeweils erfüllt sind. Auf alternative Zuweisungsmöglichkeiten kommt es dann nicht an. Gleichwohl erfolgt die Zuweisung der Zonen vorzugsweise nicht willkürlich. Sofern der Tempera turverlauf entlang der Transportrichtung des Bauteils klar erkennbare Sprünge auf weist, fällt die Grenze zwischen den Zonen vorzugsweise mit einem solchen klar er- kennbaren Sprung zusammen. So ist es insbesondere bevorzugt, dass die Temperatur an der Grenze zwischen der ersten Zone und der zweiten Zone auf der AC3- Temperatur des Bauteils liegt. Das ist insbesondere der Fall, wenn die Grenze zwi schen den beiden Zonen an einem Sprung der Temperatur von einem Wert unterhalb der AC3-Temperatur des Bauteils auf einen Wert oberhalb der AC3-Temperatur des Bauteils liegt.

Weiterhin ist es bevorzugt, dass die Temperatur über mindestens 80 % einer Aus dehnung der ersten Zone in T ransportrichtung des Bauteils unterhalb der AC3- Temperatur des Bauteils liegt. Gleichermaßen ist es bevorzugt, dass die Temperatur über mindestens 80 % einer Ausdehnung der zweiten Zone in Transportrichtung des Bauteils oberhalb der AC3-Temperatur des Bauteils liegt. Besonders bevorzugt liegt die Temperatur in der gesamten ersten Zone unterhalb der AC3-Temperatur. Beson ders bevorzugt liegt die Temperatur in der gesamten zweiten Zone oberhalb der AC3- Temperatur. Auch diese Aussagen beziehen sich jeweils auf die Temperatur, der das Bauteil im ersten Durchlaufofen ausgesetzt wird.

Der erste Durchlaufofen weist vorzugsweise eine Mehrzahl von Heizelementen auf, deren Temperatur vorzugsweise individuell eingestellt werden kann. Die erste Zone und die zweite Zone entsprechen vorzugsweise einer jeweilige Gruppe der Heiz elemente. Die Zuordnung der Heizelemente zu einer Zone kann durch eine Steuer einrichtung erfolgen und muss insoweit nicht an den Heizelementen selbst erkennbar sein. Maßgeblich ist allein die Temperaturverteilung. Durch Veränderung der Tempe ratureinstellung eines Heizelements an der Grenze zwischen der ersten Zone und der zweiten Zone kann die Zuordnung dieses Heizelements von der ersten Zone zur zwei ten Zone verändert werden, und umgekehrt. Allgemein kann durch eine Änderung der Zuordnung von Heizelementen an der Grenze zwischen den Zonen die Ausdehnung der Zonen verändert werden. Durch die jeweilige Temperatureinstellung der Heizele mente kann die Temperaturverteilung der Zone eingestellt werden. Alle Heizelemente einer Zone sind vorzugsweise auf die gleiche Temperatur eingestellt.

In Schritt b) des Verfahrens wird das Bauteil von dem ersten Durchlaufofen in die Temperierstation transferiert. Dort wird das Bauteil in Schritt c) bereichsweise unter schiedlich thermisch behandelt, indem ein erster Bereich des Bauteils einer Tempera- tur ausgesetzt wird, die im Durchschnitt oberhalb der AC3-Temperatur des Bauteils liegt, und ein zweiter Bereich des Bauteils gekühlt wird.

Der erste Durchlaufofen und die Temperierstation sind voneinander verschiedene Bauteile, die räumlich voneinander getrennt sind. Der Transfer zwischen dem ersten Durchlaufofen und der Temperierstation erleichtert das Abkühlen des Bauteils zwi schen dem Erwärmen im ersten Durchlaufofen und dem thermischen Behandeln in der Temperierstation. In der Temperierstation wird das Bauteil jedenfalls bereichsweise möglichst rasch abgekühlt. Ein rasches Abkühlen kann effizienter außerhalb des hei ßen ersten Durchlaufofens erfolgen. So kann bereits während des Transfers das Ab kühlen beginnen. Insoweit beschleunigt die räumliche Trennung des ersten Durch laufofens von der Temperierstation das Verfahren. Dies steht im Gegensatz zu einer Lösung, bei der alle Verfahrensschritte in dergleichen Einrichtung durchgeführt wer den, ohne das Bauteil transferieren zu müssen. Derartige Lösungen haben typischer weise das Ziel, den Aufwand für Bauteiltransfers gering zu halten oder ganz zu vermei den. Die räumliche Trennung zwischen dem ersten Durchlaufofen und der Temperier station erleichtert auch die Konstruktion, weil die Anforderungen an den ersten Durch laufofen und an die Temperierstation unterschiedlich sind. Beides in einer Einrichtung zu integrieren, wäre daher entsprechend kompliziert.

