Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
TITANIUM-ALUMINUM-SILICON-OXIDE MOLECULAR SIEVE COMPOSITIONS
Document Type and Number:
WIPO Patent Application WO/1985/004855
Kind Code:
A1
Abstract:
Titanium-aluminum-silicon-oxide molecular sieves having use as molecular sieves and as catalyst compositions in hydrocarbon conversion and other processes. The molecular sieves have a unit empirical formula on an anhydrous basis of mR: (TixAlySiz)O2 wherein "R" represents at least one organic + emplating agent: "m" represents the moles of "R" present per mole of (TixAlySiz)O2: and "x", "y" and "z" represent the mole fractions of titanium, aluminum and silicon, respectively present as tetrahedal oxides.

Inventors:
LOK BRENT MEI TAK (US)
MARCUS BONITA KRISTOFFERSEN (US)
FLANIGEN EDITH MARIE (US)
Application Number:
PCT/US1985/000752
Publication Date:
November 07, 1985
Filing Date:
April 26, 1985
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
UNION CARBIDE CORP (US)
International Classes:
B01J29/70; B01J29/89; B01J31/02; C01B39/04; C01B39/06; C07B61/00; C07C1/00; C07C2/12; C10G11/05; C07C2/54; C07C5/02; C07C5/22; C07C5/41; C07C67/00; C10G35/095; C10G49/08; B01J; (IPC1-7): C01B33/28; B01J29/28; C10G11/05; C10G49/08; C07C5/02; C07C2/54; C10G35/095; C07C5/22; C07C5/41
Foreign References:
EP0094024A11983-11-16
EP0077522A21983-04-27
EP0111700A11984-06-27
Other References:
See also references of EP 0179876A1
Download PDF:
Claims:
WHAT IS CLAIMED IS:
1. Crystalline molecular sieves having chemical compositions in the anhydrous form represented by the unit empirical formula: mR:(TiχAlySi2)02 wherein "R" represents at least one organic templating agent present in the intracrystalline pore system; " " represents the moles of "R" present per mole of (Ti Al SiJO, and has a value of from zero to about 0.3; and "x", "y" and "z" represent the mole fractions of titanium, aluminum and silicon, respectively, present as tetrahedral oxides said mole fractions being such that they are within the compositional area defined by points A, B, D, E and F of FIG. 1.
2. Crystalline molecular sieves having chemical composition in the form represented by the unit empirical formula: mR:(TiχAlySi2)02 wherein "R" represents at least one organic templating agent present in the intracrystalline pore system; "m" represents the moles of "R" present per mole of (Ti Al Si )0, and has a value of from zero to about 0.3; and "x", "y" and "z" represent the mole fractions of titanium, aluminum and silicon, respectively, present as tetrahedral oxides, said mole fractions being such that they are within the compositional area defined by points A, B. C and D of of Fig. 1 and having the characteristic xray powder diffraction pattern set forth in one of Tables V. VII. XI or XIV.
3. The crystalline molecular sieves according to claim 1 or claim 2 wherein the mole fractions of titanium, aluminum and silicon are within the hexagonal compositional area defined by points a. b, and c of the ternary diagram of Fig. 2.
4. The crystalline molecular sieves of claim 2 having the characteristic Xray powder diffraction pattern set forth in Table V.
5. The crystalline molecular sieves of claim 2 having the characteristic Xray .powder diffraction pattern set forth in Table VII.
6. The crystalline molecular sieves of claim 2 having the characteristic Xray powder diffraction pattern set forth in Table XI.
7. The crystalline molecular sieves of claims 1 or 2 or 3 wherein said molecular sieves have been calcined to remove at least some of any organic template present.
8. Process for preparing the crystalline molecular sieves comprising providing at an effective temperature and for an effective time a reaction mixture composition expressed in terms of molar oxide ratios as follows: aR:(TixAlySiz):bH Δ,.0 wherein "R" is an organic templating agent: "a" is an effective amount of "R"; "b" has a value of from zero to about 5000; and "x", "y" and "z" represent the mole fractions of titanium, aluminum and silicon, respectively, in the (TixAlySiz) constituent, and each has a value of at least 0.01, whereby the crystalline molecular sieves of claim 1 or claim 2 are prepared.
9. Process according to claim 8 wherein the source of silicon in the reaction mixture is silica.
10. Process according to claim 8 wherein the source of aluminum in the reaction mixture is at least one compound selected from the group consisting of pseudoboehmite and aluminum aikoxide.
11. Process according to claim 9 wherein the aluminum aikoxide is aluminum isopropoxide.
12. Process according to claim 8 wherein the source of titanium is selected from the group consisting of aikoxide, watersoluble titanates and titanium chelates.
13. Process according to claim 8 where the organic templating agent is selected from the group consisting of quaternary ammonium or quaternary phosphoniu compounds of the formula: wherein X is nitrogen or phosphorous and each R is alkyl containing between 1 and about 8 carbon atoms or aryl.
14. Process according to claim 8 wherein the templating agent is selected from the group consisting of tetrapropylammonium ion; tetraethylammonium ion; tripropylamine; triethylamine; triethanolamine; piperidine; cyclohexylamine; 2methyl pyridine; N,Ndimethylbenzylamine; N,Ndiethylethanolamine; dicyclohexylamine; N,Ndimethylethanolamine; choline; N,Ndimethylpiperazine; pyrrolidine; l,4diazabicyclo(2,2,2) octane; Nmethylpiperidine; 3methylpiperidine; Nmethy1cyclohexylamine; 3methylpyridine; 4methylpyridine; quinuclidine; N,Ndimethyll,4diazabicyclo (2,2,2) octane ion; tetramethylammonium ion; tetrabutylammonium ion, tetrapentylammonium ion; dinbutylamine; neopentylaraine; dinpentylamine;isopropylamine; tbutylamine; ethylenediamine and 2imidazolidone; dinpropylamine; and a polymeric quaternary ammonium salt C(C.4H32N2 (OH)_] wherein x is a value of at least 2.
15. Process for separating mixtures of molecular species wherein such mixtures contain molecular species having different degrees of polarity and/or kinetic diameters comprising contacting said mixture with a composition of claim 1 or claim 21.
16. Process for converting a hydrocarbon which comprises contacting said hydrocarbon under hydrocarbon converting conditions with a crystalline molecular sieve as set forth in claim 1 or claim 2.
17. Process according to claim 16 wherein the hydrocarbon conversion process is cracking.
18. Process according to claim 16 wherein the hydrocarbon conversion process is hydrocracking.
19. " Process according to claim 16 wherein the hydrocarbon conversion process is hydrogenation.
20. Process according to claim 16 wherein the hydrocarbon conversion process is polymerization.
21. Process according to claim 16 wherein the hydrocarbon conversion process is alkylation.
22. Process according to claim 16 wherein the hydrocarbon conversion process is reforming.
23. Process according to claim 16 wherein the hydrocarbon conversion process is hydrotreating.
24. Process according to claim 16 wherein the hydrocarbon conversion process is isomerization.
25. Process according to claim 16 wherein the hydrocarbon conversion process is dehydrocyclization.
Description:
TITANIUM-ALUMINUM-SILICON-OXIDE MOLECULAR SIEVE COMPOSITIONS

FIELD OF THE INVENTION

The present invention relates to new molecular sieve compositions containing titanium, aluminum and silicon in the form of framework tetrahedral oxide units. These compositions are prepared hydrother ally from reaction mixtures containing reactive sources of titanium, aluminum and silicon and preferably at least one organic teraplat-ing agent.

DISCUSSION OF MOLECULAR SIEVES

Molecular sieves having crystalline structures and of the aluminosilicate type are well known to those familiar with molecular sieve technology. Both naturally occurring and synthetic alu inosilicates are known to exist and literally hundreds of such have been reported in the literature.

Although hundreds of aluminosilicates (binary molecular sieves) are known, the reports relating to ternary molecular sieves have been relatively few. Further, the reported ternary- molecular sieves having titanium as a component have been even fewer and in those instances where titanium has been reported the amount contained in the molecular sieve has been relatively small or present as a deposition or surface modifying agent.

