Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
THERMOPLASTIC STARCH
Document Type and Number:
WIPO Patent Application WO/2021/005190
Kind Code:
A1
Abstract:
Described is a method for producing a thermoplastic starch, wherein a mixture is extruded comprising starch and a polyol, preferably selected from the group comprising polyethylene glycol, monosaccharides, sugar alcohols such as glycerin, sorbitol, erythritol, xylitol or mannitol and mixtures thereof, in a quantity of 0 to 9.9 wt.% of the mixture, and an epoxide, selected from the group comprising epoxidised vegetable oils such as soy bean oil, flaxseed oil, sunflower oil, rapeseed oil and mixtures thereof, in a quantity of 0.1 to 6, preferably 2 to 3.5 wt.% of the mixture, the mixture further containing an acid, preferably a carboxylic acid selected from the group consisting of citric acid, malic acid or tartaric acid, in a quantity of 0.1 to 1, preferably 0.1 to 0.5 wt.% of the mixture, and being devoid of polyester urethane. The invention also describes a thermoplastic starch produced in this way, a compound produced with the aid of the thermoplastic starch, and a film produced from such a compound or an injection-moulded item produced from such a compound.

Inventors:
FAHRNGRUBER BARBARA (AT)
WASTYN MARNIK MICHEL (AT)
KOZICH MARTIN (AT)
Application Number:
PCT/EP2020/069470
Publication Date:
January 14, 2021
Filing Date:
July 10, 2020
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
AGRANA BETEILIGUNGS AG (AT)
International Classes:
C08L3/02
Domestic Patent References:
WO1999061524A11999-12-02
WO2012162085A12012-11-29
WO2006042364A12006-04-27
WO2012162092A12012-11-29
Foreign References:
EP3511373A12019-07-17
CN108192302A2018-06-22
US5362777A1994-11-08
DE19824968A11999-12-09
DE19822979A11999-12-02
Attorney, Agent or Firm:
SONN & PARTNER PATENTANWÄLTE (AT)
Download PDF:
Claims:
Patentansprüche:

1. Verfahren zur Herstellung von thermoplastischer Stärke, wobei eine Mischung umfassend Stärke und ein Polyol, vorzugsweise ausgewählt aus der Gruppe umfassend Polyethylenglykol, Monosacchariden, Zuckeralkoholen wie Glycerol Sorbitol, Erythritol, Xylitol oder Mannitol und Mischungen hiervon, in einer Menge von 0 bis 9,9 Gew. % der Mischung, und einem Epoxid, ausgewählt aus der Gruppe umfassend epoxidierte Pflanzenöle wie Sojabohnenöl, Leinöl, Sonnenblumenöl, Rapsöl und Mischungen hiervon, in einer Menge von 0,1 bis 6, bevorzugt 1 bis 4,5, besonders bevorzugt 2 bis 3,5 Gew. % der Mischung extrudiert wird, dadurch gekennzeichnet, dass die Mischung weiters eine Säure, vorzugsweise eine Carbonsäure ausgewählt aus der Gruppe bestehend aus Zitronensäure, Äpfelsäure oder Weinsäure, in einer Menge von 0,1 bis 1 , vorzugsweise 0,1 bis 0,5 Gew. % der Mischung enthält und frei von Polyesterurethan ist.

2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass die Mischung ein Polyol ausgewählt aus der Gruppe bestehend aus Sorbitol, Erythritol, Xylitol, Mannitol und Mischungen hiervon, in einer Menge von 0 bis 7 Gew. % enthält.

3. Verfahren nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass die Mischung als Polyol Sorbitol oder Erythritol enthält.

4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Mischung das Polyol in einer Menge von 0 bis 6 Gew. % enthält.

5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Mischung Epoxid zu Polyol in einem Verhältnis von 1 zu 1 bis 1 zu 4, vorzugsweise 1 zu 1 bis 1 zu 3, besonders bevorzugt 1 zu 3 enthält.

6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Mischung zusätzlich Milchsäure in einer Menge von 2 bis 9, vorzugsweise 4 bis 7, besonders bevorzugt 3,5 bis 4,5 Gew. % der Mischung enthält.

7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Mischung bei einer Temperatur von 100-175 °C extrudiert wird, vorzugsweise in einem Doppelschneckenextruder mit separater Vakuumzone in der die Entgasung durch Anlegen von Unterdrück erfolgt. 8. Thermoplastische Stärke, erhältlich nach einem Verfahren nach einem der Ansprüche 1 bis 7.

9. Thermoplastische Stärke nach Anspruch 8, welche eine Schüttdichte von 70 bis 90 g/100 ml aufweist.

10. Compound enthaltend eine thermoplastische Stärke nach einem der Ansprüche 8 oder 9 extrudiert mit mindestens einem thermoplastischen Polymer.

11. Compound nach Anspruch 10, dadurch gekennzeichnet das das thermoplastische Polymer ausgewählt ist aus der Gruppe umfassend Polyolefine, Polyamide, Polyurethane, Polyester und Mischungen hiervon.

12. Verfahren zur Herstellung eines Compounds nach Anspruch 10 oder 11 , dadurch gekennzeichnet, dass eine Mischung gemäß einem der Ansprüche 1 bis 6 mit mindestens einem thermoplastischen Polymer bei einer Temperatur von 100-175 °C extrudiert wird, vorzugsweise in einem Doppelschneckenextruder mit separater Vakuumzone in der die Entgasung durch Anlegen von Unterdrück erfolgt.

13. Folie, hergestellt durch Blas- bzw. Flachfolienextrusion eines Compounds nach einem der Ansprüche 10 oder 11.

14. Spritzgussartikel, hergestellt durch Spritzgießen eines Compounds nach einem der Ansprüche 10 oder 11.

Description:
Thermoplastische Stärke

Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung von thermoplastischer Stärke, eine derartig hergestellte thermoplastische Stärke, ein Compound enthaltend die thermoplastische Stärke sowie eine aus diesem Compound hergestellte Folie.

