Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
TREATED TEXTILE ARTICLE HAVING IMPROVED MOISTURE TRANSPORT
Document Type and Number:
WIPO Patent Application WO/2003/044263
Kind Code:
A2
Abstract:
A treated textile article formed from a synthetic fiber substrate including a polyamide treatment agent for improved moisture transport is described. The polyamide treatment agent includes a hydrophobic component and a hydrophilic component. In the preferred embodiment, the hydrophobic component is between about 19% and 95% mole percent of the polyamide treatment agent. In addition, the polyamide treatment agent may include effective amounts of any one of an oxyalkylene derivative, an ether linkage, and an oxyalkylene derivative and an ether linkage.

Inventors:
RAYBORN RANDALL L
BARNHARDT RICHARD ALAN
WOODRUFF BOYCE HUGH II
Application Number:
PCT/US2002/036673
Publication Date:
May 30, 2003
Filing Date:
November 14, 2002
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
APOLLO CHEM (US)
International Classes:
D06M10/00; D06M13/17; D06M13/217; D06M15/285; D06M15/61; D06M; (IPC1-7): D06M/
Foreign References:
US3649346A1972-03-14
Attorney, Agent or Firm:
Rilee, Edward W. (P.O. Box 2974 Greensboro, NC, US)
Download PDF:
Claims:
We Claim:
1. A treated textile article, said article comprising: (a) a synthetic fiber substrate; and (b) an effective amount of a polyamide treatment agent including a hydrophobic component; and a hydrophilic component.
2. The treated textile article according to Claim 1, wherein said hydrophobic component is between about 19 and 95 mole percent of said polyamide treatment agent.
3. The treated textile article according to Claim 2, wherein said treated textile article has a Normalized Average Moisture Transport Durability (inch/inch) value of between about 0.1 and 1 when wicking is measured according to the TPACC vertical strip wicking test where the water transported along the strip is measured at 1 minute intervals for 5 minutes with the value at 5 minutes being reported in inches.
4. The treated textile article according to Claim 2, wherein said treated textile article has a ratio of (an Average Moisture Transport With Treatment and After Five Launderings)/ (an Average Moisture Transport With Treatment and No Launderings) of between about 30 and 120 percent when wicking is measured according to the TPACC vertical strip wicking test where the water transported along the strip is measured at 1 minute intervals for 5 minutes with the value at 5 minutes being reported in inches..
5. The treated textile article according to Claim 2, wherein said treated textile article has a ratio of (Average Moisture Transport With Treatment and No Launderings)/ (Average Moisture Transport With No Treatment and No Launderings) of between about 100 and 400 percent when wicking is measured according to the TPACC vertical strip wicking test where the water transported along the strip is measured at 1 minute intervals for 5 minutes with the value at 5 minutes being reported in inches.
6. The treated textile article according to Claim 2 wherein said hydrophobic component is between about 30 and 80 mole percent of said polyamide treatment agent.
7. The treated textile article according to Claim 6, wherein said treated textile article has a Normalized Average Moisture Transport Durability (inch/inch) value of between about 0.4 and 1 when wicking is measured according to the TPACC vertical strip wicking test where the water transported along the strip is measured at 1 minute intervals for 5 minutes with the value at 5 minutes being reported in inches.
8. The treated textile article according to Claim 6, wherein said treated textile article has a ratio of (an Average Moisture Transport With Treatment and After Five Launderings)/ (an Average Moisture Transport With Treatment and No Launderings) of between about 50 and 120 percent when wicking is measured according to the TPACC vertical strip wicking test where the water transported along the strip is measured at 1 minute intervals for 5 minutes with the value at 5 minutes being reported in inches.
9. The treated textile article according to Claim 6, wherein said treated textile article has a ratio of (Average Moisture Transport With Treatment and No Launderings)/ (Average Moisture Transport With No Treatment and No Launderings) of between about 220 and 400 percent when wicking is measured according to the TPACC vertical strip wicking test where the water transported along the strip is measured at 1 minute intervals for 5 minutes with the value at 5 minutes being reported in inches.
10. The treated textile article according to Claim 2 wherein said hydrophobic component is between about 30 and 75 mole percent of said polyamide treatment agent.
11. The treated textile article according to Claim 10, wherein said treated textile article has a Normalized Average Moisture Transport Durability (inch/inch) value of between about. 55 and 1 when wicking is measured according to the TPACC vertical strip wicking test where the water transported along the strip is measured at 1 minute intervals for 5 minutes with the value at 5 minutes being reported in inches.
12. The treated textile article according to Claim 10, wherein said treated textile article has a ratio of (an Average Moisture Transport With Treatment and After Five Launderings)/ (an Average Moisture Transport With Treatment and No Launderings) of between about 60 and 120 percent when wicking is measured according to the T PACC vertical strip wicking test where the water transported along the strip is measured at 1 minute intervals for 5 minutes with the value at 5 minutes being reported in inches.
13. The treated textile article according to Claim 10, wherein said treated textile article has a ratio of (Average Moisture Transport With Treatment and No Launderings) / (Average Moisture Transport With No Treatment and No Launderings) of between about 250 and 400 percent when wicking is measured according to the TPACC vertical strip wicking test where the water transported along the strip is measured at 1 minute intervals for 5 minutes with the value at 5 minutes being reported in inches.
14. The treated textile article according to Claim 2 wherein said synthetic fiber substrate is selected from the group consisting of a polyamide, an aramid, a polyester, an acrylic, a vinyl, a polyurethane and a polyalkylene.
15. The treated textile article according to Claim 14 further including a natural fiber to form a blend.
16. The treated textile article according to Claim 15 wherein said natural fiber is selected from the group consisting of a rayon, cotton, acetate, wool, and silk.
17. A polyamide treatment agent for use with a textile article formed from a synthetic fiber substrate for providing improved moisture transport while at the same time imparting durability of the moisture transport, said polyamide treatment agent including: a hydrophobic component; a hydrophilic component ; and an effective amount of any of an oxyalkylene derivative, an ether linkage, and an oxyalkylene derivative and an ether linkage.
18. The polyamide treatment agent according to claim 17 wherein said effective amount of any of an oxyalkylene derivative, an ether linkage, and an oxyalkylene derivative and an ether linkage includes an effective amount of an hydrophilic oxyalkylene derivative.
19. The treated textile article according to Claim 18, wherein said hydrophilic oxyalkylene derivative is between about 40 and 80 weight percent of said polyamide treatment agent.
20. The treated textile article according to Claim 19, wherein said treated textile article has a Normalized Average Moisture Transport Durability (inch/inch) value of between about 0.1 and 1 when wicking is measured according to the TPACC vertical strip wicking test where the water transported along the strip is measured at 1 minute intervals for 5 minutes with the value at 5 minutes being reported in inches.
21. The treated textile article according to Claim 19, wherein said treated textile article has a ratio of (an Average Moisture Transport With Treatment and After Five Launderings)/ (an Average Moisture Transport With Treatment and No Launderings) of between about 30 and 120 percent when wicking is measured according to the TPACC vertical strip wicking test where the water transported along the strip is measured at 1 minute intervals for 5 minutes with the value at 5 minutes being reported in inches.
22. The treated textile article according to Claim 19, wherein said treated textile article has a ratio of (Average Moisture Transport With Treatment and No Launderings) / (Average Moisture Transport With No Treatment and No Launderings) of between about 100 and 400 percent when wicking is measured according to the TPACC vertical strip wicking test where the water transported along the strip is measured at 1 minute intervals for 5 minutes with the value at 5 minutes being reported in inches.
23. The treated textile article according to Claim 18, wherein said hydrophilic oxyalkylene derivative is between about 46 and 80 weight percent of said polyamide treatment agent where the water transported along the strip is measured at 1 minute intervals for 5 minutes with the value at 5 minutes being reported in inches.
24. The treated textile article according to Claim 23, wherein said treated textile article has a Normalized Average Moisture Transport Durability (inch/inch) value of between about 0.3 and 1 when wicking is measured according to the TPACC vertical strip wicking test where the water transported along the strip is measured at 1 minute intervals for 5 minutes with the value at 5 minutes being reported in inches.
25. The treated textile article according to Claim 23, wherein said treated textile article has a ratio of (an Average Moisture Transport With Treatment and After Five Launderings)/ (an Average Moisture Transport With Treatment and No Launderings) of between about 30 and 100 percent when wicking is measured according to the TPACC vertical strip wicking test where the water transported along the strip is measured at 1 minute intervals for 5 minutes with the value at 5 minutes being reported in inches.
26. The treated textile article according to Claim 23, wherein said treated textile article has a ratio of (Average Moisture Transport With Treatment and No Launderings) / (Average Moisture Transport With No Treatment and No Launderings) of between about 200 and 400 percent when wicking is measured according to the TPACC vertical strip wicking test where the water transported along the strip is measured at 1 minute intervals for 5 minutes with the value at 5 minutes being reported in inches.
27. The treated textile article according to Claim 18, wherein said hydrophilic oxyalkylene derivative is between about 56 and 78 weight percent of said polyamide treatment agent when wicking is measured according to the TPACC vertical strip wicking test where the water transported along the strip is measured at 1 minute intervals for 5 minutes with the value at 5 minutes being reported in inches.
28. The treated textile article according to Claim 27, wherein said treated textile article has a Normalized Average Moisture Transport Durability (inch/inch) value of between about 0.6 and 1 when wicking is measured according to the TPACC vertical strip wicking test where the water transported along the strip is measured at 1 minute intervals for 5 minutes with the value at 5 minutes being reported in inches.
29. The treated textile article according to Claim 27, wherein said treated textile article has a ratio of (an Average Moisture Transport With Treatment and After Five Launderings)/ (an Average Moisture Transport With Treatment and No Launderings) of between about 30 and 80 percent when wicking is measured according to the TPACC vertical strip wicking test where the water transported along the strip is measured at 1 minute intervals for 5 minutes with the value at 5 minutes being reported in inches.
30. The treated textile article according to Claim 27, wherein said treated textile article has a ratio of (Average Moisture Transport With Treatment and No Launderings) / (Average Moisture Transport With No Treatment and No Launderings) of between about 250 and 400 percent when wicking is measured according to the TPACC vertical strip wicking test where the water transported along the strip is measured at 1 minute intervals for 5 minutes with the value at 5 minutes being reported in inches.
31. The polyamide treatment agent according to claim 17 wherein said effective amount of any of an oxyalkylene derivative, an ether linkage, and an oxyalkylene derivative and an ether linkage is an effective amount of an oxyethylene derivative when wicking is measured according to the TPACC vertical strip wicking test where the water transported along the strip is measured at 1 minute intervals for 5 minutes with the value at 5 minutes being reported in inches.
32. The treated textile article according to Claim 31, wherein said oxyethylene derivative is between about 40 and 80 weight percent of said polyamide treatment agent.
33. The treated textile article according to Claim 32, wherein said treated textile article has a Normalized Average Moisture Transport Durability (inch/inch) value of between about 0.1 and 1 when wicking is measured according to the TPACC vertical strip wicking test where the water transported along the strip is measured at 1 minute intervals for 5 minutes with the value at 5 minutes being reported in inches.
34. The treated textile article according to Claim 32, wherein said treated textile article has a ratio of (an Average Moisture Transport With Treatment and After Five Launderings)/ (an Average Moisture Transport With Treatment and No Launderings) of between about 30 and 120 percent when wicking is measured according to the TPACC vertical strip wicking test where the water transported along the strip is measured at 1 minute intervals for 5 minutes with the value at 5 minutes being reported in inches.
35. The treated textile article according to Claim 32, wherein said treated textile article has a ratio of (Average Moisture Transport With Treatment and No Launderings) / (Average Moisture Transport With No Treatment and No Launderings) of between about 100 and 400 percent when wicking is measured according to the TPACC vertical strip wicking test where the water transported along the strip is measured at 1 minute intervals for 5 minutes with the value at 5 minutes being reported in inches.
36. The treated textile article according to Claim 31, wherein said oxyethylene derivative is between about 46 and 80 weight percent of said polyamide treatment agent.
37. The treated textile article according to Claim 36, wherein said treated textile article has a Normalized Average Moisture Transport Durability (inch/inch) value of between about 0.3 and 1 when wicking is measured according to the TPACC vertical strip wicking test where the water transported along the strip is measured at 1 minute intervals for 5 minutes with the value at 5 minutes being reported in inches.
38. The treated textile article according to Claim 36, wherein said treated textile article has a ratio of (an Average Moisture Transport With Treatment and After Five Launderings)/ (an Average Moisture Transport With Treatment and No Launderings) of between about 30 and 100 percent when wicking is measured according to the TPACC vertical strip wicking test where the water transported along the strip is measured at 1 minute intervals for 5 minutes with the value at 5 minutes being reported in inches.
39. The treated textile article according to Claim 36, wherein said treated textile article has a ratio of (Average Moisture Transport With Treatment and No Launderings) / (Average Moisture Transport With No Treatment and No Launderings) of between about 200 and 400 percent when wicking is measured according to the TPACC vertical strip wicking test where the water transported along the strip is measured at 1 minute intervals for 5 minutes with the value at 5 minutes being reported in inches.
40. The treated textile article according to Claim 31, wherein said oxyethylene derivative is between about 56 and 78 weight percent of said polyamide treatment agent.
41. The treated textile article according to Claim 40, wherein said treated textile article has a Normalized Average Moisture Transport Durability (inch/inch) value of between about. 6 and 1 when wicking is measured according to the TPACC vertical strip wicking test where the water transported along the strip is measured at 1 minute intervals for 5 minutes with the value at 5 minutes being reported in inches.
42. The treated textile article according to Claim 40, wherein said treated textile article has a ratio of (an Average Moisture Transport With Treatment and After Five Launderings)/ (an Average Moisture Transport With Treatment and No Launderings) of between about 30 and 80 percent when wicking is measured according to the TPACC vertical strip wicking test where the water transported along the strip is measured at 1 minute intervals for 5 minutes with the value at 5 minutes being reported in inches.
43. The treated textile article according to Claim 40, wherein said treated textile article has a ratio of (Average Moisture Transport With Treatment and No Launderings) / (Average Moisture Transport With No Treatment and No Launderings) of between about 250 and 400 percent when wicking is measured according to the TPACC vertical strip wicking test where the water transported along the strip is measured at 1 minute intervals for 5 minutes with the value at 5 minutes being reported in inches.
44. The polyamide treatment agent according to Claim 17, wherein said hydrophilic component is a reaction product of a diacid and a diamine including an effective amount of any of an oxyalkylene derivative, an ether linkage, and an oxyalkylene derivative and an ether linkage.
45. The polyamide treatment agent according to Claim 44 wherein said effective amount of any of an oxyalkylene derivative, an ether linkage, and an oxyalkylene derivative and an ether linkage includes an effective amount of an hydrophilic oxyalkylene derivative.
46. The polyamide treatment agent according to Claim 44, wherein said effective amount of any of an oxyalkylene derivative, an ether linkage, and an oxyalkylene derivative and an ether linkage is an effective amount of an oxyethylene derivative.
47. The polyamide treatment agent according to Claim 17, wherein the hydrophobic component is a reaction product of a diacid and a diamine.
48. The polyamide treatment agent according to Claim 17, wherein the polyamide treatment agent is a reaction product further including heating a mixture of any of said hydrophilic component and said hydrophobic component; a precursor of said hydrophilic component and said hydrophobic component; said hydrophilic component and a precursor of said hydrophobic component; and a precursor of said hydrophilic component and a precursor of said hydrophobic component.
49. The polyamide treatment agent according to Claim 17, wherein the polyamide treatment agent is a reaction product of a reaction product of diacid and diamine and a reaction product of a diacid and a diamine including an effective amount of any of an oxyalkylene derivative, ether linkage, and oxyalkylene derivative and ether linkage.
50. The polyamide treatment agent according to Claim 49 wherein said effective amount of any of an oxyalkylene derivative, an ether linkage, and an oxyalkylene derivative and an ether linkage includes an effective amount of an hydrophilic oxyalkylene derivative.
51. The polyamide treatment agent according to Claim 49 wherein said effective amount of any of an oxyalkylene derivative, an ether linkage, and an oxyalkylene derivative and an ether linkage is an effective amount of an oxyethylene derivative.
52. The polyamide treatment agent according to Claim 17 wherein said hydrophobic component includes a unit based on at least one of the following: Structure I li (CR wherein Rl is an alkylene group with 3 to 11 carbon atoms that are any one of unsubstituted and substituted; and Structure II wherein: R2 is any one of an alkylene group, a cycloalkylene group and a difunctional aromatic group with the alkylene group and the cycloalkylene of R2 being 4 to 10 carbon atoms that are any one of unsubstituted and substituted; and R3 is any one of an alkylene group, cycloalkylene group and difunctional aromatic group with the alkylene group and the cycloalkylene of R3 being 2 to 10 carbon atoms that are any one of unsubstituted and substituted.
53. The polyamide treatment agent according to Claim 52 wherein said hydrophobic component includes units based on structure I and units based on structure II.
54. The polyamide treatment agent according to Claim 53 wherein said polyamide treatment agent is on a molar percent basis between about 19 and 95 based on at least one of structure I, structure II, and structure I and structure II.
55. The polyamide treatment agent according to Claim 17 wherein said hydrophilic component includes a unit based on the following: Structure III Wherein: R4 may be any one of hydrogen and an alkyl of one to four carbon atoms; Rs may be any one of hydrogen and an alkyl of one to four carbon atoms; R6 may be any one of hydrogen and an alkyl of one to four carbon atoms ; R7 may be any one of hydrogen and an alkyl of one to four carbon atoms; a is from 0 to 3; b is from 1 to 78; and c is from 0 to 3.
56. The polyamide treatment agent according to claim 52 wherein said hydrophilic component includes a unit based on the following: Structure III Wherein: R4 may be any one of hydrogen and an alkyl of one to four carbon atoms ; Rs may be any one of hydrogen and an alkyl of one to four carbon atoms; R6 may be any one of hydrogen and an alkyl of one to four carbon atoms; R7 may be any one of hydrogen and an alkyl of one to four carbon atoms; a is from 0 to 3 ; b is from 1 to 78; c is from 0 to 3; and said unit based on structure III is adjacent to any one of a unit based on diacid; a unit based on structure I, a unit based on structure II and another unit based on structure III.
57. The polyamide treatment agent according to Claim 56 wherein said diacid that is unit based on the following: Structure IV wherein R8 is any one of an alkylene group, cycloalkylene group, and a difunctional aromatic group with the alkylene group and the cycloalkylene of R8 being 4 to 10 carbon atoms that are any one of unsubstituted and substitute.
58. The polyamide treatment agent according to Claim 54 further including the reaction product of a platicizer.
59. The polyamide treatment agent according to Claim 58 wherein said reaction product of a platicizer is derived from any one of a polyether glycol diamine having a molecular weight less than about 500 and a number of consecutive oxyethylene derivative units are less than about 4; a polyether glycol diamine having a molecular weight greater than about 500 and any one of a ratio of (oxyethylene derivative)/ (oxypropylene derivative) less than about 4/6, a ratio of (oxyethylene derivative)/ (oxybutylene derivative) less than about 4/6, and a sum of a ratio of (oxyethylene derivative)/ (oxypropylene derivative) and a ratio of (oxyethylene derivative)/ (oxybutylene derivative) less than about 4/6.
60. The polyamide treatment agent according to Claim 56 further including the reaction product of a platicizer.
61. The polyamide treatment agent according to Claim 60 wherein said reaction product of a platicizer is derived from any one of a polyether glycol diamine having a molecular weight less than about 500 and a number of consecutive oxyethylene derivative units are less than about 4; a polyether glycol diamines having a molecular weight greater than about 500 and any one of a ratio of (oxyethylene derivative)/ (oxypropylene derivative) less than about 4/6, a ratio of (oxyethylene derivative)/(oxybutylene derivative) less than about 4/6, and a sum of a ratio of (oxyethylene derivative)/ (oxypropylene derivative) and a ratio of (oxyethylene derivative)/ (oxybutylene derivative) less than about 4/6.
62. The polyamide treatment agent according to Claim 17 further including a chain terminating group so as to effect at least one of controlling the molecular weight of said polyamide treatment agent, changing the solubility of said polyamide treatment agent in water, and increasing a substantivity of a textile article treated with said polyamide treatment agent.
63. The polyamide treatment agent according to Claim 62 wherein said chain terminating group is (Rg) dF, wherein Ru is any one of a ClC24 alkyl, ClC24 aryl, CiC24 alkylaryl, ClC24 alkenyl, and an oxyalkylene derivative; d is 12; and F is any one of NH2, NH, CHO, COCl, and COOL3, wherein R13 is any of a ClC2 alkyl and hydrogen.
64. The polyamide treatment agent according to Claim 63 wherein said oxyalkylene derivative is Rio (oCHRllcHRl2) p, wherein Rio is any of a ClC4 alkyl ; Ril is any of a ClC4 alkyl and hydrogen; RI2 is any of a ClC4 alkyl and hydrogen; p is any value from 1 through 100.
65. The polyamide treatment agent according to Claim 17 further including a branching facilitator so as to induce branching of said polyamide treatment agent.
66. The polyamide treatment agent according to Claim 65 wherein said branching facilitator is any one of a polyamine and a polyacid.
67. The polyamide treatment agent according to Claim 66 wherein said polyamine is any one of diethylene triamine, triethylene tetraamine, tetraethylene pentamine, poly (oxy (methyl1, 2ethanediyl), alphaomega(2aminomethylethoxy, and ether with 2ethyl2 (hydroxymethyl)1, 3 propanediol (3: 1).
68. The polyamide treatment agent according to Claim 66 wherein said polyacid is any one of trimellitic anhydride and citric.
69. The polyamide treatment agent according to Claim 65 wherein said branching facilitator is between about 1 % and 3% by weight of said polyamide treatment agent.
70. A treated textile article, said article comprising: (a) a synthetic fiber substrate ; and (b) a polyamide treatment agent including between about 19 and 95 mole percent of a hydrophobic component, an effective amount of any of an oxyalkylene derivative, an ether linkage, and an oxyalkylene derivative and an ether linkage; and a hydrophilic component.
71. The treated textile article according to Claim 70, wherein said treated textile article has a Normalized Average Moisture Transport Durability (inch/inch) value of between about 0.1 and 1 when wicking is measured according to the TPACC vertical strip wicking test.
72. The treated textile article according to Claim 71, wherein said treated textile article has a ratio of (an Average Moisture Transport With Treatment and After Five Launderings)/ (an Average Moisture Transport With Treatment and No Launderings) of between about 30 and 120 percent when wicking is measured according to the TPACC vertical strip wicking test where the water transported along the strip is measured at 1 minute intervals for 5 minutes with the value at 5 minutes being reported in inches.
73. The treated textile article according to Claim 71, wherein said treated textile article has a ratio of (Average Moisture Transport With Treatment and No Launderings) / (Average Moisture Transport With No Treatment and No Launderings) of between about 100 and 400 percent when wicking is measured according to the TPACC vertical strip wicking test where the water transported along the strip is measured at 1 minute intervals for 5 minutes with the value at 5 minutes being reported in inches.
