Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
TRACKING REFERENCE SIGNAL CONFIGURATION
Document Type and Number:
WIPO Patent Application WO/2021/016639
Kind Code:
A1
Abstract:
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment (UE) may receive, for a first radio access technology, signaling identifying a set of physical resource blocks for a tracking reference signal transmission configured in a bandwidth part of a system bandwidth. The UE may determine that a collision condition is satisfied for a first one or more physical resource blocks of the set of physical resource blocks. The UE may receive the tracking reference signal transmission in a second one or more physical resource blocks of the set of physical resource blocks based at least in part on determining that the collision condition is satisfied for the first one or more physical resource blocks. Numerous other aspects are provided.

Inventors:
MANOLAKOS ALEXANDROS (US)
CHERAGHI PARISA (US)
GAAL PETER (US)
GOROKHOV ALEXEI YURIEVITCH (US)
Application Number:
PCT/US2020/070302
Publication Date:
January 28, 2021
Filing Date:
July 22, 2020
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
QUALCOMM INC (US)
International Classes:
H04L5/00
Domestic Patent References:
WO2018084571A12018-05-11
Other References:
ERICSSON: "Remaining details on TRS", vol. RAN WG1, no. Prague, CZ; 20171009 - 20171013, 8 October 2017 (2017-10-08), XP051341633, Retrieved from the Internet [retrieved on 20171008]
R2: "Corrections on EN-DC - CSI L1 parameters", vol. RAN WG2, no. Athens, Greece; 20180226 - 20180302, 22 February 2018 (2018-02-22), XP051545830, Retrieved from the Internet [retrieved on 20180222]
Attorney, Agent or Firm:
HARRITY, John E. et al. (US)
Download PDF:
Claims:
WHAT IS CLAIMED IS:

1. A method of wireless communication performed by a user equipment (UE), comprising: receiving, for a first radio access technology, signaling identifying a set of physical resource blocks for a tracking or channel state information reference signal transmission configured in a bandwidth part of a system bandwidth;

determining that a collision condition is satisfied for a first one or more physical resource blocks of the set of physical resource blocks; and

receiving the tracking or channel state information reference signal transmission in a second one or more physical resource blocks of the set of physical resource blocks based at least in part on determining that the collision condition is satisfied for the first one or more physical resource blocks.

2. The method of claim 1, wherein the bandwidth part is equal to the system bandwidth.

3. The method of claim 1, wherein the second one or more physical resource blocks are in a center portion of the system bandwidth and the first one or more physical resource blocks are outside the center portion of the system bandwidth.

4. The method of claim 1, further comprising:

forgoing receiving the tracking or channel state information reference signal transmission in the first one or more physical resource blocks.

5. The method of claim 4, wherein the UE is configured to forgo receiving the tracking or channel state information reference signal transmission in the first one or more physical resource blocks to avoid interference with a communication of a second radio access technology.

6. The method of claim 1, wherein determining that the collision condition is satisfied comprises:

determining that a zero-power channel state information reference signal collides in a slot of the first one or more physical resource blocks with a channel state information reference signal resource of the tracking or channel state information reference signal transmission; and determining that the collision condition is satisfied based at least in part on determining that the zero-power channel state information reference signal collides in the slot of the first one or more physical resource blocks with the channel state information reference signal resource.

7. The method of claim 1, wherein determining that the collision condition is satisfied comprises:

determining that a long term evolution rate matching pattern, associated with avoiding collisions with long term evolution traffic, is configured in a cell of the UE; and

determining that the collision condition is satisfied based at least in part on determining that the long term evolution rate matching pattern is configured in the cell of the UE.

8. The method of claim 1, wherein determining that the collision condition is satisfied comprises:

determining that a physical resource block level rate matching pattern is to collide in a slot of the first one or more physical resource blocks with at least one reference signal resource, wherein the at least one reference signal resource is associated with a tracking reference signal or a channel state information reference signal; and

determining that the collision condition is satisfied based at least in part on determining that the physical resource block level rate matching pattern is to collide in the slot of the first one or more physical resource blocks with the at least one reference signal resource.

9. The method of claim 1, wherein determining that the collision condition is satisfied comprises:

determining that a physical resource block level rate matching pattern and a zero-power channel state information reference signal resource are to collide in a slot of the first one or more physical resource blocks with at least one reference signal resource; and

determining that the collision condition is satisfied based at least in part on determining that the physical resource block level rate matching pattern and the zero-power channel state information reference signal resource are to collide in the slot of the first one or more physical resource blocks with the at least one reference signal resource.

10. The method of claim 1, wherein determining that the collision condition is satisfied comprises:

determining that a long term evolution rate matching pattern and a zero-power channel state information reference signal resource are to collide in a slot of the first one or more physical resource blocks with at least one reference signal resource; and

determining that the collision condition is satisfied based at least in part on determining that the long term evolution rate matching pattern and the zero-power channel state information reference signal resource are to collide in the slot of the first one or more physical resource blocks with the at least one reference signal resource.

11. The method of claim 1, wherein determining that the collision condition is satisfied comprises:

determining that a physical resource block level rate matching pattern, a long term evolution rate matching pattern, and a zero-power channel state information reference signal resource are to collide in a slot of the first one or more physical resource blocks with at least one reference signal resource; and

determining that the collision condition is satisfied based at least in part on determining that the physical resource block level rate matching pattern, the long term evolution rate matching pattern, and the zero-power channel state information reference signal resource are to collide in the slot of the first one or more physical resource blocks with the at least one reference signal resource.

12. The method of claim 1, wherein determining that the collision condition is satisfied comprises:

determining that the collision condition is satisfied based at least in part on a subcarrier spacing configuration for the set of physical resource blocks.

13. The method of claim 1, wherein determining that the collision condition is satisfied comprises:

determining that the collision condition is satisfied based at least in part on the system bandwidth of the set of physical resource blocks satisfying a threshold bandwidth.

14. The method of claim 1, wherein determining that the collision condition is satisfied comprises:

determining that the collision condition is satisfied based at least in part on the bandwidth part of the set of physical resource blocks being equal to a size of the system bandwidth.

15. The method of claim 1, wherein determining that the collision condition is satisfied comprises:

determining that the collision condition is satisfied based at least in part on the bandwidth part including the set of physical resource blocks being less than a threshold quantity of physical resource blocks.

16. The method of claim 1, wherein determining that the collision condition is satisfied comprises: determining that the collision condition is satisfied based at least in part on a band of a carrier of the set of physical resource blocks being a wideband code division multiple access carrier.

17. A method of wireless communication performed by a base station (BS), comprising: transmitting, for a first radio access technology, signaling identifying a set of physical resource blocks for a tracking or channel state information reference signal transmission configured in a bandwidth part of a system bandwidth;

transmitting information identifying a communication configuration that has a property of satisfying a collision condition for a first one or more physical resource blocks of the set of physical resource blocks; and

transmitting the tracking or channel state information reference signal transmission in a second one or more physical resource blocks of the set of physical resource blocks in connection with the signaling identifying the set of physical resource blocks and the communication configuration that has the property of satisfying the collision condition for the first one or more physical resource blocks.

18. The method of claim 17, further comprising:

transmitting information identifying the collision condition; and

wherein transmitting the tracking or channel state information reference signal transmission in the second one or more physical resource blocks comprises:

transmitting the tracking or channel state information reference signal transmission in the second one or more physical resource blocks based at least in part on transmitting the information identifying the collision condition.

19. The method of claim 17, further comprising:

selecting the set of physical resource blocks and the communication configuration to satisfy the collision condition.

20. The method of claim 17, wherein the bandwidth part is equal to the system bandwidth.

21. The method of claim 17, wherein the second one or more physical resource blocks are in a center portion of the system bandwidth and the first one or more physical resource blocks are outside of the center portion of the system bandwidth.

22 The method of claim 17, further comprising: forgoing transmitting the tracking or channel state information reference signal transmission in the first one or more physical resource blocks.

23. The method of claim 22, wherein the BS is configured to forgo transmitting the tracking or channel state information reference signal transmission in the first one or more physical resource blocks to avoid interference with a communication of a second radio access technology.

24. The method of claim 17, wherein the tracking or channel state information reference signal transmission comprises a set of channel state information reference signals.

25. The method of claim 17, wherein the property of satisfying the collision condition comprises:

a zero-power channel state information reference signal collides in a slot of the first one or more physical resource blocks with a channel state information reference signal resource.

26. The method of claim 17, wherein the property of satisfying the collision condition comprises:

a long term evolution rate matching pattern, associated with avoiding collisions with long term evolution traffic, is configured in a cell of the BS.

27. The method of claim 17, wherein the property of satisfying the collision condition comprises:

a physical resource block level rate matching pattern is to collide in a slot of the first one or more physical resource blocks with at least one reference signal resource, wherein the at least one reference signal resource is associated with a tracking reference signal or a channel state information reference signal.