In der Temperierstation wird der erste Bereich einer Temperatur oberhalb der AC3-Temperatur des Bauteils ausgesetzt. Vorzugsweise wird der erste Bereich in der Temperierstation dadurch erwärmt. Je nach Temperatur des ersten Bereichs bei Ein tritt in die Temperierstation und je nach Verweildauer in der Temperierstation kann der erste Bereich in der Temperierstation aber auch auf seiner Temperatur gehalten wer den oder ein Abkühlen des ersten Bereichs kann verlangsamt werden. Der erste Be reich des Bauteils wird vorzugsweise insoweit einer Temperatur oberhalb der AC3- Temperatur des Bauteils ausgesetzt, als dass des Bauteils mit dem ersten Bereich an eine bauteilseitig offene Kammer gehalten wird, wobei die Kammer über eine Heizein richtung auf dieser Temperatur gehalten ist. Bevorzugt ist die Heizeinrichtung eine elektrische Heizeinrichtung. Die Heizeinrichtung kann beispielsweise ein Heizelement wie eine Heizschleife aufweisen. Alternativ oder zusätzlich kann die Heizeinrichtung ein Strahlrohr umfassen, welches mit einem Brenner, insbesondere mit einem Gas brenner beheizt ist.

Der zweite Bereich wird in der Temperierstation gekühlt. Das erfolgt vorzugsweise dadurch, dass der zweite Bereich außerhalb der zuvor beschriebenen Kammer gehal ten wird. Dort wird der zweite Bereich vorzugsweise mit einem Kühlfluid beaufschlagt, insbesondere mit Druckluft. Die Druckluft hat vorzugsweise einen Druck im Bereich von 2 bis 4,5 bar. Durch diesen vergleichsweise hohen Druck kann innerhalb kürzester Zeit eine große Menge der Druckluft auf den zweiten Bereich des Bauteils geleitet werden, so dass eine hinreichend hohe Kühlgeschwindigkeit erreicht werden kann.

Ob und inwieweit die Temperatur des Bauteils über oder unter der AC3- Temperatur des Bauteils liegt, beeinflusst maßgeblich die erhaltene Gefügezusam mensetzung. Durch die unterschiedliche thermische Behandlung der Bereiche des Bauteils können die beiden Bereiche unterschiedliche Gefügezusammensetzungen und insoweit unterschiedliche Duktilitäten erhalten. Der erste Bereich wird so härter als der zweite Bereich. So können beispielsweise bei einer B-Säule für ein Kraftfahrzeug die Crasheigenschaften gezielt eingestellt werden.

Der erste Bereich und der zweite Bereich sind nicht notwendigerweise jeweils zu sammenhängende Bereiche. So ist es insbesondere möglich, dass ein mittlerer Teil einer B-Säule den ersten Bereich darstellt, während ein oberer und ein unterer Teil der B-Säule zusammen den zweiten Bereich darstellen. Das Bauteil weist vorzugsweise, aber nicht notwendigerweise, nur den ersten Bereich und den zweiten Bereich auf, also keine weiteren Bereiche.

In einer bevorzugten Ausführungsform umfasst das Verfahren weiterhin: d) Transferieren des Bauteils von der Temperierstation in einen zweiten Durch lau fofen, e) thermisches Behandeln des Bauteils in dem zweiten Durchlaufofen.

Die Temperierstation und der zweite Durchlaufofen sind voneinander verschiedene Bauteile, die räumlich voneinander getrennt sind. Der Transfer zwischen der Tempe rierstation und dem zweiten Durchlaufofen erleichtert das Abkühlen des Bauteils zwi schen der thermischen Behandlung in der Temperierstation und in dem zweiten Durchlaufofen. So kann auch noch während des Transfers der zweite Bereich des Bau teils abgekühlt werden. Das verringert die erforderliche Größe der Temperierstation und beschleunigt das Verfahren. Dies steht im Gegensatz zu einer Lösung, bei der alle Verfahrensschritte nach Möglichkeit in dergleichen Einrichtung durchgeführt werden, ohne das Bauteil transferieren zu müssen. Derartige Lösungen haben typischerweise das Ziel, den Aufwand für Bauteiltransfers gering zu halten oder ganz zu vermeiden.