One early report of crystalline titano-silicate zeolites (Of course, these

compositions are not zeolites as the term "zeolite" is commonly employed today.) is found in U.S. Patent No. 3,329,481. The crystalline titano-silicates are described in U.S. Patent No. 3.329,481 by the " formula: wherein D is a monovalent metal, d valent metal, ammonuim ion or hydrogen ion, "n" is the valence of

D, "x" is a number from 0.5 to 3 and y is a number from, about 1.0 to 3.5. The crystalline titano-silicate zeolites are characterized by X-ray powder diffraction patterns including all the d-spacings of one of the patterns selected from the group:

Pattern A: Pattern B: Pattern C:

7.6 - 7.9A 4.92 +, 0.04A 2.82 ±.0.03A

3 . 2 + 0. 05A 3 . 10 +. 0. 04A 1. 84 ±. 0.03A

The difficulty in obtaining compositions containing titanuim is evidenced by the disclosure of U.S. Patent No. 4,358.397 which discloses modified aluminosilicates. The aluminosilicates are modified by treating an aluminosilicate with a compound derived from one or more elements of titanium, zirconium or hafnium. The resulting compositions are said to contain a minor proportion of an oxide of such elements. It is clear that in the disclosed compositions the oxides of titanuim, zirconium and hafnium were present as deposited oxides and were present in a minor proportion.

As. above mentioned, although there has been an extensive treatment in the patent art and in the published literature of aluminosilicates and

recently, aluminophosphates. there has been little information available on the presence of other than such materials. This is particularly true in the area of titanium containing compositions. Molecular sieve compositions wherein titanium is present in the framework of the molecular sieve or is so intimately related as to change the physical and/or chemical characteristics of the molecular sieve have not been extensively reported. This is understandable in the question of aluminosilicates, as indicated by the article, "Can Ti 4+ replace Si 4+ in silicates?", Mineralogical Magazine,

September vol 37, No. 287, pages 366-369 (1969). In this article it is concluded that substitution of framework silicon by titanium does not usually occur in aluminosilicates owing to the preference of titanium to be octahedrally bound rather than tetrahedrally bound. Even for the formation of crystalline "titanosilicate zeolites*", as disclosed in U.S. Patent No. 3,329,481 and discussed above, wherein a metallo-silicate complex is formed and treated to give the titanosilicate product, the evidence for the claimed titanosilicate is based on the X-ray powder diffraction pattern data which are somewhat suspect as to whether such show substitution of titanium into the silicate framework inasmuch as the same claimed X-ray patterns are also observed for the zirconium silicates. Further, similar X-ray patterns showing similar interplanar distances for the two values in pattern B have been reported for silicalite. (see GB 2.071.071 A).

The incorporation of titanium in a silicalite-type structure is disclosed in GB 2,071,071 A. published December 21, 1979. The amount of titanium claimed to be substituted into the silicalite-type structure is very small, being no more than 0.04 mole percent, based on the number of moles of silica, and may be as low as 0.0005. The titanium content was determined by chemical analysis and was not determined to be greater than 0.023 in any of the reported examples. As indicated by a comparison of Fig. la and Fig. lb of GB 2,071,071 A, the amount of titanium present is so small and no significant change in the X-ray diffraction pattern of silicalite was observed and the minor changes observed may simply be due to occluded titanium dioxide. Thus, in the absence of other analytical data the results are not well defined. No comparison data for titanium dioxide are disclosed.

In view of the above, it is clear that the substitution of titanium into a zeolitic-type framework although conceived to be possible wherein titanium substitutes for silicon, has been deemed most difficult to achieve.

The difficulty which is met in preparing titanium-containing molecular sieve compositions is further demonstrated by the failure of European Patent Application No. 82109451.3 (Publication No. 77,522, published April 27; 1983) entitled "Titanium-containing zeolites and method for their production as well as use of said zeolites.", to actually prepare titanium-containing molecular sieve compositions. Although the applicants claim the preparation of titano-aluminosilicates having the

pentasil structure, it is evident from an analysis of the products of the examples that titanium was not present in the form of a framework tetrahederal oxide in a molecular sieve having the pentasil " structure. The products of the examples of European patent Application No. 82109451.3 will be discussed in detail in a comparative example hereinafter.

DESCRIPTION OF THE FIGURES

FIG. 1 is a ternary diagram wherein parameter relating to the instant compositions are set forth as mole fractions.

FIG. 2 is a ternary diagram wherein parameters relating to preferred compositions are set forth as mole fractions.

FIG. 3 is a ternary diagram wherein parameters relating to the reaction mixtures employed in the preparation of the compositions of this invention are set forth as mole fractions.

FIG. 4 is an SEM (Scanning Electron Micrograph) of the product of European Application No. 82109451.3.

SUMMARY OF THE INVENTION

The instant invention relates_to new molecular sieve compositions having three- dimensional microporous crystalline framework structures of TiO_, A10, and SiO, tetrahedral oxide units. These new molecular sieves have a unit empirical formula on an anhydrous basis of: mR: ( v TixAlySiz)02„ where "R" denominates an organic templating agent present in the intracrystalline pore system; "m" represents the moles of "R" present per mole of

(Ti X,AljfSiZ)0 £_» and has a value of from zero to about 0.3; and "x", "y" and "z" represent the mole fractions of titanium, aluminum and silicon, respectively, present as framework tetrahedral oxide units, said mole fractions being such that they are within the area defined: by points A, B, D, E and F: or by points A. B, C and D of Fig. 1, when said molecular sieves are characterized by the X-ray patterns of tables V, VII. IX or XIV, as hereinafter defined, where points A, B, C and D have the following values for "x" "y" and "z":

Mole Fraction

Point X Z z.

A 0.39 0.60 0.01

B 0.98 0.01 0.01

C 0.01 0.01 0.98

D 0.01 0.60 0.39

E 0.01 0.49 0.50

F 0.49 0.01 0.50 or, alternatively, "x", "y" and "z" represent mole, fractions of titanium, aluminum and silicon, respectively as framework tetrahedral oxide units; said mole fractions being such that they are within the area defined by points a, b and c of FIG. 1, where points A, B, and C. have the following values for » r, "y" and n z":

Mo3e Fraction Point x v ' z a 0.49 ' 0.01 0.50 b 0.01 0.49 0.50 c 0.01 0.01 0.98

The instant titanium-aluminum-silicon- oxides will be generally referred to herein by the acronym "TASO" to designate the titanium-aluminum- silicon-oxide molecular sieves having a framework •structure of TiO,, A10- and SiO_ tetrahedral oxide units. The individual class members or species will be identified by denominating the various structural species which make up the TASO family by assigning a number to the species and, accordingly, are identified as "TASO-i" where the number "i" is an integer. This designation is an arbitrary one and is not intented to denote structural relations to another material(s) which may also be characterized by a numbering system.

DETAILED DESCRIPTION OF THE INVENTION

The present invention relates to titanium-aluminum-silicon-oxide molecular sieves having three-dimensional icroporous crystal framework structures of TiO_, AIO- and SiO, tetrahedral units which have a unit empirical formula on an anhydrous basis of: mR : (Ti χ Al y Si 2 )0 2 (1) wherein "R" represents at least one organic templating agent present in the intracrystalline pore system; "m" represents the moles of "R" present per mole of (Ti JtAlJfSiZ)0 Λ_ and has a value of between zero and about 0.3, the maximum value in each case depending upon the molecular dimensions of the templating agent and the available void volume of pore system of the particular TASO molecular sieve; and "x", "y" and "z" represent the mole fractions of titanium, aluminum and silicon.

respectively, present as tetrahedral oxides, said mole fractions being such that they are within the: by poiunts A. B, D, E and F; or tetragonal compositional area defined by points A, B, C and D of FIG. 1 when said molecular sieves are characterized by the X-ray patterns of Tables V,

VII, IX or XIV as hereinafter defined, and representing the following values for "x", "y" and

•:' : Mole Fraction

Point X -2- z

A 0. 39 0. 60 0. 01 B 0. 98 0 .01 0 . 01 C 0.01 0.01 0. 98 D 0. 01 0 . 60 0. 39 E 0.01 0 . 49 0. 50 F 0.49 0. 01 0 . 50 or, alternatively, "x"» "y" and "z" represent mole .fractions of titanium, aluminum and silicon, respectively as framework tetrahedral oxide units; said mole fractions being such that they are within the area defined by points a, b r - and c of FIG. 2, where points -a, b, and c have the following values for "x", "y" and B z tt :

Mole Fraction Point x y z a 0.49 0.01 0.50 b 0.01 0.49 0.59 c 0.01 0.01 0.98

In a further embodiment the values of "x", w y" and "z" are preferably within the compositional area defined by points A, B, O, E and F of the ternary diagram which is Fig. 1 of the drawings

said points A, B, D, E and F representing the following values for "x", "y" and V: Mole Fraction

Point X z

A 0.39 0. 60 0 . 01 B 0. 98 0. 01 0. 01 D 0. 01 0. 60 0. 39 E 0. 01 0. 49 0. 50 F 0.49 0. 01 0.50

The molecular sieves of the present invention are generally employable as catalysts for various hydrocarbon conversion processes.