Nach der Definition von Carvalho handelt es sich bei thermoplastischer Stärke (im Folgenden auch TPS genannt) um ein amorphes- oder semikristallines Material, bestehend aus aufgeschlossener oder destrukturierter Stärke und einem oder mehreren Weichmachern. TPS kann wiederholt in den plastischen Zustand überführt und wieder ausgehärtet werden, wodurch eine Formgebung unter Einwirkung von Hitze und Scherung möglich ist, was eine Verarbeitung mittels Techniken der Kunststoffindustrie erlaubt. TPS als Werkstoff besitzt üblicherweise hydrophilen Charakter, was eine starke Abhängigkeit der Materialeigenschaften von den klimatischen Umgebungsverhältnissen bedingt. Aus diesem Grund erfolgt nur selten der direkte bzw. alleinige Einsatz von TPS für die Herstellung von Biokunststoffen. Die Verwendung von fein verteilter TPS (disperse Phase) in einer Polymermatrix (kontinuierliche Phase) bietet hingegen die Möglichkeit a) den biobasierten Anteil in Kunststoffformulierungen erheblich zu erhöhen sowie b) in Abhängigkeit von der Wahl des Matrixpolymers eine biologisch abbaubare Komponente zu integrieren. Materialien an welche die Anforderung nach einer vollständigen biologischen Abbaubarkeit oder Kompostierbarkeit gestellt werden (z.B. nach Norm EN 13432), erfordern den Einsatz einer Polymermatrix, welche in biologischem Medium sowie unter Einwirkung von Wasser durch den Einfluss von Mikroorganismen zersetzt werden kann.

Thermoplastische Polymere können durch Temperaturerhöhung wiederholt aufgeschmolzen werden. Nach dem Abkühlen liegen sie in vorwiegend kristalliner oder amorpher Struktur vor. Diese Eigenschaft wird zum Zwecke der Formgebung genutzt und funktioniert aufgrund der Tatsache, dass die Glasübergangstemperatur (Tg) von Thermoplasten unter der Raumtemperatur liegt. Native Stärke zeigt dieses Verhalten nicht. Bei der Verarbeitung zu einem thermoplastischen Werkstoff wird die ursprünglich semikristalline, körnige Struktur aufgebrochen um eine kontinuierliche amorphe Phase zu erzeugen und so Stärke einer Formgebung mit konventionellen Kunststoffverarbeitungsmethoden zugänglich zu machen. Beim Erhitzen über die Verkleisterungstemperatur beginnt Stärke in Gegenwart von Wasser zu quellen. Dabei diffundiert Flüssigkeit in das Innere der Körner und interagiert schließlich mit den freien Hydroxygruppen der Stärkemoleküle. Dadurch werden die Wasserstoffbrückenbindungen gebrochen, das Material verliert an Kristallinität und schließlich beginnen amorphe Bereiche in Lösung zu gehen. Der Prozess wird im Wesentlichen durch den Temperaturverlauf bestimmt. Bis zu einem Schwellenwert von ca. 50 °C ist der Vorgang reversibel. Bei weiterer Erwärmung setzt irreversibel starke Quellung ein. Der Verlust an Kristallinität führt dazu, dass die Stärkekörner ihre

Zwiebelschalenstruktur und die unter dem Mikroskop erkennbare Doppelbrechung verlieren und die Viskosität der Suspension rapide ansteigt. In einem Extrusionsprozess werden neben Wasser auch Weichmacher zugesetzt, um den Aufschluss der Stärke unter diesen wasserlimitierten Bedingungen zu erreichen. Durch den Einsatz von Weichmachern wie Glycerin, Sorbit, Erythrit, Polyethylenglycol, unterschiedlichen Mono- und Disacchariden oder Zuckeralkoholen werden, analog der Wirkung von Wasser, zwischenmolekulare Wechselwirkungen durch das Aufbrechen der Wasserstoffbrücken zwischen den Stärkemolekülen reduziert. Der Vorgang im Extruder wird von einer Aufspaltung der Polymerketten und somit einer teilweise stattfindenden Depolymerisation begleitet, wodurch sowohl die Schmelz- als auch die Glasübergangstemperatur bis unter die Degradationstemperatur (230 °C) sinken.

Aus der US 5,362,777 ist die Herstellung thermoplastischer Stärke (TPS) unter Zumischung von Weichmachern, z.B. Sorbit bzw. Sorbitol, bekannt, zur Verbesserung der Fließeigenschaften können auch Pflanzenfette hinzugegeben werden.

Die WO 99/61524 betrifft eine Folie aus einem thermoplastischen Polymergemisch, enthaltend TPS, mindestens ein Polyesterurethan, einen Weichmacher wie z.B. Sorbit, sowie als Gleitmittel Epoxygruppen enthaltende Öle, insbesondere epoxidiertes Leinöl.

Die DE 198 24 968 A1 offenbart ebenfalls eine Folie aus einem thermoplastischen Polymergemisch, enthaltend TPS, mit einem durch Polykondensation oder Polyaddition erhältlichen Polymer, enthaltend Weichmacher, z.B. Sorbit, sowie als Gleitmittel pflanzliche Fette oder Öle.

Gemäß der WO 2012/162085 A1 werden TPS, Öl und/oder Wachs (epoxidiertes Pflanzenöl, bzw. Leinöl) geoffenbart. TPS ist ein Ausgangsprodukt, zwingend nötig für die Verarbeitung von thermoplastischer Stärke ist die Anwesenheit eines weiteren thermoplastischen Polymers.

Die WO 2006/042364 A1 schließlich offenbart eine Mischung aus Sorbit und weiteren Weichmacher, z.B. epoxidiertem Leinöl. Stärke ist ein Ausgangsprodukt, abgesehen von der Stärke liegt noch ein wasserlösliches Polymer vor, z.B. Polyvinylalkohol, Polyvinylacetat oder Copolymere von Ethylen- und Vinylalkohol.

Die aus dem oben genannten Stand der Technik bereits bekannte TPS ist, trotz des Zusatzes an Weichmachern, inhärent brüchig und hydrophil. Somit können bei der Verwendung reiner TPS die hohen Anforderungen (Festigkeit, Wasserbeständigkeit), wie sie an technische Produkte in der Folienextrusion gestellt werden, nicht abgedeckt werden. Im Speziellen ist es schwierig dem Vergleich mit synthetischen Polymersystemen, in Punkto Verarbeitbarkeit und Endprodukteigenschaften (Dehnbarkeit, Zugfestigkeit), standzuhalten. Darüber hinaus hat sich gezeigt, dass wenn der Ansatz der Compoundherstellung auf der Basis von Glycerin- plastifizierter, nicht-reaktiv funktionalisierter TPS verfolgt wird, es im Zuge der technischen Umsetzung zu grundlegenden Problemen kommt.

Aufgrund von starken Viskositätsunterschieden ist eine feine Dispergierung von TPS in einer Polymermatrix nur unter hoher Schereinwirkung effizient (die TPS besitzt eine sehr hohe Viskosität, das Polymer dagegen tendenziell eine niedrige). Im Zuge dessen kann es zu einer mechanischen Schädigung der TPS Phase und einer damit einhergehenden Braunfärbung des Compoundmaterials kommen. Weiters führt die hohe Viskosität der unbehandelten TPS zu einer erschwerten Verarbeitbarkeit, welche sich in gesteigerten Drehmoment- und Druckverhältnissen im Extruder niederschlägt.