74. The treated textile article according to Claim 70 wherein said hydrophobic component is between about 30 and 80 mole percent of said polyamide treatment agent.
75. The treated textile article according to Claim 74, wherein said treated textile article has a Normalized Average Moisture Transport Durability (inch/inch) value of between about 0.4 and 1 when wicking is measured according to the TPACC vertical strip wicking test where the water transported along the strip is measured at 1 minute intervals for 5 minutes with the value at 5 minutes being reported in inches.
76. The treated textile article according to Claim 74, wherein said treated textile article has a ratio of (an Average Moisture Transport With Treatment and After Five Launderings)/ (an Average Moisture Transport With Treatment and No Launderings) of between about 50 and 120 percent when wicking is measured according to the TPACC vertical strip wicking test where the water transported along the strip is measured at 1 minute intervals for 5 minutes with the value at 5 minutes being reported in inches.
77. The treated textile article according to Claim 74, wherein said treated textile article has a ratio of (Average Moisture Transport With Treatment and No Launderings) / (Average Moisture Transport With No Treatment and No Launderings) of between about 220 and 400 percent when wicking is measured according to the TPACC vertical strip wicking test where the water transported along the strip is measured at 1 minute intervals for 5 minutes with the value at 5 minutes being reported in inches.
78. The treated textile article according to Claim 70 wherein said hydrophobic component is between about 30 and 75 mole percent of said polyamide treatment agent.
79. The treated textile article according to Claim 78, wherein said treated textile article has a Normalized Average Moisture Transport Durability (inch/inch) value of between about 0.55 and 1 when wicking is measured according to the TPACC vertical strip wicking test where the water transported along the strip is measured at 1 minute intervals for 5 minutes with the value at 5 minutes being reported in inches.
80. The treated textile article according to Claim 78, wherein said treated textile article has a ratio of (an Average Moisture Transport With Treatment and After Five Launderings)/ (an Average Moisture Transport With Treatment and No Launderings) of between about 60 and 120 percent when wicking is measured according to the TPACC vertical strip wicking test where the water transported along the strip is measured at 1 minute intervals for 5 minutes with the value at 5 minutes being reported in inches.
81. The treated textile article according to Claim 78, wherein said treated textile article has a ratio of (Average Moisture Transport With Treatment and No Launderings)/ (Average Moisture Transport With No Treatment and No Launderings) of between about 250 and 400 percent when wicking is measured according to the TPACC vertical strip wicking test where the water transported along the strip is measured at 1 minute intervals for 5 minutes with the value at 5 minutes being reported in inches.
82. The treated textile article according to Claim 70 wherein said synthetic fiber substrate is selected from the group consisting of a polyamide, an aramid, a polyester, an acrylic, a vinyl, a polyurethane and a polyalkylene.
83. The treated textile article according to Claim 82 further including a natural fiber to form a blend.
84. The treated textile article according to Claim 83 wherein said natural fiber is selected from the group consisting of a rayon, cotton, acetate, wool, and silk.
85. The polyamide treatment agent according to claim 70 wherein said effective amount of any of an oxyalkylene derivative, an ether linkage, and an oxyalkylene derivative and an ether linkage includes an effective amount of an hydrophilic oxyalkylene derivative.
86. The treated textile article according to Claim 85, wherein said hydrophilic oxyalkylene derivative is between about 40 and 80 weight percent of said polyamide treatment agent.
87. The treated textile article according to Claim 86, wherein said treated textile article has a Normalized Average Moisture Transport Durability (inch/inch) value of between about 0.1 and 1 when wicking is measured according to the TPACC vertical strip wicking test where the water transported along the strip is measured at 1 minute intervals for 5 minutes with the value at 5 minutes being reported in inches.
88. The treated textile article according to Claim 86, wherein said treated textile article has a ratio of (an Average Moisture Transport With Treatment and After Five Launderings)/ (an Average Moisture Transport With Treatment and No Launderings) of between about 30 and 120 percent when wicking is measured according to the TPACC vertical strip wicking test where the water transported along the strip is measured at 1 minute intervals for 5 minutes with the value at 5 minutes being reported in inches.
89. The treated textile article according to Claim 86, wherein said treated textile article has a ratio of (Average Moisture Transport With Treatment and No Launderings) / (Average Moisture Transport With No Treatment and No Launderings) of between about 100 and 400 percent when wicking is measured according to the TPACC vertical strip wicking test where the water transported along the strip is measured at 1 minute intervals for 5 minutes with the value at 5 minutes being reported in inches.
90. The treated textile article according to Claim 85, wherein said hydrophilic oxyalkylene derivative is between about 46 and 80 weight percent of said polyamide treatment agent.
91. The treated textile article according to Claim 90, wherein said treated textile article has a Normalized Average Moisture Transport Durability (inch/inch) value of between about 0.3 and 1 when wicking is measured according to the TPACC vertical strip wicking test where the water transported along the strip is measured at 1 minute intervals for 5 minutes with the value at 5 minutes being reported in inches.
92. The treated textile article according to Claim 90, wherein said treated textile article has a ratio of (an Average Moisture Transport With Treatment and After Five Launderings)/ (an Average Moisture Transport With Treatment and No Launderings) of between about 30 and 100 percent when wicking is measured according to the TPACC vertical strip wicking test where the water transported along the strip is measured at 1 minute intervals for 5 minutes with the value at 5 minutes being reported in inches.
93. The treated textile article according to Claim 90, wherein said treated textile article has a ratio of (Average Moisture Transport With Treatment and No Launderings) / (Average Moisture Transport With No Treatment and No Launderings) of between about 200 and 400 percent when wicking is measured according to the TPACC vertical strip wicking test where the water transported along the strip is measured at 1 minute intervals for 5 minutes with the value at 5 minutes being reported in inches.
94. The treated textile article according to Claim 85, wherein said hydrophilic oxyalkylene derivative is between about 56 and 78 weight percent of said polyamide treatment agent.
95. The treated textile article according to Claim 94, wherein said treated textile article has a Normalized Average Moisture Transport Durability (inch/inch) value of between about. 6 and 1 when wicking is measured according to the TPACC vertical strip wicking test where the water transported along the strip is measured at 1 minute intervals for 5 minutes with the value at 5 minutes being reported in inches.
96. The treated textile article according to Claim 94, wherein said treated textile article has a ratio of (an Average Moisture Transport With Treatment and After Five Launderings)/ (an Average Moisture Transport With Treatment and No Launderings) of between about 30 and 80 percent when wicking is measured according to the TPACC vertical strip wicking test where the water transported along the strip is measured at 1 minute intervals for 5 minutes with the value at 5 minutes being reported in inches.
97. The treated textile article according to Claim 94, wherein said treated textile article has a ratio of (Average Moisture Transport With Treatment and No Launderings) / (Average Moisture Transport With No Treatment and No Launderings) of between about 250 and 400 percent when wicking is measured according to the TPACC vertical strip wicking test where the water transported along the strip is measured at 1 minute intervals for 5 minutes with the value at 5 minutes being reported in inches.
98. The polyamide treatment agent according to claim 70 wherein said effective amount of any of an oxyalkylene derivative, an ether linkage, and an oxyalkylene derivative and an ether linkage is an effective amount of an oxyethylene derivative.
99. The treated textile article according to Claim 98, wherein said oxyethylene derivative is between about 40 and 80 weight percent of said polyamide treatment agent.
100. The treated textile article according to Claim 99, wherein said treated textile article has a Normalized Average Moisture Transport Durability (inch/inch) value of between about 0.1 and 1 when wicking is measured according to the TPACC vertical strip wicking test where the water transported along the strip is measured at 1 minute intervals for 5 minutes with the value at 5 minutes being reported in inches.
101. The treated textile article according to Claim 99, wherein said treated textile article has a ratio of (an Average Moisture Transport With Treatment and After Five Launderings)/ (an Average Moisture Transport With Treatment and No Launderings) of between about 30 and 120 percent when wicking is measured according to the TPACC vertical strip wicking test where the water transported along the strip is measured at 1 minute intervals for 5 minutes with the value at 5 minutes being reported in inches.
102. The treated textile article according to Claim 99, wherein said treated textile article has a ratio of (Average Moisture Transport With Treatment and No Launderings) / (Average Moisture Transport With No Treatment and No Launderings) of between about 100 and 400 percent when wicking is measured according to the TPACC vertical strip wicking test where the water transported along the strip is measured at 1 minute intervals for 5 minutes with the value at 5 minutes being reported in inches.
103. The treated textile article according to Claim 98, wherein said oxyethylene derivative is between about 46 and 80 weight percent of said polyamide treatment agent.
104. The treated textile article according to Claim 103, wherein said treated textile article has a Normalized Average Moisture Transport Durability (inch/inch) value of between about 0.3 and 1 when wicking is measured according to the TPACC vertical strip wicking test where the water transported along the strip is measured at 1 minute intervals for 5 minutes with the value at 5 minutes being reported in inches.
105. The treated textile article according to Claim 103, wherein said treated textile article has a ratio of (an Average Moisture Transport With Treatment and After Five Launderings)/ (an Average Moisture Transport With Treatment and No Launderings) of between about 30 and 100 percent when wicking is measured according to the TPACC vertical strip wicking test where the water transported along the strip is measured at 1 minute intervals for 5 minutes with the value at 5 minutes being reported in inches.
106. The treated textile article according to Claim 103, wherein said treated textile article has a ratio of (Average Moisture Transport With Treatment and No Launderings) / (Average Moisture Transport With No Treatment and No Launderings) of between about 200 and 400 percent when wicking is measured according to the TPACC vertical strip wicking test where the water transported along the strip is measured at 1 minute intervals for 5 minutes with the value at 5 minutes being reported in inches.
107. The treated textile article according to Claim 98, wherein said oxyethylene derivative is between about 56 and 78 weight percent of said polyamide treatment agent.
108. The treated textile article according to Claim 107, wherein said treated textile article has a Normalized Average Moisture Transport Durability (inch/inch) value of between about. 6 and 1 when wicking is measured according to the TPACC vertical strip wicking test where the water transported along the strip is measured at 1 minute intervals for 5 minutes with the value at 5 minutes being reported in inches.
109. The treated textile article according to Claim 107, wherein said treated textile article has a ratio of (an Average Moisture Transport With Treatment and After Five Launderings)/ (an Average Moisture Transport With Treatment and No Launderings) of between about 30 and 80 percent when wicking is measured according to the TPACC vertical strip wicking test where the water transported along the strip is measured at 1 minute intervals for 5 minutes with the value at 5 minutes being reported in inches.
110. The treated textile article according to Claim 107, wherein said treated textile article has a ratio of (Average Moisture Transport With Treatment and No Launderings) / (Average Moisture Transport With No Treatment and No Launderings) of between about 250 and 400 percent when wicking is measured according to the TPACC vertical strip wicking test where the water transported along the strip is measured at 1 minute intervals for 5 minutes with the value at 5 minutes being reported in inches.
111. The polyamide treatment agent according to Claim 70, wherein said hydrophilic component is a reaction product of a diacid and a diamine including an effective amount of any of an oxyalkylene derivative, an ether linkage, and an oxyalkylene derivative and an ether linkage.
112. The polyamide treatment agent according to Claim 111, wherein said effective amount of any of an oxyalkylene derivative, an ether linkage, and an oxyalkylene derivative and an ether linkage includes an effective amount of an hydrophilic oxyalkylene derivative.
113. The polyamide treatment agent according to Claim 111, wherein said effective amount of any of an oxyalkylene derivative, an ether linkage, and an oxyalkylene derivative and an ether linkage is an effective amount of an oxyethylene derivative.
114. The polyamide treatment agent according to Claim 70, wherein the hydrophobic component is a reaction product of a diacid and a diamine.
115. The polyamide treatment agent according to Claim 70, wherein the polyamide treatment agent is a reaction product further including heating a mixture of any of said hydrophilic component and said hydrophobic component; a precursor of said hydrophilic component and said hydrophobic component; said hydrophilic component and a precursor of said hydrophobic component; and a precursor of said hydrophilic component and a precursor of said hydrophobic component.
116. The polyamide treatment agent according to Claim 70, wherein the polyamide treatment agent is a reaction product of a reaction product of diacid and diamine and a reaction product of a diacid and a diamine including an effective amount of any of an oxyalkylene derivative, ether linkage, and oxyalkylene derivative and ether linkage.
117. The polyamide treatment agent according to Claim 116, wherein said effective amount of any of an oxyalkylene derivative, an ether linkage, and an oxyalkylene derivative and an ether linkage includes an effective amount of an hydrophilic oxyalkylene derivative.
118. The polyamide treatment agent according to Claim 116 wherein said effective amount of any of an oxyalkylene derivative, an ether linkage, and an oxyalkylene derivative and an ether linkage is an effective amount of an oxyethylene derivative.
119. The polyamide treatment agent according to Claim 70 wherein said hydrophobic component includes a unit based on at least one of the following: Structure I II (CRINS) wherein Ri is an alkylene group with 3 to 11 carbon atoms that are any one of unsubstituted and substituted; and Structure II wherein: R2 is any one of an alkylene group, a cycloalkylene group and a difunctional aromatic group with the alkylene group and the cycloalkylene of R2 being 4 to 10 carbon atoms that are any one of unsubstituted and substituted; and R3 is any one of an alkylene group, cycloalkylene group and difunctional aromatic group with the alkylene group and the cycloalkylene of R3 being 2 to 10 carbon atoms that are any one of unsubstituted and substituted.
120. The polyamide treatment agent according to Claim 119 wherein said hydrophobic component includes units based on structure I and units based on structure II.
121. The polyamide treatment agent according to Claim 120 wherein said polyamide treatment agent is on a molar percent basis between about 19 and 95 based on at least one of structure I, structure II, and structure I and structure II.
122. The polyamide treatment agent according to Claim 70 wherein said hydrophilic component includes a unit based on the following: Structure III Wherein: R4 may be any one of hydrogen and an alkyl of one to four carbon atoms; Rs may be any one of hydrogen and an alkyl of one to four carbon atoms; R6 may be any one of hydrogen and an alkyl of one to four carbon atoms; R7 may be any one of hydrogen and an alkyl of one to four carbon atoms; a is from 0 to 3 ; b is from 1 to 78; and c is from 0 to 3.
123. The polyamide treatment agent according to claim 119 wherein said hydrophilic component includes a unit based on the following: Structure III Wherein: R4 may be any one of hydrogen and an alkyl of one to four carbon atoms; Rs may be any one of hydrogen and an alkyl of one to four carbon atoms; R6 may be any one of hydrogen and an alkyl of one to four carbon atoms; R7 may be any one of hydrogen and an alkyl of one to four carbon atoms; a is from 0 to 3 ; b is from 1 to 78 ; c is from 0 to 3; and said unit based on structure III is adjacent to any one of a unit based on diacid; a unit based on structure I, a unit based on structure II and another unit based on structure III.
124. The polyamide treatment agent according to Claim 123 wherein said diacid includes a unit based on the following: Structure IV wherein Rs is any one of an alkylene group, cycloalkylene group, and a difunctional aromatic group with the alkylene group and the cycloalkylene of R8 being 4 to 10 carbon atoms that are any one of unsubstituted and substitute.
125. The polyamide treatment agent according to Claim 121 further including the reaction product of a platicizer.
126. The polyamide treatment agent according to Claim 125 wherein said reaction product of a platicizer is derived from any one of a polyether glycol diamine having a molecular weight less than about 500 and a number of consecutive oxyethylene derivative units are less than about 4; a polyether glycol diamine having a molecular weight greater than about 500 and any one of a ratio of (oxyethylene derivative)/ (oxypropylene derivative) less than about 4/6, a ratio of (oxyethylene derivative)/ (oxybutylene derivative) less than about 4/6, and a sum of a ratio of (oxyethylene derivative)/ (oxypropylene derivative) and a ratio of (oxyethylene derivative)/ (oxybutylene derivative) less than about 4/6.
127. The polyamide treatment agent according to Claim 123 further including the reaction product of a platicizer.
128. The polyamide treatment agent according to Claim 127 wherein said reaction product of a platicizer is derived from any one of a polyether glycol diamine having a molecular weight less than about 500 and a number of consecutive oxyethylene derivative units are less than about 4; a polyether glycol diamine having a molecular weight greater than about 500 and any one of a ratio of (oxyethylene derivative)/ (oxypropylene derivative) less than about 4/6, a ratio of (oxyethylene derivative)/ (oxybutylene derivative) less than about 4/6, and a sum of a ratio of (oxyethylene derivative)/ (oxypropylene derivative) and a ratio of (oxyethylene derivative)/ (oxybutylene derivative) less than about 4/6.
129. The polyamide treatment agent according to Claim 70 further including a chain terminating group so as to effect at least one of controlling the molecular weight of said polyamide treatment agent, changing the solubility of said polyamide treatment agent in water, and increasing a substantivity of a textile article treated with said polyamide treatment agent.
130. The polyamide treatment agent according to Claim 129 wherein said chain terminating group is (Rg) dF, wherein Rg is any one of a ClC24 alkyl, ClC24 aryl, ClC24 alkylaryl, ClC24 alkenyl, and an oxyalkylene derivative; d is 12; and F is any one of NH2, NH, CHO, COC1, and COOL3, wherein Rl3 is any of a ClC2 alkyl and hydrogen.
131. The polyamide treatment agent according to Claim 130 wherein said oxyalkylene derivative is Rio (OCHRllCHRi2) p, wherein Rlo is any of a ClC4 alkyl ; Rll is any of a ClC4 alkyl and hydrogen; R12 is any of a ClC4 alkyl and hydrogen; p is any value from 1 through 100.
132. The polyamide treatment agent according to Claim 70 further including a branching facilitator so as to induce branching of said polyamide treatment agent.
133. The polyamide treatment agent according to Claim 132 wherein said branching facilitator is any one of a polyamine and a polyacid.
134. The polyamide treatment agent according to Claim 133 wherein said polyamine may be any one of diethylene triamine, triethylene tetraamine, tetraethylene pentamine, poly (oxy (methyl1, 2ethanediyl), alphaomega(2aminomethylethoxy, and ether with 2ethyl2(hydroxymethyl)1, 3 propanediol (3: 1).
135. The polyamide treatment agent according to Claim 133 wherein said polyacid is any one of trimellitic anhydride and citric.
136. The polyamide. treatment agent according to Claim 132 wherein said branching facilitator is between about 1 % and 3% by weight of said polyamide treatment agent.
137. A method for making a treated textile article, said method comprising the steps of : (a) providing a synthetic fiber substrate and (b) applying a polyamide treatment agent to said substrate, said treatment agent including a hydrophilic component and a hydrophobic component.
138. A method for making a polyamide treatment agent for use with a textile article formed from a synthetic fiber substrate to provide improved moisture transport, said method comprising the steps of : (a) providing precursors to a hydrophilic component; (b) providing precursors to a hydrophobic component ; and (c) reacting said precursors to a hydrophilic component and said precursors to a hydrophobic component to create said polyamide treatment agent having effective amounts of one of an oxyalkylene derivative, an ether linkage, and an oxyalkylene derivative and an ether linkage.
139. A method for making a treated textile article, said method comprising the steps of : (a) providing a synthetic fiber substrate ; and (b) applying a polyamide treatment agent to said substrate, said treatment agent comprised of between about 19 and 95 mole percent of a hydrophobic component, and effective amounts of one of an oxyalkylene derivative, an ether linkage, and an oxyalkylene derivative and an ether linkage; and a hydrophilic component.
140. A treated textile article having a Normalized Average Moisture Transport Durability (inch/inch) value of between about 0.4 and 1 when wicking is measured according to the TPACC vertical strip wicking test where the water transported along the strip is measured at 1 minute intervals for 5 minutes with the value at 5 minutes being reported in inches.
141. The treated textile article according to Claim 140, further having a ratio of (an Average Moisture Transport With Treatment and After Five Launderings)/ (an Average Moisture Transport With Treatment and No Launderings) of between about 60 and 120 percent when wicking is measured according to the TPACC vertical strip wicking test where the water transported along the strip is measured at 1 minute intervals for 5 minutes with the value at 5 minutes being reported in inches.
142. The treated textile article according to Claim 141, further having a ratio of (Average Moisture Transport With Treatment and No Launderings) / (Average Moisture Transport With No Treatment and No Launderings) of between about 220 and 400 percent when wicking is measured according to the TPACC vertical strip wicking test where the water transported along the strip is measured at 1 minute intervals for 5 minutes with the value at 5 minutes being reported in inches.
143. The treated textile article according to Claim 141, wherein said treated textile article has a Normalized Average Moisture Transport Durability (inch/inch) value of between about 0.6 and 1 when wicking is measured according to the TPACC vertical strip wicking test where the water transported along the strip is measured at 1 minute intervals for 5 minutes with the value at 5 minutes being reported in inches.
144. A treated textile article having a ratio of (an Average Moisture Transport With Treatment and After Five Launderings)/ (an Average Moisture Transport With Treatment and No Launderings) of between about 60 and 120 percent when wicking is measured according to the TPACC vertical strip wicking test where the water transported along the strip is measured at 1 minute intervals for 5 minutes with the value at 5 minutes being reported in inches.
145. The treated textile article according to Claim 144, wherein said ratio of (an Average Moisture Transport With Treatment and After Five Launderings)/ (an Average Moisture Transport With Treatment and No Launderings) of between about 70 and 1. 20 percent when wicking is measured according to the TPACC vertical strip wicking test where the water transported along the strip is measured at 1 minute intervals for 5 minutes with the value at 5 minutes being reported in inches.
146. A treated textile article having a ratio of (Average Moisture Transport With Treatment and No Launderings) / (Average Moisture Transport With No Treatment and No Launderings) of between about 220 and 400 percent when wicking is measured according to the TPACC vertical strip wicking test where the water transported along the strip is measured at 1 minute intervals for 5 minutes with the value at 5 minutes being reported in inches.
147. The treated textile article according to Claim 146, wherein said ratio of (Average Moisture Transport With Treatment and No Launderings) / (Average Moisture Transport With No Treatment and No Launderings) of between about 250 and 400 percent when wicking is measured according to the TPACC vertical strip wicking test where the water transported along the strip is measured at 1 minute intervals for 5 minutes with the value at 5 minutes being reported in inches.
148. The treated textile article according to Claim 146, wherein said ratio of (Average Moisture Transport With Treatment and No Launderings) / (Average Moisture Transport With No Treatment and No Launderings) of between about 280 and 400 percent when wicking is measured according to the TPACC vertical strip wicking test where the water transported along the strip is measured at 1 minute intervals for 5 minutes with the value at 5 minutes being reported in inches.
Description:
TREATED TEXTILE ARTICLE HAVING IMPROVED MOISTURE TRANSPORT Background of the Invention (1) Field of the Invention The present invention relates generally to treated textile articles and, more particularly, to a treated textile article formed from a synthetic fiber substrate and treated using a polyamide treatment agent for improved moisture transport.