28. The method of claim 17, wherein the property of satisfying the collision condition comprises:

a physical resource block level rate matching pattern, a long term evolution rate matching pattern, and a zero-power channel state information reference signal resource are to collide in a slot of the first one or more physical resource blocks with at least one reference signal resource.

29. A user equipment (UE) for wireless communication, comprising:

a memory; and one or more processors coupled to the memory, the memory and the one or more processors configured to:

receive, for a first radio access technology, signaling identifying a set of physical resource blocks for a tracking reference signal transmission configured in a bandwidth part of a system bandwidth;

determine that a collision condition is satisfied for a first one or more physical resource blocks of the set of physical resource blocks; and

receive the tracking reference signal transmission in a second one or more physical resource blocks of the set of physical resource blocks based at least in part on determining that the collision condition is satisfied for the first one or more physical resource blocks.

30. A base station (BS) for wireless communication, comprising:

a memory; and

one or more processors coupled to the memory, the memory and the one or more processors configured to:

transmit, for a first radio access technology, signaling identifying a set of physical resource blocks for a tracking reference signal transmission configured in a bandwidth part of a system bandwidth;

transmit information identifying a communication configuration that has a property of satisfying a collision condition for a first one or more physical resource blocks of the set of physical resource blocks; and

transmit the tracking reference signal transmission in a second one or more physical resource blocks of the set of physical resource blocks in connection with the signaling identifying the set of physical resource blocks and the communication configuration that has the property of satisfying the collision condition for the first one or more physical resource blocks.

Description:
TRACKING REFERENCE SIGNAL CONFIGURATION

CROSS-REFERENCE TO RELATED APPLICATION

[0001] This Patent Application claims priority to U.S. Provisional Patent Application No. 62/877,264, filed on July 22, 2019, entitled“TRACKING REFERENCE SIGNAL

CONFIGURATION,” U.S. Provisional Patent Application No. 62/879,184, filed on July 26, 2019, entitled“TRACKING REFERENCE SIGNAL CONFIGURATION,” and U.S.

Nonprovisional Patent Application No. 16/947,166, filed on July 21, 2020, entitled

“TRACKING REFERENCE SIGNAL CONFIGURATION,” which are each assigned to the assignee hereof. The disclosures of the prior Applications are considered part of and are incorporated by reference in this Patent Application.

FIELD OF THE DISCLOSURE

[0002] Aspects of the present disclosure generally relate to wireless communication and to techniques and apparatuses for tracking reference signal configuration.

BACKGROUND

[0003] Wireless communication systems are widely deployed to provide various telecommunication services such as telephony, video, data, messaging, and broadcasts. Typical wireless communication systems may employ multiple-access technologies capable of supporting communication with multiple users by sharing available system resources (e.g., bandwidth, transmit power, and/or the like). Examples of such multiple-access technologies include code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency-division multiple access (FDMA) systems, orthogonal frequency-division multiple access (OFDMA) systems, single-carrier frequency-division multiple access (SC- FDMA) systems, time division synchronous code division multiple access (TD-SCDMA) systems, and Long Term Evolution (LTE). LTE/LTE- Advanced is a set of enhancements to the Universal Mobile Telecommunications System (UMTS) mobile standard promulgated by the Third Generation Partnership Project (3GPP).

[0004] A wireless communication network may include a number of base stations (BSs) that can support communication for a number of user equipment (UEs). A user equipment (UE) may communicate with a base station (BS) via the downlink and uplink. The downlink (or forward link) refers to the communication link from the BS to the UE, and the uplink (or reverse link) refers to the communication link from the UE to the BS. As will be described in more detail herein, a BS may be referred to as a Node B, a gNB, an access point (AP), a radio head, a transmit receive point (TRP), a New Radio (NR) BS, a 5G Node B, and/or the like. [0005] The above multiple access technologies have been adopted in various

telecommunication standards to provide a common protocol that enables different user equipment to communicate on a municipal, national, regional, and even global level. New Radio (NR), which may also be referred to as 5G, is a set of enhancements to the LTE mobile standard promulgated by the Third Generation Partnership Project (3GPP). NR is designed to better support mobile broadband Internet access by improving spectral efficiency, lowering costs, improving services, making use of new spectrum, and better integrating with other open standards using orthogonal frequency division multiplexing (OFDM) with a cyclic prefix (CP) (CP-OFDM) on the downlink (DF), using CP-OFDM and/or SC-FDM (e.g., also known as discrete Fourier transform spread OFDM (DFT-s-OFDM)) on the uplink (UF), as well as supporting beamforming, multiple-input multiple-output (MIMO) antenna technology, and carrier aggregation. However, as the demand for mobile broadband access continues to increase, there exists a need for further improvements in FTE and NR technologies. Preferably, these improvements should be applicable to other multiple access technologies and the telecommunication standards that employ these technologies.

SUMMARY

[0006] In some aspects, a method of wireless communication, performed by a user equipment (UE), may include receiving, for a first radio access technology, signaling identifying a set of physical resource blocks for a tracking or channel state information reference signal transmission configured in a bandwidth part of a system bandwidth;

determining that a collision condition is satisfied for a first one or more physical resource blocks of the set of physical resource blocks; and receiving the tracking or channel state information reference signal transmission in a second one or more physical resource blocks of the set of physical resource blocks based at least in part on determining that the collision condition is satisfied for the first one or more physical resource blocks.

[0007] In some aspects, a method of wireless communication, performed by a base station (BS), may include transmitting, for a first radio access technology, signaling identifying a set of physical resource blocks for a tracking or channel state information reference signal transmission configured in a bandwidth part of a system bandwidth; transmitting information identifying a communication configuration that has a property of satisfying a collision condition for a first one or more physical resource blocks of the set of physical resource blocks; and transmitting the tracking or channel state information reference signal transmission in a second one or more physical resource blocks of the set of physical resource blocks in connection with the signaling identifying the set of physical resource blocks and the communication

configuration that has the property of satisfying the collision condition for the first one or more physical resource blocks. [0008] In some aspects, a UE for wireless communication may include memory and one or more processors coupled to the memory. The memory and the one or more processors may be configured to receive, for a first radio access technology, signaling identifying a set of physical resource blocks for a tracking or channel state information reference signal transmission configured in a bandwidth part of a system bandwidth; determine that a collision condition is satisfied for a first one or more physical resource blocks of the set of physical resource blocks; and receive the tracking or channel state information reference signal transmission in a second one or more physical resource blocks of the set of physical resource blocks based at least in part on determining that the collision condition is satisfied for the first one or more physical resource blocks.

[0009] In some aspects, a BS for wireless communication may include memory and one or more processors coupled to the memory. The memory and the one or more processors may be configured to transmit, for a first radio access technology, signaling identifying a set of physical resource blocks for a tracking or channel state information reference signal transmission configured in a bandwidth part of a system bandwidth; transmit information identifying a communication configuration that has a property of satisfying a collision condition for a first one or more physical resource blocks of the set of physical resource blocks; and transmit the tracking or channel state information reference signal transmission in a second one or more physical resource blocks of the set of physical resource blocks in connection with the signaling identifying the set of physical resource blocks and the communication configuration that has the property of satisfying the collision condition for the first one or more physical resource blocks.

[0010] In some aspects, a non-transitory computer-readable medium may store one or more instructions for wireless communication. The one or more instructions, when executed by one or more processors of a BS, may cause the one or more processors to receive, for a first radio access technology, signaling identifying a set of physical resource blocks for a tracking or channel state information reference signal transmission configured in a bandwidth part of a system bandwidth; determine that a collision condition is satisfied for a first one or more physical resource blocks of the set of physical resource blocks; and receive the tracking or channel state information reference signal transmission in a second one or more physical resource blocks of the set of physical resource blocks based at least in part on determining that the collision condition is satisfied for the first one or more physical resource blocks.

[0011] In some aspects, a non-transitory computer-readable medium may store one or more instructions for wireless communication. The one or more instructions, when executed by one or more processors of a BS, may cause the one or more processors to transmit, for a first radio access technology, signaling identifying a set of physical resource blocks for a tracking or channel state information reference signal transmission configured in a bandwidth part of a system bandwidth; transmit information identifying a communication configuration that has a property of satisfying a collision condition for a first one or more physical resource blocks of the set of physical resource blocks; and transmit the tracking or channel state information reference signal transmission in a second one or more physical resource blocks of the set of physical resource blocks in connection with the signaling identifying the set of physical resource blocks and the communication configuration that has the property of satisfying the collision condition for the first one or more physical resource blocks.