Die räumliche Trennung zwischen der Temperierstation und dem zweiten Durch laufofen erleichtert auch die Konstruktion, weil die Anforderungen an die Temperier station und an den zweiten Durchlaufofen unterschiedlich sind. Beides in einer Einrich tung zu integrieren, wäre daher entsprechend kompliziert.

Bei dem zweiten Durchlaufofen handelt es sich vorzugsweise um einen Rollen herdofen. In dem zweiten Durchlaufofen wird das gesamte Bauteil thermisch behan delt. Das Bauteil wird von dem zweiten Durchlaufofen vollständig aufgenommen. Die thermische Behandlung in einem Durchlaufofen steht insbesondere im Gegensatz zu einer Erwärmung durch das sogenannte „direct energization".

Durch die thermische Behandlung im zweiten Durchlaufofen erhält das Bauteil ei ne andere Gefügezusammensetzung als dies ansonsten der Fall wäre. Insoweit ist die vorliegende Ausführungsform auf Anwendungsfälle gerichtet, in denen entsprechen de Gefügezusammensetzungen gewünscht sind. Es hat sich herausgestellt, dass ins besondere in diesen Anwendungsfällen der beschriebene Vorteil erreicht wird, dass durch die Zonen mit unterschiedlichen Temperaturen im ersten Durchlaufofen beson ders scharf abgegrenzte Bereiche unterschiedlicher Duktilität erhalten werden kön nen. Dieser Vorteil wird mit der Kombination der Schritte a) bis e) in besonderer Weise erreicht.

In einerweiteren bevorzugten Ausführungsform des Verfahrens liegt die Durch schnittstemperatur in der ersten Zone des ersten Durchlaufofens im Bereich von 10 bis 30 K unterhalb der AC3-Temperatur des Bauteils und/oder liegt die Durchschnittstem peratur in der zweiten Zone des ersten Durchlaufofens im Bereich von 10 bis 30 K oberhalb der AC3-Temperatur des Bauteils. Bevorzugt ist die Kombination, dass die Durchschnittstemperatur in der ersten Zo ne des ersten Durchlaufofens im Bereich von 10 bis 30 K unterhalb der AC3- Temperatur des Bauteils liegt und dass die Durchschnittstemperatur in der zweiten Zone des ersten Durchlaufofens im Bereich von 10 bis 30 K oberhalb der AC3- Temperatur des Bauteils liegt.

Versuche haben ergeben, dass insbesondere mit den angegebenen Temperatur werten die beschriebenen Vorteile erreicht werden können. Das ist insofern verwun derlich, als dass eine Abweichung von 10 bis 30 Kvon der AC3-Temperatur ver gleichsweise klein ist. So liegt die AC3-Temperaturdes Stahls 22MnB5 beispielsweise bei 846 °C. Eine Abweichung von 10 K davon ergibt gerade einmal rund 1 %. Nichts destotrotz wurde durch diese geringfügige Abweichung eine signifikante Verkleine rung eines Übergangsbereichs zwischen den Bereichen unterschiedlicher Duktilität festgestellt.

Im Falle von 22MnB5 ist es bevorzugt, dass die Temperatur in der ersten Zone im Durchschnitt bei 814 bis 836 °C liegt und in der zweiten Zone im Durchschnitt bei 856 bis 876 °C. Besonders bevorzugt liegt die Temperatur in der ersten Zone konstant im Bereich von 816 bis 836 °C und in der zweiten Zone konstant bei 856 bis 876 °C.

In einerweiteren bevorzugten Ausführungsform des Verfahrens liegt eine Ver weildauer des Bauteils in der zweiten Zone des ersten Durchlaufofens im Bereich von 10 bis 30 s.

Die Verweildauer im ersten Durchlaufofen liegt vorzugsweise im Bereich von 250 bis 400 s. Entsprechend ist eine Verweildauer im Bereich von 10 bis 30 s in der zweiten Zone vergleichsweise kurz. Es hat sich aber in Versuchen gezeigt, dass eine derart kur ze Verweildauer in der zweiten Zone für die beschriebenen Vorteile ausreichend ist. Eine längere Verweildauer könnte sich nachteilig auf die Gefügezusammensetzung auswirken.

