Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
TREATING DISEASES AND IMPROVING NUCLEIC ACID DELIVERY
Document Type and Number:
WIPO Patent Application WO/2022/155435
Kind Code:
A1
Abstract:
This document relates to methods and materials for treating a mammal (e.g., a human) having, or at risk of developing, a polycystic disease (e.g., a polycystic kidney disease (PKD)). For example, methods and materials that can be used to increase a level of polycystin- 1 (PC-1) polypeptides and/or polycystin-2 (PC-2) polypeptides within a mammal having, or at risk of developing, a polycystic disease) are provided. In some cases, nucleic acid designed to increase a level of PC-1 polypeptides and/or PC-2 polypeptides within a mammal can be administered to a mammal having, or at risk of developing, a polycystic disease to treat the mammal.

Inventors:
BARRY MICHAEL A (US)
CHEN CHRISTOPHER Y (US)
RUBIN JEFFREY D (US)
TORRES VINCENTE E (US)
Application Number:
PCT/US2022/012461
Publication Date:
July 21, 2022
Filing Date:
January 14, 2022
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
MAYO FOUND MEDICAL EDUCATION & RES (US)
International Classes:
C12N15/86; A61K48/00; A61P7/04; A61P13/12; A61P43/00
Foreign References:
US20140037652A12014-02-06
US20180023094A12018-01-25
Attorney, Agent or Firm:
WILLIS, Margaret S. et al. (US)
Download PDF:
Claims:
WHAT IS CLAIMED IS: 1. A method for treating a mammal having a polycystic kidney disease (PKD), wherein said method comprises administering to said mammal nucleic acid encoding a polycystin-1 (PC-1) polypeptide or a variant of said PC-1 polypeptide, wherein said PC-1 polypeptide or said variant is expressed by kidney cells within said mammal. 2. The method of claim 1, wherein said nucleic acid encoding said PC-1 polypeptide or said variant is administered to said mammal in the form of a viral vector. 3. The method of claim 2, wherein said viral vector is a helper-dependent adenovirus (HDAd) vector. 4. The method of any one of claims 1-3, wherein said nucleic acid encoding said PC-1 polypeptide or said variant is operably linked to a promoter sequence. 5. The method of claim 4, wherein said promoter sequence is selected from the group consisting of a human elongation factor 1α (EF1α) promoter sequence, a chicken β-actin hybrid (CBh) promoter sequence, a PKD1 promoter sequence, a PKD2 promoter sequence, a cytomegalovirus (CMV) promoter sequence, a Rous sarcoma virus (RSV) promoter sequence, an aquaporin 2 (AQP2) promoter sequence, a gamma-glutamyltransferase 1 (Ggt1) promoter sequence, and a Ksp-cadherin promoter sequence. 6. A method for treating a mammal having a polycystic kidney disease (PKD), wherein said method comprises administering to said mammal nucleic acid encoding a polycystin-2 (PC-2) polypeptide or a variant of said PC-2 polypeptide, wherein said PC-2 polypeptide or said variant is expressed by kidney cells within said mammal. 7. The method of claim 6, wherein said nucleic acid encoding said PC-2 polypeptide or said variant is administered to said mammal in the form of a viral vector.

8. The method of claim 7, wherein said viral vector is an adenovirus-associated virus (AAV) vector. 9. The method of any one of claims 6-8, wherein said nucleic acid encoding said PC-2 polypeptide or said variant is operably linked to a promoter sequence. 10. The method of claim 9, wherein said promoter sequence is selected from the group consisting of a EF1α promoter sequence, a CBh promoter sequence, a PKD1 promoter sequence, a PKD2 promoter sequence, a CMV promoter sequence, a RSV promoter sequence, an AQP2 promoter sequence, a Ggt1 promoter sequence, and a Ksp-cadherin promoter sequence. 11. A method for treating a mammal having a polycystic kidney disease (PKD), wherein said method comprises administering to said mammal: (a) nucleic acid encoding a PC-1 polypeptide or a variant of said PC-1 polypeptide, wherein said PC-1 polypeptide or said variant is expressed by kidney cells within said mammal; and (b) nucleic acid encoding a PC-2 polypeptide or a variant of said PC-2 polypeptide, wherein said PC-2 polypeptide or said variant is expressed by kidney cells within said mammal. 12. The method of claim 11, wherein said nucleic acid encoding said PC-1 polypeptide or said variant is administered to said mammal in the form of a viral vector. 13. The method of claim 12, wherein said viral vector is a HDAd vector. 14. The method of any one of claims 11-13, wherein said nucleic acid encoding said PC-1 polypeptide or said variant is operably linked to a promoter sequence.

15. The method of claim 14, wherein said promoter sequence is selected from the group consisting of a EF1α promoter sequence, a CBh promoter sequence, a PKD1 promoter sequence, a PKD2 promoter sequence, a CMV promoter sequence, a RSV promoter sequence, an AQP2 promoter sequence, a Ggt1 promoter sequence, and a Ksp-cadherin promoter sequence. 16. The method of any one of claims 11-15, wherein said nucleic acid encoding said PC-2 polypeptide or said variant is administered to said mammal in the form of a viral vector. 17. The method of claim 16, wherein said viral vector is an AAV vector. 18. The method of any one of claims 6-8, wherein said nucleic acid encoding said PC-2 polypeptide or said variant is operably linked to a promoter sequence. 19. The method of claim 18, wherein said promoter sequence is selected from the group consisting of a EF1α promoter sequence, a CBh promoter sequence, a PKD1 promoter sequence, a PKD2 promoter sequence, a CMV promoter sequence, a RSV promoter sequence, an AQP2 promoter sequence, a Ggt1 promoter sequence, and a Ksp-cadherin promoter sequence. 20. The method of claim 11, wherein said nucleic acid encoding said PC-1 polypeptide or said variant and said nucleic acid encoding said PC-2 polypeptide or said variant are administered to said mammal in the form of a viral vector. 21. The method of claim 20, wherein said viral vector is a HDAd vector. 22. The method of any one of claims 20-21, wherein said nucleic acid encoding said PC- 1 polypeptide or said variant is operably linked to a first promoter sequence, and wherein said nucleic acid encoding said PC-2 polypeptide or said variant is operably linked to a second promoter sequence.

23. The method of claim 22, wherein said first promoter sequence and said second promoter sequence are each independently selected from the group consisting of a EFla promoter sequence, a CBh promoter sequence, a PKD1 promoter sequence, a PKD2 promoter sequence, a CMV promoter sequence, a RSV promoter sequence, an AQP2 promoter sequence, a Ggtl promoter sequence, and a Ksp-cadherin promoter sequence.

24. The method of any one of claims 1-23, wherein said method comprises identifying said mammal as being in need of a treatment for said PKD.

25. The method of any one of claims 1-24, wherein said mammal is a human.

26. The method of any one of claims 1-25, wherein PKD is an autosomal dominant PKD (ADPKD).

27. The method of any one of claims 1-26, wherein said method further comprises, prior to said administering said nucleic acid, administering a lipopolysaccharides (LPS) to said mammal.

28. The method of claim 27, wherein said LPS is administered to said mammal at least 18 hours prior to said administering said nucleic acid.

29. The method of any one of claims 27-28, wherein administering said LPS is effective to deliver large nucleic acid to said kidney cells in said mammal.

30. A method for treating a mammal having a PKD, wherein said method comprises administering to said mammal:

(a) nucleic acid encoding a fusion polypeptide including a deactivated Cas (dCas) polypeptide and a transcriptional activator polypeptide;

(b) nucleic acid encoding a helper activator polypeptide; and (c) nucleic acid encoding a nucleic acid molecule including (i) a nucleic acid sequence that is complementary to a target sequence within a PKD1 gene, and (ii) a nucleic acid sequence that can bind said helper activator polypeptide. 31. The method of claim 30, wherein said dCas polypeptide is selected from the group consisting of a deactivated Cas9 (dCas9) polypeptide, and a deactivated Cas phi (dCasΦ) polypeptide. 32. The method of claim 30, wherein said transcriptional activator polypeptide is a VP64 polypeptide. 33. The method of any one of claims 30-32, wherein said fusion polypeptide is a dCas9- VP64 fusion polypeptide. 34. The method of any one of claims 30-33, wherein said helper activator polypeptide is selected from the group consisting of a MS2 polypeptide, a p65 polypeptide, a HSF1 polypeptide, and a VP64 polypeptide. 35. The method of claim 34, wherein said helper activator polypeptide comprises a MS2 polypeptide, a p65 polypeptide, and a HSF1 polypeptide. 36. The method of any one of claims 30-35, wherein said nucleic acid (a), said nucleic acid (b), and said nucleic acid (c) are administered to said mammal in the form of a viral vector. 37. The method of claim 36, wherein said viral vector is selected from the group consisting of a HDAd, a lentiviral vector, and an AAV vector.

38. The method of any one of claims 30-35, wherein said nucleic acid (a) is administered to said mammal in the form of a first viral vector, and wherein said nucleic acid (b) and said nucleic acid (c) are administered to said mammal in the form of a second viral vector. 39. The method of claim 38, wherein said first viral vector is an AAV vector. 40. The method of claim 38, wherein said second viral vector is an AAV vector. 41. The method of any one of claims 30-40, wherein said nucleic acid (a) is operably linked to a first promoter sequence, said nucleic acid (b) is operably linked to a second promoter sequence, and said nucleic acid (c) is operably linked to a third promoter sequence. 42. The method of claim 41, wherein said first promoter sequence, said second promoter sequence, and said third promoter sequence are each independently selected from the group consisting of a EF1α promoter sequence, a CBh promoter sequence, a CMV promoter sequence, a RSV promoter sequence, a U6 promoter sequence, an AQP2 promoter sequence, a Ggt1 promoter sequence, and a Ksp-cadherin promoter sequence. 43. The method of any one of claims 30-42, wherein said method comprises identifying said mammal as being in need of a treatment for said PKD. 44. The method of any one of claims 30-43, wherein said mammal is a human. 45. The method of any one of claims 30-44, wherein PKD is an ADPKD. 46. The method of any one of claims 30-35, wherein said method further comprises, prior to said administering said nucleic acid, administering a lipopolysaccharides (LPS) to said mammal.

47. The method of claim 46, wherein said LPS is administered to said mammal at least 18 hours prior to said administering said nucleic acid.

48. The method of any one of claims 46-47, wherein administering said LPS is effective to deliver large nucleic acid to said kidney cells in said mammal.

49. A method for delivering nucleic acid to a cell within a mammal, wherein said method comprises:

(a) administering a proteinuria-inducing agent to said mammal; and

(b) administering said nucleic acid to said mammal.

50. The method of claim 49, wherein said mammal is a human.

51. The method of any one of claims 49-50, wherein said proteinuria-inducing agent is selected from the group consisting of LPS, puromycin, adriamycin, protamine sulfate, cationic albumin, and polycations.

52. The method of any one of claims 49-51, wherein said nucleic acid is from about 0.15 kb to about 36 kb in size.

53. The method of any one of claims 49-51, wherein said nucleic acid has a mass of from about 10 kilodaltons (kDa) to about 50 kDa.

54. The method of any one of claims 49-51, wherein said nucleic acid has a diameter of from about 10 nm to about 26 nm.

55. The method of any one of clams 49-54, wherein said method comprises administering from about 7 milligrams per kilogram body weight (mg/kg) to about 9 mg/kg of said proteinuria-inducing agent to said mammal.

56. The method of any one of claims 49-55, wherein said cell is selected from the group consisting of a kidney cell, a spleen cell, a lungs cell, and a brain cell.

57. The method of any one of claims 49-56, wherein said proteinuria-inducing agent is administered to said mammal at least 18 hours prior to said administering said nucleic acid.

58. The method of any one of claims 49-57, wherein said administering said proteinuriainducing agent comprises intravenous injection.

59. The method of any one of claims 49-57, wherein said administering said nucleic acid comprises intravenous injection.

60. The method of any one of claims 49-57, wherein said administering said proteinuriainducing agent comprises intravenous injection, and wherein said administering said nucleic acid comprises intravenous injection.

Description:
TREATING DISEASES AND IMPROVING NUCLEIC ACID DELIVERY

CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of U.S. Patent Application Serial No. 63/137,629, filed on January 14, 2021, and U.S. Patent Application Serial No. 63/221,196, filed on July 13, 2021. The disclosures of the prior applications are considered part of (and are incorporated by reference in) the disclosure of this application.

STATEMENT REGARDING FEDERAL FUNDING

This invention was made with government support under DK090728 and DK123858 awarded by the National Institutes of Health. The government has certain rights in the invention.

SEQUENCE LISTING

This document includes a Sequence Listing that has been submitted electronically as an ASCII text file named 07039-2024W01_ST25.txt. The ASCII text file, created on January 14, 2022, is 269 kilobytes in size. The material in the ASCII text file is hereby incorporated by reference in its entirety.

BACKGROUND

1. Technical Field

This document relates to methods and materials for treating a mammal (e.g., a human) having, or at risk of developing, a polycystic disease (e.g., a polycystic kidney disease (PKD)). For example, methods and materials provided herein can be used to increase a level of poly cystin-1 (PC-1) polypeptides and/or poly cystin-2 (PC-2) polypeptides within a mammal having, or at risk of developing, a polycystic disease. In some cases, nucleic acid designed to increase a level of PC-1 polypeptides and/or PC-2 polypeptides within a mammal can be administered to a mammal having, or at risk of developing, a polycystic disease to treat the mammal.

2. Background Information

Autosomal dominant polycystic kidney disease (ADPKD) is an inherited progressive disease with a prevalence of approximately one in one thousand live births in which patients develop fluid-filled cysts in their kidneys, losing kidney function, and which can end in kidney failure (see, e.g., Bergmann et al., Nat. Rev. Dis. Primers., 4(1):50 (2018)). SUMMARY ADPKD can be caused by one or more mutations in the PKD1 gene (encoding the PC-1 polypeptide) and/or the PKD2 gene (encoding the PC-2 polypeptide). As such, ADPKD can be treated by gene therapy techniques that can deliver nucleic acid designed to increase a level of PC-1 polypeptides and/or PC-2 polypeptides within a mammal. However, while many gene therapy vectors can carry the 2.9 kilobase (kb) PKD2 cDNA, most gene therapy vectors and techniques cannot carry the extremely large 12.9 kb PKD1 cDNA. This document is based, at least in part, on the development of vectors that can be used to deliver nucleic acid designed to increase a level of PC-1 polypeptides and/or PC-2 polypeptides within a mammal. In some cases, this document provides methods and materials for treating a mammal having, or at risk of developing, a polycystic disease (e.g., PKD). For example, nucleic acid designed to increase a level of PC-1 polypeptides and/or PC-2 polypeptides within a mammal can be administered to a mammal having, or at risk of developing, a polycystic disease to treat the mammal. As described herein, adeno-associated virus (AAV) vectors can be used to deliver nucleic acid designed to express a PC-2 polypeptide (e.g., a PKD2 cDNA) to increase the level of PC-2 polypeptides in cells, and helper-dependent adenovirus (HDAd) vectors can be used to deliver nucleic acid designed to express a PC-1 polypeptide (e.g., a PKD1 cDNA) and/or nucleic acid designed to express a PC-2 polypeptide (e.g., a PKD2 cDNA) to increase the level of PC-1 polypeptides and/or PC-2 polypeptides in cells. For example, vectors described herein containing nucleic acid designed to express a PC-1 polypeptide and/or nucleic acid designed to express a PC-2 polypeptide can be administered to a mammal (e.g., a human) having, or at risk of developing, a polycystic disease (e.g., a PKD) to increase a level of PC-1 polypeptides and/or PC-2 polypeptides within the mammal (e.g., to treat the mammal). Also as described herein, one or more AAV vectors can be used to deliver gene therapy components designed for targeted gene activation (e.g., designed for CRISPR-Cas9-based targeted gene activation) of the PKD1 gene and/or the PKD2 gene to upregulate transcription of the PKD1 gene and/or the PKD2 gene to increase the level of PC-1 polypeptides and/or PC-2 polypeptides in cells. For example, one or more nucleic acid molecules designed to express the components of a targeted gene activation system (or the components themselves) designed to activate transcription of a PKD1 gene and/or to activate transcription of a PKD2 gene can be administered to a mammal (e.g., a human) having, or at risk of developing, a polycystic disease (e.g., a PKD) to increase a level of PC-1 polypeptides and/or PC-2 polypeptides within the mammal (e.g., to treat the mammal). This document also provides methods and materials for improving delivery of nucleic acid to a mammal. As described herein, inducing proteinuria in a mammal (e.g., prior to administering a nucleic acid molecule) can improve delivery of nucleic acid (e.g., nucleic acid designed to increase a level of PC-1 polypeptides and/or PC-2 polypeptides within a mammal) to the mammal (e.g., to one or more cells within the mammal). For example, one or more lipopolysaccharides (LPSs) can be administered to a mammal to induce proteinuria in the mammal to improve delivery of nucleic acid (e.g., nucleic acid designed to increase a level of PC-1 polypeptides and/or PC-2 polypeptides within a mammal) to cells (e.g., kidney cells) within the mammal. Having the ability to increase a level of PC-1 polypeptides and/or PC-2 polypeptides within a mammal provides a unique and unrealized opportunity to treat a polycystic disease such as a PKD. Having the ability to increase the delivery of nucleic acid to cells within a mammal as described herein can allow for more efficient gene therapy approaches. In general, one aspect of this document features methods for treating a mammal having a PKD. The methods can include, or consist essentially of, administering to a mammal having a PKD nucleic acid encoding a PC-1 polypeptide or a variant of the PC-1 polypeptide, where the PC-1 polypeptide or the variant is expressed by kidney cells within the mammal. The nucleic acid encoding the PC-1 polypeptide or the variant can be administered to the mammal in the form of a viral vector (e.g., a helper-dependent adenovirus (HDAd) vector). The nucleic acid encoding the PC-1 polypeptide or the variant can be operably linked to a promoter sequence. The promoter sequence can be a human elongation factor 1α (EF1α) promoter sequence, a chicken β-actin hybrid (CBh) promoter sequence, a PKD1 promoter sequence, a PKD2 promoter sequence, a cytomegalovirus (CMV) promoter sequence, a Rous sarcoma virus (RSV) promoter sequence, an aquaporin 2 (AQP2) promoter sequence, a gamma-glutamyltransferase 1 (Ggt1) promoter sequence, or a Ksp-cadherin promoter sequence. The method can include identifying the mammal as being in need of a treatment for the PKD. The mammal can be a human. The PKD can be an autosomal dominant PKD (ADPKD). The method also can include, prior to the administering the nucleic acid, administering a lipopolysaccharides (LPS) to the mammal. The LPS can be administered to the mammal at least 18 hours prior to the administering the nucleic acid. The LPS can be effective to deliver large nucleic acid to the kidney cells in the mammal. In another aspect, this document features methods for treating a mammal having a PKD. The methods can include, or consist essentially of, administering to a mammal having a PKD nucleic acid encoding a PC-2 polypeptide or a variant of the PC-2 polypeptide, where the PC-2 polypeptide or the variant is expressed by kidney cells within the mammal. The nucleic acid encoding the PC-2 polypeptide or the variant can be administered to the mammal in the form of a viral vector (e.g., an adenovirus- associated virus (AAV) vector). The nucleic acid encoding the PC-2 polypeptide or the variant can be operably linked to a promoter sequence. The promoter sequence can be a EF1α promoter sequence, a CBh promoter sequence, a PKD1 promoter sequence, a PKD2 promoter sequence, a CMV promoter sequence, a RSV promoter sequence, an AQP2 promoter sequence, a Ggt1 promoter sequence, or a Ksp-cadherin promoter sequence. The method can include identifying the mammal as being in need of a treatment for the PKD. The mammal can be a human. The PKD can be an autosomal dominant PKD (ADPKD). The method also can include, prior to the administering the nucleic acid, administering a lipopolysaccharides (LPS) to the mammal. The LPS can be administered to the mammal at least 18 hours prior to the administering the nucleic acid. The LPS can be effective to deliver large nucleic acid to the kidney cells in the mammal. In another aspect, this document features methods for treating a mammal having a PKD. The methods can include, or consist essentially of, administering to a mammal having a PKD: (a) nucleic acid encoding a PC-1 polypeptide or a variant of the PC-1 polypeptide, where the PC-1 polypeptide or the variant is expressed by kidney cells within the mammal; and (b) nucleic acid encoding a PC-2 polypeptide or a variant of the PC-2 polypeptide, where the PC-2 polypeptide or the variant is expressed by kidney cells within the mammal. The nucleic acid encoding the PC-1 polypeptide or the variant can be administered to the mammal in the form of a viral vector (e.g., a HDAd vector). The nucleic acid encoding the PC-1 polypeptide or the variant can be operably linked to a promoter sequence. The promoter sequence can be a EF1α promoter sequence, a CBh promoter sequence, a PKD1 promoter sequence, a PKD2 promoter sequence, a CMV promoter sequence, a RSV promoter sequence, an AQP2 promoter sequence, a Ggt1 promoter sequence, or a Ksp-cadherin promoter sequence. The nucleic acid encoding the PC-2 polypeptide or the variant can be administered to said mammal in the form of a viral vector (e.g., an AAV vector). The nucleic acid encoding the PC-2 polypeptide or the variant can be operably linked to a promoter sequence. The promoter sequence can be a a EF1α promoter sequence, a CBh promoter sequence, a PKD1 promoter sequence, a PKD2 promoter sequence, a CMV promoter sequence, a RSV promoter sequence, an AQP2 promoter sequence, a Ggt1 promoter sequence, or a Ksp-cadherin promoter sequence. The nucleic acid encoding the PC-1 polypeptide or the variant and the nucleic acid encoding the PC-2 polypeptide or the variant are administered to the mammal in the form of a viral vector (e.g., a HDAd vector). The nucleic acid encoding the PC-1 polypeptide or the variant can be operably linked to a first promoter sequence, and the nucleic acid encoding the PC-2 polypeptide or the variant can be operably linked to a second promoter sequence. The first promoter sequence and the second promoter sequence can each be independently selected from the group consisting of a EF1α promoter sequence, a CBh promoter sequence, a PKD1 promoter sequence, a PKD2 promoter sequence, a CMV promoter sequence, a RSV promoter sequence, an AQP2 promoter sequence, a Ggt1 promoter sequence, and a Ksp-cadherin promoter sequence. The method can include identifying the mammal as being in need of a treatment for the PKD. The mammal can be a human. The PKD can be an autosomal dominant PKD (ADPKD). The method also can include, prior to the administering the nucleic acid, administering a lipopolysaccharides (LPS) to the mammal. The LPS can be administered to the mammal at least 18 hours prior to the administering the nucleic acid. The LPS can be effective to deliver large nucleic acid to the kidney cells in the mammal. The method can include identifying the mammal as being in need of a treatment for the PKD. The mammal can be a human. The PKD can be an autosomal dominant PKD (ADPKD). The method also can include, prior to the administering the nucleic acid, administering a lipopolysaccharides (LPS) to the mammal. The LPS can be administered to the mammal at least 18 hours prior to the administering the nucleic acid. The LPS can be effective to deliver large nucleic acid to the kidney cells in the mammal. In another aspect, this document features methods for treating a mammal having a PKD. The methods can include, or consist essentially of, administering to a mammal having a PKD: (a) nucleic acid encoding a fusion polypeptide including a deactivated Cas (dCas) polypeptide and a transcriptional activator polypeptide; (b) nucleic acid encoding a helper activator polypeptide; and (c) nucleic acid encoding a nucleic acid molecule including (i) a nucleic acid sequence that is complementary to a target sequence within a PKD1 gene, and (ii) a nucleic acid sequence that can bind the helper activator polypeptide. The dCas polypeptide can be a deactivated Cas9 (dCas9) polypeptide or a deactivated Cas phi (dCasΦ) polypeptide. The transcriptional activator polypeptide can be a VP64 polypeptide. The fusion polypeptide can be a dCas9-VP64 fusion polypeptide. The helper activator polypeptide can be a MS2 polypeptide, a p65 polypeptide, a HSF1 polypeptide, or a VP64 polypeptide. The helper activator polypeptide can include a MS2 polypeptide, a p65 polypeptide, and a HSF1 polypeptide. The nucleic acid (a), the nucleic acid (b), and the nucleic acid (c) can be administered to the mammal in the form of a viral vector. The viral vector can be a HDAd, a lentiviral vector, or an AAV vector. The nucleic acid (a) can be administered to the mammal in the form of a first viral vector, and the nucleic acid (b) and the nucleic acid (c) can be administered to the mammal in the form of a second viral vector. The first viral vector can be an AAV vector and the second viral vector can be an AAV vector. The nucleic acid (a) can be operably linked to a first promoter sequence, the nucleic acid (b) can be operably linked to a second promoter sequence, and the nucleic acid (c) can be operably linked to a third promoter sequence. The first promoter sequence, the second promoter sequence, and the third promoter sequence can each independently be selected from the group consisting of a EF1α promoter sequence, a CBh promoter sequence, a CMV promoter sequence, a RSV promoter sequence, a U6 promoter sequence, an AQP2 promoter sequence, a Ggt1 promoter sequence, and a Ksp-cadherin promoter sequence. The method also can include identifying the mammal as being in need of a treatment for the PKD. The mammal can be a human. The PKD can be an ADPKD. The also can include, prior to the administering the nucleic acid, administering a LPS to the mammal. The LPS can be administered to the mammal at least 18 hours prior to the administering the nucleic acid. The administering the LPS can be effective to deliver large nucleic acid to the kidney cells in the mammal.

In another aspect, this document features methods for delivering nucleic acid to a cell within a mammal. The methods can include, or consist essentially of, (a) administering a proteinuria-inducing agent to a mammal; and (b) administering nucleic acid to the mammal. The mammal can be a human. The proteinuria-inducing agent can be LPS, puromycin, adriamycin, protamine sulfate, cationic albumin, or poly cations. The nucleic acid can be from about 0.15 kb to about 36 kb in size. The nucleic acid can have a mass of from about 10 kilodaltons (kDa) to about 50 kDa. The nucleic acid can have a diameter of from about 10 nm to about 26 nm. The method can include administering from about 7 milligrams per kilogram body weight (mg/kg) to about 9 mg/kg of the proteinuria-inducing agent to the mammal. The cell can be a kidney cell, a spleen cell, a lungs cell, or a brain cell. The proteinuria-inducing agent can be administered to the mammal at least 18 hours prior to the administering the nucleic acid. The administering the proteinuria-inducing agent can include intravenous injection. The administering the nucleic acid can include intravenous injection. The administering the proteinuriainducing agent can include intravenous injection, and the administering the nucleic acid can include intravenous injection.

Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention pertains. Although methods and materials similar or equivalent to those described herein can be used to practice the invention, suitable methods and materials are described below. All publications, patent applications, patents, and other references mentioned herein are incorporated by reference in their entirety. In case of conflict, the present specification, including definitions, will control. In addition, the materials, methods, and examples are illustrative only and not intended to be limiting.

The details of one or more embodiments of the invention are set forth in the accompanying drawings and the description below. Other features, objects, and advantages of the invention will be apparent from the description and drawings, and from the claims. DESCRIPTION OF THE DRAWINGS Figures 1A-1D. Diagrams of exemplary in vivo vectors for delivery of PKD1 and PKD2 cDNAs. Figure 1A shows a single HDAd vector including a PKD1 cDNA with additional space for cargo, denoted as “stuffer”. Figure 1B shows an AAV vector including a PKD2 cDNA. Figure 1C shows an HDAd vector including both a PKD1 cDNA and a PKD2 cDNA. ITR = inverted terminal repeat, EF1α = human elongation factor 1α promoter, CBh = chicken β-actin hybrid promoter. Figure 1D shows alternative HDAd vectors including a PKD1 cDNA and/or a PKD2 cDNA. Figure 2. A schematic of an exemplary process used to generate triple transduced, stable cell lines expressing Cas9-SAM. LV = lentivirus, Bsd = blasticidin, Hyg = hygromycin, Zeo = zeocin. Figure 3. A graph showing fold PKD1 gene expression of human 293 cells transduced to express Cas9-SAM. qRT-PCR was performed with one biological replicate and three technical replicates (n=1). RQ = relative quantitation. Figure 4. A graph showing fold PKD1 gene expression of human RCTE cells transduced to express Cas9-SAM. qRT-PCR was performed with one biological replicate and three technical replicates (n=1). RQ = relative quantitation. Figure 5. A graph showing fold Pkd1 gene expression of mouse IMCD3 cells transduced to express Cas9-SAM. qRT-PCR was performed with one biological replicate and three technical replicates (n=1). RQ = relative quantitation. Figures 6A-6D. Diagrams of exemplary vectors for in vivo delivery of Cas9-SAM. Figure 6A shows a single HDAd vector delivering the entire Cas9-SAM system with additional space for cargo, denoted as “stuffer”. Figure 6B shows a single lentiviral vector delivering the entire Cas9-SAM system. Figure 6C shows a dual AAV vector system for delivering the Cas9-SAM system in two pieces. Figure 6D shows a single AAV vector system for delivering the SAM system based on a newly discovered and smaller CasΦ protein. ITR = inverted terminal repeat, LTR = long terminal repeat, U6 = U6 promoter, CMV = human cytomegalovirus promoter, EF1α = human elongation factor 1α promoter, CBh = chicken β-actin hybrid promoter, P2A = 2A self-cleaving peptide. Figure 7. A western blot of dCas9VP64 protein from transfected viral vector expression cassettes. All three transfected AAV cassettes and the transfected Ad cassette produced dCas9VP64 protein, which is calculated to have a mass of 168.26 kilodaltons. EF1α = human elongation factor 1α promoter, CMV = human cytomegalovirus promoter, FpA = Ad5 Fiber polyadenylation signal, HGHpA = Human growth hormone polyadenylation signal. Figure 8. Ex vivo luminescent imaging of livers and kidneys after intravenous injection with AAV8, with or without induced proteinuria. Mice were administered either PBS or LPS by intraperitoneal (i.p.) injection or intravenous (i.v.) injection with 1.94e12 genome copies of self-complementary (sc) AAV8-Cre a day later (n=1). Six days after AAV injection, the mice were sacrificed and their livers and kidneys were imaged for luminescence ex vivo. While the liver signals remained consistent, the mouse injected with LPS exhibited greater luminescence from its kidneys than the PBS-injected mouse. LK = left kidney, RK = right kidney. Figure 9. Fluorescent imaging of liver and kidney sections after intravenous injection with AAV8, with or without induced proteinuria. The same liver and kidney tissues from Figure 8 were sectioned to view transduced (EGFP + ) cells. The livers from both mice appear to be almost entirely transduced after a high dose of the liver tropic AAV8. The kidneys of the LPS-injected mouse shows transduced glomeruli and proximal tubules whereas the kidneys of the PBS-injected mouse show only transduced glomeruli. Arrows point to transduced proximal tubules adjacent to glomeruli. Figures 10A-10D. Ex vivo liver and kidney luminescence and flow cytometry with a lower dose of AAV8, with or without proteinuria. Figure 10A contains a graph showing no significant difference in liver luminescent between PBS and LPS-injected mice (n=3; p = 0.2000). Figure 10B contains a graph showing that kidneys of LPS- injected mice exhibited significantly more luminescence than those of PBS-injected mice (n=; *p = 0.0260). Figures 10C and 10D contain graphs showing the percent of GFP + cells in kidneys from Figure 10B that were homogenized, stained, and analyzed by flow cytometry. Figure 10C shows that EpCAM + CD31- (epithelial) cells had a significant increase in transduction (n=6; **p = 0.0022). Figure 10D shows that EpCAM-CD31 + (endothelial) cells showed no significant change in transduction between LPS and PBS- injected mice (n=6; p = 0.6991). Figures 11A-11C. Investigation of mice injected i.v. with Ad5-Cre, with or without induced proteinuria. Figure 11A contains exemplary images of bisected kidneys of one PBS/Ad5-Cre mouse and one LPS/Ad5-Cre mouse. Mice were sacrificed and their kidneys were imaged ex vivo (n=3). LPS-injected mouse kidneys exhibiting increased luminescence. Figure 11B contains a graph showing quantitation of ex vivo kidney luminescence. Luminescence significantly increased in LPS-injected mice from PBS- injected mice (n=6 kidneys; **p = 0.0022). Figure 11C contains exemplary fluorescent images of liver and kidney sections. Liver transduction decreased and kidney transduction increased, specifically in the glomeruli, in the LPS-injected mice. Arrows point to increased transduction in glomeruli. Figures 12A-12B. PC-1 sequences. Figure 12A is a representative nucleic acid sequence that can encode a human PC-1 polypeptide (SEQ ID NO:1). Figure 12B is an amino acid sequence of a representative human PC-1 polypeptide (SEQ ID NO: 2). Figures 13A-13B. PC-2 sequences. Figure 13A is a representative nucleic acid sequence that can encode a human PC-2 polypeptide (SEQ ID NO:3). Figure 13B is an amino acid sequence of a representative human PC-2 polypeptide (SEQ ID NO:4). Figures 14A-14B. Intravenous delivery of AAV8 in a state of induced proteinuria enhances kidney transduction. Figure 14A. Diagram of experimental scheme. Two month old male luciferase-mT/mG triple reporter mice were administered LPS intraperitoneally on Day -1 and scAAV intravenously on Day 0. In vivo bioluminescence was assessed daily until peak expression was observed at Day 6. Figure 14B. In vivo bioluminescence at Day 6 followed by ex vivo luminescence of livers and kidneys. n = 1 mouse per group. Figure 15. Intravenous delivery of multiple AAV serotypes enhances tubule epithelial cell transduction, but not necessarily proximal tubule cell transduction. The same kidneys from Figure 14 were sectioned to examine endogenous mT and mG fluorescence. Arrows point to examples of transduced non-glomerular (tubular) cells. While some tubular cell transduction was observed in PBS-injected control mice (left panels), there were increased numbers of these cells in LPS-injected induced proteinuria mice (center panels). No instances of these transduced cells were observed to be counterstained by LTL, a marker of proximal tubule cells (right panels). n = 1 mouse per group. Figures 16A-16C. Intravenous delivery of scAAV8 in a state of induced proteinuria significantly increases transduction of renal epithelial cells. Figure 16A. Three month old male mice were administered an i.p. injection of either PBS or LPS at Day -1 and an i.v. injection of 2.03e11 GC of scAAV8-Cre at Day 0. At Day 6, in vivo luminescence and ex vivo liver luminescence were not significantly different between PBS and LPS-injected groups, although brain luminescence was significantly increased in the LPS-injected group (p = 0.0475 by Welch’s t test.). n = 3 mice per group, except for control group where n = 1; error bars are represented by mean with SD. Figure 16B. Kidneys were bisected with a razor blade to reduce obstruction of luminescence and imaged ex vivo, with the LPS-injected group exhibiting increased luminescence compared to the PBS-injected group. Figure 16C. Ex vivo luminescence from Panel B was quantified and kidneys were subsequently processed for flow cytometry. Overall, kidneys from LPS-injected mice showed significantly higher ex vivo luminescence and percentage of transduced epithelial cells, but not of transduced endothelial cells (p values obtained using Mann-Whitney test). n = 6 kidneys per group, except for control group where n = 1; error bars are represented by mean with SD. Figures 17A-17B. AAVrh10 does not necessarily increase transduction of tubule epithelial cells during induced proteinuria. Figure 17A. Eight month old female mice were administered an i.p. injection of either PBS or LPS at Day -1 and an i.v. injection of 1.76e11 GC of scAAVrh10-Cre at Day 0. At Day 5, kidneys were processed for flow cytometry. Although there was no difference in transduced CD45- (non-hematopoietic) kidney cells, kidneys of the LPS-injected group had a significant increase in CD45+ (hematopoietic) cells compared to the PBS-injected group (n = 6 kidneys per group). Figure 17B. Kidney CD45- (non-hematopoietic) cells were separately gated into EpCAM + CD31- (all epithelial cells), EpCAM- CD31 + (endothelial cells), and EpCAM + LTL + and EpCAM + AQP1 + (two different markers of proximal tubule cells). None of the aforementioned gating strategies showed a significant difference in transduced cells between PBS-injected and LPS-injected groups. n = 6 kidneys per group, except for control group where n = 1; error bars are represented by mean with SD for all panels. p values determined using Mann-Whitney tests for all panels. Figures 18A-18B. Examination of kidney transduction using a vector with low liver tropism. Figure 18A. Four and a half month old female mice were administered an i.p. injection of PBS or LPS on Day -1 and an i.v. injection of 9.5e10 GC of scAAV1-Cre on Day 0. In vivo bioluminescence was assessed daily until peak expression was observed at Day 6. No significant difference was observed between groups, including a measurement of ex vivo liver luminescence (p values determined using Welch’s t test). n = 3 mice per group, except for control group where n = 1. Error bars are represented by mean with error (top left) or mean with SD (top right). Ex vivo kidney luminescence showed that LPS-injected mice had an increased but insignificant amount of luminescence compared to PBS-injected mice as well as LPS and scAAV8-Cre injected mice (p values determined using Mann-Whitney test). n = 6 kidneys per group, lower panels; error bars are represented by mean with SD; scAAV8-Cre data represents the same data shown in Figure 16. Figure 18B. The kidneys analyzed in Panel A were sectioned to observe endogenous mT and mG fluorescence. While mice treated with PBS and scAAV1-Cre showed transduction primarily in glomeruli (left), mice treated with LPS and scAAV1-Cre showed increased transduction in non-glomerular (tubular) cells (right). Arrows point to examples of transduced glomerular cells (left) or examples of transduced tubule cells (right). Figures 19A-19C. Induced proteinuria increases adenovirus transduction of the kidney, but strictly in glomeruli. Figure 19A. Four month old mice were administered an i.p. injection of PBS (male mice) or LPS (female mice) on Day -1 and an i.v. injection of 1e11 vp of Ad5-Cre on Day 0. In vivo bioluminescence was assessed daily until peak expression was observed at Day 5. Luminescence was significantly lower in LPS- injected mice compared to PBS-injected mice (p value determined using Welch’s t test; n = 3 mice per group; error bars are represented by mean with error, left), however, ex vivo kidney luminescence was significantly higher in LPS-injected mice compared to PBS- injected mice (p value determined using Mann-Whitney test; n = 6 kidneys per group, except for control group where n = 1; error bars are represented by mean with SD, right). Figure 19B. Bioluminescent images of the kidneys quantified ex vivo in Panel A. While essentially no luminescence is visible in kidneys from mice injected with PBS, kidneys from mice injected with LPS showed luminescence localized to the renal pelvis region of the kidney. Figure 19C. Kidneys shown in Panel B were sectioned to examine mT and mG endogenous fluorescence. Yellow arrows point to examples to transduced glomerular cells, which are present sparsely in mice injected with PBS and more frequently in mice injected with LPS. No instances of transduced tubular cells were observed in either group of mice. Figures 20A-20B. Induced proteinuria increases AAV gene delivery to renal epithelial cells in mice with polycystic kidney disease. Figure 20A. Male Pkd1RC/RC- mT/mG hybrid mice were generated, which have two hypomorphic Pkd1RC alleles and develop autosomal dominant polycystic kidney disease. Nine month old male mice were treated with PBS or LPS via i.p. injection at Day -1 and 1.64e11 GC of scAAV8-Cre via i.v. injection at Day 0. Figure 20B. Mice were sacrificed at Day 6 and their kidneys were sectioned to examine mT and mG endogenous fluorescence. Arrows point to transduced cells. While transduced glomerular cells were observed in PBS-injected mice, transduced tubular cells were observed only in LPS-injected mice (n = 1 mouse for each group). Figure 21. Diagram modeling vector pharmacokinetics in a state of induced proteinuria. LPS administration results in degradation of podocyte foot processes, effectively increasing the permselectivity of slit diaphragms to an unknown diameter above the natural 10 nm. This change in physiology allows the smaller AAV (25 nm i.d.) to penetrate into adjacent tubule cells while the larger Ad (90 nm i.d.) has increased penetration into glomerular cells but not tubular cells. It is also possible that AAV moved from the vasculature of the kidney to transduce cells of the macula densa. Figure 22. Example of proteinuria dipsticks used to assess induced proteinuria in mice. Mice administered LPS at Day -1 had a higher indicated level of proteinuria at Day 0 while mice administered PBS had a consistent level of proteinuria from Day -1 to Day 0. It was common for mice administered LPS to have a proteinuria level of greater than 2000 mg/dL the following day. Figures 23A-23B. Administration of LPS to mice did not affect liver transduction by AAV but did result in renal medullar transduction across several serotypes of AAV. Figure 23A. Quantification of in vivo luminescence images shown in Figure 14. Mice that were administered i.p. injections of either PBS or LPS on Day -1 and i.v. injections of scAAV8-Cre, scAAV9-Cre, or scAAVrh10-Cre on Day 0 had levels of in vivo luminescence that varied by approximately two orders of magnitude on Day 1, but these signals reached approximately the same level by Day 6. Figure 23B. Images of the medulla of kidneys of scAAV8 and scAAV9 injected mice from Figure 15. Both images show that there is transduction in medullar cells in addition to the cortical tubular cells shown earlier. Figures 24A-24B. Evidence of toxicity associated with combined LPS and AAV administration. Figure 24A. Liver sections of mice injected with PBS or LPS followed by high-dose scAAV8-Cre. These sections are from the same mice injected with scAAV8- Cre in Figures 14 and 15. While both livers are entirely transduced by scAAV8-Cre, the liver of the LPS-injected mouse exhibited a globular cell phenotype indicative of toxicity. Figure 24B. From the mice in Figure 3, mice treated with LPS had significantly increased transduced levels of macrophages in the blood compared to mice treated PBS, indicating an overall increase in macrophage present in the blood after LPS treatment. (p = 0.0475 by Welch’s t test.) Figures 25A-25D. Representative flow cytometry plots for mice administered scAAV8-Cre. Plots are from Left Kidney of Mouse #01 Left Kidney (treated with PBS followed by PBS, in a group of n = 2 kidneys) and Mouse #07 (treated with LPS followed by scAAV8-Cre, in a group of n = 6 kidneys). Figures 26A-26C. Representative flow cytometry plots for mice administered scAAVrh10-Cre. Plots are from Left Kidney of Mouse #01 Left Kidney (treated with PBS followed by PBS, in a group of n = 2 kidneys) and Mouse #02 (treated with LPS followed by scAAVrh10-Cre, in a group of n = 6 kidneys). Figures 27A-27B. Increased kidney transduction after administration of LPS and Ad5-Cre is negatively correlated with liver transduction. Figure 27A. Example of liver sections of mice injected either with PBS followed by Ad5-Cre or LPS followed by Ad5- Cre. While the liver of the former is fully transduced, the liver of the latter is only partially transduced. Figure 27.) The mice shown are the same mice from Figure 19 injected with LPS followed by Ad5-Cre. In vivo imaging (top) is juxtaposed to corresponding liver section (middle) and ex vivo kidney imaging (bottom). Mice with weaker liver transduction exhibited stronger kidney transduction. Figure 28. Comparison of liver transduction across various vectors and doses. While scAAV8, scAAV9, and scAAVrh10 fully transduced the liver, scAAV1 only partially transduced the liver. Ad5-Cre fully transduced the liver, which was attenuated when LPS was administered prior to Ad5-Cre. Figure 29. Livers of mice with polycystic kidney disease were fully transduced by scAAV8-Cre. Livers of mice shown in Figure 20. The livers of these mice were fully transduced when injected with scAAV8-Cre. Figure 30. A schematic representation of a cre recombinase activated reporter mouse model. Figures 31A – 31B. Representative images of mice showing luciferase expression. Figure 31A. In vivo luminescent imaging. Figure 31B. Fluorescent imaging of tissue sections. Figures 32A – 32E. Figure 32A. Fluorescent imaging of kidney sections following transduction with different AAV serotypes. Figure 32B. Immunostaining of smooth muscle and proximal tubules in kidneys of mice treated with AAV1. Figure 32C. Immunostaining of smooth muscle and proximal tubules in kidneys of mice treated with AAV8. Figure 32D. Immunostaining of podocytes, smooth muscle, and proximal tubules in kidneys of mice treated with AAV9. Figure 32E. Immunostaining of endothelium, smooth muscle, and proximal tubules in kidneys of mice treated with AAVrh10.1. Figure 33. Immunostaining of endothelium in kidneys of mice treated with AAVrh10.1. mRFP indicates untransduced cells. mGFP indicates Cre-transduced cells. Violet-colored cells are cells detected with anti-CD31 antibody. DETAILED DESCRIPTION This document provides methods and materials for treating a mammal (e.g., a human) having, or at risk of developing, a polycystic disease (e.g., a PKD). For example, methods and materials provided herein can be used to increase a level of PC-1 polypeptides and/or PC-2 polypeptides within a mammal having, or at risk of developing, a polycystic disease) to treat the mammal. In some cases, nucleic acid designed to increase a level of PC-1 polypeptides and/or PC-2 polypeptides within a mammal can be administered to a mammal (e.g., a human) having, or at risk of developing, a polycystic disease (e.g., a PKD) to treat the mammal. For example, nucleic acid designed to express a PC-1 polypeptide and/or nucleic acid designed to express a PC-2 polypeptide can be administered to a mammal (e.g., a human) having, or at risk of developing, a polycystic disease (e.g., a PKD) to increase a level of PC-1 polypeptides and/or PC-2 polypeptides within the mammal (e.g., to treat the mammal). For example, one or more nucleic acid molecules designed to express the components of a targeted gene activation system designed to activate transcription of a PKD1 gene (e.g., resulting in an increased level of PC-1 polypeptides) and/or to activate transcription of a PKD2 gene (e.g., resulting in an increased level of PC-2 polypeptides) can be administered to a mammal (e.g., a human) having, or at risk of developing, a polycystic disease (e.g., a PKD) to increase a level of PC-1 polypeptides and/or PC-2 polypeptides within the mammal (e.g., to treat the mammal). As used herein, an “increased” level of PC-1 polypeptides and/or PC-2 polypeptides can be any level that is higher than a level of PC-1 polypeptides and/or PC-2 polypeptides in a mammal (e.g., human) that was observed prior to being treated as described herein (e.g., by administering nucleic acid designed to increase a level of PC-1 polypeptides and/or PC-2 polypeptides to the mammal). An increase in a level of PC-1 polypeptides and/or PC-2 polypeptides can be in any appropriate tissue and/or organ of a mammal (e.g., a human). Examples of tissues and/or organs in which a level of PC-1 polypeptides and/or PC-2 polypeptides can be increased as described herein (e.g., by administering nucleic acid designed to increase a level of PC-1 polypeptides and/or PC-2 polypeptides to the mammal) include, without limitation, kidneys, liver, spleen, lungs, and brain. In some cases, administering nucleic acid designed to increase a level of PC-1 polypeptides and/or PC-2 polypeptides to a mammal having a polycystic disease (e.g., a PKD) can be effective to increase a level of PC-1 polypeptides and/or PC-2 polypeptides in one or both kidneys in the mammal. For example, nucleic acid designed to express a PC-1 polypeptide and/or nucleic acid designed to express a PC-2 polypeptide can be administered to a mammal (e.g., a human) in need thereof (e.g., a human having, or at risk of developing, a polycystic disease such as PKD) as described herein to increase a level of PC-1 polypeptides and/or PC-2 polypeptides in the mammal by, for example, 10, 20, 30, 40, 50, 60, 70, 80, 90, 95, or more percent. In some cases, nucleic acid designed to express a PC-1 polypeptide and/or nucleic acid designed to express a PC-2 polypeptide can be administered to a mammal (e.g., a human) in need thereof (e.g., a human having, or at risk of developing, a polycystic disease such as PKD) as described herein to increase a level of PC-1 polypeptides and/or PC-2 polypeptides in the mammal by, for example, 1- fold, 2-fold, 3-fold, 4-fold, 5-fold, 6-fold, 7-fold, 8-fold, 9-fold, 10-fold, 11-fold, 12-fold, 13-fold, 14-fold, 15-fold, or more. For example, one or more nucleic acid molecules designed to express the components of a targeted gene activation system designed to activate transcription of a PKD1 gene and/or a PKD2 gene can be administered to a mammal (e.g., a human) in need thereof (e.g., a human having, or at risk of developing, a polycystic disease such as PKD) as described herein to increase a level of PC-1 polypeptides and/or PC-2 polypeptides in the mammal by, for example, 10, 20, 30, 40, 50, 60, 70, 80, 90, 95, or more percent. In some cases, one or more nucleic acid molecules designed to express the components of a targeted gene activation system designed to activate transcription of a PKD1 gene and/or a PKD2 gene can be administered to a mammal (e.g., a human) in need thereof (e.g., a human having, or at risk of developing, a polycystic disease such as PKD) as described herein to increase a level of PC-1 polypeptides and/or PC-2 polypeptides in the mammal by, for example, 1-fold, 2-fold, 3- fold, 4-fold, 5-fold, 6-fold, 7-fold, 8-fold, 9-fold, 10-fold, 11-fold, 12-fold, 13-fold, 14- fold, 15-fold, or more. In some cases, a mammal (e.g., a human) having, or at risk of developing, a polycystic disease (e.g., a PKD) can be treated as described herein (e.g., by administering nucleic acid designed to increase a level of PC-1 polypeptides and/or PC-2 polypeptides within a mammal) to reduce or eliminate one or more symptoms of a polycystic disease (e.g., a PKD) and/or one or more complications associated with a polycystic disease (e.g., a PKD). Examples of symptoms of a polycystic disease (e.g., a PKD) and complications associated with a polycystic disease (e.g., a PKD) include, without limitation, back pain, side pain, headache, a feeling of fullness (e.g., in the abdomen), increased size of the abdomen (e.g., due to an enlarged kidney), blood in the urine, high blood pressure, loss of kidney function (e.g., kidney failure), heart valve abnormalities (e.g., mitral valve prolapse), colon problems (e.g., diverticulosis), development of an aneurysm (e.g., a brain aneurysm), and endothelial dysfunction (ED). For example, nucleic acid designed to express a PC-1 polypeptide and/or nucleic acid designed to express a PC-2 polypeptide can be administered to a mammal (e.g., a human) in need thereof (e.g., a human having, or at risk of developing, a PKD) as described herein to reduce the severity of one or more symptoms of a PDK and/or one or more complications associated with PKD by, for example, 10, 20, 30, 40, 50, 60, 70, 80, 90, 95, or more percent. For example, nucleic acid designed to express one or more gene therapy components (or the gene therapy components themselves) designed to activate transcription of a PKD1 gene and/or a PKD2 gene can be administered to a mammal (e.g., a human) in need thereof (e.g., a human having, or at risk of developing, a PKD) as described herein to reduce the severity of one or more symptoms of a PDK and/or one or more complications associated with PKD by, for example, 10, 20, 30, 40, 50, 60, 70, 80, 90, 95, or more percent. In some cases, a mammal (e.g., a human) having, or at risk of developing, a polycystic disease (e.g., a PKD) can be treated as described herein (e.g., by administering nucleic acid designed to increase a level of PC-1 polypeptides and/or PC-2 polypeptides within a mammal) to reduce or eliminate one or more cysts (e.g., one or more renal cysts) within the mammal. For example, nucleic acid designed to express a PC-1 polypeptide and/or nucleic acid designed to express a PC-2 polypeptide can be administered to a mammal (e.g., a human) in need thereof (e.g., a human having one or more cysts associate with a polycystic disease such as PKD) as described herein to reduce the size (e.g., volume) of a cyst within the mammal by, for example, 10, 20, 30, 40, 50, 60, 70, 80, 90, 95, or more percent. For example, nucleic acid designed to express one or more gene therapy components (or the gene therapy components themselves) designed to activate transcription of a PKD1 gene and/or a PKD2 gene can be administered to a mammal (e.g., a human) in need thereof (e.g., a human having one or more cysts associated with a polycystic disease such as PKD) as described herein to reduce the cystic index (also referred to as a cystic burden; e.g., the percentage of an organ such as a kidney that is occupied by cysts) in the mammal by, for example, 10, 20, 30, 40, 50, 60, 70, 80, 90, 95, or more percent. Any appropriate method can be used to determine the size of a cyst (e.g., a renal cyst) and/or a cystic index within a mammal (e.g., a mammal having, or at risk of developing, a polycystic disease such as PKD). For example, ultrasound, computed tomography (CT) scanning, magnetic resonance imaging (MRI), and/or histological analysis can be used to determine the size of a cyst (e.g., a renal cyst) and/or a cystic index of a mammal (e.g., a mammal having, or at risk of developing, a polycystic disease such as PKD). In some cases, a cystic index can be determined as described elsewhere (see, e.g., Nieto et al., PLoS One, 11(10):e0163063 (2016)). In some cases, a mammal (e.g., a human) having, or at risk of developing, a polycystic disease (e.g., a PKD) can be treated as described herein (e.g., by administering nucleic acid designed to increase a level of PC-1 polypeptides and/or PC-2 polypeptides within a mammal) to reduce the total kidney volume of one or both kidneys within the mammal and/or to reduce the body weight of the mammal. For example, nucleic acid designed to express a PC-1 polypeptide and/or nucleic acid designed to express a PC-2 polypeptide can be administered to a mammal (e.g., a human) in need thereof (e.g., a human having one or more cysts associate with a polycystic disease such as PKD) as described herein to reduce the total kidney volume of a kidney within the mammal and/or to reduce the body weight of the mammal by, for example, 10, 20, 30, 40, 50, 60, 70, 80, 90, 95, or more percent. For example, nucleic acid designed to express one or more gene therapy components (or the gene therapy components themselves) designed to activate transcription of a PKD1 gene and/or a PKD2 gene can be administered to a mammal (e.g., a human) in need thereof (e.g., a human having one or more cysts associate with a polycystic disease such as PKD) as described herein to reduce the total kidney volume of a kidney within the mammal and/or to reduce the body weight of the mammal by, for example, 10, 20, 30, 40, 50, 60, 70, 80, 90, 95, or more percent. Any appropriate method can be used to determine the total kidney volume of a kidney. For example, ultrasound, CT scanning, and/or MRI can be used to determine the weight of a kidney. Any appropriate mammal having, or at risk of developing, a polycystic disease (e.g., a PKD) can be treated as described herein (e.g., by administering nucleic acid designed to increase a level of PC-1 polypeptides and/or PC-2 polypeptides within a mammal). Examples of mammals having, or at risk of developing, a polycystic disease (e.g., a PKD) that can be treated as described herein include, without limitation, humans, non-human primates (e.g., monkeys), dogs, cats, horses, cows, pigs, sheep, mice, rat, hamsters, camels, and llamas. In some cases, a human having, or at risk of developing, a polycystic disease (e.g., a PKD) can be treated by administering nucleic acid designed to express a PC-1 polypeptide and/or nucleic acid designed to express a PC-2 polypeptide to the human. In some cases, a human having, or at risk of developing, a polycystic disease (e.g., a PKD) can be treated by administering nucleic acid designed to express one or more gene therapy components (or the gene therapy components themselves) designed to activate transcription of a PKD1 gene and/or a PKD2 gene to the human. Any appropriate polycystic disease can be treated as described herein (e.g., by administering nucleic acid designed to increase a level of PC-1 polypeptides and/or PC-2 polypeptides within a mammal). Examples of polycystic diseases that can be treated as described herein include, without limitation, PKDs such as ADPKD type 1 and ADPKD type 2. In some cases, a mammal (e.g., a human) having, or at risk of developing, PKD (e.g., ADPKD) can be treated by administering nucleic acid designed to express a PC-1 polypeptide and/or nucleic acid designed to express a PC-2 polypeptide to the mammal. In some cases, a mammal (e.g., a human) having, or at risk of developing, PKD (e.g., ADPKD) can be treated by administering nucleic acid designed to express one or more gene therapy components (or the gene therapy components themselves) designed to activate transcription of a PKD1 gene and/or a PKD2 gene to the mammal. When treating a mammal having, or at risk of developing, a polycystic disease (e.g., a PKD) as described herein (e.g., by administering nucleic acid designed to increase a level of PC-1 polypeptides and/or PC-2 polypeptides within a mammal), the mammal can have one or more cysts present in and/or on any tissue or organ within the mammal. Examples of tissues and organs within a mammal having a polycystic disease (e.g., a PKD) that can have one or more cysts include, without limitation, the kidney, the liver, seminal vesicles, pancreas, and arachnoid membrane. For example, a mammal (e.g., a human) having a polycystic disease (e.g., a PKD) can have one or more renal cysts (e.g., one or more cysts present on or within one or both kidneys). In some cases, methods for treating a mammal (e.g., a human) having, or at risk of developing, a polycystic disease (e.g., a PKD) also can include identifying a mammal as having, or as being at risk of developing, a polycystic disease (e.g., a PKD). Any appropriate method can be used to identify a mammal as having, or as being at risk of developing, a polycystic disease (e.g., a PKD). For example, imaging techniques (e.g., ultrasound, CT scan, and MRI), laboratory tests (e.g., genetic testing for mutation of one or both copies of the PKD1 gene and/or mutation of one or both copies of the PKD2 gene present in a mammal), and/or generation of family pedigrees can be used to identify a mammal as having, or as being at risk of developing, a polycystic disease (e.g., a PKD). Once identified as having, or as being at risk of developing, a polycystic disease (e.g., a PKD), the mammal (e.g., the human) can be administered, or instructed to self- administer, nucleic acid designed to increase a level of PC-1 polypeptides and/or PC-2 polypeptides within a mammal as described herein. In some cases, nucleic acid designed to increase a level of PC-1 polypeptides and/or PC-2 polypeptides within a mammal can include nucleic acid designed to express a PC-1 polypeptide and/or nucleic acid designed to express a PC-2 polypeptide. Nucleic acid designed to express PC-1 polypeptides and/or PC-2 polypeptides within a mammal can express any appropriate PC-1 polypeptide and/or any appropriate PC-2 polypeptide. In some cases, the methods and materials provided herein can include administering to a mammal (e.g., a human) having, or at risk of developing, a polycystic disease (e.g., a PKD) nucleic acid designed to express a PC-1 polypeptide. Examples of PC-1 polypeptides and nucleic acids encoding PC-1 polypeptides include, without limitation, those set forth in the National Center for Biotechnology Information (NCBI) databases at, for example, accession no. NM_001009944 (version NM_001009944.3), and accession no. AAC34211 (version AAC34211.1). In some cases, a nucleic acid encoding a PC-1 polypeptide can have an nucleotide sequence set forth in SEQ ID NO:1 (see, e.g., Figure 12A). In some cases, a PC-1 polypeptide can have an amino acid sequence set forth in SEQ ID NO:2 (see, e.g., Figure 12B). In some cases, a variant of a PC-1 polypeptide can be used in place of or in addition to a PC-1 polypeptide. A variant of a PC-1 polypeptide can have the amino acid sequence of a naturally-occurring PC-1 polypeptide with one or more (e.g., e.g., one, two, three, four, five, six, seven, eight, nine, ten, or more) amino acid deletions, additions, substitutions, or combinations thereof, provided that the variant retains the function of a naturally-occurring PC-1 polypeptide. In some cases, the methods and materials provided herein can include administering to a mammal (e.g., a human) having, or at risk of developing, a polycystic disease (e.g., a PKD) nucleic acid designed to express a PC-2 polypeptide. Examples of PC-2 polypeptides and nucleic acids encoding PC-2 polypeptides include, without limitation, those set forth in the National Center for Biotechnology Information (NCBI) databases at, for example, accession no. NR_156488 (version NR_156488.2), and accession no. Q13563 (version Q13563.3). In some cases, a nucleic acid encoding a PC-2 polypeptide can have an nucleotide sequence set forth in SEQ ID NO:3 (see, e.g., Figure 13A). In some cases, a PC-2 polypeptide can have an amino acid sequence set forth in SEQ ID NO:4 (see, e.g., Figure 13B). In some cases, a variant of a PC-2 polypeptide can be used in place of or in addition to a PC-2 polypeptide. A variant of a PC-2 polypeptide can have the amino acid sequence of a naturally-occurring PC-1 polypeptide with one or more (e.g., e.g., one, two, three, four, five, six, seven, eight, nine, ten, or more) amino acid deletions, additions, substitutions, or combinations thereof, provided that the variant retains the function of a naturally-occurring PC-2 polypeptide. Any appropriate amino acid residue set forth in SEQ ID NO:2 and/or any appropriate amino acid residue set forth in SEQ ID NO:3 can be deleted, and any appropriate amino acid residue (e.g., any of the 20 conventional amino acid residues or any other type of amino acid such as ornithine or citrulline) can be added to or substituted within the sequence set forth in SEQ ID NO:2 and/or SEQ ID NO:4. The majority of naturally occurring amino acids are L-amino acids, and naturally occurring polypeptides are largely comprised of L-amino acids. D-amino acids are the enantiomers of L-amino acids. In some cases, a polypeptide provided herein can contain one or more D-amino acids. In some embodiments, a polypeptide can contain chemical structures such as ε- aminohexanoic acid; hydroxylated amino acids such as 3-hydroxyproline, 4- hydroxyproline, (5R)-5-hydroxy-L-lysine, allo-hydroxylysine, and 5-hydroxy-L- norvaline; or glycosylated amino acids such as amino acids containing monosaccharides (e.g., D-glucose, D-galactose, D-mannose, D-glucosamine, and D-galactosamine) or combinations of monosaccharides. Amino acid substitutions can be made, in some cases, by selecting substitutions that do not differ significantly in their effect on maintaining (a) the structure of the peptide backbone in the area of the substitution, (b) the charge or hydrophobicity of the molecule at particular sites, or (c) the bulk of the side chain. For example, naturally occurring residues can be divided into groups based on side-chain properties: (1) hydrophobic amino acids (norleucine, methionine, alanine, valine, leucine, and isoleucine); (2) neutral hydrophilic amino acids (cysteine, serine, and threonine); (3) acidic amino acids (aspartic acid and glutamic acid); (4) basic amino acids (asparagine, glutamine, histidine, lysine, and arginine); (5) amino acids that influence chain orientation (glycine and proline); and (6) aromatic amino acids (tryptophan, tyrosine, and phenylalanine). Substitutions made within these groups can be considered conservative substitutions. Non-limiting examples of substitutions that can be used herein for SEQ ID NO:2 and/or SEQ ID NO:4 include, without limitation, substitution of valine for alanine, lysine for arginine, glutamine for asparagine, glutamic acid for aspartic acid, serine for cysteine, asparagine for glutamine, aspartic acid for glutamic acid, proline for glycine, arginine for histidine, leucine for isoleucine, isoleucine for leucine, arginine for lysine, leucine for methionine, leucine for phenyalanine, glycine for proline, threonine for serine, serine for threonine, tyrosine for tryptophan, phenylalanine for tyrosine, and/or leucine for valine. Further examples of conservative substitutions that can be made at any appropriate position within SEQ ID NO:2 and/or SEQ ID NO:4 are set forth in Table 1 below.

Table 1. Examples of conservative amino acid substitutions.

In some cases, a variant of a PC-1 polypeptide can be designed to include the amino acid sequence set forth in SEQ ID NO:2 with the proviso that it includes one or more non-conservative substitutions. Non-conservative substitutions typically entail exchanging a member of one of the classes described above for a member of another class. Whether an amino acid change results in a functional polypeptide can be determined by assaying the specific activity of the polypeptide using, for example, the methods described herein.