[0012] In some aspects, an apparatus for wireless communication may include means for receiving, for a first radio access technology, signaling identifying a set of physical resource blocks for a tracking or channel state information reference signal transmission configured in a bandwidth part of a system bandwidth; means for determining that a collision condition is satisfied for a first one or more physical resource blocks of the set of physical resource blocks; and means for receiving the tracking or channel state information reference signal transmission in a second one or more physical resource blocks of the set of physical resource blocks based at least in part on determining that the collision condition is satisfied for the first one or more physical resource blocks.

[0013] In some aspects, an apparatus for wireless communication may include means for transmitting, for a first radio access technology, signaling identifying a set of physical resource blocks for a tracking or channel state information reference signal transmission configured in a bandwidth part of a system bandwidth; means for transmitting information identifying a communication configuration that has a property of satisfying a collision condition for a first one or more physical resource blocks of the set of physical resource blocks; and means for transmitting the tracking or channel state information reference signal transmission in a second one or more physical resource blocks of the set of physical resource blocks in connection with the signaling identifying the set of physical resource blocks and the communication configuration that has the property of satisfying the collision condition for the first one or more physical resource blocks.

[0014] Aspects generally include a method, apparatus, system, computer program product, non-transitory computer-readable medium, user equipment, base station, wireless

communication device, and/or processing system as substantially described herein with reference to and as illustrated by the accompanying drawings.

[0015] The foregoing has outlined rather broadly the features and technical advantages of examples according to the disclosure in order that the detailed description that follows may be better understood. Additional features and advantages will be described hereinafter. The conception and specific examples disclosed may be readily utilized as a basis for modifying or designing other structures for carrying out the same purposes of the present disclosure. Such equivalent constructions do not depart from the scope of the appended claims. Characteristics of the concepts disclosed herein, both their organization and method of operation, together with associated advantages will be better understood from the following description when considered in connection with the accompanying figures. Each of the figures is provided for the purposes of illustration and description, and not as a definition of the limits of the claims.

BRIEF DESCRIPTION OF THE DRAWINGS

[0016] So that the above-recited features of the present disclosure can be understood in detail, a more particular description, briefly summarized above, may be had by reference to aspects, some of which are illustrated in the appended drawings. It is to be noted, however, that the appended drawings illustrate only certain typical aspects of this disclosure and are therefore not to be considered limiting of its scope, for the description may admit to other equally effective aspects. The same reference numbers in different drawings may identify the same or similar elements.

[0017] Fig. 1 is a block diagram conceptually illustrating an example of a wireless communication network, in accordance with various aspects of the present disclosure.

[0018] Fig. 2 is a block diagram conceptually illustrating an example of a base station in communication with a UE in a wireless communication network, in accordance with various aspects of the present disclosure.

[0019] Fig. 3 A is a block diagram conceptually illustrating an example of a frame structure in a wireless communication network, in accordance with various aspects of the present disclosure.

[0020] Fig. 3B is a block diagram conceptually illustrating an example synchronization communication hierarchy in a wireless communication network, in accordance with various aspects of the present disclosure.

[0021] Fig. 4 is a block diagram conceptually illustrating an example slot format with a normal cyclic prefix, in accordance with various aspects of the present disclosure.

[0022] Fig. 5 illustrates an example logical architecture of a distributed radio access network (RAN), in accordance with various aspects of the present disclosure.

[0023] Fig. 6 illustrates an example physical architecture of a distributed RAN, in accordance with various aspects of the present disclosure.

[0024] Fig. 7 is a diagram illustrating an example of tracking reference signal

configuration, in accordance with various aspects of the present disclosure.

[0025] Fig. 8 is a diagram illustrating an example process performed, for example, by a user equipment, in accordance with various aspects of the present disclosure.

[0026] Fig. 9 is a diagram illustrating an example process performed, for example, by a base station, in accordance with various aspects of the present disclosure. DETAILED DESCRIPTION

[0027] Various aspects of the disclosure are described more fully hereinafter with reference to the accompanying drawings. This disclosure may, however, be embodied in many different forms and should not be construed as limited to any specific structure or function presented throughout this disclosure. Rather, these aspects are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the disclosure to those skilled in the art. Based at least in part on the teachings herein one skilled in the art should appreciate that the scope of the disclosure is intended to cover any aspect of the disclosure disclosed herein, whether implemented independently of or combined with any other aspect of the disclosure.

For example, an apparatus may be implemented or a method may be practiced using any number of the aspects set forth herein. In addition, the scope of the disclosure is intended to cover such an apparatus or method which is practiced using other structure, functionality, or structure and functionality in addition to or other than the various aspects of the disclosure set forth herein. It should be understood that any aspect of the disclosure disclosed herein may be embodied by one or more elements of a claim.

[0028] Several aspects of telecommunication systems will now be presented with reference to various apparatuses and techniques. These apparatuses and techniques will be described in the following detailed description and illustrated in the accompanying drawings by various blocks, modules, components, circuits, steps, processes, algorithms, and/or the like (collectively referred to as“elements”). These elements may be implemented using hardware, software, or combinations thereof. Whether such elements are implemented as hardware or software depends upon the particular application and design constraints imposed on the overall system.

[0029] It should be noted that while aspects may be described herein using terminology commonly associated with a 5G or NR radio access technology (RAT), aspects of the present disclosure can be applied to other RATs, such as a 3G RAT, a 4G RAT, and/or a RAT subsequent to 5G (e.g., 6G).

[0030] Fig. 1 is a diagram illustrating a wireless network 100 in which aspects of the present disclosure may be practiced. The wireless network 100 may be an LTE network or some other wireless network, such as a 5G or NR network. The wireless network 100 may include a number of BSs 110 (shown as BS 110a, BS 110b, BS 110c, and BS 1 lOd) and other network entities. A BS is an entity that communicates with user equipment (UEs) and may also be referred to as a base station, a NR BS, a Node B, a gNB, a 5G node B (NB), an access point, a transmit receive point (TRP), and/or the like. Each BS may provide communication coverage for a particular geographic area. In 3GPP, the term“cell” can refer to a coverage area of a BS and/or a BS subsystem serving this coverage area, depending on the context in which the term is used. [0031] A BS may provide communication coverage for a macro cell, a pico cell, a femto cell, and/or another type of cell. A macro cell may cover a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by UEs with service subscription. A pico cell may cover a relatively small geographic area and may allow unrestricted access by UEs with service subscription. A femto cell may cover a relatively small geographic area (e.g., a home) and may allow restricted access by UEs having association with the femto cell (e.g., UEs in a closed subscriber group (CSG)). A BS for a macro cell may be referred to as a macro BS. A BS for a pico cell may be referred to as a pico BS. A BS for a femto cell may be referred to as a femto BS or a home BS. In the example shown in Fig. 1, a BS 110a may be a macro BS for a macro cell 102a, a BS 110b may be a pico BS for a pico cell 102b, and a BS 110c may be a femto BS for a femto cell 102c. A BS may support one or multiple (e.g., three) cells. The terms“eNB”,“base station”,“NR BS”,“gNB”,“TRP”,“AP”, “node B”,“5G NB”, and“cell” may be used interchangeably herein.

[0032] In some aspects, a cell may not necessarily be stationary, and the geographic area of the cell may move according to the location of a mobile BS. In some aspects, the BSs may be interconnected to one another and/or to one or more other BSs or network nodes (not shown) in the wireless network 100 through various types of backhaul interfaces such as a direct physical connection, a virtual network, and/or the like using any suitable transport network.

[0033] Wireless network 100 may also include relay stations. A relay station is an entity that can receive a transmission of data from an upstream station (e.g., a BS or a UE) and send a transmission of the data to a downstream station (e.g., a UE or a BS). A relay station may also be a UE that can relay transmissions for other UEs. In the example shown in Fig. 1, a relay BS 1 lOd may communicate with macro BS 110a and a UE 120d in order to facilitate

communication between BS 110a and UE 120d. A relay BS may also be referred to as a relay station, a relay base station, a relay, and/or the like.

[0034] Wireless network 100 may be a heterogeneous network that includes BSs of different types, e.g., macro BSs, pico BSs, femto BSs, relay BSs, and/or the like. These different types of BSs may have different transmit power levels, different coverage areas, and different impacts on interference in wireless network 100. For example, macro BSs may have a high transmit power level (e.g., 5 to 40 Watts) whereas pico BSs, femto BSs, and relay BSs may have lower transmit power levels (e.g., 0.1 to 2 Watts).