(2) Description of the Prior Art The current preference for garments made from cotton and other natural fibers is due, at least in part, to cotton's ability to wick moisture away from the body. However, cotton tends to absorb and retain moisture causing it to become less comfortable as more moisture is absorbed. Also, cotton garments tend to be slow drying. In contrast, synthetics, which tend to be hydrophobic, resist moisture transport and absorption. Thus, synthetic garments are quick drying.

The textile industry has focused efforts on developing synthetics that have the ability to effectively transport moisture away from the body while maintaining resistance to moisture absorption and quick drying characteristics. At the same time, the industry has directed research to improving synthetics'soil release, static dissipation, feel, fiber- to-fiber frictional properties, lumping of fiberfill after washing and wear life.

Some attempts have been made to modify moisture transport characteristics of a synthetic by reacting a modifying component to a synthetic polyether during initial polymerization or prior to spinning. However, this approach increases the drying time and negatively impacts numerous properties of the modified synthetic.

Other attempts have been made to modify moisture transport characteristics of a synthetic by adding a modifying component to the synthetic by melt blending. This approach relies on physical entrapment of the modifying component. However, this approach degrades physical properties and wastes the modifying component on the inside of the synthetic since its activity is required only at the surface.

Yet other attempts have been made to modify moisture transport characteristics of a synthetic by graft polymerizing a modifying component to the synthetic. However, this

approach has not been commercially successful due to the difficulties in controlling the composition of the modified synthetic, environmental, health and safety issues, long reaction times and improper process equipment. Also, the modified synthetic fails to exhibit substantial and permanent improvements. Another approach to graft polymerizing has been to activate the surface of the synthetic using ionizing radiation.

However, this approach requires specialized equipment and highly trained personnel, and is usually cost prohibitive.

Another approach has been made to modify moisture transport characteristics of the synthetic by the depositing of a modifying component from a bath onto the surface of the synthetic. In one approach, the synthetic is subjected to heat for drying and setting the modifying component on its surface. However, some of these approaches rely on ester linkages as the connective unit and because of hydrolysis/saponification under laundering conditions result in poor durability of the treatment agent. Other approaches function for one synthetic composition but are ineffective for others.

Thus, there remains a need for a new and improved treated textile article formed from a synthetic fiber substrate having improved moisture transport while, at the same time, is sufficiently durable for home laundering.

Summary of the Invention The present invention is directed to a treated textile article formed from a synthetic fiber substrate including a polyamide treatment agent. In the preferred embodiment, the polyamide treatment agent includes between about 19 and 95 mole percent of a hydrophobic component. In addition, the polyamide treatment agent may include effective amounts of one of an oxyalkylene derivative, an ether linkage, and an oxyalkylene derivative and an ether linkage. Moreover, the polyamide treatment agent includes a hydrophilic component.

When the mole percent of a hydrophobic component of a polyamide treatment agent is between about 19 and 95, the treated textile article may have a Normalized Average Moisture Transport Durability (inch/inch) value of between about 0.1 and 1 when wicking is measured according to the T-PACC vertical strip wicking test where the water transported along the strip is measured at 1 minute intervals for 5 minutes with the

value at 5 minutes being reported in inches. Also, the treated textile article may have a ratio of (an Average Moisture Transport With Treatment and After Five Launderings)/ (an Average Moisture Transport With Treatment and No Launderings) of between about 30 and 120 percent when wicking is measured according to the T-PACC vertical strip wicking test where the water transported along the strip is measured at 1 minute intervals for 5 minutes with the value at 5 minutes being reported in inches. Additionally, the treated textile article may have a ratio of (Average Moisture Transport With Treatment and No Launderings) / (Average Moisture Transport With No Treatment and No Launderings) of between about 100 and 400 percent when wicking is measured according to the T-PACC vertical strip wicking test where the water transported along the strip is measured at 1 minute intervals for 5 minutes with the value at 5 minutes being reported in inches.

Also, when the mole percent of a hydrophobic component of a polyamide treatment agent is between about 30 and 80, the treated textile article may have a Normalized Average Moisture Transport Durability (inch/inch) value of between about 0.4 and 1. Also, the treated textile article has a ratio of (an Average Moisture Transport With Treatment and After Five Launderings)/ (an Average Moisture Transport With Treatment and No Launderings) of between about 50 and 120 percent. Additionally, the treated textile article has a ratio of (Average Moisture Transport With Treatment and No Launderings) / (Average Moisture Transport With No Treatment and No Launderings) of between about 220 and 400 percent Further, when the mole percent of a hydrophobic component of a polyamide treatment agent is between about 30 and 75, the treated textile article may have a Normalized Average Moisture Transport Durability (inch/inch) value of between about 0.55 and 1. Also, the treated textile article has a ratio of (an Average Moisture Transport With Treatment and After Five Launderings)/ (an Average Moisture Transport With Treatment and No Launderings) of between about 60 and 120 percent. Also, the treated textile article has a ratio of (Average Moisture Transport With Treatment and No Launderings)/ (Average Moisture Transport With No Treatment and No Launderings) of between about 250 and 400 percent.

The synthetic fiber substrate may be selected from any one of a polyamide, an aramid, a polyester, an acrylic, a vinyl, a polyurethane and a polyalkylene. The synthetic fiber substrate further includes a natural fiber to form a blend. The natural fiber may be selected from the group consisting of a rayon, cotton, acetate, wool, and silk.

The effective amount of any of an oxyalkylene derivative, an ether linkage, and an oxyalkylene derivative and an ether linkage may include an effective amount of an hydrophilic oxyalkylene derivative. When the hydrophilic oxyalkylene derivative is between about 40 and 80 weight percent of the polyamide treatment agent, the treated textile article may have a Normalized Average Moisture Transport Durability (inch/inch) value of between about 0.1 and 1 when wicking is measured according to the T-PACC vertical strip wicking test where the water transported along the strip is measured at 1 minute intervals for 5 minutes with the value at 5 minutes being reported in inches. Also, the treated textile article may have a ratio of (an Average Moisture Transport With Treatment and After Five Launderings)/ (an Average Moisture Transport With Treatment and No Launderings) of between about 30 and 120 percent when wicking is measured according to the T-PACC vertical strip wicking test where the water transported along the strip is measured at 1 minute intervals for 5 minutes with the value at 5 minutes being reported in inches. Additionally, the treated textile article may have a ratio of (Average Moisture Transport With Treatment and No Launderings) / (Average Moisture Transport With No Treatment and No Launderings) of between about 100 and 400 percent when wicking is measured according to the T-PACC vertical strip wicking test where the water transported along the strip is measured at 1 minute intervals for 5 minutes with the value at 5 minutes being reported in inches.

Also, when the hydrophilic oxyalkylene derivative is between about 46 and 80 weight percent of the polyamide treatment agent, the treated textile article may have a Normalized Average Moisture Transport Durability (inch/inch) value of between about 0.3 and 1. Also, the treated textile article may have a ratio of (an Average Moisture Transport With Treatment and After Five Launderings)/ (an Average Moisture Transport With Treatment and No Launderings) of between about 30 and 100 percent.

Additionally, the treated textile article may have a ratio of (Average Moisture Transport

With Treatment and No Launderings) / (Average Moisture Transport With No Treatment and No Launderings) of between about 200 and 400 percent Further, when the hydrophilic oxyalkylene derivative is between about 56 and 78 weight percent of the polyamide treatment agent, the treated textile article may have a Normalized Average Moisture Transport Durability (inch/inch) value of between about 0.6 and 1. Also, the treated textile article may have a ratio of (an Average Moisture Transport With Treatment and After Five Launderings)/ (an Average Moisture Transport With Treatment and No Launderings) of between about 30 and 80 percent. Additionally, the treated textile article may have a ratio of (Average Moisture Transport With Treatment and No Launderings) / (Average Moisture Transport With No Treatment and No Launderings) of between about 250 and 400 percent.

In a preferred embodiment, the effective amount of any of an oxyalkylene derivative, an ether linkage, and an oxyalkylene derivative and an ether linkage is an effective amount of an oxyethylene derivative. When the oxyethylene derivative is between about 40 and 80 weight percent of the polyamide treatment agent, the treated textile article may have a Normalized Average Moisture Transport Durability (inch/inch) value of between about 0.1 and lwhen wicking is measured according to the T-PACC vertical strip wicking test where the water transported along the strip is measured at 1 minute intervals for 5 minutes with the value at 5 minutes being reported in inches. Also, the treated textile article may have a ratio of (an Average Moisture Transport With Treatment and After Five Launderings)/ (an Average Moisture Transport With Treatment and No Launderings) of between about 30 and 120 percent. Additionally, the treated textile article may have a ratio of (Average Moisture Transport With Treatment and No Launderings) / (Average Moisture Transport With No Treatment and No Launderings) of between about 100 and 400 percent.

Also, when the oxyethylene derivative is between about 46 and 80 weight percent of the polyamide treatment agent, the treated textile article may have a Normalized Average Moisture Transport Durability (inch/inch) value of between about 0.3 and lwhen wicking is measured according to the T-PACC vertical strip wicking test where the water transported along the strip is measured at 1 minute intervals for 5 minutes with the value at 5 minutes being reported in inches. Also the treated textile article may have a ratio of

(an Average Moisture Transport With Treatment and After Five Launderings)/ (an Average Moisture Transport With Treatment and No Launderings) of between about 30 and 100 percent. Additionally, the treated textile article may have a ratio of (Average Moisture Transport With Treatment and No Launderings) / (Average Moisture Transport With No Treatment and No Launderings) of between about 200 and 400 percent Further, when the oxyethylene derivative is between about 56 and 78 weight percent of the polyamide treatment agent, the treated textile article may have a Normalized Average Moisture Transport Durability (inch/inch) value of between about. 6 and 1. Also, the treated textile article mat have a ratio of (an Average Moisture Transport With Treatment and After Five Launderings)/ (an Average Moisture Transport With Treatment and No Launderings) of between about 30 and 80 percent. Additionally, the treated textile article may have a ratio of (Average Moisture Transport With Treatment and No Launderings) / (Average Moisture Transport With No Treatment and No Launderings) of between about 250 and 400 percent.

The hydrophilic component is a reaction product of a diacid and a diamine including an effective amount of any of an oxyalkylene derivative, an ether linkage, and an oxyalkylene derivative and an ether linkage. The effective amount of any of an oxyalkylene derivative, an ether linkage, and an oxyalkylene derivative and an ether linkage may include an effective amount of a hydrophilic oxyalkylene derivative. In a preferred embodiment, the effective amount of any of an oxyalkylene derivative, an ether linkage, and an oxyalkylene derivative and an ether linkage is an effective amount of an oxyethylene derivative. The hydrophobic component is a reaction product of a diacid and a diamine.

The polyamide treatment agent may be a reaction product further including heating a mixture of any of the hydrophilic component and the hydrophobic component ; a precursor of the hydrophilic component and the hydrophobic component; the hydrophilic component and a precursor of the hydrophobic component; and a precursor of the hydrophilic component and a precursor of the hydrophobic component.

The polyamide treatment agent may be a reaction product of a reaction product of diacid and diamine and a reaction product of a diacid and a diamine including an effective amount of any of an oxyalkylene derivative, ether linkage, and oxyalkylene derivative

and ether linkage. The effective amount of any of an oxyalkylene derivative, an ether linkage, and an oxyalkylene derivative and an ether linkage includes an effective amount of an hydrophilic oxyalkylene derivative, preferably an effective amount of an oxyethylene derivative.

A hydrophobic component may include a unit based on at least one of the following: Structure I I I - (CRiNH)- wherein Rl is an alkylene group with 3 to 11 carbon atoms that are any one of unsubstituted and substituted ; and Structure II O O In il - (CR2C-NH-R3NH)- wherein: R2 is any one of an alkylene group, a cycloalkylene group and a difunctional aromatic group with the alkylene group and the cycloalkylene of R2 being 4 to 10 carbon atoms that are any one of unsubstituted and substituted; and R3 is any one of an alkylene group, cycloalkylene group and difunctional aromatic group with the alkylene group and the cycloalkylene of R3 being 2 to 10 carbon atoms that are any one of unsubstituted and substituted.

The hydrophobic component may include units based on structure I, units based on structure II, and, optionally, plasticizer. On a molar percent basis between about 19 and 95, the polyamide treatment agent may be based on at least one of structure I, structure II, structure I and plasticizer, structure II and plasticizer, structure I and structure II, structure I, and structure II and plasticizer.

A hydrophilic component may include a unit based on the following: Structure III Wherein: R4 may be any one of hydrogen and an alkyl of one to four carbon atoms; R5 may be any one of hydrogen and an alkyl of one to four carbon atoms; R6 may be any one of hydrogen and an alkyl of one to four carbon atoms; R7 may be any one of hydrogen and an alkyl of one to four carbon atoms; a is from 0 to 3 ; b is from 1 to 78; and c is from 0 to 3.

A diacid may be a unit based on the following: Structure IV wherein R8 is any one of an alkylene group, cycloalkylene group, and a difunctional aromatic group with the alkylene group and the cycloalkylene of Ps being 4 to 10 carbon atoms that are any one of unsubstituted and substituted.

A plasticizer may be included in a polyamide treatment agent. A plasticizer may be derived from any one of a polyether glycol diamine having a molecular weight less than about 500 and a number of consecutive oxyethylene derivative units are less than about 4; a polyether glycol diamines having a molecular weight greater than about 500 and any one of a ratio of (oxyethylene derivative)/ (oxypropylene derivative) less than about 4/6, a ratio of (oxyethylene derivative)/ (oxybutylene derivative) less than about 4/6,

and a sum of a ratio of (oxyethylene derivative)/ (oxypropylene derivative) and a ratio of (oxyethylene derivative)/ (oxybutylene derivative) less than about 4/6.

A chain terminating group may be included in a polyamide treatment agent so as to effect at least one of controlling the molecular weight of the polyamide treatment agent, changing the solubility of the polyamide treatment agent in water, and increasing a substantivity of a textile article treated with the polyamide treatment agent. The chain terminating group maybe (Rg) d-F, wherein R9 is any one of a Cl-C24 alkyl, Cl-C24 aryl, Ci-C24 alkylaryl, Cl-C24 alkenyl, and an oxyalkylene derivative; d is 1-2; and F is any one of NH2, NH, CHO, COCI, and COOL3, wherein R13 is any of a Cl-C2 alkyl and hydrogen. An oxyalkylene derivative of the chain terminating group may be Rio (O-CHRII-CHR12) p-, wherein Rio is any of a Cl-C4 alkyl ; Ru is any of a Cl-C4 alkyl and hydrogen; Ri2 is any of a Cl-C4 alkyl and hydrogen; p is any value from 1 through 100. The chain terminating group may be about 1-7% of the treatment agent. The chain terminating group may be an alkyl, aryl and/or an alkyl aryl mono acid and/or its/their alkoxylate, an alkyl, aryl and/or alkyl aryl alcohol and/or its/their alkoxylate, and alkyl, aryl and/or alkyl aryl amine and/or its/their alkoxylates, and alkanolanine and/or polyoxyalkylene mono amine (Jeffamine XTJ-505, Jeffamine XTJ-506, Jeffamine XTJ- 507 and Jeffamine XTJ-508 from Huntsman. ) A branching facilitator may be included in a polyamide treatment agent so as to induce branching of the polyamide treatment agent. The branching facilitator may be any one of a polyamine and a polyacid. The polyamine may be any one of diethylene triamine, triethylene tetraamine, tetraethylene pentamine, poly (oxy (methyl-1, 2-ethanediyl), alpha-omega- (2-aminomethylethoxy-, and ether with 2-ethyl-2- (hydroxymethyl)-1, 3 propanediol (3: 1). (Jeffamine T-403, Jeffamine XTJ-509, and Jeffamine T-5000 from Huntsman. ) A polyacid may be any one of trimellitic anhydride and citric. A branching facilitator may be between about 1% and 3% by weight of the polyamide treatment agent.

Accordingly, one aspect of the present invention is to provide a treated textile article formed from a synthetic fiber substrate. The treated textile article includes a polyamide treatment agent including a hydrophilic component and a hydrophobic component.

Another aspect of the present invention is to provide a polyamide treatment agent for use with a textile article formed from a synthetic fiber substrate. The polyamide treatment agent imparts to the textile article improved moisture transport while at the same time imparting durability of the moisture transport. The polyamide treatment agent includes a hydrophilic component, a hydrophobic component, and effective amounts of any one of an oxyalkylene derivative, an ether linkage, and an oxyalkylene derivative and an ether linkage.

Still another aspect of the present invention is to provide a treated textile article formed from a synthetic fiber substrate including a polyamide treatment agent. The polyamide treatment agent includes between between about 19 and 95 mole percent of a hydrophobic component. In addition, the polyamide treatment agent includes effective amounts of any one of an oxyalkylene derivative, an ether linkage, and an oxyalkylene derivative and an ether linkage. Further, the polyamide treatment agent includes a hydrophilic component.

These and other aspects of the present invention will become apparent to those skilled in the art after a reading of the following description of the preferred embodiment when considered with the drawings.

Brief Description of the Drawings FIGURE 1 is a graphical representation of the Normalized Average Moisture Transport Durability (inch/inch) value data of Table 2 in the form of a variogram represented by contours for a treated textile article as a function of hydrophobic component content in mole percent and hydrophilic oxyalkylene derivative content in weight percent according to an embodiment of the present invention; FIGURE 2 is a graphical representation of the Normalized Average Moisture Transport Durability (inch/inch) value data of Table 2 in the form of a variogram represented by contours for a treated Nylon textile article as a function of hydrophobic component content in mole percent and hydrophilic oxyalkylene derivative content in weight percent according to an embodiment of the present invention; FIGURE 3 is a graphical representation of the Normalized Average Moisture Transport Durability (inch/inch) value data of Table 2 in the form of a variogram

represented by contours for a treated polyester textile article as a function of hydrophobic component content in mole percent and hydrophilic oxyalkylene derivative content in weight percent according to an embodiment of the present invention; FIGURE 4 is a graphical representation of the ratio of (an Average Moisture Transport With Treatment and After Five Launderings)/ (an Average Moisture Transport With Treatment and No Launderings) data of Table 3 in the form of a variogram represented by contours for a treated textile article as a function of hydrophobic component content in mole percent and hydrophilic oxyalkylene derivative content in weight percent according to an embodiment of the present invention; FIGURE 5 is a graphical representation of the ratio of (an Average Moisture Transport With Treatment and After Five Launderings)/ (an Average Moisture Transport With Treatment and No Launderings) data of Table 3 in the form of a variogram represented by contours for a treated Nylon textile article as a function of hydrophobic component content in mole percent and hydrophilic oxyalkylene derivative content in weight percent according to an embodiment of the present invention; FIGURE 6 is a graphical representation of the ratio of (an Average Moisture Transport With Treatment and After Five Launderings)/ (an Average Moisture Transport With Treatment and No Launderings) data of Table 3 in the form of a variogram represented by contours for a treated polyester textile article as a function of hydrophobic component content in mole percent and hydrophilic oxyalkylene derivative content in weight percent according to an embodiment of the present invention; FIGURE 7 is a graphical representation of the ratio of (Average Moisture Transport With Treatment and No Launderings) / (Average Moisture Transport With No Treatment and No Launderings) data of Table 4 in the form of a variogram represented by contours for a treated textile article as a function of hydrophobic component content in mole percent and hydrophilic oxyalkylene derivative content in weight percent according to an embodiment of the present invention; and FIGURE 8 is a graphical representation of the ratio of (Average Moisture Transport With Treatment and No Launderings) / (Average Moisture Transport With No Treatment and No Launderings) data of Table 4 in the form of a variogram represented by contours for a treated Nylon textile article as a function of hydrophobic component

content in mole percent and hydrophilic oxyalkylene derivative content in weight percent according to an embodiment of the present invention; and FIGURE 9 is a graphical representation of the ratio of (Average Moisture Transport With Treatment and No Launderings) / (Average Moisture Transport With No Treatment and No Launderings) data of Table 4 in the form of a variogram represented by contours for a treated polyester textile article as a function of hydrophobic component content in mole percent and hydrophilic oxyalkylene derivative content in weight percent according to an embodiment of the present invention.

Description of the Preferred Embodiments In the following description, like reference characters designate like or corresponding parts throughout the several views. Also in the following description, it is to be understood that such terms as"forward,""rearward,""left,""right,""upwardly," "downwardly, "and the like are words of convenience and are not to be construed as limiting terms.

A treated textile article of the present invention is formed from a synthetic fiber substrate including a polyamide treatment agent having a hydrophilic component and a hydrophobic component. A textile article may include any one of a filament, a fiber, a yam, a fabric constructed from any one of fibers or filaments, yarn, and products made using at least one of a filament, a fiber, a yarn, and a fabric. Some examples of products contemplated include cloth, an article of clothing including protective clothing, rope, cable, and mesh, carpeting, non-woven fabric,... etc. Those skilled in the art will appreciate that there exist numerous other examples of textile articles that are within the scope of the present invention and not specifically mentioned.

A synthetic fiber substrate may be any one of a polyamide (also known as nylon such as nylon 6,6 and nylon 6, and including aramids such as NOMEXe polymer and REVLAR polymer), a polyester, an acrylic, a vinyl, polyurethane including a segmented polyurethane such as LYCRA polymer that is generically known as spandex, and a polyalkylene such as polypropylene.

Polyesters are any of a group of synthetic resins, such as DACRON polymer or MYLAR polymer, that are formed by the polycondensation of carboxylic acids with

dihydroxyl alcohols. Such resins may cure or harden, at room temperature under little or no pressure when catalyzed. Polyesters may be characterized by strength and resistance to moisture and chemicals.

Acrylics may include any of a large group of synthetic thermoplastic polymers created from various monomers (e. g. , acrylic acid, methacrylic acid, esters of these acids, and acrylonitrile). These various monomers may polymerize readily when exposed to light.

Polyurethane may include a segmented polyurethane such as spandex as follows. soft rubbery segment /rigid segment t0CHzCH +OCN 4CH2 4H H H H 4 CHl t ° ß H H H H H H x = about 40 or so Spandex has a complicated structure, with both urea and urethane linkages in the backbone chain.

Spandex is a polyurethane thermoplastic elastomer, which is available from E. I. du Pont de Nemours and Company, Wilmington, DE, USA under the trade name LYCRA polymer. Spandex has both urea and urethane linkages in its backbone. The special properties of spandex are due to the fact that spandex has hard and soft blocks in its repeat structure. Short polymeric chains of a polyglycol, usually about forty or so repeats units long, are soft and rubbery. The rest of the repeat unit, the stretch with the urethane linkages, the urea linkages, and the aromatic groups, is extremely rigid. This section is stiff enough that it is believed that the rigid sections from different chains clump together and align to form fibers. Of course, they are unusual fibers, as the fibrous domains formed by the stiff blocks are linked together by the rubbery soft sections. The result is a fiber that acts like an elastomer. This allows the making of a fabric that stretches for exercise clothing and the like. Other terms for spandex include elastic fibers and elastane fibers

Polyalkylenes may include any of a large group of synthetic thermoplastic polymers created from various monomers (e. g. , ethylene, methylene, propylene, butylenes, etc. ). Some alkylenes may contain at least one vinyl group. Polymers made using alkylenes containing a vinyl group are sometimes designated vinyls.

A synthetic fiber substrate may be a blend of any one of a plurality of synthetic fibers, a synthetic and a natural fiber, a plurality of synthetic fibers and a natural fiber, a synthetic and a plurality of natural fibers, and a plurality of synthetic fibers and a plurality of natural fibers. Natural fibers may include fibers derived from natural fiber and include cellulose derivatives such as rayon and acetate, cotton, wool such as from sheep, goats, llama and alpaca, and silk.