In some cases, a variant of a PC-1 polypeptide having an amino acid sequence with at least 85% (e.g., 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99.0%) sequence identity to the amino acid sequence set forth in SEQ ID NO:2, provided that it includes at least one difference (e.g., at least one amino acid addition, deletion, or substitution) with respect to SEQ ID NO:2, can be used. In some cases, a variant of a PC-2 polypeptide can be designed to include the amino acid sequence set forth in SEQ ID NO:4 with the proviso that it includes one or more non-conservative substitutions. Non-conservative substitutions typically entail exchanging a member of one of the classes described above for a member of another class. Whether an amino acid change results in a functional polypeptide can be determined by assaying the specific activity of the polypeptide using, for example, the methods described herein. In some cases, a variant of a PC-2 polypeptide having an amino acid sequence with at least 85% (e.g., 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99.0%) sequence identity to the amino acid sequence set forth in SEQ ID NO:4, provided that it includes at least one difference (e.g., at least one amino acid addition, deletion, or substitution) with respect to SEQ ID NO:4, can be used. The percent sequence identity between a particular nucleic acid or amino acid sequence and a sequence referenced by a particular sequence identification number (e.g., SEQ ID NO:2 and/or SEQ ID NO:4) is determined as follows. First, a nucleic acid or amino acid sequence is compared to the sequence set forth in a particular sequence identification number using the BLAST 2 Sequences (Bl2seq) program from the stand- alone version of BLASTZ containing BLASTN version 2.0.14 and BLASTP version 2.0.14. This stand-alone version of BLASTZ can be obtained online at fr.com/blast or at ncbi.nlm.nih.gov. Instructions explaining how to use the Bl2seq program can be found in the readme file accompanying BLASTZ. Bl2seq performs a comparison between two sequences using either the BLASTN or BLASTP algorithm. BLASTN is used to compare nucleic acid sequences, while BLASTP is used to compare amino acid sequences. To compare two nucleic acid sequences, the options are set as follows: -i is set to a file containing the first nucleic acid sequence to be compared (e.g., C:\seq1.txt); -j is set to a file containing the second nucleic acid sequence to be compared (e.g., C:\seq2.txt); -p is set to blastn; -o is set to any desired file name (e.g., C:\output.txt); -q is set to -1; -r is set to 2; and all other options are left at their default setting. For example, the following command can be used to generate an output file containing a comparison between two sequences: C:\Bl2seq -i c:\seq1.txt -j c:\seq2.txt -p blastn -o c:\output.txt -q -1 -r 2. To compare two amino acid sequences, the options of Bl2seq are set as follows: - i is set to a file containing the first amino acid sequence to be compared (e.g., C:\seq1.txt); -j is set to a file containing the second amino acid sequence to be compared (e.g., C:\seq2.txt); -p is set to blastp; -o is set to any desired file name (e.g., C:\output.txt); and all other options are left at their default setting. For example, the following command can be used to generate an output file containing a comparison between two amino acid sequences: C:\Bl2seq -i c:\seq1.txt -j c:\seq2.txt -p blastp -o c:\output.txt. If the two compared sequences share homology, then the designated output file will present those regions of homology as aligned sequences. If the two compared sequences do not share homology, then the designated output file will not present aligned sequences. Once aligned, the number of matches is determined by counting the number of positions where an identical nucleotide or amino acid residue is presented in both sequences. The percent sequence identity is determined by dividing the number of matches by the length of the sequence set forth in the identified sequence (e.g., SEQ ID NO:2 and/or SEQ ID NO:4), followed by multiplying the resulting value by 100. It is noted that the percent sequence identity value is rounded to the nearest tenth. For example, 75.11, 75.12, 75.13, and 75.14 is rounded down to 75.1, while 75.15, 75.16, 75.17, 75.18, and 75.19 is rounded up to 75.2. It also is noted that the length value will always be an integer. In some cases, nucleic acid designed to express a PC-1 polypeptide and/or nucleic acid designed to express a PC-2 polypeptide can be the form of a vector (e.g., a viral vector or a non-viral vector). In cases where the methods and materials provided herein include nucleic acid designed to express a PC-1 polypeptide and nucleic acid designed to express a PC-2 polypeptide, the nucleic acid designed to express a PC-1 polypeptide and the nucleic acid designed to express a PC-2 polypeptide can be present in the same vector or in separate vectors. In some cases, nucleic acid designed to express a PC-1 polypeptide and/or nucleic acid designed to express a PC-2 polypeptide can be used for transient expression of a PC- 1 polypeptide and/or a PC-2 polypeptide. In some cases, nucleic acid designed to express a PC-1 polypeptide and/or nucleic acid designed to express a PC-2 polypeptide can be used for stable expression of a PC-1 polypeptide and/or a PC-2 polypeptide. In cases where nucleic acid designed to express a PC-1 polypeptide and/or nucleic acid designed to express a PC-2 polypeptide is used for stable expression of a PC-1 polypeptide and/or a PC-2 polypeptide, the nucleic acid encoding a PC-1 polypeptide and/or the nucleic acid encoding a PC-2 polypeptide can be engineered to integrate into the genome of a cell. Nucleic acid can be engineered to integrate into the genome of a cell using any appropriate method. For example, gene editing techniques (e.g., CRISPR or TALEN gene editing) can be used to integrate nucleic acid designed to express a PC-1 polypeptide and/or nucleic acid designed to express a PC-2 polypeptide into the genome of a cell. When a vector used to deliver nucleic acid designed to express a PC-1 polypeptide and/or nucleic acid designed to express a PC-2 polypeptide to a mammal is a viral vector, any appropriate viral vector can be used. A viral vector can be derived from a positive- strand virus or a negative-strand virus. A viral vector can be derived from a virus with a DNA genome or a RNA genome. In some cases, a viral vector can be a chimeric viral vector. In some cases, a viral vector can infect dividing cells. In some cases, a viral vector can infect non-dividing cells. In some cases, a viral vector can be a helper dependent (HD) viral vector. Examples of virus-based vectors that can be used to deliver nucleic acid designed to express a PC-1 polypeptide and/or nucleic acid designed to express a PC-2 polypeptide to a mammal include, without limitation, virus-based vectors based on Ads (e.g., HDAds), AAVs, lentiviruses (LVs), measles viruses, Sendai viruses, herpes viruses, or vesicular stomatitis viruses (VSVs). In some cases, nucleic acid designed to express a PC-1 polypeptide and/or nucleic acid designed to express a PC-2 polypeptide can be delivered to a mammal using a HDAd vector. In some cases, nucleic acid designed to express a PC-2 polypeptide can be delivered to a mammal using an AAV vector. In some cases, a viral vector including nucleic acid designed to express a PC-1 polypeptide and/or nucleic acid designed to express a PC-2 polypeptide can have low seroprevalence in a mammal to be treated as described herein. When a vector used to deliver nucleic acid designed to express a PC-1 polypeptide and/or nucleic acid designed to express a PC-2 polypeptide to a mammal (e.g., a human) is a non-viral vector, any appropriate non-viral vector can be used. In some cases, a non- viral vector can be an expression plasmid (e.g., a cDNA expression vector). In some cases, nucleic acid designed to express a PC-1 polypeptide and/or nucleic acid designed to express a PC-2 polypeptide can be administered to a mammal complexed with lipids, polymers, nanoparticles (e.g., nanospheres), and/or lipid nanoparticles (LNPs). For example, nucleic acid designed to express a PC-1 polypeptide and/or nucleic acid designed to express a PC-2 polypeptide can be complexed to one or more LNPs. In addition to nucleic acid designed to express a PC-1 polypeptide and/or nucleic acid designed to express a PC-2 polypeptide, nucleic acid designed to increase a level of PC-1 polypeptides and/or PC-2 polypeptides within a mammal can contain one or more regulatory elements operably linked to the nucleic acid encoding a PC-1 polypeptide and/or the nucleic acid encoding a PC-2 polypeptide. Such regulatory elements can include promoter sequences, enhancer sequences, response elements, signal peptides, internal ribosome entry sequences, polyadenylation signals, terminators, and inducible elements that modulate expression (e.g., transcription or translation) of a nucleic acid. The choice of regulatory element(s) that can be included in a vector depends on several factors, including, without limitation, inducibility, targeting, and the level of expression desired. For example, a promoter can be included in a vector to facilitate transcription of a nucleic acid encoding a PC-1 polypeptide and/or nucleic acid encoding a PC-2 polypeptide. A promoter can be a naturally occurring promoter or a recombinant promoter. A promoter can be ubiquitous or inducible (e.g., in the presence of tetracycline), and can affect the expression of a nucleic acid encoding a polypeptide in a general or tissue-specific manner (e.g.,a cadherin 16 (Cdh16 or Ksp-cadherin) promoter sequence such as a mouse Cdh16 promoter sequence). Examples of promoters that can be used to drive expression of a PC-1 polypeptide and/or PC-2 polypeptide include, without limitation, EF1α promoter sequences, CBh promoter sequences, PKD1 promoter sequences, PKD2 promoter sequences, cytomegalovirus (CMV) promoter sequences (e.g., human CMV promoter sequences), Rous sarcoma virus (RSV) promoter sequences, aquaporin 2 (AQP2) promoter sequences, gamma-glutamyltransferase 1 (Ggt1) promoter sequences, and Ksp-cadherin promoter sequences. As used herein, “operably linked” refers to positioning of a regulatory element in a vector relative to a nucleic acid encoding a polypeptide in such a way as to permit or facilitate expression of the encoded polypeptide. For example, a vector can contain a promoter and nucleic acid encoding a PC-1 polypeptide. In this case, the promoter is operably linked to a nucleic acid encoding a PC-1 polypeptide such that it drives expression of the PC-1 polypeptide in cells. In cases where a vector contains both nucleic acid designed to express a PC-1 polypeptide and nucleic acid designed to express a PC-2 polypeptide, the nucleic acid designed to express a PC-1 polypeptide and the nucleic acid designed to express a PC-2 polypeptide can be operably linked to the same promoter or different promoters. In some cases, nucleic acid designed to express a PC-1 polypeptide and/or nucleic acid designed to express a PC-2 polypeptide can contain nucleic acid encoding a detectable label. For example, a vector can include nucleic acid designed to express a PC-1 polypeptide and nucleic acid encoding a detectable label positioned such that the encoded polypeptide is a fusion polypeptide that includes a PC-1 polypeptide fused to a detectable polypeptide. In some cases, a detectable label can be a peptide tag. Examples of detectable labels that can be used as described herein include, without limitation, HA tags, Myc-tags, FLAG-tags, fluorescent polypeptides (e.g., green fluorescent polypeptides (GFPs), and mCherry polypeptides), luciferase polypeptides, and sodium iodide symporter (NIS) polypeptides. Nucleic acid designed to express a PC-1 polypeptide and/or nucleic acid designed to express a PC-2 polypeptide can be produced by techniques including, without limitation, common molecular cloning, polymerase chain reaction (PCR), chemical nucleic acid synthesis techniques, and combinations of such techniques. For example, PCR or RT-PCR can be used with oligonucleotide primers designed to amplify nucleic acid (e.g., genomic DNA or RNA) encoding a PC-1 polypeptide or a PC-2 polypeptide. In some cases, a vector including nucleic acid designed to express a PC-1 polypeptide can be a HDAd vector including nucleic acid designed to express a PC-1 polypeptide that is operably linked to a CBh promoter sequence. An exemplary HDAd vector including nucleic acid encoding a PC-1 polypeptide that is operably linked to a CBh promoter sequence can include the nucleic acid sequence set forth in SEQ ID NO:5. In some cases, a vector including nucleic acid designed to express a PC-2 polypeptide can be a AAV vector including nucleic acid designed to express a PC-2 polypeptide that is operably linked to a EF1α promoter sequence. An exemplary AAV vector including nucleic acid encoding a PC-2 polypeptide that is operably linked to a EF1α promoter sequence can include the nucleic acid sequence set forth in SEQ ID NO:6. In some cases, a vector including nucleic acid designed to express a PC-1 polypeptide can be a HDAd vector including nucleic acid designed to express a PC-1 polypeptide that is operably linked to a CBh promoter sequence and include nucleic acid designed to express a PC-2 polypeptide that is operably linked to a EF1α promoter sequence. An exemplary HDAd vector including nucleic acid encoding a PC-1 polypeptide that is operably linked to a CBh promoter sequence and including nucleic acid encoding a PC-2 polypeptide that is operably linked to a EF1α promoter sequence can include the nucleic acid sequence set forth in SEQ ID NO:7. In some cases, nucleic acid designed to increase a level of PC-1 polypeptides and/or PC-2 polypeptides within a mammal can include one or more nucleic acid molecules designed to express gene therapy components designed to activate transcription of a PKD1 gene (e.g., resulting in an increased level of PC-1 polypeptides) and/or to activate transcription of a PKD2 gene (e.g., resulting in an increased level of PC-2 polypeptides). For example, nucleic acid designed to increase a level of PC-1 polypeptides and/or PC-2 polypeptides within a mammal can include one or more nucleic acid molecules designed to express the components of a targeted gene activation system (e.g., designed for CRISPR-Cas9-based targeted gene activation system) designed to upregulate transcription of the PKD1 gene and/or the PKD2 gene to increase the level of PC-1 polypeptides and/or PC-2 polypeptides in cells. Any appropriate targeted gene activation system can be used (e.g., a synergistic activation mediators (SAM) system). In some cases, a targeted gene activation system can include (a) a fusion polypeptide including a deactivated Cas (dCas) polypeptide and a transcriptional activator polypeptide, (b) one or more helper activator polypeptides, and (c) a nucleic acid molecule including (i) a nucleic acid sequence that is complementary to a target sequence within a PKD1 gene and/or a PKD2 gene, and (ii) a nucleic acid sequence that can bind the one or more helper activator polypeptides. For example, nucleic acid designed to increase a level of PC-1 polypeptides and/or PC-2 polypeptides within a mammal can include (a) nucleic acid that can express a fusion polypeptide including a deactivated Cas (dCas) polypeptide and a transcriptional activator polypeptide, (b) nucleic acid that can express one or more helper activator polypeptides, and (c) nucleic acid that can express a nucleic acid molecule including (i) a nucleic acid sequence that is complementary to a target sequence within a PKD1 gene and/or a PKD2 gene, and (ii) a nucleic acid sequence that can bind the one or more helper activator polypeptides. A fusion polypeptide including a dCas polypeptide and a transcriptional activator polypeptide in a targeted gene activation system (e.g., a SAM system) designed to activate transcription of a PKD1 gene (e.g., resulting in an increased level of PC-1 polypeptides) and/or to activate transcription of a PKD2 gene (e.g., resulting in an increased level of PC-2 polypeptides) can include any appropriate dCas polypeptide. Examples of dCas polypeptides that can be included in a fusion polypeptide including a dCas polypeptide and a transcriptional activator polypeptide that can be used as a targeted gene activation system (e.g., a SAM system) designed to activate transcription of a PKD1 gene and/or to activate transcription of a PKD2 gene can include, without limitation, deactivated Cas9 (dCas9) polypeptides (e.g., deactivated Streptococcus pyogenes Cas9 (dSpCas9), deactivated Staphylococcus aureus Cas9 (dSaCas9), and deactivated Campylobacter jejuni Cas9 (dCjCas9)), and deactivated Cas phi (dCasΦ) polypeptides. In some cases, a dCas polypeptide that can be included in a fusion polypeptide including a dCas polypeptide and a transcriptional activator polypeptide that can be used as a targeted gene activation system (e.g., a SAM system) designed to activate transcription of a PKD1 gene and/or to activate transcription of a PKD2 gene can be as described elsewhere (see, e.g., Konermann et al., Nature, Jan 29;517(7536):583-8 (2015) at, for example, the Supplementary Materials; Sajwan et al., Sci Rep., 9:18104 (2019) at, for example, Supplementary Materials; Jiang et al., Biosci. Rep., 39(8):BSR20191496 (2019) at, for example, Table 1). A dCas polypeptide in a fusion polypeptide including a dCas polypeptide and a transcriptional activator polypeptide in a targeted gene activation system (e.g., a SAM system) designed to activate transcription of a PKD1 gene (e.g., resulting in an increased level of PC-1 polypeptides) and/or to activate transcription of a PKD2 gene (e.g., resulting in an increased level of PC-2 polypeptides) can be encoded by any appropriate nucleic acid sequence. A fusion polypeptide including a dCas polypeptide and a transcriptional activator polypeptide in a targeted gene activation system (e.g., a SAM system) designed to activate transcription of a PKD1 gene (e.g., resulting in an increased level of PC-1 polypeptides) and/or to activate transcription of a PKD2 gene (e.g., resulting in an increased level of PC-2 polypeptides) can include any appropriate transcriptional activator polypeptide. In some cases, a transcriptional activator polypeptide can recruit an RNA polymerase. In some cases, a transcriptional activator polypeptide can recruit one or more transcription factors and/or transcription co-factors (e.g., RNA polymerase co-factors). Examples of transcriptional activator polypeptides that can be included in a fusion polypeptide including a dCas polypeptide and a transcriptional activator polypeptide that can be used in a targeted gene activation system (e.g., a SAM system) designed to activate transcription of a PKD1 gene and/or to activate transcription of a PKD2 gene can include, without limitation, polypeptides having four copies of viral protein 16 (VP64 polypeptides). In some cases, a transcriptional activator polypeptide that can be included in a fusion polypeptide including a dCas polypeptide and a transcriptional activator polypeptide that can be used in a targeted gene activation system (e.g., a SAM system) designed to activate transcription of a PKD1 gene and/or to activate transcription of a PKD2 gene can be as described elsewhere (see, e.g., Konermann et al., Nature, Jan 29;517(7536):583-8 (2015) at, for example, the Supplementary Materials; Sajwan et al., Sci Rep., 9:18104 (2019) at, for example, Supplementary Materials; Jiang et al., Biosci. Rep., 39(8):BSR20191496 (2019) at, for example, Table 1). A transcriptional activator polypeptide in a fusion polypeptide including a dCas polypeptide and a transcriptional activator polypeptide in a targeted gene activation system (e.g., a SAM system) designed to activate transcription of a PKD1 gene (e.g., resulting in an increased level of PC-1 polypeptides) and/or to activate transcription of a PKD2 gene (e.g., resulting in an increased level of PC-2 polypeptides) can be encoded by any appropriate nucleic acid sequence. A fusion polypeptide including a dCas polypeptide and a transcriptional activator polypeptide in a targeted gene activation system (e.g., a SAM system) designed to activate transcription of a PKD1 gene (e.g., resulting in an increased level of PC-1 polypeptides) and/or to activate transcription of a PKD2 gene (e.g., resulting in an increased level of PC-2 polypeptides) can include the dCas polypeptide and the transcriptional activator polypeptide in any orientation. In some cases, a transcriptional activator polypeptide can be fused to the N-terminus of a dCas polypeptide. In some cases, a transcriptional activator polypeptide can be fused to the C-terminus of a dCas polypeptide. In some cases, a fusion polypeptide including a dCas polypeptide and a transcriptional activator polypeptide in a targeted gene activation system (e.g., a SAM system) designed to activate transcription of a PKD1 gene (e.g., resulting in an increased level of PC-1 polypeptides) and/or to activate transcription of a PKD2 gene (e.g., resulting in an increased level of PC-2 polypeptides) can include a dSpCas9 polypeptide and a VP64 polypeptide. For example, a fusion polypeptide including a dCas polypeptide and a transcriptional activator polypeptide that can be used in a targeted gene activation system (e.g., a SAM system) designed to activate transcription of a PKD1 gene (e.g., resulting in an increased level of PC-1 polypeptides) and/or to activate transcription of a PKD2 gene (e.g., resulting in an increased level of PC-2 polypeptides) can be a dCas9- VP64 fusion polypeptide. A fusion polypeptide including a dCas polypeptide and a transcriptional activator polypeptide in a targeted gene activation system (e.g., a SAM system) designed to activate transcription of a PKD1 gene (e.g., resulting in an increased level of PC-1 polypeptides) and/or to activate transcription of a PKD2 gene (e.g., resulting in an increased level of PC-2 polypeptides) can be encoded by any appropriate nucleic acid sequence. A targeted gene activation system (e.g., a SAM system) designed to activate transcription of a PKD1 gene (e.g., resulting in an increased level of PC-1 polypeptides) and/or to activate transcription of a PKD2 gene (e.g., resulting in an increased level of PC-2 polypeptides) can include any appropriate helper activator polypeptide. Examples of helper activator polypeptides that can be used in a targeted gene activation system (e.g., a SAM system) designed to activate transcription of a PKD1 gene and/or to activate transcription of a PKD2 gene can include, without limitation, Escherichia virus MS2 coat protein (MS2) polypeptides, nuclear factor NF-kappa-B p65 subunit (p65) polypeptides, heat shock factor protein 1 (HSF1) polypeptides, VP64 polypeptides. In some cases, a helper activator polypeptide can include two or more (e.g., two, three, or more) helper activator polypeptides. For example, a helper activator polypeptide can be a fusion polypeptide including two or more helper activator polypeptides. For example, a helper activator polypeptide can be a complex including two or more helper activator polypeptide. In some cases, a helper activator polypeptide can include a MS2 polypeptide, a p65 polypeptide, and a HSF1 polypeptide (a MS2-P65-HSF1 (MPH) polypeptide). In some cases, a helper activator polypeptide that can be used in a targeted gene activation system (e.g., a SAM system) designed to activate transcription of a PKD1 gene and/or to activate transcription of a PKD2 gene can be as described elsewhere (see, e.g., Konermann et al., Nature, Jan 29;517(7536):583-8 (2015) at, for example, the Supplementary Materials; Sajwan et al., Sci Rep., 9:18104 (2019) at, for example, Supplementary Materials; Jiang et al., Biosci. Rep., 39(8):BSR20191496 (2019) at, for example, Table 1). A helper activator polypeptide in a targeted gene activation system (e.g., a SAM system) designed to activate transcription of a PKD1 gene (e.g., resulting in an increased level of PC-1 polypeptides) and/or to activate transcription of a PKD2 gene (e.g., resulting in an increased level of PC-2 polypeptides) can be encoded by any appropriate nucleic acid sequence. A targeted gene activation system (e.g., a SAM system) designed to activate transcription of a PKD1 gene (e.g., resulting in an increased level of PC-1 polypeptides) and/or to activate transcription of a PKD2 gene (e.g., resulting in an increased level of PC-2 polypeptides) can include any appropriate nucleic acid molecule including (i) a nucleic acid sequence that is complementary to a target sequence within a PKD1 gene and/or a PKD2 gene, and (ii) a nucleic acid sequence that can bind the helper activator polypeptide. A nucleic acid sequence that is complementary to a target sequence within a PKD1 gene and/or a PKD2 gene can be any appropriate length. In some cases, a nucleic acid sequence that is complementary to a target sequence within a PKD1 gene and/or a PKD2 gene can include from 19 nucleotides to 21 nucleotides. In some cases, a nucleic acid molecule including (i) a nucleic acid sequence that is complementary to a target sequence within a PKD1 gene and/or a PKD2 gene, and (ii) a nucleic acid sequence that can bind the helper activator polypeptide that can be used in a targeted gene activation system (e.g., a SAM system) designed to activate transcription of a PKD1 gene and/or to activate transcription of a PKD2 gene can include a nucleic acid sequence that is complementary to a target sequence within a PKD1 gene. A nucleic acid sequence that is complementary to a target sequence within a PKD1 gene can include any appropriate nucleic acid sequence. A nucleic acid sequence that is complementary to a target sequence within a PKD1 gene can be complementary to (e.g., can be designed to target) any target sequence within a PKD1 gene (e.g., can target any location within a PKD1 gene). In some cases, a nucleic acid sequence that is complementary to a target sequence within a PKD1 gene can be a single stranded nucleic acid sequence. In some cases, a target sequence within a PKD1 gene can be in a promoter sequence of the PKD1 gene. In some cases, a target sequence within a PKD1 gene can be from about 1 nucleotide to about 200nucleotides away from a promoter sequence of the PKD1 gene. Examples of nucleic acid sequences that are complementary to a target sequence within a PKD1 gene include, without limitation, nucleic acid sequences that can be encoded by a nucleic acid sequence including the sequence TCGCGCTGTGGCGAAGGGGG (SEQ ID NO:13), a nucleic acid sequence including the sequence CCAGTCCCTCATCGCTGGCC (SEQ ID NO:14), and a nucleic acid sequence including the sequence GGAGCGGAGGGTGAAGCCTC (SEQ ID NO:15). In some cases, a nucleic acid molecule including (i) a nucleic acid sequence that is complementary to a target sequence within a PKD1 gene and/or a PKD2 gene, and (ii) a nucleic acid sequence that can bind the helper activator polypeptide that can be used in a targeted gene activation system (e.g., a SAM system) designed to activate transcription of a PKD1 gene and/or to activate transcription of a PKD2 gene can include a nucleic acid sequence that is complementary to a target sequence within a PKD2 gene. A nucleic acid sequence that is complementary to a target sequence within a PKD2 gene can include any appropriate nucleic acid sequence. A nucleic acid sequence that is complementary to a target sequence within a PKD2 gene can be complementary to (e.g., can be designed to target) any target sequence within a PKD2 gene (e.g., can target any location within a PKD2 gene). In some cases, a nucleic acid sequence that is complementary to a target sequence within a PKD2 gene can be a single stranded nucleic acid sequence. In some cases, a target sequence within a PKD2 gene can be in a promoter sequence of the PKD2 gene. In some cases, a target sequence within a PKD2 gene can be from about 1 nucleotide to about 200 nucleotides away from a promoter sequence of the PKD2 gene. Examples of nucleic acid sequences that are complementary to a target sequence within a PKD2 gene include, without limitation, nucleic acid sequences that can be encoded by a nucleic acid sequence including the sequence ACGCGGACTCGGGAGCCGCC (SEQ ID NO:23), a nucleic acid sequence including the sequence ATCCGCCGCGGCGCGCTGAG (SEQ ID NO:24), and a nucleic acid sequence including the sequence GTGCGAGGGAGCCGCCCCCG (SEQ ID NO:25). A nucleic acid sequence that is complementary to a target sequence within a PKD1 gene and/or a PKD2 gene that can be included in a nucleic acid molecule including (i) a nucleic acid sequence that is complementary to a target sequence within a PKD1 gene and/or a PKD2 gene, and (ii) a nucleic acid sequence that can bind the helper activator polypeptide in a targeted gene activation system (e.g., a SAM system) designed to activate transcription of a PKD1 gene (e.g., resulting in an increased level of PC-1 polypeptides) and/or to activate transcription of a PKD2 gene (e.g., resulting in an increased level of PC-2 polypeptides) can be encoded by any appropriate nucleic acid sequence. In some cases, nucleic acid sequences that encode a nucleic acid that is complementary to a target sequence within a PKD1 gene can be encoded by a nucleic acid sequence shown in Table 2 or Table 3. In some cases, a nucleic acid molecule including (i) a nucleic acid sequence that is complementary to a target sequence within a PKD1 gene and/or a PKD2 gene, and (ii) a nucleic acid sequence that can bind the helper activator polypeptide that can be used in a targeted gene activation system (e.g., a SAM system) designed to activate transcription of a PKD1 gene and/or to activate transcription of a PKD2 gene can include any appropriate nucleic acid sequence that can bind the helper activator polypeptide. In some cases, a nucleic acid sequence that can bind the helper activator polypeptide can bind a MS2 polypeptide. Examples of nucleic acid sequences that can bind the helper activator polypeptide (e.g., a MS2 polypeptide) can include, without limitation, nucleic acid sequences that can be encoded by a nucleic acid sequence including the sequence ACATGAGGATCACCCATGT (SEQ ID NO:26). A nucleic acid sequence that can bind the helper activator polypeptide that can be included in a nucleic acid molecule including (i) a nucleic acid sequence that is complementary to a target sequence within a PKD1 gene and/or a PKD2 gene, and (ii) a nucleic acid sequence that can bind the helper activator polypeptide in a targeted gene activation system (e.g., a SAM system) designed to activate transcription of a PKD1 gene (e.g., resulting in an increased level of PC-1 polypeptides) and/or to activate transcription of a PKD2 gene (e.g., resulting in an increased level of PC-2 polypeptides) can be encoded by any appropriate nucleic acid sequence. In addition to nucleic acid designed to express one or more gene therapy components designed to activate transcription of a PKD1 gene (e.g., resulting in an increased level of PC-1 polypeptides) and/or to activate transcription of a PKD2 gene (e.g., resulting in an increased level of PC-2 polypeptides), nucleic acid designed to increase a level of PC-1 polypeptides and/or PC-2 polypeptides within a mammal can contain one or more regulatory elements operably linked to nucleic acid that can express (a) a fusion polypeptide including a dCas polypeptide and a transcriptional activator polypeptide, (b) nucleic acid that can express one or more helper activator polypeptides, and/or (c) nucleic acid that can express a nucleic acid molecule including (i) a nucleic acid sequence that is complementary to a target sequence within a PKD1 gene and/or a PKD2 gene, and (ii) a nucleic acid sequence that can bind the one or more helper activator polypeptides. Such regulatory elements can include promoter sequences, enhancer sequences, response elements, signal peptides, internal ribosome entry sequences, polyadenylation signals, terminators, and inducible elements that modulate expression (e.g., transcription or translation) of a nucleic acid. The choice of regulatory element(s) that can be included in a vector depends on several factors, including, without limitation, inducibility, targeting, and the level of expression desired. For example, a promoter can be included in a vector to facilitate transcription of a nucleic acid that can express (a) a fusion polypeptide including a dCas polypeptide and a transcriptional activator polypeptide, (b) a nucleic acid that can express one or more helper activator polypeptides, and/or (c) a nucleic acid that can express a nucleic acid molecule including (i) a nucleic acid sequence that is complementary to a target sequence within a PKD1 gene and/or a PKD2 gene, and (ii) a nucleic acid sequence that can bind the one or more helper activator polypeptides. A promoter can be a naturally occurring promoter or a recombinant promoter. A promoter can be ubiquitous or inducible (e.g., in the presence of tetracycline), and can affect the expression of a nucleic acid encoding a polypeptide in a general or tissue-specific manner (e.g., AQP2 promoter sequences, Ggt1 promoter sequences, and Ksp-cadherin promoter sequences). Examples of promoters that can be used to drive expression of (a) a fusion polypeptide including a dCas polypeptide and a transcriptional activator polypeptide, (b) one or more helper activator polypeptides, and/or (c) a nucleic acid molecule including (i) a nucleic acid sequence that is complementary to a target sequence within a PKD1 gene and/or a PKD2 gene, and (ii) a nucleic acid sequence that can bind the one or more helper activator polypeptides include, without limitation, EF1α promoter sequences, CBh promoter sequences, CMV promoter sequences (e.g., human CMV promoter sequences), RSV promoter sequences, U6 promoter sequences, AQP2 promoter sequences, Ggt1 promoter sequences, and Ksp- cadherin promoter sequences. As used herein, “operably linked” refers to positioning of a regulatory element in a vector relative to a nucleic acid encoding a polypeptide or a nucleic acid (e.g., an RNA) in such a way as to permit or facilitate expression of the encoded polypeptide or the transcribed nucleic acid. For example, a vector can contain a promoter and nucleic acid encoding a fusion polypeptide including a dCas polypeptide and a transcriptional activator polypeptide. In this case, the promoter is operably linked to a nucleic acid encoding a fusion polypeptide including a dCas polypeptide and a transcriptional activator polypeptide such that it drives expression of the fusion polypeptide including a dCas polypeptide and a transcriptional activator polypeptide in cells. In cases where a vector contains both a nucleic acid that can express one or more helper activator polypeptides and a nucleic acid that can express a nucleic acid molecule including (i) a nucleic acid sequence that is complementary to a target sequence within a PKD1 gene and/or a PKD2 gene, and (ii) a nucleic acid sequence that can bind the one or more helper activator polypeptides, the nucleic acid that can express one or more helper activator polypeptides and the nucleic acid that can express a nucleic acid molecule including (i) a nucleic acid sequence that is complementary to a target sequence within a PKD1 gene and/or a PKD2 gene, and (ii) a nucleic acid sequence that can bind the one or more helper activator polypeptides can be operably linked to the same promoter or different promoters. In cases where a vector contains each of a nucleic acid that can express (a) a fusion polypeptide including dCas polypeptide and a transcriptional activator polypeptide, (b) a nucleic acid that can express one or more helper activator polypeptides, and (c) a nucleic acid that can express a nucleic acid molecule including (i) a nucleic acid sequence that is complementary to a target sequence within a PKD1 gene and/or a PKD2 gene, and (ii) a nucleic acid sequence that can bind the one or more helper activator polypeptides, the nucleic acid that can express the fusion polypeptide including dCas polypeptide and a transcriptional activator polypeptide, the nucleic acid that can express the nucleic acid that can express one or more helper activator polypeptides, and the nucleic acid that can express a nucleic acid molecule including (i) a nucleic acid sequence that is complementary to a target sequence within a PKD1 gene and/or a PKD2 gene, and (ii) a nucleic acid sequence that can bind the one or more helper activator polypeptides can be operably linked to the same promoter or different promoters. In cases where two or more nucleic acid sequences are operably linked to a single promoter, the coding sequences of each nucleic acid sequence can be separated by a sequence encoding a cleavage signal (e.g., P2A cleavage signal). In some cases, one or more nucleic acid molecules designed to express the components of a targeted gene activation system designed to activate transcription of a PKD1 gene (e.g., resulting in an increased level of PC-1 polypeptides) and/or to activate transcription of a PKD2 gene (e.g., resulting in an increased level of PC-2 polypeptides) can be the form of one or more vectors (e.g., viral vectors and/or non-viral vectors). In some cases, one or more nucleic acid molecules designed to express the components of a targeted gene activation system designed to activate transcription of a PKD1 gene and/or to activate transcription of a PKD2 gene can be present in the same vector or in separate vectors. When a vector used to deliver one or more nucleic acid molecules designed to express the components of a targeted gene activation system designed to activate transcription of a PKD1 gene and/or to activate transcription of a PKD2 gene to a mammal is a viral vector, any appropriate viral vector can be used. A viral vector can be derived from a positive-strand virus or a negative-strand virus. A viral vector can be derived from a virus with a DNA genome or a RNA genome. In some cases, a viral vector can be a chimeric viral vector. In some cases, a viral vector can infect dividing cells. In some cases, a viral vector can infect non-dividing cells. Examples virus-based vectors that can be used to deliver nucleic acid designed to express a PC-1 polypeptide and/or nucleic acid designed to express a PC-2 polypeptide to a mammal include, without limitation, virus-based vectors based on Ads (e.g., HDAds), AAVs, LVs, measles viruses, Sendai viruses, herpes viruses, or VSVs. When a vector used to deliver one or more nucleic acid molecules designed to express the components of a targeted gene activation system designed to activate transcription of a PKD1 gene and/or to activate transcription of a PKD2 gene to a mammal (e.g., a human) is a non-viral vector, any appropriate non-viral vector can be used. In some cases, a non-viral vector can be an expression plasmid (e.g., a cDNA expression vector). In some cases, one or more nucleic acid molecules designed to express the components of a targeted gene activation system designed to activate transcription of a PKD1 gene and/or to activate transcription of a PKD2 gene can be administered to a mammal by direct injection of nucleic acid molecules complexed with lipids, polymers, nanoparticles (e.g., nanospheres), and/or LNPs. For example, nucleic acid designed to express a PC-1 polypeptide and/or nucleic acid designed to express a PC-2 polypeptide can be complexed to one or more LNPs. In some cases, one or more nucleic acid molecules designed to express the components of a targeted gene activation system designed to activate transcription of a PKD1 gene (e.g., resulting in an increased level of PC-1 polypeptides) and/or to activate transcription of a PKD2 gene (e.g., resulting in an increased level of PC-2 polypeptides) can be in a HDAd vector (e.g., in a single HDAd vector) including (a) nucleic acid encoding a dCas9VP64 fusion polypeptide that is operably linked to a CMV promoter sequence, (b) nucleic acid encoding a MPH polypeptide that is operably linked to a EF1α promoter sequence, and (c) nucleic acid encoding a nucleic acid molecule (e.g., gRNA) including (i) a nucleic acid sequence that is complementary to a target sequence within a PKD1 gene, and (ii) a nucleic acid sequence that can bind a MS2 polypeptide that is operably linked to a U6 promoter sequence. Exemplary HDAd vectors including (a) nucleic acid encoding a dCas9VP64 fusion polypeptide that is operably linked to a CMV promoter sequence, (b) nucleic acid encoding a MPH polypeptide that is operably linked to a EF1α promoter sequence, and (c) nucleic acid encoding a nucleic acid molecule (e.g., gRNA) including (i) a nucleic acid sequence that is complementary to a target sequence within a PKD1 gene, and (ii) a nucleic acid sequence that can bind a MS2 polypeptide that is operably linked to a U6 promoter sequence can include, without limitation, the nucleic acid sequence set forth in SEQ ID NO:8, and the nucleic acid sequence set forth in SEQ ID NO:9. In some cases, one or more nucleic acid molecules designed to express the components of a targeted gene activation system designed to activate transcription of a PKD1 gene (e.g., resulting in an increased level of PC-1 polypeptides) and/or to activate transcription of a PKD2 gene (e.g., resulting in an increased level of PC-2 polypeptides) can be in the form of two or more AAV vectors including (a) nucleic acid encoding a dCas9VP64 fusion polypeptide that is operably linked to a EF1α promoter sequence, (b) nucleic acid encoding a MPH polypeptide that is operably linked to a CMV promoter sequence, and (c) nucleic acid encoding a nucleic acid molecule (e.g., gRNA) including (i) a nucleic acid sequence that is complementary to a target sequence within a PKD1 gene, and (ii) a nucleic acid sequence that can bind a MS2 polypeptide that is operably linked to a U6 promoter sequence. For example, a first AAV vector can include (a) nucleic acid encoding a dCas9VP64 fusion polypeptide that is operably linked to a EF1α promoter sequence, and a second AAV vector can include (b) nucleic acid encoding a MPH polypeptide that is operably linked to a CMV promoter sequence, and (c) nucleic acid encoding a nucleic acid molecule (e.g., gRNA) including (i) a nucleic acid sequence that is complementary to a target sequence within a PKD1 gene, and (ii) a nucleic acid sequence that can bind a MS2 polypeptide that is operably linked to a U6 promoter sequence. An exemplary AAV vector including (a) nucleic acid encoding a dCas9VP64 fusion polypeptide that is operably linked to a EF1α promoter sequence can include the nucleic acid sequence set forth in SEQ ID NO:10. An exemplary AAV vector including (b) nucleic acid encoding a MPH polypeptide that is operably linked to a CMV promoter sequence, and (c) nucleic acid encoding a nucleic acid molecule (e.g., gRNA) including (i) a nucleic acid sequence that is complementary to a target sequence within a PKD1 gene, and (ii) a nucleic acid sequence that can bind a MS2 polypeptide that is operably linked to a U6 promoter sequence can include the nucleic acid sequence set forth in SEQ ID NO:11. In some cases, one or more nucleic acid molecules designed to express the components of a targeted gene activation system designed to activate transcription of a PKD1 gene (e.g., resulting in an increased level of PC-1 polypeptides) and/or to activate transcription of a PKD2 gene (e.g., resulting in an increased level of PC-2 polypeptides) can be in the form of an AAV vector (e.g., a single AAV vector) including (a) nucleic acid encoding a dCasΦ1 polypeptide that is operably linked to a CBh promoter sequence, (b) nucleic acid encoding a MPH polypeptide that is operably linked to the CBh promoter sequence, and (c) nucleic acid encoding a nucleic acid molecule (e.g., gRNA) including (i) a nucleic acid sequence that is complementary to a target sequence within a PKD1 gene, and (ii) a nucleic acid sequence that can bind a MS2 polypeptide that is operably linked to a U6 promoter sequence. An exemplary AAV vector including (a) nucleic acid encoding a dCasΦ1 polypeptide that is operably linked to a CBh promoter sequence, (b) nucleic acid encoding a MPH polypeptide that is operably linked to the CBh promoter sequence, and (c) nucleic acid encoding a nucleic acid molecule (e.g., gRNA) including (i) a nucleic acid sequence that is complementary to a target sequence within a PKD1 gene, and (ii) a nucleic acid sequence that can bind a MS2 polypeptide that is operably linked to a U6 promoter sequence can include the nucleic acid sequence set forth in SEQ ID NO:12. Any appropriate method can be used to deliver nucleic acid designed to increase a level of PC-1 polypeptides and/or PC-2 polypeptides within a mammal to a mammal (e.g., a human). For example, nucleic acid designed to increase a level of PC-1 polypeptides and/or PC-2 polypeptides within a mammal can be administered locally or systemically. For example, nucleic acid designed to increase a level of PC-1 polypeptides and/or PC-2 polypeptides within a mammal can be administered locally by retro-ureter injection and/or subcapsular injection to a mammal (e.g., a human). For example, nucleic acid designed to increase a level of PC-1 polypeptides and/or PC-2 polypeptides within a mammal can be administered systemically by i.p. injection and/or i.v. injection to a mammal (e.g., a human). Also provided herein are methods for improving delivery of nucleic acid (e.g., vectors such as viral vectors) to a mammal (e.g., to one or more cells within a mammal). For example, inducing proteinuria in a mammal prior to administering nucleic acid can be effective to improve delivery of nucleic acid to one or more cells (e.g., from blood within a mammal into one or more cells) within a mammal. In some cases, a mammal can first be administered one or more LPSs (e.g., to induce proteinuria in the mammal), and can subsequently be administered nucleic acid. For example, a mammal having, or at risk of developing, a polycystic disease (e.g., PKD) can first be administered one or more LPSs, and can subsequently be administered nucleic acid designed to increase a level of PC-1 polypeptides and/or PC-2 polypeptides within the mammal (e.g., to improve delivery of nucleic acid designed to increase a level of PC-1 polypeptides and/or PC-2 polypeptides to one or more cells within a mammal). Any appropriate LPS having the ability to induce proteinuria in a mammal (e.g., a human) can be used to improve delivery of nucleic acid to cells within the mammal as described herein. In some cases, another agent (e.g., an agent that is not an LPS) that can induce proteinuria in a mammal (e.g., a human) can be used in place of or in addition to one or more LPSs to improve delivery of nucleic acid to a mammal (e.g., to one or more cells within a mammal). An agent that can induce proteinuria in a mammal can be any type of molecule (e.g., a polypeptide, and a small molecule). In some cases, an agent that can induce proteinuria in a mammal can be a cell-opening agent. Examples of agents that can induce proteinuria and be used as described herein include, without limitation, puromycin, adriamycin, protamine sulfate, cationic albumin, and poly cations.

In some cases, administering one or more LPSs (and/or another agent or agents that can induce proteinuria in a mammal) prior to administering nucleic acid can be effective to improve delivery of the nucleic acid to the mammal (e.g., to one or more cells within a mammal) by, for example, 10, 20, 30, 40, 50, 60, 70, 80, 90, 95, or more percent (e.g., as compared to the amount of nucleic acid delivered to a mammal that has not been administered one or more LPSs and/or other agent(s) that can induce proteinuria in a mammal).

In some cases, administering one or more LPSs (and/or another agent or agents that can induce proteinuria in a mammal) prior to administering nucleic acid can be effective to deliver large nucleic acid to the mammal (e.g., to one or more cells within a mammal). For example, administering one or more LPSs (and/or another agent or agents that can induce proteinuria in a mammal) prior to administering nucleic acid can be effective to deliver nucleic acid having a size of from about 0.15 kb to about 36 kb (e.g., from about 0.15 kb to about 33 kb, from about 0.15 kb to about 30 kb, from about 0.15 kb to about 28 kb, from about 0.15 kb to about 25 kb, from about 0.15 kb to about 20 kb, from about 0.15 kb to about 17 kb, from about 0.15 kb to about 15 kb, from about 0.15 kb to about 12 kb, from about 0.15 kb to about 10 kb, from about 0.15 kb to about 8 kb, from about 0.15 kb to about 5 kb, from about 0.15 kb to about 3 kb, from about 0.15 kb to about 1 kb, from about 0.15 kb to about 0.5 kb, from about 0.5 kb to about 36 kb, from about 1 kb to about 36 kb, from about 5 kb to about 36 kb, from about 8 kb to about 36 kb, from about 10 kb to about 36 kb, from about 15 kb to about 36 kb, from about 20 kb to about 36 kb, from about 25 kb to about 36 kb, from about 30 kb to about 36 kb, from about 0.5 kb to about 30 kb, from about 1 kb to about 25 kb, from about 5 kb to about 20 kb, from about 10 kb to about 15 kb, from about 1 kb to about 5 kb, from about 5 kb to about 10 kb, from about 15 kb to about 20 kb, from about 20 kb to about 25 kb, from about 25 kb to about 30 kb, or from about 30 kb to about 35 kb) to the mammal (e.g., to one or more cells within a mammal). For example, administering one or more LPSs (and/or another agent or agents that can induce proteinuria in a mammal) prior to administering nucleic acid can be effective to deliver nucleic acid having a mass of from about 10 kilodaltons (kDa) to about 50 kDa (e.g., from about 10 kDa to about 50 kDa, from about 10 kDa to about 40 kDa, from about 10 kDa to about 30 kDa, from about 10 kDa to about 20 kDa, from about 20 kDa to about 40 kDa, from about 25 kDa to about 35 kDa, from about 15 kDa to about 20 kDa, from about 20 kDa to about 25 kDa, from about 25 kDa to about 30 kDa, from about 30 kDa to about 35 kDa, from about 35 kDa to about 40 kDa, from about 40 kDa to about 45 kDa, or from about 45 kDa to about 50 kDa) to the mammal (e.g., to one or more cells within a mammal). For example, administering one or more LPSs (and/or another agent or agents that can induce proteinuria in a mammal) prior to administering nucleic acid can be effective to deliver nucleic acid having a diameter of from about 10 nm to about 26 nm (e.g., from about 10 nm to about 25 nm, from about 10 nm to about 20 nm, from about 10 nm to about 17 nm, from about 10 nm to about 15 nm, from about 10 nm to about 12 nm, from about 12 nm to about 26 nm, from about 15 nm to about 26 nm, from about 18 nm to about 26 nm, from about 20 nm to about 26 nm, from about 22 nm to about 26 nm, from about 12 nm to about 20 nm, from about 15 nm to about 18 nm, from about 12 nm to about 15 nm¸ from about 18 nm to about 20 nm, or from about 20 nm to about 22 nm) to the mammal (e.g., to one or more cells within a mammal). Any appropriate amount of one or more LPSs (and/or another agent or agents that can induce proteinuria in a mammal) can be administered to a mammal (e.g., a human) to improve delivery of nucleic acid to any type of cell within the mammal. For example, from about 7 milligrams per kilogram body weight (mg/kg) to about 9 mg/kg of one or more LPSs (and/or another agent or agents that can induce proteinuria in a mammal) can be administered to a mammal (e.g., a human) to improve delivery of nucleic acid to any type of cell within the mammal. One or more LPSs (and/or another agent or agents that can induce proteinuria in a mammal) can improve delivery of nucleic acid to any type of cell within a mammal. Examples of types of cells that an agent that can induce proteinuria in a mammal can improve delivery of nucleic acid to include, without limitation, kidney cells (e.g., renal tubule epithelial cells and/or proximal tubule cells such as proximal tubule cells adjacent to glomeruli), spleen cells, lungs cells, and brain cells. One or more LPSs (and/or another agent or agents that can induce proteinuria in a mammal) can be administered to a mammal (e.g., a human) at any appropriate time before nucleic acid is administered to the mammal. In some cases, one or more LPSs (and/or another agent or agents that can induce proteinuria in a mammal) can be administered to a mammal (e.g., a human) at least 18 hours prior to administering nucleic acid to the mammal. For example, one or more LPSs (and/or another agent or agents that can induce proteinuria in a mammal) can be administered to a mammal (e.g., a human) from about 18 hours to about 24 hours prior to administering nucleic acid to the mammal. Any appropriate method can be used to deliver one or more LPSs (and/or another agent or agents that can induce proteinuria in a mammal) to a mammal (e.g., a human). For example, one or more LPSs (and/or another agent or agents that can induce proteinuria in a mammal) can be administered locally or systemically. For example, one or more LPSs (and/or another agent or agents that can induce proteinuria in a mammal) can be administered locally by retro-ureter injection and/or subcapsular injection to a mammal (e.g., a human). For example, one or more LPSs (and/or another agent or agents that can induce proteinuria in a mammal) can be administered systemically by i.p. injection and/or i.v. injection to a mammal (e.g., a human). In some cases, methods for treating a mammal (e.g., a human) having, or at risk of developing, a polycystic disease (e.g., a PKD) can include administering to the mammal nucleic acid designed to increase a level of PC-1 polypeptides and/or PC-2 polypeptides within a mammal as the sole active ingredient to treat the mammal. In some cases, methods for treating a mammal (e.g., a human) having, or at risk of developing, a polycystic disease (e.g., a PKD) as described herein (e.g., by administering nucleic acid designed to increase a level of PC-1 polypeptides and/or PC-2 polypeptides within a mammal) also can include administering to the mammal one or more (e.g., one, two, three, four, five or more) additional active agents (e.g., therapeutic agents) that are effective to treat one or more symptoms of a PKD and/or one or more complications associated with a polycystic disease (e.g., a PKD) to treat the mammal. Examples of additional active agents that can be used as described herein to treat one or more symptoms of a polycystic disease (e.g., a PKD) and/or one or more complications associated with a polycystic disease (e.g., a PKD) include, without limitation, an inhibitor of a vasopressin receptor (e.g., tolvaptan), angiotensin-converting enzyme (ACE) inhibitors, angiotensin II receptor blockers (ARBs), pain relievers (e.g., acetaminophen), antibiotics, pasireotide, and anti-miR-17 oligonucleotide RGLS4326. In some cases, the one or more additional active agents can be administered together with the administration of the nucleic acid designed to increase a level of PC-1 polypeptides and/or PC-2 polypeptides within a mammal. For example, a composition containing nucleic acid designed to increase a level of PC-1 polypeptides and/or PC-2 polypeptides within a mammal also can include one or more additional active agents that are effective to treat one or more symptoms of a polycystic disease (e.g., a PKD) and/or one or more complications associated with a polycystic disease (e.g., a PKD). In some cases, the one or more additional active agents that are effective to treat one or more symptoms of a polycystic disease (e.g., a PKD) and/or one or more complications associated with a polycystic disease (e.g., a PKD) can be administered independent of the administration of the nucleic acid designed to increase a level of PC-1 polypeptides and/or PC-2 polypeptides within a mammal. When the one or more additional active agents that are effective to treat one or more symptoms of a polycystic disease (e.g., a PKD) and/or one or more complications associated with a polycystic disease (e.g., a PKD) are administered independent of the administration of the nucleic acid designed to increase a level of PC-1 polypeptides and/or PC-2 polypeptides within a mammal, the nucleic acid designed to increase a level of PC-1 polypeptides and/or PC-2 polypeptides within a mammal can be administered first, and the one or more additional active agents that are effective to treat one or more symptoms of a polycystic disease (e.g., a PKD) and/or one or more complications associated with a polycystic disease (e.g., a PKD) performed second, or vice versa. In some cases, methods for treating a mammal (e.g., a human) having, or at risk of developing, a polycystic disease (e.g., a PKD) as described herein (e.g., by administering nucleic acid designed to increase a level of PC-1 polypeptides and/or PC-2 polypeptides within a mammal) also can include subjecting the mammal one or more (e.g., one, two, three, four, five or more) additional treatments (e.g., therapeutic interventions) that are effective to treat one or more symptoms of a polycystic disease (e.g., a PKD) and/or one or more complications associated with a polycystic disease (e.g., a PKD) to treat the mammal. Examples of additional treatments that can be used as described herein to treat one or more symptoms of a polycystic disease (e.g., a PKD) and/or one or more complications associated with a polycystic disease (e.g., a PKD) include, without limitation, consuming a restricted diet (e.g., a diet low in methionine, high in choline, and/or high in betaine content), maintaining a healthy body weight, exercising regularly, undergoing dialysis, undergoing a kidney transplant, and dietary ketosis. In some cases, the one or more additional treatments that are effective to treat one or more symptoms of a polycystic disease (e.g., a PKD) and/or one or more complications associated with a polycystic disease (e.g., a PKD) can be performed at the same time as the administration of the nucleic acid designed to increase a level of PC-1 polypeptides and/or PC-2 polypeptides within a mammal. In some cases, the one or more additional treatments that are effective to treat one or more symptoms of a polycystic disease (e.g., a PKD) and/or one or more complications associated with a polycystic disease (e.g., a PKD) can be performed before and/or after the administration of the nucleic acid designed to increase a level of PC-1 polypeptides and/or PC-2 polypeptides within a mammal. The invention will be further described in the following examples, which do not limit the scope of the invention described in the claims. EXAMPLES Example 1: Expression of PC-1 Polypeptides and/or PC-2 Polypeptides to Treat ADPKD This Example describes vectors that can be used as genetic therapies for treating ADPKD by delivering the cDNA of the PKD1 gene, the cDNA of the PKD2 gene, or both (e.g., simultaneously). Both viral and non-viral delivery methods are described. Results A helper-dependent adenoviral vector that expresses PKD1, PKD2, or both HDAds with all the Ad genome viral open reading frames removed has space for genetic cargo up to 35 kb. AAVs can deliver the 2.9 kb PKD2 cDNA while HDAds can deliver the 12.9 kb PKD1 cDNA or a combination of the PKD1 and PKD2 cDNAs. Materials and Methods HDAd Vectors HD-Ad PKD1 vectors were generated that contained a PKD1 cDNA. GFP- Luciferase HDAd vectors were also generated for transduction testing. A helper virus was used to provide the missing Ad genes and proteins for HDAd vectors. If a normal Ad was used as the helper virus, both the helper and the HDAd virus was packaged, producing a preparation that was contaminated by the helper virus. To avoid this contamination problem, the Ad helper virus has its packaging signal flanked by two LoxP sites. When the HDAd vector and LoxP-modified helper virus are delivered into 116 cells that overexpress the Cre recombinase, Cre excises the helper virus’ packaging signal, blocking its packaging, and significantly reducing helper virus contamination. This system routinely produces yields of HDAd of 10 13 virus particles (vp) with helper virus contamination below 0.02%. HDAd was passaged up to 6 times and then purified on 2 CsCl gradients. Once purified, each virus preparation was sequenced to verify identity, and the amount of vector and helper virus was measured by qPCR. Testing HDAd Vectors Once produced, vectors are tested in vitro in 293 and RCTE human cells and IMCD mouse cells. The cells are infected at varied multiplicities of infection (MOI) of each vector. GFP fluorescence are analyzed by fluorescence microscopy and cell lysates will be prepared at the peak time of expression (usually day 2). Once GFPLuc expression is validated for each of the vectors, the vectors proceed to in vivo testing in RC mice. Groups of 5 male and 5 female mice are injected with each of the vectors by the retro- ureter route and sub-capsular routes. One group of male and female mice is injected with PBS as negative controls. Luciferase imaging is performed under isoflurane anesthesia on day 1 and 7. After luciferase imaging, all of the mice are euthanized using CO 2 . Both kidneys are sectioned to identify the cells that are expressing GFP using antibodies against GFP and EpCAM as well as staining with biotinylated lotus tetragonolobus lectin (LTL) to label mature proximal tubules and papillary collecting ducts. The percent transgene protein positive tubule cells are quantified using ImageJ based on pixel counts. The level of gene delivery in the renal pelvis, distal and proximal tubule, and in the glomerulus are determined. ANOVA comparisons are used to compare injection methods and promoters. Each vector is used to transduce PKD1 and PKD2 null mutant cells and PC-1 and PC-2 expression by the vectors is verified by western blot. Shorter Term In Vivo Therapeutic Testing The vectors are injected into 1 month old RC/RC mice that are early in the PKD disease process. Each virus for injection is blinded. Mice are injected in the right kidney by the retro-ureter route in groups of 10 male and 10 female mice with PBS, HDAd- GFPLuc, HDAd-PKD1, or HDAd-PKD1 and PKD2. Cyst status for mice is established by MRI. The kidneys of the mice are monitored by MRI imaging bi-weekly to assess if vector injection into the right kidney delays cystogenesis progression relative to the uninjected kidneys. Serum creatinine and BUN are measured at varied times to assess kidney function. Five animals from each group are sacrificed at one week and five animals from each group are sacrificed at one month. Luciferase imaging is performed in the GFP- Luciferase groups just prior to sacrifice to document the persistence of expression mediated by the HDAd vectors. The injected right kidney and the uninjected left kidney are weighed to determine kidney mass to body mass ratios. One half of each kidney is used for western blot and qPCR to determine whether PKD1 expression and PC-1 protein levels are increased. The remaining half is sectioned to identify the cells that are expressing exogenous human PC-1 and for histological examination to examine effects on cyst index, number and growth. Sections are stained by H&E to monitor changes in cyst sizes and infiltration of immune cells into the tissue. HDAd-PKD1 or HDAd-PKD1 and PKD2 therapies can mediate changes in kidney size and cystic phenotypes relative to control vector and to PBS-injected controls. It is also examined if combined PKD1 and PKD2 provides better balanced expression than PKD1 alone. Longer Term In Vivo Therapeutic Testing The Shorter Term testing described above is repeated, but over longer times with larger group sizes. Five animals from each group are sacrificed at one month, five animals from each group are sacrificed 3 months, five animals from each group are sacrificed 6 months, and five animals from each group are sacrificed at 9 months. Luciferase imaging is performed and gene expression, kidney size, creatinine, BUN, kidney mass, and cyst formation is evaluated to determine if HDAd-PKD1 therapy mediates changes in kidney size and cystic phenotypes relative to control vector and to PBS-injected controls and uninjected kidneys. Example 2: Targeted Gene Activation to Treat ADPKD This Example describes gene activation machinery capable of increasing expression of the wild type PKD1 gene. Results Targeted gene activation of the PKD1 allele in human 293 (adrenal-derived) cells Three separate lentiviral vectors were produced, each of which expressed one of the three components of the Cas9-SAM system and a different selectable marker. Human 293 cells were transduced with the first lentivirus to express dCas9VP64 and selected for with blasticidin. Subsequently, cells were transduced with the second lentivirus to express MPH and selected for with hygromycin. Lastly, cells were transduced with the third lentivirus to express an sgRNA targeting the human PKD1 promoter and selected for with zeocin (Figure 2). After this process produced a stable bulk population of modified 293 cells, RNA was purified from the cells. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) was used to quantify the relative levels of PKD1 mRNA in the transduced cells versus untransduced cells (Figure 3). Expression of human sgRNA1 brought PKD1 mRNA to a relative level of 7.9, human sgRNA2 brought it to 13.8, and human sgRNA3 brought it to 3.1. Therefore, each of these sgRNA’s were effective at increasing the level of PKD1 mRNA, and also at different levels. Targeted gene activation of the PKD1 allele in human renal cortical tubule epithelial (RCTE) cells Human RCTE cells were subjected to the same process described above through the qRT-PCR step (Figure 4). Expression of human sgRNA1 brought PKD1 mRNA to a relative level of 2.9, human sgRNA2 brought it to 9.7, and human sgRNA3 brought it to 1.7. The order of activation strength of these sgRNA’s was conserved between 293 and RCTE cells, indicating that targeting particular promoter sequences may hold more inherent activation strength regardless of cell type. Targeted gene activation of the Pkd1 allele in mouse inner medullary collecting duct (IMCD3) cells Mouse IMCD3 cells were subjected to the same process described above through the qRT-PCR step, with the exception that expressed sgRNA’s were targeted to sequences in the mouse Pkd1 promoter rather than the human PKD1 promoter (Figure 5). Expression of mouse sgRNA1 brought Pkd1 mRNA to a relative level of 2.8, mouse sgRNA2 brought it to 51.5, mouse sgRNA3 brought it to 8.4, and mouse sgRNA5 brought it to 5.1. In this case, a control sgRNA targeted to the promoter of the mouse Il1b gene was used as a control, which elevated the Pkd1 transcript to a level of 2.8, possibly due to dysregulation of cellular transcriptional networks. Molecular cloning of dual AAV vector SAM plasmids and verification of protein expression and sgRNA sequences After sgRNAs compatible with activation of the human PKD1 and mouse Pkd1 genes were identified, construction of vectors for in vivo delivery of Cas9-SAM components began. One of these vectors is a HDAd capable of carrying all three components of the SAM system (Figure 6A). Although less commonly used in vivo, a second option is a lentiviral vector carrying all components of the same system (Figure 6B). The three components of the SAM system are too large to be packaged into a single AAV vector, so a third option is a dual AAV vector system, where the first AAV delivers MPH and the sgRNA and the second AAV delivers dCas9VP64 (Figure 6C). While the Cas9-SAM system described thus far is too large to be packaged into a single AAV vector, the newly discovered CasΦ protein is small enough to make single AAV vector amenable to delivering CasΦ1, MPH, and an sgRNA (Figure 6D). The first component of the SAM system, dCas9VP64, is 4.4 kb in length, which is already large for AAV. To ensure successful packaging, the transgene was flanked by relatively small expression elements in the AAV construct (Figure 6C). To ensure robust dCas9VP64 expression from these expression cassettes, the vector production plasmids were transfected into 293 cells and dCas9VP64 protein was assayed three days later via western blot (Figure 7). dCas9VP64 was detected in three different AAV expression cassettes with different combinations of promoters and polyadenylation signals as well as an adenoviral expression cassette. The lentiviral expression cassette transfected did not produce detectable dCas9VP64 protein. This assay confirmed that the first of two AAV’s necessary for the dual vector system is expressing dCas9VP64. The second AAV, which must express MPH and an sgRNA, has been cloned to express one of three human PKD1 sgRNAs or one of seven mouse Pkdl sgRNA’s and sequence verified (Tables 2 and 3).

Table 2. sgRNA sequences used to target the human PKD1 promoter. Table 3. sgRNA sequences used to target the mouse Pkdl promoter.

Non-viral delivery of genetic therapies for ADPKD The same plasmids used for production of the viral vectors described above are complexed with lipid nanoparticles (LNPs) as a lower biosafety risk alternative to viral vectors. This plasmid DNA-LNP complexes is administered intravenously to transfect cells in vivo. Materials and Methods Generate and Test AAV, Lentiviral, and HDAd Vectors for TGA A HDAd, a lentiviral vector, and two AAV vectors have been designed to carry the SAM system. Briefly, each expression cassette of dCas9-VP65; MS2-P65-HSF1; and the sgRNA cassette is amplified with oligonucleotides bearing large I-SceI or I-CeuI restriction sites. These products are inserted into unique I-SceI and I-CeuI restriction sites in the HDAd vector pDelta18, pAAV-SceCeu, and pLenti-SceCeu. dCas9-VP64 is amplified with I-SceI and I-CeuI sites, MS2-P65-HSF1 with I-SceI, and the mouse sgRNA cassettes with ICeuI. One AAV-dCas9-VP64 is used with three different AAVs expressing MS2-P65-HSF1 and one the one of three mouse sgRNAs. Similarly, there are three HDAds and three different lentiviruses carrying three mouse sgRNAs. In Vivo Transduction and Therapeutic Testing of Pkd1-TGA Vectors Groups of 10 male and 10 female RC/RC mice are injected with PBS, HDAd-SAM (as a single vector), Lenti-SAM (as a single vector), or AAV-SAM (as a dual vector system). Retro-ureter or sub-capsular injection are used.10 11 of HDAd-TGA gRNA vector is injected. 10 6 transducing units (TU) of VSVg-pseudotyped lentivector with the entire SAM system is injected. AAV-Pkd1-TGA vectors can mediate therapy, even when they require co-infection of the cell by 2 vectors. AAVrh10 is used robustness and ability to transduce cells with high multiplicity. To maximize co-infection of the same renal cells with 2 AAVs, 10 12 vg of both AAVrh10-Pkd1-TGA vectors are delivered to the mice. RC/RC mice are injected as described above. Each virus sample is blinded. MRI imaging, serum creatinine, and BUN are measured to assess kidney function. Five animals from each group are sacrificed at one week and five animals from each group are sacrificed at one month for western blot, qPCR, and histochemistry to determine whether Pkd1 expression and PC-1 protein levels are increased in the injected kidney and if there are positive or negative effects on cyst index, number and growth. Sections are stained by H&E to monitor changes in cyst sizes and immune infiltrates. Gene expression, kidney size, creatinine, BUN, kidney mass, and cyst formation are evaluated to determine if the HDAd, AAV, or lentivirus vectors mediate changes in kidney size and cystic phenotypes relative to controls. Example 3: Increasing Vector Penetration into Tissues From the Blood Viral or non-viral gene therapy and cancer therapies use vectors that are many megaDaltons in size. These agents have a hard time entering into certain tissues like the kidney and brain after intravenous (i.v.) injections. This Example describes methods that can loosen intracellular attachments to allow i.v. injected large vectors to penetrate into tissues such as the brain, lungs, spleen, liver, and kidney. For example, lipopolysaccharide (LPS) can be used to promote proteinurea and to increase leak of large vectors from the blood into tissues. Results Induced proteinuria increases gene delivery to renal tubule epithelial cells Following intravenous administration of Ad or AAV, the vector appears to rarely penetrate past the glomerulus and further into the tubule of the nephron. The filtration properties of the glomerular barrier typically excludes solute in the blood that is greater than 10 kilodaltons (kDa) in mass or 10 nm in diameter. Ad and AAV are both significantly above these thresholds in size and thus are not generally expected to transduce renal tubule epithelial cells after intravenous injection. To overcome this limitation, proteinuria was induced in mice via effacement of podocyte foot processes in the glomerulus, which has been shown to structurally disrupt the glomerular filter and allow larger solute from the blood into the tubule of the nephron. Luciferase/red-green hybrid reporter mice were intraperitoneally (i.p.) injected with 200 μg of lipopolysaccharides (LPS) to induce proteinuria. The next day, mice were given an intravenous injection of PBS, AAV8, AAV9, or AAVrh10 (n=1). In the case of AAV8, the mouse that had been administered LPS showed increase luminescence in its kidneys versus the PBS control (Figure 8). When sectioning the kidneys of these mice, the LPS- injected mouse had consistently transduced (EGFP + ) proximal tubules cell adjacent to glomeruli, while the PBS-injected mouse only had transduced cells in its glomeruli (Figure 9). To quantify the extent to which tubule epithelial cells were being transduced during proteinuria, a larger scale experiment was performed using a lower dose of AAV (2e11 genome copies per mouse). Mice were injected with either PBS or LPS i.p., and were then injected with AAV8 the following day (n=3 mice for each group) or PBS as control (n=1 mouse for each group). Mice were sacrificed six days after AAV administration and tissues were imaged for luminescence ex vivo. Livers did not show a significant difference in luminescence between PBS and LPS-treated mice (Figure 10A). However, ex vivo kidney luminescence showed a significance increase in LPS-treated mice versus PBS-treated mice (Figure 10B). These kidneys were then homogenized and analyzed by flow cytometry. The cells were first gated into a CD45- population, as to remove hematopoietic cells from the query. The EpCAM + CD31- population, where EpCAM is a marker of epithelial cells and CD31 is a marker of endothelial cells, was then examined. In this population, the percentage of EGFP + cells in LPS-treated mice was significantly increased from PBS-treated mice, indicating that induced proteinuria was transducing more epithelial cells (Figure 10C). Transduced endothelial cells were also examined by analyzing the EpCAM-CD31 + population of cells and it was found that there was no significant difference between PBS and LPS-treated mice, indicating that induced proteinuria increased transduction of epithelial but not endothelial cells in the kidney (Figure 10D). The ability to consistently target proximal tubule cells for transduction is useful for being able to treat ADPKD as well as other genetic kidney diseases. Since AAV showed promising results in renal tubule transduction when combined with induced proteinuria, it was investigated if the same effect could be achieved with a larger Ad vector. Mice were administered PBS or LPS followed by 1 11 viral particles of Ad5. Kidneys were imaged for luminescence ex vivo and some evidence of increased transduction in the LPS-treated mouse kidneys was observed (Figure 11A). When the signals from these kidneys were quantified, it was found that the kidney luminescence had significantly increased in LPS-treated from PBS-treated (Figure 11B). When livers and kidneys from these mice were sectioned for fluorescent histology, increased transduction was seen in the kidneys of LPS-injected mice, but only in the glomeruli (Figure 11C). The LPS- treated mouse had reduced transduction in the liver compared to PBS-treated mice, possibly due to LPS interaction with the Kupffer cells in the liver. Materials and Methods Animals Mice used in these experiments were F1 hybrids of loxP-STOP-loxP-Luciferase (LSL-Luc) mice (The Jackson Laboratory Stock No: 005125) and membrane- tomato/membrane-green (mT/mG) mice (The Jackson Laboratory Stock No: 007676). Thus, each mouse endogenously expressed tdTomato, and upon Cre-recombinase expression in a particular cell, has activated luciferase and EGFP genes. Proteinuria induction in mice Urine was collected from mice of various ages and a baseline level of proteinuria was determined using Beyer Albustix. Mice were then injected with 200 μg of LPS (dissolved at 1 mg/mL in otherwise sterile PBS) intraperitoneally. Approximately 24 hours later, urine was collected and proteinuria levels were again determined. In most cases, administration of LPS versus a PBS control clearly caused an increased level of proteinuria in mice. Viral vector delivery After induction of proteinuria via administration of LPS or a PBS control, mice were injected with adeno-associated virus serotype 8 (AAV8) expressing Cre recombinase or replication-defective adenovirus serotype 5 (RDAd5) expressing Cre recombinase intravenously via tail vein injection. Injection volumes were 100 μL. The dose of AAV8-Cre administered ranged from 2e11 to 1.94e12 genome copies while the dose of RDAd5-Cre administered was 1e11 viral particles. Luminescent imaging After viral vector injection, luminescent signals were monitored and quantified in vivo in mice until the signal peaked (observed to be six days) using Perkin Elmer IVIS Lumina and Living Image software. To do this, mice were anesthetized with isoflurane and injected intraperitoneally with luciferin, and imaged 10 minutes later. At the six day time point, mice were sacrificed and their tissues were dissected and placed in a six well plate to be imaged ex vivo and these signals were quantified. In some cases, the kidneys were laterally bisected to enhance the luminescent signal being emitted from within the tissue. Fluorescent histology The same tissues used for luminescent imaging were processed for fluorescent histology. Kidneys and liver were fixed in 4% paraformaldehyde overnight and then soaked in 15% sucrose/PBS followed by 30% sucrose/PBS until the tissues sank. Tissues were frozen in blocks in Optimal Cutting Temperature (OCT) medium. A Leica cryostat was used to section tissues at a thickness of 18 μM and mount them on glass slides. Mounting Medium with DAPI (Vector Labs) was then dropped on the sections and a glass coverslip was placed on top of the slide. Confocal microscopy was performed using a Zeiss LSM780 microscope with optimized settings to image tdTomato, EGFP, and DAPI. Flow cytometry Kidney samples were chopped into small pieces using scissors and put in Miltenyi © tubes. 2.35 mL of DMEM was added. 100 μL of enzyme D, 50 μL of enzyme R, and 12.5 μL of enzyme A from the Miltenyi “Tumor Dissociation Kit” into were added to each sample. Program 37C_mTDK_1 or soft tissue dissociation was used on the OctoMACS machine. C-Tube was washed well by pouring DMEM, inverting, and passing through a 70 μM filter (15 mL volume). Cells were then spun at 400 xg for 10 minutes. Samples were resuspended into 3.1 mL of cold DPBS and 900 μL of Miltenyi Debris removal solution was added and resuspended well. 4 mL of ice cold DPBS was carefully overlayed onto the samples. Samples were spun at 3000 g for 10 minutes with brakes on. 1 mL of ACK Lysis buffer was added for 1 minute and subsequently quenched by filling the tube to top (15 mL rol) with cold RPMI. All samples were processed and passed through filters and transferred to 5 mL flow tubes. Tubes were filled with PBS and spun at 400g for 5 minutes. 500 μL of MasterMix was added to each sample to stain for flow cytometry, as follows: EpCAM PECy7 (1:250) (BioLegend, Cat# 118216), CD31 AF64732 (1:500) (BioLegend, Cat# 102516), CD45 perCP (1:1000) (BioLegend, Cat# 103130), Viability – ghost dye red 780 (1:2000) (Tonbo Biosciences, Cat# 13-0865-T100), FC block (1:500) (BD Pharmingen, Cat# 553141). Results were analyzed using FlowJo software. Example 4: Induced Proteinuria Enhances Adeno-Associated Virus Transduction of Renal Tubule Epithelial Cells after Intravenous Administration There are a variety of genetic diseases of the kidney tubule that might be amenable to correction via gene therapy. However, gene delivery to renal tubule epithelial cells mediated by viral vectors via the blood is historically inefficient due to the permselectivity of the glomerular barrier, which typically will not allow molecules larger than 50 kilodaltons in mass or 10 nanometers in diameter to pass into the tubule of the nephron. This Example demonstrates that AAV vectors can penetrate into the nephron and transduce tubule epithelial cells in a state of proteinuria. Results AAV8 gene delivery to the kidney is distinctly enhanced in a state of induced proteinuria To begin to investigate the effects of induced proteinuria on viral vector gene delivery to the kidney, mice were administered an i.p. injection of 200 μg of LPS. The mode of delivery and dose were as described elsewhere (Reiser et al., J. Clin. Invest., 113:1390-1397 (2004)). The following morning, urine was collected from mice injected with either LPS or PBS as a control and assayed using a proteinuria dipstick to ascertain whether proteinuria had effectively been induced (example portrayed in Figure 22). Subsequently, mice were administered i.v. injections of self-complementary AAV8-Cre (scAAV8-Cre), scAAV9-Cre, scAAVrh10-Cre, or PBS as control (n = 1 for each combination of PBS or LPS and each vector). The mice used in this experiment are known as LSL-Luc-mT/mG F1 hybrid mice: each mouse has one LoxP-STOP-LoxP-Luciferase allele and one membrane-targeted tdTomato/membrane-targeted EGFP allele at the ROSA locus. Thus, each mouse has luciferase and mG genes activatable by Cre-expressing vectors, allowing for tracking of vector pharmacodynamics on both a cellular and tissue-specific level (Figure 14A). Luciferase activity in the mice was tracked daily via bioluminescent imaging until the signals reached an approximate plateau at day 6 (Figure 23A). The signals measured in vivo almost were almost certainly emitted from luciferase activity in the livers of these, due to the high liver tropism of the three AAV serotypes used (Figure 14B). To directly assess liver and kidney transduction of the injected mice, the mice were sacrificed and these organs were imaged ex vivo. While kidneys of the AAV9 and AAVrh10 injected mice with or without induced proteinuria exhibited minimal luminescence which was localized to the renal pelvis region of the kidney, the kidneys of the mouse with induced proteinuria injected with AAV8 had pervasive luciferase expression throughout the entire kidney (Figure 14B). This observation of increased luciferase expression through the whole of the kidney tissue while in a state of proteinuria, as opposed to the luciferase activity seen exclusively on the edges of the kidney capsule of the control mouse, indicates a clear difference in vector pharmacodynamics between mice in states of induced proteinuria and not. To assess kidney transduction on a cell-by-cell basis, the kidney and liver tissues were sectioned to view direct fluorescence via confocal microscopy. In the current reporter mouse model system, untransduced cells will endogenously express membrane-targeted tdTomato (mT), while Cre-expressing transduced cells will stop expressing tdTomato and begin to express membrane-targeted EGFP (mG). For each of the three AAV serotypes, it was observed that treating mice with LPS prior to AAV injection resulted in many instances of transduced cells with tubular morphology adjacent to glomeruli, as compared to control kidneys (Figure 15). To determine if viral vectors might bypass the glomerulus and penetrate the most proximal part of the nephron, the proximal tubule, and to verify which additional cells AAV is transducing in an induced proteinuria state, kidney sections were counterstained with lotus tetragonolobus lectin (LTL), a marker of proximal tubule cells. No instances of EGFP + transduced cells seemed to be double positive for the LTL stain. This indicates that although induced proteinuria seems to allow AAV to penetrate further into kidney tissue from the blood and transduce more tubule cells, these cells are not necessarily proximal tubule cells. AAV8 significantly increases renal epithelial cell transduction during proteinuria Data indicate that AAV serotypes 8, 9, and rh10 each potentially increase transduction of renal tubule epithelial cells when mice are in an induced state of proteinuria. In particular, AAV8 had the most striking effect in terms of increased transduction during induced proteinuria (Figure 14B). To quantify this effect, and to determine if this effect could be achieved at a lower dose, new groups of mice were given an i.p. administration of either PBS or LPS at Day -1 and an i.v. administration of scAAV8-Cre at Day 0 at a dose of 2e11 genome copies (GC). Proteinuria dipsticks from these groups of mice at Day -1 (baseline) and Day 0 (post PBS or LPS) are shown as an example (Figure 22). These mice were imaged for in vivo luminescence at Day 6 at which point the mice were sacrificed and their tissues imaged ex vivo. There was no significant difference observed between PBS and LPS-injected groups in vivo (indicative of liver transduction), liver ex vivo, or brain ex vivo (Figure 16A). Although insignificant, brain luminescence was increased in all samples, indicating that LPS administration may induce some blood brain barrier disruption and increase transduction of cells in the brain. In contrast to the livers and brains, ex vivo kidney transduction visibly increased in LPS-injected mice versus PBS- injected mice (Figure 16B). Upon quantitation of luminescence in these kidneys, the kidneys of the LPS-injected mice exhibited significantly higher luminescence than those of the PBS- injected mice (Figure 16C). These kidneys were then processed for flow cytometry and labeled to detect epithelial cell adhesion molecule (EpCAM), a marker of epithelial cells, CD31, a marker of endothelial cells, and various other immune cell markers. Upon examination of the %EGFP + (transduced) cells in EpCAM + CD31- and EpCAM- CD31 + populations, it was found that epithelial cells, but not endothelial cells, had a significant increase in transduction, indicating that the injected AAV8 did in fact have more access to epithelial cells during a state of induced proteinuria (Figure 16C). In addition, an increased, albeit insignificant, %EGFP + macrophages were found in the blood of LPS-injected mice as compared to PBS-injected mice, indicating that an increased presence of macrophages may have been induced by LPS administration and subsequently transduced by scAAV8-Cre (Figure 24B). Representative flow plots and gating strategies are shown in Figure 25. AAVrh10 significantly increases hematopoietic cell, but not epithelial cell transduction, during LPS-induced proteinuria It was next sought to determine if a particular serotype of AAV could in fact result in a significantly increased number of epithelial cells in the kidney after i.v. injection in a state of induced proteinuria. In the initial experiment, AAV8 had stronger results than AAV9 or AAVrh10. To ascertain whether particular serotypes of AAV other than AAV8 might be able transduce significantly more renal epithelial cells in a state of induced proteinuria, the prior flow cytometry experiment was repeated using scAAVrh10-Cre rather than scAAV8- Cre. The %EGFP + (transduced) present among CD45- (non-hematopoietic) and CD45 + (hematopoietic) cells in the kidneys was examined (Figure 17A). There was no difference in transduced CD45- cells between PBS and LPS-injected groups. However, there was a significant increase in transduced CD45 + cells. This effect may be due to an increased number of hematopoietic cells that infiltrated the kidney after LPS injection and were more susceptible to transduction the day after. The transduction of epithelial cells in the kidney was examined. As with the previous experiment using scAAV8, the %EGFP+ cells amongst CD45- EpCAM + and CD45- CD31 + populations, which represent transduced epithelial cells and transduced endothelial cells, respectively, was examined. When this experiment was performed using scAAV8 (Figure 16), there was a significant increase in transduced epithelial cells, but not endothelial cells, between the LPS and PBS-injected mice. However, when this experiment was repeated using scAAVrh10, there was no significant difference between the LPS and PBS-injected groups of mice (Figure 17B). To further drill down on proximal tubule cells, a specific subset of kidney tubule epithelial cells, samples were also labeled with LTL and aquaporin-1 (AQP1). In both cases, no significant difference was observed between transduced cells in LPS or PBS-injected mice. Overall, mice with or without induced proteinuria did not seem to have a change in transduced renal epithelial cells after intravenous injection of scAAVrhlO-Cre. Representative flow plots and gating strategies are shown in Supplemental Figure 18.