[0035] A network controller 130 may couple to a set of BSs and may provide coordination and control for these BSs. Network controller 130 may communicate with the BSs via a backhaul. The BSs may also communicate with one another, e.g., directly or indirectly via a wireless or wireline backhaul. [0036] UEs 120 (e.g., 120a, 120b, 120c) may be dispersed throughout wireless network 100, and each UE may be stationary or mobile. A UE may also be referred to as an access terminal, a terminal, a mobile station, a subscriber unit, a station, and/or the like. A UE may be a cellular phone (e.g., a smart phone), a personal digital assistant (PDA), a wireless modem, a wireless communication device, a handheld device, a laptop computer, a cordless phone, a wireless local loop (WLL) station, a tablet, a camera, a gaming device, a netbook, a smartbook, an ultrabook, a medical device or equipment, biometric sensors/devices, wearable devices (smart watches, smart clothing, smart glasses, smart wrist bands, smart jewelry (e.g., smart ring, smart bracelet)), an entertainment device (e.g., a music or video device, or a satellite radio), a vehicular component or sensor, smart meters/sensors, industrial manufacturing equipment, a global positioning system device, or any other suitable device that is configured to communicate via a wireless or wired medium.

[0037] Some UEs may be considered machine-type communication (MTC) or evolved or enhanced machine-type communication (eMTC) UEs. MTC and eMTC UEs include, for example, robots, drones, remote devices, sensors, meters, monitors, location tags, and/or the like, that may communicate with a base station, another device (e.g., remote device), or some other entity. A wireless node may provide, for example, connectivity for or to a network (e.g., a wide area network such as Internet or a cellular network) via a wired or wireless communication link. Some UEs may be considered Intemet-of-Things (IoT) devices, and/or may be implemented as NB-IoT (narrowband internet of things) devices. Some UEs may be considered a Customer Premises Equipment (CPE). UE 120 may be included inside a housing that houses components of UE 120, such as processor components, memory components, and/or the like.

[0038] In general, any number of wireless networks may be deployed in a given geographic area. Each wireless network may support a particular RAT and may operate on one or more frequencies. A RAT may also be referred to as a radio technology, an air interface, and/or the like. A frequency may also be referred to as a carrier, a frequency channel, and/or the like.

Each frequency may support a single RAT in a given geographic area in order to avoid interference between wireless networks of different RATs. In some cases, NR or 5G RAT networks may be deployed.

[0039] In some aspects, two or more UEs 120 (e.g., shown as UE 120a and UE 120e) may communicate directly using one or more sidelink channels (e.g., without using a base station 110 as an intermediary to communicate with one another). For example, the UEs 120 may communicate using peer-to-peer (P2P) communications, device-to-device (D2D)

communications, a vehicle-to-everything (V2X) protocol (e.g., which may include a vehicle-to- vehicle (V2V) protocol, a vehicle -to-infrastructure (V2I) protocol, and/or the like), a mesh network, and/or the like. In this case, the UE 120 may perform scheduling operations, resource selection operations, and/or other operations described elsewhere herein as being performed by the base station 110.

[0040] As indicated above, Fig. 1 is provided as an example. Other examples may differ from what is described with regard to Fig. 1.

[0041] Fig. 2 shows a block diagram of a design 200 of base station 110 and UE 120, which may be one of the base stations and one of the UEs in Fig. 1. Base station 110 may be equipped with T antennas 234a through 234t, and UE 120 may be equipped with R antennas 252a through 252r, where in general T > 1 and R > 1.

[0042] At base station 110, a transmit processor 220 may receive data from a data source

212 for one or more UEs, select one or more modulation and coding schemes (MCS) for each

UE based at least in part on channel quality indicators (CQIs) received from the UE, process

(e.g., encode and modulate) the data for each UE based at least in part on the MCS(s) selected for the UE, and provide data symbols for all UEs. Transmit processor 220 may also process system information (e.g., for semi-static resource partitioning information (SRPI) and/or the like) and control information (e.g., CQI requests, grants, upper layer signaling, and/or the like) and provide overhead symbols and control symbols. Transmit processor 220 may also generate reference symbols for reference signals (e.g., the cell-specific reference signal (CRS)) and synchronization signals (e.g., the primary synchronization signal (PSS) and secondary synchronization signal (SSS)). A transmit (TX) multiple-input multiple -output (MIMO) processor 230 may perform spatial processing (e.g., precoding) on the data symbols, the control symbols, the overhead symbols, and/or the reference symbols, if applicable, and may provide T output symbol streams to T modulators (MODs) 232a through 232t. Each modulator 232 may process a respective output symbol stream (e.g., for OFDM and/or the like) to obtain an output sample stream. Each modulator 232 may further process (e.g., convert to analog, amplify, filter, and upconvert) the output sample stream to obtain a downlink signal. T downlink signals from modulators 232a through 232t may be transmitted via T antennas 234a through 234t, respectively. According to various aspects described in more detail below, the synchronization signals can be generated with location encoding to convey additional information.

[0043] At UE 120, antennas 252a through 252r may receive the downlink signals from base station 110 and/or other base stations and may provide received signals to demodulators

(DEMODs) 254a through 254r, respectively. Each demodulator 254 may condition (e.g., filter, amplify, downconvert, and digitize) a received signal to obtain input samples. Each

demodulator 254 may further process the input samples (e.g., for OFDM and/or the like) to obtain received symbols. A MIMO detector 256 may obtain received symbols from all R demodulators 254a through 254r, perform MIMO detection on the received symbols if applicable, and provide detected symbols. A receive processor 258 may process (e.g., demodulate and decode) the detected symbols, provide decoded data for UE 120 to a data sink 260, and provide decoded control information and system information to a controller/processor 280. A channel processor may determine reference signal received power (RSRP), received signal strength indicator (RSSI), reference signal received quality (RSRQ), channel quality indicator (CQI), and/or the like. In some aspects, one or more components of UE 120 may be included in a housing.

[0044] On the uplink, at UE 120, a transmit processor 264 may receive and process data from a data source 262 and control information (e.g., for reports comprising RSRP, RSSI, RSRQ, CQI, and/or the like) from controller/processor 280. Transmit processor 264 may also generate reference symbols for one or more reference signals. The symbols from transmit processor 264 may be precoded by a TX MIMO processor 266 if applicable, further processed by modulators 254a through 254r (e.g., for DFT-s-OFDM, CP-OFDM, and/or the like), and transmitted to base station 110. At base station 110, the uplink signals from UE 120 and other UEs may be received by antennas 234, processed by demodulators 232, detected by a MIMO detector 236 if applicable, and further processed by a receive processor 238 to obtain decoded data and control information sent by UE 120. Receive processor 238 may provide the decoded data to a data sink 239 and the decoded control information to controller/processor 240. Base station 110 may include communication unit 244 and communicate to network controller 130 via communication unit 244. Network controller 130 may include communication unit 294, controller/processor 290, and memory 292.

[0045] Controller/processor 240 of base station 110, controller/processor 280 of UE 120, and/or any other component(s) of Fig. 2 may perform one or more techniques associated with tracking reference signal configuration, as described in more detail elsewhere herein. For example, controller/processor 240 of base station 110, controller/processor 280 of UE 120, and/or any other component(s) of Fig. 2 may perform or direct operations of, for example, process 800 of Fig. 8, process 900 of Fig. 9, and/or other processes as described herein.

Memories 242 and 282 may store data and program codes for base station 110 and UE 120, respectively. In some aspects, memory 242 and/or memory 282 may comprise a non-transitory computer-readable medium storing one or more instructions for wireless communication. For example, the one or more instructions, when executed by one or more processors of the base station 110 and/or the UE 120, may perform or direct operations of, for example, process 800 of Fig. 8, process 900 of Fig. 9, and/or other processes as described herein. A scheduler 246 may schedule UEs for data transmission on the downlink and/or uplink.

[0046] In some aspects, UE 120 may include means for receiving, for a first radio access technology, signaling identifying a set of physical resource blocks for a tracking or channel state information reference signal transmission configured in a bandwidth part of a system bandwidth, means for determining that a collision condition is satisfied for a first one or more physical resource blocks of the set of physical resource blocks, means for receiving the tracking or channel state information reference signal transmission in a second one or more physical resource blocks of the set of physical resource blocks based at least in part on determining that the collision condition is satisfied for the first one or more physical resource blocks, and/or the like. In some aspects, such means may include one or more components of UE 120 described in connection with Fig. 2, such as controller/processor 280, transmit processor 264, TX MIMO processor 266, MOD 254, antenna 252, DEMOD 254, MIMO detector 256, receive processor 258, and/or the like.

[0047] In some aspects, base station 110 may include means for transmitting, for a first radio access technology, signaling identifying a set of physical resource blocks for a tracking or channel state information reference signal transmission configured in a bandwidth part of a system bandwidth, means for transmitting information identifying a communication configuration that has a property of satisfying a collision condition for a first one or more physical resource blocks of the set of physical resource blocks, means for transmitting the tracking or channel state information reference signal transmission in a second one or more physical resource blocks of the set of physical resource blocks in connection with the signaling identifying the set of physical resource blocks and the communication configuration that has the property of satisfying the collision condition for the first one or more physical resource blocks, and/or the like. In some aspects, such means may include one or more components of base station 110 described in connection with Fig. 2, such as antenna 234, DEMOD 232, MIMO detector 236, receive processor 238, controller/processor 240, transmit processor 220, TX MIMO processor 230, MOD 232, antenna 234, and/or the like.