The term "unit empirical formula" is used herein according to its common meaning to designate the simplest formula which gives the relative number of moles of titanium, aluminum and silicon which. form the TiO . A3 2 and s ° 2 tetcatiedcal unit within a titanium-aiuminum-siiicon-oxide molecular sieve and which forms the molecular framework of the

TASO compositioα(s). The unit empirical formula is given in terms of titanium, aluminum and silicon as shown in Formula (1), above, and does not include other compounds, cations or anions which may be present as a result of the preparation or the existence of other impurities or materials in the bulk composition not containing the aforementioned tetrahedral unit. The amount of template R is reported as part of the composition when the as-synthesized unit empirical formula is given, and water may also be reported unless such is defined as the anhydrous form. For convenience, coefficient

m" for template "R" is reported as a value that is

normalized by dividing the number of moles of organic by the total moles of titanium, aluminum and silicon.

The unit empirical formula for a given TASO can be calculated using the chemical analysis data for that TASO. Thus, for example, in the preparation of TASOs disclosed hereinafter the over all composition of the as-synthesized TASO is calculated using the chemical analysis data and expressed in terms of molar oxide ratios on an anhydrous basis.

The unit empirical formula for a TASO may be given oα an "as-synthesized" basis or may be given after an "as-synthesized" TASO composition has been subjected to some post treatment process, e.g., calcination. The term "as-synthesized" herein shall be used to refer to the TASO composition(s) formed as a result of the hydrothermal crystallization but before the TASO composition has been subjected to post treatment to remove any volatile components present therein. The actual value of "m" for a post-treated TASO will depend on several factors (including: the particular TASO, template, severity of the post-treatment in terms of its ability to remove the template from the TASO, the proposed application of the TASO composition, and etc.) and the value for "m" can be within the range of values as defined for the as-synthesized TASO compositions although such is generally less than the as-synthesized TASO unless such post-treatment process adds template to the TASO so treated. A TASO composition which is in the calcined or other

post-treatment form generally has an empirical formula represented by Formula (1), except that the value of " " is generally less than about 0.02. Under sufficiently severe post-treatment conditions, e.g. roasting in air at high temperature for long periods (over 1 hr.), the value of " " may be zero (0) or, in any event, the template, R. is undetectable by normal analytical procedures. The molecular sieves of the instant invention are generally synthesized by hydcothermal crystallization from a reaction mixture comprising reactive sources of titanium, aluminum and silicon, and preferably one or more organic templating agents. Optionally, alkali metal(s) may be present in the reaction mixture. The reaction mixture is placed in a pressure vessel, preferably lined with an inert plastic material, such as polytetra luocoethylene. and heated, preferably under the autogenous pressure, at a temperature of from about 50°C to about 250°C, until crystals of the molecular sieve product ate obtained, usually for a period of from 2 hours to 2 weeks or more. While not essential to the synthesis of the instant molecular sieves, it has been found that in general stirring or other moderate agitation of the reaction mixture and/or seeding the reaction mixture with seed crystals of either the TASO to be produced, or a topologically similar composition, facilitates the crystallization procedure. The product is recovered by any convenient method such as centrifugation or filtration.

After crystallization the TASO may be isolated and washed with water and dried in air. As a result of the hydrothermal crystallization, the as-synthesized TASO contains within its intracrystalline pore system at least one form of any template employed in its formation. Generally, the template is a molecular species, but it is possible, steric considerations permitting, that at least some of the template is present as a charge-ba ancing cation. Generally the template is too large to move freely through the intracrystalline pore system of the formed TASO and may be removed by a post-treatment process, such as by calcining the TASO at temperatures of between about 200 β C and to about 700°C so as to thermally degrade the template or by employing some other post-treatment process for removal of at least part of the template from the TASO. In some instances the pores of the TASO are sufficiently large to permit transport of the template, and. accordingly, complete or partial removal thereof can be accomplished by conventional desorption procedures such as carried out in the case of zeolites.

The TASO compositions are generally formed from a reaction mixture containing reactive sources of TiO_, A1_0 . and SiO and an organic templating agent,, said reaction mixture comprising a composition expressed in terms of molar oxide ratios of: aE 2 0:(Ti χ Al y Si 2 )0 2 :b H 2 0 wherein "R" is an organic templating agent; "a" has a value large enough to constitute an effective

amount of "R" said effective amount being that amount which form said TASO compositions and preferably being from greater than zero to about 50 preferably between about 1 and about 25; "b" is an effective amount of water and has a value of from zero to about 400, preferably from about 50 to about

100; and "x", "y" and "z" represent the mole fractions, respectively of titanium, aluminum and silicon in the (Ti AAlySiz)0 * L constituent, and each has a value of at least 0.001 and are preferably within the tetragonal compositional area defined by points, E, F, G and H which is Fig. 3 of the drawings, said points E, F, G and H representing the following values for "x", "y" and "z":

Mole Fraction

Point X -3- z

E 0. 39 0. 60 0. 01 F 0. 98 0. 01 0 . 01 G 0. 01 0. 01 0. 98 H 0. 01 0 . 60 0. 39

The reaction mixture from which these TASOs are formed generally contain one or more organic templating agents (templates) which can be most any of those heretofore proposed for use in the synthesis of aluminosilicates and alu inophosphates. The template preferably contains at least one element of Group VA of the Periodic

Table, particularly nitrogen, phosphorus, arsenic and/or antimony, more preferably nitrogen or phosphorus and most preferably nitrogen and are of the formula R4.X + wherein X is selected from the group consisting of nitrogen, phosphorus, arsenic and/or antimony and R may be hydrogen, alkyl, aryl.

araalkyl, or alkylaryl group and is preferably aryl or alkyl containing between 1 and 8 carbon atoms, although more than eight carbon atoms may be present in "R" of group of the template. Nitrogen-containing templates are preferred, including amines and quaternary ammonium compounds, the latter being represented generally by the formula R'.N wherein each R' is an alkyl. aryl, alkylaryl, or araalkyl group: wherein R' preferably contains from 1 to 8 carbon atoms or higher when R' is alkyl and greater than 6 carbon atoms when R' is otherwise, as hereinbefore discussed. Polymeric quaternary ammonium salts such as f( c ι 4 H 32 N 2 ^ (OH) ] wherein "x" has a value of at least 2 may also be employed. The mono-, di- and tri-a ines, including mixed amines, may also be employed as templates either alone or in combination with a quaternary ammonium compound, quaternary phosphoniu compound or another template. The exact relationship of various templates when concurrently employed is not clearly understood. Mixtures of two or more templating.agents can produce either mixtures of TASOs or in the instance where one template is more strongly directing than another template the more strongly directing template may control the course of the hydrothermal crystallization wherein with the other template serving primarily to establish the pH conditions of the reaction mixture.