A naturally liver -de targe ted vector enhances kidney transduction during induced proteinuria Although increasing transduction in tubule cells in the kidney is an important goal for efficacy of gene therapy, detargeting vectors from off-target tissues is an important facet of gene therapy safety. While AAV8 showed efficacy in terms of increasing kidney transduction during a state of induced proteinuria, it also fully transduces the liver (Figure 24A). To attempt to resolve the off-target tissue transduction, AAV1, a serotype known to have lower liver tropism than other serotypes, was tested in conjunction with induced proteinuria.

Mice were administered an i.p. injection of either PBS or LPS at Day -1 and an i.v. injection of scAAVl-Cre at Day 0 at a dose of 9.95el0 GC. Similar to previous experiments, in vivo luminescence signals peaked at Day 6, at which point mice were sacrificed and ex vivo liver luminescence was comparable between both groups of mice (Figure 18 A, top). Although mean kidney ex vivo luminescence was increased in LPS-injected mice versus PBS-injected mice, the difference was not significant. When comparing this data side-by- side with the ex vivo kidney luminescence data of the scAAV8-Cre injected mice from Figure 16, both PBS-injected and LPS-injected groups of scAAVl -injected mice had higher signals than the LPS and scAAV8-injected mice, and at approximately half of the dose of scAAV8, indicating that scAAVl may have a higher native kidney tropism both with and without induced proteinuria (Figure 18 A, lower). Upon sectioning of the kidneys of these mice to examine endogenous mT and mG fluorescence, mice injected with PBS followed by scAAVl had many instances of transduced glomerular cells while mice injected with LPS followed by scAAVl had increased instances of transduced tubular cells (Figure 18B). Importantly, the livers of the mice injected with scAAVl were only partially transduced, while the livers of the mice injected with scAAV8 were fully transduced (Figure 28). These data indicate that scAAVl may be an ideal vector for targeting renal tubule epithelial cells while avoiding unnecessary transduction of hepatocytes. Induced proteinuria enhances Ad5 transduction of glomerular, but not epithelial cells Thus far, four different serotypes of AAV were tested in tandem with the LPS- induced proteinuria method. Between these serotypes, notable differences in the transduction profiles of kidney and liver cells were observed. The variation in transduction profiles is likely due to differences in receptor usage as well as capsid surface electromagnetic charges. To test other applications and potential limitations of the induced proteinuria method with respect to kidney transduction, physically larger gene delivery vector, replication-defective adenovirus serotype 5 expressing Cre recombinase (Ad5-Cre), was used. Mice were administered i.p. injections of either PBS or LPS on Day -1 and i.v. injections of Ad5-Cre on Day 0. In vivo luminescent signals (indicative of level of liver transduction) were monitored up to Day 5 until they peaked. In contrast to previous experiments using AAV, mice injected with LPS prior to Ad5-Cre had significantly reduced in vivo luminescence compared to PBS-injected mice (Figure 19A, left). The mice were then sacrificed and their kidneys were imaged for ex vivo luminescence. As with the previous experiments performed with AAV, kidneys from mice administered LPS prior to Ad5-Cre had a significantly higher signal than those from mice administered PBS prior to Ad5-Cre (Figure 19A, right). In the images of the kidneys of PBS and Ad5-Cre injected mice, little to no luminescence is visible, whereas in the kidneys of the LPS and Ad5-Cre injected mice, two out of three of the kidneys showed enhanced luminescence localized near the renal pelvis (Figure 19B). This is in contrast to kidney images of mice injected with LPS and scAAV8, which showed more diffuse luminescence throughout the kidney (Figure 16). Kidneys from the Ad5-Cre injected mice were then sectioned to examine endogenous mT and mG fluorescence. Notably, in contrast to previous experiments using AAV, no instances of transduced tubule cells were observed in kidneys of PBS or LPS and Ad5-Cre injected mice. However, there were observed to be an increased number of glomerular cells transduced in the LPS and Ad5-Cre injected mice versus the PBS-injected mice, indicating that induced proteinuria did not enhance penetration of Ad5-Cre into renal epithelial tubular cells but may have aided penetration further into the glomerulus itself (Figure 19C). In accordance with the in vivo luminescence signals from these mice, liver sectioning showed that mice injected with PBS followed by Ad5-Cre had fully transduced livers while mice injected with LPS followed by Ad5-Cre had only partially transduced livers, possibly as a result of LPS interactions with Kupffer cells (Figure 27A). These data indicate that while the induced proteinuria method used in tandem with Ad may not necessarily be effective in treating genetic diseases of the tubule, such as polycystic kidney disease, it may be helpful in increasing gene delivery to the glomerulus. Induced proteinuria increases epithelial cell transduction in a mouse model of ADPKD Thus far, out of a handful of gene therapy vectors tested, only particular vectors tended to increase transduction of renal tubule epithelial cells while mice were in a state of induced proteinuria: namely, AAV1 and AAV8. To test if the induced proteinuria method is amenable to enhancing renal tubule epithelial cell transduction in a mouse model of relevant human disease, this technique was employed on mice with ADPKD. Pkd1 RC/RC mice, which are homozygous for the hypomorphic Pkd1 allele p.R3277C and develop progressive ADPKD similar to human disease, were backcrossed to mT/mG mice until pups had exactly two Pkd1 RC alleles and at least one mT/mG allele. In essence, the newly generated mice are identical (give or take differences in genetic background due to a partial backcross) to the original mT/mG mice except they now develop ADPKD (Figure 20A). The Pkd1 RC/RC -mT/mG hybrid mice were administered i.p. injections of PBS or LPS on Day -1 and an i.v. injection of scAAV8-Cre at Day 0 at a dose of 2e11 GC. Under the assumption that vector pharmacodynamics would recapitulate those of the prior AAV experiments, mice were sacrificed at Day 6 and their tissues were sectioned. While evidence of glomerular transduction was apparent in the mouse injected with PBS followed by scAAV8-Cre, evidence of tubular cell transduction was observed only in the mouse injected with LPS followed by scAAV8-Cre (Figure 20B). The livers of these mice were fully transduced by scAAV8-Cre, as expected (Figure 29). Overall, these data support mice with ADPKD being amenable to increased tubule cell transduction and thereby enhanced potential for gene therapy by the induced proteinuria method. Materials and Methods Animal studies All experiments were carried out according to the provisions of the Animal Welfare Act, PHS Animal Welfare Policy, the principles of the NIH Guide for the Care and Use of Laboratory Animals. AAV vectors AAV vectors were produced using a standard triple transfection and iodixanol gradient purification method. Briefly, a vector plasmid (pTRS-CBh-Cre), a rep and cap plasmid (pRC), and a pHelper plasmid were transfected into 293T cells using polyethylenimine. Three days later, cells were harvested and lysed by successive freeze/thaw cycles. Cell lysate was overlayed onto an iodixanol gradient and ultracentrifuged for two hours. The banded AAV was extracted via needle and syringe and titrated via qPCR using SYBR™ Green. All AAV vectors used in this study were self-complementary (scAAV) with a cytomegalovirus chicken β-actin hybrid promoter (CBh) driving expression of the Cre recombinase gene. Ad vectors Replication-defective Ad vectors were produced in 293 cells and were purified by double banding on CsCl gradients. Cre expression is driven by the CMV promoter. Flow cytometry Kidney samples were chopped into small pieces using scissors and put in Miltenyi © tubes. 2.35 mL of Gibco DMEM (cat # 11054001), 100 μL of enzyme D, 50 μL of enzyme R, and 12.5 μL of enzyme A from the Miltenyi “Tumor Dissociation Kit” were added into each sample. Samples were homogenized using soft tissue dissociation program on Miltenyi OctoMACS™ Separator. Samples were passed through 70 μM filters and spun at 400 x g for 10 minutes. Pellets were resuspended in 3.1 mL of cold DPBS, treated with 900 μL of Miltenyi Debris removal solution, overlayed with 4 mL of ice cold DPBS, and spun at 3000 x g for 10 minutes. The samples were washed with DPBS and red blood cells were lysed with 1 mL of ACK Lysis buffer for 1 minute. The samples were resuspended in 900 µL of RPMI and filtered using 35 μM flow tube filters. Fluorescent staining occurred as follows: After all samples were processed and passed through filters, they were washed twice with PBS. Samples were stained with a master mix composed of EpCAM PECy7 (1:250) (BioLegend, Cat# 118216), CD31 AF647 (1:500) (BioLegend, Cat# 102516), CD45 perCP (1:1000) (BioLegend, Cat# 103130), TCRβ BV421 (1:1000), CD4 BV51032 μL (1:500), CD8 BV570 (1:500), CD11b BV650 (1:1000), Ghost Dye Red 780 (1:2000) (Tonbo Biosciences, Cat# 13-0865-T100), and FC block (1:500) (BD Pharmingen, Cat# 553141). Three minutes prior to experimental mice being sacrificed, 3 μg of CD45 BV711 was injected intravenously to be able to distinguish between circulating and tissue resident CD45 + cells. Samples were stained for 30 minutes at 4C in the dark, washed twice with PBS and ran on Cytek™ Aurora spectral flow cytometer. For the experiments also staining against α-Fucose, Lotus Tetragonolobus Lectin (LTL), Biotinylated (1:100) (Vector Laboratories, Cat# B-1325-2) was the primary stain and BV786 Streptavidin (1:2000) (BD Horizon, Cat# 563858) was the secondary stain. For the experiments also staining against Aquaporin-1, Anti-Aquaporin-1 (1:100) (Boster Biological Technology, Cat# PB9473) was the primary stain and anti-rabbit AF647 (1:2000) (Invitrogen, Cat# A-21245) was the secondary stain. In these experiments, CD31 was stained using anti-CD31 BV510 (1:150) (BD Biosciences, Cat# 740124). In vivo bioluminescent imaging Mice were anesthetized with isoflurane and injected intraperitoneally with 150 μL of D-Luciferin (20 mg/mL; RR Labs Inc., San Diego, CA). Images were taken using PerkinElmer IVIS ® Lumina S5 Imaging System ten minutes after D-Luciferin administration and luminescence was quantified using Living Image software. During ex vivo tissue imaging, tissues were placed in either 6-well or 12-well tissue culture vessels and imaged. In all cases except for Figure 14, kidneys were laterally bisected before imaging to prevent squelching of luminescence by the kidney capsule. Statistical Analyses All statistical analyses were performed using GraphPad Prism 9. p-values were generated using Mann-Whitney tests unless otherwise noted. Tissue sectioning and confocal microscopy Tissues from mice with membrane-bound fluorescent proteins were fixed by overnight immersion in 4% paraformaldehyde (PFA)-PBS at 4°C, then cryoprotected overnight in 15% sucrose-PBS and 30% sucrose-PBS, successively, at 4°C. Trimmed tissues were then flash frozen by dry ice-cooled isopentane in optimal cutting temperature (O.C.T.) medium (Sakura Finetek). Cryosections (18 μm thickness) were prepared with a Leica CM1860 UV cryostat (Leica Biosystems) and mounted on slides (Superfrost Plus; Thermo Fisher Scientific, Waltham, MA) with VECTASHIELD with 4′,6-diamidino-2-phenylindole (DAPI) (Vector Laboratories, Burlingame, CA), and CytoSeal-60 coverslip sealant (Thermo Fisher Scientific). Confocal imaging was performed using a Zeiss LSM780 laser confocal microscope (Carl Zeiss Jena, Jena, Germany). For tissue sections stained with lotus tetragonolobus lectin (LTL), the slides containing tissue sections were washed with PBS, treated with 5% normal goat serum (Abcam Catalog # ab7481) and 0.5% IGEPAL ® CA-630 (Sigma I8896) dissolved in PBS blocking buffer for 1 hour at room temperature. The slides were then incubated with a 1:100 dilution of biotinylated LTL (Vector Laboratories Cat. No: B-1325) overnight at 4°C. The slides were washed and then incubated with a 1:200 dilution of streptavidin-Alexa Fluor 647 (Invitrogen Catalog # S21374) at room temperature for one hour. The slides were washed and coverslips were mounted using Vectashield (without DAPI). Transgenic mice LSL-Luc mice (Stock No: 005125) and mT/mG mice (Stock No: 007576) were originally purchased from The Jackson Laboratory. Pkd1 RC/RC mice of 129S6 genetic background, which develop polycystic kidney disease, were backcrossed with mT/mG mice until pups were acquired that had exactly two copies of the Pkd1 RC allele and at least one copy of the mT/mG allele, which was confirmed via PCR genotyping. Example 5: AAV Serotypes and Transduction of Renal Tubule Epithelial Cells after Intravenous Administration Results To examine the ability of AAV vectors to deliver genes into different tissues and the kidney, different AAV serotypes were used to package the Cre recombinase gene. These vectors were then used to infect cre-reporter luciferase and membrane-bound GFP (mGFP) mice by intravenous injection (Figure 30). Luciferase imaging of living animals demonstrated the ability of different AAV-Cre serotypes to activate luciferase in the liver and other tissues (Figure 31A). Tissues were collected from these animals and tissue- and cell-specific gene delivery was assessed by observing the conversion of membrane-targeted red fluorescent protein (mRFP)-positive cells that were converted to mGFP-positive cells by Cre by confocal microscopy of tissue sections (Figures 31B to 33). These data indicate that all AAVs have some level of transduction in multiple tissues, but with biases (Figure 31B). When kidney sections were examined, the pattern of gene delivery as evidenced by mGFP localization was different by different serotypes (Figure 32A). Globular patterns of mRFP-positive cells in the sections identify the glomerulus within these kidney sections (Figure 32A-E). Observation of GFP-positive cells within these mRFP glomeruli demonstrates successful delivery of Cre recombinase to either endothelial cells or to podocytes within the glomerulus. GFP-positive cells outside of the mRFP-positive glomeruli indicate delivery to other renal cells. When tissue sections were counterstained with cell-specific markers, AAV1 delivery localized with alpha-actin-positive smooth muscle cells in blood vessels rather than in glomerular cells. AAV1 also did not activate mGFP in Lotus Toxin Agglutin (LTA)-positive renal tubules cells (Figure 32B). AAV8 mediated Cre delivery to glomerular cells as well as macula densa cells, but not to alpha-actin positive smooth muscle cells and not to LTA-positive tubule cells (Figure 32C). AAV9 mediated Cre delivery to glomerular and macula densa cells, but not to alpha- actin positive smooth muscle cells, nor to alpha-synaptopodin (aSynapt)-positive podocytes, nor to LTA-positive tubule cells, but there was some delivery to EpCAM-positive proximal tubule cells (Figure 32D). AAVrh10 mediated Cre delivery to glomerular and macula densa cells including CD31-positive glomerular endothelial cells, but not to alpha-actin positive smooth muscle cells, nor to LTA-positive tubule cells (Figure 32E). When CD31-stained glomeruli were examined at higher resolution, it was apparent that AAVrh10 was mediating equal transduction to CD31-positive endothelial cells and to CD31-negative podocytes within the glomerulus. Together these results demonstrate that multiple serotypes of AAV can be used to deliver nucleic acid to cells within the kidneys. These results also demonstrate that different serotypes and different AAV capsids mediate delivery into different subsets of kidney cells. Methods pAAV-Cre vectors were packaged an adenovirus helper plasmid with the indicated AAV Rep2/Cap1, 8, 9, or rh10 plasmids by triple transfection and AAV particles were purified. These were injected intravenously into Cre reporter mice by tail vein injection. Mice were anesthetized, injected with luciferin, and imaged for luciferase activity. Animals were sacrificed and frozen tissue sections were examined by confocal microscopy with and without counterstaining for cell-specific proteins using fluorescent antibodies. SEQUENCES SEQ ID NO:1 PKD1 cDNA ATGCCGCCCGCCGCGCCCGCCCGCCTGGCGCTGGCCCTGGGCCTGGGCCTGTGGCTCGGG GCGCTGGCGGGGGG CCCCGGGGGCGCGCCGGGGGGCCCCGGGCGCGGCTGCGGGCCCTGCGAGCCCCCCTGCCT CTGCGGCCCAGCGC CCGGCGCCGCCTGCCGCGTCAACTGCTCGGGCCGCGGGCTGCGGACGCTCGGTCCCGCGC TGCGCATCCCCGCG GACGCCACAGCGCTAGACGTCTCCCACAACCTGCTCCGGGCGCTGGACGTTGGGCTCCTG GCGAACCTCTCGGC GCTGGCAGAGCTGGATATAAGCAACAACAAGATTTCTACGTTAGAAGAAGGAATATTTGC TAATTTATTTAATT TAAGTGAAATAAACCTGAGTGGGAACCCGTTTGAGTGTGACTGTGGCCTGGCGTGGCTGC CGCGATGGGCGGAG GAGCAGCAGGTGCGGGTGGTGCAGCCCGAGGCAGCCACGTGTGCTGGGCCTGGCTCCCTG GCTGGCCAGCCTCT GCTTGGCATCCCCTTGCTGGACAGTGGCTGTGGTGAGGAGTATGTCGCCTGCCTCCCTGA CAACAGCTCAGGCA CCGTGGCAGCAGTGTCCTTTTCAGCTGCCCACGAAGGCCTGCTTCAGCCAGAGGCCTGCA GCGCCTTCTGCTTC TCCACCGGCCAGGGCCTCGCAGCCCTCTCGGAGCAGGGCTGGTGCCTGTGTGGGGCGGCC CAGCCCTCCAGTGC CTCCTTTGCCTGCCTGTCCCTCTGCTCCGGCCCCCCGCCACCTCCTGCCCCCACCTGTAG GGGCCCCACCCTCC TCCAGCACGTCTTCCCTGCCTCCCCAGGGGCCACCCTGGTGGGGCCCCACGGACCTCTGG CCTCTGGCCAGCTA GCAGCCTTCCACATCGCTGCCCCGCTCCCTGTCACTGCCACACGCTGGGACTTCGGAGAC GGCTCCGCCGAGGT GGATGCCGCTGGGCCGGCTGCCTCGCATCGCTATGTGCTGCCTGGGCGCTATCACGTGAC GGCCGTGCTGGCCC TGGGGGCCGGCTCAGCCCTGCTGGGGACAGACGTGCAGGTGGAAGCGGCACCTGCCGCCC TGGAGCTCGTGTGC CCGTCCTCGGTGCAGAGTGACGAGAGCCTTGACCTCAGCATCCAGAACCGCGGTGGTTCA GGCCTGGAGGCCGC CTACAGCATCGTGGCCCTGGGCGAGGAGCCGGCCCGAGCGGTGCACCCGCTCTGCCCCTC GGACACGGAGATCT TCCCTGGCAACGGGCACTGCTACCGCCTGGTGGTGGAGAAGGCGGCCTGGCTGCAGGCGC AGGAGCAGTGTCAG GCCTGGGCCGGGGCCGCCCTGGCAATGGTGGACAGTCCCGCCGTGCAGCGCTTCCTGGTC TCCCGGGTCACCAG GAGCCTAGACGTGTGGATCGGCTTCTCGACTGTGCAGGGGGTGGAGGTGGGCCCAGCGCC GCAGGGCGAGGCCT TCAGCCTGGAGAGCTGCCAGAACTGGCTGCCCGGGGAGCCACACCCAGCCACAGCCGAGC ACTGCGTCCGGCTC GGGCCCACCGGGTGGTGTAACACCGACCTGTGCTCAGCGCCGCACAGCTACGTCTGCGAG CTGCAGCCCGGAGG CCCAGTGCAGGATGCCGAGAACCTCCTCGTGGGAGCGCCCAGTGGGGACCTGCAGGGACC CCTGACGCCTCTGG CACAGCAGGACGGCCTCTCAGCCCCGCACGAGCCCGTGGAGGTCATGGTATTCCCGGGCC TGCGTCTGAGCCGT GAAGCCTTCCTCACCACGGCCGAATTTGGGACCCAGGAGCTCCGGCGGCCCGCCCAGCTG CGGCTGCAGGTGTA CCGGCTCCTCAGCACAGCAGGGACCCCGGAGAACGGCAGCGAGCCTGAGAGCAGGTCCCC GGACAACAGGACCC AGCTGGCCCCCGCGTGCATGCCAGGGGGACGCTGGTGCCCTGGAGCCAACATCTGCTTGC CGCTGGACGCCTCC TGCCACCCCCAGGCCTGCGCCAATGGCTGCACGTCAGGGCCAGGGCTACCCGGGGCCCCC TATGCGCTATGGAG AGAGTTCCTCTTCTCCGTTCCCGCGGGGCCCCCCGCGCAGTACTCGGTCACCCTCCACGG CCAGGATGTCCTCA TGCTCCCTGGTGACCTCGTTGGCTTGCAGCACGACGCTGGCCCTGGCGCCCTCCTGCACT GCTCGCCGGCTCCC GGCCACCCTGGTCCCCAGGCCCCGTACCTCTCCGCCAACGCCTCGTCATGGCTGCCCCAC TTGCCAGCCCAGCT GGAGGGCACTTGGGCCTGCCCTGCCTGTGCCCTGCGGCTGCTTGCAGCCACGGAACAGCT CACCGTGCTGCTGG GCTTGAGGCCCAACCCTGGACTGCGGCTGCCTGGGCGCTATGAGGTCCGGGCAGAGGTGG GCAATGGCGTGTCC AGGCACAACCTCTCCTGCAGCTTTGACGTGGTCTCCCCAGTGGCTGGGCTGCGGGTCATC TACCCTGCCCCCCG CGACGGCCGCCTCTACGTGCCCACCAACGGCTCAGCCTTGGTGCTCCAGGTGGACTCTGG TGCCAACGCCACGG CCACGGCTCGCTGGCCTGGGGGCAGTGTCAGCGCCCGCTTTGAGAATGTCTGCCCTGCCC TGGTGGCCACCTTC GTGCCCGGCTGCCCCTGGGAGACCAACGATACCCTGTTCTCAGTGGTAGCACTGCCGTGG CTCAGTGAGGGGGA GCACGTGGTGGACGTGGTGGTGGAAAACAGCGCCAGCCGGGCCAACCTCAGCCTGCGGGT GACGGCGGAGGAGC CCATCTGTGGCCTCCGCGCCACGCCCAGCCCCGAGGCCCGTGTACTGCAGGGAGTCCTAG TGAGGTACAGCCCC GTGGTGGAGGCCGGCTCGGACATGGTCTTCCGGTGGACCATCAACGACAAGCAGTCCCTG ACCTTCCAGAACGT GGTCTTCAATGTCATTTATCAGAGCGCGGCGGTCTTCAAGCTCTCACTGACGGCCTCCAA CCACGTGAGCAACG TCACCGTGAACTACAACGTAACCGTGGAGCGGATGAACAGGATGCAGGGTCTGCAGGTCT CCACAGTGCCGGCC GTGCTGTCCCCCAATGCCACGCTAGCACTGACGGCGGGCGTGCTGGTGGACTCGGCCGTG GAGGTGGCCTTCCT GTGGACCTTTGGGGATGGGGAGCAGGCCCTCCACCAGTTCCAGCCTCCGTACAACGAGTC CTTCCCGGTTCCAG ACCCCTCGGTGGCCCAGGTGCTGGTGGAGCACAATGTCATGCACACCTACGCTGCCCCAG GTGAGTACCTCCTG ACCGTGCTGGCATCTAATGCCTTCGAGAACCTGACGCAGCAGGTGCCTGTGAGCGTGCGC GCCTCCCTGCCCTC CGTGGCTGTGGGTGTGAGTGACGGCGTCCTGGTGGCCGGCCGGCCCGTCACCTTCTACCC GCACCCGCTGCCCT CGCCTGGGGGTGTTCTTTACACGTGGGACTTCGGGGACGGCTCCCCTGTCCTGACCCAGA GCCAGCCGGCTGCC AACCACACCTATGCCTCGAGGGGCACCTACCACGTGCGCCTGGAGGTCAACAACACGGTG AGCGGTGCGGCGGC CCAGGCGGATGTGCGCGTCTTTGAGGAGCTCCGCGGACTCAGCGTGGACATGAGCCTGGC CGTGGAGCAGGGCG CCCCCGTGGTGGTCAGCGCCGCGGTGCAGACGGGCGACAACATCACGTGGACCTTCGACA TGGGGGACGGCACC GTGCTGTCGGGCCCGGAGGCAACAGTGGAGCATGTGTACCTGCGGGCACAGAACTGCACA GTGACCGTGGGTGC GGCCAGCCCCGCCGGCCACCTGGCCCGGAGCCTGCACGTGCTGGTCTTCGTCCTGGAGGT GCTGCGCGTTGAAC CCGCCGCCTGCATCCCCACGCAGCCTGACGCGCGGCTCACGGCCTACGTCACCGGGAACC CGGCCCACTACCTC TTCGACTGGACCTTCGGGGATGGCTCCTCCAACACGACCGTGCGGGGGTGCCCGACGGTG ACACACAACTTCAC GCGGAGCGGCACGTTCCCCCTGGCGCTGGTGCTGTCCAGCCGCGTGAACAGGGCGCATTA CTTCACCAGCATCT GCGTGGAGCCAGAGGTGGGCAACGTCACCCTGCAGCCAGAGAGGCAGTTTGTGCAGCTCG GGGACGAGGCCTGG CTGGTGGCATGTGCCTGGCCCCCGTTCCCCTACCGCTACACCTGGGACTTTGGCACCGAG GAAGCCGCCCCCAC CCGTGCCAGGGGCCCTGAGGTGACGTTCATCTACCGAGACCCAGGCTCCTATCTTGTGAC AGTCACCGCGTCCA ACAACATCTCTGCTGCCAATGACTCAGCCCTGGTGGAGGTGCAGGAGCCCGTGCTGGTCA CCAGCATCAAGGTC AATGGCTCCCTTGGGCTGGAGCTGCAGCAGCCGTACCTGTTCTCTGCTGTGGGCCGTGGG CGCCCCGCCAGCTA CCTGTGGGATCTGGGGGACGGTGGGTGGCTCGAGGGTCCGGAGGTCACCCACGCTTACAA CAGCACAGGTGACT TCACCGTTAGGGTGGCCGGCTGGAATGAGGTGAGCCGCAGCGAGGCCTGGCTCAATGTGA CGGTGAAGCGGCGC GTGCGGGGGCTCGTCGTCAATGCAAGCCGCACGGTGGTGCCCCTGAATGGGAGCGTGAGC TTCAGCACGTCGCT GGAGGCCGGCAGTGATGTGCGCTATTCCTGGGTGCTCTGTGACCGCTGCACGCCCATCCC TGGGGGTCCTACCA TCTCTTACACCTTCCGCTCCGTGGGCACCTTCAATATCATCGTCACGGCTGAGAACGAGG TGGGCTCCGCCCAG GACAGCATCTTCGTCTATGTCCTGCAGCTCATAGAGGGGCTGCAGGTGGTGGGCGGTGGC CGCTACTTCCCCAC CAACCACACGGTACAGCTGCAGGCCGTGGTTAGGGATGGCACCAACGTCTCCTACAGCTG GACTGCCTGGAGGG ACAGGGGCCCGGCCCTGGCCGGCAGCGGCAAAGGCTTCTCGCTCACCGTGCTCGAGGCCG GCACCTACCATGTG CAGCTGCGGGCCACCAACATGCTGGGCAGCGCCTGGGCCGACTGCACCATGGACTTCGTG GAGCCTGTGGGGTG GCTGATGGTGGCCGCCTCCCCGAACCCAGCTGCCGTCAACACAAGCGTCACCCTCAGTGC CGAGCTGGCTGGTG GCAGTGGTGTCGTATACACTTGGTCCTTGGAGGAGGGGCTGAGCTGGGAGACCTCCGAGC CATTTACCACCCAT AGCTTCCCCACACCCGGCCTGCACTTGGTCACCATGACGGCAGGGAACCCGCTGGGCTCA GCCAACGCCACCGT GGAAGTGGATGTGCAGGTGCCTGTGAGTGGCCTCAGCATCAGGGCCAGCGAGCCCGGAGG CAGCTTCGTGGCGG CCGGGTCCTCTGTGCCCTTTTGGGGGCAGCTGGCCACGGGCACCAATGTGAGCTGGTGCT GGGCTGTGCCCGGC GGCAGCAGCAAGCGTGGCCCTCATGTCACCATGGTCTTCCCGGATGCTGGCACCTTCTCC ATCCGGCTCAATGC CTCCAACGCAGTCAGCTGGGTCTCAGCCACGTACAACCTCACGGCGGAGGAGCCCATCGT GGGCCTGGTGCTGT GGGCCAGCAGCAAGGTGGTGGCGCCCGGGCAGCTGGTCCATTTTCAGATCCTGCTGGCTG CCGGCTCAGCTGTC ACCTTCCGCCTGCAGGTCGGCGGGGCCAACCCCGAGGTGCTCCCCGGGCCCCGTTTCTCC CACAGCTTCCCCCG CGTCGGAGACCACGTGGTGAGCGTGCGGGGCAAAAACCACGTGAGCTGGGCCCAGGCGCA GGTGCGCATCGTGG TGCTGGAGGCCGTGAGTGGGCTGCAGGTGCCCAACTGCTGCGAGCCTGGCATCGCCACGG GCACTGAGAGGAAC TTCACAGCCCGCGTGCAGCGCGGCTCTCGGGTCGCCTACGCCTGGTACTTCTCGCTGCAG AAGGTCCAGGGCGA CTCGCTGGTCATCCTGTCGGGCCGCGACGTCACCTACACGCCCGTGGCCGCGGGGCTGTT GGAGATCCAGGTGC GCGCCTTCAACGCCCTGGGCAGTGAGAACCGCACGCTGGTGCTGGAGGTTCAGGACGCCG TCCAGTATGTGGCC CTGCAGAGCGGCCCCTGCTTCACCAACCGCTCGGCGCAGTTTGAGGCCGCCACCAGCCCC AGCCCCCGGCGTGT GGCCTACCACTGGGACTTTGGGGATGGGTCGCCAGGGCAGGACACAGATGAGCCCAGGGC CGAGCACTCCTACC TGAGGCCTGGGGACTACCGCGTGCAGGTGAACGCCTCCAACCTGGTGAGCTTCTTCGTGG CGCAGGCCACGGTG ACCGTCCAGGTGCTGGCCTGCCGGGAGCCGGAGGTGGACGTGGTCCTGCCCCTGCAGGTG CTGATGCGGCGATC ACAGCGCAACTACTTGGAGGCCCACGTTGACCTGCGCGACTGCGTCACCTACCAGACTGA GTACCGCTGGGAGG TGTATCGCACCGCCAGCTGCCAGCGGCCGGGGCGCCCAGCGCGTGTGGCCCTGCCCGGCG TGGACGTGAGCCGG CCTCGGCTGGTGCTGCCGCGGCTGGCGCTGCCTGTGGGGCACTACTGCTTTGTGTTTGTC GTGTCATTTGGGGA CACGCCACTGACACAGAGCATCCAGGCCAATGTGACGGTGGCCCCCGAGCGCCTGGTGCC CATCATTGAGGGTG GCTCATACCGCGTGTGGTCAGACACACGGGACCTGGTGCTGGATGGGAGCGAGTCCTACG ACCCCAACCTGGAG GACGGCGACCAGACGCCGCTCAGTTTCCACTGGGCCTGTGTGGCTTCGACACAGAGGGAG GCTGGCGGGTGTGC GCTGAACTTTGGGCCCCGCGGGAGCAGCACGGTCACCATTCCACGGGAGCGGCTGGCGGC TGGCGTGGAGTACA CCTTCAGCCTGACCGTGTGGAAGGCCGGCCGCAAGGAGGAGGCCACCAACCAGACGGTGC TGATCCGGAGTGGC CGGGTGCCCATTGTGTCCTTGGAGTGTGTGTCCTGCAAGGCACAGGCCGTGTACGAAGTG AGCCGCAGCTCCTA CGTGTACTTGGAGGGCCGCTGCCTCAATTGCAGCAGCGGCTCCAAGCGAGGGCGGTGGGC TGCACGTACGTTCA GCAACAAGACGCTGGTGCTGGATGAGACCACCACATCCACGGGCAGTGCAGGCATGCGAC TGGTGCTGCGGCGG GGCGTGCTGCGGGACGGCGAGGGATACACCTTCACGCTCACGGTGCTGGGCCGCTCTGGC GAGGAGGAGGGCTG CGCCTCCATCCGCCTGTCCCCCAACCGCCCGCCGCTGGGGGGCTCTTGCCGCCTCTTCCC ACTGGGCGCTGTGC ACGCCCTCACCACCAAGGTGCACTTCGAATGCACGGGCTGGCATGACGCGGAGGATGCTG GCGCCCCGCTGGTG TACGCCCTGCTGCTGCGGCGCTGTCGCCAGGGCCACTGCGAGGAGTTCTGTGTCTACAAG GGCAGCCTCTCCAG CTACGGAGCCGTGCTGCCCCCGGGTTTCAGGCCACACTTCGAGGTGGGCCTGGCCGTGGT GGTGCAGGACCAGC TGGGAGCCGCTGTGGTCGCCCTCAACAGGTCTTTGGCCATCACCCTCCCAGAGCCCAACG GCAGCGCAACGGGG CTCACAGTCTGGCTGCACGGGCTCACCGCTAGTGTGCTCCCAGGGCTGCTGCGGCAGGCC GATCCCCAGCACGT CATCGAGTACTCGTTGGCCCTGGTCACCGTGCTGAACGAGTACGAGCGGGCCCTGGACGT GGCGGCAGAGCCCA AGCACGAGCGGCAGCACCGAGCCCAGATACGCAAGAACATCACGGAGACTCTGGTGTCCC TGAGGGTCCACACT GTGGATGACATCCAGCAGATCGCTGCTGCGCTGGCCCAGTGCATGGGGCCCAGCAGGGAG CTCGTATGCCGCTC GTGCCTGAAGCAGACGCTGCACAAGCTGGAGGCCATGATGCTCATCCTGCAGGCAGAGAC CACCGCGGGCACCG TGACGCCCACCGCCATCGGAGACAGCATCCTCAACATCACAGGAGACCTCATCCACCTGG CCAGCTCGGACGTG CGGGCACCACAGCCCTCAGAGCTGGGAGCCGAGTCACCATCTCGGATGGTGGCGTCCCAG GCCTACAACCTGAC CTCTGCCCTCATGCGCATCCTCATGCGCTCCCGCGTGCTCAACGAGGAGCCCCTGACGCT GGCGGGCGAGGAGA TCGTGGCCCAGGGCAAGCGCTCGGACCCGCGGAGCCTGCTGTGCTATGGCGGCGCCCCAG GGCCTGGCTGCCAC TTCTCCATCCCCGAGGCTTTCAGCGGGGCCCTGGCCAACCTCAGTGACGTGGTGCAGCTC ATCTTTCTGGTGGA CTCCAATCCCTTTCCCTTTGGCTATATCAGCAACTACACCGTCTCCACCAAGGTGGCCTC GATGGCATTCCAGA CACAGGCCGGCGCCCAGATCCCCATCGAGCGGCTGGCCTCAGAGCGCGCCATCACCGTGA AGGTGCCCAACAAC TCGGACTGGGCTGCCCGGGGCCACCGCAGCTCCGCCAACTCCGCCAACTCCGTTGTGGTC CAGCCCCAGGCCTC CGTCGGTGCTGTGGTCACCCTGGACAGCAGCAACCCTGCGGCCGGGCTGCATCTGCAGCT CAACTATACGCTGC TGGACGGCCACTACCTGTCTGAGGAACCTGAGCCCTACCTGGCAGTCTACCTACACTCGG AGCCCCGGCCCAAT GAGCACAACTGCTCGGCTAGCAGGAGGATCCGCCCAGAGTCACTCCAGGGTGCTGACCAC CGGCCCTACACCTT CTTCATTTCCCCGGGGAGCAGAGACCCAGCGGGGAGTTACCATCTGAACCTCTCCAGCCA CTTCCGCTGGTCGG CGCTGCAGGTGTCCGTGGGCCTGTACACGTCCCTGTGCCAGTACTTCAGCGAGGAGGACA TGGTGTGGCGGACA GAGGGGCTGCTGCCCCTGGAGGAGACCTCGCCCCGCCAGGCCGTCTGCCTCACCCGCCAC CTCACCGCCTTCGG CGCCAGCCTCTTCGTGCCCCCAAGCCATGTCCGCTTTGTGTTTCCTGAGCCGACAGCGGA TGTAAACTACATCG TCATGCTGACATGTGCTGTGTGCCTGGTGACCTACATGGTCATGGCCGCCATCCTGCACA AGCTGGACCAGTTG GATGCCAGCCGGGGCCGCGCCATCCCTTTCTGTGGGCAGCGGGGCCGCTTCAAGTACGAG ATCCTCGTCAAGAC AGGCTGGGGCCGGGGCTCAGGTACCACGGCCCACGTGGGCATCATGCTGTATGGGGTGGA CAGCCGGAGCGGCC ACCGGCACCTGGACGGCGACAGAGCCTTCCACCGCAACAGCCTGGACATCTTCCGGATCG CCACCCCGCACAGC CTGGGTAGCGTGTGGAAGATCCGAGTGTGGCACGACAACAAAGGGCTCAGCCCTGCCTGG TTCCTGCAGCACGT CATCGTCAGGGACCTGCAGACGGCACGCAGCGCCTTCTTCCTGGTCAATGACTGGCTTTC GGTGGAGACGGAGG CCAACGGGGGCCTGGTGGAGAAGGAGGTGCTGGCCGCGAGCGACGCAGCCCTTTTGCGCT TCCGGCGCCTGCTG GTGGCTGAGCTGCAGCGTGGCTTCTTTGACAAGCACATCTGGCTCTCCATATGGGACCGG CCGCCTCGTAGCCG TTTCACTCGCATCCAGAGGGCCACCTGCTGCGTTCTCCTCATCTGCCTCTTCCTGGGCGC CAACGCCGTGTGGT ACGGGGCTGTTGGCGACTCTGCCTACAGCACGGGGCATGTGTCCAGGCTGAGCCCGCTGA GCGTCGACACAGTC GCTGTTGGCCTGGTGTCCAGCGTGGTTGTCTATCCCGTCTACCTGGCCATCCTTTTTCTC TTCCGGATGTCCCG GAGCAAGGTGGCTGGGAGCCCGAGCCCCACACCTGCCGGGCAGCAGGTGCTGGACATCGA CAGCTGCCTGGACT CGTCCGTGCTGGACAGCTCCTTCCTCACGTTCTCAGGCCTCCACGCTGAGCAGGCCTTTG TTGGACAGATGAAG AGTGACTTGTTTCTGGATGATTCTAAGAGTCTGGTGTGCTGGCCCTCCGGCGAGGGAACG CTCAGTTGGCCGGA CCTGCTCAGTGACCCGTCCATTGTGGGTAGCAATCTGCGGCAGCTGGCACGGGGCCAGGC GGGCCATGGGCTGG GCCCAGAGGAGGACGGCTTCTCCCTGGCCAGCCCCTACTCGCCTGCCAAATCCTTCTCAG CATCAGATGAAGAC CTGATCCAGCAGGTCCTTGCCGAGGGGGTCAGCAGCCCAGCCCCTACCCAAGACACCCAC ATGGAAACGGACCT GCTCAGCAGCCTGTCCAGCACTCCTGGGGAGAAGACAGAGACGCTGGCGCTGCAGAGGCT GGGGGAGCTGGGGC CACCCAGCCCAGGCCTGAACTGGGAACAGCCCCAGGCAGCGAGGCTGTCCAGGACAGGAC TGGTGGAGGGTCTG CGGAAGCGCCTGCTGCCGGCCTGGTGTGCCTCCCTGGCCCACGGGCTCAGCCTGCTCCTG GTGGCTGTGGCTGT GGCTGTCTCAGGGTGGGTGGGTGCGAGCTTCCCCCCGGGCGTGAGTGTTGCGTGGCTCCT GTCCAGCAGCGCCA GCTTCCTGGCCTCATTCCTCGGCTGGGAGCCACTGAAGGTCTTGCTGGAAGCCCTGTACT TCTCACTGGTGGCC AAGCGGCTGCACCCGGATGAAGATGACACCCTGGTAGAGAGCCCGGCTGTGACGCCTGTG AGCGCACGTGTGCC CCGCGTACGGCCACCCCACGGCTTTGCACTCTTCCTGGCCAAGGAAGAAGCCCGCAAGGT CAAGAGGCTACATG GCATGCTGCGGAGCCTCCTGGTGTACATGCTTTTTCTGCTGGTGACCCTGCTGGCCAGCT ATGGGGATGCCTCA TGCCATGGGCACGCCTACCGTCTGCAAAGCGCCATCAAGCAGGAGCTGCACAGCCGGGCC TTCCTGGCCATCAC GCGGTCTGAGGAGCTCTGGCCATGGATGGCCCACGTGCTGCTGCCCTACGTCCACGGGAA CCAGTCCAGCCCAG AGCTGGGGCCCCCACGGCTGCGGCAGGTGCGGCTGCAGGAAGCACTCTACCCAGACCCTC CCGGCCCCAGGGTC CACACGTGCTCGGCCGCAGGAGGCTTCAGCACCAGCGATTACGACGTTGGCTGGGAGAGT CCTCACAATGGCTC GGGGACGTGGGCCTATTCAGCGCCGGATCTGCTGGGGGCATGGTCCTGGGGCTCCTGTGC CGTGTATGACAGCG GGGGCTACGTGCAGGAGCTGGGCCTGAGCCTGGAGGAGAGCCGCGACCGGCTGCGCTTCC TGCAGCTGCACAAC TGGCTGGACAACAGGAGCCGCGCTGTGTTCCTGGAGCTCACGCGCTACAGCCCGGCCGTG GGGCTGCACGCCGC CGTCACGCTGCGCCTCGAGTTCCCGGCGGCCGGCCGCGCCCTGGCCGCCCTCAGCGTCCG CCCCTTTGCGCTGC GCCGCCTCAGCGCGGGCCTCTCGCTGCCTCTGCTCACCTCGGTGTGCCTGCTGCTGTTCG CCGTGCACTTCGCC GTGGCCGAGGCCCGTACTTGGCACAGGGAAGGGCGCTGGCGCGTGCTGCGGCTCGGAGCC TGGGCGCGGTGGCT GCTGGTGGCGCTGACGGCGGCCACGGCACTGGTACGCCTCGCCCAGCTGGGTGCCGCTGA CCGCCAGTGGACCC GTTTCGTGCGCGGCCGCCCGCGCCGCTTCACTAGCTTCGACCAGGTGGCGCAGCTGAGCT CCGCAGCCCGTGGC CTGGCGGCCTCGCTGCTCTTCCTGCTTTTGGTCAAGGCTGCCCAGCAGCTACGCTTCGTG CGCCAGTGGTCCGT CTTTGGCAAGACATTATGCCGAGCTCTGCCAGAGCTCCTGGGGGTCACCTTGGGCCTGGT GGTGCTCGGGGTAG CCTACGCCCAGCTGGCCATCCTGCTCGTGTCTTCCTGTGTGGACTCCCTCTGGAGCGTGG CCCAGGCCCTGTTG GTGCTGTGCCCTGGGACTGGGCTCTCTACCCTGTGTCCTGCCGAGTCCTGGCACCTGTCA CCCCTGCTGTGTGT GGGGCTCTGGGCACTGCGGCTGTGGGGCGCCCTACGGCTGGGGGCTGTTATTCTCCGCTG GCGCTACCACGCCT TGCGTGGAGAGCTGTACCGGCCGGCCTGGGAGCCCCAGGACTACGAGATGGTGGAGTTGT TCCTGCGCAGGCTG CGCCTCTGGATGGGCCTCAGCAAGGTCAAGGAGTTCCGCCACAAAGTCCGCTTTGAAGGG ATGGAGCCGCTGCC CTCTCGCTCCTCCAGGGGCTCCAAGGTATCCCCGGATGTGCCCCCACCCAGCGCTGGCTC CGATGCCTCGCACC CCTCCACCTCCTCCAGCCAGCTGGATGGGCTGAGCGTGAGCCTGGGCCGGCTGGGGACAA GGTGTGAGCCTGAG CCCTCCCGCCTCCAAGCCGTGTTCGAGGCCCTGCTCACCCAGTTTGACCGACTCAACCAG GCCACAGAGGACGT CTACCAGCTGGAGCAGCAGCTGCACAGCCTGCAAGGCCGCAGGAGCAGCCGGGCGCCCGC CGGATCTTCCCGTG GCCCATCCCCGGGCCTGCGGCCAGCACTGCCCAGCCGCCTTGCCCGGGCCAGTCGGGGTG TGGACCTGGCCACT GGCCCCAGCAGGACACCCCTTCGGGCCAAGAACAAGGTCCACCCCAGCAGCACTTAG SEQ ID NO:2 PC-1 polypeptide MPPAAPARLALALGLGLWLGALAGGPGGAPGGPGRGCGPCEPPCLCGPAPGAACRVNCSG RGLRTLGPALRIPA DATALDVSHNLLRALDVGLLANLSALAELDISNNKISTLEEGIFANLFNLSEINLSGNPF ECDCGLAWLPRWAE EQQVRVVQPEAATCAGPGSLAGQPLLGIPLLDSGCGEEYVACLPDNSSGTVAAVSFSAAH EGLLQPEACSAFCF STGQGLAALSEQGWCLCGAAQPSSASFACLSLCSGPPPPPAPTCRGPTLLQHVFPASPGA TLVGPHGPLASGQL AAFHIAAPLPVTATRWDFGDGSAEVDAAGPAASHRYVLPGRYHVTAVLALGAGSALLGTD VQVEAAPAALELVC PSSVQSDESLDLSIQNRGGSGLEAAYSIVALGEEPARAVHPLCPSDTEIFPGNGHCYRLV VEKAAWLQAQEQCQ AWAGAALAMVDSPAVQRFLVSRVTRSLDVWIGFSTVQGVEVGPAPQGEAFSLESCQNWLP GEPHPATAEHCVRL GPTGWCNTDLCSAPHSYVCELQPGGPVQDAENLLVGAPSGDLQGPLTPLAQQDGLSAPHE PVEVMVFPGLRLSR EAFLTTAEFGTQELRRPAQLRLQVYRLLSTAGTPENGSEPESRSPDNRTQLAPACMPGGR WCPGANICLPLDAS CHPQACANGCTSGPGLPGAPYALWREFLFSVPAGPPAQYSVTLHGQDVLMLPGDLVGLQH DAGPGALLHCSPAP GHPGPQAPYLSANASSWLPHLPAQLEGTWACPACALRLLAATEQLTVLLGLRPNPGLRLP GRYEVRAEVGNGVS RHNLSCSFDVVSPVAGLRVIYPAPRDGRLYVPTNGSALVLQVDSGANATATARWPGGSVS ARFENVCPALVATF VPGCPWETNDTLFSVVALPWLSEGEHVVDVVVENSASRANLSLRVTAEEPICGLRATPSP EARVLQGVLVRYSP VVEAGSDMVFRWTINDKQSLTFQNVVFNVIYQSAAVFKLSLTASNHVSNVTVNYNVTVER MNRMQGLQVSTVPA VLSPNATLALTAGVLVDSAVEVAFLWTFGDGEQALHQFQPPYNESFPVPDPSVAQVLVEH NVMHTYAAPGEYLL TVLASNAFENLTQQVPVSVRASLPSVAVGVSDGVLVAGRPVTFYPHPLPSPGGVLYTWDF GDGSPVLTQSQPAA NHTYASRGTYHVRLEVNNTVSGAAAQADVRVFEELRGLSVDMSLAVEQGAPVVVSAAVQT GDNITWTFDMGDGT VLSGPEATVEHVYLRAQNCTVTVGAASPAGHLARSLHVLVFVLEVLRVEPAACIPTQPDA RLTAYVTGNPAHYL FDWTFGDGSSNTTVRGCPTVTHNFTRSGTFPLALVLSSRVNRAHYFTSICVEPEVGNVTL QPERQFVQLGDEAW LVACAWPPFPYRYTWDFGTEEAAPTRARGPEVTFIYRDPGSYLVTVTASNNISAANDSAL VEVQEPVLVTSIKV NGSLGLELQQPYLFSAVGRGRPASYLWDLGDGGWLEGPEVTHAYNSTGDFTVRVAGWNEV SRSEAWLNVTVKRR VRGLVVNASRTVVPLNGSVSFSTSLEAGSDVRYSWVLCDRCTPIPGGPTISYTFRSVGTF NIIVTAENEVGSAQ DSIFVYVLQLIEGLQVVGGGRYFPTNHTVQLQAVVRDGTNVSYSWTAWRDRGPALAGSGK GFSLTVLEAGTYHV QLRATNMLGSAWADCTMDFVEPVGWLMVAASPNPAAVNTSVTLSAELAGGSGVVYTWSLE EGLSWETSEPFTTH SFPTPGLHLVTMTAGNPLGSANATVEVDVQVPVSGLSIRASEPGGSFVAAGSSVPFWGQL ATGTNVSWCWAVPG GSSKRGPHVTMVFPDAGTFSIRLNASNAVSWVSATYNLTAEEPIVGLVLWASSKVVAPGQ LVHFQILLAAGSAV TFRLQVGGANPEVLPGPRFSHSFPRVGDHVVSVRGKNHVSWAQAQVRIVVLEAVSGLQVP NCCEPGIATGTERN FTARVQRGSRVAYAWYFSLQKVQGDSLVILSGRDVTYTPVAAGLLEIQVRAFNALGSENR TLVLEVQDAVQYVA LQSGPCFTNRSAQFEAATSPSPRRVAYHWDFGDGSPGQDTDEPRAEHSYLRPGDYRVQVN ASNLVSFFVAQATV TVQVLACREPEVDVVLPLQVLMRRSQRNYLEAHVDLRDCVTYQTEYRWEVYRTASCQRPG RPARVALPGVDVSR PRLVLPRLALPVGHYCFVFVVSFGDTPLTQSIQANVTVAPERLVPIIEGGSYRVWSDTRD LVLDGSESYDPNLE DGDQTPLSFHWACVASTQREAGGCALNFGPRGSSTVTIPRERLAAGVEYTFSLTVWKAGR KEEATNQTVLIRSG RVPIVSLECVSCKAQAVYEVSRSSYVYLEGRCLNCSSGSKRGRWAARTFSNKTLVLDETT TSTGSAGMRLVLRR GVLRDGEGYTFTLTVLGRSGEEEGCASIRLSPNRPPLGGSCRLFPLGAVHALTTKVHFEC TGWHDAEDAGAPLV YALLLRRCRQGHCEEFCVYKGSLSSYGAVLPPGFRPHFEVGLAVVVQDQLGAAVVALNRS LAITLPEPNGSATG LTVWLHGLTASVLPGLLRQADPQHVIEYSLALVTVLNEYERALDVAAEPKHERQHRAQIR KNITETLVSLRVHT VDDIQQIAAALAQCMGPSRELVCRSCLKQTLHKLEAMMLILQAETTAGTVTPTAIGDSIL NITGDLIHLASSDV RAPQPSELGAESPSRMVASQAYNLTSALMRILMRSRVLNEEPLTLAGEEIVAQGKRSDPR SLLCYGGAPGPGCH FSIPEAFSGALANLSDVVQLIFLVDSNPFPFGYISNYTVSTKVASMAFQTQAGAQIPIER LASERAITVKVPNN SDWAARGHRSSANSANSVVVQPQASVGAVVTLDSSNPAAGLHLQLNYTLLDGHYLSEEPE PYLAVYLHSEPRPN EHNCSASRRIRPESLQGADHRPYTFFISPGSRDPAGSYHLNLSSHFRWSALQVSVGLYTS LCQYFSEEDMVWRT EGLLPLEETSPRQAVCLTRHLTAFGASLFVPPSHVRFVFPEPTADVNYIVMLTCAVCLVT YMVMAAILHKLDQL DASRGRAIPFCGQRGRFKYEILVKTGWGRGSGTTAHVGIMLYGVDSRSGHRHLDGDRAFH RNSLDIFRIATPHS LGSVWKIRVWHDNKGLSPAWFLQHVIVRDLQTARSAFFLVNDWLSVETEANGGLVEKEVL AASDAALLRFRRLL VAELQRGFFDKHIWLSIWDRPPRSRFTRIQRATCCVLLICLFLGANAVWYGAVGDSAYST GHVSRLSPLSVDTV AVGLVSSVVVYPVYLAILFLFRMSRSKVAGSPSPTPAGQQVLDIDSCLDSSVLDSSFLTF SGLHAEQAFVGQMK SDLFLDDSKSLVCWPSGEGTLSWPDLLSDPSIVGSNLRQLARGQAGHGLGPEEDGFSLAS PYSPAKSFSASDED LIQQVLAEGVSSPAPTQDTHMETDLLSSLSSTPGEKTETLALQRLGELGPPSPGLNWEQP QAARLSRTGLVEGL RKRLLPAWCASLAHGLSLLLVAVAVAVSGWVGASFPPGVSVAWLLSSSASFLASFLGWEP LKVLLEALYFSLVA