[0048] As indicated above, Fig. 2 is provided as an example. Other examples may differ from what is described with regard to Fig. 2.

[0049] Fig. 3 A shows an example frame structure 300 for frequency division duplexing

(FDD) in a telecommunications system (e.g., NR). The transmission timeline for each of the downlink and uplink may be partitioned into units of radio frames (sometimes referred to as frames). Each radio frame may have a predetermined duration (e.g., 10 milliseconds (ms)) and may be partitioned into a set of Z (Z > 1) subframes (e.g., with indices of 0 through Z-l). Each subframe may have a predetermined duration (e.g., 1 ms) and may include a set of slots (e.g., 2 m slots per subframe are shown in Fig. 3A, where m is a numerology used for a transmission, such as 0, 1, 2, 3, 4, and/or the like). Each slot may include a set of F symbol periods. For example, each slot may include fourteen symbol periods (e.g., as shown in Fig. 3A), seven symbol periods, or another number of symbol periods. In a case where the subframe includes two slots (e.g., when m = 1), the subframe may include 2F symbol periods, where the 2F symbol periods in each subframe may be assigned indices of 0 through 2F-1. In some aspects, a scheduling unit for the FDD may be frame-based, subframe-based, slot-based, symbol-based, and/or the like. [0050] While some techniques are described herein in connection with frames, subframes, slots, and/or the like, these techniques may equally apply to other types of wireless

communication structures, which may be referred to using terms other than“frame,”

“subframe,”“slot,” and/or the like in 5G NR. In some aspects, a wireless communication structure may refer to a periodic time-bounded communication unit defined by a wireless communication standard and/or protocol. Additionally, or alternatively, different configurations of wireless communication structures than those shown in Fig. 3A may be used.

[0051] In certain telecommunications (e.g., NR), a base station may transmit

synchronization signals. For example, a base station may transmit a primary synchronization signal (PSS), a secondary synchronization signal (SSS), and/or the like, on the downlink for each cell supported by the base station. The PSS and SSS may be used by UEs for cell search and acquisition. For example, the PSS may be used by UEs to determine symbol timing, and the SSS may be used by UEs to determine a physical cell identifier, associated with the base station, and frame timing. The base station may also transmit a physical broadcast channel (PBCH). The PBCH may carry some system information, such as system information that supports initial access by UEs.

[0052] In some aspects, the base station may transmit the PSS, the SSS, and/or the PBCH in accordance with a synchronization communication hierarchy (e.g., a synchronization signal (SS) hierarchy) including multiple synchronization communications (e.g., SS blocks), as described below in connection with Fig. 3B.

[0053] Fig. 3B is a block diagram conceptually illustrating an example SS hierarchy, which is an example of a synchronization communication hierarchy. As shown in Fig. 3B, the SS hierarchy may include an SS burst set, which may include a plurality of SS bursts (identified as SS burst 0 through SS burst B-l, where B is a maximum number of repetitions of the SS burst that may be transmitted by the base station). As further shown, each SS burst may include one or more SS blocks (identified as SS block 0 through SS block (b max ss- 1 )- where b max ss is a maximum number of SS blocks that can be carried by an SS burst). In some aspects, different SS blocks may be beam-formed differently. An SS burst set may be periodically transmitted by a wireless node, such as every X milliseconds, as shown in Fig. 3B. In some aspects, an SS burst set may have a fixed or dynamic length, shown as Y milliseconds in Fig. 3B.

[0054] The SS burst set shown in Fig. 3B is an example of a synchronization

communication set, and other synchronization communication sets may be used in connection with the techniques described herein. Furthermore, the SS block shown in Fig. 3B is an example of a synchronization communication, and other synchronization communications may be used in connection with the techniques described herein. [0055] In some aspects, an SS block includes resources that carry the PSS, the SSS, the PBCH, and/or other synchronization signals (e.g., a tertiary synchronization signal (TSS)) and/or synchronization channels. In some aspects, multiple SS blocks are included in an SS burst, and the PSS, the SSS, and/or the PBCH may be the same across each SS block of the SS burst. In some aspects, a single SS block may be included in an SS burst. In some aspects, the SS block may be at least four symbol periods in length, where each symbol carries one or more of the PSS (e.g., occupying one symbol), the SSS (e.g., occupying one symbol), and/or the PBCH (e.g., occupying two symbols).

[0056] In some aspects, the symbols of an SS block are consecutive, as shown in Fig. 3B. In some aspects, the symbols of an SS block are non-consecutive. Similarly, in some aspects, one or more SS blocks of the SS burst may be transmitted in consecutive radio resources (e.g., consecutive symbol periods) during one or more slots. Additionally, or alternatively, one or more SS blocks of the SS burst may be transmitted in non-consecutive radio resources.

[0057] In some aspects, the SS bursts may have a burst period, whereby the SS blocks of the SS burst are transmitted by the base station according to the burst period. In other words, the SS blocks may be repeated during each SS burst. In some aspects, the SS burst set may have a burst set periodicity, whereby the SS bursts of the SS burst set are transmitted by the base station according to the fixed burst set periodicity. In other words, the SS bursts may be repeated during each SS burst set.

[0058] The base station may transmit system information, such as system information blocks (SIBs) on a physical downlink shared channel (PDSCH) in certain slots. The base station may transmit control information/data on a physical downlink control channel (PDCCH) in C symbol periods of a slot, where B may be configurable for each slot. The base station may transmit traffic data and/or other data on the PDSCH in the remaining symbol periods of each slot.

[0059] As indicated above, Figs. 3A and 3B are provided as examples. Other examples may differ from what is described with regard to Figs. 3A and 3B.

[0060] Fig. 4 shows an example slot format 410 with a normal cyclic prefix. The available time frequency resources may be partitioned into resource blocks. Each resource block may cover a set of subcarriers (e.g., 12 subcarriers) in one slot and may include a number of resource elements. Each resource element may cover one subcarrier in one symbol period (e.g., in time) and may be used to send one modulation symbol, which may be a real or complex value.

[0061] An interlace structure may be used for each of the downlink and uplink for FDD in certain telecommunications systems (e.g., NR). For example, Q interlaces with indices of 0 through Q - 1 may be defined, where Q may be equal to 4, 6, 8, 10, or some other value. Each interlace may include slots that are spaced apart by Q frames. In particular, interlace q may include slots q, q + Q, q + 2Q, etc., where q e {0, ... , Q - 1 } .

[0062] A UE may be located within the coverage of multiple BSs. One of these BSs may be selected to serve the UE. The serving BS may be selected based at least in part on various criteria such as received signal strength, received signal quality, path loss, and/or the like. Received signal quality may be quantified by a signal-to-noise-and-interference ratio (SNIR), or a reference signal received quality (RSRQ), or some other metric. The UE may operate in a dominant interference scenario in which the UE may observe high interference from one or more interfering BSs.

[0063] While aspects of the examples described herein may be associated with NR or 5G technologies, aspects of the present disclosure may be applicable with other wireless communication systems. New Radio (NR) may refer to radios configured to operate according to a new air interface (e.g., other than Orthogonal Frequency Divisional Multiple Access (OFDMA)-based air interfaces) or fixed transport layer (e.g., other than Internet Protocol (IP)). In aspects, NR may utilize OFDM with a CP (herein referred to as cyclic prefix OFDM or CP- OFDM) and/or SC-FDM on the uplink, may utilize CP-OFDM on the downlink and include support for half-duplex operation using time division duplexing (TDD). In aspects, NR may, for example, utilize OFDM with a CP (herein referred to as CP-OFDM) and/or discrete Fourier transform spread orthogonal frequency-division multiplexing (DFT-s-OFDM) on the uplink, may utilize CP-OFDM on the downlink and include support for half-duplex operation using TDD. NR may include Enhanced Mobile Broadband (eMBB) service targeting wide bandwidth (e.g., 80 megahertz (MHz) and beyond), millimeter wave (mmW) targeting high carrier frequency (e.g., 60 gigahertz (GHz)), massive MTC (mMTC) targeting non-backward compatible MTC techniques, and/or mission critical targeting ultra reliable low latency communications (URFFC) service.

[0064] In some aspects, a single component carrier bandwidth of 100 MHz may be supported. NR resource blocks may span 12 sub-carriers with a sub-carrier bandwidth of 60 or 120 kilohertz (kHz) over a 0.1 millisecond (ms) duration. Each radio frame may include 40 slots and may have a length of 10 ms. Consequently, each slot may have a length of 0.25 ms. Each slot may indicate a link direction (e.g., DF or UE) for data transmission and the link direction for each slot may be dynamically switched. Each slot may include DF/UF data as well as DF/UF control data.