Representative templates which may be employed herein include: tetramethylammonium; tetraethyiammonium; tetrapropylammonium;

tetrabutylammonium ions; di-n-propylamine; tripropylamine; triethylamine; triethanolamine; piperidine; cyclohexylamine; 2-methylpyridine; N.N-dimethylbenzyla ine; N,N-diethylethanolamine; dicyclohexyla ine; N,N-dimethylethanolamine; 1,4-diazabicyclo (2,2,2) octane; N-methyldiethanolamine, N-methyl- ethanolamine; N-methylcyclohexylamine; 3-methyl- pyridine; 4-methylpyridine; quinuclidine;

N.N'-dimethyl-l,4-diazabicyclo (2,2,2) octane ion; di-n-butylamine, neopentyla ine; di-n-pentylamine; isopropylamine; t-butylamine; ethylenedia ine; pyrrolidine; and 2-imidazolidone. As will be readily apparent from the illustrative examples set forth hereinafter, not every template will produce every TASO composition although a .single template can, with proper selection of the reaction conditions, cause the formation of different TASO compositions, and a given TASO composition can be produced using different templates.

In those instances where an aikoxide is the reactive titanium, aluminum and/or silicon source, the corresponding alcohol is necessarily present in the reaction mixture since it is a hydrolysis product of the aikoxide. It has not as yet been determined whether this alcohol participates in the synthesis process as a templating agent, or in some other function and. accordingly, is not reported as a template in the unit formula of the TASOs. although such may be acting as templates.

Alkali metal cations when present in the reaction mixture may facilitate the crystallization

of certain TASO phases, although the exact function of such cations in crystallization, if any, is not presently known. Alkali cations present in the reaction mixture generally appear in the formed TASO composition, either as occluded (extraneous) cations and/or as structural cations balancing net negative charges at various sites in the crystal lattice. It should be understood that although the unit formula fox the TASOs does not specifically recite the presence of alkali cations they are not extluded in the same sense that hydrogen cations and/or hydroxyl groups are not specifically provided for in the traditional formulae for zeolitic aluminosilicates.

Most any reactive titanium source may be employed herein. The preferred reactive titanium sources include titanium alkoxides, water-soluble titanates, titanate esters and titanium chelates.

Most any reactive source of silicon can be employed herein. The preferred reactive sources of silicon are silica, either as a silica sol or as fumed silica, a reactive solid amorphous precipitated silica, silica gel, alkoxides of silicon, silicic acid or alkali metal silicate and mixtures thereof.

Most any reactive aluminum source may be employed herein. The preferred reactive aluminum sources include sodium alu inate, aluminum alkoxides, such as aluminum isopropoxide, and pseudoboehmite. Crystalline or amorphous aluminosilicates which are a suitable source of silicon are, of course, also suitable sources of aluminum. Other sources of aluminum used in zeolite

synthesis, such as gibbsite and aluminum trichloride may be employed but are generally not deemed preferred.

The X-ray patterns carried out herein and all other X-ray patterns appearing herein were obtained using either: (1) standard x-ray powder diffraction techniques; or (2) by use of using copper K-alpha radiation with computer based techniques using Siemens D-500 X-ray powder diffractometers, Siemens Type K-805 X-ray sources, available from Siemens Corporation, Cherry Hill, New Jersey, with appropriate computer interface. When employing the standard X-ray technique the radiation source is a high-intensity, copper target. X-ray tube operated at 50 Kv and 40 ma. The diffraction pattern from the copper K-alpha radiation and graphite monochromator is suitably recorded by an X-ray spectrometer scintillation counter, pulse height analyzer and strip chart recorder. Flat compressed powder samples are scanned at 2°(2 theta) per minute, using a . two second time constant. Interplanar spacings (d) in Angstrom units are obtained from the position of the diffraction peaks expressed as 2θ (theta) where theta is the Bragg angle as observed on the strip chart. Intensities are determined from the heights of diffraction peaks after subtracting background, "I " being the intensity of the strongest line or peak, and "I" being the intensity of each of the other peaks. When Relative Intensities are reported herein the following abbreviations mean: vs = very strong; s = strong; ra - medium, w » weak; and vw = very weak.

Other abbreviations include: sh » shoulder and br = broad.

As will be understood by those skilled in the art the determination of the parameter 2 theta is subject to both human and mechanical error, which in combination, can impose an uncertainty of about +0.4° on each reported value of 2 theta. This uncertainty is. of course, also manifested in the reported values of the d-spacings, which are calculated from the 2 theta values. This imprecision is general throughout the art and is not sufficient to preclude the differentiation of the present crystalline materials from each other and from the compositions of the prior art.

The following examples are provided to exemplify the invention and are not meant to be limiting thereof in any way.

EXAMPLES 1-13

(a) Examples 1 to 13 were carried out to demonstrate the preparation of the TASO compositions of this invention. The TASO compositions were carried out by hydrothermal crystallization procedure discussed supra. Reaction mixtures were prepared for each example using one or more of the following preparative reagents:

(a> Tipro: Titanium isopropoxide-;

(b) LUDOX-LS: Trademark of DuPont for an aqueous solution of 30 weight percent SiO and 0.1 weight percent Na 0;

(c) Sodium aluminate;

(d) Sodium hydroxide;

(e) TBABr: tetrabutylammonium bromide;

(f) TEABr: tetraethylammonium bromide; and

(g) TMAOH: tetra ethylamraonium hydroxide; (i) TPABr: tetrapropylammonium bromide; The method of addition of the above mentioned components to the reaction mixture was done according to three methods (A, B and C) . Methods A, B and C are as follows:

METHOD A Sodium hydroxide and approximately one-third of the water were blended to form a homogeneous mixture. Sodium alu inate was dissolved in this mixture and blended. LUDOX-LS was added to this mixture and the mixture blended. Titanium isopropoxide was blended into this mixture after which the organic templating agent (in approximately two-thirds of the water) was added to this mixture and blended until a homogeneous mixture was observed.

METHOD B LUDOX-LS and titanium isopropoxide were blended to form a mixture. Sodium hydroxide was added to approximately one r half the water and then mixed with the sodium aluminate with the resulting mixture being blended until a homogeneous mixture was observed. The- organic template was added to one-half the water and then added to the above mixture. The resulting mixture was blended until a homogeneous mixture was observed.

METHOD C LUDOX-LS and one-third of the water were blended to form a homogeneous mixture. Titanium isopropoxide was added to this mixture and blended to form a homogeneous mixture. Sodium aluminate was

dissolved in one-sixth of the water and blended with the above mixture. Sodium hydroxide was dissolved in one-sixth of the water and added to the above mixture and blended-to provide a homogeneous mixture. The organic template (in one-third of the water) was added and the mixture again blended until a homogeneous mixture was observed.

(b) Table I sets forth the preparation of TASO-20. TASO-38. TASO-48 and TASO-49. Example A, as shown in Table I, did not contain a TASO product as indicated by X-ray analysis.

The preparative examples are identified by molar amounts of components by eR : fAl 2 0 3 : gSi0 2 : hTi0 2 : iNaOH : jH 2 0 wherein "R" is at " least one organic template as hereinbefore defined; and e, f, g, h, i and j are the number of moles of template, Al-O., SiO_. TiO_, NaOH and H_0 respectively.

O CM

EXAMPLE 14

The TASO-48 product from example 7 was calcined and treated as hereinafter described and were then employed to determine adsorption capacities of TASO. The adsorption capacities were measured using a standard McBain-Bakr gravimetric adsorption apparatus on samples activated in a vacuum at 350°C.

The data for TASO-48, as prepared in examples 7 was as follows:

(Example 7) TASO-48:

Kinetic Pressure Temp. wt % Diameter. A a (Torr) (°C) Adsorbed*

3.46 105 -183 12.5

3.46 747 -183 13.1

Cyclohexane 6.0 71 23.5 0.6

Neopentane 6.2 750 23.5 0.6

H 2 0 2.65 4.6 23.5 3.3

H 2 0 2.65 19. 23.4 6.7

*Calcined air at 500°C for one hour prior to activation.