Außerdem ist die Verträglichkeit an den Grenzflächen zwischen der hydrophilen TPS und dem hydrophoben Polymer limitiert, dies führt zu einer Beeinträchtigung der mechanischen Werkstoffeigenschaften (Zugfestigkeit, Dehnbarkeit) im Endprodukt.

Sowohl bei der Flach- als auch bei der Blasfolienverarbeitung kommt es darüber hinaus ab einer Verarbeitungstemperatur von etwa 150 °C zur Rauchentwicklung bzw. zur Entstehung von Glycerindämpfen. Die Temperatur muss, in Abhängigkeit vom zugesetzten TPS Anteil, in der Regel auf mind. 150 °C angehoben werden, um der TPS-Polymer-Schmelze eine entsprechende Fließfähigkeit zu verleihen. Dies führt zu einem Verlust an Weichmachern im Werkstoff (und somit zu einer Verschlechterung der Qualität), sowie zur unerwünschten Kondensatbildung an den Anlagen-Kühlaggregaten.

Aufgrund des in der Stärke gebundenen Wassers kommt es am Düsenaustritt auch zu einer prozessabhängigen, mehr oder weniger starken Expansion der Polymerschmelze (Blasenbildung an der Oberfläche durch Ausweichen von Wasserdampf). Die ausschließliche Substitution von Glycerin mittels Weichmacher (Polyolen) höherer Molmasse wie z.B. Sorbitol, Isosorbid, oder Xylitol in der TPS führt, im Falle von Folienmaterialien auf der Basis TPS und Polymer, erwiesenermaßen zu Einbußen in Hinblick auf die erzielbaren mechanischen Werkstoffeigenschaften (Dehnbarkeit und/oder Zugfestigkeit, Weiterreißfestigkeit).

Die derzeitig am Markt erhältlichen TPS-Qualitäten lassen wegen mangelnder Kompatibilität zumeist einen Einsatz in einem Anteil von über 30-40 Gew. % im Compound bzw. in der Folie nicht zu, ohne dass die mechanischen Eigenschaften der Endprodukte (Folien) stark darunter leiden. Gewünscht wäre aber die Herstellung von Folien mit einem möglichst hohen Anteil an nachwachsenden Rohstoffen wie z.B. TPS.

Die DE 198 22 979 A1 offenbart Folien, hergestellt durch Extrudieren einer Mischung enthaltend thermoplastische Stärke und/oder ein thermoplastisches Stärkederivat, mindestens ein Polyesterurethan, Glycerin und epoxidiertes Leinöl. Säuren werden in Kombination von TPS mit einem Polyurethan als Vernetzungsmittel erwähnt.

Die WO 2012/162092 A1 offenbart die Herstellung thermoplastischer Stärke durch Extrudieren einer Mischung, enthaltend Stärke, Polyol und epoxidiertes Pflanzenöl.

Die CN 100 892 302 A beschreibt ein bioabbaubares Material umfassend ein Material B, welches Material B seinerseits einen Starch Master Batch beispielsweise aus 70% Stärke, 3% Kopplungsmittel, 2% Paraffin, 22.9% Glycerin, 0.1 % Zitronensäure und 2% epoxidiertes Sojabohnenöl enthält. Die Menge an Glycerin variiert dabei je nach Beispiel in diesem Dokument zwischen 22,9 und 30%.

Die Aufgabe der vorliegenden Erfindung ist es, die oben genannten Nachteile des Standes der Technik zu überwinden und eine TPS frei von Polyesterurethan zur Verfügung zu stellen, welche für die Herstellung von Compounds mit mindestens einem thermoplastischen Polymer geeignet ist, welches als Compound zur Herstellung von Folien mittels Blas- bzw. Flachfolienextrusion bzw. von Spritzgussartikeln zum Einsatz kommen kann.

Diese Aufgabe wird erfindungsgemäß gelöst durch ein Verfahren zur Herstellung von thermoplastischer Stärke, bei welchem Verfahren eine Mischung umfassend Stärke, ein Polyol, vorzugsweise ausgewählt aus der Gruppe umfassend Polyethylenglykol, Mono- und Disacchariden, Zuckeralkoholen wie Glycerin, Sorbitol, Erythritol, Xylitol oder Mannitol und Mischungen hiervon, in einer Menge von 0 bis 9,9 Gew. % der Mischung, und einem Epoxid, ausgewählt aus der Gruppe umfassend epoxidierte Pflanzenöle wie Sojabohnenöl, Leinöl, Sonnenblumenöl, Rapsöl und Mischungen hiervon, in einer Menge von 0, 1 bis 6, bevorzugt 1 bis 4,5, besonders bevorzugt 2 bis 3,5 Gew. % der Mischung extrudiert wird, wobei die Mischung weiters eine Säure, vorzugsweise eine Carbonsäure ausgewählt aus der Gruppe bestehend aus Zitronensäure, Äpfelsäure oder Weinsäure, in einer Menge von 0,1 bis 1 , vorzugsweise 0,1 bis 0,5 Gew. % der Mischung enthält und frei von Polyesterurethan ist. Bei der Erfindung handelt es sich um eine Rezeptur zur Herstellung thermoplastischer Stärke (TPS) mit, sowohl aus verarbeitungs- als auch aus werkstofftechnischer Sicht, optimiertem Eigenschaftsprofil. Als Ausgangsstoffe werden Stärke, ein Weichmacher (0-9,9 Gew. %), eine Säure (0, 1-1 Gew. %) sowie ein epoxidiertes Pflanzenöl (0, 1-6,0 Gew. %) eingesetzt. Das Endprodukt ist kaltwasserquellend bis kaltwasserlöslich. Für die Herstellung von dünnwandigen Folienmaterialien (im Bereich von z.B. 10-50 pm Dicke) gilt es, die TPS in der Compoundmatrix möglichst fein zu verteilen. Die erfindungsgemäß bei der Extrusion von Stärke zusammen mit dem ggf. vorhandenen Polyol und einem Epoxid eingesetzte Säure wirkt sowohl als Aktivierungsmittel für das Epoxid als auch als Verarbeitungshilfsmittel, da sie a) die Verzweigungsketten an Amylopektin kappt und somit den Anteil an linearen Molekülen steigert. Das Verhalten des Polymers wird somit jenem klassischer thermoplastischer Werkstoffe ähnlicher b) Weiters geht im Zuge des Säurezusatzes eine Depolymerisation der Moleküle an der glykosidischen Bindung von statten. Die Auswirkung der Änderung von Prozessbedingungen wie Temperatur, Druck und Verweilzeit kann so besser abgeschätzt werden. Bewährt haben sich zu diesem Zweck zum Beispiel Carbonsäuren wie Zitronensäure, Äpfelsäure, Essigsäure oder Weinsäure. Bezüglich der angeführten Mengen ist zu sagen, dass Bereiche von kleiner 0, 1 Gew. % in der großtechnischen Praxis kaum realisierbar sind, oberhalb von etwa 1 Gew. % kommt es (je nach eingesetzter Säure) zu einer drastischen Reduktion der Molekülmasse und damit einhergehende Eigenschaftseinbußen, einem starken Schäumen der Schmelze wodurch keine Granulierung mehr möglich ist sowie zu einer starken Staubentwicklung aufgrund von TPS- Abrieb. Überraschenderweise hat sich auch gezeigt, dass mit der erfindungsgemäß hergestellten thermoplastischen Stärke eine TPS-Partikelgröße von < 5 pm in der Polymermatrix erreicht werden kann, um die Entstehung einer Mikrorauheit (Folienoberfläche) und das Auftreten von damit einhergehenden mechanischen Schwachstellen zu vermeiden. Der Einsatz dieser TPS in der Form einer fein verteilten dispersen Compound-Phase in Kombination mit z.B. abbaubaren, thermoplastischen Polyestern (die kontinuierliche Phase) bietet eine einfache Möglichkeit zur Erhöhung der Feuchtebeständigkeit sowie zur Optimierung der Endprodukteigenschaften. So kann auch die biologische Abbaubarkeit des Endproduktes eingestellt werden. Der nachhaltige Charakter des Endproduktes kann durch den dadurch ermöglichten erhöhten Anteil an TPS gesteigert werden. Für das Epoxid hat sich gezeigt, dass die Aufnahmekapazität der Schmelze bei 6,0 Gew. % ausgeschöpft ist, eine höhere Zudosierung führt zu öligen Ablagerungen am Produkt bzw. am Equipment.