[0065] Beamforming may be supported and beam direction may be dynamically configured. MIMO transmissions with precoding may also be supported. MIMO

configurations in the DF may support up to 8 transmit antennas with multi-layer DF transmissions up to 8 streams and up to 2 streams per UE. Multi-layer transmissions with up to 2 streams per UE may be supported. Aggregation of multiple cells may be supported with up to 8 serving cells. Alternatively, NR may support a different air interface, other than an OFDM- based interface. NR networks may include entities such as central units or distributed units.

[0066] As indicated above, Fig. 4 is provided as an example. Other examples may differ from what is described with regard to Fig. 4.

[0067] Fig. 5 illustrates an example logical architecture of a distributed RAN 500, according to aspects of the present disclosure. A 5G access node 506 may include an access node controller (ANC) 502. The ANC may be a central unit (CU) of the distributed RAN 500. The backhaul interface to the next generation core network (NG-CN) 504 may terminate at the ANC. The backhaul interface to neighboring next generation access nodes (NG-ANs) may terminate at the ANC. The ANC may include one or more TRPs 508 (which may also be referred to as BSs, NR BSs, Node Bs, 5G NBs, APs, gNB, or some other term). As described above,“TRP” may be used interchangeably with“cell.”

[0068] The TRPs 508 may be a distributed unit (DU). The TRPs may be connected to one ANC (ANC 502) or more than one ANC (not illustrated). For example, for RAN sharing, radio as a service (RaaS), and service specific AND deployments, the TRP may be connected to more than one ANC. A TRP may include one or more antenna ports. The TRPs may be configured to individually (e.g., dynamic selection) or jointly (e.g., joint transmission) serve traffic to a UE.

[0069] The local architecture of RAN 500 may be used to illustrate fronthaul

communication. The architecture may be defined to support fronthauling solutions across different deployment types. For example, the architecture may be based at least in part on transmit network capabilities (e.g., bandwidth, latency, and/or jitter).

[0070] The architecture may share features and/or components with LTE. According to aspects, the next generation AN (NG-AN) 510 may support dual connectivity with NR. The NG-AN may share a common fronthaul for LTE and NR.

[0071] The architecture may enable cooperation between and among TRPs 508. For example, cooperation may be preset within a TRP and/or across TRPs via the ANC 502.

According to aspects, no inter-TRP interface may be needed/present.

[0072] According to aspects, a dynamic configuration of split logical functions may be present within the architecture of RAN 500. The packet data convergence protocol (PDCP), radio link control (RLC), or medium access control (MAC) protocol may be adaptably placed at the ANC or TRP.

[0073] According to various aspects, a BS may include a central unit (CU) (e.g., ANC 502) and/or one or more distributed units (e.g., one or more TRPs 508).

[0074] As indicated above, Fig. 5 is provided as an example. Other examples may differ from what is described with regard to Fig. 5. [0075] Fig. 6 illustrates an example physical architecture of a distributed RAN 600, according to aspects of the present disclosure. A centralized core network unit (C-CU) 602 may host core network functions. The C-CU may be centrally deployed. C-CU functionality may be offloaded (e.g., to advanced wireless services (AWS)), in an effort to handle peak capacity.

[0076] A centralized RAN unit (C-RU) 604 may host one or more ANC functions.

Optionally, the C-RU may host core network functions locally. The C-RU may have distributed deployment. The C-RU may be closer to the network edge.

[0077] A distributed unit (DU) 606 may host one or more TRPs. The DU may be located at edges of the network with radio frequency (RF) functionality.

[0078] As indicated above, Fig. 6 is provided as an example. Other examples may differ from what is described with regard to Fig. 6.

[0079] In some communications systems, dynamic spectrum sharing (DSS) may be configured to enable a plurality of radio access technologies (RATs) to be deployed in a common area using a common spectral range. For example, a first RAT (e.g., a legacy RAT) may be deployed in the common spectral range and a second RAT may be deployed in the common spectral range, and the second RAT may be configured to avoid interference with the first RAT. For example, a wideband CDMA (WCDMA) based RAT may be deployed in the same area as an NR RAT, and the NR RAT may be configured using DSS to avoid interfering with the WCDMA based RAT. To avoid interference with the WCDMA based RAT, communications of the NR RAT may be scheduled for a subset of the common spectral range.

[0080] In relatively large system bandwidth deployments, communications of the NR RAT, such as a tracking reference signal (TRS) which may comprise a channel state information reference signal (CSI-RS), may be deployed in a center of the system bandwidth, thereby enabling WCDMA communications at edges of the system bandwidth. For example, the TRS may be deployed in a central 8 MHz of a 10 MHz or greater system bandwidth.

[0081] However, in some cases, a TRS bandwidth may be equal to a bandwidth part size or greater than a subset of the common spectral range that does not interfere with the WCDMA based RAT. For example, the tracking reference signal bandwidth may be a threshold size, such as greater than or equal to 52 physical resource blocks (PRBs). As a result, for relatively small system bandwidths (e.g., less than 52 PRBs or 9.360 MHz at a subcarrier spacing of 15 kHz), the tracking reference signal may cover a whole bandwidth part or may not leave sufficient space at the edges of the system bandwidth to enable WCDMA communications. As a result, the tracking reference signal may cause interference with the WCDMA RAT.

[0082] Some aspects described herein enable tracking reference signal configuration. For example, a BS may configure a tracking or channel state information reference signal transmission, which may include a plurality of channel state information reference signal (CSI- RS) resources, for one or more PRBs that satisfy a collision condition. The UE may determine, based at least in part on determining that the collision condition is satisfied, that the tracking reference signal is not transmitted in one or more PRBs for which the collision condition is satisfied. In this case, the BS may transmit the tracking reference signal in one or more other PRBs for which the collision condition is not satisfied. In other words, the UE may not attempt to process a tracking reference signal in all PRBs for which the collision condition is satisfied. For example, the UE may not process the tracking reference signal in any PRB for which a collision with tracking reference signal resources is detected based at least in part on satisfaction of the collision condition.

[0083] In this way, a BS may create a collision outside of a center 8 MHz of PRBs in order to cause the UE to not process the tracking reference signal in the PRBs for which the collision is to occur, thereby enabling signaling of where the tracking reference signal transmission is to occur. Furthermore, the BS may enable transmission of the tracking reference signal in a center 8 MHz of a 10 MHz system bandwidth, thereby avoiding interference with WCDMA communication.

[0084] Fig. 7 is a diagram illustrating an example 700 of TRS configuration, in accordance with various aspects of the present disclosure. As shown in Fig. 7, example 700 includes a BS 110 and a UE 120.

[0085] As shown in Fig. 7, and by reference number 710, BS 110 may configure a collision for a tracking reference signal transmission in one or more PRBs. For example, BS 110 may transmit an indication of a set of PRBs for a tracking reference signal transmission. In this case, the set of PRBs may include one or more colliding PRBs at edges of a system bandwidth (e.g., a 10 MHz system bandwidth) and one or more non-colliding PRBs at a center of the system bandwidth (e.g., a center 8 MHz of the 10 MHz system bandwidth). Although some aspects are described in terms of a particular system bandwidth, other system bandwidths are contemplated.

[0086] As further shown in Fig. 7, and by reference numbers 720, UE 120 and/or BS 110 may determine that a collision condition is satisfied for one or more PRBs for which a tracking reference signal is to be transmitted. For example, BS 110 may configure, and UE 120 may determine, that a periodic, semi-persistent, or aperiodic zero-power channel state information reference signal (ZP-CSI-RS) is to collide in a slot in the one or more PRBs with at least one or all of channel state information reference signal (CSI-RS) resources of a CSI-RS resource set for tracking. For example, when a CSI-RS for tracking spans across two slots, at least one or all of the resources of both slots may collide with the ZP-CSI-RS. Additionally, or alternatively,

BS 110 may configure, and UE 120 may determine, that an FTE rate matching pattern is configured in a cell of UE 120 and BS 110. An FTE rate matching pattern refers to a rate matching pattern, configured in NR, to avoid collisions with FTE communications. [0087] Additionally, or alternatively, BS 110 may configure, and UE 120 may determine, that a PRB-level rate matching pattern is to collide in a slot in the one or more PRBs with at least one or all of the CSI-RS resources of a CSI-RS resource set for tracking. Additionally, or alternatively, BS 110 may configure, and UE 120 may determine, that both a PRB-level rate matching pattern and a ZP-CSI-RS resource set are to collide in a slot in the one or more PRBs with at least one or all of the CSI-RS resources of a CSI-RS resource set for tracking.