In einerweiteren bevorzugten Ausführungsform des Verfahrens beginnt in Schritt c) das Kühlen des zweiten Bereichs mit einer Verzögerung von 0,5 bis 15 s nach Ab schluss von Schritt b). Mit dem Abkühlen wird nicht unmittelbar nach Eintritt des Bauteils in die Tempe rierstation begonnen. Damit kann auch das Abkühlen durch freie Abstrahlung an die Umgebung zum Kühlen genutzt werden, wodurch beispielsweise Kühlfluid eingespart werden kann. Das nach der Verzögerung beginnende Kühlen ist ein aktives Kühlen. Durch dieses können die Festigkeitseigenschaften des Bauteils besonders genau ein gestellt werden. Versuche haben gezeigt, dass auch eine zu lange Verzögerung nach teilig ist und insbesondere zu einer Vergrößerung des Übergangsbereichs zwischen Bereichen unterschiedlicher Duktilität führen kann. Die Kombination aus der beschrie benen zonenweisen Erwärmung im ersten Durchlaufofen mit der vergleichsweise ge ringen Verzögerung zeigte in Versuchen eine besonders scharfe Trennung zwischen den unterschiedlichen Duktilitäts-Bereichen.

In einerweiteren bevorzugten Ausführungsform des Verfahrens wird der erste Be reich des Bauteils in Schritt c) einer Temperatur ausgesetzt, die im Durchschnitt 170 bis 250 K oberhalb der AC3-Temperatur des Bauteils liegt.

Es hat sich herausgestellt, dass auch die Temperaturführung in der Temperiersta tion einen Einfluss auf die Ausdehnung des Übergangsbereichs zwischen den Berei chen unterschiedlicher Duktilität hat. Eine vergleichsweise hohe Temperatur für die thermische Behandlung des ersten Bereichs in der Temperierstation ergab in Versu chen einen kleineren Übergangsbereich.

Bevorzugt wird das Bauteil in Schritt c) einer Temperatur ausgesetzt, die konstant im Bereich von 170 bis 250 K oberhalb der AC3-Temperatur des Bauteils liegt. Im Falle von 22MnB5 ist es bevorzugt, dass das der erste Bereich in Schritt c) einer Durch schnittstemperatur im Bereich von 900 bis 1100°C ausgesetzt wird, insbesondere ei ner konstanten Temperatur in diesem Bereich.

In einerweiteren bevorzugten Ausführungsform des Verfahrens verbleibt das Bau teil in Schritt c) über eine Verweildauer im Bereich von 10 und 30 s in der Temperier station.

Als ein weiterer Aspekt der Erfindung wird eine Vorrichtung zum thermischen Be handeln eines Bauteils vorgestellt. Die Vorrichtung umfasst: - einen ersten Durchlaufofen, welcher in Transportrichtung des Bauteils in eine erste Zone und eine an diese anschließende und dieser nachgeordnete zweite Zone un terteilt ist, wobei sich die erste Zone in Transportrichtung des Bauteils über mindes tens 70 % des ersten Durchlaufofens erstreckt,

- eine dem ersten Durchlaufofen in Transportrichtung des Bauteils nachgeordnete Temperierstation,

- eine Steuereinrichtung, die dazu eingerichtet ist, in der ersten Zone des ersten Durchlaufofens eine Durchschnittstemperatur unterhalb der AC3-Temperatur des Bauteils einzustellen, und in der zweiten Zone des ersten Durchlaufofens eine Durchschnittstemperatur oberhalb der AC3-Temperatur des Bauteils einzustellen.

Die beschriebenen besonderen Vorteile und Ausgestaltungsmerkmale des Verfahrens sind auf die Vorrichtung anwendbar und übertragbar, und umgekehrt. Die Vorrichtung ist vorzugsweise zum Betrieb gemäß dem Verfahren bestimmt und eingerichtet. Das Verfahren wird vorzugsweise mit der Vorrichtung durchgeführt. Die Vorrichtung weist vorzugsweise einen zweiten Durchlaufofen auf, der der Temperierstation in Transport richtung des Bauteils nachgeordnet ist.