EXAMPLE 15 (a) The as-synthesized.products of examples 7 and 13 were analyzed (chemical analysis) to determine the weight percent A1 2 0. , Si0 2 . TiO_, LOI (Loss on Ignition), carbon (C) and nitrogen (N) present as a result of the template. The results of these analyses were as follows:

(b) (Example 7) TASO-48:

Component Weight Percent

A1 2 0 3 0.73

Si0 2 78.0

Ti0 2 5.9

Na O 3.7

C 5.4

N 0.34

LOI 11.9

The above chemical analysis gives an anhydrous formula of:

0.0281 R (Al 0 . 010 Si 0>936 Ti 0#053 >

(c) (Example 13) TAS0-38: Component Weight Percent

A1 2 3 4.5 sio 2 35.0 τio 2 35.1

Na 2 0 8.8

C 0.18

N 0.02

LOI 16.9

The above chemical analysis gives an anhydrous formula of:

0.0013 R (Al 0>080 Si 0 525 Ti 0>396 )

EXAMPLE 16 (a) TAS0-38, as referred to in example 13, was subjected to x-ray analysis. TAS0-38 was determined to have a characteristic x-ray powder

diffraction pattern which contains at least the d-spacing set forth in Table II below:

TABLE II

2θ d. (A) 100 X I/Io

6.2 14.37 9

6.6 13.49 42

8.2 10.78 10

8.4 10.49 12

8.7 10.14 24

9.0 9.87 25

9.1 9.68 31

9.3 9.53 30

9.8 9.02 100

10.1 8.77 10

13.5 6.55 17

13.9 6.38 16

15.4 5.77 17

19.7 4.52 30

22.3 3.99 52

23.3 3.83 7

25.7 3.466 52

26.3 3.383 49

27.7 3.217 31

27.9 3.194 42

28.3 3.149 9

31.0 2.888 16

35.1 2.557 7

35.7 2.515 12

44.3 2.047 7

46.5 1.952 7

47.5 1.915 9

47.7 1.906 9

48.0 1.894 8

48.2 1.888 8

48.5 1.879 9

50.4 1.811 7

(b) The as-synthesized TASO-38 composition for which x-ray powder diffraction data have been obtained, including in the TAS0-38 characterized by Table II, to date have patterns which are characterized by the data of Table III below:

TABLE I I I

2Θ d , ( A ) 100 x I/ Io

6.0-6.3 14.75-14.12 7-9

6.5-6.6 13.67-13.49 20-42

8.2 10.78 12

8.4 10.49 24

8.6-8.7 10.33-10.14 9-24

9.0 9.87 25

9.1 9.68 31

9.3 9.53 30-33

9.7-9.8 9.12-9.02 100

10.1 8.77 10

13.3-13.5 6.66-6.55 10-17

13.9 6.38 8-25

15.2-15.4 5.82-5.77 17-25

19.6-19.7 4.53-4.52 30-40

22.3 3.99 49-62

23.3 3.83 7

25.3 3.52. 93

25.7 3.466 52-63

26.3 3.383 40-58

27.4 3.255 14

27.7 3.217 31-33

27.8-27.9 3.208-3.194 39-51

31.0 2.888 12-20

31.5 2.840 17

35.1 2.557 7

35.7-35.8 2.515-2.507 8-13

38.0 2.366 12

44.3-44.6 2.047-2.038 7-8

45.1 2.009 7

46.5-46.6 1.952-1.949 7-9

47.5-47.6 . 1.915-1.910 8-9

47.7-47.9 1.906-1.898 9-10

48.0-48.1 1.894-1.890 8-25

48.2-48.5 1.888-1.879 8-13

48.5-48.6 1.879-1.874 9-13

50.4 1.811 7-13

( c) A portion of the as-synthesized TAS0-38 of part a ) was calcined in air at 500°C f or about 1.5 hours . The calcined product was characterized by the x-ray powder diffraction pattern of Table IV, below:

TABLE IV

2θ d.(A) Relative Intensity

6.6 13.49 42

8.6 10.33 17

9.0 9.87 29

9.3 9.53 33

9.8 9.02 100

13.3 6.66 10

13.9 6.38 25

15.4 5.77 22

19.7 4.52 34

22.3 3.99 62

25.7 3.466 59

26.3 3.383 58

27.9 3.194 51

31.0 2.887 20

35.7 2.515 13

46.6 1.949 9

47.9 1.898 10

48.1 1.890 14

48.4 1.880 13

48.5 1.879 13

50.4 1.811 10

(d) The TAS0-38 compositions for which x-ray powder diffraction data have been obtained to date have patterns which are characterized by the x-ray powder diffraction pattern shown in Table V, below:

TABLE V

2θ d. (A) 100 x I/Io

9.7- •9. .8 9.12-9.02 vs

22.3 3.99

25.3 3.52 vs

25.7 3.466 m

26.3 3.383 m

EXAMPLE 17 a) TASO-48, as referred to in example 7, was subjected to x-ray analysis. TASO-48 was determined to have a characteristic x-ray powder diffraction pattern which contains at least the d-spacings set forth in Table VI below:

TABLE VI

2Θ d.(A) 100 X I/IO

5.8* 15.24 10

7.8 11.33 65

8.7 10.16 40

11.8 7.50 8

13.1 6,76 8

13.8 6.42 8

14.6 6.07 13

15.2 5.83 6

15.8 5.61 10

17.1 5,19 6

17.6 5.04 6

19.1 4.65 10

20.2 4.40 15

20.7 4.29 10

21.6 4.11 10

21.9 4.06 10

22.9 3.88 100

23.7 3.75 54

24.2 3.68 23

24.5 3.63 15

25.4 3.507 10

26.4 3.376 13

26.7 3.339 13

29.0 3.079 15

29.7 3.008 17

29.9 2.988 sh

31.0 2.885 6

34.2 2.622 8

35.5 2.529 6

35.8 2.508 8

37.0 2.430 6

37.2 2.417 6

37.4 2.404 6

44.8 2.023 13

J 1 *

TABLE VI (Continued)

2θ d.(A) 100 X I/Io

45.0 2.014 10

45.9 1.977 6

47.2 1.926 4

48.3 1.884 6

54.6 1.681 6

* Impurity Peak b) All of the as-synthesized TASO-48 compositions for which X-ray powder diffraction data have been obtained to date have patterns which are characterized by the data of Table VII, below:

TABLE VII

2θ d.(A) Relative Intensity

7.8-8.0 11.33-11.05 m-vs

8.7-8.9 10.16-9.94 m

22.9-23.2 3.88-3.83 m-vs

23.7-2^4.0 3.75-3.71 m

24.2-24.4 3.68-3.65 w-m

(c) A portion of the as-synthesized TASO-48 of part (a) was calcined in air at 500 β C for about one hour. The calcined product was characterized by the X-ray powder diffraction pattern of Table VIII below:

TABLE VIII

20 d.(A) loo x i/io

7.8 11.33 100

8.7 10.16 58

11.8 7.50 4

13.1 6.76 10

13.7 6.46 8

13.8 6.42 8

14. ' 6 6.07 sh

14.7 6.03 17

15.4 5.75 sh

15.8 5.61 14

17.3 5.13 6

17.6 5.04 8

19.2 4.62 8

19.8 4.48 6

20.3 4.37 10

20.8 4.27 8

21.7 4.10 8

22.2 4.00 8

23.1 3.85 67

23.9 3.72 37

24.3 3.66 15

24.7 3.60 10

25.5 3.493 ' 8

26.6 3.351 10

28.2 3.164 6

29.3 3.048 10

29.9 2.988 14

31.3 2.858 6

34.3 2.614 6

35.7 2.515 6

36.0 2.495 8

37.3 2.411 6

45.0 2.014 8

45.4 1.998 6

47.3 1.922 4

48.5 1.877 4

55.0 1.670 4

(d) The TASO-48 compositions for which X-ray powder diffraction data have been obtained to date have patterns which are characterized by the

X-ray powder diffraction pattern shown in Table IX below:

TABLE IX

2θ d.(A) 100 x I/Io

7.8-8.0 11.33-11.05 65-100

8.7-8.9 10.16-9.94 35-58

11.8-11.9 7.50-7.44 2-8

13.1-13.2 6.76-6.71 5-10

13.7-13.9 6.46-6.37 4-8

14.6-14.8 6.07-5.99 Sh-17

15.2-15.6 5.83-5.68 3-14

15.8-15.9 5.61-5.57 7-14

17.1-17.3 5.19-5.13 3-6

17.6-17.7 5.04-5.01 6-8

19.1-19.3 4.65-4.60 3-10

19.8 4.48 6

20.2-20.4 4.40-4.35 5-15

20.7-20.9 4.29-4.25 2-10

21.6-21.7 4.12-4.10 8-10

21.9-22.2 4.06-4.00 1-10

22.9-23.2 3.88-3.83 40-100

23.7-24.0 3.75-3.71 24-54

24.2-24.4 3.68-3.65 15-23

24.5-24.7 3.63-3.60 10-15

25.4-25.6 3.507-3.480 3-15

26.4-26.7 3.376-3.339 2-13

28.1-28.2 3.175-3.164 1-6

29.0-29.3 3.079-3.048 4-15

29.7-30.0 3.008-2.979 sh-17

31.0-31.3 2.885-2.858 6

34.2-34.5 2.622-2.600 2-8

35.3-35.8 2.543-2.508 1-8

36.0-36.1 2.495-2.488 2-8

37.0-37.4 2.430-2.404 1-6

44.8-45.1 2.023-2.010 5-13

45.6-45.9 1.989-1.977 3-6

47.2-47.3 . 1.926-1.922 4

48.3-48.7 1.884-1.870 2-6

54.4-55.0 1.687-1.670 1-6

EXAMPLE 18 • a) TASO-49, as referred to in example 11, was subjected to X-ray analysis and was determined

to have a characteristic X-ray powder diffraction pattern which contains at least the d-spacing set forth in Table X, below:

TABLE X 2θ d,(A) 100 X I/Io

6.9 12.81 sh

7.3 12.11 80

7.5 11.79 67

8.6 10.28 47

18.7 4.75 40

20.6 4.31 100

22.2 4.00 53

23.0 3.87 87

25.5 3.493 47

26.2 3.401 47

26.4 3.376 47

27.8 3.209 33

38.1 2.362 20

44.3 2.045 20 b) All of the TASO-49 compositions for which X-ray powder diffraction data have been obtained to date have patterns which are characterized by the data of Table XI, below:

TABLE XI

2θ d,(A) Relative Intensity

7.3-7.4 12.11-11.95 m-s

7.5-7.6 11.79-11.63

20.6-20.8 4.31-4.27 s-vs

22.2-22.3 4.00-3.99 m

23.0-23.1 3.87-3.85 s-vs

(c) The TASO-49 compositions for which X-ray powder diffraction data have been obtained to date have patterns which are characterized by the

X-ray powder diffraction pattern shown in Table XII below:

TABLE XII

2Θ d,(A) 100 x I/Io

6.9 12.81 Sh-20

7.3-7.4 12.11-11.95 74-80

7.5-7.6 11.79-11.63 67-75

8.6-8.9 10.28-9.94 35-47

18.7-18.8 4.75-4.72 21-40

19.0-19.1 4.67-4.65 10-20

20.6-20.8 4.31-4.27 89-100

22.2-22.3 4.00-3.99 21-53

23.0-23.1 3.87-3.85 87-100

25.5-25.6 3.493-3.480 17-47

26.2-26.3 3.401-3.389 33-47

26.4-26.5 3.376-3.363 30-47

27.8-27.9 3.209-3.198 14-33

38.0-38.1 2.368-2.362 3-20

44.3-44.4 2.045-2.040 2-20

EXAMPLE 19

This is a comparative example wherein example 1 of European Patent Application No.

82109451.3 was repeated and the product evaluated by several techniques as hereinafter discussed:

(a) Example 1 of European Patent

Application No. 82109451.3 was repeated with the starting reaction mixture having a composition based on molar ratios of:

1 Al„0„:47 SiO„:1.32 TiO„:11.7 NaOH:28 TPAOH:1498H_0 2 3 2 2 2

The reaction mixture was divided and placed in two digestion vessels. At the end of the procedure set forth in example 1 of the European Application a

sample of the product from each digestion vessel was analyzed ,and gave the following chemical analyses: Weight Percent

Sample 1 Sample 2 sio 2 75.3 75 .9 l 2 0 3 3.02 2. .58 τio 2 3.91 4. .16 a 2 0 3.66 3. ,46

Carbon 6.3 6. .7

Nitrogen 0.62 0. 65

LOI* 14.0 14. 0

•Loss on ignition

The two samples were then analyzed by SEM (scanning electron microscope) and EDAX (energy dispersive analysis by X-ray) micropiope. The SEM probe of the two samples showed four morphologies to be present and such are shown in FIG. 4 (which should be compared with FIG. 5 which shows the single morphology of crystals of TAS0-45 as prepared by the instant invention) . The four morphologies of the two samples prepared in accordance with the European application and the EDAX microprobe analysis for each was as follows:

(1) Smooth, intergrown hexagonal particles (B in FIG. 4) which are associated with a ZSM-5 morphology had an EDAX microprobe of:

Average of Spot Probes Ti 0

Si 1.0

Al 0.05

(2) Flat, smooth plates (A in FIG. 4) had an EDAX microprobe of:

Average of Spot Probes Ti 0.13

Si 1.0

Al 0.05

(3) Spheres and elongated-bundles (C in FIG. 4) had an EDAX microprobe of:

Average of Spot Probes Ti 0.22

Si 1.0

Al 0.05

Na 0.10

(4) Needles or fine rods (D in FIG. 4) had an EDAX microprobe of:

Average of Spot Probes Ti 0.05

Si 0.8

Al 0.13

Na Q.05

Cl 0.10

The above SEM and EDAX data demonstrate that although ZSM-5 type crystals were formed that these crystals contained no detectable titanium. The only detectable titanium was present as impurity phases and not in crystals having the ZSM-5 structure.

The X-ray diffraction patterns of the as-synthesized materials were obtained and the following X-ray patterns were observed:

Table XI II (Sample 1)

5.577 15.8467

5.950 14.8540

6.041 14.6293

6.535 13.5251

7.154 12.3567

7.895 11.1978

8.798 10.0504

9.028 9.7946

9.784 9.0401

11.846 7.4708

12.453 7.1079

12.725 6.9565

13.161 6.7267

13.875 6.3821

14.637 6.0518

14.710 6.0219

15.461 5.7310

15.881 5.5802

16.471 5.3818

17.218 5.1498

17.695 5.0120

19.212 4.6198

19.898 4.4619

20.045 4.4295

20.288 4.3770

20.806 4.2692

21.681 4.0988

22.143 4.0145

23.091 3.8516

23.641 3.7632

Table XIII (Sample 1) (Continued)

23.879 3.7263

24.346 3.6559

24.649 3.6116

25.548 3.4865.

25.828 3.4494

26.228 3.3976

26.608 3-3501

26.887 3.3158

27.422 3.2524

28.048 3.1812

28.356 3.1473

29.191 3.0592

29.912 2.9870

30.295 2.9502

32.736 2.7356

33.362 2.6857

34.3 5 2.6102

34.640 2.5894

34.887 2.5716

35.152 2.5529

35.551 2.5252

35.660 2.5177

36.031 2.4926

37.193 2.4174

37.493 2.3987

45.066 2.0116

45.378 1.9985

46.514 1.9523

47.393 1.9182

Table XIV (Sample 2)

5.801 15.2353

6.012 14.7012

6.169 14.3265

7.970 11.0926 8.875 9.9636 9.118 9.6981 9.879 8.9532 11.933 7.4163 12.537 7.0605 12.808 6.9115 13.242 6.6860 13.957 6.3452 14.718 6.0186 14.810 5.9813 15.542 5.7014

15.954 5.5551

16.563 5.3521

17.316 5.1211

17.788 4.9862

19.291 4.6009

20.119 4.4134

20.382 4.3571

20.879 4.2544

21.735 4.0887

22.220 4.0007

23.170 3.8387

23.730 3.7494

23.964 3.7133

24.425 3.6442

24.722 3.6011

Table XIV (Sample 2) (Continued)

25.900 3.4399

26.734 3.3345

26.979 3.3047

27.251 3.2724

27.494 3.2440

28.175 3.1671

28.450 3.1371

29.287 3.0493

29.970 2.9814

30.371 2.9430

30.694 2.9127

31.312 2.85-66

32.825 2.7283

33.457 2.6782

34.426 2.6051

34.723 2.5834

34.879 2.5722

35.709 2.5143

36.125 2.4863

37.248 2.4139

37.490 2.3988

45.156 2.0078

45.453 1.9954

46.462 1.9544

46.608 1.9486

Table VI and VII shows an X-ray pattern typical of a ZSM-5 type product and can be attributed to the smooth, integrown hexagonal 'particles which contained no titanium. The X-ray patterns of Tables VI and VII show three peaks (2θ = 5.6-5.8, 12.45-12.54 and 24.5-24.72) which could not be explained. The two samples were calcined according to the conditions set forth in the European application with a portion of both samples being calcined at 540 β C for sixteen hours. The X-ray patterns of the calcined samples were as follows.