Vorzugsweise ist die Menge an Stärke in der erfindungsgemäß zur Herstellung von thermoplastischer Stärke zum Einsatz kommenden Mischung der neben den anderen vorhandenen Inhaltsstoffen (Polyol, Epoxid und Säure) fehlende Rest auf 100 Gew. % der Mischung, wobei jedoch gegebenenfalls noch andere, dem Fachmann bekannte Hilfs- und Zusatzstoffe anwesend sein können. Jedenfalls ist die erfindungsgemäß zur Herstellung von thermoplastischer Stärke zum Einsatz kommende Mischung frei von Polyesterurethan(en).

Stärke:

Die erfindungsgemäß zum Einsatz kommende Stärke kann jede herkömmliche Knollen-, Wurzel- , Getreide- oder Leguminose-Stärke sein, z.B. Erbsenstärke, Maisstärke, inkl. Wachsmaisstärke, Kartoffelstärke inkl. Wachskartoffelstärke, Amaranthstärke, Reisstärke, inkl. Wachsreisstärke, Weizenstärke, inkl. Wachsweizenstärke, Gerstenstärke, inkl. Wachsgerstenstärke, Tapiokastärke, inkl. Wachstapiokastärke, Stärken natürlichen Ursprungs haben in der Regel einen Amylosegehalt von 20 bis 30 Gew. %, abhängig von der Pflanzenart, aus der sie gewonnen werden. Erfindungsgemäß gehören dazu auch amylopektinreiche Stärken, welche einen deutlich erhöhten Amylopektingehalt aufweisen, bzw. auch Produkte, welche einen erhöhten Amylosegehalt enthalten. Neben den natürlichen bzw. den durch Züchtungsmaßnahmen erhaltenen amylopektinreichen Stärketypen und Hochamylosetypen können auch über chemische und/oder physikalische Fraktionierung gewonnene bzw. über gentechnisch veränderte Pflanzen hergestellte amylopektinreiche bzw. hochamylose Stärken verwendet werden. Weiters zum Einsatz kommen können funktionalisierte Stärken, definiert wie folgt:

Funktionalisierte Stärke:

Die erfindungsgemäß zum Einsatz kommende Stärke kann auch eine funktionalisierte Stärke sein, wenn in der vorliegenden Beschreibung und in den Ansprüchen der Begriff „Stärke“ verwendet wird, wird darunter auch eine funktionalisierte Stärke verstanden, die chemisch, physikalisch oder enzymatisch modifiziert wurde. In den Bereich Funktionalisierung fallen z.B. Veretherungen oder Veresterungen. Im Folgenden werden einige Derivatisierungen beschrieben, die alleine oder in Kombination miteinander zur weiteren Derivatisierung der Stärkederivate vorgesehen werden können. Die Art der Derivatisierung und die Rohstoffbasis der verwendeten Stärke hängen sehr eng mit dem speziellen Einsatzbereich des jeweiligen Produktes zusammen. Die Methoden hierzu sind an sich bekannt. Im Speziellen soll der Fokus hier auf der Funktionalisierung im Slurry, im Kleister, (Semi)Trockenverfahren sowie der Funktionalisierung mittels Reaktivextrusion liegen.

Im Allgemeinen unterscheidet man bei Stärkederivaten zwischen Stärkeether und Stärkeester. Weiters kann zwischen nichtionischen, anionischen, kationischen und amphoteren als auch hydrophoben Stärkederivaten differenziert werden, welche sowohl über eine Slurry-, Kleister-, Halbtrocken- oder Trockenderivatisierung als auch über eine Derivatisierung in organischen Lösungsmitteln hergestellt werden können. Unter anionischer und nichtionischer Funktionalisierung der Stärke werden jene Derivate zusammengefasst, bei denen die freien Hydroxylgruppen der Stärke durch anionische oder nichtionische Gruppierungen substituiert werden. Auch durch oxidative Prozesse wie bspw. die Behandlung der Stärke mit Wasserstoffperoxid oder Hypolauge oder durch ein Laccase/Mediator- System kann Stärke anionisch funktionalisiert werden.