KRLHPDEDDTLVESPAVTPVSARVPRVRPPHGFALFLAKEEARKVKRLHGMLRSLLVYML FLLVTLLASYGDAS CHGHAYRLQSAIKQELHSRAFLAITRSEELWPWMAHVLLPYVHGNQSSPELGPPRLRQVR LQEALYPDPPGPRV HTCSAAGGFSTSDYDVGWESPHNGSGTWAYSAPDLLGAWSWGSCAVYDSGGYVQELGLSL EESRDRLRFLQLHN WLDNRSRAVFLELTRYSPAVGLHAAVTLRLEFPAAGRALAALSVRPFALRRLSAGLSLPL LTSVCLLLFAVHFA VAEARTWHREGRWRVLRLGAWARWLLVALTAATALVRLAQLGAADRQWTRFVRGRPRRFT SFDQVAQLSSAARG LAASLLFLLLVKAAQQLRFVRQWSVFGKTLCRALPELLGVTLGLVVLGVAYAQLAILLVS SCVDSLWSVAQALL VLCPGTGLSTLCPAESWHLSPLLCVGLWALRLWGALRLGAVILRWRYHALRGELYRPAWE PQDYEMVELFLRRL RLWMGLSKVKEFRHKVRFEGMEPLPSRSSRGSKVSPDVPPPSAGSDASHPSTSSSQLDGL SVSLGRLGTRCEPE PSRLQAVFEALLTQFDRLNQATEDVYQLEQQLHSLQGRRSSRAPAGSSRGPSPGLRPALP SRLARASRGVDLAT GPSRTPLRAKNKVHPSST SEQ ID NO:3 PKD2 cDNA ATGGTGAACTCCAGTCGCGTGCAGCCTCAGCAGCCCGGGGACGCCAAGCGGCCGCCCGCG CCCCGCGCGCCGGA CCCGGGCCGGCTGATGGCTGGCTGCGCGGCCGTGGGCGCCAGCCTCGCCGCCCCGGGCGG CCTCTGCGAGCAGC GGGGCCTGGAGATCGAGATGCAGCGCATCCGGCAGGCGGCCGCGCGGGACCCCCCGGCCG GAGCCGCGGCCTCC CCTTCTCCTCCGCTCTCGTCGTGCTCCCGGCAGGCGTGGAGCCGCGATAACCCCGGCTTC GAGGCCGAGGAGGA GGAGGAGGAGGTGGAAGGGGAAGAAGGCGGAATGGTGGTGGAGATGGACGTAGAGTGGCG CCCGGGCAGCCGGA GGTCGGCCGCCTCCTCGGCCGTGAGCTCCGTGGGCGCGCGGAGCCGGGGGCTTGGGGGCT ACCACGGCGCGGGC CACCCGAGCGGGAGGCGGCGCCGGCGAGAGGACCAGGGCCCGCCGTGCCCCAGCCCAGTC GGCGGCGGGGACCC GCTGCATCGCCACCTCCCCCTGGAAGGGCAGCCGCCCCGAGTGGCCTGGGCGGAGAGGCT GGTTCGCGGGCTGC GAGGTCTCTGGGGAACAAGACTCATGGAGGAAAGCAGCACTAACCGAGAGAAATACCTTA AAAGTGTTTTACGG GAACTGGTCACATACCTCCTTTTTCTCATAGTCTTGTGCATCTTGACCTACGGCATGATG AGCTCCAATGTGTA CTACTACACCCGGATGATGTCACAGCTCTTCCTAGACACCCCCGTGTCCAAAACGGAGAA AACTAACTTTAAAA CTCTGTCTTCCATGGAAGACTTCTGGAAGTTCACAGAAGGCTCCTTATTGGATGGGCTGT ACTGGAAGATGCAG CCCAGCAACCAGACTGAAGCTGACAACCGAAGTTTCATCTTCTATGAGAACCTGCTGTTA GGGGTTCCACGAAT ACGGCAACTCCGAGTCAGAAATGGATCCTGCTCTATCCCCCAGGACTTGAGAGATGAAAT TAAAGAGTGCTATG ATGTCTACTCTGTCAGTAGTGAAGATAGGGCTCCCTTTGGGCCCCGAAATGGAACCGCTT GGATCTACACAAGT GAAAAAGACTTGAATGGTAGTAGCCACTGGGGAATCATTGCAACTTATAGTGGAGCTGGC TATTATCTGGATTT GTCAAGAACAAGAGAGGAAACAGCTGCACAAGTTGCTAGCCTCAAGAAAAATGTCTGGCT GGACCGAGGAACCA GGGCAACTTTTATTGACTTCTCAGTGTACAACGCCAACATTAACCTGTTCTGTGTGGTCA GGTTATTGGTTGAA TTCCCAGCAACAGGTGGTGTGATTCCATCTTGGCAATTTCAGCCTTTAAAGCTGATCCGA TATGTCACAACTTT TGATTTCTTCCTGGCAGCCTGTGAGATTATCTTTTGTTTCTTTATCTTTTACTATGTGGT GGAAGAGATATTGG AAATTCGCATTCACAAACTACACTATTTCAGGAGTTTCTGGAATTGTCTGGATGTTGTGA TCGTTGTGCTGTCA GTGGTAGCTATAGGAATTAACATATACAGAACATCAAATGTGGAGGTGCTACTACAGTTT CTGGAAGATCAAAA TACTTTCCCCAACTTTGAGCATCTGGCATATTGGCAGATACAGTTCAACAATATAGCTGC TGTCACAGTATTTT TTGTCTGGATTAAGCTCTTCAAATTCATCAATTTTAACAGGACCATGAGCCAGCTCTCGA CAACCATGTCTCGA TGTGCCAAAGACCTGTTTGGCTTTGCTATTATGTTCTTCATTATTTTCCTAGCGTATGCT CAGTTGGCATACCT TGTCTTTGGCACTCAGGTCGATGACTTCAGTACTTTCCAAGAGTGTATCTTCACTCAATT CCGTATCATTTTGG GCGATATCAACTTTGCAGAGATTGAGGAAGCTAATCGAGTTTTGGGACCAATTTATTTCA CTACATTTGTGTTC TTTATGTTCTTCATTCTTTTGAATATGTTTTTGGCTATCATCAATGATACTTACTCTGAA GTGAAATCTGACTT GGCACAGCAGAAAGCTGAAATGGAACTCTCAGATCTTATCAGAAAGGGCTACCATAAAGC TTTGGTCAAACTAA AACTGAAAAAAAATACCGTGGATGACATTTCAGAGAGTCTGCGGCAAGGAGGAGGCAAGT TAAACTTTGACGAA CTTCGACAAGATCTCAAAGGGAAGGGCCATACTGATGCAGAGATTGAGGCAATATTCACA AAGTACGACCAAGA TGGAGACCAAGAACTGACCGAACATGAACATCAGCAGATGAGAGACGACTTGGAGAAAGA GAGGGAGGACCTGG ATTTGGATCACAGTTCTTTACCACGTCCCATGAGCAGCCGAAGTTTCCCTCGAAGCCTGG ATGACTCTGAGGAG GATGACGATGAAGATAGCGGACATAGCTCCAGAAGGAGGGGAAGCATTTCTAGTGGCGTT TCTTACGAAGAGTT TCAAGTCCTGGTGAGACGAGTGGACCGGATGGAGCATTCCATCGGCAGCATAGTGTCCAA GATTGACGCCGTGA TCGTGAAGCTAGAGATTATGGAGCGAGCCAAACTGAAGAGGAGGGAGGTGCTGGGAAGGC TGTTGGATGGGGTG GCCGAGGATGAAAGGCTGGGTCGTGACAGTGAAATCCATAGGGAACAGATGGAACGGCTA GTACGTGAAGAGTT GGAACGCTGGGAATCCGATGATGCAGCTTCCCAGATCAGTCATGGTTTAGGCACGCCAGT GGGACTAAATGGTC AACCTCGCCCCAGAAGCTCCCGCCCATCTTCCTCCCAATCTACAGAAGGCATGGAAGGTG CAGGTGGAAATGGG AGTTCTAATGTCCACGTATGA SEQ ID NO:4 PC-2 polypeptide MVNSSRVQPQQPGDAKRPPAPRAPDPGRLMAGCAAVGASLAAPGGLCEQRGLEIEMQRIR QAAARDPPAGAAAS PSPPLSSCSRQAWSRDNPGFEAEEEEEEVEGEEGGMVVEMDVEWRPGSRRSAASSAVSSV GARSRGLGGYHGAG HPSGRRRRREDQGPPCPSPVGGGDPLHRHLPLEGQPPRVAWAERLVRGLRGLWGTRLMEE SSTNREKYLKSVLR ELVTYLLFLIVLCILTYGMMSSNVYYYTRMMSQLFLDTPVSKTEKTNFKTLSSMEDFWKF TEGSLLDGLYWKMQ PSNQTEADNRSFIFYENLLLGVPRIRQLRVRNGSCSIPQDLRDEIKECYDVYSVSSEDRA PFGPRNGTAWIYTS EKDLNGSSHWGIIATYSGAGYYLDLSRTREETAAQVASLKKNVWLDRGTRATFIDFSVYN ANINLFCVVRLLVE FPATGGVIPSWQFQPLKLIRYVTTFDFFLAACEIIFCFFIFYYVVEEILEIRIHKLHYFR SFWNCLDVVIVVLS VVAIGINIYRTSNVEVLLQFLEDQNTFPNFEHLAYWQIQFNNIAAVTVFFVWIKLFKFIN FNRTMSQLSTTMSR CAKDLFGFAIMFFIIFLAYAQLAYLVFGTQVDDFSTFQECIFTQFRIILGDINFAEIEEA NRVLGPIYFTTFVF FMFFILLNMFLAIINDTYSEVKSDLAQQKAEMELSDLIRKGYHKALVKLKLKKNTVDDIS ESLRQGGGKLNFDE LRQDLKGKGHTDAEIEAIFTKYDQDGDQELTEHEHQQMRDDLEKEREDLDLDHSSLPRPM SSRSFPRSLDDSEE DDDEDSGHSSRRRGSISSGVSYEEFQVLVRRVDRMEHSIGSIVSKIDAVIVKLEIMERAK LKRREVLGRLLDGV AEDERLGRDSEIHREQMERLVREELERWESDDAASQISHGLGTPVGLNGQPRPRSSRPSS SQSTEGMEGAGGNG SSNVHV SEQ ID NO:5 HDAd-PKD1 RightITR-CBh-mCherry:PKD1-HGHpA-PackagingSignal-LeftITR CCCGTAGAAAAGATCAAAGGATCTTCTTGAGATCCTTTTTTTCTGCGCGTAATCTGCTGC TTGCAAAC AAAAAAACCACCGCTACCAGCGGTGGTTTGTTTGCCGGATCAAGAGCTACCAACTCTTTT TCCGAAGG TAACTGGCTTCAGCAGAGCGCAGATACCAAATACTGTCCTTCTAGTGTAGCCGTAGTTAG GCCACCAC TTCAAGAACTCTGTAGCACCGCCTACATACCTCGCTCTGCTAATCCTGTTACCAGTGGCT GCTGCCAG TGGCGATAAGTCGTGTCTTACCGGGTTGGACTCAAGACGATAGTTACCGGATAAGGCGCA GCGGTCGG GCTGAACGGGGGGTTCGTGCACACAGCCCAGCTTGGAGCGAACGACCTACACCGAACTGA GATACCTA CAGCGTGAGCTATGAGAAAGCGCCACGCTTCCCGAAGGGAGAAAGGCGGACAGGTATCCG GTAAGCGG CAGGGTCGGAACAGGAGAGCGCACGAGGGAGCTTCCAGGGGGAAACGCCTGGTATCTTTA TAGTCCTG TCGGGTTTCGCCACCTCTGACTTGAGCGTCGATTTTTGTGATGCTCGTCAGGGGGGCGGA GCCTATGG AAAAACGCCAGCAACGCGGCCTTTTTACGGTTCCTGGCCTTTTGCTGGCCTTTTGCTCAC ATGTTCTT TCCTGCGTTATCCCCTGATTCTGTGGATAACCGTATTACCGCCTTTGAGTGAGCTGATAC CGCTCGCC GCAGCCGAACGACCGAGCGCAGCGAGTCAGTGAGCGAGGAAGCGGAAGAGCGCCTGATGC GGTATTTT CTCCTTACGCATCTGTGCGGTATTTCACACCGCATATGGATCCATGCATGTTAAGTTTAA ACATCATC AATAATATACCTTATTTTGGATTGAAGCCAATATGATAATGAGGGGGTGGAGTTTGTGAC GTGGCGCG GGGCGTGGGAACGGGGCGGGTGACGTAGGTTTTAGGGCGGAGTAACTTGTATGTGTTGGG AATTGTAG TTTTCTTAAAATGGGAAGTTACGTAACGTGGGAAAACGGAAGTGACGATTTGAGGAAGTT GTGGGTTT TTTGGCTTTCGTTTCTGGGCGTAGGTTCGCGTGCGGTTTTCTGGGTGTTTTTTGTGGACT TTAACCGT TACGTCATTTTTTAGTCCTATATATACTCGCTCTGCACTTGGCCCTTTTTTACACTGTGA CTGATTGA GCTGGTGCCGTGTCGAGTGGTGTTTTTTGATGCCCCCCCTCGAGGTTCGACGGTATCGAT AAGCTTGA TTTAATTAAGGCCGGCCCCTAGGGGCGCGCGCGGCCGCTAGGGATAACAGGGTAATTGTT GACAATTA ATCATCGGCATAGTATATCGGCATAGTATAATACGACAAGGTGAGGAACTAAACCATGGC CAAGTTGA CCAGTGCCGTTCCGGTGCTCACCGCGCGCGACGTCGCCGGAGCGGTCGAGTTCTGGACCG ACCGGCTC GGGTTCTCCCGGGACTTCGTGGAGGACGACTTCGCCGGTGTGGTCCGGGACGACGTGACC CTGTTCAT CAGCGCGGTCCAGGACCAGGTGGTGCCGGACAACACCCTGGCCTGGGTGTGGGTGCGCGG CCTGGACG AGCTGTACGCCGAGTGGTCGGAGGTCGTGTCCACGAACTTCCGGGACGCCTCCGGGCCGG CCATGACC GAGATCGGCGAGCAGCCGTGGGGGCGGGAGTTCGCCCTGCGCGACCCGGCCGGCAACTGC GTGCACTT CGTGGCCGAGGAGCAGGACTGAACGCGTCGTTACATAACTTACGGTAAATGGCCCGCCTG GCTGACCG CCCAACGACCCCCGCCCATTGACGTCAATAATGACGTATGTTCCCATAGTAACGCCAATA GGGACTTT CCATTGACGTCAATGGGTGGAGTATTTACGGTAAACTGCCCACTTGGCAGTACATCAAGT GTATCATA TGCCAAGTACGCCCCCTATTGACGTCAATGACGGTAAATGGCCCGCCTGGCATTATGCCC AGTACATG ACCTTATGGGACTTTCCTACTTGGCAGTACATCTACGTATTAGTCATCGCTATTACCATG GTCGAGGT GAGCCCCACGTTCTGCTTCACTCTCCCCATCTCCCCCCCCTCCCCACCCCCAATTTTGTA TTTATTTA TTTTTTAATTATTTTGTGCAGCGATGGGGGCGGGGGGGGGGGGGGGGCGCGCGCCAGGCG GGGCGGGG CGGGGCGAGGGGCGGGGCGGGGCGAGGCGGAGAGGTGCGGCGGCAGCCAATCAGAGCGGC GCGCTCCG AAAGTTTCCTTTTATGGCGAGGCGGCGGCGGCGGCGGCCCTATAAAAAGCGAAGCGCGCG GCGGGCGG GAGTCGCTGCGACGCTGCCTTCGCCCCGTGCCCCGCTCCGCCGCCGCCTCGCGCCGCCCG CCCCGGCT CTGACTGACCGCGTTACTCCCACAGGTGAGCGGGCGGGACGGCCCTTCTCCTCCGGGCTG TAATTAGC TGAGCAAGAGGTAAGGGTTTAAGGGATGGTTGGTTGGTGGGGTATTAATGTTTAATTACC TGGAGCAC CTGTCCGGAGAATTCGCCACCATGCCGCCCGCCGCGCCCGCCCGCCTGGCGCTGGCCCTG GGCCTGGG CCTGTGGCTCGGGGCGCTGGCGGGGGGCCCCGGGATGGTGAGCAAGGGCGAGGAGGATAA CATGGCCA TCATCAAGGAGTTCATGCGCTTCAAGGTGCACATGGAGGGCTCCGTGAACGGCCACGAGT TCGAGATC GAGGGCGAGGGCGAGGGCCGCCCCTACGAGGGCACCCAGACCGCCAAGCTGAAGGTGACC AAGGGTGG CCCCCTGCCCTTCGCCTGGGACATCCTGTCCCCTCAGTTCATGTACGGCTCCAAGGCCTA CGTGAAGC ACCCCGCCGACATCCCCGACTACTTGAAGCTGTCCTTCCCCGAGGGCTTCAAGTGGGAGC GCGTGATG AACTTCGAGGACGGCGGCGTGGTGACCGTGACCCAGGACTCCTCCCTGCAGGACGGCGAG TTCATCTA CAAGGTGAAGCTGCGCGGCACCAACTTCCCCTCCGACGGCCCCGTAATGCAGAAGAAGAC CATGGGCT GGGAGGCCTCCTCCGAGCGGATGTACCCCGAGGACGGCGCCCTGAAGGGCGAGATCAAGC AGAGGCTG AAGCTGAAGGACGGCGGCCACTACGACGCTGAGGTCAAGACCACCTACAAGGCCAAGAAG CCCGTGCA GCTGCCCGGCGCCTACAACGTCAACATCAAGTTGGACATCACCTCCCACAACGAGGACTA CACCATCG TGGAACAGTACGAACGCGCCGAGGGCCGCCACTCCACCGGCGGCATGGACGAGCTGTACA AGGGCGCG CCGGGGGGCCCCGGGCGCGGCTGCGGGCCCTGCGAGCCCCCCTGCCTCTGCGGCCCAGCG CCCGGCGC CGCCTGCCGCGTCAACTGCTCGGGCCGCGGGCTGCGGACGCTCGGTCCCGCGCTGCGCAT CCCCGCGG ACGCCACAGCGCTAGACGTCTCCCACAACCTGCTCCGGGCGCTGGACGTTGGGCTCCTGG CGAACCTC TCGGCGCTGGCAGAGCTGGATATAAGCAACAACAAGATTTCTACGTTAGAAGAAGGAATA TTTGCTAA TTTATTTAATTTAAGTGAAATAAACCTGAGTGGGAACCCGTTTGAGTGTGACTGTGGCCT GGCGTGGC TGCCGCGATGGGCGGAGGAGCAGCAGGTGCGGGTGGTGCAGCCCGAGGCAGCCACGTGTG CTGGGCCT GGCTCCCTGGCTGGCCAGCCTCTGCTTGGCATCCCCTTGCTGGACAGTGGCTGTGGTGAG GAGTATGT CGCCTGCCTCCCTGACAACAGCTCAGGCACCGTGGCAGCAGTGTCCTTTTCAGCTGCCCA CGAAGGCC TGCTTCAGCCAGAGGCCTGCAGCGCCTTCTGCTTCTCCACCGGCCAGGGCCTCGCAGCCC TCTCGGAG CAGGGCTGGTGCCTGTGTGGGGCGGCCCAGCCCTCCAGTGCCTCCTTTGCCTGCCTGTCC CTCTGCTC CGGCCCCCCGCCACCTCCTGCCCCCACCTGTAGGGGCCCCACCCTCCTCCAGCACGTCTT CCCTGCCT CCCCAGGGGCCACCCTGGTGGGGCCCCACGGACCTCTGGCCTCTGGCCAGCTAGCAGCCT TCCACATC GCTGCCCCGCTCCCTGTCACTGCCACACGCTGGGACTTCGGAGACGGCTCCGCCGAGGTG GATGCCGC TGGGCCGGCTGCCTCGCATCGCTATGTGCTGCCTGGGCGCTATCACGTGACGGCCGTGCT GGCCCTGG GGGCCGGCTCAGCCCTGCTGGGGACAGACGTGCAGGTGGAAGCGGCACCTGCCGCCCTGG AGCTCGTG TGCCCGTCCTCGGTGCAGAGTGACGAGAGCCTTGACCTCAGCATCCAGAACCGCGGTGGT TCAGGCCT GGAGGCCGCCTACAGCATCGTGGCCCTGGGCGAGGAGCCGGCCCGAGCGGTGCACCCGCT CTGCCCCT CGGACACGGAGATCTTCCCTGGCAACGGGCACTGCTACCGCCTGGTGGTGGAGAAGGCGG CCTGGCTG CAGGCGCAGGAGCAGTGTCAGGCCTGGGCCGGGGCCGCCCTGGCAATGGTGGACAGTCCC GCCGTGCA GCGCTTCCTGGTCTCCCGGGTCACCAGGAGCCTAGACGTGTGGATCGGCTTCTCGACTGT GCAGGGGG TGGAGGTGGGCCCAGCGCCGCAGGGCGAGGCCTTCAGCCTGGAGAGCTGCCAGAACTGGC TGCCCGGG GAGCCACACCCAGCCACAGCCGAGCACTGCGTCCGGCTCGGGCCCACCGGGTGGTGTAAC ACCGACCT GTGCTCAGCGCCGCACAGCTACGTCTGCGAGCTGCAGCCCGGAGGCCCAGTGCAGGATGC CGAGAACC TCCTCGTGGGAGCGCCCAGTGGGGACCTGCAGGGACCCCTGACGCCTCTGGCACAGCAGG ACGGCCTC TCAGCCCCGCACGAGCCCGTGGAGGTCATGGTATTCCCGGGCCTGCGTCTGAGCCGTGAA GCCTTCCT CACCACGGCCGAATTTGGGACCCAGGAGCTCCGGCGGCCCGCCCAGCTGCGGCTGCAGGT GTACCGGC TCCTCAGCACAGCAGGGACCCCGGAGAACGGCAGCGAGCCTGAGAGCAGGTCCCCGGACA ACAGGACC CAGCTGGCCCCCGCGTGCATGCCAGGGGGACGCTGGTGCCCTGGAGCCAACATCTGCTTG CCGCTGGA CGCCTCCTGCCACCCCCAGGCCTGCGCCAATGGCTGCACGTCAGGGCCAGGGCTACCCGG GGCCCCCT ATGCGCTATGGAGAGAGTTCCTCTTCTCCGTTCCCGCGGGGCCCCCCGCGCAGTACTCGG TCACCCTC CACGGCCAGGATGTCCTCATGCTCCCTGGTGACCTCGTTGGCTTGCAGCACGACGCTGGC CCTGGCGC CCTCCTGCACTGCTCGCCGGCTCCCGGCCACCCTGGTCCCCAGGCCCCGTACCTCTCCGC CAACGCCT CGTCATGGCTGCCCCACTTGCCAGCCCAGCTGGAGGGCACTTGGGCCTGCCCTGCCTGTG CCCTGCGG CTGCTTGCAGCCACGGAACAGCTCACCGTGCTGCTGGGCTTGAGGCCCAACCCTGGACTG CGGCTGCC TGGGCGCTATGAGGTCCGGGCAGAGGTGGGCAATGGCGTGTCCAGGCACAACCTCTCCTG CAGCTTTG ACGTGGTCTCCCCAGTGGCTGGGCTGCGGGTCATCTACCCTGCCCCCCGCGACGGCCGCC TCTACGTG CCCACCAACGGCTCAGCCTTGGTGCTCCAGGTGGACTCTGGTGCCAACGCCACGGCCACG GCTCGCTG GCCTGGGGGCAGTGTCAGCGCCCGCTTTGAGAATGTCTGCCCTGCCCTGGTGGCCACCTT CGTGCCCG GCTGCCCCTGGGAGACCAACGATACCCTGTTCTCAGTGGTAGCACTGCCGTGGCTCAGTG AGGGGGAG CACGTGGTGGACGTGGTGGTGGAAAACAGCGCCAGCCGGGCCAACCTCAGCCTGCGGGTG ACGGCGGA GGAGCCCATCTGTGGCCTCCGCGCCACGCCCAGCCCCGAGGCCCGTGTACTGCAGGGAGT CCTAGTGA GGTACAGCCCCGTGGTGGAGGCCGGCTCGGACATGGTCTTCCGGTGGACCATCAACGACA AGCAGTCC CTGACCTTCCAGAACGTGGTCTTCAATGTCATTTATCAGAGCGCGGCGGTCTTCAAGCTC TCACTGAC GGCCTCCAACCACGTGAGCAACGTCACCGTGAACTACAACGTAACCGTGGAGCGGATGAA CAGGATGC AGGGTCTGCAGGTCTCCACAGTGCCGGCCGTGCTGTCCCCCAATGCCACGCTAGCACTGA CGGCGGGC GTGCTGGTGGACTCGGCCGTGGAGGTGGCCTTCCTGTGGACCTTTGGGGATGGGGAGCAG GCCCTCCA CCAGTTCCAGCCTCCGTACAACGAGTCCTTCCCGGTTCCAGACCCCTCGGTGGCCCAGGT GCTGGTGG AGCACAATGTCATGCACACCTACGCTGCCCCAGGTGAGTACCTCCTGACCGTGCTGGCAT CTAATGCC TTCGAGAACCTGACGCAGCAGGTGCCTGTGAGCGTGCGCGCCTCCCTGCCCTCCGTGGCT GTGGGTGT GAGTGACGGCGTCCTGGTGGCCGGCCGGCCCGTCACCTTCTACCCGCACCCGCTGCCCTC GCCTGGGG GTGTTCTTTACACGTGGGACTTCGGGGACGGCTCCCCTGTCCTGACCCAGAGCCAGCCGG CTGCCAAC CACACCTATGCCTCGAGGGGCACCTACCACGTGCGCCTGGAGGTCAACAACACGGTGAGC GGTGCGGC GGCCCAGGCGGATGTGCGCGTCTTTGAGGAGCTCCGCGGACTCAGCGTGGACATGAGCCT GGCCGTGG AGCAGGGCGCCCCCGTGGTGGTCAGCGCCGCGGTGCAGACGGGCGACAACATCACGTGGA CCTTCGAC ATGGGGGACGGCACCGTGCTGTCGGGCCCGGAGGCAACAGTGGAGCATGTGTACCTGCGG GCACAGAA CTGCACAGTGACCGTGGGTGCGGCCAGCCCCGCCGGCCACCTGGCCCGGAGCCTGCACGT GCTGGTCT TCGTCCTGGAGGTGCTGCGCGTTGAACCCGCCGCCTGCATCCCCACGCAGCCTGACGCGC GGCTCACG GCCTACGTCACCGGGAACCCGGCCCACTACCTCTTCGACTGGACCTTCGGGGATGGCTCC TCCAACAC GACCGTGCGGGGGTGCCCGACGGTGACACACAACTTCACGCGGAGCGGCACGTTCCCCCT GGCGCTGG TGCTGTCCAGCCGCGTGAACAGGGCGCATTACTTCACCAGCATCTGCGTGGAGCCAGAGG TGGGCAAC GTCACCCTGCAGCCAGAGAGGCAGTTTGTGCAGCTCGGGGACGAGGCCTGGCTGGTGGCA TGTGCCTG GCCCCCGTTCCCCTACCGCTACACCTGGGACTTTGGCACCGAGGAAGCCGCCCCCACCCG TGCCAGGG GCCCTGAGGTGACGTTCATCTACCGAGACCCAGGCTCCTATCTTGTGACAGTCACCGCGT CCAACAAC ATCTCTGCTGCCAATGACTCAGCCCTGGTGGAGGTGCAGGAGCCCGTGCTGGTCACCAGC ATCAAGGT CAATGGCTCCCTTGGGCTGGAGCTGCAGCAGCCGTACCTGTTCTCTGCTGTGGGCCGTGG GCGCCCCG CCAGCTACCTGTGGGATCTGGGGGACGGTGGGTGGCTCGAGGGTCCGGAGGTCACCCACG CTTACAAC AGCACAGGTGACTTCACCGTTAGGGTGGCCGGCTGGAATGAGGTGAGCCGCAGCGAGGCC TGGCTCAA TGTGACGGTGAAGCGGCGCGTGCGGGGGCTCGTCGTCAATGCAAGCCGCACGGTGGTGCC CCTGAATG GGAGCGTGAGCTTCAGCACGTCGCTGGAGGCCGGCAGTGATGTGCGCTATTCCTGGGTGC TCTGTGAC CGCTGCACGCCCATCCCTGGGGGTCCTACCATCTCTTACACCTTCCGCTCCGTGGGCACC TTCAATAT CATCGTCACGGCTGAGAACGAGGTGGGCTCCGCCCAGGACAGCATCTTCGTCTATGTCCT GCAGCTCA TAGAGGGGCTGCAGGTGGTGGGCGGTGGCCGCTACTTCCCCACCAACCACACGGTACAGC TGCAGGCC GTGGTTAGGGATGGCACCAACGTCTCCTACAGCTGGACTGCCTGGAGGGACAGGGGCCCG GCCCTGGC CGGCAGCGGCAAAGGCTTCTCGCTCACCGTGCTCGAGGCCGGCACCTACCATGTGCAGCT GCGGGCCA CCAACATGCTGGGCAGCGCCTGGGCCGACTGCACCATGGACTTCGTGGAGCCTGTGGGGT GGCTGATG GTGGCCGCCTCCCCGAACCCAGCTGCCGTCAACACAAGCGTCACCCTCAGTGCCGAGCTG GCTGGTGG CAGTGGTGTCGTATACACTTGGTCCTTGGAGGAGGGGCTGAGCTGGGAGACCTCCGAGCC ATTTACCA CCCATAGCTTCCCCACACCCGGCCTGCACTTGGTCACCATGACGGCAGGGAACCCGCTGG GCTCAGCC AACGCCACCGTGGAAGTGGATGTGCAGGTGCCTGTGAGTGGCCTCAGCATCAGGGCCAGC GAGCCCGG AGGCAGCTTCGTGGCGGCCGGGTCCTCTGTGCCCTTTTGGGGGCAGCTGGCCACGGGCAC CAATGTGA GCTGGTGCTGGGCTGTGCCCGGCGGCAGCAGCAAGCGTGGCCCTCATGTCACCATGGTCT TCCCGGAT GCTGGCACCTTCTCCATCCGGCTCAATGCCTCCAACGCAGTCAGCTGGGTCTCAGCCACG TACAACCT CACGGCGGAGGAGCCCATCGTGGGCCTGGTGCTGTGGGCCAGCAGCAAGGTGGTGGCGCC CGGGCAGC TGGTCCATTTTCAGATCCTGCTGGCTGCCGGCTCAGCTGTCACCTTCCGCCTGCAGGTCG GCGGGGCC AACCCCGAGGTGCTCCCCGGGCCCCGTTTCTCCCACAGCTTCCCCCGCGTCGGAGACCAC GTGGTGAG CGTGCGGGGCAAAAACCACGTGAGCTGGGCCCAGGCGCAGGTGCGCATCGTGGTGCTGGA GGCCGTGA GTGGGCTGCAGGTGCCCAACTGCTGCGAGCCTGGCATCGCCACGGGCACTGAGAGGAACT TCACAGCC CGCGTGCAGCGCGGCTCTCGGGTCGCCTACGCCTGGTACTTCTCGCTGCAGAAGGTCCAG GGCGACTC GCTGGTCATCCTGTCGGGCCGCGACGTCACCTACACGCCCGTGGCCGCGGGGCTGTTGGA GATCCAGG TGCGCGCCTTCAACGCCCTGGGCAGTGAGAACCGCACGCTGGTGCTGGAGGTTCAGGACG CCGTCCAG TATGTGGCCCTGCAGAGCGGCCCCTGCTTCACCAACCGCTCGGCGCAGTTTGAGGCCGCC ACCAGCCC CAGCCCCCGGCGTGTGGCCTACCACTGGGACTTTGGGGATGGGTCGCCAGGGCAGGACAC AGATGAGC CCAGGGCCGAGCACTCCTACCTGAGGCCTGGGGACTACCGCGTGCAGGTGAACGCCTCCA ACCTGGTG AGCTTCTTCGTGGCGCAGGCCACGGTGACCGTCCAGGTGCTGGCCTGCCGGGAGCCGGAG GTGGACGT GGTCCTGCCCCTGCAGGTGCTGATGCGGCGATCACAGCGCAACTACTTGGAGGCCCACGT TGACCTGC GCGACTGCGTCACCTACCAGACTGAGTACCGCTGGGAGGTGTATCGCACCGCCAGCTGCC AGCGGCCG GGGCGCCCAGCGCGTGTGGCCCTGCCCGGCGTGGACGTGAGCCGGCCTCGGCTGGTGCTG CCGCGGCT GGCGCTGCCTGTGGGGCACTACTGCTTTGTGTTTGTCGTGTCATTTGGGGACACGCCACT GACACAGA GCATCCAGGCCAATGTGACGGTGGCCCCCGAGCGCCTGGTGCCCATCATTGAGGGTGGCT CATACCGC GTGTGGTCAGACACACGGGACCTGGTGCTGGATGGGAGCGAGTCCTACGACCCCAACCTG GAGGACGG CGACCAGACGCCGCTCAGTTTCCACTGGGCCTGTGTGGCTTCGACACAGAGGGAGGCTGG CGGGTGTG CGCTGAACTTTGGGCCCCGCGGGAGCAGCACGGTCACCATTCCACGGGAGCGGCTGGCGG CTGGCGTG GAGTACACCTTCAGCCTGACCGTGTGGAAGGCCGGCCGCAAGGAGGAGGCCACCAACCAG ACGGTGCT GATCCGGAGTGGCCGGGTGCCCATTGTGTCCTTGGAGTGTGTGTCCTGCAAGGCACAGGC CGTGTACG AAGTGAGCCGCAGCTCCTACGTGTACTTGGAGGGCCGCTGCCTCAATTGCAGCAGCGGCT CCAAGCGA GGGCGGTGGGCTGCACGTACGTTCAGCAACAAGACGCTGGTGCTGGATGAGACCACCACA TCCACGGG CAGTGCAGGCATGCGACTGGTGCTGCGGCGGGGCGTGCTGCGGGACGGCGAGGGATACAC CTTCACGC TCACGGTGCTGGGCCGCTCTGGCGAGGAGGAGGGCTGCGCCTCCATCCGCCTGTCCCCCA ACCGCCCG CCGCTGGGGGGCTCTTGCCGCCTCTTCCCACTGGGCGCTGTGCACGCCCTCACCACCAAG GTGCACTT CGAATGCACGGGCTGGCATGACGCGGAGGATGCTGGCGCCCCGCTGGTGTACGCCCTGCT GCTGCGGC GCTGTCGCCAGGGCCACTGCGAGGAGTTCTGTGTCTACAAGGGCAGCCTCTCCAGCTACG GAGCCGTG CTGCCCCCGGGTTTCAGGCCACACTTCGAGGTGGGCCTGGCCGTGGTGGTGCAGGACCAG CTGGGAGC CGCTGTGGTCGCCCTCAACAGGTCTTTGGCCATCACCCTCCCAGAGCCCAACGGCAGCGC AACGGGGC TCACAGTCTGGCTGCACGGGCTCACCGCTAGTGTGCTCCCAGGGCTGCTGCGGCAGGCCG ATCCCCAG CACGTCATCGAGTACTCGTTGGCCCTGGTCACCGTGCTGAACGAGTACGAGCGGGCCCTG GACGTGGC GGCAGAGCCCAAGCACGAGCGGCAGCACCGAGCCCAGATACGCAAGAACATCACGGAGAC TCTGGTGT CCCTGAGGGTCCACACTGTGGATGACATCCAGCAGATCGCTGCTGCGCTGGCCCAGTGCA TGGGGCCC AGCAGGGAGCTCGTATGCCGCTCGTGCCTGAAGCAGACGCTGCACAAGCTGGAGGCCATG ATGCTCAT CCTGCAGGCAGAGACCACCGCGGGCACCGTGACGCCCACCGCCATCGGAGACAGCATCCT CAACATCA CAGGAGACCTCATCCACCTGGCCAGCTCGGACGTGCGGGCACCACAGCCCTCAGAGCTGG GAGCCGAG TCACCATCTCGGATGGTGGCGTCCCAGGCCTACAACCTGACCTCTGCCCTCATGCGCATC CTCATGCG CTCCCGCGTGCTCAACGAGGAGCCCCTGACGCTGGCGGGCGAGGAGATCGTGGCCCAGGG CAAGCGCT CGGACCCGCGGAGCCTGCTGTGCTATGGCGGCGCCCCAGGGCCTGGCTGCCACTTCTCCA TCCCCGAG GCTTTCAGCGGGGCCCTGGCCAACCTCAGTGACGTGGTGCAGCTCATCTTTCTGGTGGAC TCCAATCC CTTTCCCTTTGGCTATATCAGCAACTACACCGTCTCCACCAAGGTGGCCTCGATGGCATT CCAGACAC AGGCCGGCGCCCAGATCCCCATCGAGCGGCTGGCCTCAGAGCGCGCCATCACCGTGAAGG TGCCCAAC AACTCGGACTGGGCTGCCCGGGGCCACCGCAGCTCCGCCAACTCCGCCAACTCCGTTGTG GTCCAGCC CCAGGCCTCCGTCGGTGCTGTGGTCACCCTGGACAGCAGCAACCCTGCGGCCGGGCTGCA TCTGCAGC TCAACTATACGCTGCTGGACGGCCACTACCTGTCTGAGGAACCTGAGCCCTACCTGGCAG TCTACCTA CACTCGGAGCCCCGGCCCAATGAGCACAACTGCTCGGCTAGCAGGAGGATCCGCCCAGAG TCACTCCA GGGTGCTGACCACCGGCCCTACACCTTCTTCATTTCCCCGGGGAGCAGAGACCCAGCGGG GAGTTACC ATCTGAACCTCTCCAGCCACTTCCGCTGGTCGGCGCTGCAGGTGTCCGTGGGCCTGTACA CGTCCCTG TGCCAGTACTTCAGCGAGGAGGACATGGTGTGGCGGACAGAGGGGCTGCTGCCCCTGGAG GAGACCTC GCCCCGCCAGGCCGTCTGCCTCACCCGCCACCTCACCGCCTTCGGCGCCAGCCTCTTCGT GCCCCCAA GCCATGTCCGCTTTGTGTTTCCTGAGCCGACAGCGGATGTAAACTACATCGTCATGCTGA CATGTGCT GTGTGCCTGGTGACCTACATGGTCATGGCCGCCATCCTGCACAAGCTGGACCAGTTGGAT GCCAGCCG GGGCCGCGCCATCCCTTTCTGTGGGCAGCGGGGCCGCTTCAAGTACGAGATCCTCGTCAA GACAGGCT GGGGCCGGGGCTCAGGTACCACGGCCCACGTGGGCATCATGCTGTATGGGGTGGACAGCC GGAGCGGC CACCGGCACCTGGACGGCGACAGAGCCTTCCACCGCAACAGCCTGGACATCTTCCGGATC GCCACCCC GCACAGCCTGGGTAGCGTGTGGAAGATCCGAGTGTGGCACGACAACAAAGGGCTCAGCCC TGCCTGGT TCCTGCAGCACGTCATCGTCAGGGACCTGCAGACGGCACGCAGCGCCTTCTTCCTGGTCA ATGACTGG CTTTCGGTGGAGACGGAGGCCAACGGGGGCCTGGTGGAGAAGGAGGTGCTGGCCGCGAGC GACGCAGC CCTTTTGCGCTTCCGGCGCCTGCTGGTGGCTGAGCTGCAGCGTGGCTTCTTTGACAAGCA CATCTGGC TCTCCATATGGGACCGGCCGCCTCGTAGCCGTTTCACTCGCATCCAGAGGGCCACCTGCT GCGTTCTC CTCATCTGCCTCTTCCTGGGCGCCAACGCCGTGTGGTACGGGGCTGTTGGCGACTCTGCC TACAGCAC GGGGCATGTGTCCAGGCTGAGCCCGCTGAGCGTCGACACAGTCGCTGTTGGCCTGGTGTC CAGCGTGG TTGTCTATCCCGTCTACCTGGCCATCCTTTTTCTCTTCCGGATGTCCCGGAGCAAGGTGG CTGGGAGC CCGAGCCCCACACCTGCCGGGCAGCAGGTGCTGGACATCGACAGCTGCCTGGACTCGTCC GTGCTGGA CAGCTCCTTCCTCACGTTCTCAGGCCTCCACGCTGAGCAGGCCTTTGTTGGACAGATGAA GAGTGACT TGTTTCTGGATGATTCTAAGAGTCTGGTGTGCTGGCCCTCCGGCGAGGGAACGCTCAGTT GGCCGGAC CTGCTCAGTGACCCGTCCATTGTGGGTAGCAATCTGCGGCAGCTGGCACGGGGCCAGGCG GGCCATGG GCTGGGCCCAGAGGAGGACGGCTTCTCCCTGGCCAGCCCCTACTCGCCTGCCAAATCCTT CTCAGCAT CAGATGAAGACCTGATCCAGCAGGTCCTTGCCGAGGGGGTCAGCAGCCCAGCCCCTACCC AAGACACC CACATGGAAACGGACCTGCTCAGCAGCCTGTCCAGCACTCCTGGGGAGAAGACAGAGACG CTGGCGCT GCAGAGGCTGGGGGAGCTGGGGCCACCCAGCCCAGGCCTGAACTGGGAACAGCCCCAGGC AGCGAGGC TGTCCAGGACAGGACTGGTGGAGGGTCTGCGGAAGCGCCTGCTGCCGGCCTGGTGTGCCT CCCTGGCC CACGGGCTCAGCCTGCTCCTGGTGGCTGTGGCTGTGGCTGTCTCAGGGTGGGTGGGTGCG AGCTTCCC CCCGGGCGTGAGTGTTGCGTGGCTCCTGTCCAGCAGCGCCAGCTTCCTGGCCTCATTCCT CGGCTGGG AGCCACTGAAGGTCTTGCTGGAAGCCCTGTACTTCTCACTGGTGGCCAAGCGGCTGCACC CGGATGAA GATGACACCCTGGTAGAGAGCCCGGCTGTGACGCCTGTGAGCGCACGTGTGCCCCGCGTA CGGCCACC CCACGGCTTTGCACTCTTCCTGGCCAAGGAAGAAGCCCGCAAGGTCAAGAGGCTACATGG CATGCTGC GGAGCCTCCTGGTGTACATGCTTTTTCTGCTGGTGACCCTGCTGGCCAGCTATGGGGATG CCTCATGC CATGGGCACGCCTACCGTCTGCAAAGCGCCATCAAGCAGGAGCTGCACAGCCGGGCCTTC CTGGCCAT CACGCGGTCTGAGGAGCTCTGGCCATGGATGGCCCACGTGCTGCTGCCCTACGTCCACGG GAACCAGT CCAGCCCAGAGCTGGGGCCCCCACGGCTGCGGCAGGTGCGGCTGCAGGAAGCACTCTACC CAGACCCT CCCGGCCCCAGGGTCCACACGTGCTCGGCCGCAGGAGGCTTCAGCACCAGCGATTACGAC GTTGGCTG GGAGAGTCCTCACAATGGCTCGGGGACGTGGGCCTATTCAGCGCCGGATCTGCTGGGGGC ATGGTCCT GGGGCTCCTGTGCCGTGTATGACAGCGGGGGCTACGTGCAGGAGCTGGGCCTGAGCCTGG AGGAGAGC CGCGACCGGCTGCGCTTCCTGCAGCTGCACAACTGGCTGGACAACAGGAGCCGCGCTGTG TTCCTGGA GCTCACGCGCTACAGCCCGGCCGTGGGGCTGCACGCCGCCGTCACGCTGCGCCTCGAGTT CCCGGCGG CCGGCCGCGCCCTGGCCGCCCTCAGCGTCCGCCCCTTTGCGCTGCGCCGCCTCAGCGCGG GCCTCTCG CTGCCTCTGCTCACCTCGGTGTGCCTGCTGCTGTTCGCCGTGCACTTCGCCGTGGCCGAG GCCCGTAC TTGGCACAGGGAAGGGCGCTGGCGCGTGCTGCGGCTCGGAGCCTGGGCGCGGTGGCTGCT GGTGGCGC TGACGGCGGCCACGGCACTGGTACGCCTCGCCCAGCTGGGTGCCGCTGACCGCCAGTGGA CCCGTTTC GTGCGCGGCCGCCCGCGCCGCTTCACTAGCTTCGACCAGGTGGCGCAGCTGAGCTCCGCA GCCCGTGG CCTGGCGGCCTCGCTGCTCTTCCTGCTTTTGGTCAAGGCTGCCCAGCAGCTACGCTTCGT GCGCCAGT GGTCCGTCTTTGGCAAGACATTATGCCGAGCTCTGCCAGAGCTCCTGGGGGTCACCTTGG GCCTGGTG GTGCTCGGGGTAGCCTACGCCCAGCTGGCCATCCTGCTCGTGTCTTCCTGTGTGGACTCC CTCTGGAG CGTGGCCCAGGCCCTGTTGGTGCTGTGCCCTGGGACTGGGCTCTCTACCCTGTGTCCTGC CGAGTCCT GGCACCTGTCACCCCTGCTGTGTGTGGGGCTCTGGGCACTGCGGCTGTGGGGCGCCCTAC GGCTGGGG GCTGTTATTCTCCGCTGGCGCTACCACGCCTTGCGTGGAGAGCTGTACCGGCCGGCCTGG GAGCCCCA GGACTACGAGATGGTGGAGTTGTTCCTGCGCAGGCTGCGCCTCTGGATGGGCCTCAGCAA GGTCAAGG AGTTCCGCCACAAAGTCCGCTTTGAAGGGATGGAGCCGCTGCCCTCTCGCTCCTCCAGGG GCTCCAAG GTATCCCCGGATGTGCCCCCACCCAGCGCTGGCTCCGATGCCTCGCACCCCTCCACCTCC TCCAGCCA GCTGGATGGGCTGAGCGTGAGCCTGGGCCGGCTGGGGACAAGGTGTGAGCCTGAGCCCTC CCGCCTCC AAGCCGTGTTCGAGGCCCTGCTCACCCAGTTTGACCGACTCAACCAGGCCACAGAGGACG TCTACCAG CTGGAGCAGCAGCTGCACAGCCTGCAAGGCCGCAGGAGCAGCCGGGCGCCCGCCGGATCT TCCCGTGG CCCATCCCCGGGCCTGCGGCCAGCACTGCCCAGCCGCCTTGCCCGGGCCAGTCGGGGTGT GGACCTGG CCACTGGCCCCAGCAGGACACCCCTTCGGGCCAAGAACAAGGTCCACCCCAGCAGCACTT AGTCCTCC TTCCTGGCGGGGGTGGGCCGTGGAGTCGGAGTGGACACCGCTCAGTATTACTTTCTGCCG CTGTCAAG GCCGAGGGCCAGGCAGAATGGCTGCACGTAGGTTCCCCAGAGAGCAGGCAGGGGCATCTG TCTGTCTG TGGGCTTCAGCACTTTAAAGAGGCTGTGTGGCCAACCAGGACCCAGGGTCCCCTCCCCAG CTCCCTTG GGAAGGACACAGCAGTATTGGACGGTTTCTAGCCTCTGAGATGCTAATTTATTTCCCCGA GTCCTCAG GTACAGCGGGCTGTGCCCGGCCCCACCCCCTGGGCAGATGTCCCCCACTGCTAAGGCTGC TGGCTTCA GGGAGGGTTAGCCTGCACCGCCGCCACCCTGCCCCTAAGTTATTACCTCTCCAGTTCCTA CCGTACTC CCTGCACCGTCTCACTGTGTGTCTCGTGTCAGTAATTTATATGGTGTTAAAATGTGTATA TTTTTGTA TGTCACTATTTTCACTAGGGCTGAGGGGCCTGCGCCCAGAGCTGGCCTCCCCCAACACCT GCTGCGCT TGGTAGGTGTGGTGGCGTTATGGCAGCCCGGCTGCTGCTTGGATGCGAGCTTGGCCTTGG GCCGGTGC TGGGGGCACAGCTGTCTGCCAGGCACTCTCATCACCCCAGAGGCCTTGTCATCCTCCCTT GCCCCAGG CCAGGTAGCAAGAGAGCAGCGCCCAGGCCTGCTGGCATCAGGTCTGGGCAAGTAGCAGGA CTAGGCAT GTCAGAGGACCCCAGGGTGGTTAGAGGAAAAGACTCCTCCTGGGGGCTGGCTCCCAGGGT GGAGGAAG GTGACTGTGTGTGTGTGTGTGTGCGCGCGCGCACGCGCGAGTGTGCTGTATGGCCCAGGC AGCCTCAA GGCCCTCGGAGCTGGCTGTGCCTGCTTCTGTGTACCACTTCTGTGGGCATGGCCGCTTCT AGAACGGG TGGCATCCCTGTGACCCCTCCCCAGTGCCTCTCCTGGCCCTGGAAGTTGCCACTCCAGTG CCCACCAG CCTTGTCCTAATAAAATTAAGTTGCATCATTTTGTCTGACTAGGTGTCCTTCTATAATAT TATGGGGT GGAGGGGGGTGGTATGGAGCAAGGGGCAAGTTGGGAAGACAACCTGTAGGGCCTGCGGGG TCTATTGG GAACCAAGCTGGAGTGCAGTGGCACAATCTTGGCTCACTGCAATCTCCGCCTCCTGGGTT CAAGCGAT TCTCCTGCCTCAGCCTCCCGAGTTGTTGGGATTCCAGGCATGCATGACCAGGCTCAGCTA ATTTTTGT TTTTTTGGTAGAGACGGGGTTTCACCATATTGGCCAGGCTGGTCTCCAACTCCTAATCTC AGGTGATC TACCCACCTTGGCCTCCCAAATTGCTGGGATTACAGGCGTGAACCACTGCTCCCTTCCCT GTCCTTTA ACTATAACGGTCCTAAGGTAGCGAAGTCGACCGAATCGTTGTCCCTTGTCACAGCCATTG AGAATTTT GGCAGGGAGCATGTTCTTAGAGCATTTTTAGGCTCTGCGGGACATAACAGCTCTGCCTCA GAGCACAT GCCTTTCTCAGCTCCTGAAAGCCACTGATCAAATTGGAACATTTTGTACCTTAGGGATGA GGATATCA ACTCTCCCAGCCACTTAGAGGGATAAATGTGATGATGCATTCAATTGTGACTACATCTGA TCCCAACT GTTGCTTCAGCTGCTCTCCTATAGCACATGGCGGGAGGCGTGCATCCCAGTAGCTACCTC CCCACTTT TGGGGAGATGTGGTTCCATCCATGAAACCTGGGTACCCGCCTACCAGGTCCTGGCCTATC AGGTGGCA GGGTCTGGTCAAAGAAGGGCATGTGTGGTCTTCAGCAAGGGAGACAGGACGGTGGTGCAG AGCGTCTA GACCCTCAGGGCAAGTCTCCCCCACACCTGCTCCCGGGGCAGTTGTCTTTGTGACCTCCC ATCCCCCT CTGTTTCATCCTCTATAAAATGAGGGGCTGAGCCCCAAAATAACAGGCTTCTTTGCCATG ATGCAAAA CTGCTGAATCTTTCTTTCTGACACACAAGGCATCGAGCAGCCTCTGAAAGAACCAAAGCC ACTAGCAG GCTTCCTGACTTGGGTTTGTAGGTACTGAATACTCCCTTGAAAAATAAAAACATAGAGGC ACTTTTCT CCTGGCTGTTTATTACAGAACGAAGAAAAAACACACTGGCTTGAAACAGACGCCAGATTT CAAATGTA GAGGTGAAATACGAGGTGGCAATTAAAATGTGATTACAGAAAGTCTGGACACTGAGAAAA GTTTACAG GACAGTGGGTGTGGGTTTTCTATAACAGACACTTAAATATACATGACGATAATTGCAGAT AGAAACCA TCAAAGACAAACCCCAAATCAACTAATAATGTTTACAGATGTTCCCCCCCAAACCACAGA GCCTTACA TCAAAACAAATACTGAAAGGCTTTAAACCAGGAACAGCTCGCCTTAACCCCACGAGGGTG CACACAAG CTGGGCTTTTTCTCTCGGTCTGAATGGTAAAGGGAGGAGGATACTCTAGCTCCTCCAGGT GGATTGCT GAGACAGGGCTCGGCTCACACACTGTCTCTGCGCCTCTCCCAAATCTGGAGAACTCTCCC AGCCTCCT GGTAAAGTGTCTCTGTGGGGCACTTAACGATAAAACAGCTTCTGCTGTAAAGCTCATTAG GAAAGAGC TAGCGGAGACTGAAAGGTTCGCAAAAGAGATTAAGAATCACACAAGGCAATAGGATTTTT AGTGAACA TAGAAATAAATGGCCAAGTGGTTTTCTATTTGGCATTTGTCAACTTGCACAACAACTCTT GGTCATAT CCACATTGCTCATTGCATTAAAACCATAAGCGACTCAGCCACCTAGCTTAACAAGGTATC ACTGGAGC AAACAACACGGTCTGCATATTTGTAACATTGTATAATAAACACAAAACAATGCATAGTAA ACACAACT CTACTGAAACAAAAGCCGTCGCTTTATTTACAAAGTCACAAAATGAAGTATAAATACTTC TGTCATTA ATGTTTAGGAAAACCATTTACAAAATTTTCAAATATGTACACGTAGCTTGAAAAATCACC AGCTTTCC ATTTTGTCACAGGTAGAGAGAGGGATAAGCATGGGCTGACAACACCACTCAAATTGTAAC GGGAGACA ACTGCGGGTATGGATCGACACCACTTCCTAGAGTGATGTCACCATGGGGGTTTCTATGGG CATCCTGC TCAGATTTAAAGTGCCCCAGCATCCTGGGTGACTTGCCCAGAATTCTGGGCTGTGGCATT TTGAGCAG CAGCATGCTGTTCCAAAATGTCGTCGATCAGCCTCAAGTTGCACACCCAGTCTTCATCTG GGCTCACA CAGGAGCCTTTCAAGAGAGCTTCAATGAAATCTACCTCATTGCAGTCAGGTGACGAAATC AGATCATT TAGTGGGGGTTGGGGCTGGCGCAAAAAGTCGGCAGGTGGCAGCTCAGGGGGAATATCCGT TCTGTCGA ACGGACCTGGGAACTGGCTGGCAGCAACGGCAGAAGCAGCAGCAGCGGTGGCAGCAGCAG CCACATAG CTTGGTGGCTCGATGCCCTGTATGGGGCTCAGGGGACTAAAGCTGGCCATACCCTGCTGG AGGAACTT GGTGGTGTTTGCTACAGGCACCGGGCCCTGTACCGGGCTCTGCCTGAGGCTCTGGCTGCC CAGCAGGC TGAAGCTGGGGTTGTTGGCCAGGGGCACTTGTGTTCCCATCGCAGCGGGCACTTGTGCCT CCCAATCA GATGGCCTCTGAAGGCAGGCCTGGCCAGAAGGTGAGTGCTGCTGAACGCTATTATCCACT TGGCTGAG GGGTGTTTTCCCCGAAACTGCTGTGGTCACAGCTGCTGCCGCTGTGACCCATGCAGCATT GTTGAACG CAGTGGGCATTCTTGGCACACTAGGCCGTCTGAGCTGGTGGGGACTCAAGGACTGGGTGC CCAGGGAG CTGGGACAGAACCCAGGCAGGGGCACTTCTGGTGGGGTGGCCTTGGGGCTCTGCATATGC TGGCAGAC AGAGTCAAGTCTGCCCAGGGGAGTCTGGCCTGAGTGTGAGAGGATGGGACACTGGGGGCT GGAGGTGA AAATTCCTTGCCGCTTCCCCAGAGTTGGTGAGATCACTCCCATGCCCTCGCAGCTCTGGT GCCTGGTG AGTGGGATCATTCCTGGACTCAGATTGTTCTGAAGAAGCCCAGTTCTGGGTGGCATCAAG TGCTTGCT AGATGGGGGGCTTGCCTTGATCCGGCTACACTTGGAGGTGACTTGTTCTTGGACGGCTAC ATACAGAA AGAGAGAAGTGGGGATGAGTTCCAAAGGCATCCTCGACTTCGGCTGTGGCCACCGGAGGG TAGCTCCT GGCCCAACACGGACTTCTCACCTCCCGCCCTTGGCTCTCTACTGAGCTCCCCCCTGCTCC CCAATTCC TCGCCATTCCCCTCATTTCTCTGCCCTCAGCCTGGACTGCAGTTCTTCTGGGAAGCTGCC CCAACTCC CTAGGTCTGTGCTCACCAAGAGCAGATCACACTGGACTGAAATGCCAGCTGATTTGTCTC TTCAAGAA AATTGGAAGCTCCTGGAGGTCAGGGTCCATGTCTGCTTTTACACTCAGTGCTCTGTATGC AGGCCTGG CACTGCCCACCCTTTGACAGGTGGTGCATATTTTGTAGAAGGAAGGAAGGGGCCAGGTGG GGTGGGCT GGGCTGGTGGCGGGAGCTAGCTCAGCCTCTTAGATTCTCTACCCGATGGATGTGACCTGG GACAGCAA GTGAGTGTGGTGAGTGAGTGCAGACGGTGCTTTGTTCCCCTCTTGTCTCATAGCCTAGAT GGCCTCTG AGCCCAGATCTGGGGCTCAGACAACATTTGTTCAACTGAACGGTAATGGGTTTCCTTTCT GAAGGCTG AAATCTGGGAGCTGACATTCTGGACTCCCTGAGTTCTGAAGAGCCTGGGGATGGAGAGAC ACGGAGCA GAAGATGGAAGGTAGAGTCCCAGGTGCCTAAGATGGGGAATACATCTCCCCTCATTGTCA TGAGAGTC CACTCTAGCTGATATCTACTGTGGCCAATATCTACCGGTACTTTTTTGGGGTGGACACTG AGTCATGC AGCAGTCTTATGGTTTACCCAAGGTCAGGTAGGGGAGACAGTGCAGTCAGAGCACAAGCC CAGTGTGT CTGACCCACCCAAGAATCCATGCTCGTATCTACAAAAATGATTTTTTCTCTTGTAATGGT GCCTAGGT TCTTTTATTATCATGGCATGTGTATGTTTTTCAACTAGGTTACAATCTGGCCTTATAAGG TTAACCTC CTGGAGGCCACCAGCCTTCCTGAAACTTGTCTGTGCTGTCCCTGCAACTGGAGTGTGCCT GATGTGGC ACTCCAGCCTGGACAAGTGGGACACAGACTCCGCTGTTATCAGGCCCAAAGATGTCTTCC ATAAGACC AGAAGAGCAATGGTGTAGAGGTGTCATGGGCTACAATAAAGATGCTGACCTCCTGTCTGA GGGCAAGC AGCCTCTTCTGGCCCTCAGACAAATGCTGAGTGTTCCCAAGACTACCCTCGGCCTGGTCC AATCTCAT CCCACTGGTGCGTAAGGGTTGCTGAACTCATGACTTCTTGGCTAGCCTGCAACCTCCACG GAGTGGGA ACTACATCAGGCATTTTGCTAACTGCTGTATCCTAGGCCAATAAATGTTGATCACATTTA TAGCTGCC ATGGTAGGGTGGGGACCCCTGCTATCTATCTGTGGAGGCTCTGGGAGCCCCTGACACAAA CTTTCTGA AGCAGAGCCTCCCCAACCCCTTTTCCATTCCCTATACCTGACAGATGGCCCAGGAACCCA TTAGAAAT GGAAGGTCACTGCAGCAGTATGTGAATGTGCGTGTGGGAGAAGGGCAGGATCAGAGCCCT GGGGGTGT GGCAGCCCCCAAGTGATTCTAATCCAGATCCTAGGGTTGTTTCCCTGTCCCATTGAAATA GCTGCTTT AAGGGGCCTGACTCAGGGAAATCAGTCTCTTGAATTAAGTGGTGATTTTGGAGTCATTTA GACCAGGC CTTCAATTGGGATCCACTAGTTCTAGAGCGGCCGGGCCCAGGGAACCCCGCAGGCGGGGG CGGCCAGT TTCCCGGGTTCGGCTTTACGTCACGCGAGGGCGGCAGGGAGGACGGAATGGCGGGGTTTG GGGTGGGT CCCTCCTCGGGGGAGCCCTGGGAAAAGAGGACTGCGTGTGGGAAGAGAAGGTGGAAATGG CGTTTTGG TTGACATGTGCCGCCTGCGAGCGTGCTGCGGGGAGGGGCCGAGGGCAGATTCGGGAATGA TGGCGCGG GGTGGGGGCGTGGGGGCTTTCTCGGGAGAGGCCCTTCCCTGGAAGTTTGGGGTGCGATGG TGAGGTTC TCGGGGCACCTCTGGAGGGGCCTCGGCACGGAAAGCGACCACCTGGGAGGGCGTGTGGGG ACCAGGTT TTGCCTTTAGTTTTGCACACACTGTAGTTCATCTTTATGGAGATGCTCATGGCCTCATTG AAGCCCCA CTACAGCTCTGGTAGCGGTAACCATGCGTATTTGACACACGAAGGAACTAGGGAAAAGGC ATTAGGTC ATTTCAAGCCGAAATTCACATGTGCTAGAATCCAGATTCCATGCTGACCGATGCCCCAGG ATATAGAA AATGAGAATCTGGTCCTTACCTTCAAGAACATTCTTAACCGTAATCAGCCTCTGGTATCT TAGCTCCA CCCTCACTGGTTTTTTCTTGTTTGTTGAACCGGCCAAGCTGCTGGCCTCCCTCCTCAACC GTTCTGAT CATGCTTGCTAAAATAGTCAAAACCCCGGCCAGTTAAATATGCTTTAGCCTGCTTTATTA TGATTATT TTTGTTGTTTTGGCAATGACCTGGTTACCTGTTGTTTCTCCCACTAAAACTTTTTAAGGG CAGGAATC ACCGCCGTAACTCTAGCACTTAGCACAGTACTTGGCTTGTAAGAGGTCCTCGATGATGGT TTGTTGAA TGAATACATTAAATAATTAACCACTTGAACCCTAAGAAAGAAGCGATTCTATTTCATATT AGGCATTG TAATGACTTAAGGTAAAGAGCAGTGCTATTAACGGAGTCTAACTGGGAATCCAGCTTGTT TGGGCTAT TTACTAGTTGTGTGGCTGTGGGCAACTTACTTCACCTCTCTGGGCTTAAGTCATTTTATG TATATCTG AGGTGCTGGCTACCTCTTGGAGTTATTGAGAGGATTATAAGACAGTCTATGTGAATCAGC AACCCTTG CATGGCCCCTGGCGGGGAACAGTAATAATAGCCATCATCATGTTTACTTACATAGTCCTA ATTAGTCT TCAAAACAGCCCTGTAGCAATGGTATGATTATTACCATTTTACAGATGAGGAACCTTTGA AGCCTCAG AGAGGCTAACAGACATACCCTAGGTCATACAGTTATTAAGAGAAGGAGCTCTGTCTCGAA CCTAGCTC TCTCTCTCTCGAGTAATACCAGTTAAAAAATAGGCTACAAATAGGTACTCAAAAAAATGG TAGTGGCT GTTGTTTTTATTCAGTTGCTGAGGAAAAAATGTTGATTTTTCATCTCTAAACATCAACTT ACTTAATT CTGCCAATTTCTTTTTTTTGAGACAGGGTCTCACTCTGTCACCTAGGATGGAGTGCAGTG GCACAATC ACTGCTCACTGCAGCCTCGACTTCCCGGGCTCGGGTGATTCTCCCCAGGCTCAGGGGATT CTCCCACT TCAGCCTCCCAAGTAGCTGGGACTACAGGTGCGCACCACCATCCCTGGCTAATATTTGTA CTTTATTT TATTTATTTATTTATTTATTTTTTGAGATGGAGTTTCGCTCTTGTTGCCCAAATGAATTG CCTCTTAT TTAATTTCGTCTGATGATACATTTTGTTTTTATTTTGTAAAAAATTATTTTTTTTCTTTT TGGAGACA GGGTCTTGCTCTGTTGCCCAGGCTGGTCACAAACTCCTGACCTCAAGCAATCCTCCTGCC TTAGCCTC CCAAAATGCTGGGATTACAGGCGTGACGACCTCGCCCGGCCTTGTATTATGATACATTTT GAACAACT ACAAGTAGACTTGGTATAATGAACCTGCACGTACCCATTGCCAAGTTCTGACAACTGTCT GTCTATAG CCAATTATGCATTTCTTAAATTAGAACCCCCCCAATATACCCAAATATATATATATGTGT GCATATAT ATAGTAAGTTGTAACAAAGTTGTGAATTCATACCTGAAGTATCTCAAGTGATGCAAGTTT TATGAATT TTTGTTTATGCCTTTTGGGAAGAGTTGTATTGACAAATTTTTTATGCTTAAAGTAAACCA TAAATCAA AAAAATAAAATCTAGGATGCAATAAAACAAAACAACTTCTTGACATAAGTATGGTATGTA AATCTGTT TTGATTGGAAATCAATTTGTTATATTGCCAGAATTCCTGTTTTAGAATACATCTCTGCTG ATCTGTCT GTATTCTTAGACTGCATATCTGGGATGAACTCTGGGCAGAATTCACATGGGCTTCCTTTG AAATAAAC AAGACTTTTCAAATTCTTAGTCGATCTGCAGAACCTGTAGCCAGGCACTGAACCATTTTG ATAGATGC AGTAATCGTTGCAAGTGTATATTTCAAGGGAGTTCTGGCTGGGTCCTAGTTTATGCTTGT GGCAGAAG CAGTGAGTAACTGGGAGGAAGTTGGTGAGTAAGCTTCAAGGAAGAAGTCATTTTTAGTAC TCTGGATC TTCCTGATTTTAAAGCACTACAAAATGGTGCATTTTCATTCTTGTCAAGTGATAACAGAT ATATTCTG ATGAGCCTGAAATGAATATATATTGTATCATTTTTATAATATCTAGCAAGGTTTGTATTT TCCTAGAA CTTGAACTAAATTTCAGTTCATAAAATTTATAAAATACTTAGTTGTTGTAAAATATTTTT GGAATGTT CACATAGGTGACACACAAATGTCCCATTTTCATTCTTTCTATAGTAAATATGTTCTGATA TGTGAAGG TTTAGCAGATGCATCAGCATTTAATCCTAGAGGATCTGGCATAATCTTTTCCCCCAAGAA TAGAAATT TTTTCTGCTTATGAAAGTAGTACATGTTTCTTTAAAAACAAATCAATATTGACTTCTGCC TGCTGTAT AGCACTATGCCTCCACCTGGCCATGACCAGGGGCATGTCCTGGTCCACCTACCTGAAAAT GTTTGCAA CCAGCCTCCTGGCCATGTGCACAGGGGCTGAAGTTGTCCCACAGGTATTACGGGCCAACC TGACAATA CATGAAGTTCCACCAAAGTCTGAGAACTCAGAACTGAGCTTTGGGGACTGAAAGACAGCA CAAACCTC AAATTTCTCAGCACTGGAAACCTCAAAATATAACTGAATTCCATAAATAAGATTTTAAGT CTTAAATA TGTATTTTTAAATGTATTAAAAGTCAAGCTGCTTGTATTTAAGCACCTAATACAATGCTT AGGTTGTA AAAGGAGATGCTCAATAGGTACTAACTGATATATTGAGATTTAATTATGGTTTGACCAAT ATTTATTG GAAACCGCCAAAGCTTAAATCATCAGCTTCTTGAATGTGATTTGAAAGGTAATTTAGTAT TGAATAGC ATGTGAGCTAGAGTATTTCATTCTTTCTGGTTTATTTCTTCAAATAGACTTTGAATATAA TGGTGAAT GGGTATTATAAATTAACTAATAAAAATGACATTGAAAATGAAAAAATATATATATTAAAG TGTAGAAA GTGACCAGGCGTGGTGGCTCACACCTGTAATCCAAGCACCTTGGGAGGCTGAGGCAGGAG GATCTCTT GATCCCAGGAGTTCAAGACCAGCCTGGGCAACATAGCGAGACTTCGTCTCTAAAAAAAAA AAAGAGAG AGAAAAAAATTTTTTTTATTTAAAAAAAGTGTAGAAAGTGTCAAGACCCCACTTCTTACC ATTATTTG GTATATTTCTCTATACCCACCCACCCTTCCTCCTTACTCCCTCCCTCCCTTCCCAATCTT TTTATCTT TTTGTATTCTGATTTTTTGTTTGTATATTTTGCTTTAATTTAATGTATCCTTTAAAAATT TCCCATAC ATTTTATATGTATATATAAAAACGCATGCTGCCAAAGATAATTTATAAGAAAGACCATTG AATTTTTT TAAAAGTGATATATATTCATTGAAAAAAATTTAGAATATATAGCAAAGCAATAAAGAACT AAATAAAA TTGCTGTAACTCCTCTTTCAAAGATAAGTGCTTTTATGATTTTGTTGTATTTTTTTCTGT ATATAGGT ACATATATAGTATTTATAAAGCTGTACTCATAGTACATTTTCACATCACAGGTACCATAT CAGTGTTA TTAAATATTTTGTATGCCAGGGGCTAGACATACCAAGACAACCAATATGTGGTTCTACTT AAATAATA TTAGAGTATCTTTTATGATGACACTTCATGAGTTGACTATAATAATCTTAGACTTCTAAG AGTTTGGG TTTTCAAAAGATCACTTAGCTTTTTTGGGTGATTTTTCCCCCTTACTGTGAGATGAGAGA GGCTGTTT GGATTTGGGATTGGGGTAGCGGGGACAGCAACTTTTCTTTTCTTTTTCTTTTTTATTTTG AGGTAGGG TATTGCTGTGTCACCCAGGCTGGAGTGCAGTGGTGTGATCTCGGCTCACTGCAACCTCCA CCTCCCGG GCTCAGGTGATCCTCCTGCTTCAGCCTCCCAGTAACTGGGACTACAGGCGCGTGCCACAT GCCTGGCT AATTTTGTATTTTTAGTAGAGATGGGGTTTCACCATGTTGGCCAGGCTGGTCTCTAACTC CTGACCTC AGGTGATACGCCCACCTGGGCCTCCCAAAATACTGGGATTACAGGCATGAGCCGCTGCAT CAGCCAGC AGTTTTTCTTGTGGTTTTTTTTGTTTGTTTTGTTTTGTTTTGTTTTTGAGATAGGGTCTT ACTCTGTT GTCCACGCTGGAGTGCTGTGGTATGATCGTAGCTCACTGCAGCCTCAAACTCCTGGGCTC AAGTGATT CCTTCTGCCTCCGCCTCCCGAGTAGCTGGGACTACAGGTATGCACCACCATACCTGGCAA ATTTTTAC AAAGTTTTTTGTAGGGACGGGGTCTTGCTACATTCCCCATGTCGGTCTTGAACTCCTGGC CTCAAGCA ACTCTCCTGTCTCAGCCTCCCAAAGCACTGGGATTACAAGTGTGAGCCACCACACCATGC CAGTTTTT CCTGTTCAGTGTGATATTTTATCTTGTTAGACTACAGTGTGTTAAAACTTGTTTTACTAA ATTTTCAA ACATACTCAAAAGTGGAGAGAATAGTATAATGAATACCCGTATGTTCATCACCCATGTTT AGAATATT ATTAAATATAAAGATTTTGCTGCGTTTGTCTTAGCTCTTTAAAATTTTTCTTTTTCTCTT TGTGACCT AAAGGAAATTCCATATCTTATCACTTTACTTCTACATTCTTGACTAAGATGACTAAGACA TATAGTTA CATGGTTTTTTGTTTTGTTTTTGTTTTTTAAAGACGAAATCTCGCTCTTGTCCCCCAGGC TGGAGTGC AATGGTGCCATCTCAGCTCAGTGCAACCTCTGCCTTCTGGGTACAAGCGATTCTCCTGCC TCAGCCTC