[0088] Additionally, or alternatively, BS 110 may configure, and UE 120 may determine, that both the LTE rate matching pattern and a ZP-CSI-RS resource set are to collide in a slot in the one or more PRBs with at least one or all of the CSI-RS resources of a CSI-RS resource set for tracking. Additionally, or alternatively, BS 110 may configure, and UE 120 may determine, that an LTE rate matching pattern, a ZP-CSI-RS resource set, and a PRB-level rate matching pattern are to collide in a slot in the one or more PRBs with at least one or all of the CSI-RS resources of a CSI-RS resource set for tracking.

[0089] Additionally, or alternatively, BS 110 may configure, and UE 120 may determine, that a particular subcarrier spacing is being used (e.g., a subcarrier spacing of 15 kHz).

Additionally, or alternatively, BS 110 may configure, and UE 120 may determine, that a system bandwidth is less than a threshold. Additionally, or alternatively, BS 110 may configure, and UE 120 may determine, that a bandwidth part size is equal to a size of the system bandwidth. Additionally, or alternatively, BS 110 may configure, and UE 120 may determine, that the bandwidth part is less than 52 PRBs. Additionally, or alternatively, BS 110 may configure, and UE 120 may determine, that a band of a carrier is for WCDMA communication. In this case, based at least in part on one or more determinations relating to a collision condition, UE 120 may determine that tracking reference signal transmission resources in one or more PRBs are to be blanked rather than used for communication, thereby avoiding interference with another RAT.

[0090] As shown in Fig. 7, and by reference number 730, BS 110 may transmit and UE 120 may receive the tracking reference signal in one or more PRBs for which the collision condition is not satisfied. Additionally, or alternatively, BS 110 may forgo transmitting and UE 120 may forgo receiving the tracking reference signal in one or more PRBs for which the collision condition is satisfied. For example, BS 110 may blank the one or more PRBs for which the collision condition is satisfied, thereby avoiding interference with another RAT (e.g., a legacy RAT, such as a WCDMA based RAT).

[0091] As indicated above, Fig. 7 is provided as an example. Other examples may differ from what is described with respect to Fig. 7.

[0092] Fig. 8 is a diagram illustrating an example process 800 performed, for example, by a UE, in accordance with various aspects of the present disclosure. Example process 800 is an example where a UE (e.g., UE 120 and/or the like) performs operations associated with tracking reference signal configuration.

[0093] As shown in Fig. 8, in some aspects, process 800 may include receiving, for a first radio access technology, signaling identifying a set of physical resource blocks for a tracking or channel state information reference signal transmission configured in a bandwidth part of a system bandwidth (block 810). For example, the UE (e.g., using receive processor 258, transmit processor 264, controller/processor 280, memory 282, and/or the like) may receive, for a first radio access technology, signaling identifying a set of physical resource blocks for a tracking or channel state information reference signal transmission configured in a bandwidth part of a system bandwidth, as described above.

[0094] As further shown in Fig. 8, in some aspects, process 800 may include determining that a collision condition is satisfied for a first one or more physical resource blocks of the set of physical resource blocks (block 820). For example, the UE (e.g., using receive processor 258, transmit processor 264, controller/processor 280, memory 282, and/or the like) may determine that a collision condition is satisfied for a first one or more physical resource blocks of the set of physical resource blocks, as described above.

[0095] As further shown in Fig. 8, in some aspects, process 800 may include receiving the tracking or channel state information reference signal transmission in a second one or more physical resource blocks of the set of physical resource blocks based at least in part on determining that the collision condition is satisfied for the first one or more physical resource blocks (block 830). For example, the UE (e.g., using receive processor 258, transmit processor 264, controller/processor 280, memory 282, and/or the like) may receive the tracking or channel state information reference signal transmission in a second one or more physical resource blocks of the set of physical resource blocks based at least in part on determining that the collision condition is satisfied for the first one or more physical resource blocks, as described above.

[0096] Process 800 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.

[0097] In a first aspect, the second one or more physical resource blocks are in a center portion of the system bandwidth and the first one or more physical resource blocks are outside the center portion of the system bandwidth.

[0098] In a second aspect, alone or in combination with the first aspect, process 800 includes forgoing receiving the tracking or channel state information reference signal transmission in the first one or more physical resource blocks.

[0099] In a third aspect, alone or in combination with one or more of the first and second aspects, the UE is configured to forgo receiving the tracking or channel state information reference signal transmission in the first one or more physical resource blocks to avoid interference with a communication of a second radio access technology.

[00100] In a fourth aspect, alone or in combination with one or more of the first through third aspects, the tracking or channel state information reference signal transmission includes a set of channel state information reference signals.

[00101] In a fifth aspect, alone or in combination with one or more of the first through fourth aspects, determining that the collision condition is satisfied includes determining that a zero-power channel state information reference signal collides in a slot of the first one or more physical resource blocks with a channel state information reference signal resource of the tracking or channel state information reference signal transmission; and determining that the collision condition is satisfied based at least in part on determining that the zero-power channel state information reference signal collides in the slot of the first one or more physical resource blocks with the channel state information reference signal resource.

[00102] In a sixth aspect, alone or in combination with one or more of the first through fifth aspects, determining that the collision condition is satisfied includes determining that a long term evolution rate matching pattern, associated with avoiding collisions with long term evolution traffic, is configured in a cell of the UE, and determining that the collision condition is satisfied based at least in part on determining that the long term evolution rate matching pattern is configured in the cell of the UE.

[00103] In a seventh aspect, alone or in combination with one or more of the first through sixth aspects, determining that the collision condition is satisfied includes determining that a physical resource block level rate matching pattern is to collide in a slot of the first one or more physical resource blocks with at least one reference signal resource, wherein the at least one reference signal resource is associated with a tracking reference signal or a channel state information reference signal, and determining that the collision condition is satisfied based at least in part on determining that the physical resource block level rate matching pattern is to collide in the slot of the first one or more physical resource blocks with the at least one reference signal resource.

[00104] In an eighth aspect, alone or in combination with one or more of the first through seventh aspects, determining that the collision condition is satisfied includes determining that a physical resource block level rate matching pattern and a zero-power channel state information reference signal resource are to collide in a slot of the first one or more physical resource blocks with at least one reference signal resource, and determining that the collision condition is satisfied based at least in part on determining that the physical resource block level rate matching pattern and the zero-power channel state information reference signal resource are to collide in the slot of the first one or more physical resource blocks with the at least one reference signal resource.

[00105] In a ninth aspect, alone or in combination with one or more of the first through eighth aspects, determining that the collision condition is satisfied includes determining that a long term evolution rate matching pattern and a zero-power channel state information reference signal resource are to collide in a slot of the first one or more physical resource blocks with at least one reference signal resource, and determining that the collision condition is satisfied based at least in part on determining that the long term evolution rate matching pattern and the zero-power channel state information reference signal resource are to collide in the slot of the first one or more physical resource blocks with the at least one reference signal resource.

[00106] In a tenth aspect, alone or in combination with one or more of the first through ninth aspects, determining that the collision condition is satisfied includes determining that a physical resource block level rate matching pattern, a long term evolution rate matching pattern, and a zero-power channel state information reference signal resource are to collide in a slot of the first one or more physical resource blocks with at least one reference signal resource; and determining that the collision condition is satisfied based at least in part on determining that the physical resource block level rate matching pattern, the long term evolution rate matching pattern, and the zero-power channel state information reference signal resource are to collide in the slot of the first one or more physical resource blocks with the at least one reference signal resource.

[00107] In an eleventh aspect, alone or in combination with one or more of the first through tenth aspects, determining that the collision condition is satisfied includes determining that the collision condition is satisfied based at least in part on a subcarrier spacing configuration for the set of physical resource blocks.

[00108] In a twelfth aspect, alone or in combination with one or more of the first through eleventh aspects, determining that the collision condition is satisfied includes determining that the collision condition is satisfied based at least in part on the system bandwidth of the set of physical resource blocks satisfying a threshold bandwidth.

[00109] In a thirteenth aspect, alone or in combination with one or more of the first through twelfth aspects, determining that the collision condition is satisfied includes determining that the collision condition is satisfied based at least in part on a bandwidth part of the set of physical resource blocks being equal to a size of the system bandwidth.

[00110] In a fourteenth aspect, alone or in combination with one or more of the first through thirteenth aspects, determining that the collision condition is satisfied includes determining that the collision condition is satisfied based at least in part on a bandwidth part including the set of physical resource blocks being less than a threshold quantity of physical resource blocks. [00111] In a fifteenth aspect, alone or in combination with one or more of the first through fourteenth aspects, determining that the collision condition is satisfied includes determining that the collision condition is satisfied based at least in part on a band of a carrier of the set of physical resource blocks being a wideband code division multiple access carrier.

[00112] Although Fig. 8 shows example blocks of process 800, in some aspects, process 800 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Fig. 8. Additionally, or alternatively, two or more of the blocks of process 800 may be performed in parallel.