Die anionische und nichtionische Derivatisierung lässt sich prinzipiell auf zwei Arten durchführen: a) Durch die Funktionalisierung wird eine Veresterung der Stärke erzielt. Als Funktionalisierungsmittel dienen anorganische oder organische verschiedenwertige, meist zweiwertige, Säuren bzw. Salze davon bzw. Ester davon bzw. Anhydride davon. Auch gemischte Ester oder Anhydride können verwendet werden. Bei der Veresterung der Stärke kann diese auch mehrfach erfolgen, so dass beispielsweise Distärkephosphorsäureester hergestellt werden können. Vorzugsweise ist die erfindungsgemäß eingesetzte Stärke dabei das Resultat einer Veresterung mit Mono-, Di- oder Tricarbonsäuren mit einer Alkylkette mit 1 bis 30 Kohlenstoffatomen oder ein Carbamat, besonders bevorzugt acyliert, wie succinyliert, octenylsuccinyliert, dodecylsuccinyliert oder acetyliert. b) Im Zuge der Funktionalisierung kommt es zu einer Veretherung der Stärke. Zum Einsatz kommen können Methyl-, Ethyl-, Hydroxyethyl-, Hydroxypropyl-, Hydroxybutyl-, Carboxymethyl-, Cyanoethyl-, Carbamoylethyl-etherstärke, oder Gemische davon. Unter kationischer Funktionalisierung der Stärken werden jene Derivate zusammengefasst, in der durch Substitution eine positive Ladung in die Stärke eingebracht wird. Die Kationisierungsverfahren erfolgen mit Amino-, Imino-, Ammonium-, Sulfonium- oder Phosphoniumgruppen. Solche kationischen Derivate enthalten bevorzugt stickstoffhaltige Gruppen, insbesondere primäre, sekundäre, tertiäre und quartäre Amine bzw. Sulfonium- und Phosphoniumgruppen, die über Ether- oder Esterbindungen gebunden sind.

Eine weitere Gruppe stellen die amphoteren Stärken dar. Diese enthalten sowohl anionische als auch kationische Gruppen, wodurch ihre Anwendungsmöglichkeiten sehr spezifisch sind. Meist handelt es sich um kationische Stärken, die entweder durch Phosphatgruppen oder durch Xanthate zusätzlich funktionalisiert werden.

Bei den Estern unterscheidet man zwischen einfachen Stärkeestern und gemischten Stärkeestern, wobei der (die) Substituent(en) des Esters verschiedenartig sein kann (können): Im Esterrest RCOO- kann der Rest R ein Alkyl-, Aryl-, Alkenyl-, Alkaryl- oder Aralkylrest mit 1 bis 20 Kohlenstoffatomen, vorzugsweise 1 bis 17 Kohlenstoffatomen, bevorzugt mit 1 bis 6 Kohlenstoffatomen, sein. Diese Produkte schließen die Derivate Acetat (hergestellt aus Vinylacetat oder Acetanhydrid), Propionat, Butyrat, Stearat, Phthalat, Succinat, Oleat, Maleinat, Fumarat und Benzoat ein.

Veretherungen erfolgen großteils durch Umsetzung mit Alkylenoxiden (Hydroxyalkylierung), die 1 bis 20 Kohlenstoffatome, vorzugsweise 2 bis 6 Kohlenstoffatome, insbesondere 2 bis 4 Kohlenstoffatome, enthalten, insbesondere durch Verwendung von Ethylen- und Propylenoxid. Es können aber auch Methyl-, Carboxymethyl-, Cyanethyl- und Carbamoylether hergestellt und verwendet werden. Als Beispiel für eine Carboxyalkylierung sei die Reaktion von Stärke mit Monochloressigsäure oder deren Salzen angeführt. Weiters seien speziell noch hydrophobierende Veretherungsreagenzien, wie Glycidylether oder Epoxide, genannt. Die Alkylkettenlänge der genannten Reagenzien liegt zwischen 1-20 Kohlenstoffatomen, darüber hinaus sind auch noch aromatische Glycidylether möglich.

Als Beispiel für eine Derivatisierung mit Glycidylethern seien o-Kresol-glycidether, Polypropylendi-glykolglycidether, tert-Butylphenylglycidether, Ethylhexyl-glycidether, Hexandiolglycidether und Neodekansäure-glycidester genannt.

Eine weitere Möglichkeit der Alkylierung besteht in der Alkylierung über Alkylhalogenide, beispielsweise über Methylchlorid, Dialkylcarbonate, z.B. Dimethylcarbonat (DMC) oder Dialkylsulfat z.B. Dimethylsulfat.

Die für die Veresterungen, Veretherungen und Vernetzungen verwendeten und auch die chemisch nicht-funktionalisierten Stärken können zudem über thermisch-physikalische Modifikationen getempert (im Slurry) oder inhibiert (Trocken- bzw. Halbtrockenreaktion) sein. Stärken können auch über Hydrophobierungsreagenzien funktionalisiert werden. Veretherte hydrophobe Stärken erhält man dabei, wenn die hydrophoben Reagenzien als funktionelle Gruppe ein Halogenid, ein Epoxid, ein Glycidyl, ein Halogenhydrin, eine Carbonsäure oder eine quaternäre Ammoniumgruppe enthalten. Für veresterte hydrophobe Stärken enthält das hydrophobe Reagens zumeist ein Anhydrid. Eine Hydrophobierung der Stärke kann auch über eine Abmischung einer Stärke oder eines Stärkederivates mit Fettsäureester erfolgen.

All die genannten Funktionalisierungen der Stärke können nicht nur durch Umsetzung nativer Stärke erzielt werden, auch abgebaute Formen können zum Einsatz kommen. Die Abbauvorgänge können hydrolytisch (säurekatalysiert), oxidativ, auf mechanische, thermische, thermochemische oder enzymatische Weise erfolgen. Dadurch lässt sich die Stärke nicht nur strukturell verändern, die Stärkeprodukte können auch kaltwasserlöslich bzw. kaltwasserquellbar gemacht werden.

Schließlich kann die Stärke auch als Pfropf-Polymer oder als Pfropf-Copolymer vorliegen, wie beispielsweise mit Produkten aus der Gruppe der Polyvinylalkohole oder Polyester.

Epoxidierte Pflanzenöle:

Aus chemischer Sicht handelt es sich bei den erfindungsgemäß zum Einsatz kommenden Epoxiden um zyklische Ether. Epoxide können mit den Hydroxygruppen der Stärke Interaktionen ausbilden. Zur Stoffgruppe der Epoxide zählen unter anderem auch die erfindungsgemäß zum Einsatz kommenden epoxidierten Öle, insbesondere Pflanzenöle. Aufgrund ihrer chemischen Struktur sind Epoxide instabil, d.h. die Ringstruktur wird geöffnet und kann mit der Stärke reagieren bzw. in Kombination mit z.B. Wasser zu einem Diol reagieren. Die Öffnung des Epoxidrings kann durch Säuren (z.B. Carbonsäuren) katalysiert werden. Vorzugsweise kommen erfindungsgemäß epoxidierte Pflanzenöle wie Sojabohnen- oder Leinöl (ESBO, ELO) zum Einsatz. Epoxidiertes Leinöl weist dabei bei 25 °C eine Viskosität von etwa 900 mPas sowie einen Epoxidsauerstoffgehalt von min. 8,5 Gew. % auf. Epoxidiertes Sojabohnenöl hingegen weist eine Viskosität von etwa 300-450 mPas (ebenfalls bei 25 °C) sowie einen Epoxidsauerstoffgehalt von 6, 5-7, 5 Gew. % auf. Die für den Zweck der vorliegenden Erfindung durchgeführten Viskositätsmessungen erfolgten jeweils in einem Viskosimeter gemäß EN ISO 3219.