CCAAGTAGCTGGGATTACAGGCTCCTGCCACCACGCCTGGCTAATTTTTGTATTTTTAGT AGAGACGG CGGGGGGAGGTTTCACCATGTTGACAAGGCTGGTCTGGAACTCCTGACCTCAGGTGATCC ACCCGCCT CGGCCTCCCAAAGTGCTGGGATTACAGGCGTGAGCCACCGCGCCCAGCCTGTTTTTTTGT TTGTGTGT TTTGTTTTTTTTGAGACAGAGTCTTGCTCTGTTTCCCAGGCTGGAGTGAAGTGGTGCCAT CTCAGCTC AGAGACAGAGTCTTGCTCTGTTTCCCAGGCTGGAGTGAAGTGGTGCCATCTTGGCTCACT GCAACCTT CACCTCCCAGGTTCAAGTGATTCTCCTGCCTCAGCCTCCCAAGTAGCTGGGACTACAGGC ATGTGTCA CCACACCCGGCTAATTTTTTTGTATTTTTAGTAGAGACGGGATTTCACCGTGTTGCCCAG GCTGGTCT CGAACTCCTGAGCTCAGGCAGTCTGCCTGCCTCAGCCTCCCAAAGTGCTGGGATTACACG TGTGAACC AACCCGCCCGGCCTGTTGTTTTCTTACATAATTCATTATCATACCTACAAAGTTAACAGT TACTAATA TCATCTTACACCTAAATTTCTCTGATAGACTAAGGTTATTTTTTAACATCTTAATCCAAT CAAATGTT TGTATCCTGTAATGCTCTCATTGAAACAGCTATATTTCTTTTTCAGATTAGTGATGATGA ACCAGGTT ATGACCTTGATTTATTTTGCATACCTAATCATTATGCTGAGGATTTGGAAAGGGTGTTTA TTCCTCAT GGACTAATTATGGACAGGTAAGTAAGATCTTAAAATGAGGTTTTTTACTTTTTCTTGTGT TAATTTCA AACATCAGCAGCTGTTCTGAGTACTTGCTATTTGAACATAAACTAGGCCAACTTATTAAA TAACTGAT GCTTTCTAAAATCTTCTTTATTAAAAATAAAAGAGGAGGGCCTTACTAATTACTTAGTAT CAGTTGTG GTATAGTGGGACTCTGTAGGGACCAGAACAAAGTAAACATTGAAGGGAGATGGAAGAAGG AACTCTAG CCAGAGTCTTGCATTTCTCAGTCCTAAACAGGGTAATGGACTGGGGCTGAATCACATGAA GGCAAGGT CAGATTTTTATTATTATGCACATCTAGCTTGAAAATTTTCTGTTAAGTCAATTACAGTGA AAAACCTT ACCTGGTATTGAATGCTTGCATTGTATGTCTGGCTATTCTGTGTTTTTATTTTAAAATTA TAATATCA AAATATTTGTGTTATAAAATATTCTAACTATGGAGGCCATAAACAAGAAGACTAAAGTTC TCTCCTTT CAGCCTTCTGTACACATTTCTTCTCAAGCACTGGCCTATGCATGTATACTATATGCAAAA GTACATAT ATACATTTATATTTTAACGTATGAGTATAGTTTTAAATGTTATTGGACACTTTTAATATT AGTGTGTC TAGAGCTATCTAATATATTTTAAAGGTTGCATAGCATTCTGTCTTATGGAGATACCATAA CTGATTTA ACCAGTCCACTATTGATAGACACTATTTTGTTCTTACCGACTGTACTAGAAGAAACATTC TTTTACAT GTTTGGTACTTGTTCAGCTTTATTCAAGTGGAATTTCTGGGTCAAGGGGAAAGAGTTTAT TGAATATT TTGGTATTGCCAAATTTTCCTCTAAGAAGTTGAATCATTTTATACTCCTGATGTTATATG AGAGTACC TTTCTCTTCACAATTTGTCTCTTTTTTTTTTTTTTTTGAGACAAGGTCTCTGTTGCCCAG GCTGGGGT GCAGTGCAGCAGAATGATCACAGTTCACTGCAGTCTCAACCTCCTGGGTTCAAGCGATCC TTCCACCT CAGCCTCCTGAGTAGCTGGGACTATAGGTGTGCGCCACCACTCCCAGCTAATATTTTTAT TTTGTAGA AACAGGGTTCGCCATGTTACCCAGCCTCCCAAAGTGCTGGGATTACAGGCATGAGCCACT GGCCCAGT TTCTACAGTCTCTCTTAATATTGTATATTATCCAGAAAATTTCATTTAATCAGAACCTGC CAGTCTGA TAGGTGAAAATGGTATCTTGTTTTTATTTGCATTTAAAAAAAATTATGATAGTGGTATGC TTGGTTTT TTTGAAGGTATCAAATTTTTTACCTTATGAAACATGAGGGCAAAGGATGTGATACGTGGA AGATTTAA AAAAAATTTTTAATGCATTTTTTTGAGACAAGGTCTTGCTCTATTGTCCAGGCTGGAGTG CAGTGGCA CAATCACAGTTCACTCCAGCCTCAACATCCTGCACTAAAGTGATTTTCCCACCTCACCTC TCAAGTAG CTGGGACTACAGGTACATGCTACCATGCCTGGCTAATTTTTTTTTTTTTGCAGGCATGGG GTCTCACT ATATTGCCCAGGTTGGTGTGGAAGTTTAATGACTAAGAGGTGTTTGTTATAAAGTTTAAT GTATGAAA CTTTCTATTAAATTCCTGATTTTATTTCTGTAGGACTGAACGTCTTGCTCGAGATGTGAT GAAGGAGA TGGGAGGCCATCACATTGTAGCCCTCTGTGTGCTCAAGGGGGGCTATAAATTCTTTGCTG ACCTGCTG GATTACATCAAAGCACTGAATAGAAATAGTGATAGATCCATTCCTATGACTGTAGATTTT ATCAGACT GAAGAGCTATTGTGTGAGTATATTTAATATATGATTCTTTTTAGTGGCAACAGTAGGTTT TCTTATAT TTTCTTTGAATCTCTGCAAACCATACTTGCTTTCATTTCACTTGGTTACAGTGAGATTTT TCTAACAT ATTCACTAGTACTTTACATCAAAGCCAATACTGTTTTTTTAAAACTAGTCACCTTGGAGG ATATATAC TTATTTTACAGGTGTGTGTGGTTTTTTAAATAAACTCCTTTTAGGAATTGCTGTTGGGAC TTGGGATA CTTTTTTCACTATACATACTGGTGACAGATACCCTCTCTTGAGCTACATCGGTTTGTGGG GAGTCAAA AGTCCTTTGGAGCTAGGTTTGACAAATAAGGTGGGTTAACACTTGTTTCCTAGAAAGCAC ATGGAGAG CTAGAGTATTGGCGAATTGAAGAAATCCCCCTTTTTTTTTAACACACTTAAGAAAGGGGA CTGCAGGT ATACTCAAGAGAGTAAGTCGCACCAGAAACCACTTTTGATCCACAGTCTGCCTGTGTCAC ACAATTGA AATGCATCACAACATTGACACTGTGGATGAAACAAAATCAGTGTGAATTTTAGTAGTGAA TTTCATTC ATAATTTGATCGTGCAAACGTTTGATTTTTATTACTTTAGACTATTGTTTCTGATTTTAT GTTGGGTT GGTATTTCCTGTGAGTTACTGTTTTACCTTTAAAATAGGAATTTTTCATACTCTTCAAAG ATTAGAAC AAATGTCCAGTTTTTGCTGTTTCATGAATGAGTCCTGTCCATCTTTGTAGAAACTCGCCT TATGTTCA CATTTTTATTGAGAATAAGACCACTTATCTACATTTAACTATCAACCTCATCCTCTCCAT TAATCATC TATTTTAGTGACCCAAGTTTTTGACCTTTTCCATGTTTACATCAATCCTGTAGGTGATTG GGCAGCCA TTTAAGTATTATTATAGACATTTTCACTATCCCATTAAAACCCTTTATGCCCATACATCA TAACACTA CTTCCTACCCATAAGCTCCTTTTAACTTGTTAAAGTCTTGCTTGAATTAAAGACTTGTTT ACGGTATC GATAAGCTTGATATCAAAACGCCAACTTTGACCCGGAACGCGGAAAACACCTGAGAAAAA CACCTGGG CGAGTCTCCACGTAAACGGTCAAAGTCCCCGCGGCCCTAGACAAATATTACGCGCTATGA GTAACACA AAATTATTCAGATTTCACTTCCTCTTATTCAGTTTTCCCGCGAAAATGGCCAAATCTTAC TCGGTTAC GCCCAAATTTACTACAACATCCGCCTAAAACCGCGCGAAAATTGTCACTTCCTGTGTACA CCGGCGCA CACCAAAAACGTCACTTTTGCCACATCCGTCGCTTACATGTGTTCCGCCACACTTGCAAC ATCACACT TCCGCCACACTACTACGTCACCCGCCCCGTTCCCACGCCCCGCGCCACGTCACAAACTCC ACCCCCTC ATTATCATATTGGCTTCAATCCAAAATAAGGTATATTATTGATGATGTTTAAACATTAAG AATTAATT CGATCCTGAATGGCGAATGGACGCGCCCTGTAGCGGCGCATTAAGCGCGCGGGTGTGGTG GTTACGCG CAGCGTGACCGCTACACTTGCCAGCGCCCTAGCGCCCGCTCCTTTCGCTTTCTTCCCTTC CTTTCTCG CCACGTTCGCCGGCTTTCCCCGTCAAGCTCTAAATCGGGGGCTCCCTTTAGGGTTCCGAT TTAGAGCT TTACGGCACCTCGACCGCAAAAAACTTGATTTGGGTGATGGTTCACGTAGTGGGCCATCG CCCTGATA GACGGTTTTTCGCCCTTTGACGTTGGAGTCCACGTTCTTTAATAGTGGACTCTTGTTCCA AACTGGAA CAACACTCAACCCTATCGCGGTCTATTCTTTTGATTTATAAGGGATGTTGCCGATTTCGG CCTATTGG TTAAAAAATGAGCTGATTTAACAAAAATTTTAACAAAATTCAGAAGAACTCGTCAAGAAG GCGATAGA AGGCGATGCGCTGCGAATCGGGAGCGGCGATACCGTAAAGCACGAGGAAGCGGTCAGCCC ATTCGCCG CCAAGCTCTTCAGCAATATCACGGGTAGCCAACGCTATGTCCTGATAGCGGTCCGCCACA CCCAGCCG GCCACAGTCGATGAATCCAGAAAAGCGGCCATTTTCCACCATGATATTCGGCAAGCAGGC ATCGCCAT GGGTCACGACGAGATCCTCGCCGTCGGGCATGCTCGCCTTGAGCCTGGCGAACAGTTCGG CTGGCGCG AGCCCCTGATGCTCTTCGTCCAGATCATCCTGATCGACAAGACCGGCTTCCATCCGAGTA CGTGCTCG CTCGATGCGATGTTTCGCTTGGTGGTCGAATGGGCAGGTAGCCGGATCAAGCGTATGCAG CCGCCGCA TTGCATCAGCCATGATGGATACTTTCTCGGCAGGAGCAAGGTGAGATGACAGGAGATCCT GCCCCGGC ACTTCGCCCAATAGCAGCCAGTCCCTTCCCGCTTCAGTGACAACGTCGAGCACAGCTGCG CAAGGAAC GCCCGTCGTGGCCAGCCACGATAGCCGCGCTGCCTCGTCTTGCAGTTCATTCAGGGCACC GGACAGGT CGGTCTTGACAAAAAGAACCGGGCGCCCCTGCGCTGACAGCCGGAACACGGCGGCATCAG AGCAGCCG ATTGTCTGTTGTGCCCAGTCATAGCCGAATAGCCTCTCCACCCAAGCGGCCGGAGAACCT GCGTGCAA TCCATCTTGTTCAATCATGCGAAACGATCCTCATCCTGTCTCTTGATCAGAGCTTGATCC CCTGCGCC ATCAGATCCTTGGCGGCAAGAAAGCCATCCAGTTTACTTTGCAGGGCTTCCCAACCTTAC CAGAGGGC GCCCCAGCTGGCAATTCCGGTTCGCTTGCTGTCCATAAAACCGCCCAGTCTAGCTATCGC CATGTAAG CCCACTGCAAGCTACCTGCTTTCTCTTTGCGCTTGCGTTTTCCCTTGTCCAGATAGCCCA GTAGCTGA CATTCATCCGGGGTCAGCACCGTTTCTGCGGACTGGCTTTCTACGTGAAAAGGATCTAGG TGAAGATC CTTTTTGATAATCTCATGGCTGCAGCAATGGCAACAACGTTGCGCAAACTATTAACTGGC GAACTACT TACTCTAGCTTCCCGGCAACAATTAATAGACTGGATGGAGGCGGATAAAGTTGCAGGACC ACTTCTGC GCTCGGCCCTTCCGGCTGGCTGGTTTATTGCTGATAAATCTGGAGCCGGTGAGCGTGGGT CTCGCGGT ATCATTGCAGCACTGGGGCCAGATGGTAAGCCCTCCCGTATCGTAGTTATCTACACGACG GGGAGTCA GGCAACTATGGATGAACGAAATAGACAGATCGCTGAGATAGGTGCCTCACTGATTAAGCA TTGGTAAC TGTCAGACCAAGTTTACTCATATATACTTTAGATTGATTTAAAACTTCATTTTTAATTTA AAAGGATC TAGGTGAAGATCCTTTTTGATAATCTCATGACCAAAATCCCTTAACGTGAGTTTTCGTTC CACTGAGC GTCAGAC RightITR = first underlined and bold sequence CBh = first underlined sequence mCherry:PKD1 = first bold sequence HGHpA = second underlined sequence Packaging Signal = second bold sequence LeftITR = second underlined and bold sequence SEQ ID NO:6 AAV-PKD2 LeftITR-EF1α-PKD2-BGHpA-RightITR AGATCAAAGGATCTTCTTGAGATCCTTTTTTTCTGCGCGTAATCTGCTGCTTGCAAACAA AAAAACCA CCGCTACCAGCGGTGGTTTGTTTGCCGGATCAAGAGCTACCAACTCTTTTTCCGAAGGTA ACTGGCTT CAGCAGAGCGCAGATACCAAATACTGTCCTTCTAGTGTAGCCGTAGTTAGGCCACCACTT CAAGAACT CTGTAGCACCGCCTACATACCTCGCTCTGCTAATCCTGTTACCAGTGGCTGCTGCCAGTG GCGATAAG TCGTGTCTTACCGGGTTGGACTCAAGACGATAGTTACCGGATAAGGCGCAGCGGTCGGGC TGAACGGG GGGTTCGTGCACACAGCCCAGCTTGGAGCGAACGACCTACACCGAACTGAGATACCTACA GCGTGAGC TATGAGAAAGCGCCACGCTTCCCGAAGGGAGAAAGGCGGACAGGTATCCGGTAAGCGGCA GGGTCGGA ACAGGAGAGCGCACGAGGGAGCTTCCAGGGGGAAACGCCTGGTATCTTTATAGTCCTGTC GGGTTTCG CCACCTCTGACTTGAGCGTCGATTTTTGTGATGCTCGTCAGGGGGGCGGAGCCTATGGAA AAACGCCA GCAACGCGGCCTTTTTACGGTTCCTGGCCTTTTGCTGGCCTTTTGCTCACATGTCCTGCA GGCAGCTG CGCGCTCGCTCGCTCACTGAGGCCGCCCGGGCAAAGCCCGGGCGTCGGGCGACCTTTGGT CGCCCGGC CTCAGTGAGCGAGCGAGCGCGCAGAGAGGGAGTGGCCAACTCCATCACTAGGGGTTCCTG CGGCCGCA CGCGTTAACTATAACGGTCCTAAGGTAGCGAAGGCTCCGGTGCCCGTCAGTGGGCAGAGC GCACATCG CCCACAGTCCCCGAGAAGTTGGGGGGAGGGGTCGGCAATTGAACCGGTGCCTAGAGAAGG TGGCGCGG GGTAAACTGGGAAAGTGATGTCGTGTACTGGCTCCGCCTTTTTCCCGAGGGTGGGGGAGA ACCGTATA TAAGTGCAGTAGTCGCCGTGAACGTTCTTTTTCGCAACGGGTTTGCCGCCAGAACACAGG TAAGTGCC GTGTGTGGTTCCCGCGGGCCTGGCCTCTTTACGGGTTATGGCCCTTGCGTGCCTTGAATT ACTTCCAC CTGGCTGCAGTACGTGATTCTTGATCCCGAGCTTCGGGTTGGAAGTGGGTGGGAGAGTTC GAGGCCTT GCGCTTAAGGAGCCCCTTCGCCTCGTGCTTGAGTTGAGGCCTGGCCTGGGCGCTGGGGCC GCCGCGTG CGAATCTGGTGGCACCTTCGCGCCTGTCTCGCTGCTTTCGATAAGTCTCTAGCCATTTAA AATTTTTG ATGACCTGCTGCGACGCTTTTTTTCTGGCAAGATAGTCTTGTAAATGCGGGCCAAGATCT GCACACTG GTATTTCGGTTTTTGGGGCCGCGGGCGGCGACGGGGCCCGTGCGTCCCAGCGCACATGTT CGGCGAGG CGGGGCCTGCGAGCGCGGCCACCGAGAATCGGACGGGGGTAGTCTCAAGCTGGCCGGCCT GCTCTGGT GCCTGGCCTCGCGCCGCCGTGTATCGCCCCGCCCTGGGCGGCAAGGCTGGCCCGGTCGGC ACCAGTTG CGTGAGCGGAAAGATGGCCGCTTCCCGGCCCTGCTGCAGGGAGCTCAAAATGAAGGACGC GGCGCTCG GGAGAGCGGGCGGGTGAGTCACCCACACAAAGGAAAAGGGCCTTTCCGTCCTCAGCCGTC GCTTCATG TGACTCCACGGAGTACCGGGCGCCGTCCAGGCACCTCGATTAGTTCTCGAGCTTTTGGAG TACGTCGT CTTTAGGTTGGGGGGAGGGGTTTTATGCGATGGAGTTTCCCCACACTGAGTGGGTGGAGA CTGAAGTT AGGCCAGCTTGGCACTTGATGTAATTCTCCTTGGAATTTGCCCTTTTTGAGTTTGGATCT TGGTTCAT TCTCAAGCCTCAGACAGTGGTTCAAAGTTTTTTTCTTCCATTTCAGGTGTCGTGATCCGG AGGCGGCG GCACGGGCGGCGGCAGCGGCGGCATGGTGAACTCCAGTCGCGTGCAGCCTCAGCAGCCCG GGGACGCC AAGCGGCCGCCCGCGCCCCGCGCGCCGGACCCGGGCCGGCTGATGGCTGGCTGCGCGGCC GTGGGCGC CAGCCTCGCCGCCCCGGGCGGCCTCTGCGAGCAGCGGGGCCTGGAGATCGAGATGCAGCG CATCCGGC AGGCGGCCGCGCGGGACCCCCCGGCCGGAGCCGCGGCCTCCCCTTCTCCTCCGCTCTCGT CGTGCTCC CGGCAGGCGTGGAGCCGCGATAACCCCGGCTTCGAGGCCGAGGAGGAGGAGGAGGAGGTG GAAGGGGA AGAAGGCGGAATGGTGGTGGAGATGGACGTAGAGTGGCGCCCGGGCAGCCGGAGGTCGGC CGCCTCCT CGGCCGTGAGCTCCGTGGGCGCGCGGAGCCGGGGGCTTGGGGGCTACCACGGCGCGGGCC ACCCGAGC GGGAGGCGGCGCCGGCGAGAGGACCAGGGCCCGCCGTGCCCCAGCCCAGTCGGCGGCGGG GACCCGCT GCATCGCCACCTCCCCCTGGAAGGGCAGCCGCCCCGAGTGGCCTGGGCGGAGAGGCTGGT TCGCGGGC TGCGAGGTCTCTGGGGAACAAGACTCATGGAGGAAAGCAGCACTAACCGAGAGAAATACC TTAAAAGT GTTTTACGGGAACTGGTCACATACCTCCTTTTTCTCATAGTCTTGTGCATCTTGACCTAC GGCATGAT GAGCTCCAATGTGTACTACTACACCCGGATGATGTCACAGCTCTTCCTAGACACCCCCGT GTCCAAAA CGGAGAAAACTAACTTTAAAACTCTGTCTTCCATGGAAGACTTCTGGAAGTTCACAGAAG GCTCCTTA TTGGATGGGCTGTACTGGAAGATGCAGCCCAGCAACCAGACTGAAGCTGACAACCGAAGT TTCATCTT CTATGAGAACCTGCTGTTAGGGGTTCCACGAATACGGCAACTCCGAGTCAGAAATGGATC CTGCTCTA TCCCCCAGGACTTGAGAGATGAAATTAAAGAGTGCTATGATGTCTACTCTGTCAGTAGTG AAGATAGG GCTCCCTTTGGGCCCCGAAATGGAACCGCTTGGATCTACACAAGTGAAAAAGACTTGAAT GGTAGTAG CCACTGGGGAATCATTGCAACTTATAGTGGAGCTGGCTATTATCTGGATTTGTCAAGAAC AAGAGAGG AAACAGCTGCACAAGTTGCTAGCCTCAAGAAAAATGTCTGGCTGGACCGAGGAACCAGGG CAACTTTT ATTGACTTCTCAGTGTACAACGCCAACATTAACCTGTTCTGTGTGGTCAGGTTATTGGTT GAATTCCC AGCAACAGGTGGTGTGATTCCATCTTGGCAATTTCAGCCTTTAAAGCTGATCCGATATGT CACAACTT TTGATTTCTTCCTGGCAGCCTGTGAGATTATCTTTTGTTTCTTTATCTTTTACTATGTGG TGGAAGAG ATATTGGAAATTCGCATTCACAAACTACACTATTTCAGGAGTTTCTGGAATTGTCTGGAT GTTGTGAT CGTTGTGCTGTCAGTGGTAGCTATAGGAATTAACATATACAGAACATCAAATGTGGAGGT GCTACTAC AGTTTCTGGAAGATCAAAATACTTTCCCCAACTTTGAGCATCTGGCATATTGGCAGATAC AGTTCAAC AATATAGCTGCTGTCACAGTATTTTTTGTCTGGATTAAGCTCTTCAAATTCATCAATTTT AACAGGAC CATGAGCCAGCTCTCGACAACCATGTCTCGATGTGCCAAAGACCTGTTTGGCTTTGCTAT TATGTTCT TCATTATTTTCCTAGCGTATGCTCAGTTGGCATACCTTGTCTTTGGCACTCAGGTCGATG ACTTCAGT ACTTTCCAAGAGTGTATCTTCACTCAATTCCGTATCATTTTGGGCGATATCAACTTTGCA GAGATTGA GGAAGCTAATCGAGTTTTGGGACCAATTTATTTCACTACATTTGTGTTCTTTATGTTCTT CATTCTTT TGAATATGTTTTTGGCTATCATCAATGATACTTACTCTGAAGTGAAATCTGACTTGGCAC AGCAGAAA GCTGAAATGGAACTCTCAGATCTTATCAGAAAGGGCTACCATAAAGCTTTGGTCAAACTA AAACTGAA AAAAAATACCGTGGATGACATTTCAGAGAGTCTGCGGCAAGGAGGAGGCAAGTTAAACTT TGACGAAC TTCGACAAGATCTCAAAGGGAAGGGCCATACTGATGCAGAGATTGAGGCAATATTCACAA AGTACGAC CAAGATGGAGACCAAGAACTGACCGAACATGAACATCAGCAGATGAGAGACGACTTGGAG AAAGAGAG GGAGGACCTGGATTTGGATCACAGTTCTTTACCACGTCCCATGAGCAGCCGAAGTTTCCC TCGAAGCC TGGATGACTCTGAGGAGGATGACGATGAAGATAGCGGACATAGCTCCAGAAGGAGGGGAA GCATTTCT AGTGGCGTTTCTTACGAAGAGTTTCAAGTCCTGGTGAGACGAGTGGACCGGATGGAGCAT TCCATCGG CAGCATAGTGTCCAAGATTGACGCCGTGATCGTGAAGCTAGAGATTATGGAGCGAGCCAA ACTGAAGA GGAGGGAGGTGCTGGGAAGGCTGTTGGATGGGGTGGCCGAGGATGAAAGGCTGGGTCGTG ACAGTGAA ATCCATAGGGAACAGATGGAACGGCTAGTACGTGAAGAGTTGGAACGCTGGGAATCCGAT GATGCAGC TTCCCAGATCAGTCATGGTTTAGGCACGCCAGTGGGACTAAATGGTCAACCTCGCCCCAG AAGCTCCC GCCCATCTTCCTCCCAATCTACAGAAGGCATGGAAGGTGCAGGTGGAAATGGGAGTTCTA ATGTCCAC GTATGATTCTAGAGTCGACCTGCAGAAGCTTGCCTCGAGCCTGTGCCTTCTAGTTGCCAG CCATCTGT TGTTTGCCCCTCCCCCGTGCCTTCCTTGACCCTGGAAGGTGCCACTCCCACTGTCCTTTC CTAATAAA ATGAGGAAATTGCATCGCATTGTCTGAGTAGGTGTCATTCTATTCTGGGGGGTGGGGTGG GGCAGGAC AGCAAGGGGGAGGATTGGGAAGACAATAGCAGGCATGCTGGGGATGCGGTGGGCTCTATG GTAACTAT AACGGTCCTAAGGTAGCGAACGGACCGAGCGGCCGCAGGAACCCCTAGTGATGGAGTTGG CCACTCCC TCTCTGCGCGCTCGCTCGCTCACTGAGGCCGGGCGACCAAAGGTCGCCCGACGCCCGGGC TTTGCCCG GGCGGCCTCAGTGAGCGAGCGAGCGCGCAGCTGCCTGCAGGGGCGCCTGATGCGGTATTT TCTCCTTA CGCATCTGTGCGGTATTTCACACCGCATACGTCAAAGCAACCATAGTACGCGCCCTGTAG CGGCGCAT TAAGCGCGGCGGGTGTGGTGGTTACGCGCAGCGTGACCGCTACACTTGCCAGCGCCCTAG CGCCCGCT CCTTTCGCTTTCTTCCCTTCCTTTCTCGCCACGTTCGCCGGCTTTCCCCGTCAAGCTCTA AATCGGGG GCTCCCTTTAGGGTTCCGATTTAGTGCTTTACGGCACCTCGACCCCAAAAAACTTGATTT GGGTGATG GTTCACGTAGTGGGCCATCGCCCTGATAGACGGTTTTTCGCCCTTTGACGTTGGAGTCCA CGTTCTTT AATAGTGGACTCTTGTTCCAAACTGGAACAACACTCAACCCTATCTCGGGCTATTCTTTT GATTTATA AGGGATTTTGCCGATTTCGGCCTATTGGTTAAAAAATGAGCTGATTTAACAAAAATTTAA CGCGAATT TTAACAAAATATTAACGTTTACAATTTTATGGTGCACTCTCAGTACAATCTGCTCTGATG CCGCATAG TTAAGCCAGCCCCGACACCCGCCAACACCCGCTGACGCGCCCTGACGGGCTTGTCTGCTC CCGGCATC CGCTTACAGACAAGCTGTGACCGTCTCCGGGAGCTGCATGTGTCAGAGGTTTTCACCGTC ATCACCGA AACGCGCGAGACGAAAGGGCCTCGTGATACGCCTATTTTTATAGGTTAATGTCATGATAA TAATGGTT TCTTAGACGTCAGGTGGCACTTTTCGGGGAAATGTGCGCGGAACCCCTATTTGTTTATTT TTCTAAAT ACATTCAAATATGTATCCGCTCATGAGACAATAACCCTGATAAATGCTTCAATAATATTG AAAAAGGA AGAGTATGAGTATTCAACATTTCCGTGTCGCCCTTATTCCCTTTTTTGCGGCATTTTGCC TTCCTGTT TTTGCTCACCCAGAAACGCTGGTGAAAGTAAAAGATGCTGAAGATCAGTTGGGTGCACGA GTGGGTTA CATCGAACTGGATCTCAACAGCGGTAAGATCCTTGAGAGTTTTCGCCCCGAAGAACGTTT TCCAATGA TGAGCACTTTTAAAGTTCTGCTATGTGGCGCGGTATTATCCCGTATTGACGCCGGGCAAG AGCAACTC GGTCGCCGCATACACTATTCTCAGAATGACTTGGTTGAGTACTCACCAGTCACAGAAAAG CATCTTAC GGATGGCATGACAGTAAGAGAATTATGCAGTGCTGCCATAACCATGAGTGATAACACTGC GGCCAACT TACTTCTGACAACGATCGGAGGACCGAAGGAGCTAACCGCTTTTTTGCACAACATGGGGG ATCATGTA ACTCGCCTTGATCGTTGGGAACCGGAGCTGAATGAAGCCATACCAAACGACGAGCGTGAC ACCACGAT GCCTGTAGCAATGGCAACAACGTTGCGCAAACTATTAACTGGCGAACTACTTACTCTAGC TTCCCGGC AACAATTAATAGACTGGATGGAGGCGGATAAAGTTGCAGGACCACTTCTGCGCTCGGCCC TTCCGGCT GGCTGGTTTATTGCTGATAAATCTGGAGCCGGTGAGCGTGGGTCTCGCGGTATCATTGCA GCACTGGG GCCAGATGGTAAGCCCTCCCGTATCGTAGTTATCTACACGACGGGGAGTCAGGCAACTAT GGATGAAC GAAATAGACAGATCGCTGAGATAGGTGCCTCACTGATTAAGCATTGGTAACTGTCAGACC AAGTTTAC TCATATATACTTTAGATTGATTTAAAACTTCATTTTTAATTTAAAAGGATCTAGGTGAAG ATCCTTTT TGATAATCTCATGACCAAAATCCCTTAACGTGAGTTTTCGTTCCACTGAGCGTCAGACCC CGTAGAAA RightITR = first underlined and bold sequence EF1α = first underlined sequence PKD2 = bold sequence BGHpA = second underlined sequence LeftITR = second underlined and bold sequence SEQ ID NO:7 HDAd-PKD1-PKD2 RightITR-CBh-mCherry:PKD1-HGHpA-EF1α-PKD2-BGHpA-PackagingSi gnal-LeftITR CCCGTAGAAAAGATCAAAGGATCTTCTTGAGATCCTTTTTTTCTGCGCGTAATCTGCTGC TTGCAAAC AAAAAAACCACCGCTACCAGCGGTGGTTTGTTTGCCGGATCAAGAGCTACCAACTCTTTT TCCGAAGG TAACTGGCTTCAGCAGAGCGCAGATACCAAATACTGTCCTTCTAGTGTAGCCGTAGTTAG GCCACCAC TTCAAGAACTCTGTAGCACCGCCTACATACCTCGCTCTGCTAATCCTGTTACCAGTGGCT GCTGCCAG TGGCGATAAGTCGTGTCTTACCGGGTTGGACTCAAGACGATAGTTACCGGATAAGGCGCA GCGGTCGG GCTGAACGGGGGGTTCGTGCACACAGCCCAGCTTGGAGCGAACGACCTACACCGAACTGA GATACCTA CAGCGTGAGCTATGAGAAAGCGCCACGCTTCCCGAAGGGAGAAAGGCGGACAGGTATCCG GTAAGCGG CAGGGTCGGAACAGGAGAGCGCACGAGGGAGCTTCCAGGGGGAAACGCCTGGTATCTTTA TAGTCCTG TCGGGTTTCGCCACCTCTGACTTGAGCGTCGATTTTTGTGATGCTCGTCAGGGGGGCGGA GCCTATGG AAAAACGCCAGCAACGCGGCCTTTTTACGGTTCCTGGCCTTTTGCTGGCCTTTTGCTCAC ATGTTCTT TCCTGCGTTATCCCCTGATTCTGTGGATAACCGTATTACCGCCTTTGAGTGAGCTGATAC CGCTCGCC GCAGCCGAACGACCGAGCGCAGCGAGTCAGTGAGCGAGGAAGCGGAAGAGCGCCTGATGC GGTATTTT CTCCTTACGCATCTGTGCGGTATTTCACACCGCATATGGATCCATGCATGTTAAGTTTAA ACATCATC AATAATATACCTTATTTTGGATTGAAGCCAATATGATAATGAGGGGGTGGAGTTTGTGAC GTGGCGCG GGGCGTGGGAACGGGGCGGGTGACGTAGGTTTTAGGGCGGAGTAACTTGTATGTGTTGGG AATTGTAG TTTTCTTAAAATGGGAAGTTACGTAACGTGGGAAAACGGAAGTGACGATTTGAGGAAGTT GTGGGTTT TTTGGCTTTCGTTTCTGGGCGTAGGTTCGCGTGCGGTTTTCTGGGTGTTTTTTGTGGACT TTAACCGT TACGTCATTTTTTAGTCCTATATATACTCGCTCTGCACTTGGCCCTTTTTTACACTGTGA CTGATTGA GCTGGTGCCGTGTCGAGTGGTGTTTTTTGATGCCCCCCCTCGAGGTTCGACGGTATCGAT AAGCTTGA TTTAATTAAGGCCGGCCCCTAGGGGCGCGCGCGGCCGCTAGGGATAACAGGGTAATTGTT GACAATTA ATCATCGGCATAGTATATCGGCATAGTATAATACGACAAGGTGAGGAACTAAACCATGGC CAAGTTGA CCAGTGCCGTTCCGGTGCTCACCGCGCGCGACGTCGCCGGAGCGGTCGAGTTCTGGACCG ACCGGCTC GGGTTCTCCCGGGACTTCGTGGAGGACGACTTCGCCGGTGTGGTCCGGGACGACGTGACC CTGTTCAT CAGCGCGGTCCAGGACCAGGTGGTGCCGGACAACACCCTGGCCTGGGTGTGGGTGCGCGG CCTGGACG AGCTGTACGCCGAGTGGTCGGAGGTCGTGTCCACGAACTTCCGGGACGCCTCCGGGCCGG CCATGACC GAGATCGGCGAGCAGCCGTGGGGGCGGGAGTTCGCCCTGCGCGACCCGGCCGGCAACTGC GTGCACTT CGTGGCCGAGGAGCAGGACTGAACGCGTCGTTACATAACTTACGGTAAATGGCCCGCCTG GCTGACCG CCCAACGACCCCCGCCCATTGACGTCAATAATGACGTATGTTCCCATAGTAACGCCAATA GGGACTTT CCATTGACGTCAATGGGTGGAGTATTTACGGTAAACTGCCCACTTGGCAGTACATCAAGT GTATCATA TGCCAAGTACGCCCCCTATTGACGTCAATGACGGTAAATGGCCCGCCTGGCATTATGCCC AGTACATG ACCTTATGGGACTTTCCTACTTGGCAGTACATCTACGTATTAGTCATCGCTATTACCATG GTCGAGGT GAGCCCCACGTTCTGCTTCACTCTCCCCATCTCCCCCCCCTCCCCACCCCCAATTTTGTA TTTATTTA TTTTTTAATTATTTTGTGCAGCGATGGGGGCGGGGGGGGGGGGGGGGCGCGCGCCAGGCG GGGCGGGG CGGGGCGAGGGGCGGGGCGGGGCGAGGCGGAGAGGTGCGGCGGCAGCCAATCAGAGCGGC GCGCTCCG AAAGTTTCCTTTTATGGCGAGGCGGCGGCGGCGGCGGCCCTATAAAAAGCGAAGCGCGCG GCGGGCGG GAGTCGCTGCGACGCTGCCTTCGCCCCGTGCCCCGCTCCGCCGCCGCCTCGCGCCGCCCG CCCCGGCT CTGACTGACCGCGTTACTCCCACAGGTGAGCGGGCGGGACGGCCCTTCTCCTCCGGGCTG TAATTAGC TGAGCAAGAGGTAAGGGTTTAAGGGATGGTTGGTTGGTGGGGTATTAATGTTTAATTACC TGGAGCAC CTGTCCGGAGAATTCGCCACCATGCCGCCCGCCGCGCCCGCCCGCCTGGCGCTGGCCCTG GGCCTGGG CCTGTGGCTCGGGGCGCTGGCGGGGGGCCCCGGGATGGTGAGCAAGGGCGAGGAGGATAA CATGGCCA TCATCAAGGAGTTCATGCGCTTCAAGGTGCACATGGAGGGCTCCGTGAACGGCCACGAGT TCGAGATC GAGGGCGAGGGCGAGGGCCGCCCCTACGAGGGCACCCAGACCGCCAAGCTGAAGGTGACC AAGGGTGG CCCCCTGCCCTTCGCCTGGGACATCCTGTCCCCTCAGTTCATGTACGGCTCCAAGGCCTA CGTGAAGC ACCCCGCCGACATCCCCGACTACTTGAAGCTGTCCTTCCCCGAGGGCTTCAAGTGGGAGC GCGTGATG AACTTCGAGGACGGCGGCGTGGTGACCGTGACCCAGGACTCCTCCCTGCAGGACGGCGAG TTCATCTA CAAGGTGAAGCTGCGCGGCACCAACTTCCCCTCCGACGGCCCCGTAATGCAGAAGAAGAC CATGGGCT GGGAGGCCTCCTCCGAGCGGATGTACCCCGAGGACGGCGCCCTGAAGGGCGAGATCAAGC AGAGGCTG AAGCTGAAGGACGGCGGCCACTACGACGCTGAGGTCAAGACCACCTACAAGGCCAAGAAG CCCGTGCA GCTGCCCGGCGCCTACAACGTCAACATCAAGTTGGACATCACCTCCCACAACGAGGACTA CACCATCG TGGAACAGTACGAACGCGCCGAGGGCCGCCACTCCACCGGCGGCATGGACGAGCTGTACA AGGGCGCG CCGGGGGGCCCCGGGCGCGGCTGCGGGCCCTGCGAGCCCCCCTGCCTCTGCGGCCCAGCG CCCGGCGC CGCCTGCCGCGTCAACTGCTCGGGCCGCGGGCTGCGGACGCTCGGTCCCGCGCTGCGCAT CCCCGCGG ACGCCACAGCGCTAGACGTCTCCCACAACCTGCTCCGGGCGCTGGACGTTGGGCTCCTGG CGAACCTC TCGGCGCTGGCAGAGCTGGATATAAGCAACAACAAGATTTCTACGTTAGAAGAAGGAATA TTTGCTAA TTTATTTAATTTAAGTGAAATAAACCTGAGTGGGAACCCGTTTGAGTGTGACTGTGGCCT GGCGTGGC TGCCGCGATGGGCGGAGGAGCAGCAGGTGCGGGTGGTGCAGCCCGAGGCAGCCACGTGTG CTGGGCCT GGCTCCCTGGCTGGCCAGCCTCTGCTTGGCATCCCCTTGCTGGACAGTGGCTGTGGTGAG GAGTATGT CGCCTGCCTCCCTGACAACAGCTCAGGCACCGTGGCAGCAGTGTCCTTTTCAGCTGCCCA CGAAGGCC TGCTTCAGCCAGAGGCCTGCAGCGCCTTCTGCTTCTCCACCGGCCAGGGCCTCGCAGCCC TCTCGGAG CAGGGCTGGTGCCTGTGTGGGGCGGCCCAGCCCTCCAGTGCCTCCTTTGCCTGCCTGTCC CTCTGCTC CGGCCCCCCGCCACCTCCTGCCCCCACCTGTAGGGGCCCCACCCTCCTCCAGCACGTCTT CCCTGCCT CCCCAGGGGCCACCCTGGTGGGGCCCCACGGACCTCTGGCCTCTGGCCAGCTAGCAGCCT TCCACATC GCTGCCCCGCTCCCTGTCACTGCCACACGCTGGGACTTCGGAGACGGCTCCGCCGAGGTG GATGCCGC TGGGCCGGCTGCCTCGCATCGCTATGTGCTGCCTGGGCGCTATCACGTGACGGCCGTGCT GGCCCTGG GGGCCGGCTCAGCCCTGCTGGGGACAGACGTGCAGGTGGAAGCGGCACCTGCCGCCCTGG AGCTCGTG TGCCCGTCCTCGGTGCAGAGTGACGAGAGCCTTGACCTCAGCATCCAGAACCGCGGTGGT TCAGGCCT GGAGGCCGCCTACAGCATCGTGGCCCTGGGCGAGGAGCCGGCCCGAGCGGTGCACCCGCT CTGCCCCT CGGACACGGAGATCTTCCCTGGCAACGGGCACTGCTACCGCCTGGTGGTGGAGAAGGCGG CCTGGCTG CAGGCGCAGGAGCAGTGTCAGGCCTGGGCCGGGGCCGCCCTGGCAATGGTGGACAGTCCC GCCGTGCA GCGCTTCCTGGTCTCCCGGGTCACCAGGAGCCTAGACGTGTGGATCGGCTTCTCGACTGT GCAGGGGG TGGAGGTGGGCCCAGCGCCGCAGGGCGAGGCCTTCAGCCTGGAGAGCTGCCAGAACTGGC TGCCCGGG GAGCCACACCCAGCCACAGCCGAGCACTGCGTCCGGCTCGGGCCCACCGGGTGGTGTAAC ACCGACCT GTGCTCAGCGCCGCACAGCTACGTCTGCGAGCTGCAGCCCGGAGGCCCAGTGCAGGATGC CGAGAACC TCCTCGTGGGAGCGCCCAGTGGGGACCTGCAGGGACCCCTGACGCCTCTGGCACAGCAGG ACGGCCTC TCAGCCCCGCACGAGCCCGTGGAGGTCATGGTATTCCCGGGCCTGCGTCTGAGCCGTGAA GCCTTCCT CACCACGGCCGAATTTGGGACCCAGGAGCTCCGGCGGCCCGCCCAGCTGCGGCTGCAGGT GTACCGGC TCCTCAGCACAGCAGGGACCCCGGAGAACGGCAGCGAGCCTGAGAGCAGGTCCCCGGACA ACAGGACC CAGCTGGCCCCCGCGTGCATGCCAGGGGGACGCTGGTGCCCTGGAGCCAACATCTGCTTG CCGCTGGA CGCCTCCTGCCACCCCCAGGCCTGCGCCAATGGCTGCACGTCAGGGCCAGGGCTACCCGG GGCCCCCT ATGCGCTATGGAGAGAGTTCCTCTTCTCCGTTCCCGCGGGGCCCCCCGCGCAGTACTCGG TCACCCTC CACGGCCAGGATGTCCTCATGCTCCCTGGTGACCTCGTTGGCTTGCAGCACGACGCTGGC CCTGGCGC CCTCCTGCACTGCTCGCCGGCTCCCGGCCACCCTGGTCCCCAGGCCCCGTACCTCTCCGC CAACGCCT CGTCATGGCTGCCCCACTTGCCAGCCCAGCTGGAGGGCACTTGGGCCTGCCCTGCCTGTG CCCTGCGG CTGCTTGCAGCCACGGAACAGCTCACCGTGCTGCTGGGCTTGAGGCCCAACCCTGGACTG CGGCTGCC TGGGCGCTATGAGGTCCGGGCAGAGGTGGGCAATGGCGTGTCCAGGCACAACCTCTCCTG CAGCTTTG ACGTGGTCTCCCCAGTGGCTGGGCTGCGGGTCATCTACCCTGCCCCCCGCGACGGCCGCC TCTACGTG CCCACCAACGGCTCAGCCTTGGTGCTCCAGGTGGACTCTGGTGCCAACGCCACGGCCACG GCTCGCTG GCCTGGGGGCAGTGTCAGCGCCCGCTTTGAGAATGTCTGCCCTGCCCTGGTGGCCACCTT CGTGCCCG GCTGCCCCTGGGAGACCAACGATACCCTGTTCTCAGTGGTAGCACTGCCGTGGCTCAGTG AGGGGGAG CACGTGGTGGACGTGGTGGTGGAAAACAGCGCCAGCCGGGCCAACCTCAGCCTGCGGGTG ACGGCGGA GGAGCCCATCTGTGGCCTCCGCGCCACGCCCAGCCCCGAGGCCCGTGTACTGCAGGGAGT CCTAGTGA GGTACAGCCCCGTGGTGGAGGCCGGCTCGGACATGGTCTTCCGGTGGACCATCAACGACA AGCAGTCC CTGACCTTCCAGAACGTGGTCTTCAATGTCATTTATCAGAGCGCGGCGGTCTTCAAGCTC TCACTGAC GGCCTCCAACCACGTGAGCAACGTCACCGTGAACTACAACGTAACCGTGGAGCGGATGAA CAGGATGC AGGGTCTGCAGGTCTCCACAGTGCCGGCCGTGCTGTCCCCCAATGCCACGCTAGCACTGA CGGCGGGC GTGCTGGTGGACTCGGCCGTGGAGGTGGCCTTCCTGTGGACCTTTGGGGATGGGGAGCAG GCCCTCCA CCAGTTCCAGCCTCCGTACAACGAGTCCTTCCCGGTTCCAGACCCCTCGGTGGCCCAGGT GCTGGTGG AGCACAATGTCATGCACACCTACGCTGCCCCAGGTGAGTACCTCCTGACCGTGCTGGCAT CTAATGCC TTCGAGAACCTGACGCAGCAGGTGCCTGTGAGCGTGCGCGCCTCCCTGCCCTCCGTGGCT GTGGGTGT GAGTGACGGCGTCCTGGTGGCCGGCCGGCCCGTCACCTTCTACCCGCACCCGCTGCCCTC GCCTGGGG GTGTTCTTTACACGTGGGACTTCGGGGACGGCTCCCCTGTCCTGACCCAGAGCCAGCCGG CTGCCAAC CACACCTATGCCTCGAGGGGCACCTACCACGTGCGCCTGGAGGTCAACAACACGGTGAGC GGTGCGGC GGCCCAGGCGGATGTGCGCGTCTTTGAGGAGCTCCGCGGACTCAGCGTGGACATGAGCCT GGCCGTGG AGCAGGGCGCCCCCGTGGTGGTCAGCGCCGCGGTGCAGACGGGCGACAACATCACGTGGA CCTTCGAC ATGGGGGACGGCACCGTGCTGTCGGGCCCGGAGGCAACAGTGGAGCATGTGTACCTGCGG GCACAGAA CTGCACAGTGACCGTGGGTGCGGCCAGCCCCGCCGGCCACCTGGCCCGGAGCCTGCACGT GCTGGTCT TCGTCCTGGAGGTGCTGCGCGTTGAACCCGCCGCCTGCATCCCCACGCAGCCTGACGCGC GGCTCACG GCCTACGTCACCGGGAACCCGGCCCACTACCTCTTCGACTGGACCTTCGGGGATGGCTCC TCCAACAC GACCGTGCGGGGGTGCCCGACGGTGACACACAACTTCACGCGGAGCGGCACGTTCCCCCT GGCGCTGG TGCTGTCCAGCCGCGTGAACAGGGCGCATTACTTCACCAGCATCTGCGTGGAGCCAGAGG TGGGCAAC GTCACCCTGCAGCCAGAGAGGCAGTTTGTGCAGCTCGGGGACGAGGCCTGGCTGGTGGCA TGTGCCTG GCCCCCGTTCCCCTACCGCTACACCTGGGACTTTGGCACCGAGGAAGCCGCCCCCACCCG TGCCAGGG GCCCTGAGGTGACGTTCATCTACCGAGACCCAGGCTCCTATCTTGTGACAGTCACCGCGT CCAACAAC ATCTCTGCTGCCAATGACTCAGCCCTGGTGGAGGTGCAGGAGCCCGTGCTGGTCACCAGC ATCAAGGT CAATGGCTCCCTTGGGCTGGAGCTGCAGCAGCCGTACCTGTTCTCTGCTGTGGGCCGTGG GCGCCCCG CCAGCTACCTGTGGGATCTGGGGGACGGTGGGTGGCTCGAGGGTCCGGAGGTCACCCACG CTTACAAC AGCACAGGTGACTTCACCGTTAGGGTGGCCGGCTGGAATGAGGTGAGCCGCAGCGAGGCC TGGCTCAA TGTGACGGTGAAGCGGCGCGTGCGGGGGCTCGTCGTCAATGCAAGCCGCACGGTGGTGCC CCTGAATG GGAGCGTGAGCTTCAGCACGTCGCTGGAGGCCGGCAGTGATGTGCGCTATTCCTGGGTGC TCTGTGAC CGCTGCACGCCCATCCCTGGGGGTCCTACCATCTCTTACACCTTCCGCTCCGTGGGCACC TTCAATAT CATCGTCACGGCTGAGAACGAGGTGGGCTCCGCCCAGGACAGCATCTTCGTCTATGTCCT GCAGCTCA TAGAGGGGCTGCAGGTGGTGGGCGGTGGCCGCTACTTCCCCACCAACCACACGGTACAGC TGCAGGCC GTGGTTAGGGATGGCACCAACGTCTCCTACAGCTGGACTGCCTGGAGGGACAGGGGCCCG GCCCTGGC CGGCAGCGGCAAAGGCTTCTCGCTCACCGTGCTCGAGGCCGGCACCTACCATGTGCAGCT GCGGGCCA CCAACATGCTGGGCAGCGCCTGGGCCGACTGCACCATGGACTTCGTGGAGCCTGTGGGGT GGCTGATG GTGGCCGCCTCCCCGAACCCAGCTGCCGTCAACACAAGCGTCACCCTCAGTGCCGAGCTG GCTGGTGG CAGTGGTGTCGTATACACTTGGTCCTTGGAGGAGGGGCTGAGCTGGGAGACCTCCGAGCC ATTTACCA CCCATAGCTTCCCCACACCCGGCCTGCACTTGGTCACCATGACGGCAGGGAACCCGCTGG GCTCAGCC AACGCCACCGTGGAAGTGGATGTGCAGGTGCCTGTGAGTGGCCTCAGCATCAGGGCCAGC GAGCCCGG AGGCAGCTTCGTGGCGGCCGGGTCCTCTGTGCCCTTTTGGGGGCAGCTGGCCACGGGCAC CAATGTGA GCTGGTGCTGGGCTGTGCCCGGCGGCAGCAGCAAGCGTGGCCCTCATGTCACCATGGTCT TCCCGGAT GCTGGCACCTTCTCCATCCGGCTCAATGCCTCCAACGCAGTCAGCTGGGTCTCAGCCACG TACAACCT CACGGCGGAGGAGCCCATCGTGGGCCTGGTGCTGTGGGCCAGCAGCAAGGTGGTGGCGCC CGGGCAGC TGGTCCATTTTCAGATCCTGCTGGCTGCCGGCTCAGCTGTCACCTTCCGCCTGCAGGTCG GCGGGGCC AACCCCGAGGTGCTCCCCGGGCCCCGTTTCTCCCACAGCTTCCCCCGCGTCGGAGACCAC GTGGTGAG CGTGCGGGGCAAAAACCACGTGAGCTGGGCCCAGGCGCAGGTGCGCATCGTGGTGCTGGA GGCCGTGA GTGGGCTGCAGGTGCCCAACTGCTGCGAGCCTGGCATCGCCACGGGCACTGAGAGGAACT TCACAGCC CGCGTGCAGCGCGGCTCTCGGGTCGCCTACGCCTGGTACTTCTCGCTGCAGAAGGTCCAG GGCGACTC GCTGGTCATCCTGTCGGGCCGCGACGTCACCTACACGCCCGTGGCCGCGGGGCTGTTGGA GATCCAGG TGCGCGCCTTCAACGCCCTGGGCAGTGAGAACCGCACGCTGGTGCTGGAGGTTCAGGACG CCGTCCAG TATGTGGCCCTGCAGAGCGGCCCCTGCTTCACCAACCGCTCGGCGCAGTTTGAGGCCGCC ACCAGCCC CAGCCCCCGGCGTGTGGCCTACCACTGGGACTTTGGGGATGGGTCGCCAGGGCAGGACAC AGATGAGC CCAGGGCCGAGCACTCCTACCTGAGGCCTGGGGACTACCGCGTGCAGGTGAACGCCTCCA ACCTGGTG AGCTTCTTCGTGGCGCAGGCCACGGTGACCGTCCAGGTGCTGGCCTGCCGGGAGCCGGAG GTGGACGT GGTCCTGCCCCTGCAGGTGCTGATGCGGCGATCACAGCGCAACTACTTGGAGGCCCACGT TGACCTGC GCGACTGCGTCACCTACCAGACTGAGTACCGCTGGGAGGTGTATCGCACCGCCAGCTGCC AGCGGCCG GGGCGCCCAGCGCGTGTGGCCCTGCCCGGCGTGGACGTGAGCCGGCCTCGGCTGGTGCTG CCGCGGCT GGCGCTGCCTGTGGGGCACTACTGCTTTGTGTTTGTCGTGTCATTTGGGGACACGCCACT GACACAGA GCATCCAGGCCAATGTGACGGTGGCCCCCGAGCGCCTGGTGCCCATCATTGAGGGTGGCT CATACCGC GTGTGGTCAGACACACGGGACCTGGTGCTGGATGGGAGCGAGTCCTACGACCCCAACCTG GAGGACGG CGACCAGACGCCGCTCAGTTTCCACTGGGCCTGTGTGGCTTCGACACAGAGGGAGGCTGG CGGGTGTG CGCTGAACTTTGGGCCCCGCGGGAGCAGCACGGTCACCATTCCACGGGAGCGGCTGGCGG CTGGCGTG GAGTACACCTTCAGCCTGACCGTGTGGAAGGCCGGCCGCAAGGAGGAGGCCACCAACCAG ACGGTGCT GATCCGGAGTGGCCGGGTGCCCATTGTGTCCTTGGAGTGTGTGTCCTGCAAGGCACAGGC CGTGTACG AAGTGAGCCGCAGCTCCTACGTGTACTTGGAGGGCCGCTGCCTCAATTGCAGCAGCGGCT CCAAGCGA GGGCGGTGGGCTGCACGTACGTTCAGCAACAAGACGCTGGTGCTGGATGAGACCACCACA TCCACGGG CAGTGCAGGCATGCGACTGGTGCTGCGGCGGGGCGTGCTGCGGGACGGCGAGGGATACAC CTTCACGC TCACGGTGCTGGGCCGCTCTGGCGAGGAGGAGGGCTGCGCCTCCATCCGCCTGTCCCCCA ACCGCCCG CCGCTGGGGGGCTCTTGCCGCCTCTTCCCACTGGGCGCTGTGCACGCCCTCACCACCAAG GTGCACTT CGAATGCACGGGCTGGCATGACGCGGAGGATGCTGGCGCCCCGCTGGTGTACGCCCTGCT GCTGCGGC GCTGTCGCCAGGGCCACTGCGAGGAGTTCTGTGTCTACAAGGGCAGCCTCTCCAGCTACG GAGCCGTG CTGCCCCCGGGTTTCAGGCCACACTTCGAGGTGGGCCTGGCCGTGGTGGTGCAGGACCAG CTGGGAGC CGCTGTGGTCGCCCTCAACAGGTCTTTGGCCATCACCCTCCCAGAGCCCAACGGCAGCGC AACGGGGC TCACAGTCTGGCTGCACGGGCTCACCGCTAGTGTGCTCCCAGGGCTGCTGCGGCAGGCCG ATCCCCAG CACGTCATCGAGTACTCGTTGGCCCTGGTCACCGTGCTGAACGAGTACGAGCGGGCCCTG GACGTGGC GGCAGAGCCCAAGCACGAGCGGCAGCACCGAGCCCAGATACGCAAGAACATCACGGAGAC TCTGGTGT CCCTGAGGGTCCACACTGTGGATGACATCCAGCAGATCGCTGCTGCGCTGGCCCAGTGCA TGGGGCCC AGCAGGGAGCTCGTATGCCGCTCGTGCCTGAAGCAGACGCTGCACAAGCTGGAGGCCATG ATGCTCAT CCTGCAGGCAGAGACCACCGCGGGCACCGTGACGCCCACCGCCATCGGAGACAGCATCCT CAACATCA CAGGAGACCTCATCCACCTGGCCAGCTCGGACGTGCGGGCACCACAGCCCTCAGAGCTGG GAGCCGAG TCACCATCTCGGATGGTGGCGTCCCAGGCCTACAACCTGACCTCTGCCCTCATGCGCATC CTCATGCG CTCCCGCGTGCTCAACGAGGAGCCCCTGACGCTGGCGGGCGAGGAGATCGTGGCCCAGGG CAAGCGCT CGGACCCGCGGAGCCTGCTGTGCTATGGCGGCGCCCCAGGGCCTGGCTGCCACTTCTCCA TCCCCGAG GCTTTCAGCGGGGCCCTGGCCAACCTCAGTGACGTGGTGCAGCTCATCTTTCTGGTGGAC TCCAATCC CTTTCCCTTTGGCTATATCAGCAACTACACCGTCTCCACCAAGGTGGCCTCGATGGCATT CCAGACAC AGGCCGGCGCCCAGATCCCCATCGAGCGGCTGGCCTCAGAGCGCGCCATCACCGTGAAGG TGCCCAAC AACTCGGACTGGGCTGCCCGGGGCCACCGCAGCTCCGCCAACTCCGCCAACTCCGTTGTG GTCCAGCC CCAGGCCTCCGTCGGTGCTGTGGTCACCCTGGACAGCAGCAACCCTGCGGCCGGGCTGCA TCTGCAGC TCAACTATACGCTGCTGGACGGCCACTACCTGTCTGAGGAACCTGAGCCCTACCTGGCAG TCTACCTA CACTCGGAGCCCCGGCCCAATGAGCACAACTGCTCGGCTAGCAGGAGGATCCGCCCAGAG TCACTCCA GGGTGCTGACCACCGGCCCTACACCTTCTTCATTTCCCCGGGGAGCAGAGACCCAGCGGG GAGTTACC ATCTGAACCTCTCCAGCCACTTCCGCTGGTCGGCGCTGCAGGTGTCCGTGGGCCTGTACA CGTCCCTG TGCCAGTACTTCAGCGAGGAGGACATGGTGTGGCGGACAGAGGGGCTGCTGCCCCTGGAG GAGACCTC GCCCCGCCAGGCCGTCTGCCTCACCCGCCACCTCACCGCCTTCGGCGCCAGCCTCTTCGT GCCCCCAA GCCATGTCCGCTTTGTGTTTCCTGAGCCGACAGCGGATGTAAACTACATCGTCATGCTGA CATGTGCT GTGTGCCTGGTGACCTACATGGTCATGGCCGCCATCCTGCACAAGCTGGACCAGTTGGAT GCCAGCCG GGGCCGCGCCATCCCTTTCTGTGGGCAGCGGGGCCGCTTCAAGTACGAGATCCTCGTCAA GACAGGCT GGGGCCGGGGCTCAGGTACCACGGCCCACGTGGGCATCATGCTGTATGGGGTGGACAGCC GGAGCGGC CACCGGCACCTGGACGGCGACAGAGCCTTCCACCGCAACAGCCTGGACATCTTCCGGATC GCCACCCC GCACAGCCTGGGTAGCGTGTGGAAGATCCGAGTGTGGCACGACAACAAAGGGCTCAGCCC TGCCTGGT TCCTGCAGCACGTCATCGTCAGGGACCTGCAGACGGCACGCAGCGCCTTCTTCCTGGTCA ATGACTGG CTTTCGGTGGAGACGGAGGCCAACGGGGGCCTGGTGGAGAAGGAGGTGCTGGCCGCGAGC GACGCAGC CCTTTTGCGCTTCCGGCGCCTGCTGGTGGCTGAGCTGCAGCGTGGCTTCTTTGACAAGCA CATCTGGC TCTCCATATGGGACCGGCCGCCTCGTAGCCGTTTCACTCGCATCCAGAGGGCCACCTGCT GCGTTCTC CTCATCTGCCTCTTCCTGGGCGCCAACGCCGTGTGGTACGGGGCTGTTGGCGACTCTGCC TACAGCAC GGGGCATGTGTCCAGGCTGAGCCCGCTGAGCGTCGACACAGTCGCTGTTGGCCTGGTGTC CAGCGTGG TTGTCTATCCCGTCTACCTGGCCATCCTTTTTCTCTTCCGGATGTCCCGGAGCAAGGTGG CTGGGAGC CCGAGCCCCACACCTGCCGGGCAGCAGGTGCTGGACATCGACAGCTGCCTGGACTCGTCC GTGCTGGA CAGCTCCTTCCTCACGTTCTCAGGCCTCCACGCTGAGCAGGCCTTTGTTGGACAGATGAA GAGTGACT TGTTTCTGGATGATTCTAAGAGTCTGGTGTGCTGGCCCTCCGGCGAGGGAACGCTCAGTT GGCCGGAC CTGCTCAGTGACCCGTCCATTGTGGGTAGCAATCTGCGGCAGCTGGCACGGGGCCAGGCG GGCCATGG GCTGGGCCCAGAGGAGGACGGCTTCTCCCTGGCCAGCCCCTACTCGCCTGCCAAATCCTT CTCAGCAT CAGATGAAGACCTGATCCAGCAGGTCCTTGCCGAGGGGGTCAGCAGCCCAGCCCCTACCC AAGACACC CACATGGAAACGGACCTGCTCAGCAGCCTGTCCAGCACTCCTGGGGAGAAGACAGAGACG CTGGCGCT GCAGAGGCTGGGGGAGCTGGGGCCACCCAGCCCAGGCCTGAACTGGGAACAGCCCCAGGC AGCGAGGC TGTCCAGGACAGGACTGGTGGAGGGTCTGCGGAAGCGCCTGCTGCCGGCCTGGTGTGCCT CCCTGGCC CACGGGCTCAGCCTGCTCCTGGTGGCTGTGGCTGTGGCTGTCTCAGGGTGGGTGGGTGCG AGCTTCCC CCCGGGCGTGAGTGTTGCGTGGCTCCTGTCCAGCAGCGCCAGCTTCCTGGCCTCATTCCT CGGCTGGG AGCCACTGAAGGTCTTGCTGGAAGCCCTGTACTTCTCACTGGTGGCCAAGCGGCTGCACC CGGATGAA GATGACACCCTGGTAGAGAGCCCGGCTGTGACGCCTGTGAGCGCACGTGTGCCCCGCGTA CGGCCACC CCACGGCTTTGCACTCTTCCTGGCCAAGGAAGAAGCCCGCAAGGTCAAGAGGCTACATGG CATGCTGC GGAGCCTCCTGGTGTACATGCTTTTTCTGCTGGTGACCCTGCTGGCCAGCTATGGGGATG CCTCATGC CATGGGCACGCCTACCGTCTGCAAAGCGCCATCAAGCAGGAGCTGCACAGCCGGGCCTTC CTGGCCAT CACGCGGTCTGAGGAGCTCTGGCCATGGATGGCCCACGTGCTGCTGCCCTACGTCCACGG GAACCAGT CCAGCCCAGAGCTGGGGCCCCCACGGCTGCGGCAGGTGCGGCTGCAGGAAGCACTCTACC CAGACCCT CCCGGCCCCAGGGTCCACACGTGCTCGGCCGCAGGAGGCTTCAGCACCAGCGATTACGAC GTTGGCTG GGAGAGTCCTCACAATGGCTCGGGGACGTGGGCCTATTCAGCGCCGGATCTGCTGGGGGC ATGGTCCT GGGGCTCCTGTGCCGTGTATGACAGCGGGGGCTACGTGCAGGAGCTGGGCCTGAGCCTGG AGGAGAGC CGCGACCGGCTGCGCTTCCTGCAGCTGCACAACTGGCTGGACAACAGGAGCCGCGCTGTG TTCCTGGA GCTCACGCGCTACAGCCCGGCCGTGGGGCTGCACGCCGCCGTCACGCTGCGCCTCGAGTT CCCGGCGG CCGGCCGCGCCCTGGCCGCCCTCAGCGTCCGCCCCTTTGCGCTGCGCCGCCTCAGCGCGG GCCTCTCG CTGCCTCTGCTCACCTCGGTGTGCCTGCTGCTGTTCGCCGTGCACTTCGCCGTGGCCGAG GCCCGTAC TTGGCACAGGGAAGGGCGCTGGCGCGTGCTGCGGCTCGGAGCCTGGGCGCGGTGGCTGCT GGTGGCGC TGACGGCGGCCACGGCACTGGTACGCCTCGCCCAGCTGGGTGCCGCTGACCGCCAGTGGA CCCGTTTC GTGCGCGGCCGCCCGCGCCGCTTCACTAGCTTCGACCAGGTGGCGCAGCTGAGCTCCGCA GCCCGTGG CCTGGCGGCCTCGCTGCTCTTCCTGCTTTTGGTCAAGGCTGCCCAGCAGCTACGCTTCGT GCGCCAGT GGTCCGTCTTTGGCAAGACATTATGCCGAGCTCTGCCAGAGCTCCTGGGGGTCACCTTGG GCCTGGTG GTGCTCGGGGTAGCCTACGCCCAGCTGGCCATCCTGCTCGTGTCTTCCTGTGTGGACTCC CTCTGGAG CGTGGCCCAGGCCCTGTTGGTGCTGTGCCCTGGGACTGGGCTCTCTACCCTGTGTCCTGC CGAGTCCT GGCACCTGTCACCCCTGCTGTGTGTGGGGCTCTGGGCACTGCGGCTGTGGGGCGCCCTAC GGCTGGGG GCTGTTATTCTCCGCTGGCGCTACCACGCCTTGCGTGGAGAGCTGTACCGGCCGGCCTGG GAGCCCCA GGACTACGAGATGGTGGAGTTGTTCCTGCGCAGGCTGCGCCTCTGGATGGGCCTCAGCAA GGTCAAGG AGTTCCGCCACAAAGTCCGCTTTGAAGGGATGGAGCCGCTGCCCTCTCGCTCCTCCAGGG GCTCCAAG GTATCCCCGGATGTGCCCCCACCCAGCGCTGGCTCCGATGCCTCGCACCCCTCCACCTCC TCCAGCCA GCTGGATGGGCTGAGCGTGAGCCTGGGCCGGCTGGGGACAAGGTGTGAGCCTGAGCCCTC CCGCCTCC AAGCCGTGTTCGAGGCCCTGCTCACCCAGTTTGACCGACTCAACCAGGCCACAGAGGACG TCTACCAG CTGGAGCAGCAGCTGCACAGCCTGCAAGGCCGCAGGAGCAGCCGGGCGCCCGCCGGATCT TCCCGTGG CCCATCCCCGGGCCTGCGGCCAGCACTGCCCAGCCGCCTTGCCCGGGCCAGTCGGGGTGT GGACCTGG CCACTGGCCCCAGCAGGACACCCCTTCGGGCCAAGAACAAGGTCCACCCCAGCAGCACTT AGTCCTCC TTCCTGGCGGGGGTGGGCCGTGGAGTCGGAGTGGACACCGCTCAGTATTACTTTCTGCCG CTGTCAAG GCCGAGGGCCAGGCAGAATGGCTGCACGTAGGTTCCCCAGAGAGCAGGCAGGGGCATCTG TCTGTCTG TGGGCTTCAGCACTTTAAAGAGGCTGTGTGGCCAACCAGGACCCAGGGTCCCCTCCCCAG CTCCCTTG GGAAGGACACAGCAGTATTGGACGGTTTCTAGCCTCTGAGATGCTAATTTATTTCCCCGA GTCCTCAG GTACAGCGGGCTGTGCCCGGCCCCACCCCCTGGGCAGATGTCCCCCACTGCTAAGGCTGC TGGCTTCA GGGAGGGTTAGCCTGCACCGCCGCCACCCTGCCCCTAAGTTATTACCTCTCCAGTTCCTA CCGTACTC CCTGCACCGTCTCACTGTGTGTCTCGTGTCAGTAATTTATATGGTGTTAAAATGTGTATA TTTTTGTA TGTCACTATTTTCACTAGGGCTGAGGGGCCTGCGCCCAGAGCTGGCCTCCCCCAACACCT GCTGCGCT TGGTAGGTGTGGTGGCGTTATGGCAGCCCGGCTGCTGCTTGGATGCGAGCTTGGCCTTGG GCCGGTGC TGGGGGCACAGCTGTCTGCCAGGCACTCTCATCACCCCAGAGGCCTTGTCATCCTCCCTT GCCCCAGG CCAGGTAGCAAGAGAGCAGCGCCCAGGCCTGCTGGCATCAGGTCTGGGCAAGTAGCAGGA CTAGGCAT GTCAGAGGACCCCAGGGTGGTTAGAGGAAAAGACTCCTCCTGGGGGCTGGCTCCCAGGGT GGAGGAAG GTGACTGTGTGTGTGTGTGTGTGCGCGCGCGCACGCGCGAGTGTGCTGTATGGCCCAGGC AGCCTCAA GGCCCTCGGAGCTGGCTGTGCCTGCTTCTGTGTACCACTTCTGTGGGCATGGCCGCTTCT AGAACGGG TGGCATCCCTGTGACCCCTCCCCAGTGCCTCTCCTGGCCCTGGAAGTTGCCACTCCAGTG CCCACCAG CCTTGTCCTAATAAAATTAAGTTGCATCATTTTGTCTGACTAGGTGTCCTTCTATAATAT TATGGGGT GGAGGGGGGTGGTATGGAGCAAGGGGCAAGTTGGGAAGACAACCTGTAGGGCCTGCGGGG TCTATTGG GAACCAAGCTGGAGTGCAGTGGCACAATCTTGGCTCACTGCAATCTCCGCCTCCTGGGTT CAAGCGAT TCTCCTGCCTCAGCCTCCCGAGTTGTTGGGATTCCAGGCATGCATGACCAGGCTCAGCTA ATTTTTGT TTTTTTGGTAGAGACGGGGTTTCACCATATTGGCCAGGCTGGTCTCCAACTCCTAATCTC AGGTGATC TACCCACCTTGGCCTCCCAAATTGCTGGGATTACAGGCGTGAACCACTGCTCCCTTCCCT GTCCTTTA ACTATAACGGTCCTAAGGTAGCGAAGGCTCCGGTGCCCGTCAGTGGGCAGAGCGCACATC GCCCACAG TCCCCGAGAAGTTGGGGGGAGGGGTCGGCAATTGAACCGGTGCCTAGAGAAGGTGGCGCG GGGTAAAC TGGGAAAGTGATGTCGTGTACTGGCTCCGCCTTTTTCCCGAGGGTGGGGGAGAACCGTAT ATAAGTGC AGTAGTCGCCGTGAACGTTCTTTTTCGCAACGGGTTTGCCGCCAGAACACAGGTAAGTGC CGTGTGTG GTTCCCGCGGGCCTGGCCTCTTTACGGGTTATGGCCCTTGCGTGCCTTGAATTACTTCCA CCTGGCTG CAGTACGTGATTCTTGATCCCGAGCTTCGGGTTGGAAGTGGGTGGGAGAGTTCGAGGCCT TGCGCTTA AGGAGCCCCTTCGCCTCGTGCTTGAGTTGAGGCCTGGCCTGGGCGCTGGGGCCGCCGCGT GCGAATCT GGTGGCACCTTCGCGCCTGTCTCGCTGCTTTCGATAAGTCTCTAGCCATTTAAAATTTTT GATGACCT GCTGCGACGCTTTTTTTCTGGCAAGATAGTCTTGTAAATGCGGGCCAAGATCTGCACACT GGTATTTC GGTTTTTGGGGCCGCGGGCGGCGACGGGGCCCGTGCGTCCCAGCGCACATGTTCGGCGAG GCGGGGCC TGCGAGCGCGGCCACCGAGAATCGGACGGGGGTAGTCTCAAGCTGGCCGGCCTGCTCTGG TGCCTGGC CTCGCGCCGCCGTGTATCGCCCCGCCCTGGGCGGCAAGGCTGGCCCGGTCGGCACCAGTT GCGTGAGC