Table XV (Sample 1)

6.141 14.3908

6.255 14.1303

8.011 11.0355

8.913 9.9209

9.144 9.6705

9.930 8.9068

11.979 7.3876

12.440 7.1152

13.289 6.6625

14.007 6.3224

14.874 5.9557

15.613 5.6757

15.995 5.5408

16.609 5.3373

17.353 5.1103

17.884 4.9597

19.335 4.5905

20.177 4.4008

20.463 4.3401

20.940 4.2422

21.845 4.0685

22.291 3.9880

23.186 3.8361

23.362 3.8076

23.817 3.7359

24.031 3.7031

24.510 3.6317-

24.908 3.5747

25.699 3.4664

25.969 3.4309

Table XV (Sample 1) (Continued)

26.371 3.3796

26.698 3.3389

27.022 3.2996

27.487 3.2449

28.184 3.1662

28.513 3.1303

29.369 3.0411

30.017 2.9769

30.468 2.9338

31.333 2.854.8

32.877 2.7241

34.490 2.6003

35.062 2.5592

35.800 2.5082

36.186 2.4823

37.324 2.4092

37.654 2.3888

45.195 2.0062

45.631 1.9880

46.639 1.9474

47.547 1.9123

48.765 1.8674

Table XVI (Sample 2)

6.092 14.5084

6.295 14.0403

7.941 11.1328

8.838 10.0054

9.857 8.9730 ll;921 7.4236

- 12.399 7.1383

13.222 6.6959

13.937 6.3539

14.811 5.9809

15.535 5.7038

15.916 5.5681

16.532 5.3620

17.262 5.1370

17.806 4.9811 19.268 4.6064 20.107 4.4160 20.389 4.3556 20.868 4.2567

21.807 4.0754 22.197 4.0047 23.116 3.8476

23.263 3.8235 23.755 3.7455 23.955 3.7147 24.432 3.6433 24.854 3.5823 25.653 3.4725 25.901 3.4398

Table XVI (Sample 2) (Continued)

26.265 3.3929

26.648 3.3451

26.976 3.3052

27.386 3.2566

28.156 3.1692

28.495 3.1323

29.304 3.0476

29.969 2.9815

30.384 2.9417

31.283 2.8592

32.819 2.7289

34.423 2.6052

34.993 2.5641

35.716 2.5138

36.146 2.4850

37.295 2.4110

37.562 ' 2.3944

45.137 2.0086

45.523 1.9925

46.562 1.9504

47.509 1.9137

The X-ray diffraction pattern of the calcined samples shown a ZSM-5 type pattern with only slight differences from the as-synthesized. When chemical analysis (bulk) of a portion of the calcined samples 1 and 2 are carried out the following is obtained:

Weight Percent

Sample 1 Sample 2

SiO ? 79.6 81.2

A1 2°3 3.5 2.9

Na ? 0 4.4 4.1

TiO ? 4.4 4.6

Carbon 0.11 0.10

LOI* 8.1 7.6

*Loss on Ignition

When the molar ratio of oxides is computed for the above bulk analysis the following is obtained: 1 Si0 2 : 0.043 Ti0 2 : 0.021 Al^: 0.049 Na 2 0

This compares quite well with the bulk chemical analysis reported in the European application which is:

1 Si0 2 : 0.047 Ti0 2 : 0.023 A1 2 0 3 : 0.051 Na 2 0

It is clear that the product crystals which gave the product an X-ray pattern characteristic of ZSM-5 contained no"titanium. Accordingly, although the bulk analysis of the product shows titanium to be present, it is clear that it is present in a form not having an X-ray pattern characteristic of ZSM-5.

EXAMPLE 20 a) TASO-20, as referred to in example 1, was subjected to x-ray analysis. TASO-20 was determined to have a characteristic x-ray powder diffraction pattern which contains at least the d-spacings set forth in Table XIII below:

TABLE XIII

2θ d.(A) 100 X I/Io

7.6* 11.63 5

11.1* 7.97 12

14.0 6.33 41

19.8 4.48 35

24.3 3.66 100

28.1 3.175 17

31.6 2.831 12

34.6 2.592 22

37.6* 2.392 5

40.3 2.238 δ

42.8 2.113 9

46.6* 1.949 4

47.6 1.910 10

52.1 1.755 12

* Impurity Peak b) All of the as-synthesized TASO-20 compositions for which X-ray powder diffraction data have been obtained to date have patterns which are characterized by the data of Table XIV, below:

TABLE XIV

2θ d.(A) Relative Intensity

13.9-14.1 6.37-6.28 m

19.8-20.0 4.48-4.44 m

24.3-24.6 3.66-3.62 vs

28.1-28.2 3.175-3.164 w

31.5-31.7 2.840-2.823 w

34.6-34.7 2.592-2.585 w

(c) A portion of the as-synthesized TASO-20 of part (a) was calcined in air at 500°C for about one hour. The calcined product was characterized by the X-ray powder diffraction * pattern of Table XV below:

TABLE XV

2θ d. (A) 100 X I/Io

14.0 6.33 51

19.9 4.46 33

24.4 3.65 100

28.1 3.175 13

31.6 2.831 12

34.7 2.585 19

37.6* 2.392 2

40.3 2.238 5

42.8 2.113 7

47.6 1.910 6

52.0 1.759 11

* Impurity Peak

(d) The TASO-20 compositions for which X-ray powder diffraction data have been obtained to date have patterns which are characterized by the X-ray powder diffraction pattern shown in Table XVI below:

TABLE XVI

2θ d, (A) 100 X I/Io

13.9-14.1 6.37-6.28 40-51

19.8-20.0 4.48-4.44 30-40

24.3-24.6 3.66-3.62 100

28.1-28.2 3.175-3.164 13-18

31.5-31.7 2.840-2.823 12-15

34.6-34.7 2.592-2.585 15-22

TABLE XV (continued)

2Θ d.(A) 100 X I/Io

40.2-40.3 2.243-2.238 4-6 42.7-42.9 2.118-2.108 5-9 47.5-47.6 1.914-1.910 6-11 52.0-52.2 1.759-1.752 10-12

PS [OCESS .APPLICATI! ONS

The TASO compositions of this invention have unique surface characteristics making them • useful as molecular sieves and as catalyst or as bases for catalysts in a variety of separation, hydrocarbon conversion and oxidative combustion processes. The TASO composition can be impregnated or otherwise associated with catalytically active metals by the numerous methods known in the art and used, for example, in fabricating catalysts compositions containing alumina or aluminosilicate materials.

TASO's may be employed for separating molecular species in admixture with molecular species of a different degree of polarity or having different kinetic diameters by contacting such mixtures with a TASO(s) having pore diameters large enough to adsorb at least one but not all molecular species of the mixture based on the polarity of the adsorbed molecular species and/or its kinetic diameter. When TASOs are employed for such separation processes the TASOs are at least partially activated whereby some molecular species selectively enter the intracrystalline pore system thereof.

The hydrocarbon conversion reactions catalyzed by TASO compositions include; cracking, hydrocracking; alkylation of both the aromatic and isoparaffin types; isomerization (including xylene isomerization) ; polymerization; reforming; hydrogenation; dehydrogenation; transalkylation; dealkylation; and hydration.