Polyole:

Erfindungsgemäß enthält die Mischung ein Polyol ausgewählt aus der Gruppe bestehend aus Sorbitol, Erythritol, Xylitol, Mannitol und Mischungen hiervon, in einer Menge von 0 bis 9,9 Gew. % der Mischung. Mit anderen Worten bedeutet dies, dass erfindungsgemäß ein Weichmacher nicht zwingend anwesend sein muss, sollte ein Polyol ausgewählt aus der Gruppe bestehend aus Sorbitol, Erythritol, Xylitol, Mannitol und Mischungen hiervon jedoch anwesend sein, dann lediglich in einer Menge bis maximal 9,9 Gew.% der Mischung Die Polyole sind in der TPS als Weichmacher so effizient (Interaktion mit Hydroxygruppen), dass die Verarbeitung im Prozessfenster (niedriger Druck, niedriges Drehmoment) erfolgen kann. Auch können die Polyole der TPS als Sirup (Lösung in Wasser) zugesetzt werden, was eine bessere Einmischbarkeit in die Schmelze bedingt, dies führt zu homogenerer TPS bzw. auch zu homogeneren Compounds und zu glatten Folien. Weiters haben diese Polyole gegenüber Glycerin den Vorteil, dass sie bei Raumtemperatur fest sind, bei der Verarbeitung hingegen als Schmelze vorliegen und damit plastifizierend wirken können. Vorzugsweise enthält die Mischung als Polyol Sorbitol oder Erythritol in einer Menge von 0 bis 7 bzw. 2 bis 7 Gew. %.

Auch ist günstig, wenn die Mischung das Polyol in einer Menge von 0 bis 6 bzw. 3 bis 6 Gew. % enthält. Es hat sich gezeigt, dass der Anteil von Polyol als Weichmacher in der TPS möglichst gering sein soll, da es sonst zu potentiellen Problemen im Lebensmittelkontakt kommen kann. Der Weichmacher könnte beispielsweise in das Lebensmittel austreten (migrieren), wenn er im Überschuss vorliegt, andererseits ist es günstig, wenn ein geringer Prozentsatz an Weichmacher vorliegt um a) im Prozessfenster verarbeiten zu können (Druck, Drehmoment) und b) letztendlich die geforderten Folieneigenschaften zu erreichen (Dehnbarkeit, Zugfestigkeit).

Gemäß einer weiteren bevorzugten Ausführungsform der vorliegenden Erfindung ist vorgesehen, dass die Mischung Epoxid zu Polyol in einem Verhältnis von 1 zu 1 bis 1 zu 4, vorzugsweise 1 zu 1 bis 1 zu 3, besonders bevorzugt 1 zu 3, enthält. Im Bereich 1 zu 1 bis 1 zu 4 ist die TPS Verarbeitung gut (Druck, Drehmoment sowie Schneidbarkeit der Schmelze zur Herstellung von Granulaten) und es ist eine Steigerung in der Schüttdichte erkennbar. Insbesondere ein Verhältnis von 1 zu 3 erfüllt letztendlich an der Folie alle geforderten Eigenschaften, nämlich eine Zugfestigkeit > 10 MPa und eine Dehnbarkeit > 300 %.

Weiters ist günstig, wenn die Mischung zusätzlich Milchsäure in einer Menge von 2 bis 9, vorzugsweise bis 7, besonders bevorzugt 3,5 bis 4,5 Gew. % der Mischung enthält. Milchsäure begünstigt die Verarbeitbarkeit der TPS (Druck, Drehmoment), die Säure führt aufgrund ihrer Eigenschaften andererseits zu keinem signifikanten Abbau der Stärke, sodass ihre Eigenschaften somit erhalten bleiben. Außerdem ist in dem angeführten Konzentrationsbereich die Schmelze noch schneidbar.

Im erfindungsgemäßen Verfahren ist vorzugsweise vorgesehen, dass die Mischung bei einer Temperatur von 100-175 °C extrudiert wird, vorzugsweise in einem Doppelschneckenextruder und bei verringertem Druck im letzten Abschnitt des Extruders. Im angegebenen Temperaturbereich ist der Rohstoff bei kontinuierlicher Verarbeitung thermisch stabil, der Doppelschneckenextruder ermöglicht die effiziente Destrukturierung der Stärke (Aufbrechen der Kristallinität der nativen Stärke) durch Zwangsförderung. Ein verringerter Druck im letzten Abschnitt des Extruders ist zur Einstellung des Wassergehaltes am TPS-Produkt wichtig, dieser wirkt sich auf die Weiterverarbeitbarkeit aus und sollte möglichst zwischen 3-7 Gew. % liegen. Die vorliegende Erfindung betrifft auch eine thermoplastische Stärke, erhältlich nach einem der oben geoffenbarten Verfahren, welche thermoplastische Stärke vorzugsweise eine Schüttdichte von 70 bis 90 g/100 ml aufweist. Damit ist die erfindungsgemäß hergestellte thermoplastische Stärke wesentlich dichter als eine ohne der erfindungsgemäßen Verwendung eines Epoxids zusammen mit einer Säure hergestellte TPS, dafür wird auch auf die beiliegende Abbildung 1 verwiesen, aus welcher diese Unterschiede deutlich sichtbar sind. Ermittelte Schüttdichten von erfindungsgemäß hergestellten thermoplastischen Stärken sind auch aus der Tabelle 1 ersichtlich.

Tabelle 1: Schüttdichten im Vergleich

Erfindungsgemäß vorgesehen ist auch ein Compound enthaltend eine solche erfindungsgemäß hergestellte thermoplastische Stärke, extrudiert mit mindestens einem thermoplastischen Polymer. Dadurch werden eine Erhöhung des biobasierten und biologisch abbaubaren Anteils, sowie die Einstellung der Compound-Duktilität durch den TPS-Anteil ermöglicht. Compounds dieser Art können direkt zur Weiterverarbeitung z.B. an der Folienanlage eingesetzt werden.