GGAAAGATGGCCGCTTCCCGGCCCTGCTGCAGGGAGCTCAAAATGAAGGACGCGGCGCTC GGGAGAGC GGGCGGGTGAGTCACCCACACAAAGGAAAAGGGCCTTTCCGTCCTCAGCCGTCGCTTCAT GTGACTCC ACGGAGTACCGGGCGCCGTCCAGGCACCTCGATTAGTTCTCGAGCTTTTGGAGTACGTCG TCTTTAGG TTGGGGGGAGGGGTTTTATGCGATGGAGTTTCCCCACACTGAGTGGGTGGAGACTGAAGT TAGGCCAG CTTGGCACTTGATGTAATTCTCCTTGGAATTTGCCCTTTTTGAGTTTGGATCTTGGTTCA TTCTCAAG CCTCAGACAGTGGTTCAAAGTTTTTTTCTTCCATTTCAGGTGTCGTGATCCGGAGGCGGC GGCACGGG CGGCGGCAGCGGCGGCATGGTGAACTCCAGTCGCGTGCAGCCTCAGCAGCCCGGGGACGC CAAGCGGC CGCCCGCGCCCCGCGCGCCGGACCCGGGCCGGCTGATGGCTGGCTGCGCGGCCGTGGGCG CCAGCCTC GCCGCCCCGGGCGGCCTCTGCGAGCAGCGGGGCCTGGAGATCGAGATGCAGCGCATCCGG CAGGCGGC CGCGCGGGACCCCCCGGCCGGAGCCGCGGCCTCCCCTTCTCCTCCGCTCTCGTCGTGCTC CCGGCAGG CGTGGAGCCGCGATAACCCCGGCTTCGAGGCCGAGGAGGAGGAGGAGGAGGTGGAAGGGG AAGAAGGC GGAATGGTGGTGGAGATGGACGTAGAGTGGCGCCCGGGCAGCCGGAGGTCGGCCGCCTCC TCGGCCGT GAGCTCCGTGGGCGCGCGGAGCCGGGGGCTTGGGGGCTACCACGGCGCGGGCCACCCGAG CGGGAGGC GGCGCCGGCGAGAGGACCAGGGCCCGCCGTGCCCCAGCCCAGTCGGCGGCGGGGACCCGC TGCATCGC CACCTCCCCCTGGAAGGGCAGCCGCCCCGAGTGGCCTGGGCGGAGAGGCTGGTTCGCGGG CTGCGAGG TCTCTGGGGAACAAGACTCATGGAGGAAAGCAGCACTAACCGAGAGAAATACCTTAAAAG TGTTTTAC GGGAACTGGTCACATACCTCCTTTTTCTCATAGTCTTGTGCATCTTGACCTACGGCATGA TGAGCTCC AATGTGTACTACTACACCCGGATGATGTCACAGCTCTTCCTAGACACCCCCGTGTCCAAA ACGGAGAA AACTAACTTTAAAACTCTGTCTTCCATGGAAGACTTCTGGAAGTTCACAGAAGGCTCCTT ATTGGATG GGCTGTACTGGAAGATGCAGCCCAGCAACCAGACTGAAGCTGACAACCGAAGTTTCATCT TCTATGAG AACCTGCTGTTAGGGGTTCCACGAATACGGCAACTCCGAGTCAGAAATGGATCCTGCTCT ATCCCCCA GGACTTGAGAGATGAAATTAAAGAGTGCTATGATGTCTACTCTGTCAGTAGTGAAGATAG GGCTCCCT TTGGGCCCCGAAATGGAACCGCTTGGATCTACACAAGTGAAAAAGACTTGAATGGTAGTA GCCACTGG GGAATCATTGCAACTTATAGTGGAGCTGGCTATTATCTGGATTTGTCAAGAACAAGAGAG GAAACAGC TGCACAAGTTGCTAGCCTCAAGAAAAATGTCTGGCTGGACCGAGGAACCAGGGCAACTTT TATTGACT TCTCAGTGTACAACGCCAACATTAACCTGTTCTGTGTGGTCAGGTTATTGGTTGAATTCC CAGCAACA GGTGGTGTGATTCCATCTTGGCAATTTCAGCCTTTAAAGCTGATCCGATATGTCACAACT TTTGATTT CTTCCTGGCAGCCTGTGAGATTATCTTTTGTTTCTTTATCTTTTACTATGTGGTGGAAGA GATATTGG AAATTCGCATTCACAAACTACACTATTTCAGGAGTTTCTGGAATTGTCTGGATGTTGTGA TCGTTGTG CTGTCAGTGGTAGCTATAGGAATTAACATATACAGAACATCAAATGTGGAGGTGCTACTA CAGTTTCT GGAAGATCAAAATACTTTCCCCAACTTTGAGCATCTGGCATATTGGCAGATACAGTTCAA CAATATAG CTGCTGTCACAGTATTTTTTGTCTGGATTAAGCTCTTCAAATTCATCAATTTTAACAGGA CCATGAGC CAGCTCTCGACAACCATGTCTCGATGTGCCAAAGACCTGTTTGGCTTTGCTATTATGTTC TTCATTAT TTTCCTAGCGTATGCTCAGTTGGCATACCTTGTCTTTGGCACTCAGGTCGATGACTTCAG TACTTTCC AAGAGTGTATCTTCACTCAATTCCGTATCATTTTGGGCGATATCAACTTTGCAGAGATTG AGGAAGCT AATCGAGTTTTGGGACCAATTTATTTCACTACATTTGTGTTCTTTATGTTCTTCATTCTT TTGAATAT GTTTTTGGCTATCATCAATGATACTTACTCTGAAGTGAAATCTGACTTGGCACAGCAGAA AGCTGAAA TGGAACTCTCAGATCTTATCAGAAAGGGCTACCATAAAGCTTTGGTCAAACTAAAACTGA AAAAAAAT ACCGTGGATGACATTTCAGAGAGTCTGCGGCAAGGAGGAGGCAAGTTAAACTTTGACGAA CTTCGACA AGATCTCAAAGGGAAGGGCCATACTGATGCAGAGATTGAGGCAATATTCACAAAGTACGA CCAAGATG GAGACCAAGAACTGACCGAACATGAACATCAGCAGATGAGAGACGACTTGGAGAAAGAGA GGGAGGAC CTGGATTTGGATCACAGTTCTTTACCACGTCCCATGAGCAGCCGAAGTTTCCCTCGAAGC CTGGATGA CTCTGAGGAGGATGACGATGAAGATAGCGGACATAGCTCCAGAAGGAGGGGAAGCATTTC TAGTGGCG TTTCTTACGAAGAGTTTCAAGTCCTGGTGAGACGAGTGGACCGGATGGAGCATTCCATCG GCAGCATA GTGTCCAAGATTGACGCCGTGATCGTGAAGCTAGAGATTATGGAGCGAGCCAAACTGAAG AGGAGGGA GGTGCTGGGAAGGCTGTTGGATGGGGTGGCCGAGGATGAAAGGCTGGGTCGTGACAGTGA AATCCATA GGGAACAGATGGAACGGCTAGTACGTGAAGAGTTGGAACGCTGGGAATCCGATGATGCAG CTTCCCAG ATCAGTCATGGTTTAGGCACGCCAGTGGGACTAAATGGTCAACCTCGCCCCAGAAGCTCC CGCCCATC TTCCTCCCAATCTACAGAAGGCATGGAAGGTGCAGGTGGAAATGGGAGTTCTAATGTCCA CGTATGAT TCTAGAGTCGACCTGCAGAAGCTTGCCTCGAGCCTGTGCCTTCTAGTTGCCAGCCATCTG TTGTTTGC CCCTCCCCCGTGCCTTCCTTGACCCTGGAAGGTGCCACTCCCACTGTCCTTTCCTAATAA AATGAGGA AATTGCATCGCATTGTCTGAGTAGGTGTCATTCTATTCTGGGGGGTGGGGTGGGGCAGGA CAGCAAGG GGGAGGATTGGGAAGACAATAGCAGGCATGCTGGGGATGCGGTGGGCTCTATGGTAACTA TAACGGTC CTAAGGTAGCGAAGTCGACCGAATCGTTGTCCCTTGTCACAGCCATTGAGAATTTTGGCA GGGAGCAT GTTCTTAGAGCATTTTTAGGCTCTGCGGGACATAACAGCTCTGCCTCAGAGCACATGCCT TTCTCAGC TCCTGAAAGCCACTGATCAAATTGGAACATTTTGTACCTTAGGGATGAGGATATCAACTC TCCCAGCC ACTTAGAGGGATAAATGTGATGATGCATTCAATTGTGACTACATCTGATCCCAACTGTTG CTTCAGCT GCTCTCCTATAGCACATGGCGGGAGGCGTGCATCCCAGTAGCTACCTCCCCACTTTTGGG GAGATGTG GTTCCATCCATGAAACCTGGGTACCCGCCTACCAGGTCCTGGCCTATCAGGTGGCAGGGT CTGGTCAA AGAAGGGCATGTGTGGTCTTCAGCAAGGGAGACAGGACGGTGGTGCAGAGCGTCTAGACC CTCAGGGC AAGTCTCCCCCACACCTGCTCCCGGGGCAGTTGTCTTTGTGACCTCCCATCCCCCTCTGT TTCATCCT CTATAAAATGAGGGGCTGAGCCCCAAAATAACAGGCTTCTTTGCCATGATGCAAAACTGC TGAATCTT TCTTTCTGACACACAAGGCATCGAGCAGCCTCTGAAAGAACCAAAGCCACTAGCAGGCTT CCTGACTT GGGTTTGTAGGTACTGAATACTCCCTTGAAAAATAAAAACATAGAGGCACTTTTCTCCTG GCTGTTTA TTACAGAACGAAGAAAAAACACACTGGCTTGAAACAGACGCCAGATTTCAAATGTAGAGG TGAAATAC GAGGTGGCAATTAAAATGTGATTACAGAAAGTCTGGACACTGAGAAAAGTTTACAGGACA GTGGGTGT GGGTTTTCTATAACAGACACTTAAATATACATGACGATAATTGCAGATAGAAACCATCAA AGACAAAC CCCAAATCAACTAATAATGTTTACAGATGTTCCCCCCCAAACCACAGAGCCTTACATCAA AACAAATA CTGAAAGGCTTTAAACCAGGAACAGCTCGCCTTAACCCCACGAGGGTGCACACAAGCTGG GCTTTTTC TCTCGGTCTGAATGGTAAAGGGAGGAGGATACTCTAGCTCCTCCAGGTGGATTGCTGAGA CAGGGCTC GGCTCACACACTGTCTCTGCGCCTCTCCCAAATCTGGAGAACTCTCCCAGCCTCCTGGTA AAGTGTCT CTGTGGGGCACTTAACGATAAAACAGCTTCTGCTGTAAAGCTCATTAGGAAAGAGCTAGC GGAGACTG AAAGGTTCGCAAAAGAGATTAAGAATCACACAAGGCAATAGGATTTTTAGTGAACATAGA AATAAATG GCCAAGTGGTTTTCTATTTGGCATTTGTCAACTTGCACAACAACTCTTGGTCATATCCAC ATTGCTCA TTGCATTAAAACCATAAGCGACTCAGCCACCTAGCTTAACAAGGTATCACTGGAGCAAAC AACACGGT CTGCATATTTGTAACATTGTATAATAAACACAAAACAATGCATAGTAAACACAACTCTAC TGAAACAA AAGCCGTCGCTTTATTTACAAAGTCACAAAATGAAGTATAAATACTTCTGTCATTAATGT TTAGGAAA ACCATTTACAAAATTTTCAAATATGTACACGTAGCTTGAAAAATCACCAGCTTTCCATTT TGTCACAG GTAGAGAGAGGGATAAGCATGGGCTGACAACACCACTCAAATTGTAACGGGAGACAACTG CGGGTATG GATCGACACCACTTCCTAGAGTGATGTCACCATGGGGGTTTCTATGGGCATCCTGCTCAG ATTTAAAG TGCCCCAGCATCCTGGGTGACTTGCCCAGAATTCTGGGCTGTGGCATTTTGAGCAGCAGC ATGCTGTT CCAAAATGTCGTCGATCAGCCTCAAGTTGCACACCCAGTCTTCATCTGGGCTCACACAGG AGCCTTTC AAGAGAGCTTCAATGAAATCTACCTCATTGCAGTCAGGTGACGAAATCAGATCATTTAGT GGGGGTTG GGGCTGGCGCAAAAAGTCGGCAGGTGGCAGCTCAGGGGGAATATCCGTTCTGTCGAACGG ACCTGGGA ACTGGCTGGCAGCAACGGCAGAAGCAGCAGCAGCGGTGGCAGCAGCAGCCACATAGCTTG GTGGCTCG ATGCCCTGTATGGGGCTCAGGGGACTAAAGCTGGCCATACCCTGCTGGAGGAACTTGGTG GTGTTTGC TACAGGCACCGGGCCCTGTACCGGGCTCTGCCTGAGGCTCTGGCTGCCCAGCAGGCTGAA GCTGGGGT TGTTGGCCAGGGGCACTTGTGTTCCCATCGCAGCGGGCACTTGTGCCTCCCAATCAGATG GCCTCTGA AGGCAGGCCTGGCCAGAAGGTGAGTGCTGCTGAACGCTATTATCCACTTGGCTGAGGGGT GTTTTCCC CGAAACTGCTGTGGTCACAGCTGCTGCCGCTGTGACCCATGCAGCATTGTTGAACGCAGT GGGCATTC TTGGCACACTAGGCCGTCTGAGCTGGTGGGGACTCAAGGACTGGGTGCCCAGGGAGCTGG GACAGAAC CCAGGCAGGGGCACTTCTGGTGGGGTGGCCTTGGGGCTCTGCATATGCTGGCAGACAGAG TCAAGTCT GCCCAGGGGAGTCTGGCCTGAGTGTGAGAGGATGGGACACTGGGGGCTGGAGGTGAAAAT TCCTTGCC GCTTCCCCAGAGTTGGTGAGATCACTCCCATGCCCTCGCAGCTCTGGTGCCTGGTGAGTG GGATCATT CCTGGACTCAGATTGTTCTGAAGAAGCCCAGTTCTGGGTGGCATCAAGTGCTTGCTAGAT GGGGGGCT TGCCTTGATCCGGCTACACTTGGAGGTGACTTGTTCTTGGACGGCTACATACAGAAAGAG AGAAGTGG GGATGAGTTCCAAAGGCATCCTCGACTTCGGCTGTGGCCACCGGAGGGTAGCTCCTGGCC CAACACGG ACTTCTCACCTCCCGCCCTTGGCTCTCTACTGAGCTCCCCCCTGCTCCCCAATTCCTCGC CATTCCCC TCATTTCTCTGCCCTCAGCCTGGACTGCAGTTCTTCTGGGAAGCTGCCCCAACTCCCTAG GTCTGTGC TCACCAAGAGCAGATCACACTGGACTGAAATGCCAGCTGATTTGTCTCTTCAAGAAAATT GGAAGCTC CTGGAGGTCAGGGTCCATGTCTGCTTTTACACTCAGTGCTCTGTATGCAGGCCTGGCACT GCCCACCC TTTGACAGGTGGTGCATATTTTGTAGAAGGAAGGAAGGGGCCAGGTGGGGTGGGCTGGGC TGGTGGCG GGAGCTAGCTCAGCCTCTTAGATTCTCTACCCGATGGATGTGACCTGGGACAGCAAGTGA GTGTGGTG AGTGAGTGCAGACGGTGCTTTGTTCCCCTCTTGTCTCATAGCCTAGATGGCCTCTGAGCC CAGATCTG GGGCTCAGACAACATTTGTTCAACTGAACGGTAATGGGTTTCCTTTCTGAAGGCTGAAAT CTGGGAGC TGACATTCTGGACTCCCTGAGTTCTGAAGAGCCTGGGGATGGAGAGACACGGAGCAGAAG ATGGAAGG TAGAGTCCCAGGTGCCTAAGATGGGGAATACATCTCCCCTCATTGTCATGAGAGTCCACT CTAGCTGA TATCTACTGTGGCCAATATCTACCGGTACTTTTTTGGGGTGGACACTGAGTCATGCAGCA GTCTTATG GTTTACCCAAGGTCAGGTAGGGGAGACAGTGCAGTCAGAGCACAAGCCCAGTGTGTCTGA CCCACCCA AGAATCCATGCTCGTATCTACAAAAATGATTTTTTCTCTTGTAATGGTGCCTAGGTTCTT TTATTATC ATGGCATGTGTATGTTTTTCAACTAGGTTACAATCTGGCCTTATAAGGTTAACCTCCTGG AGGCCACC AGCCTTCCTGAAACTTGTCTGTGCTGTCCCTGCAACTGGAGTGTGCCTGATGTGGCACTC CAGCCTGG ACAAGTGGGACACAGACTCCGCTGTTATCAGGCCCAAAGATGTCTTCCATAAGACCAGAA GAGCAATG GTGTAGAGGTGTCATGGGCTACAATAAAGATGCTGACCTCCTGTCTGAGGGCAAGCAGCC TCTTCTGG CCCTCAGACAAATGCTGAGTGTTCCCAAGACTACCCTCGGCCTGGTCCAATCTCATCCCA CTGGTGCG TAAGGGTTGCTGAACTCATGACTTCTTGGCTAGCCTGCAACCTCCACGGAGTGGGAACTA CATCAGGC ATTTTGCTAACTGCTGTATCCTAGGCCAATAAATGTTGATCACATTTATAGCTGCCATGG TAGGGTGG GGACCCCTGCTATCTATCTGTGGAGGCTCTGGGAGCCCCTGACACAAACTTTCTGAAGCA GAGCCTCC CCAACCCCTTTTCCATTCCCTATACCTGACAGATGGCCCAGGAACCCATTAGAAATGGAA GGTCACTG CAGCAGTATGTGAATGTGCGTGTGGGAGAAGGGCAGGATCAGAGCCCTGGGGGTGTGGCA GCCCCCAA GTGATTCTAATCCAGATCCTAGGGTTGTTTCCCTGTCCCATTGAAATAGCTGCTTTAAGG GGCCTGAC TCAGGGAAATCAGTCTCTTGAATTAAGTGGTGATTTTGGAGTCATTTAGACCAGGCCTTC AATTGGGA TCCACTAGTTCTAGAGCGGCCGGGCCCAGGGAACCCCGCAGGCGGGGGCGGCCAGTTTCC CGGGTTCG GCTTTACGTCACGCGAGGGCGGCAGGGAGGACGGAATGGCGGGGTTTGGGGTGGGTCCCT CCTCGGGG GAGCCCTGGGAAAAGAGGACTGCGTGTGGGAAGAGAAGGTGGAAATGGCGTTTTGGTTGA CATGTGCC GCCTGCGAGCGTGCTGCGGGGAGGGGCCGAGGGCAGATTCGGGAATGATGGCGCGGGGTG GGGGCGTG GGGGCTTTCTCGGGAGAGGCCCTTCCCTGGAAGTTTGGGGTGCGATGGTGAGGTTCTCGG GGCACCTC TGGAGGGGCCTCGGCACGGAAAGCGACCACCTGGGAGGGCGTGTGGGGACCAGGTTTTGC CTTTAGTT TTGCACACACTGTAGTTCATCTTTATGGAGATGCTCATGGCCTCATTGAAGCCCCACTAC AGCTCTGG TAGCGGTAACCATGCGTATTTGACACACGAAGGAACTAGGGAAAAGGCATTAGGTCATTT CAAGCCGA AATTCACATGTGCTAGAATCCAGATTCCATGCTGACCGATGCCCCAGGATATAGAAAATG AGAATCTG GTCCTTACCTTCAAGAACATTCTTAACCGTAATCAGCCTCTGGTATCTTAGCTCCACCCT CACTGGTT TTTTCTTGTTTGTTGAACCGGCCAAGCTGCTGGCCTCCCTCCTCAACCGTTCTGATCATG CTTGCTAA AATAGTCAAAACCCCGGCCAGTTAAATATGCTTTAGCCTGCTTTATTATGATTATTTTTG TTGTTTTG GCAATGACCTGGTTACCTGTTGTTTCTCCCACTAAAACTTTTTAAGGGCAGGAATCACCG CCGTAACT CTAGCACTTAGCACAGTACTTGGCTTGTAAGAGGTCCTCGATGATGGTTTGTTGAATGAA TACATTAA ATAATTAACCACTTGAACCCTAAGAAAGAAGCGATTCTATTTCATATTAGGCATTGTAAT GACTTAAG GTAAAGAGCAGTGCTATTAACGGAGTCTAACTGGGAATCCAGCTTGTTTGGGCTATTTAC TAGTTGTG TGGCTGTGGGCAACTTACTTCACCTCTCTGGGCTTAAGTCATTTTATGTATATCTGAGGT GCTGGCTA CCTCTTGGAGTTATTGAGAGGATTATAAGACAGTCTATGTGAATCAGCAACCCTTGCATG GCCCCTGG CGGGGAACAGTAATAATAGCCATCATCATGTTTACTTACATAGTCCTAATTAGTCTTCAA AACAGCCC TGTAGCAATGGTATGATTATTACCATTTTACAGATGAGGAACCTTTGAAGCCTCAGAGAG GCTAACAG ACATACCCTAGGTCATACAGTTATTAAGAGAAGGAGCTCTGTCTCGAACCTAGCTCTCTC TCTCTCGA GTAATACCAGTTAAAAAATAGGCTACAAATAGGTACTCAAAAAAATGGTAGTGGCTGTTG TTTTTATT CAGTTGCTGAGGAAAAAATGTTGATTTTTCATCTCTAAACATCAACTTACTTAATTCTGC CAATTTCT TTTTTTTGAGACAGGGTCTCACTCTGTCACCTAGGATGGAGTGCAGTGGCACAATCACTG CTCACTGC AGCCTCGACTTCCCGGGCTCGGGTGATTCTCCCCAGGCTCAGGGGATTCTCCCACTTCAG CCTCCCAA GTAGCTGGGACTACAGGTGCGCACCACCATCCCTGGCTAATATTTGTACTTTATTTTATT TATTTATT TATTTATTTTTTGAGATGGAGTTTCGCTCTTGTTGCCCAAATGAATTGCCTCTTATTTAA TTTCGTCT GATGATACATTTTGTTTTTATTTTGTAAAAAATTATTTTTTTTCTTTTTGGAGACAGGGT CTTGCTCT GTTGCCCAGGCTGGTCACAAACTCCTGACCTCAAGCAATCCTCCTGCCTTAGCCTCCCAA AATGCTGG GATTACAGGCGTGACGACCTCGCCCGGCCTTGTATTATGATACATTTTGAACAACTACAA GTAGACTT GGTATAATGAACCTGCACGTACCCATTGCCAAGTTCTGACAACTGTCTGTCTATAGCCAA TTATGCAT TTCTTAAATTAGAACCCCCCCAATATACCCAAATATATATATATGTGTGCATATATATAG TAAGTTGT AACAAAGTTGTGAATTCATACCTGAAGTATCTCAAGTGATGCAAGTTTTATGAATTTTTG TTTATGCC TTTTGGGAAGAGTTGTATTGACAAATTTTTTATGCTTAAAGTAAACCATAAATCAAAAAA ATAAAATC TAGGATGCAATAAAACAAAACAACTTCTTGACATAAGTATGGTATGTAAATCTGTTTTGA TTGGAAAT CAATTTGTTATATTGCCAGAATTCCTGTTTTAGAATACATCTCTGCTGATCTGTCTGTAT TCTTAGAC TGCATATCTGGGATGAACTCTGGGCAGAATTCACATGGGCTTCCTTTGAAATAAACAAGA CTTTTCAA ATTCTTAGTCGATCTGCAGAACCTGTAGCCAGGCACTGAACCATTTTGATAGATGCAGTA ATCGTTGC AAGTGTATATTTCAAGGGAGTTCTGGCTGGGTCCTAGTTTATGCTTGTGGCAGAAGCAGT GAGTAACT GGGAGGAAGTTGGTGAGTAAGCTTCAAGGAAGAAGTCATTTTTAGTACTCTGGATCTTCC TGATTTTA AAGCACTACAAAATGGTGCATTTTCATTCTTGTCAAGTGATAACAGATATATTCTGATGA GCCTGAAA TGAATATATATTGTATCATTTTTATAATATCTAGCAAGGTTTGTATTTTCCTAGAACTTG AACTAAAT TTCAGTTCATAAAATTTATAAAATACTTAGTTGTTGTAAAATATTTTTGGAATGTTCACA TAGGTGAC ACACAAATGTCCCATTTTCATTCTTTCTATAGTAAATATGTTCTGATATGTGAAGGTTTA GCAGATGC ATCAGCATTTAATCCTAGAGGATCTGGCATAATCTTTTCCCCCAAGAATAGAAATTTTTT CTGCTTAT GAAAGTAGTACATGTTTCTTTAAAAACAAATCAATATTGACTTCTGCCTGCTGTATAGCA CTATGCCT CCACCTGGCCATGACCAGGGGCATGTCCTGGTCCACCTACCTGAAAATGTTTGCAACCAG CCTCCTGG CCATGTGCACAGGGGCTGAAGTTGTCCCACAGGTATTACGGGCCAACCTGACAATACATG AAGTTCCA CCAAAGTCTGAGAACTCAGAACTGAGCTTTGGGGACTGAAAGACAGCACAAACCTCAAAT TTCTCAGC ACTGGAAACCTCAAAATATAACTGAATTCCATAAATAAGATTTTAAGTCTTAAATATGTA TTTTTAAA TGTATTAAAAGTCAAGCTGCTTGTATTTAAGCACCTAATACAATGCTTAGGTTGTAAAAG GAGATGCT CAATAGGTACTAACTGATATATTGAGATTTAATTATGGTTTGACCAATATTTATTGGAAA CCGCCAAA GCTTAAATCATCAGCTTCTTGAATGTGATTTGAAAGGTAATTTAGTATTGAATAGCATGT GAGCTAGA GTATTTCATTCTTTCTGGTTTATTTCTTCAAATAGACTTTGAATATAATGGTGAATGGGT ATTATAAA TTAACTAATAAAAATGACATTGAAAATGAAAAAATATATATATTAAAGTGTAGAAAGTGA CCAGGCGT GGTGGCTCACACCTGTAATCCAAGCACCTTGGGAGGCTGAGGCAGGAGGATCTCTTGATC CCAGGAGT TCAAGACCAGCCTGGGCAACATAGCGAGACTTCGTCTCTAAAAAAAAAAAAGAGAGAGAA AAAAATTT TTTTTATTTAAAAAAAGTGTAGAAAGTGTCAAGACCCCACTTCTTACCATTATTTGGTAT ATTTCTCT ATACCCACCCACCCTTCCTCCTTACTCCCTCCCTCCCTTCCCAATCTTTTTATCTTTTTG TATTCTGA TTTTTTGTTTGTATATTTTGCTTTAATTTAATGTATCCTTTAAAAATTTCCCATACATTT TATATGTA TATATAAAAACGCATGCTGCCAAAGATAATTTATAAGAAAGACCATTGAATTTTTTTAAA AGTGATAT ATATTCATTGAAAAAAATTTAGAATATATAGCAAAGCAATAAAGAACTAAATAAAATTGC TGTAACTC CTCTTTCAAAGATAAGTGCTTTTATGATTTTGTTGTATTTTTTTCTGTATATAGGTACAT ATATAGTA TTTATAAAGCTGTACTCATAGTACATTTTCACATCACAGGTACCATATCAGTGTTATTAA ATATTTTG TATGCCAGGGGCTAGACATACCAAGACAACCAATATGTGGTTCTACTTAAATAATATTAG AGTATCTT TTATGATGACACTTCATGAGTTGACTATAATAATCTTAGACTTCTAAGAGTTTGGGTTTT CAAAAGAT CACTTAGCTTTTTTGGGTGATTTTTCCCCCTTACTGTGAGATGAGAGAGGCTGTTTGGAT TTGGGATT GGGGTAGCGGGGACAGCAACTTTTCTTTTCTTTTTCTTTTTTATTTTGAGGTAGGGTATT GCTGTGTC ACCCAGGCTGGAGTGCAGTGGTGTGATCTCGGCTCACTGCAACCTCCACCTCCCGGGCTC AGGTGATC CTCCTGCTTCAGCCTCCCAGTAACTGGGACTACAGGCGCGTGCCACATGCCTGGCTAATT TTGTATTT TTAGTAGAGATGGGGTTTCACCATGTTGGCCAGGCTGGTCTCTAACTCCTGACCTCAGGT GATACGCC CACCTGGGCCTCCCAAAATACTGGGATTACAGGCATGAGCCGCTGCATCAGCCAGCAGTT TTTCTTGT GGTTTTTTTTGTTTGTTTTGTTTTGTTTTGTTTTTGAGATAGGGTCTTACTCTGTTGTCC ACGCTGGA GTGCTGTGGTATGATCGTAGCTCACTGCAGCCTCAAACTCCTGGGCTCAAGTGATTCCTT CTGCCTCC GCCTCCCGAGTAGCTGGGACTACAGGTATGCACCACCATACCTGGCAAATTTTTACAAAG TTTTTTGT AGGGACGGGGTCTTGCTACATTCCCCATGTCGGTCTTGAACTCCTGGCCTCAAGCAACTC TCCTGTCT CAGCCTCCCAAAGCACTGGGATTACAAGTGTGAGCCACCACACCATGCCAGTTTTTCCTG TTCAGTGT GATATTTTATCTTGTTAGACTACAGTGTGTTAAAACTTGTTTTACTAAATTTTCAAACAT ACTCAAAA GTGGAGAGAATAGTATAATGAATACCCGTATGTTCATCACCCATGTTTAGAATATTATTA AATATAAA GATTTTGCTGCGTTTGTCTTAGCTCTTTAAAATTTTTCTTTTTCTCTTTGTGACCTAAAG GAAATTCC ATATCTTATCACTTTACTTCTACATTCTTGACTAAGATGACTAAGACATATAGTTACATG GTTTTTTG TTTTGTTTTTGTTTTTTAAAGACGAAATCTCGCTCTTGTCCCCCAGGCTGGAGTGCAATG GTGCCATC TCAGCTCAGTGCAACCTCTGCCTTCTGGGTACAAGCGATTCTCCTGCCTCAGCCTCCCAA GTAGCTGG GATTACAGGCTCCTGCCACCACGCCTGGCTAATTTTTGTATTTTTAGTAGAGACGGCGGG GGGAGGTT TCACCATGTTGACAAGGCTGGTCTGGAACTCCTGACCTCAGGTGATCCACCCGCCTCGGC CTCCCAAA GTGCTGGGATTACAGGCGTGAGCCACCGCGCCCAGCCTGTTTTTTTGTTTGTGTGTTTTG TTTTTTTT GAGACAGAGTCTTGCTCTGTTTCCCAGGCTGGAGTGAAGTGGTGCCATCTCAGCTCAGAG ACAGAGTC TTGCTCTGTTTCCCAGGCTGGAGTGAAGTGGTGCCATCTTGGCTCACTGCAACCTTCACC TCCCAGGT TCAAGTGATTCTCCTGCCTCAGCCTCCCAAGTAGCTGGGACTACAGGCATGTGTCACCAC ACCCGGCT AATTTTTTTGTATTTTTAGTAGAGACGGGATTTCACCGTGTTGCCCAGGCTGGTCTCGAA CTCCTGAG CTCAGGCAGTCTGCCTGCCTCAGCCTCCCAAAGTGCTGGGATTACACGTGTGAACCAACC CGCCCGGC CTGTTGTTTTCTTACATAATTCATTATCATACCTACAAAGTTAACAGTTACTAATATCAT CTTACACC TAAATTTCTCTGATAGACTAAGGTTATTTTTTAACATCTTAATCCAATCAAATGTTTGTA TCCTGTAA TGCTCTCATTGAAACAGCTATATTTCTTTTTCAGATTAGTGATGATGAACCAGGTTATGA CCTTGATT TATTTTGCATACCTAATCATTATGCTGAGGATTTGGAAAGGGTGTTTATTCCTCATGGAC TAATTATG GACAGGTAAGTAAGATCTTAAAATGAGGTTTTTTACTTTTTCTTGTGTTAATTTCAAACA TCAGCAGC TGTTCTGAGTACTTGCTATTTGAACATAAACTAGGCCAACTTATTAAATAACTGATGCTT TCTAAAAT CTTCTTTATTAAAAATAAAAGAGGAGGGCCTTACTAATTACTTAGTATCAGTTGTGGTAT AGTGGGAC TCTGTAGGGACCAGAACAAAGTAAACATTGAAGGGAGATGGAAGAAGGAACTCTAGCCAG AGTCTTGC ATTTCTCAGTCCTAAACAGGGTAATGGACTGGGGCTGAATCACATGAAGGCAAGGTCAGA TTTTTATT ATTATGCACATCTAGCTTGAAAATTTTCTGTTAAGTCAATTACAGTGAAAAACCTTACCT GGTATTGA ATGCTTGCATTGTATGTCTGGCTATTCTGTGTTTTTATTTTAAAATTATAATATCAAAAT ATTTGTGT TATAAAATATTCTAACTATGGAGGCCATAAACAAGAAGACTAAAGTTCTCTCCTTTCAGC CTTCTGTA CACATTTCTTCTCAAGCACTGGCCTATGCATGTATACTATATGCAAAAGTACATATATAC ATTTATAT TTTAACGTATGAGTATAGTTTTAAATGTTATTGGACACTTTTAATATTAGTGTGTCTAGA GCTATCTA ATATATTTTAAAGGTTGCATAGCATTCTGTCTTATGGAGATACCATAACTGATTTAACCA GTCCACTA TTGATAGACACTATTTTGTTCTTACCGACTGTACTAGAAGAAACATTCTTTTACATGTTT GGTACTTG TTCAGCTTTATTCAAGTGGAATTTCTGGGTCAAGGGGAAAGAGTTTATTGAATATTTTGG TATTGCCA AATTTTCCTCTAAGAAGTTGAATCATTTTATACTCCTGATGTTATATGAGAGTACCTTTC TCTTCACA ATTTGTCTCTTTTTTTTTTTTTTTTGAGACAAGGTCTCTGTTGCCCAGGCTGGGGTGCAG TGCAGCAG AATGATCACAGTTCACTGCAGTCTCAACCTCCTGGGTTCAAGCGATCCTTCCACCTCAGC CTCCTGAG TAGCTGGGACTATAGGTGTGCGCCACCACTCCCAGCTAATATTTTTATTTTGTAGAAACA GGGTTCGC CATGTTACCCAGCCTCCCAAAGTGCTGGGATTACAGGCATGAGCCACTGGCCCAGTTTCT ACAGTCTC TCTTAATATTGTATATTATCCAGAAAATTTCATTTAATCAGAACCTGCCAGTCTGATAGG TGAAAATG GTATCTTGTTTTTATTTGCATTTAAAAAAAATTATGATAGTGGTATGCTTGGTTTTTTTG AAGGTATC AAATTTTTTACCTTATGAAACATGAGGGCAAAGGATGTGATACGTGGAAGATTTAAAAAA AATTTTTA ATGCATTTTTTTGAGACAAGGTCTTGCTCTATTGTCCAGGCTGGAGTGCAGTGGCACAAT CACAGTTC ACTCCAGCCTCAACATCCTGCACTAAAGTGATTTTCCCACCTCACCTCTCAAGTAGCTGG GACTACAG GTACATGCTACCATGCCTGGCTAATTTTTTTTTTTTTGCAGGCATGGGGTCTCACTATAT TGCCCAGG TTGGTGTGGAAGTTTAATGACTAAGAGGTGTTTGTTATAAAGTTTAATGTATGAAACTTT CTATTAAA TTCCTGATTTTATTTCTGTAGGACTGAACGTCTTGCTCGAGATGTGATGAAGGAGATGGG AGGCCATC ACATTGTAGCCCTCTGTGTGCTCAAGGGGGGCTATAAATTCTTTGCTGACCTGCTGGATT ACATCAAA GCACTGAATAGAAATAGTGATAGATCCATTCCTATGACTGTAGATTTTATCAGACTGAAG AGCTATTG TGTGAGTATATTTAATATATGATTCTTTTTAGTGGCAACAGTAGGTTTTCTTATATTTTC TTTGAATC TCTGCAAACCATACTTGCTTTCATTTCACTTGGTTACAGTGAGATTTTTCTAACATATTC ACTAGTAC TTTACATCAAAGCCAATACTGTTTTTTTAAAACTAGTCACCTTGGAGGATATATACTTAT TTTACAGG TGTGTGTGGTTTTTTAAATAAACTCCTTTTAGGAATTGCTGTTGGGACTTGGGATACTTT TTTCACTA TACATACTGGTGACAGATACCCTCTCTTGAGCTACATCGGTTTGTGGGGAGTCAAAAGTC CTTTGGAG CTAGGTTTGACAAATAAGGTGGGTTAACACTTGTTTCCTAGAAAGCACATGGAGAGCTAG AGTATTGG CGAATTGAAGAAATCCCCCTTTTTTTTTAACACACTTAAGAAAGGGGACTGCAGGTATAC TCAAGAGA GTAAGTCGCACCAGAAACCACTTTTGATCCACAGTCTGCCTGTGTCACACAATTGAAATG CATCACAA CATTGACACTGTGGATGAAACAAAATCAGTGTGAATTTTAGTAGTGAATTTCATTCATAA TTTGATCG TGCAAACGTTTGATTTTTATTACTTTAGACTATTGTTTCTGATTTTATGTTGGGTTGGTA TTTCCTGT GAGTTACTGTTTTACCTTTAAAATAGGAATTTTTCATACTCTTCAAAGATTAGAACAAAT GTCCAGTT TTTGCTGTTTCATGAATGAGTCCTGTCCATCTTTGTAGAAACTCGCCTTATGTTCACATT TTTATTGA GAATAAGACCACTTATCTACATTTAACTATCAACCTCATCCTCTCCATTAATCATCTATT TTAGTGAC CCAAGTTTTTGACCTTTTCCATGTTTACATCAATCCTGTAGGTGATTGGGCAGCCATTTA AGTATTAT TATAGACATTTTCACTATCCCATTAAAACCCTTTATGCCCATACATCATAACACTACTTC CTACCCAT AAGCTCCTTTTAACTTGTTAAAGTCTTGCTTGAATTAAAGACTTGTTTACGGTATCGATA AGCTTGAT ATCAAAACGCCAACTTTGACCCGGAACGCGGAAAACACCTGAGAAAAACACCTGGGCGAG TCTCCACG TAAACGGTCAAAGTCCCCGCGGCCCTAGACAAATATTACGCGCTATGAGTAACACAAAAT TATTCAGA TTTCACTTCCTCTTATTCAGTTTTCCCGCGAAAATGGCCAAATCTTACTCGGTTACGCCC AAATTTAC TACAACATCCGCCTAAAACCGCGCGAAAATTGTCACTTCCTGTGTACACCGGCGCACACC AAAAACGT CACTTTTGCCACATCCGTCGCTTACATGTGTTCCGCCACACTTGCAACATCACACTTCCG CCACACTA CTACGTCACCCGCCCCGTTCCCACGCCCCGCGCCACGTCACAAACTCCACCCCCTCATTA TCATATTG GCTTCAATCCAAAATAAGGTATATTATTGATGATGTTTAAACATTAAGAATTAATTCGAT CCTGAATG GCGAATGGACGCGCCCTGTAGCGGCGCATTAAGCGCGCGGGTGTGGTGGTTACGCGCAGC GTGACCGC TACACTTGCCAGCGCCCTAGCGCCCGCTCCTTTCGCTTTCTTCCCTTCCTTTCTCGCCAC GTTCGCCG GCTTTCCCCGTCAAGCTCTAAATCGGGGGCTCCCTTTAGGGTTCCGATTTAGAGCTTTAC GGCACCTC GACCGCAAAAAACTTGATTTGGGTGATGGTTCACGTAGTGGGCCATCGCCCTGATAGACG GTTTTTCG CCCTTTGACGTTGGAGTCCACGTTCTTTAATAGTGGACTCTTGTTCCAAACTGGAACAAC ACTCAACC CTATCGCGGTCTATTCTTTTGATTTATAAGGGATGTTGCCGATTTCGGCCTATTGGTTAA AAAATGAG CTGATTTAACAAAAATTTTAACAAAATTCAGAAGAACTCGTCAAGAAGGCGATAGAAGGC GATGCGCT GCGAATCGGGAGCGGCGATACCGTAAAGCACGAGGAAGCGGTCAGCCCATTCGCCGCCAA GCTCTTCA GCAATATCACGGGTAGCCAACGCTATGTCCTGATAGCGGTCCGCCACACCCAGCCGGCCA CAGTCGAT GAATCCAGAAAAGCGGCCATTTTCCACCATGATATTCGGCAAGCAGGCATCGCCATGGGT CACGACGA GATCCTCGCCGTCGGGCATGCTCGCCTTGAGCCTGGCGAACAGTTCGGCTGGCGCGAGCC CCTGATGC TCTTCGTCCAGATCATCCTGATCGACAAGACCGGCTTCCATCCGAGTACGTGCTCGCTCG ATGCGATG TTTCGCTTGGTGGTCGAATGGGCAGGTAGCCGGATCAAGCGTATGCAGCCGCCGCATTGC ATCAGCCA TGATGGATACTTTCTCGGCAGGAGCAAGGTGAGATGACAGGAGATCCTGCCCCGGCACTT CGCCCAAT AGCAGCCAGTCCCTTCCCGCTTCAGTGACAACGTCGAGCACAGCTGCGCAAGGAACGCCC GTCGTGGC CAGCCACGATAGCCGCGCTGCCTCGTCTTGCAGTTCATTCAGGGCACCGGACAGGTCGGT CTTGACAA AAAGAACCGGGCGCCCCTGCGCTGACAGCCGGAACACGGCGGCATCAGAGCAGCCGATTG TCTGTTGT GCCCAGTCATAGCCGAATAGCCTCTCCACCCAAGCGGCCGGAGAACCTGCGTGCAATCCA TCTTGTTC AATCATGCGAAACGATCCTCATCCTGTCTCTTGATCAGAGCTTGATCCCCTGCGCCATCA GATCCTTG GCGGCAAGAAAGCCATCCAGTTTACTTTGCAGGGCTTCCCAACCTTACCAGAGGGCGCCC CAGCTGGC AATTCCGGTTCGCTTGCTGTCCATAAAACCGCCCAGTCTAGCTATCGCCATGTAAGCCCA CTGCAAGC TACCTGCTTTCTCTTTGCGCTTGCGTTTTCCCTTGTCCAGATAGCCCAGTAGCTGACATT CATCCGGG GTCAGCACCGTTTCTGCGGACTGGCTTTCTACGTGAAAAGGATCTAGGTGAAGATCCTTT TTGATAAT CTCATGGCTGCAGCAATGGCAACAACGTTGCGCAAACTATTAACTGGCGAACTACTTACT CTAGCTTC CCGGCAACAATTAATAGACTGGATGGAGGCGGATAAAGTTGCAGGACCACTTCTGCGCTC GGCCCTTC CGGCTGGCTGGTTTATTGCTGATAAATCTGGAGCCGGTGAGCGTGGGTCTCGCGGTATCA TTGCAGCA CTGGGGCCAGATGGTAAGCCCTCCCGTATCGTAGTTATCTACACGACGGGGAGTCAGGCA ACTATGGA TGAACGAAATAGACAGATCGCTGAGATAGGTGCCTCACTGATTAAGCATTGGTAACTGTC AGACCAAG TTTACTCATATATACTTTAGATTGATTTAAAACTTCATTTTTAATTTAAAAGGATCTAGG TGAAGATC CTTTTTGATAATCTCATGACCAAAATCCCTTAACGTGAGTTTTCGTTCCACTGAGCGTCA GAC RightITR = first underlined and bold sequence CBh = first underlined sequence mCherry:PKD1 = first bold sequence HGHpA = second underlined sequence EF1α = second bold sequence PKD2 = third underlined sequence BGHpA = third bold sequence Packaging Signal = fourth underlined sequence LeftITR = second underlined and bold sequence SEQ ID NO:8 HDAd-SAM RightITR-U6-sgRNA-CMV-dCas9VP64-HGHpA-EF1α-MPH-HGHpA-Packag ingSignal- LeftITR CCCGTAGAAAAGATCAAAGGATCTTCTTGAGATCCTTTTTTTCTGCGCGTAATCTGCTGC TTGCAAAC AAAAAAACCACCGCTACCAGCGGTGGTTTGTTTGCCGGATCAAGAGCTACCAACTCTTTT TCCGAAGG TAACTGGCTTCAGCAGAGCGCAGATACCAAATACTGTCCTTCTAGTGTAGCCGTAGTTAG GCCACCAC TTCAAGAACTCTGTAGCACCGCCTACATACCTCGCTCTGCTAATCCTGTTACCAGTGGCT GCTGCCAG TGGCGATAAGTCGTGTCTTACCGGGTTGGACTCAAGACGATAGTTACCGGATAAGGCGCA GCGGTCGG GCTGAACGGGGGGTTCGTGCACACAGCCCAGCTTGGAGCGAACGACCTACACCGAACTGA GATACCTA CAGCGTGAGCTATGAGAAAGCGCCACGCTTCCCGAAGGGAGAAAGGCGGACAGGTATCCG GTAAGCGG CAGGGTCGGAACAGGAGAGCGCACGAGGGAGCTTCCAGGGGGAAACGCCTGGTATCTTTA TAGTCCTG TCGGGTTTCGCCACCTCTGACTTGAGCGTCGATTTTTGTGATGCTCGTCAGGGGGGCGGA GCCTATGG AAAAACGCCAGCAACGCGGCCTTTTTACGGTTCCTGGCCTTTTGCTGGCCTTTTGCTCAC ATGTTCTT TCCTGCGTTATCCCCTGATTCTGTGGATAACCGTATTACCGCCTTTGAGTGAGCTGATAC CGCTCGCC GCAGCCGAACGACCGAGCGCAGCGAGTCAGTGAGCGAGGAAGCGGAAGAGCGCCTGATGC GGTATTTT CTCCTTACGCATCTGTGCGGTATTTCACACCGCATATGGATCCATGCATGTTAAGTTTAA ACATCATC AATAATATACCTTATTTTGGATTGAAGCCAATATGATAATGAGGGGGTGGAGTTTGTGAC GTGGCGCG GGGCGTGGGAACGGGGCGGGTGACGTAGGTTTTAGGGCGGAGTAACTTGTATGTGTTGGG AATTGTAG TTTTCTTAAAATGGGAAGTTACGTAACGTGGGAAAACGGAAGTGACGATTTGAGGAAGTT GTGGGTTT TTTGGCTTTCGTTTCTGGGCGTAGGTTCGCGTGCGGTTTTCTGGGTGTTTTTTGTGGACT TTAACCGT TACGTCATTTTTTAGTCCTATATATACTCGCTCTGCACTTGGCCCTTTTTTACACTGTGA CTGATTGA GCTGGTGCCGTGTCGAGTGGTGTTTTTTGATGCCCCCCCTCGAGGTTCGACGGTATCGAT AAGCTTGA TTTAATTAAGGCCGGCCCCTAGGGGCGCGCGCGGCCGCTAGGGATAACAGGGTAATGAGG GCCTATTT CCCATGATTCCTTCATATTTGCATATACGATACAAGGCTGTTAGAGAGATAATTGGAATT AATTTGAC TGTAAACACAAAGATATTAGTACAAAATACGTGACGTAGAAAGTAATAATTTCTTGGGTA GTTTGCAG TTTTAAAATTATGTTTTAAAATGGACTATCATATGCTTACCGTAACTTGAAAGTATTTCG ATTTCTTG GCTTTATATATCTTGTGGAAAGGACGAAACACCGNNNNNNNNNNNNNNNNNNNNGTTTTA GAGCTAGG CCAACATGAGGATCACCCATGTCTGCAGGGCCTAGCAAGTTAAAATAAGGCTAGTCCGTT ATCAACTT GGCCAACATGAGGATCACCCATGTCTGCAGGGCCAAGTGGCACCGAGTCGGTGCTTTTTT TGGATCCT GTTGACAATTAATCATCGGCATAGTATATCGGCATAGTATAATACGACAAGGTGAGGAAC TAAACCAT GGCCAAGTTGACCAGTGCCGTTCCGGTGCTCACCGCGCGCGACGTCGCCGGAGCGGTCGA GTTCTGGA CCGACCGGCTCGGGTTCTCCCGGGACTTCGTGGAGGACGACTTCGCCGGTGTGGTCCGGG ACGACGTG ACCCTGTTCATCAGCGCGGTCCAGGACCAGGTGGTGCCGGACAACACCCTGGCCTGGGTG TGGGTGCG CGGCCTGGACGAGCTGTACGCCGAGTGGTCGGAGGTCGTGTCCACGAACTTCCGGGACGC CTCCGGGC CGGCCATGACCGAGATCGGCGAGCAGCCGTGGGGGCGGGAGTTCGCCCTGCGCGACCCGG CCGGCAAC TGCGTGCACTTCGTGGCCGAGGAGCAGGACTGATAGGGATAACAGGGTAATGCTAGCATA GTAATCAA TTACGGGGTCATTAGTTCATAGCCCATATATGGAGTTCCGCGTTACATAACTTACGGTAA ATGGCCCG CCTGGCTGACCGCCCAACGACCCCCGCCCATTGACGTCAATAATGACGTATGTTCCCATA GTAACGTC AATAGGGACTTTCCATTGACGTCAATGGGTGGAGTATTTACGGTAAACTGCCCACTTGGC AGTACATC AAGTGTATCATATGCCAAGTACGCCCCCTATTGACGTCAATGACGGTAAATGGCCCGCCT GGCATTAT GCCCAGTACATGACCTTATGGGACTTTCCTACTTGGCAGTACATCTACGTATTAGTCATC GCTATTAC CATGGTGATGCGGTTTTGGCAGTACATCAATGGGCGTGGATAGCGGTTTGACTCACGGGG ATTTCCAA GTCTCCACCCCATTGACGTCAATGGGAGTTTGTTTTGCACCAAAATCAACGGGACTTTCC AAAATGTC GTAACAACTCCGCCCCATTGACGCAAATGGGCGGTAGGCGTGTACGGTGGGAGGTCTATA TAAGCAGA GCTCGTTTAGTGAACCGTCAGATCGCCTGGAGACGCCATCCACGCTGTTTTGACCTCCAT AGAAGACA CCGGGACCGATCCAGCCTCCGCGGATTCGAATCCCGGCCGGGAACGGTGCATTGGAACGC GGATTCCC CGTGCCAAGAGTGACGTAAGTACCGCCTATAGAGTCTATAGGCCCACAAAAAATGCTTTC TTCTTTTA ATATACTTTTTTGTTTATCTTATTTCTAATACTTTCCCTAATCTCTTTCTTTCAGGGCAA TAATGATA CAATGTATCATGCCTCTTTGCACCATTCTAAAGAATAACAGTGATAATTTCTGGGTTAAG GCAATAGC AATATTTCTGCATATAAATATTTCTGCATATAAATTGTAACTGATGTAAGAGGTTTCATA TTGCTAAT AGCAGCTACAATCCAGCTACCATTCTGCTTTTATTTTATGGTTGGGATAAGGCTGGATTA TTCTGAGT CCAAGCTAGGCCCTTTTGCTAATCATGTTCATACCTCTTATCTTCCTCCCACAGCTCCTG GGCAACGT GCTGGTCTGTGTGCTGGCCCATCACTTTGGCAAAGAATTGGGATCGTACGGCCACCATGA AAAGGCCG GCGGCCACGAAAAAGGCCGGCCAGGCAAAAAAGAAAAAGGACAAGAAGTACAGCATCGGC CTGGCCAT CGGCACCAACTCTGTGGGCTGGGCCGTGATCACCGACGAGTACAAGGTGCCCAGCAAGAA ATTCAAGG TGCTGGGCAACACCGACCGGCACAGCATCAAGAAGAACCTGATCGGAGCCCTGCTGTTCG ACAGCGGC GAAACAGCCGAGGCCACCCGGCTGAAGAGAACCGCCAGAAGAAGATACACCAGACGGAAG AACCGGAT CTGCTATCTGCAAGAGATCTTCAGCAACGAGATGGCCAAGGTGGACGACAGCTTCTTCCA CAGACTGG AAGAGTCCTTCCTGGTGGAAGAGGATAAGAAGCACGAGCGGCACCCCATCTTCGGCAACA TCGTGGAC GAGGTGGCCTACCACGAGAAGTACCCCACCATCTACCACCTGAGAAAGAAACTGGTGGAC AGCACCGA CAAGGCCGACCTGCGGCTGATCTATCTGGCCCTGGCCCACATGATCAAGTTCCGGGGCCA CTTCCTGA TCGAGGGCGACCTGAACCCCGACAACAGCGACGTGGACAAGCTGTTCATCCAGCTGGTGC AGACCTAC AACCAGCTGTTCGAGGAAAACCCCATCAACGCCAGCGGCGTGGACGCCAAGGCCATCCTG TCTGCCAG ACTGAGCAAGAGCAGACGGCTGGAAAATCTGATCGCCCAGCTGCCCGGCGAGAAGAAGAA TGGCCTGT TCGGCAACCTGATTGCCCTGAGCCTGGGCCTGACCCCCAACTTCAAGAGCAACTTCGACC TGGCCGAG GATGCCAAACTGCAGCTGAGCAAGGACACCTACGACGACGACCTGGACAACCTGCTGGCC CAGATCGG CGACCAGTACGCCGACCTGTTTCTGGCCGCCAAGAACCTGTCCGACGCCATCCTGCTGAG CGACATCC TGAGAGTGAACACCGAGATCACCAAGGCCCCCCTGAGCGCCTCTATGATCAAGAGATACG ACGAGCAC CACCAGGACCTGACCCTGCTGAAAGCTCTCGTGCGGCAGCAGCTGCCTGAGAAGTACAAA GAGATTTT CTTCGACCAGAGCAAGAACGGCTACGCCGGCTACATTGACGGCGGAGCCAGCCAGGAAGA GTTCTACA AGTTCATCAAGCCCATCCTGGAAAAGATGGACGGCACCGAGGAACTGCTCGTGAAGCTGA ACAGAGAG GACCTGCTGCGGAAGCAGCGGACCTTCGACAACGGCAGCATCCCCCACCAGATCCACCTG GGAGAGCT GCACGCCATTCTGCGGCGGCAGGAAGATTTTTACCCATTCCTGAAGGACAACCGGGAAAA GATCGAGA AGATCCTGACCTTCCGCATCCCCTACTACGTGGGCCCTCTGGCCAGGGGAAACAGCAGAT TCGCCTGG ATGACCAGAAAGAGCGAGGAAACCATCACCCCCTGGAACTTCGAGGAAGTGGTGGACAAG GGCGCTTC CGCCCAGAGCTTCATCGAGCGGATGACCAACTTCGATAAGAACCTGCCCAACGAGAAGGT GCTGCCCA AGCACAGCCTGCTGTACGAGTACTTCACCGTGTATAACGAGCTGACCAAAGTGAAATACG TGACCGAG GGAATGAGAAAGCCCGCCTTCCTGAGCGGCGAGCAGAAAAAGGCCATCGTGGACCTGCTG TTCAAGAC CAACCGGAAAGTGACCGTGAAGCAGCTGAAAGAGGACTACTTCAAGAAAATCGAGTGCTT CGACTCCG TGGAAATCTCCGGCGTGGAAGATCGGTTCAACGCCTCCCTGGGCACATACCACGATCTGC TGAAAATT ATCAAGGACAAGGACTTCCTGGACAATGAGGAAAACGAGGACATTCTGGAAGATATCGTG CTGACCCT GACACTGTTTGAGGACAGAGAGATGATCGAGGAACGGCTGAAAACCTATGCCCACCTGTT CGACGACA AAGTGATGAAGCAGCTGAAGCGGCGGAGATACACCGGCTGGGGCAGGCTGAGCCGGAAGC TGATCAAC GGCATCCGGGACAAGCAGTCCGGCAAGACAATCCTGGATTTCCTGAAGTCCGACGGCTTC GCCAACAG AAACTTCATGCAGCTGATCCACGACGACAGCCTGACCTTTAAAGAGGACATCCAGAAAGC CCAGGTGT CCGGCCAGGGCGATAGCCTGCACGAGCACATTGCCAATCTGGCCGGCAGCCCCGCCATTA AGAAGGGC ATCCTGCAGACAGTGAAGGTGGTGGACGAGCTCGTGAAAGTGATGGGCCGGCACAAGCCC GAGAACAT CGTGATCGAAATGGCCAGAGAGAACCAGACCACCCAGAAGGGACAGAAGAACAGCCGCGA GAGAATGA AGCGGATCGAAGAGGGCATCAAAGAGCTGGGCAGCCAGATCCTGAAAGAACACCCCGTGG AAAACACC CAGCTGCAGAACGAGAAGCTGTACCTGTACTACCTGCAGAATGGGCGGGATATGTACGTG GACCAGGA ACTGGACATCAACCGGCTGTCCGACTACGATGTGGACCACATCGTGCCTCAGAGCTTTCT GAAGGACG ACTCCATCGACAACAAGGTGCTGACCAGAAGCGACAAGGCCCGGGGCAAGAGCGACAACG TGCCCTCC GAAGAGGTCGTGAAGAAGATGAAGAACTACTGGCGGCAGCTGCTGAACGCCAAGCTGATT ACCCAGAG AAAGTTCGACAATCTGACCAAGGCCGAGAGAGGCGGCCTGAGCGAACTGGATAAGGCCGG CTTCATCA AGAGACAGCTGGTGGAAACCCGGCAGATCACAAAGCACGTGGCACAGATCCTGGACTCCC GGATGAAC ACTAAGTACGACGAGAATGACAAGCTGATCCGGGAAGTGAAAGTGATCACCCTGAAGTCC AAGCTGGT GTCCGATTTCCGGAAGGATTTCCAGTTTTACAAAGTGCGCGAGATCAACAACTACCACCA CGCCCACG ACGCCTACCTGAACGCCGTCGTGGGAACCGCCCTGATCAAAAAGTACCCTAAGCTGGAAA GCGAGTTC GTGTACGGCGACTACAAGGTGTACGACGTGCGGAAGATGATCGCCAAGAGCGAGCAGGAA ATCGGCAA GGCTACCGCCAAGTACTTCTTCTACAGCAACATCATGAACTTTTTCAAGACCGAGATTAC CCTGGCCA ACGGCGAGATCCGGAAGCGGCCTCTGATCGAGACAAACGGCGAAACCGGGGAGATCGTGT GGGATAAG GGCCGGGATTTTGCCACCGTGCGGAAAGTGCTGAGCATGCCCCAAGTGAATATCGTGAAA AAGACCGA GGTGCAGACAGGCGGCTTCAGCAAAGAGTCTATCCTGCCCAAGAGGAACAGCGATAAGCT GATCGCCA GAAAGAAGGACTGGGACCCTAAGAAGTACGGCGGCTTCGACAGCCCCACCGTGGCCTATT CTGTGCTG GTGGTGGCCAAAGTGGAAAAGGGCAAGTCCAAGAAACTGAAGAGTGTGAAAGAGCTGCTG GGGATCAC CATCATGGAAAGAAGCAGCTTCGAGAAGAATCCCATCGACTTTCTGGAAGCCAAGGGCTA CAAAGAAG TGAAAAAGGACCTGATCATCAAGCTGCCTAAGTACTCCCTGTTCGAGCTGGAAAACGGCC GGAAGAGA ATGCTGGCCTCTGCCGGCGAACTGCAGAAGGGAAACGAACTGGCCCTGCCCTCCAAATAT GTGAACTT CCTGTACCTGGCCAGCCACTATGAGAAGCTGAAGGGCTCCCCCGAGGATAATGAGCAGAA ACAGCTGT TTGTGGAACAGCACAAGCACTACCTGGACGAGATCATCGAGCAGATCAGCGAGTTCTCCA AGAGAGTG ATCCTGGCCGACGCTAATCTGGACAAAGTGCTGTCCGCCTACAACAAGCACCGGGATAAG CCCATCAG AGAGCAGGCCGAGAATATCATCCACCTGTTTACCCTGACCAATCTGGGAGCCCCTGCCGC CTTCAAGT ACTTTGACACCACCATCGACCGGAAGAGGTACACCAGCACCAAAGAGGTGCTGGACGCCA CCCTGATC CACCAGAGCATCACCGGCCTGTACGAGACACGGATCGACCTGTCTCAGCTGGGAGGCGAC AGCGCTGG AGGAGGTGGAAGCGGAGGAGGAGGAAGCGGAGGAGGAGGTAGCGGACCTAAGAAAAAGAG GAAGGTGG CGGCCGCTGGATCCGGACGGGCTGACGCATTGGACGATTTTGATCTGGATATGCTGGGAA GTGACGCC CTCGATGATTTTGACCTTGACATGCTTGGTTCGGATGCCCTTGATGACTTTGACCTCGAC ATGCTCGG CAGTGACGCCCTTGATGATTTCGACCTGGACATGCTGATTAACTGTACATAAACGGGTGG CATCCCTG TGACCCCTCCCCAGTGCCTCTCCTGGCCCTGGAAGTTGCCACTCCAGTGCCCACCAGCCT TGTCCTAA TAAAATTAAGTTGCATCATTTTGTCTGACTAGGTGTCCTTCTATAATATTATGGGGTGGA GGGGGGTG GTATGGAGCAAGGGGCAAGTTGGGAAGACAACCTGTAGGGCCTGCGGGGTCTATTGGGAA CCAAGCTG GAGTGCAGTGGCACAATCTTGGCTCACTGCAATCTCCGCCTCCTGGGTTCAAGCGATTCT CCTGCCTC AGCCTCCCGAGTTGTTGGGATTCCAGGCATGCATGACCAGGCTCAGCTAATTTTTGTTTT TTTGGTAG AGACGGGGTTTCACCATATTGGCCAGGCTGGTCTCCAACTCCTAATCTCAGGTGATCTAC CCACCTTG GCCTCCCAAATTGCTGGGATTACAGGCGTGAACCACTGCTCCCTTCCCTGTCCTTGAATT CTAACTAT AACGGTCCTAAGGTAGCGAAGCTAGCTGCAAAGATGGATAAAGTTTTAAACAGAGAGGAA TCTTTGCA GCTAATGGACCTTCTAGGTCTTGAAAGGAGTGGGAATTGGCTCCGGTGCCCGTCAGTGGG CAGAGCGC ACATCGCCCACAGTCCCCGAGAAGTTGGGGGGAGGGGTCGGCAATTGAACCGGTGCCTAG AGAAGGTG GCGCGGGGTAAACTGGGAAAGTGATGTCGTGTACTGGCTCCGCCTTTTTCCCGAGGGTGG GGGAGAAC CGTATATAAGTGCAGTAGTCGCCGTGAACGTTCTTTTTCGCAACGGGTTTGCCGCCAGAA CACAGGTA AGTGCCGTGTGTGGTTCCCGCGGGCCTGGCCTCTTTACGGGTTATGGCCCTTGCGTGCCT TGAATTAC TTCCACCTGGCTGCAGTACGTGATTCTTGATCCCGAGCTTCGGGTTGGAAGTGGGTGGGA GAGTTCGA GGCCTTGCGCTTAAGGAGCCCCTTCGCCTCGTGCTTGAGTTGAGGCCTGGCCTGGGCGCT GGGGCCGC CGCGTGCGAATCTGGTGGCACCTTCGCGCCTGTCTCGCTGCTTTCGATAAGTCTCTAGCC ATTTAAAA TTTTTGATGACCTGCTGCGACGCTTTTTTTCTGGCAAGATAGTCTTGTAAATGCGGGCCA AGATCTGC ACACTGGTATTTCGGTTTTTGGGGCCGCGGGCGGCGACGGGGCCCGTGCGTCCCAGCGCA CATGTTCG GCGAGGCGGGGCCTGCGAGCGCGGCCACCGAGAATCGGACGGGGGTAGTCTCAAGCTGGC CGGCCTGC TCTGGTGCCTGGCCTCGCGCCGCCGTGTATCGCCCCGCCCTGGGCGGCAAGGCTGGCCCG GTCGGCAC CAGTTGCGTGAGCGGAAAGATGGCCGCTTCCCGGCCCTGCTGCAGGGAGCTCAAAATGAA GGACGCGG CGCTCGGGAGAGCGGGCGGGTGAGTCACCCACACAAAGGAAAAGGGCCTTTCCGTCCTCA GCCGTCGC TTCATGTGACTCCACGGAGTACCGGGCGCCGTCCAGGCACCTCGATTAGTTCTCGAGCTT TTGGAGTA CGTCGTCTTTAGGTTGGGGGGAGGGGTTTTATGCGATGGAGTTTCCCCACACTGAGTGGG TGGAGACT GAAGTTAGGCCAGCTTGGCACTTGATGTAATTCTCCTTGGAATTTGCCCTTTTTGAGTTT GGATCTTG GTTCATTCTCAAGCCTCAGACAGTGGTTCAAAGTTTTTTTCTTCCATTTCAGGTGTCGTG ACGTACGG CCACCATGGCTTCAAACTTTACTCAGTTCGTGCTCGTGGACAATGGTGGGACAGGGGATG TGACAGTG GCTCCTTCTAATTTCGCTAATGGGGTGGCAGAGTGGATCAGCTCCAACTCACGGAGCCAG GCCTACAA GGTGACATGCAGCGTCAGGCAGTCTAGTGCCCAGAAGAGAAAGTATACCATCAAGGTGGA GGTCCCCA AAGTGGCTACCCAGACAGTGGGCGGAGTCGAACTGCCTGTCGCCGCTTGGAGGTCCTACC TGAACATG GAGCTCACTATCCCAATTTTCGCTACCAATTCTGACTGTGAACTCATCGTGAAGGCAATG CAGGGGCT CCTCAAAGACGGTAATCCTATCCCTTCCGCCATCGCCGCTAACTCAGGTATCTACAGCGC TGGAGGAG GTGGAAGCGGAGGAGGAGGAAGCGGAGGAGGAGGTAGCGGACCTAAGAAAAAGAGGAAGG TGGCGGCC GCTGGATCCCCTTCAGGGCAGATCAGCAACCAGGCCCTGGCTCTGGCCCCTAGCTCCGCT CCAGTGCT GGCCCAGACTATGGTGCCCTCTAGTGCTATGGTGCCTCTGGCCCAGCCACCTGCTCCAGC CCCTGTGC TGACCCCAGGACCACCCCAGTCACTGAGCGCTCCAGTGCCCAAGTCTACACAGGCCGGCG AGGGGACT CTGAGTGAAGCTCTGCTGCACCTGCAGTTCGACGCTGATGAGGACCTGGGAGCTCTGCTG GGGAACAG CACCGATCCCGGAGTGTTCACAGATCTGGCCTCCGTGGACAACTCTGAGTTTCAGCAGCT GCTGAATC AGGGCGTGTCCATGTCTCATAGTACAGCCGAACCAATGCTGATGGAGTACCCCGAAGCCA TTACCCGG CTGGTGACCGGCAGCCAGCGGCCCCCCGACCCCGCTCCAACTCCCCTGGGAACCAGCGGC CTGCCTAA TGGGCTGTCCGGAGATGAAGACTTCTCAAGCATCGCTGATATGGACTTTAGTGCCCTGCT GTCACAGA TTTCCTCTAGTGGGCAGGGAGGAGGTGGAAGCGGCTTCAGCGTGGACACCAGTGCCCTGC TGGACCTG TTCAGCCCCTCGGTGACCGTGCCCGACATGAGCCTGCCTGACCTTGACAGCAGCCTGGCC AGTATCCA AGAGCTCCTGTCTCCCCAGGAGCCCCCCAGGCCTCCCGAGGCAGAGAACAGCAGCCCGGA TTCAGGGA AGCAGCTGGTGCACTACACAGCGCAGCCGCTGTTCCTGCTGGACCCCGGCTCCGTGGACA CCGGGAGC AACGACCTGCCGGTGCTGTTTGAGCTGGGAGAGGGCTCCTACTTCTCCGAAGGGGACGGC TTCGCCGA GGACCCCACCATCTCCCTGCTGACAGGCTCGGAGCCTCCCAAAGCCAAGGACCCCACTGT CTCCTGTA CATAAACGGGTGGCATCCCTGTGACCCCTCCCCAGTGCCTCTCCTGGCCCTGGAAGTTGC CACTCCAG TGCCCACCAGCCTTGTCCTAATAAAATTAAGTTGCATCATTTTGTCTGACTAGGTGTCCT TCTATAAT ATTATGGGGTGGAGGGGGGTGGTATGGAGCAAGGGGCAAGTTGGGAAGACAACCTGTAGG GCCTGCGG GGTCTATTGGGAACCAAGCTGGAGTGCAGTGGCACAATCTTGGCTCACTGCAATCTCCGC CTCCTGGG TTCAAGCGATTCTCCTGCCTCAGCCTCCCGAGTTGTTGGGATTCCAGGCATGCATGACCA GGCTCAGC TAATTTTTGTTTTTTTGGTAGAGACGGGGTTTCACCATATTGGCCAGGCTGGTCTCCAAC TCCTAATC TCAGGTGATCTACCCACCTTGGCCTCCCAAATTGCTGGGATTACAGGCGTGAACCACTGC TCCCTTCC CTGTCCTTGAATTCTAACTATAACGGTCCTAAGGTAGCGAAGTCGACCGAATCGTTGTCC CTTGTCAC AGCCATTGAGAATTTTGGCAGGGAGCATGTTCTTAGAGCATTTTTAGGCTCTGCGGGACA TAACAGCT CTGCCTCAGAGCACATGCCTTTCTCAGCTCCTGAAAGCCACTGATCAAATTGGAACATTT TGTACCTT AGGGATGAGGATATCAACTCTCCCAGCCACTTAGAGGGATAAATGTGATGATGCATTCAA TTGTGACT ACATCTGATCCCAACTGTTGCTTCAGCTGCTCTCCTATAGCACATGGCGGGAGGCGTGCA TCCCAGTA GCTACCTCCCCACTTTTGGGGAGATGTGGTTCCATCCATGAAACCTGGGTACCCGCCTAC CAGGTCCT GGCCTATCAGGTGGCAGGGTCTGGTCAAAGAAGGGCATGTGTGGTCTTCAGCAAGGGAGA CAGGACGG TGGTGCAGAGCGTCTAGACCCTCAGGGCAAGTCTCCCCCACACCTGCTCCCGGGGCAGTT GTCTTTGT