Dass die zweite Zone des ersten Durchlaufofens der ersten Zone in T ransportrich- tung des Bauteils nachgeordnet ist, bedeutet, dass das Bauteil die zweite Zone später durchläuft als die erste Zone. Entsprechendes gilt für die Temperierstation und den zweiten Durchlaufofen, die dem ersten Durchlaufofen beziehungsweise der Tempe rierstation in Transportrichtung des Bauteils nachgeordnet sind.

Die Erfindung wird nachfolgend anhand der Figuren näher erläutert. Die Figuren zeigen ein besonders bevorzugtes Ausführungsbeispiel, auf das die Erfindung jedoch nicht begrenzt ist. Die Figuren und die darin dargestellten Größenverhältnisse sind nur schematisch. Es zeigen:

Fig. 1 : eine erfindungsgemäße Vorrichtung zum thermischen Behandeln eines

Bauteils,

Fig. 2: einen Temperaturverlauf, der sich mit der Vorrichtung aus Fig. 1 bei

Durchführung eines erfindungsgemäßen Verfahrens zum thermischen Behandeln des Bauteils einstellt. Fig. 1 zeigt eine Vorrichtung 1 zum thermischen Behandeln eines Bauteils 2. Die Vor richtung 1 umfasst einen ersten Durchlaufofen 3, welcher in Transportrichtung rdes Bauteils 2 eine erste Zone 6 und eine der ersten Zone 6 nachgeordnete zweite Zone 7 aufweist. Die zweite Zone 7 wird also von dem Bauteil 2 später durchlaufen und liegt daher in Fig. 1 rechts von der ersten Zone 6. Der erste Durchlaufofen 3 ist in Transport richtung r auf die erste Zone 6 und die zweite Zone 7 unterteilt, weist in dieser Rich tung also keine weiteren Zonen auf. Die erste Zone 6 erstreckt sich in Transportrich tung r des Bauteils 2 über 70 % des ersten Durchlaufofens 3. Die erste Zone 6 und die zweite Zone 7 erstrecken sich quer zur Transportrichtung r - also in Fig. 1 nach oben und unten sowie senkrecht zur Zeichenebene - über den gesamten ersten Durch laufofen 3.

Die Vorrichtung 1 weist weiterhin eine dem ersten Durchlaufofen 3 in Transport richtung r des Bauteils 2 nachgeordnete Temperierstation 4 auf. Weiterhin weist die Vorrichtung 1 einen zweiten Durchlaufofen 5 auf, der in Transportrichtung r des Bau teils 2 der Temperierstation 4 nachgeordnet ist. Die Temperaturen in der ersten Zone 6 des ersten Durchlaufofens 3, in der zweiten Zone 7 des ersten Durchlaufofens 3, in der Temperierstation 4 und im zweiten Durchlaufofen 5 sind übereine Steuereinrichtung 8 einstellbar. Dies ist durch gepunktete Linien angedeutet. Die Steuereinrichtung 8 ist insbesondere dazu eingerichtet, in der ersten Zone 6 des ersten Durchlaufofens 3 eine Durchschnittstemperatur unterhalb der AC3-Temperatur T A c3 des Bauteils 2 einzustel len, und in der zweiten Zone 7 des ersten Durchlaufofens 3 eine Durchschnittstempe ratur oberhalb der AC3-Temperatur T A c3 des Bauteils 2 einzustellen.

Fig. 2 zeigt einen Temperaturverlauf, der sich in dem Bauteil 2 einstellt, wenn es durch die Vorrichtung 1 aus Fig. 1 bewegt wird. Die Darstellung von Fig. 2 ist schema tisch. Gezeigt ist ein Plot der Temperatur T über der Zeit t in beliebigen Einheiten. Das Bauteil 2 wird zunächst in dem ersten Durchlaufofen 3 erwärmt. Die Verweildauer des Bauteils 2 in dem ersten Durchlaufofen 3 ist mit t Di bezeichnet und in die mit t Zi be- zeichnete Verweildauer in der ersten Zone 6 und die mit t Z 2 bezeichnete Verweildauer in der zweiten Zone 7 unterteilt. In der ersten Zone 6 ist die Temperatur konstant auf einen Wert T eingestellt, der unterhalb der AC3-Temperatur T AC 3 des Bauteils 2 liegt. In der zweiten Zone 7 ist die Temperatur konstant auf einen Wert T Z 2 eingestellt, der oberhalb der AC3-Temperatur T A c3 des Bauteils 2 liegt. Die Temperatur des Bauteils 2 steigt dadurch zunächst auf den Wert T Zi , auf dem bis zum Ende von t Zi eine Sättigung eintritt. In t z2 erfolgt eine weitere Erwärmung auf T z2 .