Vorzugsweise enthält ein derartiges Compound als thermoplastisches Polymer ein Polymer ausgewählt aus der Gruppe umfassend Polyolefine, Polyamide, Polyurethane, Polyester und Mischungen hiervon. Bevorzugt enthält das Compound als thermoplastisches Polymer Polyester, welche aufgrund ihrer Viskositäten gut mit der TPS mischbar sind. Die Einstellung der Compoundeigenschaften, wie z.B. der Festigkeit, ist über die Polymermischung möglich, überraschenderweise ist es mit der erfindungsgemäß hergestellten thermoplastischen Stärke möglich, einen TPS Gehalt im Compound von bis zu 55 Gew. % vorzusehen.

Gemäß einer bevorzugten Ausführungsform der vorliegende Erfindung wird das oben erwähnte Compound in einem einstufigen Verfahren hergestellt, wobei eine Mischung wie hier zuvor für die Herstellung der erfindungsgemäßen thermoplastischen Stärke geoffenbart zusammen mit mindestens einem thermoplastischen Polymer (ebenfalls wie oben stehend geoffenbart) bei einer Temperatur von 100-175 °C extrudiert wird, vorzugsweise in einem Doppelschneckenextruder mit separater Vakuumzone in der die Entgasung durch Anlegen von Unterdrück erfolgt.

Wie bereits ausgeführt ist die erfindungsgemäß hergestellte TPS bzw. ein eine solche TPS enthaltendes Compound besonders günstig zur Herstellung einer Folie durch Blas- bzw. Flachfolienextrusion. Überraschenderweise hat sich gezeigt, dass bei der Herstellung einer solchen Folie, das bei Verwendung einer aus dem Stand der Technik bekannten TPS praktisch unvermeidliche Rauchen nicht mehr auftritt.

In gleicher Weise kann die erfindungsgemäß hergestellte TPS bzw. ein eine solche TPS enthaltendes Compound besonders günstig zur Herstellung von Spritzgussartikeln verwendet werden. Die vorliegende Erfindung umfasst demnach auch eine derartige Verwendung sowie einen unter Verwendung einer erfindungsgemäß hergestellten TPS bzw. eines eine solche TPS enthaltenden Compounds hergestellten Spritzgussartikel.

Die oben genannten Mischungen mit ihren einzelnen Komponenten werden unter Temperatur und Schereinwirkung im Extruder zu einer thermoplastischen Schmelze verarbeitet. Die vorliegende Erfindung wird nun anhand der nachfolgenden Beispiele näher erläutert:

Als Ausgangsrohstoff wird Maisstärke (Native Maisstärke, Maisita 21000), mittels Feststoffdosierung in den Extruder eingebracht. Als Weichmacherkomponente wird Sorbitol verwendet, bzw. wenn kein Weichmacher verwendet wird, wird die nötige Menge Wasser eingebracht. Der Weichmacher kann dabei sowohl in fester, als auch in flüssiger Form (Lösung in Wasser) vorgelegt werden, auch ist es möglich die Zugabe zu splitten (d.h. Zusatz teilweise in fester und teilweise in flüssiger Form). Zur Verbesserung der Verarbeitbarkeit (Reduktion Drehmoment) wird Stearinsäure eingesetzt (1 Gew. %). Säure und epoxidierte Pflanzenöle umfassen Zitronensäure (0,1 Gew. %) und epoxidiertes Öl (2 Gew. %). Die Ölkomponente wird unbehandelt in flüssiger/pumpbarer Form zugesetzt. Außerdem erfolgt der Zusatz von 10 Gew. % des Polyesters Polybutylenadipat-co-terephthalat (PBAT). Die Mischung wird unter Verwendung eines Temperaturprofils im Bereich 100-160 °C (ab 160 °C ist eine starke Braunfärbung zu erkennen) und bei einer Drehzahl von 250 UpM in einem Doppelschneckenextruder mit Vakuumentgasung (Abfuhr des für die Plastifizierung zugesetzten Wassers) verarbeitet und an der Düsenplatte mittels Heißabschlag granuliert. Sämtliche Additive werden dem Extrusionsprozess über entsprechende Dosieraggregate direkt zugegeben. Erst der erfindungsgemäß vorgesehene Zusatz von epoxidierten Pflanzenölen (z.B. epoxidiertes Leinöl (ELO), epoxidiertes Sonnenblumenöl, epoxidiertes Rapsöl oder epoxidiertes Sojabohnenöl (ESBO) sowie Mischungen hievon) führt, auch beim Einsatz von z.B. Sorbitol, zur Einbindung/Einmischung des Weichmachers in der TPS. Eine Verbesserung der Phasenverträglichkeit im Compound, durch die Integration der Ölkomponente in der TPS, führt in weiterer Folge zu einer Steigerung der mechanischen Werkstoffeigenschaften.

Die Aktivierung der Epoxidfunktionalität in den epoxidierten Pflanzenölen wird durch den Zusatz von Säuren begünstigt. Bevorzugt zum Einsatz kommen dabei Carbonsäuren (die im Idealfall auf nachhaltiger Basis hergestellt werden können) wie z.B. Zitronensäure, Weinsäure, Essigsäure, Itaconsäure, Äpfelsäure oder Milchsäure.

Weiters wird durch den Zusatz des epoxidierten Pflanzenöls eine Reduktion im Düsendruck und eine damit einhergehende Hemmung der beschriebenen Expansion erzielt (siehe dazu die beiliegende Abbildung 1 , aus welcher die Vorteile des erfindungsgemäßen Verfahrens sogar schon optisch ersichtlich sind).

Der Zusatz von Prozessadditiven zur Optimierung der Verarbeitbarkeit ist bis zu einem Anteil von 3 Gew. % zulässig (z.B. Fettsäuren wie Palmitinsäure, Myristinsäure, Stearinsäure oder Behensäure). Als Ausgangsrohstoffe können die definitionsgemäßen Stärketypen zum Einsatz kommen, beispielsweise mit einer Trockensubstanz von ~ 90 Gew. %.

Der entstandene Werkstoff ist wasserlöslich und kann als fein verteilte TPS (disperse Phase) über einen separaten Extrusionsschritt in z.B. Polyesterschmelzen (kontinuierliche Phase) eingearbeitet werden (Abbildung 3).

Die erfindungsgemäß hergestellten Extrudate sind für die Weiterverarbeitung zu Compounds (z.B. in Kombination mit Polyestern) geeignet. Erst auf Basis der Compounds ist es möglich, Endprodukte wie z.B. Folienmaterialien herzustellen.