[00113]

[00114] Fig. 9 is a diagram illustrating an example process 900 performed, for example, by a BS, in accordance with various aspects of the present disclosure. Example process 900 is an example where a BS (e.g., BS 110 and/or the like) performs operations associated with tracking reference signal configuration.

[00115] As shown in Fig. 9, in some aspects, process 900 may include transmitting, for a first radio access technology, signaling identifying a set of physical resource blocks for a tracking or channel state information reference signal transmission configured in a bandwidth part of a system bandwidth (block 910). For example, the BS (e.g., using transmit processor 220, receive processor 238, controller/processor 240, memory 242, and/or the like) may transmit, for a first radio access technology, signaling identifying a set of physical resource blocks for a tracking or channel state information reference signal transmission configured in a bandwidth part of a system bandwidth, as described above.

[00116] As further shown in Fig. 9, in some aspects, process 900 may include transmitting information identifying a communication configuration that has a property of satisfying a collision condition for a first one or more physical resource blocks of the set of physical resource blocks (block 920). For example, the BS (e.g., using transmit processor 220, receive processor 238, controller/processor 240, memory 242, and/or the like) may transmit information identifying a communication configuration that has a property of satisfying a collision condition for a first one or more physical resource blocks of the set of physical resource blocks, as described above.

[00117] As further shown in Fig. 9, in some aspects, process 900 may include transmitting the tracking or channel state information reference signal transmission in a second one or more physical resource blocks of the set of physical resource blocks in connection with the signaling identifying the set of physical resource blocks and the communication configuration that has the property of satisfying the collision condition for the first one or more physical resource blocks (block 930). For example, the BS (e.g., using transmit processor 220, receive processor 238, controller/processor 240, memory 242, and/or the like) may transmit the tracking or channel state information reference signal transmission in a second one or more physical resource blocks of the set of physical resource blocks in connection with the signaling identifying the set of physical resource blocks and the communication configuration that has the property of satisfying the collision condition for the first one or more physical resource blocks, as described above.

[00118] Process 900 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.

[00119] In a first aspect, process 900 includes transmitting information identifying the collision condition; and transmitting the tracking or channel state information reference signal transmission in the second one or more physical resource blocks comprises: transmitting the tracking or channel state information reference signal transmission in the second one or more physical resource blocks based at least in part on transmitting the information identifying the collision condition.

[00120] In a second aspect, alone or in combination with the first aspect, process 900 includes selecting the set of physical resource blocks and the communication configuration to satisfy the collision condition.

[00121] In a third aspect, alone or in combination with one or more of the first and second aspects, the bandwidth part is equal to the system bandwidth.

[00122] In a fourth aspect, alone or in combination with one or more of the first through third aspects, the second one or more physical resource blocks are in a center portion of the system bandwidth and the first one or more physical resource blocks are outside of the center portion of the system bandwidth.

[00123] In a fifth aspect, alone or in combination with one or more of the first through fourth aspects, process 900 includes forgoing transmitting the tracking or channel state information reference signal transmission in the first one or more physical resource blocks.

[00124] In a sixth aspect, alone or in combination with one or more of the first through fifth aspects, the BS is configured to forgo transmitting the tracking or channel state information reference signal transmission in the first one or more physical resource blocks to avoid interference with a communication of a second radio access technology.

[00125] In a seventh aspect, alone or in combination with one or more of the first through sixth aspects, the tracking or channel state information reference signal transmission includes a set of channel state information reference signals.

[00126] In an eighth aspect, alone or in combination with one or more of the first through seventh aspects, the property of satisfying the collision condition includes a zero-power channel state information reference signal collides in a slot of the first one or more physical resource blocks with a channel state information reference signal resource.

[00127] In a ninth aspect, alone or in combination with one or more of the first through eighth aspects, the property of satisfying the collision condition includes a long term evolution rate matching pattern is configured in a cell of the BS.

[00128] In a tenth aspect, alone or in combination with one or more of the first through ninth aspects, the property of satisfying the collision condition includes a physical resource block level rate matching pattern is to collide in a slot of the first one or more physical resource blocks with at least one reference signal resource, wherein the at least one reference signal resource is associated with a tracking reference signal or a channel state information reference signal. The method of claim 18. In some aspects, the property of satisfying the collision condition comprises: a physical resource block level rate matching pattern and a zero-power channel state information reference signal resource are to collide in a slot of the first one or more physical resource blocks with at least one reference signal resource.

[00129] In an eleventh aspect, alone or in combination with one or more of the first through tenth aspects, the property of satisfying the collision condition includes a long term evolution rate matching pattern and a zero-power channel state information reference signal resource are to collide in a slot of the first one or more physical resource blocks with at least one reference signal resource.

[00130] In a twelfth aspect, alone or in combination with one or more of the first through eleventh aspects, the property of satisfying the collision condition includes a physical resource block level rate matching pattern, a long term evolution rate matching pattern, and a zero-power channel state information reference signal resource are to collide in a slot of the first one or more physical resource blocks with at least one reference signal resource.

[00131] In a thirteenth aspect, alone or in combination with one or more of the first through twelfth aspects, the property of satisfying the collision condition includes a subcarrier spacing configuration for the set of physical resource blocks.

[00132] In a fourteenth aspect, alone or in combination with one or more of the first through thirteenth aspects, the property of satisfying the collision condition includes the system bandwidth of the set of physical resource blocks satisfying a threshold bandwidth.

[00133] In a fifteenth aspect, alone or in combination with one or more of the first through fourteenth aspects, the property of satisfying the collision condition includes the bandwidth part of the set of physical resource blocks being equal to a size of the system bandwidth.

[00134] In a sixteenth aspect, alone or in combination with one or more of the first through fifteenth aspects, the property of satisfying the collision condition includes the bandwidth part including the set of physical resource blocks being less than a threshold quantity of physical resource blocks.

[00135] In a seventeenth aspect, alone or in combination with one or more of the first through sixteenth aspects, the property of satisfying the collision condition includes a band of a carrier of the set of physical resource blocks being a wideband code division multiple access carrier.

[00136] Although Fig. 9 shows example blocks of process 900, in some aspects, process 900 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Fig. 9. Additionally, or alternatively, two or more of the blocks of process 900 may be performed in parallel.

[00137] The foregoing disclosure provides illustration and description, but is not intended to be exhaustive or to limit the aspects to the precise form disclosed. Modifications and variations may be made in light of the above disclosure or may be acquired from practice of the aspects.

[00138] As used herein, the term“component” is intended to be broadly construed as hardware, firmware, and/or a combination of hardware and software. As used herein, a processor is implemented in hardware, firmware, and/or a combination of hardware and software.

[00139] As used herein, satisfying a threshold may, depending on the context, refer to a value being greater than the threshold, greater than or equal to the threshold, less than the threshold, less than or equal to the threshold, equal to the threshold, not equal to the threshold, and/or the like.

[00140] It will be apparent that systems and/or methods described herein may be implemented in different forms of hardware, firmware, and/or a combination of hardware and software. The actual specialized control hardware or software code used to implement these systems and/or methods is not limiting of the aspects. Thus, the operation and behavior of the systems and/or methods were described herein without reference to specific software code— it being understood that software and hardware can be designed to implement the systems and/or methods based, at least in part, on the description herein.

[00141] Even though particular combinations of features are recited in the claims and/or disclosed in the specification, these combinations are not intended to limit the disclosure of various aspects. In fact, many of these features may be combined in ways not specifically recited in the claims and/or disclosed in the specification. Although each dependent claim listed below may directly depend on only one claim, the disclosure of various aspects includes each dependent claim in combination with every other claim in the claim set. A phrase referring to “at least one of’ a list of items refers to any combination of those items, including single members. As an example,“at least one of: a, b, or c” is intended to cover a, b, c, a-b, a-c, b-c, and a-b-c, as well as any combination with multiples of the same element (e.g., a-a, a-a-a, a-a-b, a-a-c, a-b-b, a-c-c, b-b, b-b-b, b-b-c, c-c, and c-c-c or any other ordering of a, b, and c).

[00142] No element, act, or instruction used herein should be construed as critical or essential unless explicitly described as such. Also, as used herein, the articles“a” and“an” are intended to include one or more items, and may be used interchangeably with“one or more.” Furthermore, as used herein, the terms“set” and“group” are intended to include one or more items (e.g., related items, unrelated items, a combination of related and unrelated items, and/or the like), and may be used interchangeably with“one or more.” Where only one item is intended, the phrase“only one” or similar language is used. Also, as used herein, the terms “has,”“have,”“having,” and/or the like are intended to be open-ended terms. Further, the phrase“based on” is intended to mean“based, at least in part, on” unless explicitly stated otherwise.