A polyamide treatment agent having a hydrophilic component and a hydrophobic component may include an effective amount of any one of oxyalkylene derivatives, ether linkages, and oxyalkylene derivatives and ether linkages (e. g., [-CnH2n-CHR-O-] x), R may be any one of hydrogen and an alkyl of one to four carbon atoms. Preferably, an effective amount of any one of oxymethylene derivatives, (e. g., [-CH2-O-] x), oxyethylene derivative (e. g., [-CH2-CH2-O] x), ether linkages, oxymethylene derivatives and ether linkages, oxyethylene derivatives and ether linkages, oxymethylene derivatives and oxyethylenederivatives, and any combination of the three.. The hydrophobic component may be a polyamide having a unit based on at least one of the following: Structure I IN - (CRiNH)- and O O StructureII H t ! Structure II I i 11 (CR2C NH R3NH) Ri may be an alkylene group with 3 to 11 carbon atoms that may be substituted or not. R2 may be any one of an alkylene group, a cycloalkylene group and a difunctional aromatic

group. The alkylene group and the cycloalkylene of R2 may contain 4 to 10 carbon atoms that may or may not be substituted. R3 may be any one of an alkylene group, cycloalkylene group and difunctional aromatic group. The alkylene group and the cycloalkylene of R3 may contain 2 to 10 carbon atoms that may or may not be substituted.

Also, a hydrophobic component may include varying amounts of both units based on structure I, units based on structure II, and, optionally, a plasticizer.

The hydrophobic component may be a reaction product of any one of a diamine and a diacid; a lactum and a diacid; a lactum, a diamine, and a diacid; and combinations thereof. Preferably, the diacid is a dicarboxylic acid. For a unit based on structure I, a lactum such as any one of r-butyrolactam, 6-valerolactam, s-caprolactam, enantolactam, Q-lauryllactam, and caprilactam, may be reacted and, optionally, with a dicarboxylic acid.

For a unit based on structure II, an alkyl diamine may be any one of ethylene diamine, triethylene diamine, tetramethylene diamine, hexamethylene diamine, diaminocyclohexane, 4,4'-diaminodicyclohexylene diamine, isophorone diamine, 1,3 benzene diamine, 1,4 benzene diamine and 1,4-bisdiaminomethyl cyclohexane.

The hydrophilic component may be a reaction product of a diacid, preferably, a dicarboxylic acid, and a diamine. Preferably, a diamine includes a hydrophilic oxyalkylene, more preferably an oxyethylene. That is, combinations of diamines and dicarboxylic acids may be combined and reacted to create a hydrophilic component. For a unit based on structure III, a polyalkylene glycol diamine, may be reacted with a dicarboxylic acid, preferably, a dicarboxylic acid. An example of eligible polyalkylene glycol diamines according to the invention is: oxirane, methyl-, polymer with oxirane, bis (2-aminopropyl) ether (Jeffamine XTJ-502 from Huntsman) at molecular range of 900 to 6000 and more.

The hydrophilic component may be a polyamide having a unit based on the following: Structure III

R4 may be any one of hydrogen and an alkyl of one to four carbon atoms. Rs may be any one of hydrogen and an alkyl of one to four carbon atoms. R6 may be any one of hydrogen and an alkyl of one to four carbon atoms. R7 may be any one of hydrogen and an alkyl of one to four carbon atoms. Subscript"a"may be 0 to 3, subscript"b"may be 1 to 78 and subscript"c"may be 0-3. A polyamide unit based on structure III may or may not be connected via a diacid unit to any one of a unit based on structure I, a unit based on structure II, another unit based on structure III, and a plasticizer.

A diacid that is preferably a dicarboxylic acid unit may be based on the following: Structure IV R8 may be any one of an alkylene group, cycloalkylene group, and a difunctional aromatic group. The alkylene group and the cycloalkylene of R8 may contain 4 to 10 carbon atoms that may or may not be substituted. Both the hydrophilic component and the hydrophobic component may be a reaction product of a diacid, preferably, a dicarboxylic acid, and any one of a diamine, a lactum, and a diamine and a lactum.

In the creation of the hydrophobic component including a unit based on structure I or structure II, and the creation of a hydrophilic component including a unit based on structure III, a dicarboxylic acid of the form HOOC--R--COOH may be useful. In HOOC--R--COOH, R may be any one of an alkyl group, alkyl aryl group, aryl group and combination thereof. The alkyl group, alkyl aryl group, and aryl group may contain from 3 to 34 carbon atoms. Some specific examples of dicarboxylic acid include any one of adipic acid, pimelic acid, azelaic acid, sebacic acid, suberic, dodecanedioic acid, terephthalic acid, isophthalic acid, t-butyl isophthalic acid, dimer acids and mixtures thereof. Also, the esters and acid chlorides of these dicarboxylic acids may be used.

Unexpectedly, the polyamide treatment agent of the present invention appears to improve the surface properties of a number of synthetic substrates since it is unexpectedly a substantive agent for synthetic substrates such as any one of a polyamide (also known

as nylon and including aramids such as NOMEX polymer and KEVLARe polymer), a polyester, an acrylic, a vinyl and a polyalkylene such as polypropylene.

The polyamide treatment agent may be applied in simple and safe application procedures using standard textile and laundering equipment. Further, the polyamide treatment agent may be incorporated into commercial and consumer detergent and softener (e. g., either a solid or liquid) and exhausted during laundering to impart or maintain improved moisture transport while at the same time imparting durability.

Applicants believe that the chemistry of the polyamide treatment agent of the present invention allows for use in higher pH processes such as those used in industrial and institutional laundering systems as well as in home laundering applications. The product can be added separately or in a formulated detergent as either liquid or powder or in a softener formulation in an effective amount to modify properties of textile articles including imparting improved moisture transport while at the same time imparting durability. Applicants further believe that a formulation that provides between about 0 05% and about 1.5%, preferably about 0.1%-1. 0% based on the weight of the textile article to be an effective amount.

Examples of conventional methods applicable to known textile equipment include pad/heat set, foam/heat set, and exhaust. Conventional textile wet processing methods applicable to such equipment include scouring, coloration, and fabric finishing.

Potential points of application of the polyamide treatment agent in textile processing include any one of the fiber/yarn forming stage and the wet processing steps in the fabric stage. Within the fiber/yarn forming stage there are at least four points at which an effective amount of the polyamide treatment agent may be applied such as (1) to a spin finish after extrusion and before fiber drawing (e. g. , the polyamide treatment agent may be applied on top of the conventional spin finish before fiber drawing); (2) to a fiber being or just drawn (e. g. , the polyamide treatment agent may be applied using a metered finish applicator or a kiss roll); (3) before fiber crimping (e. g. , the polyamide treatment agent may be applied by any one of a dip and nip bath, a kiss roll and a metered finish applicator then heat set onto the fiber's surface and resulting lower fiber to fiber frictional properties may improve crimping properties and yield a bulkier staple fiber); and (4) after-oiling or over-oiling (e. g. , the polyamide treatment agent may be applied by passing

a warp sheet over a kiss roll just ahead of a warp beam). Applicants believe that between about 0.05% and 1.0% based on the weight of the fiber to be an effective amount.

Other potential points of application of the polyamide treatment agent in textile processing may include any one during a formation of a non-woven article (with or without adhesives), as an additive in a cleaning/scouring step, as additives in a coloration bath, during a final fabric (including non-wovens) finishing. Final fabric finishing may include any one of foaming, spraying, drawing through a dip and nip bath and drawing through a kiss roll applicator followed by heating to a sufficiently high temperature and time for heat setting (e. g. , temperatures between about 200 and 350°F for between about 1 and 3 minutes).

The polyamide treatment agent also may be combined or incorporated as a portion of any one of various processing aides by formulating a chemical auxiliary for any of these textile processes. For example, a treatment agent may be combined or incorporated as a portion of any one of a softener, a heat stabilizer, antioxidants, a dyeing auxiliary, a soil repellant, a fiber spin finish, a moisture transport auxiliary,... etc.

For example, softeners may be any of silicones, amino silicones, fatty quats, fatty amido amine, ethoxylated amines, fatty alkanolamines or alkylolamides, fatty amphoterics,... etc. A treatment agent combined or incorporated with one or more of these softeners may improve any of a textile article's hand, hydrophilicity, and hand and hydrophilicity.

A treatment agent combined or incorporated with one or more heat stabilizers may reduce a textile article's discoloration during heat setting. Likewise, a treatment agent combined or incorporated with one or more of antioxidants may reduce a textile article's discoloration during heat setting.

For example, a soil repellant may be any of fluorocarbons, anionic polymers,... etc. A treatment agent combined or incorporated with one or more soil repellants may act to extend the one or more soil repellants.

A treatment agent combined or incorporated with one or more dyeing auxiliaries may reduce repulsion between a textile article and the dying liquor. A treatment agent combined or incorporated with one or more fiber spin finishes may reduce fiber to fiber friction by lubrication and a treatment agent combined or incorporated with one or more

antistats may reduce fiber to fiber friction by relieving electrostatic buildup in the textile article, Such improvements are contemplated among woven and non-woven textile articles, either with or without an adhesive. Again, applicants believe that between about 0.05% and 1. 0% based on the weight of the fiber to be an effective amount of the polyamide treatment agent.

The polyamide treatment agent may impart to a number of synthetic substrates improved moisture transport while, at the same time, imparting sufficient durability for home laundering. For example, it has been found that, unexpectedly, the polyamide treatment agent of the present invention may impart improved moisture transport to synthetic substrates while at the same time the moisture transport being durable to at least five home launderings. Unexpectedly, and in addition to improved moisture transport and durability, the polyamide treatment agent may impart improved static dissipation, soil release, fiber-to-fiber friction and"hand"properties. As used herein, hand is defined as the tactile qualities of a fabric, e. g. , softness, firmness, elasticity, fineness, resilience, and other qualities perceived by touch. Dictionary of Fiber & Textile Technology ; Copyright 1989,1990 Hoechst Celanese Corporation.

Various substrates were treated with a polyamide treatment agent according to embodiment of the present invention and then tested according to the following procedures to determine the performance of a treated textile article.

The as received various substrates were scoured as setforth below. Some scoured substrates were treated with a polyamide treatment agent, others were set aside for comparison.

Nylon substrates (40/12 dull nylon 6, warpknit, weight 7.6 oz. /yard) were scoured using about 1 g/liter ALKON (g) NS scouring agent (Apollo Chemical Corporation, Burlington, NC) at about 160°F for about 10 minutes. After scouring, the scoured Nylon substrates were rinsed and overflow washed for about 10 minutes. The overflow washed, rinsed and scoured Nylon substrates were dried at about 200°F for about 2 minutes.

Polyester substrates (Textile Innovators Corporation, 100% polyester, Dacron 56, heatset) were scoured using about lg/liter POLYSCOUR LF scouring agent (Apollo Chemical Corporation, Burlington, NC) at about 105°F for about 15 minutes. After

scouring, the scoured polyester substrates were rinsed and overflow washed for about 15 minutes. The overflow washed, rinsed and scoured polyester substrates were dried at about 200°F for about 2 minutes.

NOMES polymer fiber substrates were scoured using about 1 g/liter POLYSCOUR LF scouring agent (Apollo Chemical Corporation, Burlington, NC) at about 105°F for about 15 minutes. After scouring, the scoured NOMES@ substrates were rinsed and overflow washed for about 15 minutes. The overflow washed, rinsed and scoured NOMEXS substrates were dried at about 200°F for about 2 minutes Polypropylene substrates were scoured using about lg/liter POLYSCOUR LF scouring agent (Apollo Chemical Corporation, Burlington, NC) at about 105°F for about 15 minutes. After scouring, the scoured polypropylene substrates were rinsed and overflow washed for about 15 minutes. The overflow washed, rinsed and scoured polypropylene substrates were dried at 200°F for about 2 minutes

Moisture Transport for Pad/Cure Fabric "Test A"PadlCure : 1. Using scoured fabric, the pad bath concentration and wet pick up is set such that application level is between about 0.05% and 1.0% based on the weight of the fabric.

2. Fabric is dried and heatset at 350°F for about 100 seconds (Except polypropylene is heatset at about 240°F).

3. A control fabric was subjected to the same treatment except the pad bath contains only water.

4. Allow fabric to condition for at least about 4 hours and then cut the fabric into about 1"X 7"strips 3 courses and 3 wales for knits; 3 warps and 3 wefts for warpknits; and 3 warps and 3 fills for woven.

5. Place about 5-gram weight on one end of each strip and place about 1"of weighted end in water.

6. Measure the moisture transport distance about every minute for about 5 minutes.

7. Take remaining treated fabric subject to AATCC Test Method 130-2000 Section 8 Washing Procedure (4 consecutive home launderings) using about 100 grams of 1993 AATCC Standard Reference Detergent (American Association of Textile Chemists and Colorists, 1 Davis Drive, Research Triangle Park, NC 27709) and water at a temperature of about 110°F.

8. Run through wash cycle again but use no detergent to insure that detergent has been completely removed.

9. Dry fabric in standard home dryer and then allow to condition for at least about 4 hours.

10. Cut the fabric into about 1"X 7"strips 3 courses and 3 wales for knits; 3 warps and 3 wefts for warpknits ; and 3 warps and 3 fills for woven.

11. Place an about 5 gram weight on one end of each strip and place about 1"of weighted end in water.

12. Measure the moisture transport distance about every minute for about 5 minutes.

Tests of substrates with no treatment (control) and after scouring, substrates with a treatment and no laudering, and treated and substrates with a treatment and after laundering were performed. These tests are described above and substantially correspond to the vertical strip wicking test mentioned by R. L. Barker, B. J. Scruggs, and I. Shalev, of the Center for Research on Textile Protection and Comfort, College of Textiles, North Carolina State University, Raleigh, NC in their paper entitled"Evaluating Operating Room Gowns: Comparing Comfort Of Nonwoven and Woven Materials"available in the The International Nonwovens Journal Volume 9, No. 1 (Spring, 2000) and online at http ://www. inda. org/subscrip/ini00 l/p23. html. This test is accepted in the industry and further details concerning the test may be obtained from the Center for Research on Textile Protection and Comfort, College of Textiles (T-PACC), North Carolina State University, Raleigh, NC. For convenience, this vertical strip wicking test is refereed to in the claims as the"T-PACC vertical strip wicking test"In the T-PACC vertical strip wicking test, one end of a fabric strip about about 25mm wide X about 170 mm long is clamped vertically with the dangling end immersed to about 3 mm in distilled water at about 21°C. The height to which the water is transported along the strip is measured at 1, 5 and 10 minute intervals and reported in centimeters (cm). Higher wicking values show greater liquid water transport ability. In the present application, the water transported along the strip was measured at a 1 minute intervals for 5 minutes with the value at 5 minutes being reported in inches.

Table 1 contains a summary of moisture transport data for various treatment agents applied to the various substrates as well as untreated substrates. These data were used to compare the effect of moisture transport and moisture transport durability of a treatment agent treated textile fabric and. A number of treatment agent compositions where prepared as described in EXAMPLE 1 through EXAMPLE 34 below. The data summarized in Tables 5 through 38 were used to determine the hydrophobic component (mole percent) and the hydrophilic oxyalkylene derivative (weight percent). The data summarized in Table 1 were used to determine Normalized Average Moisture Transport Durability (inch/inch) (summarized in column 6 of Table 2), the ration of (Average Moisture Transport With Treatment and After Five Launderings)/ (Average Moisture Transport With Treatment and No Launderings), (summarized in column 6 of

Table 3) and the the ratio of (Average Moisture Transport With Treatment and No Launderings) / (Average Moisture Transport With No Treatment and No Launderings) (summarized in column 6 of Table 4).

In determining the hydrophobic component (mole percent) and hydrophilic oxyalkylene derivative (weight percent applicants) also took into account the use of additives believed to act a plasticizers (Plast). For example, a plasticizer may be used for in making a hydrophobic component to lower the melt point and/or improve solubility with hydrophilic component during reaction. Examples of plasticizers that may be used include, but are not limited to, polyether glycol diamines having a molecular weight less than about 500 and the number of consecutive oxyethylene derivative units are less than about 4 ; polyether glycol diamines having a molecular weight greater than about 500 and the ratio of (oxyethylene derivative)/ (oxypropylene derivative) and/or (oxyethylene derivative)/ (oxybutylene derivative) less than about 4/6. An example is 2, 2'- [1, 2 ethanediylbis (oxy) ] bis [ethaneamine] (Jeffamine XTJ-504 from Huntsman). Because it is believed that plasticizers may have a low moisture transport potential, plasticizers have been designated as part of the hydrophobic component. Recalling Structure I (S-I), Structure II (S-11) and Structure III (S-III) discussed above, the hydrophobic component (mole percent) becomes: Moles S-1 Units + Moles of S-II Units + Moles of Plast Units X 100 Moles S-I Units + Moles of S-11 Units + Moles of S-III Units + Moles of Plast Units Taking Sample 10 of EXAMPLE: 10 as summarized in Table 14 (Note: data in Tables has been rounded) one gets: Moles S-1 Units = 0 Moles S-11 Units = 0. 1422 Moles Plast Units = 0.0578 Moles S-III Units = 0.0916 Hydrophobic Component-0. 1422 +. 0578 x 100 = 68. 6%

(mole percent) 0. 0916 +. 0578 +. 1422 Further, taking Sample 24 of EXAMPLE : 24 as summarized in Table 28 (Note: data in Tables has been rounded) one gets: Moles S-1 Units =. 2552 Moles S-11 Units = 0 Moles Plast Units = 0 Moles S-III Units = 0.1276 Hydrophobic Component = 00.2552 x 100 = 66. 7% (mole percent) 00. 1276 + 0. 2552 Again recalling Structure I (S-I), Structure II (S-II), Structure III (S-III), Structure IV and Structure Plast discussed above, the hydrophilic component (weight percent) becomes (Based on polyether glycol diamines having a molecular weight greater than about 500 and the number of consecutive oxyethylene derivative units greater than about 4 or polyether glycol diamines having a molecular weight is greater than about 500 and the ratio of (oxyethylene derivative)/(oxypropylene derivative) or (oxyethylene derivative) / (oxybutylene derivative) greater than about 4/6) : Mass S-III Mass S-1 + Mass S-11 + Mass S-III + Mass S-IV + Mass Plast-Mass H20 Taking Sample 10 of EXAMPLE: 10 as summarized in Table 14 one gets: Mass S-1 = 0 grams Mass of diamine for S-11 = 23. 56 (70% Active) grams Mass of hydrophilic diamine for S-III = 183. 16 grams Mass S-IV required for structure S-II, S-III & Plast= 41. 8 grams Mass Plast 8. 55 grams *Mass Ha0 = 17. 37 grams *Mass Hz0 includes 30% from HMDA/70% hydrophilic component= 183. 16X 100=76. 41%

(Weight percent) 23.56 + 183.16 + 41.8 + 8.55-17. 37 Further taking Sample 24 of EXAMPLE : 24 as summarized in Table 28 one gets: Mass of S-1 = 28.84 Mass of diamine for S-2 = 0 Mass of hydrophilic diamine for S-II = 255. 2 Mass of S-IV required for structure S-III = 15. 97 Mass of Plast = 0 Mass of H20 = 3.94 hydrophilic component = 255. 2X 100=86. 2% (Weight percent) 28.84 + 255.2 + 15.97-3. 94 In determining the oxyethylene derivative (weight percent) (Wt % OED), the amount of oxyethylene derivative (OED) within the polyamide treatment agent that is contributed by the hydrophilic component and the plastercizers (Plast) is determine as follows : (Mass S-III)@ (% OED of S-III) + (Mass Plast) (% OED of Plast) Mass S-1 + Mass S-II + Mass S-III + Mass S-IV + Mass Plast-Mass Hz0 Taking Sample 10 of EXAMPLE: 10 as summarized in Table 14 one gets: Mass S-1 = 0 grams Mass of diamine for S-11 = 23. 56 grams (70% Active) Mass of hydrophilic diamine for S-III = 183. 16 grams % OED of S-III hydrophilic diamine = 85. 76% Mass S-IV required for structure S-II, S-III & Plast =_41. 8 grams Mass Plast = 8.55 grams % OED of Plast = 59. 45%

Mass H20 = 17.37 grams Wt % OED (183. 16) (. 8576) + (8. 55) (. 5945) X 100 = 67. 7% 23. 56 + 183. 16 + 41. 8 + 8. 55-17.37 Further taking Sample 24 of EXAMPLE: 24 as summarized in Table 28 one gets: Mass S-1 = 28.84 grams Mass of diamine for S-II = 0 grams Mass of hydrophilic diamine for S-III = 255. 2 grams % OED of S-III hydrophilic diamine = 85. 76% Mass S-IV required for structure S-III = 15. 97 grams Mass Plast = 0 grams Mass Ha0 = 3.94 grams Wt % OED = (255. 2) (. 8576 ! X 100 = 73. 93% 28. 84 + 255. 2 + 15. 97-3.94 In determining the hydrophilic oxyalkylene derivative (weight percent) (Wt% HOAD), the amount of hydrophilic oxyalkylene derivative (HOAD, e. g. , oxyethylene derivatives (OED) and/or oxymethylene derivatives (OMD)) within the polyamide treatment agent that is contributed by the hydrophilic component of the polyamide treatment agent is determined as follows: [hydrophilic component (weight percent) ] [% OED in hydrophilic component + % OMD in hydrophilic component] Taking Sample 10 of EXAMPLE : 10 as summarized in Table 14 one gets: hydrophilic component (weight percent) = 76. 41% % OED in hydrophilic component = 85.76%

% OMD in hydrophilic component = 0% Wt% HOAD = (76.41) (. 8576) = 65.5% Further taking Sample 24 of EXAMPLE: 24 as summarized in Table 28 one gets: hydrophilic component (weight percent) = 86. 2% % OED in hydrophilic component = 85.76% % OMD in hydrophilic component = 0% Wt% HOAD = = (86. 2) (. 8576) = 73.92% In determining the Normalized Average Moisture Transport Durability (inch/inch), the ratio of [the average of the Moisture Transport (inches) in weft, coarse or fulls direction for the textile with no treatment (control) and after five home launderings and the Moisture Transport (inches) in warp or wales direction for the textile with no treatment (control) and after five home launderings, (AMTC5HL)] is subtracted from [the average of the Moisture Transport (inches) in weft, coarse or fill direction after five home launderings of the treated textile and the Moisture Transport (inches) in warp or wales direction after five home launderings of the treated textile (AMTT5HL)] to [the average of the Moisture Transport (inches) in weft, coarse or fill direction after five home launderings of the treated textile and the Moisture Transport (inches) in warp or wales direction after five home launderings of the treated textile (AMTT5HL)] is determine as follows: Normalized Average Moisture = (AMTT5HL-AMTC5HL) Transport Durability (inch/inch), AMTT5HL Taking treated textile article Nylon/Sample 10 as summarized in Tables 1 and 2 that is a Nylon treated with Sample 10 of EXAMPLE : 10 as summarized in Table 14 one gets: Moisture Transport (inches