Lieferanten:

Sorbitol, Stearinsäure - Brenntag, AT

ESBO - Hobum, AT

Zitronensäure - Jungbunzlauer, AT

Ecoflex, Polybutylenadipat-co-terephthalat (PBAT) - BASF, DE Maschinentypen:

Extrusion (TPS und Compound): Theysson TSK 30, 28D, 7 Zonen

Blasfolienanlage: OCS BFT400V3

Wasser-plastifizierte TPS im Vergleich mit Weichmacher-plastifizierter TPS (Abbildung 1 und 2)

Tabelle 2: Weichmachergehalt und Wasserzugabe in der TPS-Rezeptur

Die thermoplastische Stärke aus Tabelle 2 wird zusammen mit PBAT als Polyester in den jeweiligen Anteilen in einem Doppelschneckenextruder compoundiert und im Nachgang zu Folien verarbeitet (siehe Eigenschaften Tabelle 3 und 4).

Tabelle 3: Compounds auf der Basis von TPS und dem Polyester Ecoflex (PBAT, BASF), wobei die TPS durch den Zusatz eines Überschusses an Wasser X), in Kombination mit Sorbitol A), B), Y) bzw. mittels des Weichmachers Sorbitol alleine C), Z) plastifiziert wurde, Werkstoffkennwerte von Folienmaterialien auf der Basis unterschiedlicher TPS-Varianten (Tabelle 1)

Aus der obigen Tabelle 3 ist ersichtlich, dass es beim Zusatz von Wasser als Plastifizierungsreagenz möglich ist eine TPS herzustellen, welche im Compound, bzw. in der auf Basis des Compounds hergestellten Folie vergleichbar gute mechanische Werkstoffeigenschaften zulässt wie sie auch durch die Plastifizierung mit Sorbitol erreicht werden können. Aus den durchgeführten Versuchen geht hervor, dass sogar eine Absenkung des Weichmachergehaltes auf 0 Gew. % möglich ist.

Steigender Stärkegehalt (Abbildung 3)

Tabelle 4: Compounds auf der Basis von TPS und dem Polyester Ecoflex (PBAT, BASF), wobei die TPS durch den Zusatz eines Überschusses an Wasser plastifiziert wurde, Werkstoffkennwerte von

Folienmaterialien auf der Basis TPS-Variante B (Tabelle 2)

Aus der obigen Tabelle 4 ist ersichtlich, dass es beim Zusatz von Wasser als Plastifizierungsreagenz möglich ist eine TPS herzustellen, welche im Compound, bzw. in der auf Basis des Compounds hergestellten Folie, vergleichbar gute mechanische Werkstoffeigenschaften zulässt wie sie auch durch die Plastifizierung mit Sorbitol erreicht werden können. Die ausschließliche Reduktion von Weichmachern wie z.B. Sorbitol, Isosorbid, oder Xylitol in einer TPS ist demnach nicht zielführend und führt im Falle von Folienmaterialien auf der Basis von TPS und Polymer erwiesenermaßen zu Einbußen in Hinblick auf die erzielbaren mechanischen Werkstoffeigenschaften.

Analysemethoden:

Überprüfung des Stärkeaufschlusses der TPS:

Liegt eine unvermahlene Probe vor, so muss diese vorher mit einer Labormühle möglichst fein vermahlen werden. Außerdem ist darauf zu achten, dass bereits vermahlene Proben nicht zu lange stehen sollten, da diese schnell Feuchtigkeit anziehen und somit das Ergebnis der Trockensubstanz verfälscht wird. Nun wird die Trockensubstanz ermittelt. In Anschluss daran wird die vermahlene TPS 5,0 Gew % in Trockensubstanz eingerührt. Das Deionat wird dabei im Becherglas vorgelegt und die Probe unter Rühren vorsichtig eingestreut. Das Gesamtgewicht (Probe + Deionat) beträgt 200 g.

Einscherparameter: 5 Minuten bei 1000 UpM mit einem 4cm Zahnscheibenrührer.

Zur Analyse werden nun zwei Tropfen der gut aufgeschlämmten Probe mittels Pasteurpipette auf einen Objektträger aufgebracht und unter dem Durchlichtmikroskop mit und ohne Polarisationsfilter untersucht (Abbildung 2).

Einarbeitung der TPS in die Polymer-Matrix:

Einige Granulate des zu untersuchenden Compounds werden kurz in flüssigen Stickstoff getaucht, in Backpapier eingefaltet und mit einem Hammer vorsichtig in Bruchstücke zerschlagen. Die Granulatfraktionen werden in ein Becherglas überführt, mit 1 M HCL überschichtet und für 3 Stunden am Magnetrührer gerührt. Danach wird über einen Faltenfilter die Salzsäure abgetrennt und die von Stärke ausgelösten Compounds werden vor dem Trocknen 2-3 Mal mit Deionat abgespült. Die feuchten Compoundfraktionen werden auf eine Petrischale gestreut und im Trockenschrank bei 60 °C eine Stunde getrocknet. Die getrockneten Kryobrüche können nun mittels Elektronenmikroskop untersucht werden (Abbildung 3).

Bestimmung der mechanischen Werkstoffeigenschaften:

Nach EN ISO 527-1/-2, ÖNORM ISO 34-1 :2005

Bestimmung der Schüttdichte:

„lose Schüttdichte“, ermittelt durch lockeres Befüllen eines 100 ml Messzylinders

Spezifikationsfenster: 70-90 g/100ml Stärkebestimmung im Compound bzw. an der Folie:

Die in der Probe enthaltene Stärke wird mittels Salzsäure hydrolysiert (25%iger HCl, 60 °C, 60 min) und anschließend mit einem stärkespezifischen Enzym zu Glucose abgebaut (Stärke UV- Test, Roche). Die dabei entstehende Extinktionsdifferenz bei 340 nm, welche bei der Reaktion von NADP+ zu NADPH+H+ entsteht, wird photometrisch erfasst und für die Berechnung des Stärkegehaltes herangezogen.

Gemäß einer bevorzugten Ausführungsform der vorliegenden Erfindung sind für die hergestellte thermoplastische Stärke beim Stärkeaufschluss im Polarisationsmikroskop unter 10 Polarisationskreuze (bevorzugt keine Polarisationskreuze) sichtbar. Die Korngröße der thermoplastischen Stärke als Dispersion im Compound beträgt bevorzugt <5 pm. Auch eine Größe von <20 pm würde das Compound foliengängig machen, ist jedoch mit einer schlechten Haptik verbunden, eine Größe von <10 pm macht das Compound auch foliengängig, das Produkt weist jedoch Mikrorauigkeit auf.

Gemäß einer weiteren bevorzugten Ausführungsform der vorliegenden Erfindung zeigen die aus erfindungsgemäß hergestellten TPS bzw. Compound produzierten Folien eine Dehnbarkeit von >300 % bei einer Zugfestigkeit von >10 MPa sowie überlegenen Werkstoffeigenschaften.