GACCTCCCATCCCCCTCTGTTTCATCCTCTATAAAATGAGGGGCTGAGCCCCAAAATAAC AGGCTTCT TTGCCATGATGCAAAACTGCTGAATCTTTCTTTCTGACACACAAGGCATCGAGCAGCCTC TGAAAGAA CCAAAGCCACTAGCAGGCTTCCTGACTTGGGTTTGTAGGTACTGAATACTCCCTTGAAAA ATAAAAAC ATAGAGGCACTTTTCTCCTGGCTGTTTATTACAGAACGAAGAAAAAACACACTGGCTTGA AACAGACG CCAGATTTCAAATGTAGAGGTGAAATACGAGGTGGCAATTAAAATGTGATTACAGAAAGT CTGGACAC TGAGAAAAGTTTACAGGACAGTGGGTGTGGGTTTTCTATAACAGACACTTAAATATACAT GACGATAA TTGCAGATAGAAACCATCAAAGACAAACCCCAAATCAACTAATAATGTTTACAGATGTTC CCCCCCAA ACCACAGAGCCTTACATCAAAACAAATACTGAAAGGCTTTAAACCAGGAACAGCTCGCCT TAACCCCA CGAGGGTGCACACAAGCTGGGCTTTTTCTCTCGGTCTGAATGGTAAAGGGAGGAGGATAC TCTAGCTC CTCCAGGTGGATTGCTGAGACAGGGCTCGGCTCACACACTGTCTCTGCGCCTCTCCCAAA TCTGGAGA ACTCTCCCAGCCTCCTGGTAAAGTGTCTCTGTGGGGCACTTAACGATAAAACAGCTTCTG CTGTAAAG CTCATTAGGAAAGAGCTAGCGGAGACTGAAAGGTTCGCAAAAGAGATTAAGAATCACACA AGGCAATA GGATTTTTAGTGAACATAGAAATAAATGGCCAAGTGGTTTTCTATTTGGCATTTGTCAAC TTGCACAA CAACTCTTGGTCATATCCACATTGCTCATTGCATTAAAACCATAAGCGACTCAGCCACCT AGCTTAAC AAGGTATCACTGGAGCAAACAACACGGTCTGCATATTTGTAACATTGTATAATAAACACA AAACAATG CATAGTAAACACAACTCTACTGAAACAAAAGCCGTCGCTTTATTTACAAAGTCACAAAAT GAAGTATA AATACTTCTGTCATTAATGTTTAGGAAAACCATTTACAAAATTTTCAAATATGTACACGT AGCTTGAA AAATCACCAGCTTTCCATTTTGTCACAGGTAGAGAGAGGGATAAGCATGGGCTGACAACA CCACTCAA ATTGTAACGGGAGACAACTGCGGGTATGGATCGACACCACTTCCTAGAGTGATGTCACCA TGGGGGTT TCTATGGGCATCCTGCTCAGATTTAAAGTGCCCCAGCATCCTGGGTGACTTGCCCAGAAT TCTGGGCT GTGGCATTTTGAGCAGCAGCATGCTGTTCCAAAATGTCGTCGATCAGCCTCAAGTTGCAC ACCCAGTC TTCATCTGGGCTCACACAGGAGCCTTTCAAGAGAGCTTCAATGAAATCTACCTCATTGCA GTCAGGTG ACGAAATCAGATCATTTAGTGGGGGTTGGGGCTGGCGCAAAAAGTCGGCAGGTGGCAGCT CAGGGGGA ATATCCGTTCTGTCGAACGGACCTGGGAACTGGCTGGCAGCAACGGCAGAAGCAGCAGCA GCGGTGGC AGCAGCAGCCACATAGCTTGGTGGCTCGATGCCCTGTATGGGGCTCAGGGGACTAAAGCT GGCCATAC CCTGCTGGAGGAACTTGGTGGTGTTTGCTACAGGCACCGGGCCCTGTACCGGGCTCTGCC TGAGGCTC TGGCTGCCCAGCAGGCTGAAGCTGGGGTTGTTGGCCAGGGGCACTTGTGTTCCCATCGCA GCGGGCAC TTGTGCCTCCCAATCAGATGGCCTCTGAAGGCAGGCCTGGCCAGAAGGTGAGTGCTGCTG AACGCTAT TATCCACTTGGCTGAGGGGTGTTTTCCCCGAAACTGCTGTGGTCACAGCTGCTGCCGCTG TGACCCAT GCAGCATTGTTGAACGCAGTGGGCATTCTTGGCACACTAGGCCGTCTGAGCTGGTGGGGA CTCAAGGA CTGGGTGCCCAGGGAGCTGGGACAGAACCCAGGCAGGGGCACTTCTGGTGGGGTGGCCTT GGGGCTCT GCATATGCTGGCAGACAGAGTCAAGTCTGCCCAGGGGAGTCTGGCCTGAGTGTGAGAGGA TGGGACAC TGGGGGCTGGAGGTGAAAATTCCTTGCCGCTTCCCCAGAGTTGGTGAGATCACTCCCATG CCCTCGCA GCTCTGGTGCCTGGTGAGTGGGATCATTCCTGGACTCAGATTGTTCTGAAGAAGCCCAGT TCTGGGTG GCATCAAGTGCTTGCTAGATGGGGGGCTTGCCTTGATCCGGCTACACTTGGAGGTGACTT GTTCTTGG ACGGCTACATACAGAAAGAGAGAAGTGGGGATGAGTTCCAAAGGCATCCTCGACTTCGGC TGTGGCCA CCGGAGGGTAGCTCCTGGCCCAACACGGACTTCTCACCTCCCGCCCTTGGCTCTCTACTG AGCTCCCC CCTGCTCCCCAATTCCTCGCCATTCCCCTCATTTCTCTGCCCTCAGCCTGGACTGCAGTT CTTCTGGG AAGCTGCCCCAACTCCCTAGGTCTGTGCTCACCAAGAGCAGATCACACTGGACTGAAATG CCAGCTGA TTTGTCTCTTCAAGAAAATTGGAAGCTCCTGGAGGTCAGGGTCCATGTCTGCTTTTACAC TCAGTGCT CTGTATGCAGGCCTGGCACTGCCCACCCTTTGACAGGTGGTGCATATTTTGTAGAAGGAA GGAAGGGG CCAGGTGGGGTGGGCTGGGCTGGTGGCGGGAGCTAGCTCAGCCTCTTAGATTCTCTACCC GATGGATG TGACCTGGGACAGCAAGTGAGTGTGGTGAGTGAGTGCAGACGGTGCTTTGTTCCCCTCTT GTCTCATA GCCTAGATGGCCTCTGAGCCCAGATCTGGGGCTCAGACAACATTTGTTCAACTGAACGGT AATGGGTT TCCTTTCTGAAGGCTGAAATCTGGGAGCTGACATTCTGGACTCCCTGAGTTCTGAAGAGC CTGGGGAT GGAGAGACACGGAGCAGAAGATGGAAGGTAGAGTCCCAGGTGCCTAAGATGGGGAATACA TCTCCCCT CATTGTCATGAGAGTCCACTCTAGCTGATATCTACTGTGGCCAATATCTACCGGTACTTT TTTGGGGT GGACACTGAGTCATGCAGCAGTCTTATGGTTTACCCAAGGTCAGGTAGGGGAGACAGTGC AGTCAGAG CACAAGCCCAGTGTGTCTGACCCACCCAAGAATCCATGCTCGTATCTACAAAAATGATTT TTTCTCTT GTAATGGTGCCTAGGTTCTTTTATTATCATGGCATGTGTATGTTTTTCAACTAGGTTACA ATCTGGCC TTATAAGGTTAACCTCCTGGAGGCCACCAGCCTTCCTGAAACTTGTCTGTGCTGTCCCTG CAACTGGA GTGTGCCTGATGTGGCACTCCAGCCTGGACAAGTGGGACACAGACTCCGCTGTTATCAGG CCCAAAGA TGTCTTCCATAAGACCAGAAGAGCAATGGTGTAGAGGTGTCATGGGCTACAATAAAGATG CTGACCTC CTGTCTGAGGGCAAGCAGCCTCTTCTGGCCCTCAGACAAATGCTGAGTGTTCCCAAGACT ACCCTCGG CCTGGTCCAATCTCATCCCACTGGTGCGTAAGGGTTGCTGAACTCATGACTTCTTGGCTA GCCTGCAA CCTCCACGGAGTGGGAACTACATCAGGCATTTTGCTAACTGCTGTATCCTAGGCCAATAA ATGTTGAT CACATTTATAGCTGCCATGGTAGGGTGGGGACCCCTGCTATCTATCTGTGGAGGCTCTGG GAGCCCCT GACACAAACTTTCTGAAGCAGAGCCTCCCCAACCCCTTTTCCATTCCCTATACCTGACAG ATGGCCCA GGAACCCATTAGAAATGGAAGGTCACTGCAGCAGTATGTGAATGTGCGTGTGGGAGAAGG GCAGGATC AGAGCCCTGGGGGTGTGGCAGCCCCCAAGTGATTCTAATCCAGATCCTAGGGTTGTTTCC CTGTCCCA TTGAAATAGCTGCTTTAAGGGGCCTGACTCAGGGAAATCAGTCTCTTGAATTAAGTGGTG ATTTTGGA GTCATTTAGACCAGGCCTTCAATTGGGATCCACTAGTTCTAGAGCGGCCGGGCCCAGGGA ACCCCGCA GGCGGGGGCGGCCAGTTTCCCGGGTTCGGCTTTACGTCACGCGAGGGCGGCAGGGAGGAC GGAATGGC GGGGTTTGGGGTGGGTCCCTCCTCGGGGGAGCCCTGGGAAAAGAGGACTGCGTGTGGGAA GAGAAGGT GGAAATGGCGTTTTGGTTGACATGTGCCGCCTGCGAGCGTGCTGCGGGGAGGGGCCGAGG GCAGATTC GGGAATGATGGCGCGGGGTGGGGGCGTGGGGGCTTTCTCGGGAGAGGCCCTTCCCTGGAA GTTTGGGG TGCGATGGTGAGGTTCTCGGGGCACCTCTGGAGGGGCCTCGGCACGGAAAGCGACCACCT GGGAGGGC GTGTGGGGACCAGGTTTTGCCTTTAGTTTTGCACACACTGTAGTTCATCTTTATGGAGAT GCTCATGG CCTCATTGAAGCCCCACTACAGCTCTGGTAGCGGTAACCATGCGTATTTGACACACGAAG GAACTAGG GAAAAGGCATTAGGTCATTTCAAGCCGAAATTCACATGTGCTAGAATCCAGATTCCATGC TGACCGAT GCCCCAGGATATAGAAAATGAGAATCTGGTCCTTACCTTCAAGAACATTCTTAACCGTAA TCAGCCTC TGGTATCTTAGCTCCACCCTCACTGGTTTTTTCTTGTTTGTTGAACCGGCCAAGCTGCTG GCCTCCCT CCTCAACCGTTCTGATCATGCTTGCTAAAATAGTCAAAACCCCGGCCAGTTAAATATGCT TTAGCCTG CTTTATTATGATTATTTTTGTTGTTTTGGCAATGACCTGGTTACCTGTTGTTTCTCCCAC TAAAACTT TTTAAGGGCAGGAATCACCGCCGTAACTCTAGCACTTAGCACAGTACTTGGCTTGTAAGA GGTCCTCG ATGATGGTTTGTTGAATGAATACATTAAATAATTAACCACTTGAACCCTAAGAAAGAAGC GATTCTAT TTCATATTAGGCATTGTAATGACTTAAGGTAAAGAGCAGTGCTATTAACGGAGTCTAACT GGGAATCC AGCTTGTTTGGGCTATTTACTAGTTGTGTGGCTGTGGGCAACTTACTTCACCTCTCTGGG CTTAAGTC ATTTTATGTATATCTGAGGTGCTGGCTACCTCTTGGAGTTATTGAGAGGATTATAAGACA GTCTATGT GAATCAGCAACCCTTGCATGGCCCCTGGCGGGGAACAGTAATAATAGCCATCATCATGTT TACTTACA TAGTCCTAATTAGTCTTCAAAACAGCCCTGTAGCAATGGTATGATTATTACCATTTTACA GATGAGGA ACCTTTGAAGCCTCAGAGAGGCTAACAGACATACCCTAGGTCATACAGTTATTAAGAGAA GGAGCTCT GTCTCGAACCTAGCTCTCTCTCTCTCGAGTAATACCAGTTAAAAAATAGGCTACAAATAG GTACTCAA AAAAATGGTAGTGGCTGTTGTTTTTATTCAGTTGCTGAGGAAAAAATGTTGATTTTTCAT CTCTAAAC ATCAACTTACTTAATTCTGCCAATTTCTTTTTTTTGAGACAGGGTCTCACTCTGTCACCT AGGATGGA GTGCAGTGGCACAATCACTGCTCACTGCAGCCTCGACTTCCCGGGCTCGGGTGATTCTCC CCAGGCTC AGGGGATTCTCCCACTTCAGCCTCCCAAGTAGCTGGGACTACAGGTGCGCACCACCATCC CTGGCTAA TATTTGTACTTTATTTTATTTATTTATTTATTTATTTTTTGAGATGGAGTTTCGCTCTTG TTGCCCGG GCTGGAGTACAGTGGCATGATCTCGGCTCAGTGCAACCTCTGCCTCCCGGGTTCAAGCGA TTCTCCTA CCTCATCCCCCTGAGTAGCTGGGATTACAGGCGCCTGCCACCATGCCTGGCTAATTTTTT GTATTTTT AATAGAGACGAGGTTTCACCATGTTGGCCAGGCTACTCTCGAACTCCTGATCTCAGGTGA TCCACCCG CCTTGGCCTCCCAAAGTGCTGGGATTACAGGCGTGAGCCACTGCGCCCGGCCTAATATTT GTATTTTT TGTAGAGATGGTGTTTTGCCATGTTGTCCAGGCTGGTCTTGAACTCCTGAGCTCAAGCGA TCTGCCCG CCTCTGCTTCCCAAAGTGCTGGGATTACAGGCATGAGCCACCGTGCCTGGCCTAGGTAGA CGCTTTTA GCTTTGGGGTGTGATGCCTGCCCCAGTATATAGTGAATTTAATTATTGCTAGAGCTGGCT GTTTGTTA GTTTTCTTTGAACATAAGATACTCATTGTTTTTAGTTTGCAAATCCCTCTTCCTTTTTAA AAAATTTC TTTCCCTTAAATTGTTTGCATGTTAGCAATAACAAATGCTTAAATGGTGCTATGTGCTAG ATACTCTT CTAAGCCCTGTTATGTATATTAACTAATTTTTTAAATTACACAAATCAGAGAGGTTAAGT AACTTGCC CAAGATTACCCAACAATACTAGGATTTGAACCTAAGTTTGTCTCACCCCAGATTCTGCTC TTAATCTC TAAACTTTTAAGTTAGTAGTGACAATAGTAGGTATTTATTGAATACTTAACTATGTTTTA GGCGTTGA AGTAAATATTTTGCAGGCATTATCTAATGTAAACACCCTAAAGTTACATAACAGGTACCC TTTAGGTA AATAAACACTAGTATGACCTTGGAGGCACAGATAGTTGAAGTAACTTGCCCAATATCACT TACATGAA ATTGGCCCTCAAATGTGTCTGATACAACCCATGCTGCTTGTAACTATCGTTTTAAACTGC CAGGGTAA ACTTGGACACACTTGAGCTAAGAAAAAGCTTTTAGATTTTTGCAAATTAATGTGAAAGAT ATGCTTTA TGTGGATATAATATCTTCTAAATTTCGGGGATGGTAGTCCTAGAAATGTAATCCTGCCCT AGCCGAGC TTACCCTGCCAATAATTTTTTACAGAATTGGTAAAACGGAGCACCTTTTTTTTGTCCTTG GCCACACT GTTATCAACAGGGTGTAGATTGACATCAATCTGTAGGTGTAAACCAGAATTACTCTTTGT GACCACCA GGAAATAGAGCAGTTCAGTTCAGGGGTTTCTTTCTGTGAATTTAGCACTGTGACCTGCAT ACTACAAG TCTACTTTGTTTTCTATCCATTGTTTGTATCTGGGTATTGCAAAAGGTAGGAAAAGGACC AACCAGAT CAGCAGAGAAGAGTTGCCTTGGAGTTTTCTTTTAGTTTTCTGCAGTTCATTAGATAGTAA CTAGGCCA TGTCATTTTACTCCCTTGTAGTGAAGATATGTTGAAGTTGTACTGGTATACTCTTCTACC TTTCTGTA ATTTTATATTGTGTAGACTTGATAAAATTTATGTGTCAATCACCACCATTAATATCAATA TTGAGCCT CAATTCTTATTTTTCTGCCCAGTGGCTGCCAAATTACTAACATTTACAATAATTCACTAC TACTAAGA TAATCTACTAGTTCGATCACATACTTCAAATTGTTATGGAACTACTGTCTTCAGCATTGT GCTTCTGA TAACTGATAAGTATAATTTTTTTTTTGTCCAGAGTGAACATGTCTATTCTTCCACTGTAC ACACTAAT AAAAGGAAAAATTGTAATATTGGGTAAATTCATGTCCTTACACATGTAGTAGTTATGAGC CCATGTCC CTAGAATGAGTAATAATTTATCCCTCCCTTGGTTGAATAGTCAAGAATGCTGATTTTAAT TCTTCTAA CAGCTTTATCCCTCAGAAGGGAAGGCAAGCAAGTTATATATGTAGTTTATTTGTAAGACT GATATGAA ATTGGAAGATGAATCTACTATTAGCTTTAATTATTTTTACATTTAGGAATATTGCATCAG TAACTCAT AATTTTGGTTTTCTGTTATCCTGAGTTAACACAAATTATCCAAGGAGATGGCGGATCATC TGCTTTGA GGTGTTTTTTTTTGAGAATTTTAATGTATCTGAATATAAAAGGTAAAAATATGCCAACTA GCAATTTC TGCCCATTCCAGAAGTTTGGAAATATTACTCATTACTAGGAATTAAATAAAATATGGTTT ATCTATTG TTATACCTCTTTTAATTCACATAGCTCATTTTTATCTTTTATTTTTGTTTGTTTTTTTTG AGATGGAG TCTTGCTCTGTCACCAGGCAGGAGTGCAGTGATGCAAATCTCGGCTCACTCTAGCCACCG ACTCCCTG GTTCAAGCGATTCTCCTGCCTGAGCCTTCTGAGTAGCTGGGATTACAGGCAGGCACCACC ACGCCCAG CTAATTTTTGTAGAGACAGGATTTCACCGTGTTGGCCAGGATGGTCTCCATCTCCTGACC TCATGATC TGCCTGCTTCGGCCTCCCAAAGTGCTGGGATTACAGGTGGGAGCCACTACGCCTGGCCCA CATAGCTC ATTTTTAGACTCACTTCCATTAAGTCTTGTTTGGACCCACGAACATTGTCTTTTTTTTTT TAAGATGG AGTTTCACTTTTGTTGCCCAGACTGTAGTGCAATGGTGCAATCTCAGCTCACTGCAATCT CTGCCTCC TGGGTTCTAGCAATTCTCCTGCCTCAGCCTCCCGAGTAGCTGGAATTACAGGCGCCCGCC ACCACGCC CAGCTAATTTTTGTGTTTTTAGTAGAGACGGGGTTTCACCATGTTGGGCAGGCCAGGGGT GATCCGCC CACCTCAGCCTCCCAAAGTGCTGGGATTACAGGTGTGAGCCACCGCATCTGGCCAACATG TCTTTTTT TTTTTTTTCCTTTTTAACCACAAAGAGACTTAAGCAGTCCTTGTCACAGATGATGAATTG ATGTTGCA AGTATTGTCTTAGCTTGGATTAATTTTCTTGCTTACTGTAATTTTAGATAATATAGCTTT GTAATTAG AGATTTTATGTGTAAACCACAAAAATGTTTACATGAAGGCCATTATTACAGATGTGACGT GCATAATT ATTAGTAATTTGTATGTTTACATGGGTCAGTCTGGCAAAAAATTATGAAGTTTTAAAAAT TAAAAAAA ATTATAATGCCAGTTTTACTGGAAAGTAAAATTATTTCAGTAATCGATTATAGCAAAAGT ATTGATTT TCATTCCAGACAAAAGTCAGAATGAAAGGTAATTTCTCAATACTCTTTCAGATTAATAAA AGTACCTG TAGCGATTTTTATCATTCACAAGTATATCACAAGTAAGTTAGAATTTGAGAACTGTGTTC TAGATCTC TGAGGAGATGCAGTCAGATTTCTGAACTGTCTCAGCAAATGGTAAGTAACTTAGAGCTAG TAATTAAT AACCTGTCCTTTGATTTCTGATTCAGCCAAGAATGGCCATATTTGGGAAAGGCAGATCTG GAGAGTAA CCACGTTTTCATTCATTTACCACTTCTAGGCCCCTCCAGAGCTCTCAGATATTTTGGGGT TGAGCCCT TCCCCAAAGCCATACAGGACCTTTTTTTTGTGATCTGTTCTAGCCATTTTTATGTTGGGT GCTTGTTA TGGACTGAGCATTTATGTCCTCCCACACCCCCCCCATACCTTTTTTGAAGTCCTAACCCC CAGTGTGA TGGTATTTGGAGACAGGGCCTTTGGAAGGTAATTACAGTTAGAAGAAGTCGGGAGGGTTG GGCCCAGG TCTGATTGGATTAGTGCCCTTATATGAAAAGACACCAGGACGGGCGCAGTGGCTCACACC TGTAATCC CAGCACTTTGGGAGGCCAAGGTGGGTGGATCACGAGGTCAGGAGTTTGAGACCAGCCTGG CCAATGTA GTGAAACACCATCTCTACTAAAAATACAAAAATTAGCTGGGTGTGGTAGCGGGCTCCTGT CATCCAAG CTACTCGGGAGGGTGAGGCATGAGAATCACTTGAACCCGGGAGTTGGAGGTTGCAGTGAG CCCAGATT GTGCCACTGTACTCCAGCCTGGGTGACAGAGTGAGACTCTGTCTCAAAAAAGAAAAAAAA AAAAAAAG AGACACCAGAGAGCTTGTTAGAAGAGGTCATGTGAGCACACAGTTAGAAGACCTTCAAGC CAAAGAAG AGGCCTGAGATTGAAACCTACCTTGCAGGTACCTTAATTTTGGACTTCCCAGCCTCCAAA ACTGTGAG AAATAAGTTTCTGTTAAGTCACTCAGTCTGTGGTATTTTGTTATGGCAGCCTGAGCAGGT AGTTGTTC TTTCAGAAGGTGTTGATAATAACCACATGCAACACCAAGTCACAAATAATAAAACAGATG TAACTTAT ATTCATACAGAAAGTTGGGCACTGCCATTGCCTTGTTGGTTTACACGGCTGTGCTAGTTC AGTAGCAG AAAGGTGCTGGTCTCCTTTACTCAGTTTACAATCTAGGCAGTAGAATGTAATCACTGCTT TAAACTTG ATACTGCTTAGGGAGAGAATCATTGGTGCTGGGTAACTTTGGGTTCTAGGTTTACTTTTT GTGTATAT ATAACTGTTTTTGGTAAATCACAAGTTTCTGGGCTTGTCGAATTAGATTTTGTTACAGAT TATGAGCT TTATTATGCTATACAGTTAGTTGTATGTATATATGCCTTTCCCACTAGATTTTAAGCTTT TTTTTTTT TTTTTTTTTTGTGACGGAGTCTTGCTCTTGTCGCCCAGGCTGAAGTGGAGTGCAGTGGCA CAATCTCG GCTCACTGCAGCCTCCACCTCCTAGGTTCAAGCGATTCTCCTGCCTCGGCCTCCCAAGTA ACTGGGAC TACAGGCACGTGCCACCACACCCGGCTAATTTTTGTATTTTTTGTAGAGACAGGGTTTCG CCATGTTG GCTAGGCTGGTCTTGAACTTCTGGCCTCAGGTGATCCACCCGCCTCAGCCTCCCAAAGTG CTGGGATT TACAGGCATGAGCCACCACGCCCAGCTATAGCTCTTTAAGGGTTGTAAATTTATAATCAT TCTTTTAC TCTCCTGCAAATTCTGTTGCACACTGCCTTAATCAAGGTAGATGCTGAATGCATTTTTGT ATAATTGA ATATGTTGCAATCCCCAACTCTCTCCAACTGTTCCTGTCAAAGCAGCCACTGGATTGTTA ACTAATCC ATATTAGATGGGGTTAATTAATATCAGATGGGACAAGTAAGGGCTAATAAGATTATAGGC CACCAAGT AGATTTCTGTCTAGCTCTTATAGAGATTGAGTTTATTGGACCTGTTTGATAGGAAGTTTT GGTGTTTG GGATGATTAAAACTGAAGTTCCTATTTATTGAATTATACCTATTTATATTATTTCATATC AGTGGTCC ACATGCAAGTGAGGCTTCTGAGACAGAGTTTGAGTTCTCTCTTCAACTACCATAACACTT AACCTGTA TCTTTTTTTTTTTTTTTTTTTTTAGACAGGAGTCTCGCTCTGTCACTCAGGCTGGAGTGT AGTGGTAT GATCTCGGCTCACTGTAACCTCTGCCTCCTGGATTCAAGCAGTTCTCCATGTCTCAGCCT CCCTAGTA GCTGGGATTACAGGCCTGTGCCACCATGCCTGGCTAATTTTTTTTTTGTATTTTTAGTAG AGACGGGG TTTTACCACGTTGGCCAGGCTGGTCTCGAACTCTTGACCTCGAGCGATCAACTTGCCTTG GCCTCCCA AAGTGCTGGGATTACAGGCATGAGCCACAGCGCCCAGCCGTCTTTTTTTTTAAATAGCAA TTTAACAC TGTTCACAGTTACTCATGTACATGTCATGCCATCTATTACACTGTAAGTTCTGTGAGGGT AGCTGTAT CAAATTTATCTAACTCTCTCTAGTATGCATGACATAGTAAGTATTCAATAAATATTTGCA TATTAGTG ATAAGGATACAGGTTCTGAATAGTGGGTCCTTACCATTTAAGAATTAGTATTTGATGGCC GGGCGGGG TGGCTCACGCCTGTAATCCCAGCACTTTGGGAGGCTGAGGCGGGCGGATCATGAGATCAG GAGATCGA GACCATCCTGGCTAACATGGTGAAATCCCGTCTTTACAAAAAAAATACAAAAGAATTAAC CAAGTGTG GTGGTGGGTGCCTGTAGTCCCAGCTACTGCTTTGTGAGGCTGAGGCAGGCAGATCACCTG AGGTGGGA AATTCAAGACCAGCCTGACCAACATGGAGAAACCCCATCTCTACTAAAAATACAAAATTA GCCGGGCG TGGTGGCGCATGTCTGTAATCCCAGCTACTCGGGAGGCTGAGGCAGGAGAATGGCGTGAA CCCGGGAG GCGGAGCTTGCAGTGAGCCAGGATCGCGCCACTGCACTCCAGCCTGGGCGACAGAGCGAG ACTCCGTC TCAAAAAAAAAAAAAAAAAAAAAATTAGTATTTGATATTTGATCATTAAATATGAATTAA GAGGACTT AGACTTTTTGTTAAATGTCAAGCTGGGAAAAGTTGTCATTTAAATGAATTGCCTCTTATT TAATTTCG TCTGATGATACATTTTGTTTTTATTTTGTAAAAAATTATTTTTTTTCTTTTTGGAGACAG GGTCTTGC TCTGTTGCCCAGGCTGGTCACAAACTCCTGACCTCAAGCAATCCTCCTGCCTTAGCCTCC CAAAATGC TGGGATTACAGGCGTGACGACCTCGCCCGGCCTTGTATTATGATACATTTTGAACAACTA CAAGTAGA CTTGGTATAATGAACCTGCACGTACCCATTGCCAAGTTCTGACAACTGTCTGTCTATAGC CAATTATG CATTTCTTAAATTAGAACCCCCCCAATATACCCAAATATATATATATGTGTGCATATATA TAGTAAGT TGTAACAAAGTTGTGAATTCATACCTGAAGTATCTCAAGTGATGCAAGTTTTATGAATTT TTGTTTAT GCCTTTTGGGAAGAGTTGTATTGACAAATTTTTTATGCTTAAAGTAAACCATAAATCAAA AAAATAAA ATCTAGGATGCAATAAAACAAAACAACTTCTTGACATAAGTATGGTATGTAAATCTGTTT TGATTGGA AATCAATTTGTTATATTGCCAGAATTCCTGTTTTAGAATACATCTCTGCTGATCTGTCTG TATTCTTA GACTGCATATCTGGGATGAACTCTGGGCAGAATTCACATGGGCTTCCTTTGAAATAAACA AGACTTTT CAAATTCTTAGTCGATCTGCAGAACCTGTAGCCAGGCACTGAACCATTTTGATAGATGCA GTAATCGT TGCAAGTGTATATTTCAAGGGAGTTCTGGCTGGGTCCTAGTTTATGCTTGTGGCAGAAGC AGTGAGTA ACTGGGAGGAAGTTGGTGAGTAAGCTTCAAGGAAGAAGTCATTTTTAGTACTCTGGATCT TCCTGATT TTAAAGCACTACAAAATGGTGCATTTTCATTCTTGTCAAGTGATAACAGATATATTCTGA TGAGCCTG AAATGAATATATATTGTATCATTTTTATAATATCTAGCAAGGTTTGTATTTTCCTAGAAC TTGAACTA AATTTCAGTTCATAAAATTTATAAAATACTTAGTTGTTGTAAAATATTTTTGGAATGTTC ACATAGGT GACACACAAATGTCCCATTTTCATTCTTTCTATAGTAAATATGTTCTGATATGTGAAGGT TTAGCAGA TGCATCAGCATTTAATCCTAGAGGATCTGGCATAATCTTTTCCCCCAAGAATAGAAATTT TTTCTGCT TATGAAAGTAGTACATGTTTCTTTAAAAACAAATCAATATTGACTTCTGCCTGCTGTATA GCACTATG CCTCCACCTGGCCATGACCAGGGGCATGTCCTGGTCCACCTACCTGAAAATGTTTGCAAC CAGCCTCC TGGCCATGTGCACAGGGGCTGAAGTTGTCCCACAGGTATTACGGGCCAACCTGACAATAC ATGAAGTT CCACCAAAGTCTGAGAACTCAGAACTGAGCTTTGGGGACTGAAAGACAGCACAAACCTCA AATTTCTC AGCACTGGAAACCTCAAAATATAACTGAATTCCATAAATAAGATTTTAAGTCTTAAATAT GTATTTTT AAATGTATTAAAAGTCAAGCTGCTTGTATTTAAGCACCTAATACAATGCTTAGGTTGTAA AAGGAGAT GCTCAATAGGTACTAACTGATATATTGAGATTTAATTATGGTTTGACCAATATTTATTGG AAACCGCC AAAGCTTAAATCATCAGCTTCTTGAATGTGATTTGAAAGGTAATTTAGTATTGAATAGCA TGTGAGCT AGAGTATTTCATTCTTTCTGGTTTATTTCTTCAAATAGACTTTGAATATAATGGTGAATG GGTATTAT AAATTAACTAATAAAAATGACATTGAAAATGAAAAAATATATATATTAAAGTGTAGAAAG TGACCAGG CGTGGTGGCTCACACCTGTAATCCAAGCACCTTGGGAGGCTGAGGCAGGAGGATCTCTTG ATCCCAGG AGTTCAAGACCAGCCTGGGCAACATAGCGAGACTTCGTCTCTAAAAAAAAAAAAGAGAGA GAAAAAAA TTTTTTTTATTTAAAAAAAGTGTAGAAAGTGTCAAGACCCCACTTCTTACCATTATTTGG TATATTTC TCTATACCCACCCACCCTTCCTCCTTACTCCCTCCCTCCCTTCCCAATCTTTTTATCTTT TTGTATTC TGATTTTTTGTTTGTATATTTTGCTTTAATTTAATGTATCCTTTAAAAATTTCCCATACA TTTTATAT GTATATATAAAAACGCATGCTGCCAAAGATAATTTATAAGAAAGACCATTGAATTTTTTT AAAAGTGA TATATATTCATTGAAAAAAATTTAGAATATATAGCAAAGCAATAAAGAACTAAATAAAAT TGCTGTAA CTCCTCTTTCAAAGATAAGTGCTTTTATGATTTTGTTGTATTTTTTTCTGTATATAGGTA CATATATA GTATTTATAAAGCTGTACTCATAGTACATTTTCACATCACAGGTACCATATCAGTGTTAT TAAATATT TTGTATGCCAGGGGCTAGACATACCAAGACAACCAATATGTGGTTCTACTTAAATAATAT TAGAGTAT CTTTTATGATGACACTTCATGAGTTGACTATAATAATCTTAGACTTCTAAGAGTTTGGGT TTTCAAAA GATCACTTAGCTTTTTTGGGTGATTTTTCCCCCTTACTGTGAGATGAGAGAGGCTGTTTG GATTTGGG ATTGGGGTAGCGGGGACAGCAACTTTTCTTTTCTTTTTCTTTTTTATTTTGAGGTAGGGT ATTGCTGT GTCACCCAGGCTGGAGTGCAGTGGTGTGATCTCGGCTCACTGCAACCTCCACCTCCCGGG CTCAGGTG ATCCTCCTGCTTCAGCCTCCCAGTAACTGGGACTACAGGCGCGTGCCACATGCCTGGCTA ATTTTGTA TTTTTAGTAGAGATGGGGTTTCACCATGTTGGCCAGGCTGGTCTCTAACTCCTGACCTCA GGTGATAC GCCCACCTGGGCCTCCCAAAATACTGGGATTACAGGCATGAGCCGCTGCATCAGCCAGCA GTTTTTCT TGTGGTTTTTTTTGTTTGTTTTGTTTTGTTTTGTTTTTGAGATAGGGTCTTACTCTGTTG TCCACGCT GGAGTGCTGTGGTATGATCGTAGCTCACTGCAGCCTCAAACTCCTGGGCTCAAGTGATTC CTTCTGCC TCCGCCTCCCGAGTAGCTGGGACTACAGGTATGCACCACCATACCTGGCAAATTTTTACA AAGTTTTT TGTAGGGACGGGGTCTTGCTACATTCCCCATGTCGGTCTTGAACTCCTGGCCTCAAGCAA CTCTCCTG TCTCAGCCTCCCAAAGCACTGGGATTACAAGTGTGAGCCACCACACCATGCCAGTTTTTC CTGTTCAG TGTGATATTTTATCTTGTTAGACTACAGTGTGTTAAAACTTGTTTTACTAAATTTTCAAA CATACTCA AAAGTGGAGAGAATAGTATAATGAATACCCGTATGTTCATCACCCATGTTTAGAATATTA TTAAATAT AAAGATTTTGCTGCGTTTGTCTTAGCTCTTTAAAATTTTTCTTTTTCTCTTTGTGACCTA AAGGAAAT TCCATATCTTATCACTTTACTTCTACATTCTTGACTAAGATGACTAAGACATATAGTTAC ATGGTTTT TTGTTTTGTTTTTGTTTTTTAAAGACGAAATCTCGCTCTTGTCCCCCAGGCTGGAGTGCA ATGGTGCC ATCTCAGCTCAGTGCAACCTCTGCCTTCTGGGTACAAGCGATTCTCCTGCCTCAGCCTCC CAAGTAGC TGGGATTACAGGCTCCTGCCACCACGCCTGGCTAATTTTTGTATTTTTAGTAGAGACGGC GGGGGGAG GTTTCACCATGTTGACAAGGCTGGTCTGGAACTCCTGACCTCAGGTGATCCACCCGCCTC GGCCTCCC AAAGTGCTGGGATTACAGGCGTGAGCCACCGCGCCCAGCCTGTTTTTTTGTTTGTGTGTT TTGTTTTT TTTGAGACAGAGTCTTGCTCTGTTTCCCAGGCTGGAGTGAAGTGGTGCCATCTCAGCTCA GAGACAGA GTCTTGCTCTGTTTCCCAGGCTGGAGTGAAGTGGTGCCATCTTGGCTCACTGCAACCTTC ACCTCCCA GGTTCAAGTGATTCTCCTGCCTCAGCCTCCCAAGTAGCTGGGACTACAGGCATGTGTCAC CACACCCG GCTAATTTTTTTGTATTTTTAGTAGAGACGGGATTTCACCGTGTTGCCCAGGCTGGTCTC GAACTCCT GAGCTCAGGCAGTCTGCCTGCCTCAGCCTCCCAAAGTGCTGGGATTACACGTGTGAACCA ACCCGCCC GGCCTGTTGTTTTCTTACATAATTCATTATCATACCTACAAAGTTAACAGTTACTAATAT CATCTTAC ACCTAAATTTCTCTGATAGACTAAGGTTATTTTTTAACATCTTAATCCAATCAAATGTTT GTATCCTG TAATGCTCTCATTGAAACAGCTATATTTCTTTTTCAGATTAGTGATGATGAACCAGGTTA TGACCTTG ATTTATTTTGCATACCTAATCATTATGCTGAGGATTTGGAAAGGGTGTTTATTCCTCATG GACTAATT ATGGACAGGTAAGTAAGATCTTAAAATGAGGTTTTTTACTTTTTCTTGTGTTAATTTCAA ACATCAGC AGCTGTTCTGAGTACTTGCTATTTGAACATAAACTAGGCCAACTTATTAAATAACTGATG CTTTCTAA AATCTTCTTTATTAAAAATAAAAGAGGAGGGCCTTACTAATTACTTAGTATCAGTTGTGG TATAGTGG GACTCTGTAGGGACCAGAACAAAGTAAACATTGAAGGGAGATGGAAGAAGGAACTCTAGC CAGAGTCT TGCATTTCTCAGTCCTAAACAGGGTAATGGACTGGGGCTGAATCACATGAAGGCAAGGTC AGATTTTT ATTATTATGCACATCTAGCTTGAAAATTTTCTGTTAAGTCAATTACAGTGAAAAACCTTA CCTGGTAT TGAATGCTTGCATTGTATGTCTGGCTATTCTGTGTTTTTATTTTAAAATTATAATATCAA AATATTTG TGTTATAAAATATTCTAACTATGGAGGCCATAAACAAGAAGACTAAAGTTCTCTCCTTTC AGCCTTCT GTACACATTTCTTCTCAAGCACTGGCCTATGCATGTATACTATATGCAAAAGTACATATA TACATTTA TATTTTAACGTATGAGTATAGTTTTAAATGTTATTGGACACTTTTAATATTAGTGTGTCT AGAGCTAT CTAATATATTTTAAAGGTTGCATAGCATTCTGTCTTATGGAGATACCATAACTGATTTAA CCAGTCCA CTATTGATAGACACTATTTTGTTCTTACCGACTGTACTAGAAGAAACATTCTTTTACATG TTTGGTAC TTGTTCAGCTTTATTCAAGTGGAATTTCTGGGTCAAGGGGAAAGAGTTTATTGAATATTT TGGTATTG CCAAATTTTCCTCTAAGAAGTTGAATCATTTTATACTCCTGATGTTATATGAGAGTACCT TTCTCTTC ACAATTTGTCTCTTTTTTTTTTTTTTTTGAGACAAGGTCTCTGTTGCCCAGGCTGGGGTG CAGTGCAG CAGAATGATCACAGTTCACTGCAGTCTCAACCTCCTGGGTTCAAGCGATCCTTCCACCTC AGCCTCCT GAGTAGCTGGGACTATAGGTGTGCGCCACCACTCCCAGCTAATATTTTTATTTTGTAGAA ACAGGGTT CGCCATGTTACCCAGCCTCCCAAAGTGCTGGGATTACAGGCATGAGCCACTGGCCCAGTT TCTACAGT CTCTCTTAATATTGTATATTATCCAGAAAATTTCATTTAATCAGAACCTGCCAGTCTGAT AGGTGAAA ATGGTATCTTGTTTTTATTTGCATTTAAAAAAAATTATGATAGTGGTATGCTTGGTTTTT TTGAAGGT ATCAAATTTTTTACCTTATGAAACATGAGGGCAAAGGATGTGATACGTGGAAGATTTAAA AAAAATTT TTAATGCATTTTTTTGAGACAAGGTCTTGCTCTATTGTCCAGGCTGGAGTGCAGTGGCAC AATCACAG TTCACTCCAGCCTCAACATCCTGCACTAAAGTGATTTTCCCACCTCACCTCTCAAGTAGC TGGGACTA CAGGTACATGCTACCATGCCTGGCTAATTTTTTTTTTTTTGCAGGCATGGGGTCTCACTA TATTGCCC AGGTTGGTGTGGAAGTTTAATGACTAAGAGGTGTTTGTTATAAAGTTTAATGTATGAAAC TTTCTATT AAATTCCTGATTTTATTTCTGTAGGACTGAACGTCTTGCTCGAGATGTGATGAAGGAGAT GGGAGGCC ATCACATTGTAGCCCTCTGTGTGCTCAAGGGGGGCTATAAATTCTTTGCTGACCTGCTGG ATTACATC AAAGCACTGAATAGAAATAGTGATAGATCCATTCCTATGACTGTAGATTTTATCAGACTG AAGAGCTA TTGTGTGAGTATATTTAATATATGATTCTTTTTAGTGGCAACAGTAGGTTTTCTTATATT TTCTTTGA ATCTCTGCAAACCATACTTGCTTTCATTTCACTTGGTTACAGTGAGATTTTTCTAACATA TTCACTAG TACTTTACATCAAAGCCAATACTGTTTTTTTAAAACTAGTCACCTTGGAGGATATATACT TATTTTAC AGGTGTGTGTGGTTTTTTAAATAAACTCCTTTTAGGAATTGCTGTTGGGACTTGGGATAC TTTTTTCA CTATACATACTGGTGACAGATACCCTCTCTTGAGCTACATCGGTTTGTGGGGAGTCAAAA GTCCTTTG GAGCTAGGTTTGACAAATAAGGTGGGTTAACACTTGTTTCCTAGAAAGCACATGGAGAGC TAGAGTAT TGGCGAATTGAAGAAATCCCCCTTTTTTTTTAACACACTTAAGAAAGGGGACTGCAGGTA TACTCAAG AGAGTAAGTCGCACCAGAAACCACTTTTGATCCACAGTCTGCCTGTGTCACACAATTGAA ATGCATCA CAACATTGACACTGTGGATGAAACAAAATCAGTGTGAATTTTAGTAGTGAATTTCATTCA TAATTTGA TCGTGCAAACGTTTGATTTTTATTACTTTAGACTATTGTTTCTGATTTTATGTTGGGTTG GTATTTCC TGTGAGTTACTGTTTTACCTTTAAAATAGGAATTTTTCATACTCTTCAAAGATTAGAACA AATGTCCA GTTTTTGCTGTTTCATGAATGAGTCCTGTCCATCTTTGTAGAAACTCGCCTTATGTTCAC ATTTTTAT TGAGAATAAGACCACTTATCTACATTTAACTATCAACCTCATCCTCTCCATTAATCATCT ATTTTAGT GACCCAAGTTTTTGACCTTTTCCATGTTTACATCAATCCTGTAGGTGATTGGGCAGCCAT TTAAGTAT TATTATAGACATTTTCACTATCCCATTAAAACCCTTTATGCCCATACATCATAACACTAC TTCCTACC CATAAGCTCCTTTTAACTTGTTAAAGTCTTGCTTGAATTAAAGACTTGTTTACGGTATCG ATAAGCTT GATATCAAAACGCCAACTTTGACCCGGAACGCGGAAAACACCTGAGAAAAACACCTGGGC GAGTCTCC ACGTAAACGGTCAAAGTCCCCGCGGCCCTAGACAAATATTACGCGCTATGAGTAACACAA AATTATTC AGATTTCACTTCCTCTTATTCAGTTTTCCCGCGAAAATGGCCAAATCTTACTCGGTTACG CCCAAATT TACTACAACATCCGCCTAAAACCGCGCGAAAATTGTCACTTCCTGTGTACACCGGCGCAC ACCAAAAA CGTCACTTTTGCCACATCCGTCGCTTACATGTGTTCCGCCACACTTGCAACATCACACTT CCGCCACA CTACTACGTCACCCGCCCCGTTCCCACGCCCCGCGCCACGTCACAAACTCCACCCCCTCA TTATCATA TTGGCTTCAATCCAAAATAAGGTATATTATTGATGATGTTTAAACATTAAGAATTAATTC GATCCTGA ATGGCGAATGGACGCGCCCTGTAGCGGCGCATTAAGCGCGCGGGTGTGGTGGTTACGCGC AGCGTGAC CGCTACACTTGCCAGCGCCCTAGCGCCCGCTCCTTTCGCTTTCTTCCCTTCCTTTCTCGC CACGTTCG CCGGCTTTCCCCGTCAAGCTCTAAATCGGGGGCTCCCTTTAGGGTTCCGATTTAGAGCTT TACGGCAC CTCGACCGCAAAAAACTTGATTTGGGTGATGGTTCACGTAGTGGGCCATCGCCCTGATAG ACGGTTTT TCGCCCTTTGACGTTGGAGTCCACGTTCTTTAATAGTGGACTCTTGTTCCAAACTGGAAC AACACTCA ACCCTATCGCGGTCTATTCTTTTGATTTATAAGGGATGTTGCCGATTTCGGCCTATTGGT TAAAAAAT GAGCTGATTTAACAAAAATTTTAACAAAATTCAGAAGAACTCGTCAAGAAGGCGATAGAA GGCGATGC GCTGCGAATCGGGAGCGGCGATACCGTAAAGCACGAGGAAGCGGTCAGCCCATTCGCCGC CAAGCTCT TCAGCAATATCACGGGTAGCCAACGCTATGTCCTGATAGCGGTCCGCCACACCCAGCCGG CCACAGTC GATGAATCCAGAAAAGCGGCCATTTTCCACCATGATATTCGGCAAGCAGGCATCGCCATG GGTCACGA CGAGATCCTCGCCGTCGGGCATGCTCGCCTTGAGCCTGGCGAACAGTTCGGCTGGCGCGA GCCCCTGA TGCTCTTCGTCCAGATCATCCTGATCGACAAGACCGGCTTCCATCCGAGTACGTGCTCGC TCGATGCG ATGTTTCGCTTGGTGGTCGAATGGGCAGGTAGCCGGATCAAGCGTATGCAGCCGCCGCAT TGCATCAG CCATGATGGATACTTTCTCGGCAGGAGCAAGGTGAGATGACAGGAGATCCTGCCCCGGCA CTTCGCCC AATAGCAGCCAGTCCCTTCCCGCTTCAGTGACAACGTCGAGCACAGCTGCGCAAGGAACG CCCGTCGT GGCCAGCCACGATAGCCGCGCTGCCTCGTCTTGCAGTTCATTCAGGGCACCGGACAGGTC GGTCTTGA CAAAAAGAACCGGGCGCCCCTGCGCTGACAGCCGGAACACGGCGGCATCAGAGCAGCCGA TTGTCTGT TGTGCCCAGTCATAGCCGAATAGCCTCTCCACCCAAGCGGCCGGAGAACCTGCGTGCAAT CCATCTTG TTCAATCATGCGAAACGATCCTCATCCTGTCTCTTGATCAGAGCTTGATCCCCTGCGCCA TCAGATCC TTGGCGGCAAGAAAGCCATCCAGTTTACTTTGCAGGGCTTCCCAACCTTACCAGAGGGCG CCCCAGCT GGCAATTCCGGTTCGCTTGCTGTCCATAAAACCGCCCAGTCTAGCTATCGCCATGTAAGC CCACTGCA AGCTACCTGCTTTCTCTTTGCGCTTGCGTTTTCCCTTGTCCAGATAGCCCAGTAGCTGAC ATTCATCC GGGGTCAGCACCGTTTCTGCGGACTGGCTTTCTACGTGAAAAGGATCTAGGTGAAGATCC TTTTTGAT AATCTCATGGCTGCAGCAATGGCAACAACGTTGCGCAAACTATTAACTGGCGAACTACTT ACTCTAGC TTCCCGGCAACAATTAATAGACTGGATGGAGGCGGATAAAGTTGCAGGACCACTTCTGCG CTCGGCCC TTCCGGCTGGCTGGTTTATTGCTGATAAATCTGGAGCCGGTGAGCGTGGGTCTCGCGGTA TCATTGCA GCACTGGGGCCAGATGGTAAGCCCTCCCGTATCGTAGTTATCTACACGACGGGGAGTCAG GCAACTAT GGATGAACGAAATAGACAGATCGCTGAGATAGGTGCCTCACTGATTAAGCATTGGTAACT GTCAGACC AAGTTTACTCATATATACTTTAGATTGATTTAAAACTTCATTTTTAATTTAAAAGGATCT AGGTGAAG ATCCTTTTTGATAATCTCATGACCAAAATCCCTTAACGTGAGTTTTCGTTCCACTGAGCG TCAGAC RightITR = first underlined and bold sequence U6 = first underlined sequence CMV = first bold sequence dCas9VP64 = second underlined sequence HGHpA = second bold sequence EF1α = third underlined sequence MPH = third bold sequence HGHpA = fourth underlined sequence Packaging Signal = fourth bold sequence LeftITR = second underlined and bold sequence SEQ ID NO:9 LV-SAM LeftLTR-PackagingSignal-RRE-U6-sgRNA-CMV-dCas9VP64-HGHpA-EF1 α-MPH- HGHpA-RightLTR AGACGAAAGGGCCTCGTGATACGCCTATTTTTATAGGTTAATGTCATGATAATAATGGTT TCTTAGAC GTCAGGTGGCACTTTTCGGGGAAATGTGCGCGGAACCCCTATTTGTTTATTTTTCTAAAT ACATTCAA ATATGTATCCGCTCATGAGACAATAACCCTGATAAATGCTTCAATAATATTGAAAAAGGA AGAGTATG AGTATTCAACATTTCCGTGTCGCCCTTATTCCCTTTTTTGCGGCATTTTGCCTTCCTGTT TTTGCTCA CCCAGAAACGCTGGTGAAAGTAAAAGATGCTGAAGATCAGTTGGGTGCACGAGTGGGTTA CATCGAAC TGGATCTCAACAGCGGTAAGATCCTTGAGAGTTTTCGCCCCGAAGAACGTTTTCCAATGA TGAGCACT TTTAAAGTTCTGCTATGTGGCGCGGTATTATCCCGTATTGACGCCGGGCAAGAGCAACTC GGTCGCCG CATACACTATTCTCAGAATGACTTGGTTGAGTACTCACCAGTCACAGAAAAGCATCTTAC GGATGGCA TGACAGTAAGAGAATTATGCAGTGCTGCCATAACCATGAGTGATAACACTGCGGCCAACT TACTTCTG ACAACGATCGGAGGACCGAAGGAGCTAACCGCTTTTTTGCACAACATGGGGGATCATGTA ACTCGCCT TGATCGTTGGGAACCGGAGCTGAATGAAGCCATACCAAACGACGAGCGTGACACCACGAT GCCTGTAG CAATGGCAACAACGTTGCGCAAACTATTAACTGGCGAACTACTTACTCTAGCTTCCCGGC AACAATTA ATAGACTGGATGGAGGCGGATAAAGTTGCAGGACCACTTCTGCGCTCGGCCCTTCCGGCT GGCTGGTT TATTGCTGATAAATCTGGAGCCGGTGAGCGTGGGTCTCGCGGTATCATTGCAGCACTGGG GCCAGATG GTAAGCCCTCCCGTATCGTAGTTATCTACACGACGGGGAGTCAGGCAACTATGGATGAAC GAAATAGA CAGATCGCTGAGATAGGTGCCTCACTGATTAAGCATTGGTAACTGTCAGACCAAGTTTAC TCATATAT ACTTTAGATTGATTTAAAACTTCATTTTTAATTTAAAAGGATCTAGGTGAAGATCCTTTT TGATAATC TCATGACCAAAATCCCTTAACGTGAGTTTTCGTTCCACTGAGCGTCAGACCCCGTAGAAA AGATCAAA GGATCTTCTTGAGATCCTTTTTTTCTGCGCGTAATCTGCTGCTTGCAAACAAAAAAACCA CCGCTACC AGCGGTGGTTTGTTTGCCGGATCAAGAGCTACCAACTCTTTTTCCGAAGGTAACTGGCTT CAGCAGAG CGCAGATACCAAATACTGTTCTTCTAGTGTAGCCGTAGTTAGGCCACCACTTCAAGAACT CTGTAGCA CCGCCTACATACCTCGCTCTGCTAATCCTGTTACCAGTGGCTGCTGCCAGTGGCGATAAG TCGTGTCT TACCGGGTTGGACTCAAGACGATAGTTACCGGATAAGGCGCAGCGGTCGGGCTGAACGGG GGGTTCGT GCACACAGCCCAGCTTGGAGCGAACGACCTACACCGAACTGAGATACCTACAGCGTGAGC TATGAGAA AGCGCCACGCTTCCCGAAGGGAGAAAGGCGGACAGGTATCCGGTAAGCGGCAGGGTCGGA ACAGGAGA GCGCACGAGGGAGCTTCCAGGGGGAAACGCCTGGTATCTTTATAGTCCTGTCGGGTTTCG CCACCTCT GACTTGAGCGTCGATTTTTGTGATGCTCGTCAGGGGGGCGGAGCCTATGGAAAAACGCCA GCAACGCG GCCTTTTTACGGTTCCTGGCCTTTTGCTGGCCTTTTGCTCACATGTTCTTTCCTGCGTTA TCCCCTGA TTCTGTGGATAACCGTATTACCGCCTTTGAGTGAGCTCAGATGGTCCCCAGATATGGCCC AACCCTCA GCAGTTTCTTAAGACCCATCAGATGTTTCCAGGCTCCCCCAAGGACCTGAAATGACCCTG CGCCTTAT TTGAATTAACCAATCAGCCTGCTTCTCGCTTCTGTTCGCGCGCTTCTGCTTCCCGAGCTC TATAAAAG AGCTCACAACCCCTCACTCGGCGCGCCAGTCCTCCGACAGACTGAGTCGCCCGGGGGGGA TCACCAGA TACCGCTCGCCGCAGCCGAACGACCGAGCGCAGCGAGTCAGTGAGCGAGGAAGCGGAAGA GCGCCCAA TACGCAAACCGCCTCTCCCCGCGCGTTGGCCGATTCATTAATGCAGCTGTGGAATGTGTG TCAGTTAG GGTGTGGAAAGTCCCCAGGCTCCCCAGCAGGCAGAAGTATGCAAAGCATGCATCTCAATT AGTCAGCA ACCAGGTGTGGAAAGTCCCCAGGCTCCCCAGCAGGCAGAAGTATGCAAAGCATGCATCTC AATTAGTC AGCAACCATAGTCCCGCCCCTAACTCCGCCCATCCCGCCCCTAACTCCGCCCAGTTCCGC CCATTCTC CGCCCCATGGCTGACTAATTTTTTTTATTTATGCAGAGGCCGAGGCCGCCTCGGCCTCTG AGCTATTC CAGAAGTAGTGAGGAGGCTTTTTTGGAGGCCTAGGCTTTTGCAAAAAGCTTGGACACAAG ACAGGCTT GCGAGATATGTTTGAGAATACCACTTTATCCCGCGTCAGGGAGAGGCAGTGCGTAAAAAG ACGCGGAC TCATGTGAAATACTGGTTTTTAGTGCGCCAGATCTCTATAATCTCGCGCAACCTATTTTC CCCTCGAA CACTTTTTAAGCCGTAGATAAACAGGCTGGGACACTTCACATGAGCGAAAAATACATCGT CACCTGGG ACATGTTGCAGATCCATGCACGTAAACTCGCAAGCCGACTGATGCCTTCTGAACAATGGA AAGGCATT ATTGCCGTAAGCCGTGGCGGTCTGTACCGGGTGCGTTACTGGCGCGTGAACTGGGTATTC GTCATGTC GATACCGTTTGTATTTCCAGCTACGATCACGACAACCAGCGCGAGCTTAAAGTGCTGAAA CGCGCAGA AGGCGATGGCGAAGGCTTCATCGTTATTGATGACCTGGTGGATACCGGTGGTACTGCGGT TGCGATTC GTGAAATGTATCCAAAAGCGCACTTTGTCACCATCTTCGCAAAACCGGCTGGTCGTCCGC TGGTTGAT GACTATGTTGTTGATATCCCGCAAGATACCTGGATTGAACAGCCGTGGGATATGGGCGTC GTATTCGT CCCGCCAATCTCCGGTCGCTAATCTTTTCAACGCCTGGCACTGCCGGGCGTTGTTCTTTT TAACTTCA GGCGGGTTACAATAGTTTCCAGTAAGTATTCTGGAGGCTGCATCCATGACACAGGCAAAC CTGAGCGA AACCCTGTTCAAACCCCGCTTTAAACATCCTGAAACCTCGACGCTAGTCCGCCGCTTTAA TCACGGCG CACAACCGCCTGTGCAGTCGGCCCTTGATGGTAAAACCATCCCTCACTGGTATCGCATGA TTAACCGT CTGATGTGGATCTGGCGCGGCATTGACCCACGCGAAATCCTCGACGTCCAGGCACGTATT GTGATGAG CGATGCCGAACGTACCGACGATGATTTATACGATACGGTGATTGGCTACCGTGGCGGCAA CTGGATTT ATGAGTGGGCCCCGGATCTTTGTGAAGGAACCTTACTTCTGTGGTGTGACATAATTGGAC AAACTACC TACAGAGATTTAAAGCTCTAAGGTAAATATAAAATTTTTAAGTGTATAATGTGTTAAACT ACTGATTC TAATTGTTTGTGTATTTTAGATTCCAACCTATGGAACTGATGAATGGGAGCAGTGGTGGA ATGCCTTT AATGAGGAAAACCTGTTTTGCTCAGAAGAAATGCCATCTAGTGATGATGAGGCTACTGCT GACTCTCA ACATTCTACTCCTCCAAAAAAGAAGAGAAAGGTAGAAGACCCCAAGGACTTTCCTTCAGA ATTGCTAA GTTTTTTGAGTCATGCTGTGTTTAGTAATAGAACTCTTGCTTGCTTTGCTATTTACACCA CAAAGGAA AAAGCTGCACTGCTATACAAGAAAATTATGGAAAAATATTCTGTAACCTTTATAAGTAGG CATAACAG TTATAATCATAACATACTGTTTTTTCTTACTCCACACAGGCATAGAGTGTCTGCTATTAA TAACTATG CTCAAAAATTGTGTACCTTTAGCTTTTTAATTTGTAAAGGGGTTAATAAGGAATATTTGA TGTATAGT GCCTTGACTAGAGATCATAATCAGCCATACCACATTTGTAGAGGTTTTACTTGCTTTAAA AAACCTCC CACACCTCCCCCTGAACCTGAAACATAAAATGAATGCAATTGTTGTTGTTAACTTGTTTA TTGCAGCT TATAATGGTTACAAATAAAGCAATAGCATCACAAATTTCACAAATAAAGCATTTTTTTCA CTGCATTC TAGTTGTGGTTTGTCCAAACTCATCAATGTATCTTATCATGTCTGGATCAACTGGATAAC TCAAGCTA ACCAAAATCATCCCAAACTTCCCACCCCATACCCTATTACCACTGCCAATTACCTGTGGT TTCATTTA CTCTAAACCTGTGATTCCTCTGAATTATTTTCATTTTAAAGAAATTGTATTTGTTAAATA TGTACTAC AAACTTAGTAGTTGGAAGGGCTAATTCACTCCCAAAGAAGACAAGATATCCTTGATCTGT GGATCTAC CACACACAAGGCTACTTCCCTGATTAGCAGAACTACACACCAGGGCCAGGGGTCAGATAT CCACTGAC CTTTGGATGGTGCTACAAGCTAGTACCAGTTGAGCCAGATAAGGTAGAAGAGGCCAATAA AGGAGAGA ACACCAGCTTGTTACACCCTGTGAGCCTGCATGGGATGGATGACCCGGAGAGAGAAGTGT TAGAGTGG AGGTTTGACAGCCGCCTAGCATTTCATCACGTGGCCCGAGAGCTGCATCCGGAGTACTTC AAGAACTG CTGATATCGAGCTTGCTACAAGGGACTTTCCGCTGGGGACTTTCCAGGGAGGCGTGGCCT GGGCGGGA CTGGGGAGTGGCGAGCCCTCAGATCCTGCATATAAGCAGCTGCTTTTTGCCTGTACTGGG TCTCTCTG GTTAGACCAGATCTGAGCCTGGGAGCTCTCTGGCTAACTAGGGAACCCACTGCTTAAGCC TCAATAAA GCTTGCCTTGAGTGCTTCAAGTAGTGTGTGCCCGTCTGTTGTGTGACTCTGGTAACTAGA GATCCCTC AGACCCTTTTAGTCAGTGTGGAAAATCTCTAGCAGTGGCGCCCGAACAGGGACTTGAAAG CGAAAGGG AAACCAGAGGAGCTCTCTCGACGCAGGACTCGGCTTGCTGAAGCGCGCACGGCAAGAGGC GAGGGGCG GCGACTGGTGAGTACGCCAAAAATTTTGACTAGCGGAGGCTAGAAGGAGAGAGATGGGTG CGAGAGCG TCAGTATTAAGCGGGGAGAATTAGATCGCGATGGGAAAAAATTCGGTTAAGGCCAGGGGG AAAGAAAA AATATAAATTAAAACATATAGTATGGGCAAGCAGGGAGCTAGAACGATTCGCAGTTAATC CTGGCCTG TTAGAAACATCAGAAGGCTGTAGACAAATACTGGGACAGCTACAACCATCCCTTCAGACA GGATCAGA AGAACTTAGATCATTATATAATACAGTAGCAACCCTCTATTGTGTGCATCAAAGGATAGA GATAAAAG ACACCAAGGAAGCTTTAGACAAGATAGAGGAAGAGCAAAACAAAAGTAAGACCACCGCAC AGCAAGCG GCCGGCCGCTGATCTTCAGACCTGGAGGAGGAGATATGAGGGACAATTGGAGAAGTGAAT TATATAAA TATAAAGTAGTAAAAATTGAACCATTAGGAGTAGCACCCACCAAGGCAAAGAGAAGAGTG GTGCAGAG AGAAAAAAGAGCAGTGGGAATAGGAGCTTTGTTCCTTGGGTTCTTGGGAGCAGCAGGAAG CACTATGG GCGCAGCGTCAATGACGCTGACGGTACAGGCCAGACAATTATTGTCTGGTATAGTGCAGC AGCAGAAC AATTTGCTGAGGGCTATTGAGGCGCAACAGCATCTGTTGCAACTCACAGTCTGGGGCATC AAGCAGCT CCAGGCAAGAATCCTGGCTGTGGAAAGATACCTAAAGGATCAACAGCTCCTGGGGATTTG GGGTTGCT CTGGAAAACTCATTTGCACCACTGCTGTGCCTTGGAATGCTAGTTGGAGTAATAAATCTC TGGAACAG ATTTGGAATCACACGACCTGGATGGAGTGGGACAGAGAAATTAACAATTACACAAGCTTA ATACACTC CTTAATTGAAGAATCGCAAAACCAGCAAGAAAAGAATGAACAAGAATTATTGGAATTAGA TAAATGGG CAAGTTTGTGGAATTGGTTTAACATAACAAATTGGCTGTGGTATATAAAATTATTCATAA TGATAGTA GGAGGCTTGGTAGGTTTAAGAATAGTTTTTGCTGTACTTTCTATAGTGAATAGAGTTAGG CAGGGATA TTCACCATTATCGTTTCAGACCCACCTCCCAACCCCGAGGGGACCCGACAGGCCCGAAGG AATAGAAG AAGAAGGTGGAGAGAGAGACAGAGACAGATCCATTCGATTAGTGAACGGATCTCGACGGT ATCGCCAA ATGGCAGTATTCATCCACAATTTTAAAAGAAAAGGGGGGATTGGGGGGTACAGTGCAGGG GAAAGAAT AGTAGACATAATAGCAACAGACATACAAACTAAAGAATTACAAAAACAAATTACAAAAAT TCAAAATT TTCGGGTTTATTACAGGGACAGCAGAGATCCAGTTTGGATCGATAAGCTTGATATCGAAT TCGTAGGG ATAACAGGGTAATGAGGGCCTATTTCCCATGATTCCTTCATATTTGCATATACGATACAA GGCTGTTA GAGAGATAATTGGAATTAATTTGACTGTAAACACAAAGATATTAGTACAAAATACGTGAC GTAGAAAG TAATAATTTCTTGGGTAGTTTGCAGTTTTAAAATTATGTTTTAAAATGGACTATCATATG CTTACCGT AACTTGAAAGTATTTCGATTTCTTGGCTTTATATATCTTGTGGAAAGGACGAAACACCGN NNNNNNNN NNNNNNNNNNNGTTTTAGAGCTAGGCCAACATGAGGATCACCCATGTCTGCAGGGCCTAG CAAGTTAA AATAAGGCTAGTCCGTTATCAACTTGGCCAACATGAGGATCACCCATGTCTGCAGGGCCA AGTGGCAC CGAGTCGGTGCTTTTTTTGGATCCTGTTGACAATTAATCATCGGCATAGTATATCGGCAT AGTATAAT ACGACAAGGTGAGGAACTAAACCATGGCCAAGTTGACCAGTGCCGTTCCGGTGCTCACCG CGCGCGAC GTCGCCGGAGCGGTCGAGTTCTGGACCGACCGGCTCGGGTTCTCCCGGGACTTCGTGGAG GACGACTT CGCCGGTGTGGTCCGGGACGACGTGACCCTGTTCATCAGCGCGGTCCAGGACCAGGTGGT GCCGGACA ACACCCTGGCCTGGGTGTGGGTGCGCGGCCTGGACGAGCTGTACGCCGAGTGGTCGGAGG TCGTGTCC ACGAACTTCCGGGACGCCTCCGGGCCGGCCATGACCGAGATCGGCGAGCAGCCGTGGGGG CGGGAGTT CGCCCTGCGCGACCCGGCCGGCAACTGCGTGCACTTCGTGGCCGAGGAGCAGGACTGATA GGGATAAC AGGGTAATGCTAGCATAGTAATCAATTACGGGGTCATTAGTTCATAGCCCATATATGGAG TTCCGCGT TACATAACTTACGGTAAATGGCCCGCCTGGCTGACCGCCCAACGACCCCCGCCCATTGAC GTCAATAA TGACGTATGTTCCCATAGTAACGTCAATAGGGACTTTCCATTGACGTCAATGGGTGGAGT ATTTACGG TAAACTGCCCACTTGGCAGTACATCAAGTGTATCATATGCCAAGTACGCCCCCTATTGAC GTCAATGA CGGTAAATGGCCCGCCTGGCATTATGCCCAGTACATGACCTTATGGGACTTTCCTACTTG GCAGTACA TCTACGTATTAGTCATCGCTATTACCATGGTGATGCGGTTTTGGCAGTACATCAATGGGC GTGGATAG CGGTTTGACTCACGGGGATTTCCAAGTCTCCACCCCATTGACGTCAATGGGAGTTTGTTT TGCACCAA AATCAACGGGACTTTCCAAAATGTCGTAACAACTCCGCCCCATTGACGCAAATGGGCGGT AGGCGTGT ACGGTGGGAGGTCTATATAAGCAGAGCTCGTTTAGTGAACCGTCAGATCGCCTGGAGACG CCATCCAC GCTGTTTTGACCTCCATAGAAGACACCGGGACCGATCCAGCCTCCGCGGATTCGAATCCC GGCCGGGA ACGGTGCATTGGAACGCGGATTCCCCGTGCCAAGAGTGACGTAAGTACCGCCTATAGAGT CTATAGGC CCACAAAAAATGCTTTCTTCTTTTAATATACTTTTTTGTTTATCTTATTTCTAATACTTT CCCTAATC TCTTTCTTTCAGGGCAATAATGATACAATGTATCATGCCTCTTTGCACCATTCTAAAGAA TAACAGTG ATAATTTCTGGGTTAAGGCAATAGCAATATTTCTGCATATAAATATTTCTGCATATAAAT TGTAACTG ATGTAAGAGGTTTCATATTGCTAATAGCAGCTACAATCCAGCTACCATTCTGCTTTTATT TTATGGTT GGGATAAGGCTGGATTATTCTGAGTCCAAGCTAGGCCCTTTTGCTAATCATGTTCATACC TCTTATCT TCCTCCCACAGCTCCTGGGCAACGTGCTGGTCTGTGTGCTGGCCCATCACTTTGGCAAAG AATTGGGA TCGTACGGCCACCATGAAAAGGCCGGCGGCCACGAAAAAGGCCGGCCAGGCAAAAAAGAA AAAGGACA AGAAGTACAGCATCGGCCTGGCCATCGGCACCAACTCTGTGGGCTGGGCCGTGATCACCG ACGAGTAC AAGGTGCCCAGCAAGAAATTCAAGGTGCTGGGCAACACCGACCGGCACAGCATCAAGAAG AACCTGAT CGGAGCCCTGCTGTTCGACAGCGGCGAAACAGCCGAGGCCACCCGGCTGAAGAGAACCGC CAGAAGAA GATACACCAGACGGAAGAACCGGATCTGCTATCTGCAAGAGATCTTCAGCAACGAGATGG CCAAGGTG GACGACAGCTTCTTCCACAGACTGGAAGAGTCCTTCCTGGTGGAAGAGGATAAGAAGCAC GAGCGGCA CCCCATCTTCGGCAACATCGTGGACGAGGTGGCCTACCACGAGAAGTACCCCACCATCTA CCACCTGA GAAAGAAACTGGTGGACAGCACCGACAAGGCCGACCTGCGGCTGATCTATCTGGCCCTGG