Textile with no treatment (control) in warps and wales direction = 0. 5 Textile with no treatment (control) in wefts, coarse, and fills direction = 0. 9 Treated textile in warps and wales direction after five home launderings= 1.75 Treated textile in wefts, coarse, and fills direction after five home launderings= 1.70 Normalized Average Moisture = Ffl. 75+1. 70)- (0. 5+0. 9) 1 = 0.59 Transport Durability (inch/inch), (1. 75 + 1.70) Further taking treated textile article Nylon/Sample 24 as summarized in Tables 1 and 2 that is a Nylon treated with Sample 24 of EXAMPLE: 24 as summarized in Table 14 one gets: Moisture Transport (inches) Textile with no treatment (control) in warps and wales direction = 0.5 Textile with no treatment (control) in wefts, coarse, and fills direction = 0. 9 Treated textile in warps and wales direction after five home launderings= 1.5 Treated textile in wefts, coarse, and fills direction after five home launderings= 1.97 Normalized Average Moisture = [(1.5 + 1.97) - (0.5 + 0.9)] = 0.60 Transport Durability (inch/inch), (1. 5+1. 97) In determining the ratio of (an Average Moisture Transport With Treatment and After Five Launderings)/ (an Average Moisture Transport With Treatment and No Launderings), the ratio of [the average of the Moisture Transport (inches) in weft, coarse or fill direction after five home launderings of the treated textile and the Moisture Transport (inches) in warp or wales direction after five home launderings of the treated textile (AMTT5HL)] to [the average of the Moisture Transport (inches) in weft, coarse or fill direction after no home launderings of the treated textile and the Moisture Transport (inches) in warp or wales direction after no home launderings of the treated textile (AMTTOHL)] is determined as follows:

Average Moisture Transport With Treatment and After Five Launderings = Average Moisture Transport With Treatment and No Launderings (AMTT5HL) (AMTTOHL) Taking treated textile article Nylon/Sample 10 as summarized in Tables 1 and 3 that is a Nylon treated with Sample 10 of EXAMPLE: 10 as summarized in Table 14 one gets: Moisture Transport (inches Treated textile in warps and wales direction after no home launderings = 2. 5 Treated textile in wefts, coarse, and fills direction after no home launderings = 2. 3 Treated textile in warps and wales direction after five home launderings= 1.75 Treated textile in wefts, coarse, and fills direction after five home launderings= 1. 70 Average Moisture Transport With Treatement and After Five Launderings Average Moisture Transport With Treatment and No Launderings (1. 75 + 1. 70) X 100-72 % (2. 5 +2. 3) Further taking treated textile article Nylon/Sample 24 as summarized in Tables 1 and 3 that is a Nylon treated with Sample 24 of EXAMPLE : 24 as summarized in Table 14 one gets: Moisture Transport (inches) Treated textile in warps and wales direction after no home launderings = 1.9 Treated textile in wefts, coarse, and fills direction after no home launderings = 2.78 Treated textile in warps and wales direction after five home launderings= 1.5 Treated textile in wefts, coarse, and fills direction after five home launderings= 1. 97 Average Moisture Transport With Treatment and After Five Launderings Average Moisture Transport With Treatment and No Launderings (1.5 + 1. 97) X 100=74% (1.9 +2. 78)

In determining the ratio of (Average Moisture Transport With Treatment and No Launderings) / (Average Moisture Transport With No Treatment and No Launderings), the ratio of [the average of the Moisture Transport (inches) in weft, coarse or fill direction after no home launderings of the treated textile and the Moisture Transport (inches) in warp or wales direction after no home launderings of the treated textile (AMTTOHL) ] to [the average of the Moisture Transport (inches) in weft, coarse or fill direction for the textile with no treatment (control) and after no home launderings and the Moisture Transport (inches) in warp or wales direction for the textile with no treatment (control) and after no home launderings (AMTCOHL) ] is determined as follows: Average Moisture Transport With Treatment With No Launderings Average Moisture Transport With No Treatment (Control) and No Launderings (AMTTOHL) (AMTCOHL) Taking treated textile article Nylon/Sample 10 as summarized in Tables 1 and 4 that is a Nylon treated with Sample 10 of EXAMPLE : 10 as summarized in Table 14 one gets: Textile with no treatment (control) in warps and wales direction = 0.5 Textile with no treatment (control) in wefts, coarse, and fills direction = 0. 9 Treated textile in warps and wales direction after no home launderings = 2. 5 Treated textile in wefts, coarse, and fills direction after no home launderings = 2. 3 Average Moisture Transport With Treatment and No Launderings Average Moisture Transport With No Treatment (Control) and No Launderings (2.5 +2. 3) X 100=343% (0.5 + 0. 9) Further taking treated textile article Nylon/Sample 24 as summarized in Tables 1 and 4 that is a Nylon treated with Sample 24 of EXAMPLE: 24 as summarized in Table 14 one gets: Textile with no treatment (control) in warps and wales direction = 0. 5

Textile with no treatment (control) in wefts, coarse, and fills direction = 0.9 Treated textile in warps and wales direction after no home launderings = 1.9 Treated textile in wefts, coarse, and fills direction after no home launderings = 2. 78 Average Moisture Transport With Treatment and No Launderings = Average Moisture Transport With No Treatment (Control) and No Launderings (1. 9 +2. 78) X 100=334% (0.5 + 0.9 ) Table 1: Raw Data Moisture Moisture Moisture Moisture Transport With Transport With Transport With Transport With Treatment Agent Treated Textile Article Treatment and Treatment and Treatment and Treatment and OxyEthylene Hydrophobic Reference Reference No No After Five Home After Five Home Derivative Component (mole Launderings Launderings Launderings Launderings (weight percent) percent) (inches) (inches) wefts, (inches) warps & (inches) wefts, warps & wales coarses & fills wales coarses & fills ,. On.. C ; N I oritro < <N IonIUntreatecl : Scoured.'. 0 : 50.-0 90 0, 50. 09. 0 0 : 0 _'.'00 ;/0 ExamDle 1 Nylon/SamDle 1 2 80 2. 55 1. 80 1. 90 62. 0 76. 2 Example 4 N Ion/Sample 4 0. 9 1. 1 0. 8 0. 8 51. 4 85. 7% Example 7 Nylon/Sample 7 2. 90 2. 65 2. 15 2. 25 68. 1 66. 7% Example 10 Nylon/Sample 10 2. 50 2. 30 1. 75 1. 70 67. 7 68. 6°M Example 11 Nylon/Sample 11 1. 80 2. 00 1. 40 1. 50 75. 7 43. 0% Exam le 12 Nylon/Sample 12 2, 25 2. 10 1. 65 1. 45 60. 3 81. 0% Example 14 Nylon/Sample 14 2. 00 2. 10 1. 40 1. 60 69. 8 66. 0% Example 16 Nylon/Sample 16 2. 90 2. 75 2. 25 1. 90 63. 6 74. 0oN Example 17 Nylon/Sample 17 1. 80 2. 00 0. 80 1. 00 78. 2 28. 6% Example 18 Nvion/Sample 18 1. 80 2. 00 0. 80 0. 90 79. 5 19. 0 l PoiyesterGontro), Potyester/UntreatedSc&ured 1. 001. 036 : 67 0. 97 0 : 0 0. 6% Example 2 Polyester/Sample 2. 3. 97 4. 25 4. 25 5. 00 76. 4 33. 3oM Example 3 Polyester/Sample 3 3. 95 4. 25 4. 25 4. 97 70. 2 66. 7% Example 9 Polyester/Sample 9 3. 75 4. 03 4. 00 4. 25 68. 4 66. 7oN Example 19 Polyester/Sample 19 1. 90 2. 40 1. 95 2. 50 62. 2 76. 2% Example 20 Polyester/Sample 20 2. 40 2. 50 2. 45 2. 50 74. 5 42. 9°N Example 21 Polyester/Sample 21 3. 80 3. 90 1. 10 1. 20 78. 7 19. 0 I N"O'M'ex/1-rC6nteol Nom'ex/Untreated.'Scourod 1. 03 1. 58 2-. 00 2. 03 0. 0 Example 3 Nomex/Sample 3 1. 15 1. 58 2. 10 2. 42 70. 2 66. 7 I Example 7 Nomex/Sample 7 1. 33 1. 58 2. 33 2. 67 68. 1 66. 7% Table 1: Raw Data Moisture Moisture Moisture Moisture Transport With Transport With Transport With Transport With Treatment Agent Treated Textile Article Treatment and Treatment and Treatment and Treatment and OxyEthylene Hydrophobic Reference Reference No No After Five Home After Five Home Derivative Component (mole Launderings Launderings Launderings Launderings (weight percent) percent) (inches) (inches) wefts, (inches) warps & (inches) wefts, warps & wales coarses & fills wales coarses & fills a. Go rol-. on. cr nt N loh=L cralUntreateci : Scou : Example 10 N lon-Lycra/Sample 10 1. 92'1. 83 67. 7 68. 6% ,,. N' ('onC ntro N Ionll) ntreated : Scoured-.' = 0 : 50 0. 90 0 : 50. O : ; 0 : 0- Example 22 Nylon/Sample 22 1. 95 2. 91 0. 80 1. 10 77. 2 50. 0% Example 23 Nylon/Sample 23 1. 90 2. 84 1. 10 1. 50 75. 2 60. 0os Example 24 Nylon/Sample 24 1. 90 2. 78 1. 50 1. 97 73. 9 66. 7% Example 25 Nylon/Sample 25 1. 97 2. 28 1. 20 2. 03 66. 9 80. 0% Example 26 Nylon/Sample 26 1. 93 2. 23 1. 50 2. 03 62. 4 85. 0os Example 27 Nvion/Sample 27 1. 98 2. 50 1. 82 2. 58 54. 9 so. o Example 28 Nylon/Sample 28 0. 75 0. 90 0. 75 0. 90 40. 3 95. 0% Nyton Control Nyton/Untreated Scoured, 0. 50 0. 900. 50 6. 90 OlQ 6. 6% Example 29 Nylon/Sample 29 1. 97 2. 50 1. 75 1. 98 68. 5 61. 9% Example 30 Nylon/Sample 30 2. 33 2. 90 1. 42 1. 58 66. 2 65. 6% Example 31 Nylon/Sample 31 2. 20 2. 70 1. 51 1. 53 73. 4 66. 7% Example 32 Nylon/Sample 32 2. 25 2. 80 1. 60 1. 90 67. 9 73. 7% Example 33 Nylon/Sample 33 1. 80 2. 10 1. 30 1. 43 691 73. 7os Example 34 Nylon/Sample 34 2. 03 2. 75 1. 00 1. 03 65. 4 66. 7% Polyester. Gbhtro) Pofyester/Untreatied Scoured 1. 00 1. 03-0. 67 0 0/.' Example 31 Polyester/Sample 31 3. 40 3. 42 1. 20 1. 31 73. 4 66. 7% Example 32 Polyester/Sample 32 3. 25 3. 33 1. 84 1 69 67 9 73. 7% Example 33Potyester/Sampfe 333. 103. 122. 062. 1969. 173. 7% Table 2: Normalized Average Moisture Transport Durability (inch/inch) Moisture Transport Moisture Transport Moisture Transport Moisture Transport Normalized With Treatment and With Treatment and With Treatment and With Treatment and Average Moisture.. HydrophDsc Treated Textile Article Reference No Launderings No Launderings After Five Home After Five Home Transport OxyEthy. eneDenvat. ve OxyAiky one Hydrophobic Component (inches) warps & (inches) wefts, Launderings (inches) Launderings (inches) Durability (weight percent) Derivative (weight (mole percent) wales coarses & fills warps & wales wefts, coarses & fills (inch/inch) percent) N Ion/Uhtreafed Scoured 0. 50"0 : 90 0 : 50 0. 90 0, 00..''0, 0.--v= 0 : 0% 0. 0% Nylon/Sample 1 2. 80 2. 55 1. 80 1. 90 0. 62 62. 0 60. 7% 76. 2% Nylon/Sample 4 0. 9 1. 1 û. 8 0. 8 0. 13 51. 4 49. 7% 85. 7% Nylon/Sample 7 2. 90 2. 65 2. 15 2. 25 0. 68 68. 1 67. 1% 66. 7% Nylon/Sample 10 2. 50 2. 30 1. 75 1. 70 0. 59 67. 7 65. 5% 68. 6% Nylon/Sample 11 1. 80 2. 00 1. 40 1. 50 0. 52 75. 7 75. 0% 43. 0% Nylon/Sample 12 2. 25 2. 10 1. 65 1. 45 0. 54 60. 3 55. 3% 81. 0% Nylon/Sample 14 2. 00 2. 10 1. 40 1. 60 0. 54 69. 8 66. 5% 66. 0% Nylon/Sample 16 2. 90 2. 75 2. 25 1. 90 0. 65 63. 6 61. 3% 74. 0% Nylon/Sample 17 1. 80 2. 00 0. 80 1. 00 0. 24 78. 2 78. 2% 28. 6% Nylon/Sample 18 1. 80 2. 00 0. 80 0. 90 0. 19 79. 5 79. 5% 19. 0% I ? ol'esterlU'ntreatecivScoured. 1. 00 1 : 03 0. 67'0 : 97 0. 00 0. 0 p. 0% Poiyester/Sampte 23. 974. 254. 255. 000. 8276. 476. 4% 33. 3% Polyester/Sample 3 3. 95 4. 25 4. 25 4. 97 0. 82 70. 2 64. 5% 66. 7% Polyester/Sample 9 3. 75 4. 03 4. 00 4. 25 0. 80 68. 4 65. 1% 66. 7% Polyester/Sample 19 1. 90 2. 40 1. 95 2. 50 0. 63 62. 2 58. 5% 76. 2% Polyester/Sample 20 2. 40 2. 50 2. 45 2. 50 0. 67 74. 5 74. 5% 42. 9% Polyester/Sample 21 3. 80 3. 90 1. 10 1. 20 0. 29 78. 7 78. 7% 19. 0% Nomeic/Unfreated Scoured 1. 03 1. 58. 2. 00 2. 03. 0. 0.-. Nomex/Sample 3 1. 15 1. 581 2. 10 2. 42 0. 10 11 1 66. 7% Nomex/Sample 7 1. 33 1. 58 2. 33 2. 67 0. 19 68 1 66. % 66 7/a Table 2: Normalized Average moisture Transport Durability (nich/inch) Moisture Transport Moisture Transport Moisture Transport Moisture Transport Normalized With Treatment and With Treatment and With Treatment and With Treatment and Average Moisture Hydrophilic Treated Textile Article Reference No Launderings No Launderings After Five Home After Five Home Transport OxyEthylene Dorivative OxyAlkylene Hydrophobic Component (inches) warps & (inches) wefts, Launderings (inches) Launderings (inches) Durability percent) wales coarses & fills warps & wales wefts, coarses & fills (inchlinch) 1. 00 0. 7, 5 1. o N lon-L'cra/Utreateii ; 5coure 1. 00 0. 7 : 5 ; 0 : 0.' ;. 0 Nylon-Lycra/Sample 10-l-1. 92 1. 83 0. 53 67. 7 65. 5% 68. 6% IJ Iol. Untreateii : Scbured 0. 50 0 : 90 -0 : 50 0. 90-00.,' :.. :- 0 : 0% ;, . ; : 0 : 0% N IonISam le 22 1. 95 2. 91 0. 80 1. 10 0. 28 77. 2 77. 2% 50. 0% Nylon/Sample 23 1. 90 2. 84 1. 10 1. 50 0. 47 75. 2 75. 2% 60 0% Nylon/Sample 24 1. 90 2. 78 1. 50 1. 97 0. 60 73. 9 73. 9% 66. 7% Nylon/Sample 25 1. 97 2. 28 1. 20 2. 03 0. 57 66. 9 66. 9% 80. 0% Nylon/Sample 26 1. 93 _ 2. 23 1. 50 2. 03 0. 61 62. 4 62, 4% 85. 0% Nylon/Sample 27 1. 98 2. 50 1. 82 2. 58 0. 69 54. 9 54. 9% 90. 0% slylonWample 28 0. 75 0. 9C 0. 75 0. 90 0. 17 40 3 40 3% 95. 0% - p o N1on. Untreateil5 oured. :- /c 0. 50 0. 90 0 : 50 0, 90 :'"' 0 : 0..''0. 0/o °.'0 : 0/o Nylon/Sample 29 1. 97 2. 50 1. 75 1. 98 0. 63 68. 5 68. 5% 61. 9% Nylon/Sample 30 2. 33 2. 9C _ 1. 42 1. 58 0. 54 66. 2 66. 2% 65. 6% Nylon/Sample 31 2. 20 2. 70 1. 51. 53 0. 54 73. 4 73. 4% 66. 7% Nylon/Sample 32 2. 25 2. 80 1. 60 1. 90 0. 61 67. 9 67. 9% 73. 7% N IonISam le 33 _ 1. 80 2. 10 1. 30 1. 43 0. 49 69. 1 69. 1% 73. 7% Nylon/Sample 34 2. 03 2. 75 1. 00 1. 03 0. 31 65. 4 65. 4% 66. 7% Pol'esterlllntFeatediScoured-. 1. 00 : : 103 r.'. °-'o 0 0. 67-0 : 97 % ; 0'. 0 0. 0./0 0. 0/o Polyester/Sample 31 3. 40 3. 42 1. 20 1. 31 0. 45 73. 4 73. 4%% 66. 7% Polyester/Sample 32 3. 25 3. 3< 1. 84 1. 69 0. 60 67. 9 67. 9% 73. 7% Polyester/Sample 33 3. 10 3. 12 2. 06 2. 19 0. 67 69. 1 69. 1% 73. 7%

FIGURE 1 is a graphical representation of the Normalized Average Moisture Transport Durability (inch/inch) data of Table 2 in the form of a variogram represented by contours for a treated textile article as a function of hydrophobic component content in mole percent and hydrophilic oxyalkylene derivative content in weight percent according to an embodiment of the present invention. The surface plot or variogram was generated using 3DField contouring surface plotting program available at any one of https ://secure. reg. net/product. asp? ID=2631 ; http ://field. hypermart. net/ ; and https://www. regsoft. net/regsoft/vieworderpage. php3? productid=31517. The 3DField contouring surface plotting program is authored by Vladimir Galouchko (e-mail: vdvgal@cityline. ru). The Block Kriging option was used to estimating the value of a block from a set of nearby sample values using kriging. Krining is a weighted-moving- average interpolation method where the set of weights assigned to samples minimizes the estimation variance, which is computed as a function of the variogram model and locations of the samples relative to each other, and to the point or block being estimated.

FIGURE 2 is a graphical representation of the Normalized Average Moisture Transport Durability (inch/inch) data of Table 2 in the form of a variogram represented by contours for a treated Nylon textile article as a function of hydrophobic component content in mole percent and hydrophilic oxyalkylene derivative content in weight percent according to an embodiment of the present invention.

FIGURE 3 is a graphical representation of the Normalized Average Moisture Transport Durability (inch/inch) data of Table 2 in the form of a variogram represented by contours for a treated polyester textile article as a function of hydrophobic component content in mole percent and hydrophilic oxyalkylene derivative content in weight percent according to an embodiment of the present invention. Moisture Moisture Moisture Moisture Average Moisture Transport With Transport With Transport With Transport With Transport With.. Treatment and Treatment and Treatment and Treatment and Treatment and After OxyEthylene Hydrophilic Hydrophobic Treated Textile Article Reference No No After Five Home After Five Home Fie Launderings Derivative OxyAlkylene Component (mole Divided By Average Derivative Launderings Launderings Launderings Launderings Moisture Transport (weight percent). percent) (inches) (inches) wefts, (inches) warps (inches) wefts, With Treatment and No (weight percent) warps & wales coarses & fills & wales coarses & fills Launderings o. ; 'in :" :' o', t e N onlUn r ated 5'coured'0. . p : 90. 50'' : 0 90 050' N Ion/Sam le 1 2. 80 2. 55 1. 80 1. 90 69°/a 62. 0 60. 7% 76. 2% Nylon/Sample 4 0. 9 1. 1 0. 8 0. 8 80% 51. 4 49. 7% 85. 7% N Ion/Sam le 7 2. 90 2. 65 2. 15 2. 25 79% 68. 1 67. 1 % 66. 7% Nylon/Sample 10 2. 50 2. 30 1. 75 1. 70 72% 67. 7 65. 5% 68. 6% Nylon/Sample 11 1. 80 2. 00 1. 40 1. 50 76% 75. 7 75. 0% 43. 0% Nvion/SamDle 12 2. 25 2. 10 1. 65 1. 45 71 % 60. 3 55. 3% 81. 0% Nvlon/Sample 14 2. 00 2. 10 1. 40 1. 60 73% 69. 8 66. 5% 66 0% Nylon/Sample 16 2. 90 2. 75 2. 25 1. 90 73% 63. 6 61. 3% 74. 0% Nvlon/SamDle 17 1. 80 2. 00 0. 80 1. 00 47% 78. 2 78. 2% 28. 6% Nylon/Sample 18 1. 80 2. 00 0. 80 0. 90 45% 79. 5 79. 5% 19. 0% o... . o :, Pol v :, esterlUri reafed S'r t cou ed.-1.. 00 =1. 03 p. 67, 0 : 9 Polyester/Sample 2 3. 97 4. 25 4. 25 5. 00 113% 76. 4 76. 4°/c 33. 3% Polyester/Sample 3 3. 95 4. 25 4. 25 4. 97 112% 70. 2 64. 5% 66. 7% Polyester/Sample 9 3. 75 4. 03 4. 00 4. 25 106% 68. 4 65. 1% 66. 7% Polvester/Sample 19 1. 90 2. 40 1. 95 2. 50 103% 62. 2 58. 5% 76. 2% Polyester/Sample 20 2. 40 2. 50 2. 45 2. 50 101% 74. 5 74. 5% 42. 9% Polyester/Sample 21 3. 80 3. 90 1. 10 1. 20 30% 78. 7 78. 7% 19. 0% _o y ..--__, v ;., _.. : ;,.,. ,.. : _. <'°. ,'' : 0 _,.--_. e..., :. e,." Y No''eXlllnt eafecl : Sco red _. Nomex/SamDle 3 1. 15 1. 58 2. 10 2 42 166% 70 2 64 5% 66. 7% Nomex/Sample 7 1. 33 1. 58 2. 33 2. 67 172% 68. 1 67. 1°/c 66. 7% Table 3: (Average Moisture Transport With Treatment and After Five Launderings)/(Average Moisture Transport With Treatment and No Launderings) Moisture Moisture Moisture Moisture Average Moisture Transport With Transport With Transport With Transport With Transport With Treatment and Treatment and Treatment and Treatment and Treatment and After OxyEthylene Y p Hydrophobic Five Laundertngs OxyAlkylene Treated Textile Article Reference No No After Five Home After Five Home Derivative Component (mole Divided By Average Derivative Launderings Launderings Launderings Launderings Moisture Transport (weight percent) percent) (inches) (inches) wefts, (inches) warps (inches) wefts, With Treatment and No warps & wales coarses & fills & wales coarses & fills Launderings ; Nylon-Lycra/Sample 10. 1. 92 1. 83 67. 7 65. 5°fi,, 68. 60N N lo. L cxalUritreatedScoure''° _., _ _ _ __ __.. _... _.. U. 76.. w_.-... f : ... _ :, 00_ ,-_ _. _".. _,.. : _.. ; N lon-L cralSam le 10 1, 92 9. 83 6'l. 7 65. 5% 68. 6% . .. l'o 0 N ori% tJntreated=S'coured_ 0. 0-. r'0 90 , 50-'0 : 90 v 1'00 Nylon/Sample 22 1. 95 2. 91 0. 80 1. 10 39% 77. 2 77. 2% 50. 0% Nvion/SamDle 23 1. 90 2. 84 1. 10 1. 50 55% 75. 2 75. 2% 60. 0% Nylon/Sample 24 1. 90 2. 78 1. 50 01. 97 74% 73. 9 73. 9% 66. 7% Nylon/Sample 25 1. 97 2. 28 1 20 2. 03 76% 66. 9 66. 9% 80. 0% Nylon/Sample 26-1. 93 2. 23 1. 50 2. 03 85% 62. 4 62. 4% 85. 0% Nyton/Sampte 271. 982. 501. 822. 5898% 54. 954. 9% 90. 0% Nylon/Sample 28 0. 75 0. 90 0. 75 0. 90 100% 40. 3 40. 3% 95. 0% N'I-"-. fi ;'., ea-r.. ^. . : Os,. on Un eat Sc u ed. L. r o 0 50. 0. 90. 0 50 wt 0 : 90'100 Nyfon/Sampte 291. 972. 501. 751. 9883% 68. 5 68. 5% 61. 9% Nylon/Sample 30 2. 33 2. 90 1. 42 1. 58 57% 66. 2 66. 2% 65. 6% Nylon/Sample 31 2. 20 2. 70 1. 51 1. 53 62% 73. 4 73. 4% 66. 7% Nvion/SamDle 32 2. 25 2. 80 1. 60 1. 90 69% 67. 9 67. 9% 73. 7% Nvion/Sample 33 1. 80 2. 10 1. 30 1. 43 70% 69. 1 69. 1% 73. 7% Nylon/Sample 34 2. 03 2. 75 1. 00 1. 03 42% 65. 4 65. 4% 66. 7% ;. o s Pol esterlUntreatecl.''Scou ed 1. 00.' :.. 3 r,.. ; 1. 0. 0-67 ' p : 97 81 0 Pol ester/Sam le 31 3. 40 3. 42 1. 20 1. 31 37% 73. 4 73. 4% 66. 7% 0 Polyester/Sample 32 3. 25 3. 33 1. 84 1. 69 54% 67. 9 67. 9% 73. 7% Polyester/Sample 33 3. 10 3. 12 2. 06 2. 19 68% 69. 1 69. 1 % 73. 7oN Table 3: (Average Moisture Transport With Treatment and After Five Launderings)/(Average Moisture Transport With Treatment and No Launderings)