Anschließend wird das Bauteil 2 in die Temperierstation 4 transferiert. Die zugehö rige Transferzeit ist mit t Ti bezeichnet. Während dieses Transfers kühlt das Bauteil 2 ab. Dabei kann bereits zwischen der Temperatur T A eines ersten Bereichs des Bauteils und der Temperatur T B eines zweiten Bereichs des Bauteils unterschieden werden. Das ist beispielsweise durch bereichsweise unterschiedliche Isolierung während des Trans fers möglich.

In der Temperierstation 4 verbleibt das Bauteil 2 über eine Verweildauer t T s. In die ser Zeit wird das Bauteil 2 in der Temperierstation 4 thermisch behandelt, indem ein erster Bereich des Bauteils 2 einer Temperatur ausgesetzt wird, die konstant auf einem Wert T TS oberhalb der AC3-Temperatur T A c3 des Bauteils 2 liegt, und ein zweiter Be reich des Bauteils 2 gekühlt wird. Das Kühlen des zweiten Bereichs des Bauteils 2 be ginnt mit einer Verzögerung t v . Die Verzögerung t v beginnt mit Eintritt des Bauteils 2 in die Temperierstation 4, also mit Ende von t Ti und Beginn von t T s. Auch trotz des Küh- lens ist ein Anstieg der Temperatur T B des zweiten Bereichs zu erkennen. Das ist durch die Freisetzung latenterWärme bedingt. Dieser Effekt wird auch als„Rekaleszenz" be zeichnet.

Nach dem thermischen Behandeln des Bauteils 2 in der Temperierstation 4 wird das Bauteil 2 in den zweiten Durchlaufofen 5 transferiert. Die Transferzeit dafür ist mit t T 2 bezeichnet. Auch dabei kühlt das Bauteil 2 ab, was je nach Bereich unterschiedlich sein kann.

Im zweiten Durchlaufofen 5 wird das Bauteil 2 weiter thermisch behandelt, indem es insgesamt erwärmt wird. Dazu wird das Bauteil 2 einer Temperatur ausgesetzt, die oberhalb der AC3-Temperatur T AC 3 des Bauteils 2 liegt. Der kältere zweite Bereich des Bauteils 2 wird dabei stärker erwärmt als der wärmere erste Bereich. Die Verweildauer des Bauteils 2 im zweiten Durchlaufofen 5 ist mit T D2 bezeichnet.

Durch die bereichsweise unterschiedliche thermische Behandlung erhält das Bau teil 2 eine bereichsweise unterschiedliche Duktilität. Das ist beispielsweise bei einer B- Säule für ein Kraftfahrzeug vorteilhaft. Die unterschiedlichen Temperaturen T Zi ,T Z 2 in den Zonen 6,7 des ersten Durchlaufofens 3 bewirken dabei, dass die Bereiche unter schiedlicher Duktilität besonders scharf voneinander getrennt sind.

Bezugszeichenliste

1 Vorrichtung

2 Bauteil

3 erster Durchlaufofen

4 Temperierstation

5 zweiter Durchlaufofen

6 erste Zone

7 zweite Zone

8 Steuereinrichtung

T Temperatur

T AC 3 AC3-Temperatur des Bauteils

Tzi Temperatur in der ersten Zone

T z2 Temperatur in der zweiten Zone

TTS Temperatur für den zweiten Bereich in der Temperierstation T A Temperatur des ersten Bereichs des Bauteils T B Temperatur des zweiten Bereichs des Bauteils t Zeit t Di Verweildauer im ersten Durchlaufofen tzi Verweildauer in der ersten Zone des ersten Durchlaufofens t Z 2 Verweildauer in der zweiten Zone des ersten Durchlaufofens t Ti Transferdauer vom ersten Durchlaufofen zur Temperierstation t T s Verweildauer in der Temperierstation t v Verzögerung des Kühlens des zweiten Bereichs des Bauteils t T 2 Transferdauer von der Temperierstation zum zweiten Durchlaufofen t D2 Verweildauer im zweiten Durchlaufofen r Transportrichtung des Bauteils