When a TASO containing catalyst compositions contains a hydrogenation promoter, such promoter may be platinum, palladium, tungsten, nickel or molybdenum and may be used to treat various petroleum stocks including heavy petroleum residual stocks, cyclic stocks and other hydrocrackable charge stocks. These stocks can be hydrocracked at temperatures in the range of between about 400 β F and about 825 β F using molar ratios of hydrogen to hydrocarbon in the range of between about 2 and about 80, pressures between about 10 and about 3500 p.s.i.g., and a liquid hourly space velocity (LHSV) of between about 0.1 and about 20. preferably between about 1.0 and about 10.

TASO containing catalyst compositions may also be employed in reforming processes in which the hydrocarbon feedstocks contact the catalyst at temperatures between about 700°F and about 1000°F, hydrogen pressures of between about 100 and about 500 p.s.i.g., LHSV values in the range between about 0.1 and about 10 and hydrogen to hydrocarbon molar ratios in the range between about 1 and about 20, preferably between about 4 and about 12.

Further, TASO containing catalysts which contain hydrogenation.promoters, are also useful in

hydroisomerization processes wherein the feedstock(s) , such as normal paraffins, is converted to saturated branched-chain isomers. ' Hydroisomer¬ ization processes are typically carried out at a temperature between about 200°F and about 600 β F, preferably between about 300°F and about 550°F with an LHSV value between about 0.2 and about 1.0. Hydrogen is typically supplied to the reactor in admixture with the hydrocarbon feedstock in molar proportions of hydrogen to the feedstock of between about 1 and about 5.

TASO-containing compositions similar to those employed for hydrocracking and hydroisomerization may also be employed at between about 650°F and about 1000°F, preferably between about 850 β F and about 950 β F and usually at somewhat lower pressures within the range between about 15 and about 50 p.s.i.g. for the hydroisomerization of normal paraffins. Preferably the paraffin feedstock comprises normal paraffins having a carbon number range of C 7 -C_ Q . The contact time between the feedstock and the TASO containing catalyst is generally relatively short to avoid undersirable side reactions such as olefin polymerization and paraffin cracking. LHSV values in the range between about 0.1 and about 10, preferably between about 1.0 and about 6.0 are suitable.

The low alkali metal content (often not measurable by current analytical techniques) of the instant TASO compositions make them particularly weli suited for use in the conversion of alkylaromatic compounds, particularly for use in the

catalytic disproportionation of toluene, xylene, trimethylbenzenes, tetra ethylbenzenes and the like. In such disproportionation processes it has been observed that isomerization and transalkylation can also occur. The TASO-containing catalysts for such processes will typically include Group VIII noble metal adjuvants alone or in conjunction with Group VI-B metals such as tungsten, molybdenum and chromium which are preferably included in such catalyst compositions in amounts between about 3 and about 15 weight-% of the overall catalyst composition. Extraneous hydrogen can, but need not be present in the reaction zone which is maintained at a temperature between about 400 and about 750°F, pressures in . the range between about 100 and about 2000 p.s.i.g. and LHSV values in the range between about 0.1 and about 15.

TASO containing catalysts may be employed in catalytic cracking processes wherein such are preferably employed with feedstocks such as gas oils, heavy naphthas, deasphalted crude oil residues etc. with gasoline being the principal desired product. Temperature conditions are typically between about 850 and about 1100°F, LHSV values between about 0.5 and about 10 pressure conditions are between about 0 p.s.i.g. and about 50 p.s.i.g.

TASO containing catalysts may be employed for dehydrocyclization reactions which employ paraffinic hydrocarbon feedstocks, preferably normal paraffins having more than 6 carbon atoms, to form benzene, xylenes, toluene and the like. Dehydro¬ cyclization processes are typically carried out

using reaction conditions similar to those employed for catalytic cracking. For such processes it is preferred to use a Group VIII non-noble metal cation such as cobalt and nickel in conjunction with the TASO composition.

TASO containing catalysts may be employed in catalytic dealkylation where paraffinic side chains are cleaved from aromatic nuclei without substantially hydrogenating the ring structure at relatively high temperatures in the range between about 800°F and about 1000°F at moderate hydrogen pressures between about 300 and about 1000 p.s.i.g. with other conditions being similar to those described above for catalytic hydrocracking. TASO containing catalysts for catalytic dealkylation are of the same type described above in connection with catalytic dehydrocyclization. Particularly desirable dealkylation reactions contemplated herein include the conversion of methylnaphthalene to naphthalene and toluene and/or xylenes to benzene.

TASO containing catalysts may be used in catalytic hydrofining wherein the primary objective is to provide for the selective hydrodecomposition of organic sulfur and/or nitrogen compounds without substantially affecting hydrocarbon molecules present therewith. For this purpose it is preferred to employ the same general conditions described above for catalytic hydrocracking. The catalysts are the same typically of the same general nature as described in connection with dehydrocyclization operations. Feedstocks commonly employed for catalytic hydroforming include: gasoline fractions;

kerosenes; jet fuel fractions; diesel fractions; light and heavy gas oils; deasphalted crude oil residua; and the like. The feedstock may contain up to about 5 weight-percent of sulfur and up to about 3 weight-percent of nitrogen.

TASO containing catalysts may be employed for isomerization processes under conditions similar to those described above for reforming although isomerization processes tend to require somewhat more acidic catalysts than those employed in reforming processes. Olefins are preferably isomerized at temperatures between about 500°F and about 900 β F, while paraffins, naphthenes and alkyl aromatics are isomerized at temperatures between about 700°F and about 1000°F. Particularly desirable isomerization reactions contemplated herein include the conversion of n-heptane and/or n-octane to isoheptanes, iso-octaπes, butane to iso-butane, methylcyclopentane to cylcohexane, meta-xylene and/or ortho-xylene to para-xylene, 1-butene to 2-butene and/or isobutene, n-hexene to isohexane, cyclohexane to methylcyclopentene etc. The preferred cation form is a combination of a TASO with polyvalent metal compounds (such as sulfides) of metals of Group II-A, Group II-B and rare earth metals. For alkylation and dealkylation processes TASO compositions having pores of at least 5A are preferred. When employed for dealkylation of alkyl aromatics. the temperature is usually at least 350°F and ranges up to a temperature at which substantial cracking of the feedstock or conversion products occurs, generally up to about 700 β F. The

temperature is preferably at least 450°F and not greater than. the critical temperature of the compound undergoing dealkylation.. Pressure conditions are applied to retain at least the aromatic feed in the liquid state. For alkylation the temperature can be as low as 250°F but is preferably at least 350°F. In alkylation of ' benzene, toluene and xylene, the preferred alkylation agents are olefins such as ethylene and propylene.

The TASO compositions of this invention may be employed in conventional molecular sieving processes as heretofore have been carried out using aluminosilicate, aluminophosphate or other commonly employed molecular sieves. TASO compositions are preferably activated prior to their use in a molecular sieve process to remove any molecular species which may be present in the intracrystalline pore system as a result of synthesis or otherwise. For the TASO compositions this is sometimes accomplished by thermally destroying the organic species present in an as-synthesized TASO since such organic species may be too large to be desorbed by conventional means.

The TASO compositions of this invention are also useful as adsorbents and are capable of separating mixtures of molecular species both on the basis of molecular size (kinetic diameters) and based on the degree of polarity of the molecular species. When the separation of molecular species is based upon the selective adsorption based on molecular size, the TASO is chosen in view of the

dimensions of its pores such that at least the smallest molecular specie of the mixture can enter the intracrystalline void space while at least the largest specie is excluded. When the separation is based on degr.ee of polarity it is generally the case that the more hydrophilic TASO will preferentially adsorb the more polar molecular species of a mixture having different degrees of polarity even though both * molecular species can communicate with the pore system of the TASO.

The instant TASO compositions may be further characterized and distinguished from aluminophosphates by reference t-o the catalytic properties exhibited by the TASO compositions. When the TASO compositions are tested for n-butane cracking and compared with aluminophosphate compositions having a similar topology it has been observed that the TASO compositions are more active catalysts as indicated by a higher numerical value for n-butane cracking.