FIGURE 4 is a graphical representation of the ratio of (an Average Moisture Transport With Treatment and After Five Launderings)/ (an Average Moisture Transport With Treatment and No Launderings) data of Table 3 in the form of a variogram represented by contours for a treated textile article as a function of hydrophobic component content in mole percent and hydrophilic oxyalkylene derivative content in weight percent according to an embodiment of the present invention; FIGURE 5 is a graphical representation of the ratio of (an Average Moisture Transport With Treatment and After Five Launderings)/ (an Average Moisture Transport With Treatment and No Launderings) data of Table 3 in the form of a variogram represented by contours for a treated Nylon textile article as a function of hydrophobic component content in mole percent and hydrophilic oxyalkylene derivative content in weight percent according to an embodiment of the present invention; FIGURE 6 is a graphical representation of the ratio of (an Average Moisture Transport With Treatment and After Five Launderings)/ (an Average Moisture Transport With Treatment and No Launderings) data of Table 3 in the form of a variogram represented by contours for a treated polyester textile article as a function of hydrophobic component content in mole percent and hydrophilic oxyalkylene derivative content in weight percent according to an embodiment of the present invention; Table 4: (Average Moisture Transport With Treatment and No Launderings)/(Average Moisture Transport With No Treatment and No Launderings) Moisture Moisture Moisture Moisture. Transport With Transport With Transport With Transport With Transport with..... Treatment and Treatment and Treatment and Treatment and Treatment and No OxyEthylene Hydrophilic Hydrophobic Treated Textile Article Reference No No After Five Home After Five Home Launderings Divided By Derivative OxyAlkylene Component (mole Launderings Launderings Launderings Launderings Transport With No (weight percent) percent) (inches) (inches) wefts, (inches) warps (inches) wefts, Treatment and No (weight percent) warps & wales coarses & fills & wales coarses & fills Launderings 'o=. o 'r at' N'tdrilUnt e eclsScoured 0 50. : ...'0., 90. 0 : 50 0 : 90 :-'I00%-0 0 =- :.. 0 : 0./0. : p ; 0. lo Nyton/Sampie 12. 802. 551801. 90382% 62. 060. 7% 76. 2% Nylon/Sample 4 0. 9 1. 9 0. 8 0. 8 943% 59. 4 49. 7% 85. 7% Nylon/Sample 7 2. 90 2. 65 2. 15 2. 25 396% 68. 1 67. 1% 66. 7% Nylon/Sample 10 2. 50 2. 30 1. 75 1. 70 343% 67. 7 65. 5% 68. 6% Nylon/Sample 11 1. 80 2. 00 1. 40 1. 50 = 271% 75. 7 75. 0% 43. 0% Nylon/Sample 12 2. 25 2. 10 1. 65 1. 45 311% 60. 3 55. 3% 81. 0% Nylon/Sample 14 2. 00 2. 10 1. 40 1. 60 293% 69. 8 66. 5% 66. 0% Nylon/Sample 16 2. 90 2. 75 2. 25 1. 90 404% 63. 6 61. 3% 74. 0% Nylon/Sample 17 1. 80 2. 00 0. 80 1. 00 271% 78. 2 78. 2% 28. 6% Nylon/Sample 18 1. 80 2. 00 0. 80 0. 90 271% 79. 5 79. 5% 19. 0% oi'este'r/Ùntreated Scoused 1. 00 ^'1-. 03 g ~-0. 67, 0. 97-'1'00%'0. 0, , _..... : _. :,... :. : _... Polyester/Sample 2 3. 97 4. 25 4. 25 5. 00 405% 76. 4 76. 4% 33. 3% Polyester/Sample 3 3. 95 4. 25 4. 25 4. 97 404% 70. 2 64. 5% 66. 7% Polyester/Sample 9 3W75 4. 03 4. 00 4. 25 383% 68. 4 65. 1% 66. 7% Polyester/Sample 19 1. 90 2. 40 1. 95 2. 50 212% 62. 2 58. 5% 76. 2% Polyester/Sample 20 2W40 2. 50'2. 45 2. 50 241% 74. 5 74. 5% 42. 9% Polyester/Sample 21 3. 80 3. 90 1. 10 1. 20 379% _ 78. 7 78. 7% 19. 0% Nõme : xiUntreated Scoured,--1. 03'1. 58-'2. 00 2. 03'0. 0-,. Nomex/Sample 3 1. 15 1. 58 2. 10 2. 42 105% 70. 2 64. 5% 66. 7% Nomex/Sample 71. 331. 582. 332. 67111% 68. 167. 1% 66. 7% Table 4: (Average Moisture Transport With Treatment and No Launderings)/(Average Moisture Transport with No Treatment and No Launderings) Moisture Moisture Moisture Moisture Average Moisture Transport With Transport With Transport With Transport With Transport with Treatment and Treatment and Treatment and Treatment and Treatment and No OxyEthylene Yop Hydrophobic Treated Textile Article Reference No No After Five Home After Five Home Launderings Divided By Derivative OxyAlkylene Component (mole Average Moisture Derivative Launderings Launderings Launderings Launderings Transport With No (weight percent) (weight percent) percent) (inches) (inches) wefts, (inches) warps (inches) wefts, Treatment and No warps & wales coarses & fills & wales coarses & fills Launderings N'. lon L : cralUnti=eated Scoure : : 1.. Up. 0 : 75 p p. ;, :, L, :, ; p Nylon-L cra/Sample 10 1. 92 1. 83 67. 7 65. 5% 68. 6% : -o : p O'ntreaied. S6o6i, d" 0. 50 f11...'0 : 90' 0 : 50. _, 0 : 90'. 1U0 0 0. 0- :, 0' : 0 0 Nylon/Sample 22 1. 95 2. 91 0. 80 1. 10 347% 77. 2 77. 2% 50. 0% Nylon/Sample 23 1. 90 2. 84 1. 10 1. 50 339% 75. 2 75. 2% 60. 0% Nvlon/Samole 24 1. 90 2. 78 1. 50 1. 97 334% 73. 9 73. 9% 66. 7% Nylon/Sample 25 1. 97 2. 28 1. 20 2. 03 304% 66. 9 66. 9% 80. 0% Nylon/Sample 26 1. 93 2. 23 1. 50 2. 03 297% 62. 4 62. 4% 85. 0% Nvion/Sample 27 1. 98 2. 50 1. 82 2. 58 320% 54. 9 54. 9% 90. 0% Nvion/Sample 28 0. 75 0. 90 0. 75 0. 90 118% 40 3 40 3% 95. 0% N"Ion/Untreated ;"Scourecl 0. 50--=. U. 90'0 : 50 0. 90 1ti0 /o O. O : v : 0'. 0./0 : 0. 0 % Nylon/Sample 29 1. 97 2. 50 1. 75 1. 98 319% 68. 5 68. 5% 61. 9% N lon/Sam le 30 2. 33 2. 90 1. 42 1. 58 374% 66. 2 66. 2% 65. 6% Nylon/Sample 31 2. 20 2. 70 1. 51 1. 53 350% 73. 4 73. 4% 66. 7% Nylon/Sample 32 2. 25 2. 80 1. 60 1. 90 361% 67. 9 67. 9% 73. 7% Nylon/Sample 33 1. 80 2. 10 1. 30 1. 43 279% 69. 1 69. 1% 73. 7% Nylon/Sample 34 2. 03 2. 75 1. 00 1. 03 341% 65. 4 65. 4% 66. 7% g. :,. w, _,. . o. . _ o °o : P. ol''. esterlUntreated : Scoured 1 : : 00-1 : 03. 0. 67 0. 97''1U0/u-0 : 0 :,. : U. O,/o. 0 : 0./0 Polyester/Sample 31 3. 40 3. 42 1. 20 1. 31 336% 73. 4 73. 4% 66. 7% Polyester/Sample 32 3. 25 3. 33 1. 84 1. 69 324% 67. 9 67. 9% 73. 7% Potyester/Sampte 333. 103. 122. 062. 19306% 69. 1 69. 1% 73. 7%

FIGURE 7 is a graphical representation of the ratio of (Average Moisture Transport With Treatment and No Launderings) / (Average Moisture Transport With No Treatment and No Launderings) data of Table 4 in the form of a variogram represented by contours for a treated textile article as a function of hydrophobic component content in mole percent and hydrophilic oxyalkylene derivative content in weight percent according to an embodiment of the present invention; and FIGURE 8 is a graphical representation of the ratio of (Average Moisture Transport With Treatment and No Launderings) / (Average Moisture Transport With No Treatment and No Launderings) data of Table 4 in the form of a variogram represented by contours for a treated Nylon textile article as a function of hydrophobic component content in mole percent and hydrophilic oxyalkylene derivative content in weight percent according to an embodiment of the present invention; and FIGURE 9 is a graphical representation of the ratio of (Average Moisture Transport With Treatment and No Launderings) / (Average Moisture Transport With No Treatment and No Launderings) data of Table 4 in the form of a variogram represented by contours for a treated polyester textile article as a function of hydrophobic component content in mole percent and hydrophilic oxyalkylene derivative content in weight percent according to an embodiment of the present invention.

EXAMPLE 1

Table 5: Ingredients Used in Making Treatment Agent SAMPLE 1 Molecular Raw Materials Moles Grams Weight Hexamethylenediamine/70% (HMDA/70%) * 116 0.28 47 2, 2'- [1, 2 ethanediylbis (oxy)] bis [ethaneamine] £ 148 0.04 6 Hexanedioic acid* 146 0.40 59 Oxirane, methyl-, polymer with oxirane, bis (2-aminopropyl) ether of a molecular weight-2000 0.10 202 of 2000 Sodium borohydride~ 37. 8 0.001 0.03 Note: Weight of Hexamethylesze Diamine based on 70% active material *Hexametlzylenediamine/70% and Hexanedioic acid (Solutia) 2, 2'-[1, 2 ethanediylbis (oxy)] bix [ethaneamine] and Oxirane, methyl-, polymer with oxirane, bis (2-aminopropyl) ether (Huntsman) sodium borohydride (Rohm & Haas Company ; Venpure Powder) A charge of hexamethylenediamine/70%, 2, 2'- [1, 2 ethanediylbis (oxy)] bis [cthaneamine], and sodium borohydride in about the proportions noted in Table 5 was mixed in a reactor for about 15 minutes. Then a charge of hexanedioic acid in about the proportion noted in Table 5 was added steadily to the mixture. During the addition charge of hexanedioic acid, the combination was heated to between about 350°F and 400°F and then held at between about 350°F and 400°F for about one hour. At between about 350°F and 400°F a charge of oxirane, methyl-, polymer with oxirane, bis (2- aminopropyl) ether in about the proportion noted in Table 5 was slowly added. The resultant combination was heated to between about 440°F and 490°F and held at temperature for about three hours. The resultant reaction product may be retained as a flake product or dispersed as molten material in water.

EXAMPLE 2

Table 6: Ingredients Used in Making Treatment Agent SAMPLE 2 Molecular Raw Materials Moles Grams Weight Hexamethylenediamine/70% (HMDA/70%) 116 0.07 11 2, 2'- [1, 2 ethanediylbis (oxy) ] bis [ethaneamine] 148 0.00 0.00 Benzenedicarboxylic acid@ 166 0.19 31 Oxirane, methyl-, polymer with oxirane, bis (2-aminopropyl) ether-2000 0.13 261 of a molecular weight of 2000 Sodium borohydride 37. 8 0. 001 0. 03 Note: Weight of Ilexamethyleue Diamine based on 70% active material @Benzenedicarboxylic acid (Amoco TA-22) A charge of hexamethylenediamine/70%, 2, 2'- [1, 2 ethanediylbis (oxy) ] bis [ethaneamine], and sodium borohydride in about the proportions noted in Table 6 was mixed in a reactor for about 15 minutes. Then a charge of benezenedicarboxylic acid in about the proportion noted in Table 6 was added steadily to the mixture. This combination was heated to between about 350°F and 400°F and held at between about 350°F and 400°F for about one hour. At between about 350°F and 400°F a charge of oxirane, methyl-, polymer with oxirane, bis (2-aminopropyl) ether in about the proportion noted in Table 6 was slowly added. Then, the resultant combination was heated to between about 460°F and 520°F and held at temperature for about three hours. The resultant reaction product, when molten, is dispersed in water.

EXAMPLE 3

Table 7: Ingredients Used in Making Treatment Agent SAMPLE 3 Molecular Raw Materials Moles Grams Weight Hexamethylenediamine/70% (HMDA/70%) 116 0. 03 5 2, 2'-[1,2 ethanediylbis (oxy)] bis [ethaneamine] 148 0.19 28 Benzenedicarboxylic acid 166 0. 31 52 Oxirane, methyl-, polymer with oxirane, bis (2-aminopropyl) ether of a #2000 0.11 217 molecular weight of 2000 Sodium borohydride 37. 8 0. 001 0. 03 Note: Weight of HexametAlylene Diamine based on 70% active materal A charge of hexamethylenediamine/70%, 2, 2'- [1, 2 ethanediylbis (oxy) ] bis [ethaneamine], and sodium borohydride in about the proportions noted in Table 7 was mixed in a reactor for about 15 minutes. Then a charge of benzenedicarboxylic acid in about the proportion noted in Table 7 was added steadily to the mixture. This combination was heated to between about 350°F and 400°F and held at between about 350°F and 400°F for about one hour. At between about 350°F and 400°F a charge of oxirane, methyl-, polymer with oxirane, bis (2-aminopropyl) ether in about the proportion noted in Table 7 was slowly added. Then, the resultant combination was heated to between about 440°F and 530°F and held at temperature for about three hours. The resultant reaction product, when molten, is dispersed in water.

EXAMPLE 4

Table 8: Ingredients Used in Making Treatment Agent SAMPLE 4 Molecular Raw Materials Moles Grams Weight Hexamethylenediamine/70% (HMDA/70%) 116 0. 72 120 2, 2'- [1, 2 ethanediylbis (oxy) ] bis [ethaneamine] 148 0.09 13 Hexanedioic acid 146 0.90 132 Oxirane, methyl-, polymer with oxirane, bis (2-aminopropyl) ether-2000 0.14 271 of a molecular weight of 2000 Sodium borohydride 37.8 0.001 0.05 Note: Weight ofhexamethylene Diamitie based on 70% active material A charge of hexamethylenediamine/70%, 2, 2'- [1, 2 ethanediylbis (oxy) ] bis [ethaneamine], and sodium borohydride in about the proportions noted in Table 8 was mixed in a reactor for about 15 minutes. Then a charge of hexanedioic acid in about the proportion noted in Table 8 was added steadily to the mixture. This combination was heated to between about 350°F and 400°F and held between at about 350°F and 400°F for about one hour. At between about 350°F and 400°F a charge of oxirane, methyl-, polymer with oxirane, bis (2-aminopropyl) ether in about the proportion noted in Table 8 was slowly added. Then, the resultant combination was heated to between about 440°F and 490°F and held at temperature for about three hours. The resultant reaction product may be retained as a flake product or dispersed as molten material in water.

EXAMPLE 5

Table 9: Ingredients Used in Making Treatment Agent SAMPLE 5 molecular Raw Materials Moles Grams Weight Hexamethylenediamine/70% (HMDA/70%) 116 0.11 18 2, 2'- [1, 2 ethanediylbis (oxy)] bis [ethaneamine] 148 0. 11 16 Benzenedicarboxylic acid 166 0. 16 26 Oxirane, methyl-, polymer with oxirane, bis (2-aminopropyl) ether-2000 0.11 221 of a molecular weight of 2000 Sodium borohydride 37.8 0.001 0.03 Hexanedioic acid 146 0. 16 23 Note: Weight of Hexamethylene Diamine based on 70% active material A charge of hexamethylenediamine/70%, 2, 2'- [1, 2 ethanediylbis (oxy) ] bis [ethaneamine], and sodium borohydride in about the proportions noted in Table 9 was mixed in a reactor for about 15 minutes. Then a charge of benzenedicarboxylic acid in about the proportion noted in Table 9 was added steadily to the mixture. This combination was mixed for about 30 minutes at about 240°F, heated to between about 350°F and 400°F and held at between about 350°F and 400°F for about one hour. At between about 350°F and 400°F, a charge of oxirane, methyl-, polymer with oxirane, bis (2-aminopropyl) ether in about the proportion noted in Table 9 was slowly added. Then, the resultant combination was heated to between about 440°F and 490°F and held at temperature for about three hours. The resultant reaction product, when molten, is dispersed in water.

EXAMPLE 6

Table 10: Ingredients Used in Making Treatment Agent SAMPLE 6 Molecular Raw Materials Molecular Moles Grams Weight Hexamethylenediamine/70% (HMDA/70%) 116 1.29 214 2, 2'- [1, 2 ethanediylbis (oxy) ] bis [ethaneamine] 148 0.21 32 Hexanedioic acid 146 2.15 314 Oxirane, methyl-, polymer with oxirane, bis (2-aminopropyl) ether-2000 0.75 1505 of a molecular weight of 2000 Sodium borohydride 37. 8 0. 005 0. 20 Note: Weight of Hexamethylene Damine based on 70°/O active material A charge of hexamethylenediamine/70%, 2, 2'-[1, 2 ethanediylbis (oxy) ] bis [ethaneamine], sodium borohydride, oxirane, methyl-, polymer with oxirane, bis (2- aminopropyl) ether and hexanedioic acid in about the proportions noted in Table 10 was mixed in a reactor. This combination was heated to between about 440°F and 490°F and held at temperature for about four hours. The resultant reaction product may be retained as a flake product or dispersed as molten material in water..

EXAMPLE 7

Table 11: Ingredients Used in Making Treatment Agent SAMPLE 7 Molecular Raw Materials Moles Grams Weight Hexamethylenediamine/70% (HMDA/70%) 116 1.29 214 2, 2'- [1, 2 ethanediylbis (oxy) ] bis [ethaneamine] 148 0. 21 32 Hexanedioic acid 146 2.15 314 Oxirane, methyl-, polymer with oxirane, bis (2-aminopropyl) ether-2000 0.75 1505 of a molecular weight of 2000 Sodium borohydride 37. 8 0. 005 0. 20 Note: Weight of Hexamethylene Diamine based on 70% active material A charge of hexamethylenediamine/70%, 2, 2'- [1, 2 ethanediylbis (oxy) ] bis [ethaneamine], and sodium borohydride in about the proportions noted in Table 11 was mixed in a reactor for about 15 minutes. Then a charge of hexanedioic acid in about the proportions noted in Table 11 was added steadily to the mixture. This combination was heated to between about 350°F and 400°F, held at between about 350°F and 400°F for about one hour and then heated to between about 440°F and 490°F. During the heating a charge of oxirane, methyl-, polymer with oxirane, bis (2-aminopropyl) ether in about the proportion noted in Table 11 was slowly added. The resultant combination was held at between about 440°F and 490°F for about three hours. The resultant reaction product may be retained as a flake product or dispersed as molten material in water.

EXAMPLE 8

Table 12: Ingredients Used in Making Treatment Agent SAMPLE 8 Molecular Raw Materials Moles Pounds Weight Hexamethylenediamine/70% (HMDA/70%) 116 0.. 13 21 2, 2'- [1, 2 ethanediylbis (oxy) ] bis [ethaneamine] 148 0.02 3 Benzenedicarboxylic acid 166 0. 21 35 Oxirane, methyl-, polymer with oxirane, bis (2-aminopropyl) ether-2000 0.07 147 of a molecular weight of 2000 Sodium borohydride 37. 8 0. 001 0. 02 Note : Weight of Hexamethylene Diamine based on 70% active material A charge ofhexamethylenediamine/70%, 2, 2'- [1, 2 ethanediylbis (oxy) ] bis [cthaneamine], and sodium borohydride in about the proportions noted in Table 12 was mixed in a reactor for about 15 minutes. Then a charge of benzenedicarboxylic acid in about the proportion noted in Table 12 was added steadily to the mixture. This combination was heated to between about 350°F and 400°F and held at between about 350°F and 400°F for about one hour. At between about 350°F and 400°F a charge of oxirane, methyl-, polymer with oxirane, bis (2-aminopropyl) ether in about the proportion noted in Table 12 was slowly added. Then, the resultant combination was heated to between about 490°F and 520°F and held at temperature for about three hours. The resultant reaction product may be retained as a flake product or dispersed as molten material in water.

EXAMPLE 9

Table 13: Ingredients Used in Making Treatment Agent SAMPLE 9 Molecular Raw Materials Moles Grams Weight Hexamethylenediamine/70% (HMDA/70%) 116 0.07 12 2, 2'- [1, 2 ethanediylbis (oxy)] bis [ethaneamine] 148 0.07 11 Benzenedicarboxylic acid 166 0.. 21 35 Oxirane, methyl-, polymer with oxirane, bis (2- aminopropyl) ether of a molecular weight of-2000 0.07 146 2000 Sodium borohydride 37. 8 0.001 0. 02 Note: Weight it of Hexamethylene Diamine based on 70% active material A charge of hexamethylenediamine/70%, 2, 2'- [1, 2 ethanediylbis (oxy) ] bis [ethaneamine], and sodium borohydride in about the proportions noted in Table 13 was mixed in a reactor for about 15 minutes. Then a charge of benzenedicarboxylic acid in about the proportion noted in Table 13 was added steadily to the mixture. This combination was heated to between about 350°F and 400°F and held at between about 350°F and 400°F for about one hour. At between about 350°F and 400°F a charge of oxirane, methyl-, polymer with oxirane, bis (2-aminopropyl) ether in about the proportion noted in Table 13 was slowly added. Then, the resultant combination was heated to between about 490°F and 530°F and held at temperature for about three hours. The resultant reaction product, when molten, is dispersed in water.