CCCACATG ATCAAGTTCCGGGGCCACTTCCTGATCGAGGGCGACCTGAACCCCGACAACAGCGACGTG GACAAGCT GTTCATCCAGCTGGTGCAGACCTACAACCAGCTGTTCGAGGAAAACCCCATCAACGCCAG CGGCGTGG ACGCCAAGGCCATCCTGTCTGCCAGACTGAGCAAGAGCAGACGGCTGGAAAATCTGATCG CCCAGCTG CCCGGCGAGAAGAAGAATGGCCTGTTCGGCAACCTGATTGCCCTGAGCCTGGGCCTGACC CCCAACTT CAAGAGCAACTTCGACCTGGCCGAGGATGCCAAACTGCAGCTGAGCAAGGACACCTACGA CGACGACC TGGACAACCTGCTGGCCCAGATCGGCGACCAGTACGCCGACCTGTTTCTGGCCGCCAAGA ACCTGTCC GACGCCATCCTGCTGAGCGACATCCTGAGAGTGAACACCGAGATCACCAAGGCCCCCCTG AGCGCCTC TATGATCAAGAGATACGACGAGCACCACCAGGACCTGACCCTGCTGAAAGCTCTCGTGCG GCAGCAGC TGCCTGAGAAGTACAAAGAGATTTTCTTCGACCAGAGCAAGAACGGCTACGCCGGCTACA TTGACGGC GGAGCCAGCCAGGAAGAGTTCTACAAGTTCATCAAGCCCATCCTGGAAAAGATGGACGGC ACCGAGGA ACTGCTCGTGAAGCTGAACAGAGAGGACCTGCTGCGGAAGCAGCGGACCTTCGACAACGG CAGCATCC CCCACCAGATCCACCTGGGAGAGCTGCACGCCATTCTGCGGCGGCAGGAAGATTTTTACC CATTCCTG AAGGACAACCGGGAAAAGATCGAGAAGATCCTGACCTTCCGCATCCCCTACTACGTGGGC CCTCTGGC CAGGGGAAACAGCAGATTCGCCTGGATGACCAGAAAGAGCGAGGAAACCATCACCCCCTG GAACTTCG AGGAAGTGGTGGACAAGGGCGCTTCCGCCCAGAGCTTCATCGAGCGGATGACCAACTTCG ATAAGAAC CTGCCCAACGAGAAGGTGCTGCCCAAGCACAGCCTGCTGTACGAGTACTTCACCGTGTAT AACGAGCT GACCAAAGTGAAATACGTGACCGAGGGAATGAGAAAGCCCGCCTTCCTGAGCGGCGAGCA GAAAAAGG CCATCGTGGACCTGCTGTTCAAGACCAACCGGAAAGTGACCGTGAAGCAGCTGAAAGAGG ACTACTTC AAGAAAATCGAGTGCTTCGACTCCGTGGAAATCTCCGGCGTGGAAGATCGGTTCAACGCC TCCCTGGG CACATACCACGATCTGCTGAAAATTATCAAGGACAAGGACTTCCTGGACAATGAGGAAAA CGAGGACA TTCTGGAAGATATCGTGCTGACCCTGACACTGTTTGAGGACAGAGAGATGATCGAGGAAC GGCTGAAA ACCTATGCCCACCTGTTCGACGACAAAGTGATGAAGCAGCTGAAGCGGCGGAGATACACC GGCTGGGG CAGGCTGAGCCGGAAGCTGATCAACGGCATCCGGGACAAGCAGTCCGGCAAGACAATCCT GGATTTCC TGAAGTCCGACGGCTTCGCCAACAGAAACTTCATGCAGCTGATCCACGACGACAGCCTGA CCTTTAAA GAGGACATCCAGAAAGCCCAGGTGTCCGGCCAGGGCGATAGCCTGCACGAGCACATTGCC AATCTGGC CGGCAGCCCCGCCATTAAGAAGGGCATCCTGCAGACAGTGAAGGTGGTGGACGAGCTCGT GAAAGTGA TGGGCCGGCACAAGCCCGAGAACATCGTGATCGAAATGGCCAGAGAGAACCAGACCACCC AGAAGGGA CAGAAGAACAGCCGCGAGAGAATGAAGCGGATCGAAGAGGGCATCAAAGAGCTGGGCAGC CAGATCCT GAAAGAACACCCCGTGGAAAACACCCAGCTGCAGAACGAGAAGCTGTACCTGTACTACCT GCAGAATG GGCGGGATATGTACGTGGACCAGGAACTGGACATCAACCGGCTGTCCGACTACGATGTGG ACCACATC GTGCCTCAGAGCTTTCTGAAGGACGACTCCATCGACAACAAGGTGCTGACCAGAAGCGAC AAGGCCCG GGGCAAGAGCGACAACGTGCCCTCCGAAGAGGTCGTGAAGAAGATGAAGAACTACTGGCG GCAGCTGC TGAACGCCAAGCTGATTACCCAGAGAAAGTTCGACAATCTGACCAAGGCCGAGAGAGGCG GCCTGAGC GAACTGGATAAGGCCGGCTTCATCAAGAGACAGCTGGTGGAAACCCGGCAGATCACAAAG CACGTGGC ACAGATCCTGGACTCCCGGATGAACACTAAGTACGACGAGAATGACAAGCTGATCCGGGA AGTGAAAG TGATCACCCTGAAGTCCAAGCTGGTGTCCGATTTCCGGAAGGATTTCCAGTTTTACAAAG TGCGCGAG ATCAACAACTACCACCACGCCCACGACGCCTACCTGAACGCCGTCGTGGGAACCGCCCTG ATCAAAAA GTACCCTAAGCTGGAAAGCGAGTTCGTGTACGGCGACTACAAGGTGTACGACGTGCGGAA GATGATCG CCAAGAGCGAGCAGGAAATCGGCAAGGCTACCGCCAAGTACTTCTTCTACAGCAACATCA TGAACTTT TTCAAGACCGAGATTACCCTGGCCAACGGCGAGATCCGGAAGCGGCCTCTGATCGAGACA AACGGCGA AACCGGGGAGATCGTGTGGGATAAGGGCCGGGATTTTGCCACCGTGCGGAAAGTGCTGAG CATGCCCC AAGTGAATATCGTGAAAAAGACCGAGGTGCAGACAGGCGGCTTCAGCAAAGAGTCTATCC TGCCCAAG AGGAACAGCGATAAGCTGATCGCCAGAAAGAAGGACTGGGACCCTAAGAAGTACGGCGGC TTCGACAG CCCCACCGTGGCCTATTCTGTGCTGGTGGTGGCCAAAGTGGAAAAGGGCAAGTCCAAGAA ACTGAAGA GTGTGAAAGAGCTGCTGGGGATCACCATCATGGAAAGAAGCAGCTTCGAGAAGAATCCCA TCGACTTT CTGGAAGCCAAGGGCTACAAAGAAGTGAAAAAGGACCTGATCATCAAGCTGCCTAAGTAC TCCCTGTT CGAGCTGGAAAACGGCCGGAAGAGAATGCTGGCCTCTGCCGGCGAACTGCAGAAGGGAAA CGAACTGG CCCTGCCCTCCAAATATGTGAACTTCCTGTACCTGGCCAGCCACTATGAGAAGCTGAAGG GCTCCCCC GAGGATAATGAGCAGAAACAGCTGTTTGTGGAACAGCACAAGCACTACCTGGACGAGATC ATCGAGCA GATCAGCGAGTTCTCCAAGAGAGTGATCCTGGCCGACGCTAATCTGGACAAAGTGCTGTC CGCCTACA ACAAGCACCGGGATAAGCCCATCAGAGAGCAGGCCGAGAATATCATCCACCTGTTTACCC TGACCAAT CTGGGAGCCCCTGCCGCCTTCAAGTACTTTGACACCACCATCGACCGGAAGAGGTACACC AGCACCAA AGAGGTGCTGGACGCCACCCTGATCCACCAGAGCATCACCGGCCTGTACGAGACACGGAT CGACCTGT CTCAGCTGGGAGGCGACAGCGCTGGAGGAGGTGGAAGCGGAGGAGGAGGAAGCGGAGGAG GAGGTAGC GGACCTAAGAAAAAGAGGAAGGTGGCGGCCGCTGGATCCGGACGGGCTGACGCATTGGAC GATTTTGA TCTGGATATGCTGGGAAGTGACGCCCTCGATGATTTTGACCTTGACATGCTTGGTTCGGA TGCCCTTG ATGACTTTGACCTCGACATGCTCGGCAGTGACGCCCTTGATGATTTCGACCTGGACATGC TGATTAAC TGTACATAAACGGGTGGCATCCCTGTGACCCCTCCCCAGTGCCTCTCCTGGCCCTGGAAG TTGCCACT CCAGTGCCCACCAGCCTTGTCCTAATAAAATTAAGTTGCATCATTTTGTCTGACTAGGTG TCCTTCTA TAATATTATGGGGTGGAGGGGGGTGGTATGGAGCAAGGGGCAAGTTGGGAAGACAACCTG TAGGGCCT GCGGGGTCTATTGGGAACCAAGCTGGAGTGCAGTGGCACAATCTTGGCTCACTGCAATCT CCGCCTCC TGGGTTCAAGCGATTCTCCTGCCTCAGCCTCCCGAGTTGTTGGGATTCCAGGCATGCATG ACCAGGCT CAGCTAATTTTTGTTTTTTTGGTAGAGACGGGGTTTCACCATATTGGCCAGGCTGGTCTC CAACTCCT AATCTCAGGTGATCTACCCACCTTGGCCTCCCAAATTGCTGGGATTACAGGCGTGAACCA CTGCTCCC TTCCCTGTCCTTGAATTCTAACTATAACGGTCCTAAGGTAGCGAAGCTAGCTGCAAAGAT GGATAAAG TTTTAAACAGAGAGGAATCTTTGCAGCTAATGGACCTTCTAGGTCTTGAAAGGAGTGGGA ATTGGCTC CGGTGCCCGTCAGTGGGCAGAGCGCACATCGCCCACAGTCCCCGAGAAGTTGGGGGGAGG GGTCGGCA ATTGAACCGGTGCCTAGAGAAGGTGGCGCGGGGTAAACTGGGAAAGTGATGTCGTGTACT GGCTCCGC CTTTTTCCCGAGGGTGGGGGAGAACCGTATATAAGTGCAGTAGTCGCCGTGAACGTTCTT TTTCGCAA CGGGTTTGCCGCCAGAACACAGGTAAGTGCCGTGTGTGGTTCCCGCGGGCCTGGCCTCTT TACGGGTT ATGGCCCTTGCGTGCCTTGAATTACTTCCACCTGGCTGCAGTACGTGATTCTTGATCCCG AGCTTCGG GTTGGAAGTGGGTGGGAGAGTTCGAGGCCTTGCGCTTAAGGAGCCCCTTCGCCTCGTGCT TGAGTTGA GGCCTGGCCTGGGCGCTGGGGCCGCCGCGTGCGAATCTGGTGGCACCTTCGCGCCTGTCT CGCTGCTT TCGATAAGTCTCTAGCCATTTAAAATTTTTGATGACCTGCTGCGACGCTTTTTTTCTGGC AAGATAGT CTTGTAAATGCGGGCCAAGATCTGCACACTGGTATTTCGGTTTTTGGGGCCGCGGGCGGC GACGGGGC CCGTGCGTCCCAGCGCACATGTTCGGCGAGGCGGGGCCTGCGAGCGCGGCCACCGAGAAT CGGACGGG GGTAGTCTCAAGCTGGCCGGCCTGCTCTGGTGCCTGGCCTCGCGCCGCCGTGTATCGCCC CGCCCTGG GCGGCAAGGCTGGCCCGGTCGGCACCAGTTGCGTGAGCGGAAAGATGGCCGCTTCCCGGC CCTGCTGC AGGGAGCTCAAAATGAAGGACGCGGCGCTCGGGAGAGCGGGCGGGTGAGTCACCCACACA AAGGAAAA GGGCCTTTCCGTCCTCAGCCGTCGCTTCATGTGACTCCACGGAGTACCGGGCGCCGTCCA GGCACCTC GATTAGTTCTCGAGCTTTTGGAGTACGTCGTCTTTAGGTTGGGGGGAGGGGTTTTATGCG ATGGAGTT TCCCCACACTGAGTGGGTGGAGACTGAAGTTAGGCCAGCTTGGCACTTGATGTAATTCTC CTTGGAAT TTGCCCTTTTTGAGTTTGGATCTTGGTTCATTCTCAAGCCTCAGACAGTGGTTCAAAGTT TTTTTCTT CCATTTCAGGTGTCGTGACGTACGGCCACCATGGCTTCAAACTTTACTCAGTTCGTGCTC GTGGACAA TGGTGGGACAGGGGATGTGACAGTGGCTCCTTCTAATTTCGCTAATGGGGTGGCAGAGTG GATCAGCT CCAACTCACGGAGCCAGGCCTACAAGGTGACATGCAGCGTCAGGCAGTCTAGTGCCCAGA AGAGAAAG TATACCATCAAGGTGGAGGTCCCCAAAGTGGCTACCCAGACAGTGGGCGGAGTCGAACTG CCTGTCGC CGCTTGGAGGTCCTACCTGAACATGGAGCTCACTATCCCAATTTTCGCTACCAATTCTGA CTGTGAAC TCATCGTGAAGGCAATGCAGGGGCTCCTCAAAGACGGTAATCCTATCCCTTCCGCCATCG CCGCTAAC TCAGGTATCTACAGCGCTGGAGGAGGTGGAAGCGGAGGAGGAGGAAGCGGAGGAGGAGGT AGCGGACC TAAGAAAAAGAGGAAGGTGGCGGCCGCTGGATCCCCTTCAGGGCAGATCAGCAACCAGGC CCTGGCTC TGGCCCCTAGCTCCGCTCCAGTGCTGGCCCAGACTATGGTGCCCTCTAGTGCTATGGTGC CTCTGGCC CAGCCACCTGCTCCAGCCCCTGTGCTGACCCCAGGACCACCCCAGTCACTGAGCGCTCCA GTGCCCAA GTCTACACAGGCCGGCGAGGGGACTCTGAGTGAAGCTCTGCTGCACCTGCAGTTCGACGC TGATGAGG ACCTGGGAGCTCTGCTGGGGAACAGCACCGATCCCGGAGTGTTCACAGATCTGGCCTCCG TGGACAAC TCTGAGTTTCAGCAGCTGCTGAATCAGGGCGTGTCCATGTCTCATAGTACAGCCGAACCA ATGCTGAT GGAGTACCCCGAAGCCATTACCCGGCTGGTGACCGGCAGCCAGCGGCCCCCCGACCCCGC TCCAACTC CCCTGGGAACCAGCGGCCTGCCTAATGGGCTGTCCGGAGATGAAGACTTCTCAAGCATCG CTGATATG GACTTTAGTGCCCTGCTGTCACAGATTTCCTCTAGTGGGCAGGGAGGAGGTGGAAGCGGC TTCAGCGT GGACACCAGTGCCCTGCTGGACCTGTTCAGCCCCTCGGTGACCGTGCCCGACATGAGCCT GCCTGACC TTGACAGCAGCCTGGCCAGTATCCAAGAGCTCCTGTCTCCCCAGGAGCCCCCCAGGCCTC CCGAGGCA GAGAACAGCAGCCCGGATTCAGGGAAGCAGCTGGTGCACTACACAGCGCAGCCGCTGTTC CTGCTGGA CCCCGGCTCCGTGGACACCGGGAGCAACGACCTGCCGGTGCTGTTTGAGCTGGGAGAGGG CTCCTACT TCTCCGAAGGGGACGGCTTCGCCGAGGACCCCACCATCTCCCTGCTGACAGGCTCGGAGC CTCCCAAA GCCAAGGACCCCACTGTCTCCTGTACATAAACGGGTGGCATCCCTGTGACCCCTCCCCAG TGCCTCTC CTGGCCCTGGAAGTTGCCACTCCAGTGCCCACCAGCCTTGTCCTAATAAAATTAAGTTGC ATCATTTT GTCTGACTAGGTGTCCTTCTATAATATTATGGGGTGGAGGGGGGTGGTATGGAGCAAGGG GCAAGTTG GGAAGACAACCTGTAGGGCCTGCGGGGTCTATTGGGAACCAAGCTGGAGTGCAGTGGCAC AATCTTGG CTCACTGCAATCTCCGCCTCCTGGGTTCAAGCGATTCTCCTGCCTCAGCCTCCCGAGTTG TTGGGATT CCAGGCATGCATGACCAGGCTCAGCTAATTTTTGTTTTTTTGGTAGAGACGGGGTTTCAC CATATTGG CCAGGCTGGTCTCCAACTCCTAATCTCAGGTGATCTACCCACCTTGGCCTCCCAAATTGC TGGGATTA CAGGCGTGAACCACTGCTCCCTTCCCTGTCCTTGAATTCTAACTATAACGGTCCTAAGGT AGCGAAGG TACCTTTAAGACCAATGACTTACAAGGCAGCTGTAGATCTTAGCCACTTTTTAAAAGAAA AGGGGGGA CTGGAAGGGCTAATTCACTCCCAACGAAGACAAGATCTGCTTTTTGCTTGTACTGGGTCT CTCTGGTT AGACCAGATCTGAGCCTGGGAGCTCTCTGGCTAACTAGGGAACCCACTGCTTAAGCCTCA ATAAAGCT TGCCTTGAGTGCTTCAAGTAGTGTGTGCCCGTCTGTTGTGTGACTCTGGTAACTAGAGAT CCCTCAGA CCCTTTTAGTCAGTGTGGAAAATCTCTAGCAGCATCTAGAATTAATTCCGTGTATTCTAT AGTGTCAC CTAAATCGTATGTGTATGATACATAAGGTTATGTATTAATTGTAGCCGCGTTCTAACGAC AATATGTA CAAGCCTAATTGTGTAGCATCTGGCTTACTGAAGCAGACCCTATCATCTCTCTCGTAAAC TGCCGTCA GAGTCGGTTTGGTTGGACGAACCTTCTGAGTTTCTGGTAACGCCGTCCCGCACCCGGAAA TGGTCAGC GAACCAATCAGCAGGGTCATCGCTAGCCAGATCCTCTACGCCGGACGCATCGTGGCCGGC ATCACCGG CGCCACAGGTGCGGTTGCTGGCGCCTATATCGCCGACATCACCGATGGGGAAGATCGGGC TCGCCACT TCGGGCTCATGAGCGCTTGTTTCGGCGTGGGTATGGTGGCAGGCCCCGTGGCCGGGGGAC TGTTGGGC GCCATCTCCTTGCATGCACCATTCCTTGCGGCGGCGGTGCTCAACGGCCTCAACCTACTA CTGGGCTG CTTCCTAATGCAGGAGTCGCATAAGGGAGAGCGTCGAATGGTGCACTCTCAGTACAATCT GCTCTGAT GCCGCATAGTTAAGCCAGCCCCGACACCCGCCAACACCCGCTGACGCGCCCTGACGGGCT TGTCTGCT CCCGGCATCCGCTTACAGACAAGCTGTGACCGTCTCCGGGAGCTGCATGTGTCAGAGGTT TTCACCGT CATCACCGAAACGCGCG RightITR = first underlined and bold sequence Packaging Signal = first underlined sequence RRE = first bold sequence U6 = second underlined sequence CMV = second bold sequence dCas9VP64 = third underlined sequence HGHpA = third bold sequence EF1α = fourth underlined sequence MPH = fourth bold sequence HGHpA = fifth underlined sequence LeftITR = second underlined and bold sequence SEQ ID NO:10 AAV-dCas9VP64 LeftITR-EF1α-dCas9VP64-FpA-RightITR GTAGAAAAGATCAAAGGATCTTCTTGAGATCCTTTTTTTCTGCGCGTAATCTGCTGCTTG CAAACAAA AAAACCACCGCTACCAGCGGTGGTTTGTTTGCCGGATCAAGAGCTACCAACTCTTTTTCC GAAGGTAA CTGGCTTCAGCAGAGCGCAGATACCAAATACTGTCCTTCTAGTGTAGCCGTAGTTAGGCC ACCACTTC AAGAACTCTGTAGCACCGCCTACATACCTCGCTCTGCTAATCCTGTTACCAGTGGCTGCT GCCAGTGG CGATAAGTCGTGTCTTACCGGGTTGGACTCAAGACGATAGTTACCGGATAAGGCGCAGCG GTCGGGCT GAACGGGGGGTTCGTGCACACAGCCCAGCTTGGAGCGAACGACCTACACCGAACTGAGAT ACCTACAG CGTGAGCTATGAGAAAGCGCCACGCTTCCCGAAGGGAGAAAGGCGGACAGGTATCCGGTA AGCGGCAG GGTCGGAACAGGAGAGCGCACGAGGGAGCTTCCAGGGGGAAACGCCTGGTATCTTTATAG TCCTGTCG GGTTTCGCCACCTCTGACTTGAGCGTCGATTTTTGTGATGCTCGTCAGGGGGGCGGAGCC TATGGAAA AACGCCAGCAACGCGGCCTTTTTACGGTTCCTGGCCTTTTGCTGGCCTTTTGCTCACATG TCCTGCAG GCAGCTGCGCGCTCGCTCGCTCACTGAGGCCGCCCGGGCAAAGCCCGGGCGTCGGGCGAC CTTTGGTC GCCCGGCCTCAGTGAGCGAGCGAGCGCGCAGAGAGGGAGTGGCCAACTCCATCACTAGGG GTTCCTGC GGCCGCACGCGTGGCTCCGGTGCCCGTCAGTGGGCAGAGCGCACATCGCCCACAGTCCCC GAGAAGTT GGGGGGAGGGGTCGGCAATTGAACCGGTGCCTAGAGAAGGTGGCGCGGGGTAAACTGGGA AAGTGATG TCGTGTACTGGCTCCGCCTTTTTCCCGAGGGTGGGGGAGAACCGTATATAAGTGCAGTAG TCGCCGTG AACGTTCTTTTTCGCAACGGGTTTGCCGCCAGAACACAGGAATTCGCCACCATGAAAAGG CCGGCGGC CACGAAAAAGGCCGGCCAGGCAAAAAAGAAAAAGGACAAGAAGTACAGCATCGGCCTGGC CATCGGCA CCAACTCTGTGGGCTGGGCCGTGATCACCGACGAGTACAAGGTGCCCAGCAAGAAATTCA AGGTGCTG GGCAACACCGACCGGCACAGCATCAAGAAGAACCTGATCGGAGCCCTGCTGTTCGACAGC GGCGAAAC AGCCGAGGCCACCCGGCTGAAGAGAACCGCCAGAAGAAGATACACCAGACGGAAGAACCG GATCTGCT ATCTGCAAGAGATCTTCAGCAACGAGATGGCCAAGGTGGACGACAGCTTCTTCCACAGAC TGGAAGAG TCCTTCCTGGTGGAAGAGGATAAGAAGCACGAGCGGCACCCCATCTTCGGCAACATCGTG GACGAGGT GGCCTACCACGAGAAGTACCCCACCATCTACCACCTGAGAAAGAAACTGGTGGACAGCAC CGACAAGG CCGACCTGCGGCTGATCTATCTGGCCCTGGCCCACATGATCAAGTTCCGGGGCCACTTCC TGATCGAG GGCGACCTGAACCCCGACAACAGCGACGTGGACAAGCTGTTCATCCAGCTGGTGCAGACC TACAACCA GCTGTTCGAGGAAAACCCCATCAACGCCAGCGGCGTGGACGCCAAGGCCATCCTGTCTGC CAGACTGA GCAAGAGCAGACGGCTGGAAAATCTGATCGCCCAGCTGCCCGGCGAGAAGAAGAATGGCC TGTTCGGC AACCTGATTGCCCTGAGCCTGGGCCTGACCCCCAACTTCAAGAGCAACTTCGACCTGGCC GAGGATGC CAAACTGCAGCTGAGCAAGGACACCTACGACGACGACCTGGACAACCTGCTGGCCCAGAT CGGCGACC AGTACGCCGACCTGTTTCTGGCCGCCAAGAACCTGTCCGACGCCATCCTGCTGAGCGACA TCCTGAGA GTGAACACCGAGATCACCAAGGCCCCCCTGAGCGCCTCTATGATCAAGAGATACGACGAG CACCACCA GGACCTGACCCTGCTGAAAGCTCTCGTGCGGCAGCAGCTGCCTGAGAAGTACAAAGAGAT TTTCTTCG ACCAGAGCAAGAACGGCTACGCCGGCTACATTGACGGCGGAGCCAGCCAGGAAGAGTTCT ACAAGTTC ATCAAGCCCATCCTGGAAAAGATGGACGGCACCGAGGAACTGCTCGTGAAGCTGAACAGA GAGGACCT GCTGCGGAAGCAGCGGACCTTCGACAACGGCAGCATCCCCCACCAGATCCACCTGGGAGA GCTGCACG CCATTCTGCGGCGGCAGGAAGATTTTTACCCATTCCTGAAGGACAACCGGGAAAAGATCG AGAAGATC CTGACCTTCCGCATCCCCTACTACGTGGGCCCTCTGGCCAGGGGAAACAGCAGATTCGCC TGGATGAC CAGAAAGAGCGAGGAAACCATCACCCCCTGGAACTTCGAGGAAGTGGTGGACAAGGGCGC TTCCGCCC AGAGCTTCATCGAGCGGATGACCAACTTCGATAAGAACCTGCCCAACGAGAAGGTGCTGC CCAAGCAC AGCCTGCTGTACGAGTACTTCACCGTGTATAACGAGCTGACCAAAGTGAAATACGTGACC GAGGGAAT GAGAAAGCCCGCCTTCCTGAGCGGCGAGCAGAAAAAGGCCATCGTGGACCTGCTGTTCAA GACCAACC GGAAAGTGACCGTGAAGCAGCTGAAAGAGGACTACTTCAAGAAAATCGAGTGCTTCGACT CCGTGGAA ATCTCCGGCGTGGAAGATCGGTTCAACGCCTCCCTGGGCACATACCACGATCTGCTGAAA ATTATCAA GGACAAGGACTTCCTGGACAATGAGGAAAACGAGGACATTCTGGAAGATATCGTGCTGAC CCTGACAC TGTTTGAGGACAGAGAGATGATCGAGGAACGGCTGAAAACCTATGCCCACCTGTTCGACG ACAAAGTG ATGAAGCAGCTGAAGCGGCGGAGATACACCGGCTGGGGCAGGCTGAGCCGGAAGCTGATC AACGGCAT CCGGGACAAGCAGTCCGGCAAGACAATCCTGGATTTCCTGAAGTCCGACGGCTTCGCCAA CAGAAACT TCATGCAGCTGATCCACGACGACAGCCTGACCTTTAAAGAGGACATCCAGAAAGCCCAGG TGTCCGGC CAGGGCGATAGCCTGCACGAGCACATTGCCAATCTGGCCGGCAGCCCCGCCATTAAGAAG GGCATCCT GCAGACAGTGAAGGTGGTGGACGAGCTCGTGAAAGTGATGGGCCGGCACAAGCCCGAGAA CATCGTGA TCGAAATGGCCAGAGAGAACCAGACCACCCAGAAGGGACAGAAGAACAGCCGCGAGAGAA TGAAGCGG ATCGAAGAGGGCATCAAAGAGCTGGGCAGCCAGATCCTGAAAGAACACCCCGTGGAAAAC ACCCAGCT GCAGAACGAGAAGCTGTACCTGTACTACCTGCAGAATGGGCGGGATATGTACGTGGACCA GGAACTGG ACATCAACCGGCTGTCCGACTACGATGTGGACCACATCGTGCCTCAGAGCTTTCTGAAGG ACGACTCC ATCGACAACAAGGTGCTGACCAGAAGCGACAAGGCCCGGGGCAAGAGCGACAACGTGCCC TCCGAAGA GGTCGTGAAGAAGATGAAGAACTACTGGCGGCAGCTGCTGAACGCCAAGCTGATTACCCA GAGAAAGT TCGACAATCTGACCAAGGCCGAGAGAGGCGGCCTGAGCGAACTGGATAAGGCCGGCTTCA TCAAGAGA CAGCTGGTGGAAACCCGGCAGATCACAAAGCACGTGGCACAGATCCTGGACTCCCGGATG AACACTAA GTACGACGAGAATGACAAGCTGATCCGGGAAGTGAAAGTGATCACCCTGAAGTCCAAGCT GGTGTCCG ATTTCCGGAAGGATTTCCAGTTTTACAAAGTGCGCGAGATCAACAACTACCACCACGCCC ACGACGCC TACCTGAACGCCGTCGTGGGAACCGCCCTGATCAAAAAGTACCCTAAGCTGGAAAGCGAG TTCGTGTA CGGCGACTACAAGGTGTACGACGTGCGGAAGATGATCGCCAAGAGCGAGCAGGAAATCGG CAAGGCTA CCGCCAAGTACTTCTTCTACAGCAACATCATGAACTTTTTCAAGACCGAGATTACCCTGG CCAACGGC GAGATCCGGAAGCGGCCTCTGATCGAGACAAACGGCGAAACCGGGGAGATCGTGTGGGAT AAGGGCCG GGATTTTGCCACCGTGCGGAAAGTGCTGAGCATGCCCCAAGTGAATATCGTGAAAAAGAC CGAGGTGC AGACAGGCGGCTTCAGCAAAGAGTCTATCCTGCCCAAGAGGAACAGCGATAAGCTGATCG CCAGAAAG AAGGACTGGGACCCTAAGAAGTACGGCGGCTTCGACAGCCCCACCGTGGCCTATTCTGTG CTGGTGGT GGCCAAAGTGGAAAAGGGCAAGTCCAAGAAACTGAAGAGTGTGAAAGAGCTGCTGGGGAT CACCATCA TGGAAAGAAGCAGCTTCGAGAAGAATCCCATCGACTTTCTGGAAGCCAAGGGCTACAAAG AAGTGAAA AAGGACCTGATCATCAAGCTGCCTAAGTACTCCCTGTTCGAGCTGGAAAACGGCCGGAAG AGAATGCT GGCCTCTGCCGGCGAACTGCAGAAGGGAAACGAACTGGCCCTGCCCTCCAAATATGTGAA CTTCCTGT ACCTGGCCAGCCACTATGAGAAGCTGAAGGGCTCCCCCGAGGATAATGAGCAGAAACAGC TGTTTGTG GAACAGCACAAGCACTACCTGGACGAGATCATCGAGCAGATCAGCGAGTTCTCCAAGAGA GTGATCCT GGCCGACGCTAATCTGGACAAAGTGCTGTCCGCCTACAACAAGCACCGGGATAAGCCCAT CAGAGAGC AGGCCGAGAATATCATCCACCTGTTTACCCTGACCAATCTGGGAGCCCCTGCCGCCTTCA AGTACTTT GACACCACCATCGACCGGAAGAGGTACACCAGCACCAAAGAGGTGCTGGACGCCACCCTG ATCCACCA GAGCATCACCGGCCTGTACGAGACACGGATCGACCTGTCTCAGCTGGGAGGCGACAGCGC TGGAGGAG GTGGAAGCGGAGGAGGAGGAAGCGGAGGAGGAGGTAGCGGACCTAAGAAAAAGAGGAAGG TGGCGGCC GCTGGATCCGGACGGGCTGACGCATTGGACGATTTTGATCTGGATATGCTGGGAAGTGAC GCCCTCGA TGATTTTGACCTTGACATGCTTGGTTCGGATGCCCTTGATGACTTTGACCTCGACATGCT CGGCAGTG ACGCCCTTGATGATTTCGACCTGGACATGCTGTAACTCGAGCAATAAAGAATCGTTTGTG TTATGTTT CAACGTGTTTATTTTTCAATTGCAGCGGACCGAGCGGCCGCAGGAACCCCTAGTGATGGA GTTGGCCA CTCCCTCTCTGCGCGCTCGCTCGCTCACTGAGGCCGGGCGACCAAAGGTCGCCCGACGCC CGGGCTTT GCCCGGGCGGCCTCAGTGAGCGAGCGAGCGCGCAGCTGCCTGCAGGGGCGCCTGATGCGG TATTTTCT CCTTACGCATCTGTGCGGTATTTCACACCGCATACGTCAAAGCAACCATAGTACGCGCCC TGTAGCGG CGCATTAAGCGCGGCGGGTGTGGTGGTTACGCGCAGCGTGACCGCTACACTTGCCAGCGC CCTAGCGC CCGCTCCTTTCGCTTTCTTCCCTTCCTTTCTCGCCACGTTCGCCGGCTTTCCCCGTCAAG CTCTAAAT CGGGGGCTCCCTTTAGGGTTCCGATTTAGTGCTTTACGGCACCTCGACCCCAAAAAACTT GATTTGGG TGATGGTTCACGTAGTGGGCCATCGCCCTGATAGACGGTTTTTCGCCCTTTGACGTTGGA GTCCACGT TCTTTAATAGTGGACTCTTGTTCCAAACTGGAACAACACTCAACCCTATCTCGGGCTATT CTTTTGAT TTATAAGGGATTTTGCCGATTTCGGCCTATTGGTTAAAAAATGAGCTGATTTAACAAAAA TTTAACGC GAATTTTAACAAAATATTAACGTTTACAATTTTATGGTGCACTCTCAGTACAATCTGCTC TGATGCCG CATAGTTAAGCCAGCCCCGACACCCGCCAACACCCGCTGACGCGCCCTGACGGGCTTGTC TGCTCCCG GCATCCGCTTACAGACAAGCTGTGACCGTCTCCGGGAGCTGCATGTGTCAGAGGTTTTCA CCGTCATC ACCGAAACGCGCGAGACGAAAGGGCCTCGTGATACGCCTATTTTTATAGGTTAATGTCAT GATAATAA TGGTTTCTTAGACGTCAGGTGGCACTTTTCGGGGAAATGTGCGCGGAACCCCTATTTGTT TATTTTTC TAAATACATTCAAATATGTATCCGCTCATGAGACAATAACCCTGATAAATGCTTCAATAA TATTGAAA AAGGAAGAGTATGAGTATTCAACATTTCCGTGTCGCCCTTATTCCCTTTTTTGCGGCATT TTGCCTTC CTGTTTTTGCTCACCCAGAAACGCTGGTGAAAGTAAAAGATGCTGAAGATCAGTTGGGTG CACGAGTG GGTTACATCGAACTGGATCTCAACAGCGGTAAGATCCTTGAGAGTTTTCGCCCCGAAGAA CGTTTTCC AATGATGAGCACTTTTAAAGTTCTGCTATGTGGCGCGGTATTATCCCGTATTGACGCCGG GCAAGAGC AACTCGGTCGCCGCATACACTATTCTCAGAATGACTTGGTTGAGTACTCACCAGTCACAG AAAAGCAT CTTACGGATGGCATGACAGTAAGAGAATTATGCAGTGCTGCCATAACCATGAGTGATAAC ACTGCGGC CAACTTACTTCTGACAACGATCGGAGGACCGAAGGAGCTAACCGCTTTTTTGCACAACAT GGGGGATC ATGTAACTCGCCTTGATCGTTGGGAACCGGAGCTGAATGAAGCCATACCAAACGACGAGC GTGACACC ACGATGCCTGTAGCAATGGCAACAACGTTGCGCAAACTATTAACTGGCGAACTACTTACT CTAGCTTC CCGGCAACAATTAATAGACTGGATGGAGGCGGATAAAGTTGCAGGACCACTTCTGCGCTC GGCCCTTC CGGCTGGCTGGTTTATTGCTGATAAATCTGGAGCCGGTGAGCGTGGGTCTCGCGGTATCA TTGCAGCA CTGGGGCCAGATGGTAAGCCCTCCCGTATCGTAGTTATCTACACGACGGGGAGTCAGGCA ACTATGGA TGAACGAAATAGACAGATCGCTGAGATAGGTGCCTCACTGATTAAGCATTGGTAACTGTC AGACCAAG TTTACTCATATATACTTTAGATTGATTTAAAACTTCATTTTTAATTTAAAAGGATCTAGG TGAAGATC CTTTTTGATAATCTCATGACCAAAATCCCTTAACGTGAGTTTTCGTTCCACTGAGCGTCA GACCCC RightITR = first underlined and bold sequence EF1α = first underlined sequence dCas9VP64 = bold sequence FpA = second underlined sequence LeftITR = second underlined and bold sequence SEQ ID NO:11 AAV-MPH LeftITR-CMV-MPH-HGHpA-U6-sgRNA-RightITR AGATCAAAGGATCTTCTTGAGATCCTTTTTTTCTGCGCGTAATCTGCTGCTTGCAAACAA AAAAACCA CCGCTACCAGCGGTGGTTTGTTTGCCGGATCAAGAGCTACCAACTCTTTTTCCGAAGGTA ACTGGCTT CAGCAGAGCGCAGATACCAAATACTGTCCTTCTAGTGTAGCCGTAGTTAGGCCACCACTT CAAGAACT CTGTAGCACCGCCTACATACCTCGCTCTGCTAATCCTGTTACCAGTGGCTGCTGCCAGTG GCGATAAG TCGTGTCTTACCGGGTTGGACTCAAGACGATAGTTACCGGATAAGGCGCAGCGGTCGGGC TGAACGGG GGGTTCGTGCACACAGCCCAGCTTGGAGCGAACGACCTACACCGAACTGAGATACCTACA GCGTGAGC TATGAGAAAGCGCCACGCTTCCCGAAGGGAGAAAGGCGGACAGGTATCCGGTAAGCGGCA GGGTCGGA ACAGGAGAGCGCACGAGGGAGCTTCCAGGGGGAAACGCCTGGTATCTTTATAGTCCTGTC GGGTTTCG CCACCTCTGACTTGAGCGTCGATTTTTGTGATGCTCGTCAGGGGGGCGGAGCCTATGGAA AAACGCCA GCAACGCGGCCTTTTTACGGTTCCTGGCCTTTTGCTGGCCTTTTGCTCACATGTCCTGCA GGCAGCTG CGCGCTCGCTCGCTCACTGAGGCCGCCCGGGCAAAGCCCGGGCGTCGGGCGACCTTTGGT CGCCCGGC CTCAGTGAGCGAGCGAGCGCGCAGAGAGGGAGTGGCCAACTCCATCACTAGGGGTTCCTG CGGCCGCA CGCGTGGAGCTAGTTATTAATAGTAATCAATTACGGGGTCATTAGTTCATAGCCCATATA TGGAGTTC CGCGTTACATAACTTACGGTAAATGGCCCGCCTGGCTGACCGCCCAACGACCCCCGCCCA TTGACGTC AATAATGACGTATGTTCCCATAGTAACGTCAATAGGGACTTTCCATTGACGTCAATGGGT GGAGTATT TACGGTAAACTGCCCACTTGGCAGTACATCAAGTGTATCATATGCCAAGTACGCCCCCTA TTGACGTC AATGACGGTAAATGGCCCGCCTGGCATTATGCCCAGTACATGACCTTATGGGACTTTCCT ACTTGGCA GTACATCTACGTATTAGTCATCGCTATTACCATGGTGATGCGGTTTTGGCAGTACATCAA TGGGCGTG GATAGCGGTTTGACTCACGGGGATTTCCAAGTCTCCACCCCATTGACGTCAATGGGAGTT TGTTTTGC ACCAAAATCAACGGGACTTTCCAAAATGTCGTAACAACTCCGCCCCATTGACGCAAATGG GCGGTAGG CGTGTACGGTGGGAGGTCTATATAAGCAGAGCTCGTTTAGTGAACCGTCAGATCGCCTGG AGACGCCA TCCACGCTGTTTTGACCTCCATAGAAGACACCGGGACCGATCCAGCCTCCGCGGATTCGA ATCCCGGC CGGGAACGGTGCATTGGAACGCGGATTCCCCGTGCCAAGAGTGACGTAAGTACCGCCTAT AGAGTCTA TAGGCCCACAAAAAATGCTTTCTTCTTTTAATATACTTTTTTGTTTATCTTATTTCTAAT ACTTTCCC TAATCTCTTTCTTTCAGGGCAATAATGATACAATGTATCATGCCTCTTTGCACCATTCTA AAGAATAA CAGTGATAATTTCTGGGTTAAGGCAATAGCAATATTTCTGCATATAAATATTTCTGCATA TAAATTGT AACTGATGTAAGAGGTTTCATATTGCTAATAGCAGCTACAATCCAGCTACCATTCTGCTT TTATTTTA TGGTTGGGATAAGGCTGGATTATTCTGAGTCCAAGCTAGGCCCTTTTGCTAATCATGTTC ATACCTCT TATCTTCCTCCCACAGCTCCTGGGCAACGTGCTGGTCTGTGTGCTGGCCCATCACTTTGG CAAAGAAT TGGGATTCGAACATCGATTGAATTCACCATGGCTTCAAACTTTACTCAGTTCGTGCTCGT GGACAATG GTGGGACAGGGGATGTGACAGTGGCTCCTTCTAATTTCGCTAATGGGGTGGCAGAGTGGA TCAGCTCC AACTCACGGAGCCAGGCCTACAAGGTGACATGCAGCGTCAGGCAGTCTAGTGCCCAGAAG AGAAAGTA TACCATCAAGGTGGAGGTCCCCAAAGTGGCTACCCAGACAGTGGGCGGAGTCGAACTGCC TGTCGCCG CTTGGAGGTCCTACCTGAACATGGAGCTCACTATCCCAATTTTCGCTACCAATTCTGACT GTGAACTC ATCGTGAAGGCAATGCAGGGGCTCCTCAAAGACGGTAATCCTATCCCTTCCGCCATCGCC GCTAACTC AGGTATCTACAGCGCTGGAGGAGGTGGAAGCGGAGGAGGAGGAAGCGGAGGAGGAGGTAG CGGACCTA AGAAAAAGAGGAAGGTGGCGGCCGCTGGATCCCCTTCAGGGCAGATCAGCAACCAGGCCC TGGCTCTG GCCCCTAGCTCCGCTCCAGTGCTGGCCCAGACTATGGTGCCCTCTAGTGCTATGGTGCCT CTGGCCCA GCCACCTGCTCCAGCCCCTGTGCTGACCCCAGGACCACCCCAGTCACTGAGCGCTCCAGT GCCCAAGT CTACACAGGCCGGCGAGGGGACTCTGAGTGAAGCTCTGCTGCACCTGCAGTTCGACGCTG ATGAGGAC CTGGGAGCTCTGCTGGGGAACAGCACCGATCCCGGAGTGTTCACAGATCTGGCCTCCGTG GACAACTC TGAGTTTCAGCAGCTGCTGAATCAGGGCGTGTCCATGTCTCATAGTACAGCCGAACCAAT GCTGATGG AGTACCCCGAAGCCATTACCCGGCTGGTGACCGGCAGCCAGCGGCCCCCCGACCCCGCTC CAACTCCC CTGGGAACCAGCGGCCTGCCTAATGGGCTGTCCGGAGATGAAGACTTCTCAAGCATCGCT GATATGGA CTTTAGTGCCCTGCTGTCACAGATTTCCTCTAGTGGGCAGGGAGGAGGTGGAAGCGGCTT CAGCGTGG ACACCAGTGCCCTGCTGGACCTGTTCAGCCCCTCGGTGACCGTGCCCGACATGAGCCTGC CTGACCTT GACAGCAGCCTGGCCAGTATCCAAGAGCTCCTGTCTCCCCAGGAGCCCCCCAGGCCTCCC GAGGCAGA GAACAGCAGCCCGGATTCAGGGAAGCAGCTGGTGCACTACACAGCGCAGCCGCTGTTCCT GCTGGACC CCGGCTCCGTGGACACCGGGAGCAACGACCTGCCGGTGCTGTTTGAGCTGGGAGAGGGCT CCTACTTC TCCGAAGGGGACGGCTTCGCCGAGGACCCCACCATCTCCCTGCTGACAGGCTCGGAGCCT CCCAAAGC CAAGGACCCCACTGTCTCCTGACCTCGAGCAGCGCTGCTCGAGAGATCTACGGGTGGCAT CCCTGTGA CCCCTCCCCAGTGCCTCTCCTGGCCCTGGAAGTTGCCACTCCAGTGCCCACCAGCCTTGT CCTAATAA AATTAAGTTGCATCATTTTGTCTGACTAGGTGTCCTTCTATAATATTATGGGGTGGAGGG GGGTGGTA TGGAGCAAGGGGCAAGTTGGGAAGACAACCTGTAGGGCCTGCGGGGTCTATTGGGAACCA AGCTGGAG TGCAGTGGCACAATCTTGGCTCACTGCAATCTCCGCCTCCTGGGTTCAAGCGATTCTCCT GCCTCAGC CTCCCGAGTTGTTGGGATTCCAGGCATGCATGACCAGGCTCAGCTAATTTTTGTTTTTTT GGTAGAGA CGGGGTTTCACCATATTGGCCAGGCTGGTCTCCAACTCCTAATCTCAGGTGATCTACCCA CCTTGGCC TCCCAAATTGCTGGGATTACAGGCGTGAACCACTGCTCCCTTCCCTGTCCTTCTGATTTT GTAGGTAA CCACGTGCGGACCTAGGGATAACAGGGTAATGAGGGCCTATTTCCCATGATTCCTTCATA TTTGCATA TACGATACAAGGCTGTTAGAGAGATAATTGGAATTAATTTGACTGTAAACACAAAGATAT TAGTACAA AATACGTGACGTAGAAAGTAATAATTTCTTGGGTAGTTTGCAGTTTTAAAATTATGTTTT AAAATGGA CTATCATATGCTTACCGTAACTTGAAAGTATTTCGATTTCTTGGCTTTATATATCTTGTG GAAAGGAC GAAACACCGNNNNNNNNNNNNNNNNNNNNGTTTTAGAGCTAGGCCAACATGAGGATCACC CATGTCTG CAGGGCCTAGCAAGTTAAAATAAGGCTAGTCCGTTATCAACTTGGCCAACATGAGGATCA CCCATGTC TGCAGGGCCAAGTGGCACCGAGTCGGTGCTTTTTTTGGATCCTGTTGACAATTAATCATC GGCATAGT ATATCGGCATAGTATAATACGACAAGGTGAGGAACTAAACCATGGCCAAGTTGACCAGTG CCGTTCCG GTGCTCACCGCGCGCGACGTCGCCGGAGCGGTCGAGTTCTGGACCGACCGGCTCGGGTTC TCCCGGGA CTTCGTGGAGGACGACTTCGCCGGTGTGGTCCGGGACGACGTGACCCTGTTCATCAGCGC GGTCCAGG ACCAGGTGGTGCCGGACAACACCCTGGCCTGGGTGTGGGTGCGCGGCCTGGACGAGCTGT ACGCCGAG TGGTCGGAGGTCGTGTCCACGAACTTCCGGGACGCCTCCGGGCCGGCCATGACCGAGATC GGCGAGCA GCCGTGGGGGCGGGAGTTCGCCCTGCGCGACCCGGCCGGCAACTGCGTGCACTTCGTGGC CGAGGAGC AGGACTGATAGGGATAACAGGGTAATTAACTATAACGGTCCTAAGGTAGCGAAGGACCGA GCGGCCGC AGGAACCCCTAGTGATGGAGTTGGCCACTCCCTCTCTGCGCGCTCGCTCGCTCACTGAGG CCGGGCGA CCAAAGGTCGCCCGACGCCCGGGCTTTGCCCGGGCGGCCTCAGTGAGCGAGCGAGCGCGC AGCTGCCT GCAGGGGCGCCTGATGCGGTATTTTCTCCTTACGCATCTGTGCGGTATTTCACACCGCAT ACGTCAAA GCAACCATAGTACGCGCCCTGTAGCGGCGCATTAAGCGCGGCGGGTGTGGTGGTTACGCG CAGCGTGA CCGCTACACTTGCCAGCGCCCTAGCGCCCGCTCCTTTCGCTTTCTTCCCTTCCTTTCTCG CCACGTTC GCCGGCTTTCCCCGTCAAGCTCTAAATCGGGGGCTCCCTTTAGGGTTCCGATTTAGTGCT TTACGGCA CCTCGACCCCAAAAAACTTGATTTGGGTGATGGTTCACGTAGTGGGCCATCGCCCTGATA GACGGTTT TTCGCCCTTTGACGTTGGAGTCCACGTTCTTTAATAGTGGACTCTTGTTCCAAACTGGAA CAACACTC AACCCTATCTCGGGCTATTCTTTTGATTTATAAGGGATTTTGCCGATTTCGGCCTATTGG TTAAAAAA TGAGCTGATTTAACAAAAATTTAACGCGAATTTTAACAAAATATTAACGTTTACAATTTT ATGGTGCA CTCTCAGTACAATCTGCTCTGATGCCGCATAGTTAAGCCAGCCCCGACACCCGCCAACAC CCGCTGAC GCGCCCTGACGGGCTTGTCTGCTCCCGGCATCCGCTTACAGACAAGCTGTGACCGTCTCC GGGAGCTG CATGTGTCAGAGGTTTTCACCGTCATCACCGAAACGCGCGAGACGAAAGGGCCTCGTGAT ACGCCTAT TTTTATAGGTTAATGTCATGATAATAATGGTTTCTTAGACGTCAGGTGGCACTTTTCGGG GAAATGTG CGCGGAACCCCTATTTGTTTATTTTTCTAAATACATTCAAATATGTATCCGCTCATGAGA CAATAACC CTGATAAATGCTTCAATAATATTGAAAAAGGAAGAGTATGAGTATTCAACATTTCCGTGT CGCCCTTA TTCCCTTTTTTGCGGCATTTTGCCTTCCTGTTTTTGCTCACCCAGAAACGCTGGTGAAAG TAAAAGAT GCTGAAGATCAGTTGGGTGCACGAGTGGGTTACATCGAACTGGATCTCAACAGCGGTAAG ATCCTTGA GAGTTTTCGCCCCGAAGAACGTTTTCCAATGATGAGCACTTTTAAAGTTCTGCTATGTGG CGCGGTAT TATCCCGTATTGACGCCGGGCAAGAGCAACTCGGTCGCCGCATACACTATTCTCAGAATG ACTTGGTT GAGTACTCACCAGTCACAGAAAAGCATCTTACGGATGGCATGACAGTAAGAGAATTATGC AGTGCTGC CATAACCATGAGTGATAACACTGCGGCCAACTTACTTCTGACAACGATCGGAGGACCGAA GGAGCTAA CCGCTTTTTTGCACAACATGGGGGATCATGTAACTCGCCTTGATCGTTGGGAACCGGAGC TGAATGAA GCCATACCAAACGACGAGCGTGACACCACGATGCCTGTAGCAATGGCAACAACGTTGCGC AAACTATT AACTGGCGAACTACTTACTCTAGCTTCCCGGCAACAATTAATAGACTGGATGGAGGCGGA TAAAGTTG CAGGACCACTTCTGCGCTCGGCCCTTCCGGCTGGCTGGTTTATTGCTGATAAATCTGGAG CCGGTGAG CGTGGGTCTCGCGGTATCATTGCAGCACTGGGGCCAGATGGTAAGCCCTCCCGTATCGTA GTTATCTA CACGACGGGGAGTCAGGCAACTATGGATGAACGAAATAGACAGATCGCTGAGATAGGTGC CTCACTGA TTAAGCATTGGTAACTGTCAGACCAAGTTTACTCATATATACTTTAGATTGATTTAAAAC TTCATTTT TAATTTAAAAGGATCTAGGTGAAGATCCTTTTTGATAATCTCATGACCAAAATCCCTTAA CGTGAGTT TTCGTTCCACTGAGCGTCAGACCCCGTAGAAA RightITR = first underlined and bold sequence CMV = first underlined sequence MPH = first bold sequence HGHpA = second underlined sequence U6 = second bold sequence LeftITR = second underlined and bold sequence SEQ ID NO:12 AAV-dCasΦ1-MPH-sgRNA LeftITR-CBh-dCasΦ1-P2A-MPH-FpA-U6-sgRNA-RightITR AGATCAAAGGATCTTCTTGAGATCCTTTTTTTCTGCGCGTAATCTGCTGCTTGCAAACAA AAAAACCA CCGCTACCAGCGGTGGTTTGTTTGCCGGATCAAGAGCTACCAACTCTTTTTCCGAAGGTA ACTGGCTT CAGCAGAGCGCAGATACCAAATACTGTCCTTCTAGTGTAGCCGTAGTTAGGCCACCACTT CAAGAACT CTGTAGCACCGCCTACATACCTCGCTCTGCTAATCCTGTTACCAGTGGCTGCTGCCAGTG GCGATAAG TCGTGTCTTACCGGGTTGGACTCAAGACGATAGTTACCGGATAAGGCGCAGCGGTCGGGC TGAACGGG GGGTTCGTGCACACAGCCCAGCTTGGAGCGAACGACCTACACCGAACTGAGATACCTACA GCGTGAGC TATGAGAAAGCGCCACGCTTCCCGAAGGGAGAAAGGCGGACAGGTATCCGGTAAGCGGCA GGGTCGGA ACAGGAGAGCGCACGAGGGAGCTTCCAGGGGGAAACGCCTGGTATCTTTATAGTCCTGTC GGGTTTCG CCACCTCTGACTTGAGCGTCGATTTTTGTGATGCTCGTCAGGGGGGCGGAGCCTATGGAA AAACGCCA GCAACGCGGCCTTTTTACGGTTCCTGGCCTTTTGCTGGCCTTTTGCTCACATGTCCTGCA GGCAGCTG CGCGCTCGCTCGCTCACTGAGGCCGCCCGGGCAAAGCCCGGGCGTCGGGCGACCTTTGGT CGCCCGGC CTCAGTGAGCGAGCGAGCGCGCAGAGAGGGAGTGGCCAACTCCATCACTAGGGGTTCCTG CGGCCGCA CGCGTCGTTACATAACTTACGGTAAATGGCCCGCCTGGCTGACCGCCCAACGACCCCCGC CCATTGAC GTCAATAATGACGTATGTTCCCATAGTAACGCCAATAGGGACTTTCCATTGACGTCAATG GGTGGAGT ATTTACGGTAAACTGCCCACTTGGCAGTACATCAAGTGTATCATATGCCAAGTACGCCCC CTATTGAC GTCAATGACGGTAAATGGCCCGCCTGGCATTATGCCCAGTACATGACCTTATGGGACTTT CCTACTTG GCAGTACATCTACGTATTAGTCATCGCTATTACCATGGTCGAGGTGAGCCCCACGTTCTG CTTCACTC TCCCCATCTCCCCCCCCTCCCCACCCCCAATTTTGTATTTATTTATTTTTTAATTATTTT GTGCAGCG ATGGGGGCGGGGGGGGGGGGGGGGCGCGCGCCAGGCGGGGCGGGGCGGGGCGAGGGGCGG GGCGGGGC GAGGCGGAGAGGTGCGGCGGCAGCCAATCAGAGCGGCGCGCTCCGAAAGTTTCCTTTTAT GGCGAGGC GGCGGCGGCGGCGGCCCTATAAAAAGCGAAGCGCGCGGCGGGCGGGAGTCGCTGCGACGC TGCCTTCG CCCCGTGCCCCGCTCCGCCGCCGCCTCGCGCCGCCCGCCCCGGCTCTGACTGACCGCGTT ACTCCCAC AGGTGAGCGGGCGGGACGGCCCTTCTCCTCCGGGCTGTAATTAGCTGAGCAAGAGGTAAG GGTTTAAG GGATGGTTGGTTGGTGGGGTATTAATGTTTAATTACCTGGAGCACCTGTCCGGAGAATTC GCCACCAT GAAAAGGCCGGCGGCCACGAAAAAGGCCGGCCAGGCAAAAAAGAAAAAGGCCGATACCCC CACACTGT TCACCCAATTCCTCAGACACCACCTCCCCGGCCAAAGATTTAGAAAGGACATTCTGAAGC AAGCCGGA AGAATCCTCGCTAATAAGGGAGAGGACGCCACAATTGCCTTTCTGAGAGGCAAATCCGAG GAGAGCCC TCCCGACTTCCAACCCCCCGTGAAGTGCCCCATCATCGCTTGCAGCAGACCTCTGACAGA ATGGCCCA TCTATCAAGCCAGCGTGGCTATCCAAGGCTACGTCTACGGCCAGTCTCTGGCCGAATTTG AGGCCAGC GACCCCGGCTGTTCCAAGGATGGACTCCTCGGATGGTTTGACAAGACCGGCGTCTGCACC GATTATTT CAGCGTGCAAGGACTGAACCTCATTTTCCAGAACGCTAGGAAGAGGTATATCGGCGTGCA GACCAAGG TGACCAATAGAAACGAAAAGAGGCACAAAAAGCTGAAGAGGATCAACGCCAAGAGAATCG CTGAAGGA CTGCCCGAGCTGACCTCCGACGAGCCCGAGAGCGCTCTGGATGAAACCGGCCATCTGATC GACCCTCC CGGACTGAACACAAACATCTACTGCTACCAGCAAGTGAGCCCTAAGCCTCTGGCTCTCAG CGAGGTGA ATCAGCTGCCCACCGCCTACGCTGGATACAGCACCTCCGGAGATGATCCCATCCAGCCCA TGGTGACC AAAGATAGACTGAGCATCTCCAAAGGCCAGCCCGGATATATCCCCGAGCACCAGAGGGCT CTGCTGAG CCAAAAGAAGCATAGAAGGATGAGAGGCTACGGACTGAAGGCTAGGGCTCTGCTCGTGAT CGTGAGGA TTCAAGATGACTGGGCCGTCATCGATCTGAGGTCTCTGCTGAGGAACGCTTACTGGAGGA GGATCGTC CAGACAAAGGAGCCCTCCACAATCACCAAGCTGCTCAAGCTCGTGACCGGCGATCCCGTG CTGGACGC CACCAGAATGGTCGCCACCTTCACCTATAAACCCGGAATCGTGCAAGTGAGGAGCGCTAA ATGTCTGA AGAACAAGCAAGGCAGCAAGCTGTTCAGCGAAAGGTATCTGAACGAAACCGTGAGCGTGA CCAGCATT GCCCTCGGCTCCAACAATCTGGTCGCTGTGGCCACCTACAGACTGGTCAACGGAAATACC CCCGAACT GCTGCAGAGGTTTACACTCCCTAGCCATCTGGTGAAGGATTTCGAGAGGTACAAACAAGC TCACGATA CACTGGAGGACTCCATTCAGAAGACCGCCGTGGCTTCTCTGCCCCAAGGCCAGCAAACCG AGATTAGA ATGTGGTCCATGTACGGCTTTAGAGAGGCCCAAGAGAGGGTCTGTCAAGAGCTGGGACTG GCCGACGG ATCCATCCCTTGGAATGTGATGACCGCCACATCCACCATTCTGACAGATCTCTTTCTGGC CAGAGGAG GAGACCCCAAGAAGTGCATGTTCACCAGCGAGCCCAAGAAGAAGAAGAACTCCAAGCAAG TGCTCTAT AAGATTAGAGATAGAGCTTGGGCCAAGATGTACAGAACACTGCTGTCCAAAGAGACCAGA GAGGCTTG GAATAAAGCTCTGTGGGGACTGAAAAGGGGCAGCCCCGACTATGCCAGACTGTCCAAGAG GAAGGAAG AGCTGGCTAGAAGATGCGTCAACTACACCATCTCCACCGCCGAGAAGAGGGCCCAGTGTG GAAGGACC ATTGTGGCCCTCGAAGATCTGAACATCGGCTTCTTCCACGGCAGAGGAAAACAAGAGCCC GGATGGGT GGGACTGTTCACAAGAAAGAAGGAGAACAGATGGCTCATGCAAGCCCTCCACAAGGCTTT TCTGGAGC TGGCTCATCATAGAGGCTACCACGTCATCGAAGTCAACCCCGCCTATACCTCCCAGACAT GCCCCGTG TGTAGACATTGCGACCCCGACAATAGAGACCAGCATAACAGAGAGGCCTTCCACTGTATC GGATGTGG CTTCAGAGGCAACGCTGACCTCGACGTGGCCACCCACAACATTGCTATGGTGGCCATCAC CGGCGAAT CCCTCAAAAGGGCCAGAGGCTCCGTGGCTTCCAAGACACCTCAACCTCTGGCCGCCGAGG GCAGTGGA GAGGGCAGAGGAAGTCTGCTAACATGCGGTGACGTCGAGGAGAATCCTGGCCCAGCCACC ATGGCTTC AAACTTTACTCAGTTCGTGCTCGTGGACAATGGTGGGACAGGGGATGTGACAGTGGCTCC TTCTAATT TCGCTAATGGGGTGGCAGAGTGGATCAGCTCCAACTCACGGAGCCAGGCCTACAAGGTGA CATGCAGC GTCAGGCAGTCTAGTGCCCAGAAGAGAAAGTATACCATCAAGGTGGAGGTCCCCAAAGTG GCTACCCA GACAGTGGGCGGAGTCGAACTGCCTGTCGCCGCTTGGAGGTCCTACCTGAACATGGAGCT CACTATCC CAATTTTCGCTACCAATTCTGACTGTGAACTCATCGTGAAGGCAATGCAGGGGCTCCTCA AAGACGGT AATCCTATCCCTTCCGCCATCGCCGCTAACTCAGGTATCTACAGCGCTGGAGGAGGTGGA AGCGGAGG AGGAGGAAGCGGAGGAGGAGGTAGCGGACCTAAGAAAAAGAGGAAGGTGGCGGCCGCTGG ATCCCCTT CAGGGCAGATCAGCAACCAGGCCCTGGCTCTGGCCCCTAGCTCCGCTCCAGTGCTGGCCC AGACTATG GTGCCCTCTAGTGCTATGGTGCCTCTGGCCCAGCCACCTGCTCCAGCCCCTGTGCTGACC CCAGGACC ACCCCAGTCACTGAGCGCTCCAGTGCCCAAGTCTACACAGGCCGGCGAGGGGACTCTGAG TGAAGCTC TGCTGCACCTGCAGTTCGACGCTGATGAGGACCTGGGAGCTCTGCTGGGGAACAGCACCG ATCCCGGA GTGTTCACAGATCTGGCCTCCGTGGACAACTCTGAGTTTCAGCAGCTGCTGAATCAGGGC GTGTCCAT GTCTCATAGTACAGCCGAACCAATGCTGATGGAGTACCCCGAAGCCATTACCCGGCTGGT GACCGGCA GCCAGCGGCCCCCCGACCCCGCTCCAACTCCCCTGGGAACCAGCGGCCTGCCTAATGGGC TGTCCGGA GATGAAGACTTCTCAAGCATCGCTGATATGGACTTTAGTGCCCTGCTGTCACAGATTTCC TCTAGTGG GCAGGGAGGAGGTGGAAGCGGCTTCAGCGTGGACACCAGTGCCCTGCTGGACCTGTTCAG CCCCTCGG TGACCGTGCCCGACATGAGCCTGCCTGACCTTGACAGCAGCCTGGCCAGTATCCAAGAGC TCCTGTCT CCCCAGGAGCCCCCCAGGCCTCCCGAGGCAGAGAACAGCAGCCCGGATTCAGGGAAGCAG CTGGTGCA CTACACAGCGCAGCCGCTGTTCCTGCTGGACCCCGGCTCCGTGGACACCGGGAGCAACGA CCTGCCGG TGCTGTTTGAGCTGGGAGAGGGCTCCTACTTCTCCGAAGGGGACGGCTTCGCCGAGGACC CCACCATC TCCCTGCTGACAGGCTCGGAGCCTCCCAAAGCCAAGGACCCCACTGTCTCCTGACCTCGA GCAATAAA GAATCGTTTGTGTTATGTTTCAACGTGTTTATTTTTCAATTGCAGCGGACCTAGGGATAA CAGGGTAA TGAGGGCCTATTTCCCATGATTCCTTCATATTTGCATATACGATACAAGGCTGTTAGAGA GATAATTG GAATTAATTTGACTGTAAACACAAAGATATTAGTACAAAATACGTGACGTAGAAAGTAAT AATTTCTT GGGTAGTTTGCAGTTTTAAAATTATGTTTTAAAATGGACTATCATATGCTTACCGTAACT TGAAAGTA TTTCGATTTCTTGGCTTTATATATCTTGTGGAAAGGACGGCCAACATGAGGATCACCCAT GTCTGCAG GGCCCACCGGGAGAGATCTCAAACGATTGCTCGATTAGTCGAGACAGAAGAGCNNNNNNN NNNNNNNN NNNNNGCTCTTCATTTTTTTTGGTACCTAGGGATAACAGGGTAATTAACTATAACGGTCC TAAGGTAG CGAAGGACCGAGCGGCCGCAGGAACCCCTAGTGATGGAGTTGGCCACTCCCTCTCTGCGC GCTCGCTC GCTCACTGAGGCCGGGCGACCAAAGGTCGCCCGACGCCCGGGCTTTGCCCGGGCGGCCTC AGTGAGCG AGCGAGCGCGCAGCTGCCTGCAGGGGCGCCTGATGCGGTATTTTCTCCTTACGCATCTGT GCGGTATT TCACACCGCATACGTCAAAGCAACCATAGTACGCGCCCTGTAGCGGCGCATTAAGCGCGG CGGGTGTG GTGGTTACGCGCAGCGTGACCGCTACACTTGCCAGCGCCCTAGCGCCCGCTCCTTTCGCT TTCTTCCC TTCCTTTCTCGCCACGTTCGCCGGCTTTCCCCGTCAAGCTCTAAATCGGGGGCTCCCTTT AGGGTTCC GATTTAGTGCTTTACGGCACCTCGACCCCAAAAAACTTGATTTGGGTGATGGTTCACGTA GTGGGCCA TCGCCCTGATAGACGGTTTTTCGCCCTTTGACGTTGGAGTCCACGTTCTTTAATAGTGGA CTCTTGTT CCAAACTGGAACAACACTCAACCCTATCTCGGGCTATTCTTTTGATTTATAAGGGATTTT GCCGATTT CGGCCTATTGGTTAAAAAATGAGCTGATTTAACAAAAATTTAACGCGAATTTTAACAAAA TATTAACG TTTACAATTTTATGGTGCACTCTCAGTACAATCTGCTCTGATGCCGCATAGTTAAGCCAG CCCCGACA CCCGCCAACACCCGCTGACGCGCCCTGACGGGCTTGTCTGCTCCCGGCATCCGCTTACAG ACAAGCTG TGACCGTCTCCGGGAGCTGCATGTGTCAGAGGTTTTCACCGTCATCACCGAAACGCGCGA GACGAAAG GGCCTCGTGATACGCCTATTTTTATAGGTTAATGTCATGATAATAATGGTTTCTTAGACG TCAGGTGG CACTTTTCGGGGAAATGTGCGCGGAACCCCTATTTGTTTATTTTTCTAAATACATTCAAA TATGTATC CGCTCATGAGACAATAACCCTGATAAATGCTTCAATAATATTGAAAAAGGAAGAGTATGA GTATTCAA CATTTCCGTGTCGCCCTTATTCCCTTTTTTGCGGCATTTTGCCTTCCTGTTTTTGCTCAC CCAGAAAC GCTGGTGAAAGTAAAAGATGCTGAAGATCAGTTGGGTGCACGAGTGGGTTACATCGAACT GGATCTCA ACAGCGGTAAGATCCTTGAGAGTTTTCGCCCCGAAGAACGTTTTCCAATGATGAGCACTT TTAAAGTT CTGCTATGTGGCGCGGTATTATCCCGTATTGACGCCGGGCAAGAGCAACTCGGTCGCCGC ATACACTA TTCTCAGAATGACTTGGTTGAGTACTCACCAGTCACAGAAAAGCATCTTACGGATGGCAT GACAGTAA GAGAATTATGCAGTGCTGCCATAACCATGAGTGATAACACTGCGGCCAACTTACTTCTGA CAACGATC GGAGGACCGAAGGAGCTAACCGCTTTTTTGCACAACATGGGGGATCATGTAACTCGCCTT GATCGTTG GGAACCGGAGCTGAATGAAGCCATACCAAACGACGAGCGTGACACCACGATGCCTGTAGC AATGGCAA CAACGTTGCGCAAACTATTAACTGGCGAACTACTTACTCTAGCTTCCCGGCAACAATTAA TAGACTGG ATGGAGGCGGATAAAGTTGCAGGACCACTTCTGCGCTCGGCCCTTCCGGCTGGCTGGTTT ATTGCTGA TAAATCTGGAGCCGGTGAGCGTGGGTCTCGCGGTATCATTGCAGCACTGGGGCCAGATGG TAAGCCCT CCCGTATCGTAGTTATCTACACGACGGGGAGTCAGGCAACTATGGATGAACGAAATAGAC AGATCGCT GAGATAGGTGCCTCACTGATTAAGCATTGGTAACTGTCAGACCAAGTTTACTCATATATA CTTTAGAT TGATTTAAAACTTCATTTTTAATTTAAAAGGATCTAGGTGAAGATCCTTTTTGATAATCT CATGACCA AAATCCCTTAACGTGAGTTTTCGTTCCACTGAGCGTCAGACCCCGTAGAAA RightITR = first underlined and bold sequence CBh = first underlined sequence dCasΦ1 = first bold sequence P2A = second underlined sequence MPH = second bold sequence FpA = third underlined sequence U6 = third bold sequence LeftITR = second underlined and bold sequence OTHER EMBODIMENTS It is to be understood that while the invention has been described in conjunction with the detailed description thereof, the foregoing description is intended to illustrate and not limit the scope of the invention, which is defined by the scope of the appended claims. Other aspects, advantages, and modifications are within the scope of the following claims.