EXAMPLE 10

Table 14: Ingredients Used in Making Treatment Agent SAMPLE 10 Molecular Raw Materials Moles Grams Weight Hexamethylenediamine/70% (HMDA/70%) 116 0.14 24 2, 2'- [1, 2 ethanediylbis (oxy) ] bis [ethaneamine] 148 0. 06 9 Hexanedioic acid 146 0.29 42 Oxirane, methyl-, polymer with oxirane, bis (2- aminopropyl) ether of a molecular weight of-2000 0.09 183 2000 Sodium borohydride 37.8 0.25 Note: Weight of Hexamethylene Diamine based on 70% active material A charge of hexamethylenediamine/70%, 2, 2'- [1, 2 ethanediylbis (oxy)] bis [ethaneamine], and sodium borohydride in about the proportions noted in Table 14 was mixed in a reactor for about 15 minutes. Then a charge of hexanedioic acid in about the proportion noted in Table 14 was added steadily to the mixture. This combination was heated to between about 350°F and 400°F and held at between about 350°F and 400°F for about one hour. At between about 350°F and 400°F a charge of oxirane, methyl-, polymer with oxirane, bis (2-aminopropyl) ether in about the proportion noted in Table 13 was slowly added. Then, the resultant combination was heated to between about 440°F and 490°F and held at temperature for about three hours. The resultant reaction product may be retained as a flake product or dispersed as molten material in water.

EXAMPLE 11 Table 15: Ingredients Used in Making Treatment Agent SAMPLE 11 Molecular Raw Materials Moles Grams Weight Hexamethylenediamine (HMDA) 116 0.12 14 2, 2'- [1, 2 ethanediylbis (oxy) ] bis [ethaneamine] 148 0. 04 6 Hexanedioic acid 146 0.37 55 Oxirane, methyl-, polymer with oxirane, bis (2-aminopropyl) ether-2000 0.21 426 of a molecular weight of 2000

A charge of hexamethylenediamine, 2, 2'- [1, 2 ethanediylbis (oxy) ] bis [ethaneamine], and sodium borohydride in about the proportions noted in Table 15 was mixed in a reactor for about 15 minutes. Then a charge of hexanedioic acid in about the proportion noted in Table 15 was added steadily to the mixture. This combination was heated to between about 350°F and 400°F and held at between about 350°F and 400°F for about one hour. At between about 350°F and 400°F a charge of oxirane, methyl-, polymer with oxirane, methyl-, polymer with oxirane, bis (2-aminopropyl) ether in about the proportion noted in Table 15 was slowly added. Then, the resultant combination was heated to between about 440°F and 490°F and held at temperature for about three hours.

The resultant reaction product, when molten, is dispersed in water.

EXAMPLE 12

Table 16: Ingredients Used in Making Treatment Agent SAMPLE 12 Molecular Raw Materials Moles Grams Weight, Hexamethylenediamine/70% (HMDA/70%) 116 0. 19 32 2, 2'- [1, 2 ethanediylbis (oxy) ] bis [ethaneamine] 148 0.13 20 Hexanedioic acid 146 0.38 56 Oxirane, methyl-, polymer with oxirane, bis (2-aminopropyl) ether-2000 0. 08 152 of a molecular weight of 2000 Sodium borohydride 37. 8 0.007 0.25 Note: Weight of Hexamethylene Diamine based on 70% active material A charge of hexamethylenediamine/70%, 2, 2'- [1, 2 ethanediylbis (oxy) ] bis [ethaneamine], and sodium borohydride in about the proportions noted in Table 16 was mixed in a reactor for about 15 minutes. Then a charge of hexanedioic acid in about the proportion noted in Table 16 was added steadily to the mixture. This combination was heated to between about 350°F and 400°F and held at between about 350°F and 400°F for about one hour. At between about 350°F and 400°F a charge of oxirane, methyl-, polymer with oxirane, bis (2-aminopropyl) ether in about the proportion noted in Table 16 was slowly added. Then, the resultant combination was heated to between about 440°F and 490°F and held at temperature for about three hours. The resultant reaction product may be retained as a flake product or dispersed as molten material in water.

EXAMPLE 13

Table 17: Ingredients Used in Making Treatment Agent SAMPLE 13 Molecular Raw Materials Moles Grams Weight lIexamethylenediamine/70% (HMDA/70%) 116 0.32 54 2, 2'- [1, 2 ethanediylbis (oxy) ] bis [ethaneamine] 148 0.05 7 Hexanedioic acid 146 0.49 71 Oxirane, methyl-, polymer with oxirane, bis (2-aminopropyl) ether-2000 0.09 185 of a molecular weight of 2000 Sodium borohydride 37. 8 0. 001 0. 03 Note: YYeight ofHexamethylene Diamine based on 70% active material A charge of hexamethylenediamine/70%, 2, 2'- [1, 2 ethanediylbis (oxy) ] bis [ethaneamine], and sodium borohydride in about the proportions noted in Table 5 was mixed in a reactor for about 15 minutes. Then a charge of hexanedioic acid in about the proportion noted in Table 5 was added steadily to the mixture. This combination was then heated to between about 350°F and 400°F and held at between about 350°F and 400°F for about one hour. At between about 350°F and 400°F a charge of oxirane, methyl-, polymer with oxirane, bis (2-aminopropyl) ether in about the proportion noted in Table 5 was slowly added. Then, the resultant combination was heated to between about 440°F and 490°F and held at temperature for about three hours. The resultant reaction product may be retained as a flake product or dispersed as molten material in water.

EXAMPLE 14 Table 18: Ingredients Used in Making Treatment Agent SAMPLE 14 molecular Raw Materials Moles Grams Weight Hexamethylenediamine (HMDA) 116 0.18 21 2, 2'- [1, 2 ethanediylbis (oxy) ] bis [ethaneamine] 148 0.18 27 Hexanedioic acid 146 0.55 80 Oxirane, methyl-, polymer with oxirane, bis (2- aminopropyl) ether of a molecular weight of-2000 0.19 372 2000

A charge of hexamethylenediarnine, 2, 2'- [1, 2 ethanediylbis (oxy) ] bis [ethaneamine], and sodium borohydride in about the proportions noted in Table 18 was mixed in a reactor for about 15 minutes. Then a charge of hexanedioic acid in about the proportion noted in Table 18 was added steadily to the mixture. This combination was heated to between about 350°F and 400°F and held at between about 350°F and 400°F for about one hour. At between about 350°F and 400°F a charge of oxirane, methyl-, polymer with oxirane, bis (2-aminopropyl) ether in about the proportion noted in Table 18 was slowly added. Then, the resultant combination was heated to between about 440°F and 490°F and held at temperature for about three hours. The resultant reaction product may be retained as a flake product or dispersed as molten material in water.

EXAMPLE 15

Table 19: Ingredients Used in Making Treatment Agent SAMPLE 15 molecular Raw Materials Moles Grams Weight Hexamethylenediamine/70% (HMDA/70%) 116 1. 84 214 2, 2'- [1, 2 ethanediylbis (oxy) ] bis [ethaneamine] 148 0.21 32 Hexanedioic acid 146 2.15 314 Oxirane, methyl-, polymer with oxirane, bis (2-aminopropyl) ether-2000 0.75 1505 of a molecular weight of 2000 Sodium borohydride 37.8 0. 005 0. 20 Note : Weight of Hexamethylene Diamine based on 70% active material A charge of hexamethylenediamine/70%, 2, 2'- [1, 2 ethanediylbis (oxy) ] bis [ethaneamine], sodium borohydride, oxirane, methyl-, polymer with oxirane, bis (2- aminopropyl) ether and hexanedioic acid in about the proportions noted in Table 19 was mixed in a reactor. This combination was heated to between about 300°F and 350°F and held at between about 300°F and 350°F for about three hours. Then, the resultant combination was heated to between about 440°F and 490°F and held at temperature for about four hours. The resultant reaction product may be retained as a flake product or dispersed as molten material in water.

EXAMPLE 16

Table 20: Ingredients Used in Making Treatment Agent SAMPLE 16 Molecular Raw Materials Moles Grams Weight Hexamethylenediamine/70% (HMDA/70%) 116 0.18 30 2, 2'- [1, 2 ethanediylbis (oxy) ] bis [ethaneamine] 148 0. 06 9 Hexanedioic acid 146 0.34 50 Oxirane, methyl-, polymer with oxirane, bis (2-aminopropyl) ether-2000 0.08 170 of a molecular weight of 2000 Sodium borohydride 37.8 0.005 0.20 Note: Weight of Hexametlaylene Diamine based on 70% active material A charge of hexamethylenediamine/70%, 2, 2'- [ 1, 2 ethanediylbis (oxy) ] bis [ethaneamine], sodium borohydride, oxirane, methyl-, polymer with oxirane, bis (2- aminopropyl) ether and hexanedioic acid in about the proportions noted in Table 20 was mixed in a reactor. This combination was heated to between about 350°F and 400°F and held at between about 350°F and 400°F for about one hour. Then, the resultant combination was heated to between about 440°F and 490°F and held at temperature for about three hours. The resultant reaction product may be retained as a flake product or dispersed as molten material in water.

EXAMPLE 17

Table 21 : Ingredients Used in Making Treatment Agent SAMPLE 17 molecular Raw Materials Moles Grams Weight Hexamethylenediamine/70% (HMDA/70%) 116 0.05 9 2, 2'- (1, 2 ethanediylbis (oxy) ] bis [ethaneamine] 148 0 0 Hexanedioic acid 146 0.18 26 Oxirane, methyl-, polymer with oxirane, bis (2-aminopropyl) ether-2000 0.13 268 of a molecular weight of 2000 Sodium borohydride 37. 8 0. 005 0. 20 Note: Weight of Hexamethylene Diamine based on 70% active material A charge of hexamethylenediamine/70% and sodium borohydride in about the proportions noted in Table 21 was mixed in a reactor for about 15 minutes. Then a charge of hexanedioic acid in about the proportion noted in Table 21 was added steadily to the mixture. During the addition of the charge of hexanedioic acid, the combination was heated to between about 350°F and 400°F and then held at between about 350°F and 400°F for about one hour. Then, oxirane, methyl-, polymer with oxirane, bis (2- aminopropyl) ether in about the proportion noted in Table 21 was added slowly. The resultant combination was heated to between about 440°F and 490°F and held at temperature for about three hours. The resultant reaction product, when molten, is dispersed in water.

EXAMPLE 18

Table 22: Ingredients Used in Making Treatment Agent SAMPLE 18 Molecular Raw Materials Moles Grams Weight Hexamethylenediamine/70% (HMDA/70%) 116 0.03 5 2, 2'- [1, 2 ethanediylbis (oxy) ] bis [ethaneamine] 148 0 0 Hexanedioic acid 146 0.16 23 Oxirane, methyl-, polymer with oxirane, bis (2- aminopropyl) ether of a molecular weight of-2000 0.14 273 2000 Sodium borohdyride 37. 8 0. 005 0. 20 Note : Weight of Hexamethylene Diamine based on 70% active material A charge of hexamethylenediamine/70% and sodium borohydride in about the proportions noted in Table 22 was mixed in a reactor for about 15 minutes. Then a charge of hexanedioic acid in about the proportion noted in Table 22 was added steadily to the mixture. During the addition charge of hexanedioic acid, the combination was heated to between about 350°F and 400°F and then held at between about 350°F and 400°F for about one hour. Then, oxirane, methyl-, polymer with oxirane, bis (2- aminopropyl) ether in about the proportion noted in Table 22 was added slowly. The resultant combination was heated to between about 440°F and 490°F and held at temperature for about three hours. The resultant reaction product, when molten, is dispersed in water.

EXAMPLE 19

Table 23: Ingredients Used in Making Treatment Agent SAMPLE 19 Molecular Raw Materials Moles Grams Weight Hexamethylenediamine/70% (HMDA/70%) 116 0.20 32 2, 2'- [1, 2 ethanediylbis (oxy) ] bis [ethaneamine] 148 0.12 17 Benzenedicarboxylic acid 166 0.39 65 oxirane, methyl-, polymer with oxirane, bis (2-aminopropyl) ether-2000 0.10 195 of a molecular weight of 2000, Sodium borohydride 37. 8 0.008 0. 30 Note: Weight of Hexamethylene Diamine bnsed on 70% active material A charge of hexamethylenediamine/70%, 2, 2'- [1, 2 ethanediylbis (oxy) ] bis [ethaneamine], and sodium borohydride in about the proportions noted in Table 23 was mixed in a reactor for about 15 minutes. After heating to about 240°F, a charge of benzenedicarboxylic acid in about the proportion noted in Table 23 was added steadily to the mixture. The combination was heated to between about 450°F and 490°F and then held at between about 450°F and 490°F for about one hour. Then, oxirane, methyl-, polymer with oxirane, bis (2-aminopropyl) ether in about the proportion noted in Table 23 was added slowly while continuing to hold at about 450°F and 490°F. The resultant combination was heated to between about 490°F and 540°F and held at the about 490°F and 540°F temperature for about three hours. The resultant reaction product may be retained as a flake product or dispersed in water.

EXAMPLE 20

Table 24: Ingredients Used in Making Treatment Agent SAMPLE 20 Molecular Raw Materials Moles Grams Weight Hexamethylenediamine/70% (HMDA/70%) 116 0.10 16 Benzenedicarboxylic acid 166 0.21 35 Oxirane, methyl-, polymer with oxirane, bis (2-aminopropyl) ether-2000 0.13 254 of a molecular weight of 2000, Sodium borohydride 37.8 0.008 0.03 Hypophosphorus acid/50% 65. 99 0. 005 0. 30 Note Weight of Heucamethylene Diamine based on 70% active material A charge of hexamethylenediamine/70% and 2, 2'- [1, 2 ethanediylbis (oxy) ] bis [ethaneamine] in about the proportions noted in Table 24 was mixed in a reactor for about 15 minutes. A charge of sodium borohydride followed by a charge of benzenedicarboxylic acid, both in about the proportions noted in Table 24, were added steadily to the mixture. The combination was heated to between about 450°F and 490°F and then held at between the about 450°F and 490°F temperature for about one hour.

Then, oxirane, methyl-, polymer with oxirane, bis (2-aminopropyl) ether in about the proportion noted in Table 24 was added slowly while continuing to hold at at between the about 450°F and 490°F temperature. The resultant combination was heated to between about 490°F and 520°F and held at between the about 490°F and 520°F temperature for about three hours. The resultant reaction product, when molten, is dispersed in water.

EXAMPLE21

Table 25: Ingredients Used in Making Treatment Agent SAMPLE 21 Molecular Raw Materials Moles Grams Weight Hexamethylenediamine/70% (HMDA/70%) 116 0.03 5 Benzenedicarboxylic acid 166 0.16 26 Oxirane, methyl-, polymer with oxirane, bis (2- aminopropyl) ether of a molecular weight of 2000 0.14 270 2000, Sodium borohydride 37.8 0.001 0.03 Hypophosphorus acid/50% 65. 99 0. 005 0. 30 Note : Weight of Hexametlzylene Diamine based on 70% active material A charge ofhexamethylenediamine/70%, and sodium borohydride in about the proportions noted in Table 25 was mixed in a reactor for about 15 minutes. A charge of benzenedicarboxylic acid in about the proportion noted in Table 25 followed by a charge of hypophosphorus acid/50% in about the proportions noted in Table 25 was added to the mixture steadily. The combination was heated to between about 450°F and 490°F and then held at between about 450°F and 490°F for about one hour. Then, oxirane, methyl-, polymer with oxirane, bis (2-aminopropyl) ether in about the proportion noted in Table 25 was added slowly while continuing to hold at about 450°F and 490°F. The resultant combination was heated to between about 490°F and 520°F and held at temperature for about three hours. The resultant reaction product, when molten, is dispersed in water.

EXAMPLE 22

Table 26: Ingredients Used in Making Treatment Agent SAMPLE 22 Molecular Raw Materials Moles Grams Weight Caprolactam& 113 0.13 15 Hexanedioic acid 146 0. 13 19 Oxirane, methyl-, polymer with oxirane, bis (2-aminopropyl) ether-2000 0.13 266 of a molecular weight of 2000, Sodium borohydride 37.8 0.001 0.03 Hypophosphorus acidl50% # 65.99 0.005 0.30 Distilled Water 18 0.83 15 Note: &Caprolactam (Honeywell) &num Hypophosphoric (Oxy Chemical) A charge of caprolactam, water and sodium borohydride in about the proportions noted in Table 26 was mixed in a reactor for about 15 minutes. A charge hexanedioic acid in about the proportion noted in Table 26 followed by a charge of hypophosphorus acid/50% in about the proportion noted in Table 26 was added to the mixture steadily.

The combination was heated to between about 450°F and 490°F and then held at between about 450°F and 490°F for about one hour. Then, oxirane, methyl-, polymer with oxirane, bis (2-aminopropyl) ether in about the proportion noted in Table 26 was added slowly while continuing to hold at about 450°F and 490°F. The resultant combination was heated to between about 520°F and 540°F and held at temperature for about three hours. The resultant reaction product, when molten, is dispersed in water.

EXAMPLE 23 Table 27: Ingredients Used in Making Treatment Agent SAMPLE 23 Raw Materials Molecular Moles Grams Weight Caprolactam 113 0.19 22 Hexanedioic acid 146 0.13 19 Oxirane, methyl-, polymer with oxirane, bis (2-aminopropyl) ether-2000 0.13 259 of a molecular weight of 2000, Sodium borohydride 37.8 0.001 0.03 Hypophosphorus acid/50% 65.99 0.01 1 Distilled Water 18 0.83 15

A charge of caprolactam, water and sodium borohydride in about the proportions noted in Table 27 was mixed in a reactor for about 15 minutes. A charge hexanedioic acid in about the proportion noted in Table 27 followed by a charge of hypophosphorus acid/50% in about the proportion noted in Table 27 was added to the mixture steadily.

The combination was heated to between about 450°F and 490°F and then held at between about 450°F and 490°F temperature for about one hour. Then, oxirane, methyl-, polymer with oxirane, bis (2-aminopropyl) ether in about the proportion noted in Table 27 was added slowly while continuing to hold at about 450°F and 490°F. The resultant combination was heated to between about 520°F and 540°F and held at temperature for about three hours. The resultant reaction product, when molten, is dispersed in water.

EXAMPLE 24 Table 28: Ingredients Used in Making Treatment Agent SAMPLE 24 molecular Raw Materials Weight Moles Grams Weight Caprolactam 113 0.26 29 Hexanedioic acid 146 0.11 16 Oxirane, methyl-, polymer with oxirane, bis (2-aminopropyl) ether of a molecular weight of-2000 0.13 255 2000, Sodium borohydride 38 0.001 0.03 Hypophosphorus acid/50% 65.99 0.005 0.30 Distilled Water 18 0.83 15

A charge of caprolactam, water and sodium borohydride in about the proportions noted in Table 28 was mixed in a reactor for about 15 minutes. A charge hexanedioic acid in about the proportion noted in Table 28 followed by a charge of hypophosphorus acid/50% in about the proportion noted in Table 28 was added to the mixture steadily.

The combination was heated to between about 450°F and 490°F and then held at between about 450°F and 490°F temperature for about one hour. Then, oxirane, methyl-, polymer with oxirane, bis (2-aminopropyl) ether in about the proportion noted in Table 28 was added slowly while continuing to hold at about 450°F and 490°F. The resultant combination was heated to between about 520°F and 550°F and held at temperature for about three hours. The resultant reaction product, when molten, is dispersed in water.

EXAMPLE 25 Table 29: Ingredients Used in Making Treatment Agent SAMPLE 25 Molecular Raw Materials Moles Grams Weight Caprolactam 113 0.47 52 Hexanedioic acid 146 0.12 17 Oxirane, methyl-, polymer with oxirane, bis (2-aminopropyl) ether-2000 0.12 231 of a molecular weight of 2000, Sodium borohydride 37.8 0.001 0.03 Hypophosphorus acid/50% 65.99 0.005 0.30 Distilled Water 18 0.83 15

A charge of caprolactam, water and sodium borohydride in about the proportions noted in Table 29 was mixed in a reactor for about 15 minutes. A charge hexanedioic acid in about the proportion noted in Table 29 followed by a charge of hypophosphorus acid/50% in about the proportion noted in Table 29 was added to the mixture steadily.

The combination was heated to between about 450°F and 490°F and then held at between about 450°F and 490°F temperature for about one hour. Then, oxirane, methyl-, polymer with oxirane, bis (2-aminopropyl) ether in about the proportion noted in Table 29 was added slowly while continuing to hold at about 450°F and 490°F. The resultant combination was heated to between about 520°F and 540°F and held at temperature for about three hours. The resultant reaction product, when molten, is dispersed in water.

EXAMPLE 26 Table 30: Ingredients Used in Making Treatment Agent SAMPLE 26 Molecular Raw Materials Moles Grams Weight Caprolactam 113 0.61 69 Hexanedioic acid 146 0.11 16 Oxirane, methyl-, polymer with oxirane, bis (2-aminopropyl) ether-2000 0.11 215 of a molecular weight of 2000, Sodium borohydride 37. 8 0.001 0.03 Hypophosphorus acid/50% 65.99 0.01 1 Distilled Water 18 0.83 15

A charge of caprolactam, water and sodium borohydride in about the proportions noted in Table 30 was mixed in a reactor for about 15 minutes. A charge hexanedioic acid in about the proportion noted in Table 30 followed by a charge of hypophosphorus acid/50% in about the proportion noted in Table 30 was added to the mixture steadily.

The combination was heated to between about 450°F and 490°F and then held at between about 450°F and 490°F temperature for about one hour. Then, oxirane, methyl-, polymer with oxirane, bis (2-aminopropyl) ether in about the proportion noted in Table 30 was added slowly while continuing to hold at about 450°F and 490°F. The resultant combination was heated to between about 520°F and 550°F and held at temperature for about three hours. The resultant reaction product, when molten, is dispersed in water.

EXAMPLE 27 Table 31: Ingredients Used in Making Treatment Agent SAMPLE 27 Molecular Raw Materials Moles Grams Weight Caprolactam 113 0.85 96 Hexanedioic acid 146 0.1 14 Oxirane, methyl-, polymer with oxirane, bis (2-aminopropyl) ether-2000 0.1 190 of a molecular weight of 2000, Sodium borohydride 37. 8 0.001 0.03 Hypophosphorus acid/50% 65.99 0. 005 1 Distilled Water 18 0. 83 15

A charge of caprolactam, water and sodium borohydride in about the proportions noted in Table 31 was mixed in a reactor for about 15 minutes. A charge hexanedioic acid in about the proportion noted in Table 31 followed by a charge of hypophosphorus acid/50% in about the proportion noted in Table 31 was added to the mixture steadily.

The combination was heated to between about 450°F and 490°F and then held at between about 450°F and 490°F temperature for about one hour. Then, oxirane, methyl-, polymer with oxirane, bis (2-aminopropyl) ether in about the proportion noted in Table 31 was added slowly while continuing to hold at about 450°F and 490°F. The resultant combination was heated to between about 520°F and 550°F and held at temperature for about three hours. The resultant reaction product, when molten, is dispersed in water.

EXAMPLE 28 Table 32: Ingredients Used in Making Treatment Agent SAMPLE 28 lVlolecular Raw Materials Moles Grams Weight Caprolactam 113 1.33 150 Hexanedioic acid 146 0.07 10 Oxirane, methyl-, polymer with oxirane, bis (2-aminopropyl) ether-2000 0.07 140 of a molecular weight of 2000, Sodium borohydride 37.8 0.001 0.03 Hypophosphorus acid/50% 65.99 0.01 1 Distilled Water 18 0.83 15

A charge of caprolactam, water and sodium borohydride in about the proportions noted in Table 32 was mixed in a reactor for about 15 minutes. A charge hexanedioic acid in about the proportion noted in Table 32 followed by a charge of hypophosphorus acid/50% in about the proportion noted in Table 32 was added to the mixture steadily.

The combination was heated to between about 450°F and 490°F and then held at between about 450°F and 490°F temperature for about one hour. Then, oxirane, methyl-, polymer with oxirane, bis (2-aminopropyl) ether in about the proportion noted in Table 32 was added slowly while continuing to hold at about 450°F and 490°F. The resultant combination was heated to between about 520°F and 550°F and held at temperature for about three hours. The resultant reaction product, when molten, is dispersed in water.

EXAMPLE 29

Table 33: Ingredients Used in Making Treatment Agent SAMPLE 29 Molecular Raw Materials Moles Grams Weight Hexamethylenediamine/70% (HMDA/70%) 116 0.20 33 Methoxypoly (oxyethylene/oxypropylene)-2-1000 0 02 15 propylamine of a molecular weight of 1000, Hexanedioic acid 146 0.31 45 Oxirane, methyl-, polymer with oxirane, bis (2-aminopropyl) ether-2000 0.11 216 of a molecular weight of 2000, Sodium borohydride 37. 8 0. 001. 03 Note: Weight of Hexamethylene Diamine based on 70% active material A charge of methoxypoly (oxyethylene/oxypropylene)-2-propylamine, hexamethylenediamine/70% and sodium borohydride in about the proportions noted in Table 33 was mixed in a reactor for about 15 minutes. A charge hexanedioic acid in about the proportion noted in Table 33 was added to the mixture steadily. The combination was heated to between about 350°F and 400°F and then held at between about 350°F and 400°F temperature for about one hour. Then, oxirane, methyl-, polymer with oxirane, bis (2-aminopropyl) ether in about the proportion noted in Table 33 was added slowly while continuing to hold at about 350°F and 400°F. The resultant combination was heated to between about 440°F and 490°F and held at temperature for about three hours. The resultant reaction product may be retained as a flake product or dispersed as molten material in water.

EXAMPLE 30

Table 34: Ingredients Used in Making Treatment Agent SAMPLE 30 Molecular . Raw Materials Moles Grams Weight Hexamethylenediamine/70% (HMDA/70%) 116 0.19 32 Polyoxy (methyl-1,2-ethanediyl), alpha-hydro- omega- (2-aminomethylethoxy)- ether with 2-400 0.02 9 ethyl-2- (hydroxymethyl)-1, 3-propanediol (3: 1) Hexanedioic acid 146 0.32 46 Oxirane, methyl-, polymer with oxirane, bis (2-aminopropyl) ether-2000 0.11 223 of a molecular weight of 2000, Sodium borohydride 37.8 0.001 0.03 Note: Weight of Hexamethylene Diamine based on 70% active material A charge of Polyoxy (methyl-1, 2-ethanediyl), alpha-hydro-omega- (2- aminomethylethoxy) -ether with 2-ethyl-2-(hydroxymethyl)-1, 3-propanediol (3: 1), hexamethylenediamine/70% and sodium borohydride in about the proportions noted in Table 34 was mixed in a reactor for about 15 minutes. A charge hexanedioic acid in about the proportion noted in Table 34 was added to the mixture steadily. The combination was heated to between about 350°F and 400°F and then held at between about 350°F and 400°F temperature for about one hour. Then, oxirane, methyl-, polymer with oxirane, bis (2-aminopropyl) ether in about the proportion noted in Table 34 was added slowly while continuing to hold at about 350°F and 400°F. The resultant combination was heated to between about 440°F and 490°F and held at temperature for about three hours. The resultant reaction product may be retained as a flake product or dispersed as molten material in water.

EXAMPLE 31 Table 35: Ingredients Used in Making Treatment Agent SAMPLE 31 molecular Raw Materials Molecular Moles Grams Weight Caprolactam 113 0.25 29 Benzenedicarboxylic acid 166 0. 11 18 Oxirane, methyl-, polymer with oxirane, bis (2-aminopropyl) ether-2000 0.13 253 of a molecular weight of 2000, Sodium borohydride 37. 8 0.001 0.03 Hypophosphorus acid/50% 65.99 0.01 1 Distilled Water 18 0.83 15

A charge of caprolactam, water and sodium borohydride in about the proportions noted in Table 35 was mixed in a reactor for about 15 minutes. A charge benzenedicarboxylic acid in about the proportion noted in Table 35 followed by a charge of hypophosphorus acid/50% in about the proportion noted in Table 35 was added to the mixture steadily. The combination was heated to between about 450°F and 490°F and then held at between about 450°F and 490°F temperature for about one hour. Then, oxirane, methyl-, polymer with oxirane, bis (2-aminopropyl) ether in about the proportion noted in Table 35 was added slowly while continuing to hold at about 450°F and 490°F.

The resultant combination was heated to between about 520°F and 550°F and held at temperature for about three hours. The resultant reaction product, when molten, is dispersed in water.

EXAMPLE 32

Table 36: Ingredients Used in Making Treatment Agent SAMPLE 32 Molecular Raw Materials Moles Grams Weight Hexamethylenediamine/70% (HMDA/70%) 116 0.09 15 Caprolactam 113 0.23 26 Benzenedicarboxylic acid 166 0.19 31 Oxirane, methyl-, polymer with oxirane, bis (2-aminopropyl) ether-2000 0.12 232 of a molecular weight of 2000, Sodium borohydride 37. 8 0.03 0.03 Hypophosphorus acid/50% 65.99 0.01 1 Distilled Water 18 0. 83 15 Note : Weight of Hexamethylene Diamine based on 70% active material A charge of hexamethylenediamine/70%, caprolactam, water and sodium borohydride in about the proportions noted in Table 36 was mixed in a reactor for about 15 minutes. A charge benzenedicarboxylic acid in about the proportion noted in Table 36 followed by a charge of hypophosphorus acid/50% in about the proportion noted in Table 36 was added to the mixture steadily. The combination was heated to between about 450°F and 490°F and then held at between about 450°F and 490°F temperature for about one hour. Then, oxirane, methyl-, polymer with oxirane, bis (2-aminopropyl) ether in about the proportion noted in Table 36 was added slowly while continuing to hold at about 450°F and 490°F. The resultant combination was heated to between about 490°F and 540°F and held at temperature for about three hours. The resultant reaction product may be retained as a solid product or dispersed in water.

EXAMPLE 33 Table 37: Ingredients Used in Making Treatment Agent SAMPLE 33 Molecular Raw Materials Moles Grams Weight Ethylenediamine 60 0.1 6 Caprolactam 113 0. 24 27 Benzenedicarboxylic acid 166 0.19 31 Oxirane, methyl-, polymer with oxirane, bis (2-aminopropyl) ether-2000 0.12 236 of a molecular weight of 2000, Sodium borohydride 37. 8 0.001 0.03 Hypophosphorusacid/50% 65.99 0. 01 1 Distilled Water 18 0. 83 15

A charge of ethylenediamine, caprolactam, water and sodium borohydride in about the proportions noted in Table 37 was mixed in a reactor for about 15 minutes. A charge benzenedicarboxylic acid in about the proportion noted in Table 37 followed by a charge of hypophosphorus acid/50% in about the proportion noted in Table 37 was added to the mixture steadily. The combination was heated to between about 450°F and 490°F and then held at between about 450°F and 490°F temperature for about one hour. Then, oxirane, methyl-, polymer with oxirane, bis (2-aminopropyl) ether in about the proportion noted in Table 37 was added slowly while continuing to hold at about 450°F and 490°F.

The resultant combination was heated to between about 520°F and 540°F and held at temperature for about three hours. The resultant reaction product may be retained as a solid product or dispersed in water.

EXAMPLE 34

Table 38: Ingredients Used in Making Treatment Agent SAMPLE 34 Molecular Raw Materials Moles Grams Weight Hexamethylenediamine/70% (HMDA/70%) 116 0. 22 36 5 (6) Carboxy-4-Hexyl-2-Cyclohexene-1 412. 5 0 03 13 octanoic acid Hexanedioic acid 146 0. 28 41 Oxirane, methyl-, polymer with oxirane, bis (2-aminopropyl) ether-2000 0.11 220 of a molecular weight of 2000, Sodium borohydride 37.8 0.03 Note: Weight ofHexamethylene Diamine based on 70°ro active material A charge of Hexamethylenediamine/70% and sodium borohydride in about the proportions noted in Table 38 was mixed in a reactor for about 15 minutes. A charge 5 (6) carboxy-4-Hexyl-2-Cyclohexene-l octanoic acid in about the proportion noted in Table 38 was added to the mixture. The combination was heated to about 250°F and then held at about 250°F temperature for about one half of an hour. A charge of hexanedioic acid in about the proportion noted in Table 38 was added to the mixture steadily. The combination was heated to between about 350°F and 400°F and then held at between about 300°F and 490°F temperature for about one hour. Then, oxirane, methyl-, polymer with oxirane, bis (2-aminopropyl) ether in about the proportion noted in Table 38 was added slowly while continuing to hold at about 350°F and 400°F. The resultant combination was heated to between about 440°F and 540°F and held at temperature for about three hours. The resultant reaction product, when molten, is dispersed in water.

The polyamide treatment agent having the hydrophilic component and the hydrophobic

component may be produced by any manner that results in an effective treatment. For example, the ingredients may be combined to react substantially simultaneously to generate the polyamide treatment agent having the hydrophilic component and the hydrophobic component (Process"A"). For example, in the manufacture of a desired polyamide treatment agent, precursors to the hydrophilic component and precursors to the hydrophobic component (with or without any one of catalysts, antioxidants and reducing agents) may be combined in a reactor. The combination may be heated to a temperature (e. g. , between about 440°F and 560°F) that is sufficient to produce a reaction product that is a polyamide treatment agent.

At temperature, the combination may be held for a sufficient amount of time (e. g., between about one and four hours) to produce a reaction product that is a polyamide treatment agent. Also, at temperature, the combination may or may not be subjected to any one of a vacuum, an inert atmosphere, and a reactive atmosphere.

Alternatively, ingredients that are precursors to the hydrophilic component may be combined to react followed by combining the hydrophilic component with or adding ingredients that are precursors to the hydrophobic component to react to result in a polyamide treatment agent and vice versa (Process"B"). For example, in the manufacture of a desired polyamide treatment agent, precursors (with or without any one of catalysts, antioxidants and reducing agents) to one of a hydrophilic and hydrophobic component of a polyamide treatment agent may be combined in a reactor. The combination may be heated to a first temperature (e. g. , between about 350°F and 420°F) that is sufficient to produce a reaction product that is one of a hydrophilic and a hydrophobic component. At the first temperature, the combination may be held for a sufficient amount of time (e. g. , between about one and four hours) to produce the reaction product that is one of a hydrophilic and a hydrophobic component. Then, the reaction product (which is one of a hydrophilic and hydrophobic component) and precursors (with or without any one of catalysts, antioxidants and reducing agents) to the other of the hydrophilic and the hydrophobic components of a polyamide treatment agent may be combined.

The combination may be maintained at the first temperature or heated to a second temperature (e. g. , between about 450°F and 560°F) that is sufficient to produce a reaction

product that is the other of a hydrophilic or hydrophobic component of a polyamide treatment agent. At temperature, the combination may be held for a sufficient amount of time (e. g. , between about one and six hours) to produce the reaction product that is the other of a hydrophilic or hydrophobic component of a polyamide treatment agent and, thus, a polyamide treatment agent. At any one of the first temperature and the second temperature, the combination may or may not be subjected to any one of a vacuum, an inert atmosphere, and a reactive atmosphere.

Yet another approach includes combining ingredients that are precursors to a hydrophilic component and ingredients that are precursors to a hydrophobic component and reacting at a first temperature for a time to produce the hydrophilic component followed by reacting at a second temperature for a time to produce the polyamide treatment agent by producing the hydrophobic component and vice versa (Process"C").

For example, in the manufacture of a desired polyamide treatment agent, precursors to a hydrophilic component and precursors to a hydrophobic component (with or without any one of catalysts, antioxidants and reducing agents) may be combined in a reactor. The combination may be heated to a first temperature (e. g. , between about 300°F and 350°F) that is sufficient to produce a reaction product that is one of a hydrophilic or hydrophobic component of a polyamide treatment agent.

At the first temperature, the combination may be held for a sufficient amount of time (e. g., between about one and two hours) to produce the reaction product that is one of a hydrophilic or hydrophobic component of a polyamide treatment agent. Then the combination may be heated to a second temperature (e. g. , between about 440°F and 560°F) that is sufficient to produce a reaction product that is the other of a hydrophilic or hydrophobic component of a polyamide treatment agent. At temperature, the combination may be held for a sufficient amount of time (e. g. , between about two and six hours) to produce the reaction product that is the other of a hydrophilic or hydrophobic component of a polyamide treatment agent and, thus, a polyamide treatment agent. At any one of the first temperature and the second temperature, the combination may or may not be subjected to any one of a vacuum, an inert atmosphere, and a reactive atmosphere.

Those skilled in the art will appreciate that instead of altering temperature, chemistry such as pH may be altered.

Other ingredients may be used in the creation of the polyamide treatment agent of the present invention. For example, it may be desirable to reduce any sedimentation that occurs from less soluble fragments of a polyamide treatment agent by incorporating dispersing aides including surfactants, natural polymer dispersants and synthetic polymer dispersants such as hydroxyethyl cellulose, guar gum, or xanthan gum.

Also, the polyamide treatment agent may be modified slightly, by the addition of between about 1 % and 7% by weight of the polyamide treatment agent of chain terminating monofunctional groups such as (Rs) d-F. These monofunctional groups may control molecular weight, to change solubility or to impact substantivity. Here Rs is any one of a Cl-C24 alkyl, Cl-C24 aryl, Cl-C24 alkylaryl, Cl-C24 alkenyl, and oxyalkylene derivative (OAD) such as Rlo (O-CHRll-CHRl2) p-. The subscript"d"= 1 or 2. The group F is any one of NH2, NH, COOR13, COC1, and a CHO. RIO is any one of a Cl-C4 alkyl.

RI, is any one of a Cl-C4 alkyl and hydrogen. R12 is any one of a Cl-C4 alkyl and hydrogen. The subscript"p"is any value from 1 through 100. R13 is any one of a Cl-C2 alkyl and hydrogen.

Alternatively, the polyamide treatment agent may be modified slightly by the addition of 1-3% of any one of polyamine such as diethylene triamine, triethylene tetraamine, tetraethylene pentamine, poly (oxy (methyl-1, 2-ethanediyl), apha-omega- (2-aminomethylethoxy-, ether with 2-ethyl-2- (hydroxymethyl)-1, 3 propanediol (3: 1) and a polyacid such as trimellitic anhydride or citric to create more branching in the polyamide treatment agent.

The polyamide treatment agent made by any of the above-described routes may be distributed as any of a solid and a liquid. For example, a solid may be a flaked or ground agent that may be incorporated in a powdered detergent. Also, for example, a liquid may be an agent diluted in water as a solution or dispersion that is chargeable directly into the textile equipment. Techniques that may be used for a liquid include heating to a high temperature, homogenizing and agitating by high sheer.

The polyamide treatment agent having a hydrophilic component and a hydrophobic component of the present invention may be characterized by being water dispersible. It may be that a polyamide treatment agent is a substantive agent. That is, a polyamide treatment agent may be applied by immersing a synthetic substrate in a hot solution of the polyamide treatment agent in water.

Table 39: Comparison Of Process Methods : Fabric : Nylon Sample ID Process Moisture transport Moisture transport ID Initially (inches) 5 Home Launderings (inches) Wales Courses Wales Courses Control 1. 58 1.67. 5.9 Nylon/Sample 6"A"2. 42 2. 88 1. 03 1. 03 Nylon/Sample 7"B"2. 25 3. 00 1. 42 1.98 Nylon/Sample 15"C"2.33 2.97 1.07 1. 20 Results show the impact of the various processes on moisture transport durability.

The process utilized in Example 7 is the one that facilitates the formation of a blocked polyamide.

A Modif ed AATCC 130-2000 EVALUATION OF SOIL RELEASE (SR) AGENT Application of SR Agent Pad & Cure or Exhaust & Cure Pad & Cure: 1. Insure that fabric has been scoured free of contamination. Cut fabric to desired sample size.

2. Determine % wet pick up of fabric sample: a. Weigh dry fabric sample b. Pad fabric sample through water in which pH has been adjusted to 5-6.5 with acetic acid. (This fabric sample will serve as the untreated control.) c. Weigh padded fabric sample: d. Calculate: % Wet Pickup = (Padded sample weight)- (Dry sample weight) (Dry sample weight)

3. Using the % wet pick up from step #2, set pad bath concentration such that the application level applied to the fabric will be approximately 0.5% (based on the weight of the fabric) of the S R Agent (100% active).

4. Adjust pH of pad bath to 5.0-6. 5 with acetic acid.

5. Pad fabric samples through bath then dry and cure at 350 F for 100 seconds.

(Except polypropylene is cured at 240 F). The untreated control is also dried and cured under same conditions as the treated fabric samples.

Exhaust & Cure (Ahiba) : 1. Insure that fabric has been scoured free of contamination. Cut fabric to desired sample size and mount onto Ahiba Fabric Holder.

2. Set Exhaust bath concentration to be approximately 0.5% (based on the weight of the fabric) of the S R Agent (100% actives). Set one bath to have pH adjusted water only to serve as the untreated control.

3. Adjust pH of exhaust bath to 5.0-6. 5 with acetic acid.

4. Charge dye tubes (use stainless steel dye tubes for temperatures above 210 F) with adjusted exhaust baths and place fabric samples into bath.

5. Set exhaust temperatures to 160-250 F depending on fabric type and hold for 15 minutes.

6. Remove fabric samples from Ahiba and then dry and cure at 350 F for 100 seconds. (Except polypropylene is cured at 240 F).

Performance Evalution 1. All fabric samples are allowed to condition under room conditions for at least 4 hours.

2. The fabric samples are cut in half with one half designated for initial Soil Release and the other half designated for durable Soil Release.

Initial Soil Release Rating: 1. The half of the samples designated for initial Soil Release evaluation: a. Draw a one inch diameter circle on each fabric sample b. Place each fabric sample on clean blotter paper such that the one inch circle is directly above the blotter paper c. 5 drops of 3M Stain C (Dirty Motor Oil) are applied within the circle d. Glasine paper (or equivalent) is placed over the drops of dirty motor oil and a 5 lb weight is placed on the glasine paper for one minute. e. After one minute the weight and glasine paper are removed and the fabric is allowed to condition for at least 10 minutes.

2. The soiled fabric samples are placed in a standard washing machine with approximately 10 pounds of ballast then washed at 105 F using 100 grams of 1993 AATCC Standard Reference Detergent though standard washing cycle.

3. The washed fabric samples and ballast are then placed in a standard clothes dryer and dried at normal (cotton sturdy) for 45 minutes though one standard cycle. The fabric samples are allowed to condition for one hour, but not more than four hours, and then rated for release of the oily stain against 3M Stain Release Rating Scale.

Durable Soil Release Evaluation: 1. The half of the treated fabric designated for durable Soil Release evaluation are placed in a standard washing machine with approximately 10 pounds of ballast then washed at 105° F using 100 grams of 1993 AATCC Standard Reference Detergent trhough four standard washing cycles. The fifth wash is run the same, except without soap.

2. The washed fabric samples and ballast are then placed in a standard clothes dryer and dried though one standard cycle. The fabric samples are then allowed to condition for at least four hours.

3. On each washed fabric sample: a. Draw a one inch diameter circle b. Place each fabric sample on clean blotter paper such that the one inch circle is directly above the blotter paper c. 5 drops of 3M Stain C (Dirty Motor Oil) are applied within the circle d. Glasine paper (or equivalent) is placed over the drops of dirty motor oil and a 5 lb weight is placed on the glasine paper for one minute. e. After one minute the weight and glasine paper are removed and the fabric is allowed to condition for at least 10 minutes.

4. The soiled fabric samples are placed in a standard washing machine with approximately 10 pounds of ballast then washed at 105° F using 100 grams of AATCC Detergent though one standard washing cycle.

5. The washed fabric samples and ballast are then placed in a standard clothes dryer and dried though one standard cycle. The fabric samples are allowed to condition for one hour, but less than four hours, and then rated for release of the oily stain against 3M Stain Rating Chart.

Table 42: Soil Release Results Rating Based on 3-M Stain Chart Sam le ID N lon 6 6 N Ion 6 Initial 5 Home Initial 5 Home Launderings Launderings Control 5. 0 6.0 5.0 6.0 Nylon/Sample 10 (0. 25%) 8.0 7.0 7.0 8.0 Nylon/Sample 10 (. 5%) 8.0 7.0 7. 0 8. 0

Rating: 1 = no oily soil release; 10 = complete soil release Certain modifications and improvements will occur to those skilled in the art upon a reading of the foregoing description. By way of example, one knowledgeable in formulating different chemicals to achieve a desired performance could envision incorporating the polyamide treatment agent with anionic surfactants and/or polymers to decrease the polyamide's solubility and improve its durability, with crosslinking agents such as polyepoxides, polyhalogenates such as polyethylene glycol dichloride, triazine trichloride, etc. , urea, formaldehyde and formaldehyde based reactives, melamines and melamine based reactives, durable press resins such as glyoxal and glyoxal based reactives, urethanes and isocyanates, etc. to improve its durability, with other hydrophilic polymers such as polyvinyl alcohols, polyacrylic acids, polyacrylates, high molecular weight polyethylene glycols (molecular weights greater than 300,000), hydrophilic polyesters, hydrophilic silicones, etc. to modify the surface properties of a synthetic substrate, and with agents used to lower surface tension such as fluorocarbon surfactants and/or silicone surfactants to improve levelness of deposition of polyamide treatment agent onto a synthetic substrate's surface. One could also melt blend a more hydrophobic polyamide treatment agent with a more hydrophilic polyamide treatment agent to effect the product's solubility, two polyamides treatment agents based on different chemical compositions whose composition contains two or more different synthetic substrates.

One knowledgeable in synthesis could envision modifications of the backbone of the polyamide treatment agent as described by reacting during synthesis of the polyamide

treatment agent a monomer containing a quaternary function such as <BR> <BR> <BR> <BR> #<BR> <BR> <BR> CH2=CH-N-(CH3)3 #SO3Na , an alcohol, a polyoxyalkylene alcohol, a polyoxyalkylene fatty acid derivative, a diol and/or a polyoxyalkylene glycol resulting in ester linkages, an anionic diacid such as sulphoisophthalic acid or its alkyl esters or an epoxy contain sulfonate such as and/or taurine incorporating anionic character.

It should be understood that all such modifications and improvements have been deleted herein for the sake of conciseness and readability but are properly within the scope of the following claims.