Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
TUBE FURNACE WITH HEAT EXCHANGER
Document Type and Number:
WIPO Patent Application WO/2017/007370
Kind Code:
A1
Abstract:
The invention relates to heat technology and can be used in the field of petroleum processing and petrochemistry for heating oil, petroleum products and other hydrocarbon mixtures. A combustion chamber, having a burner connected thereto, is communicated with a heat-exchange chamber in which product pipes are disposed. The burner comprises gas shafts and an air duct with outlet apertures on the ends facing the chamber. The ends of the gas shafts are disposed in the combustion chamber, around the outlet aperture of the air duct, and an air flow swirler is mounted at the outlet of the air duct in the combustion chamber. The product pipes constitute a tubular heat exchanger with a transversely streamlined tube bundle. Furthermore, the headers of the tubular heat exchanger are provided with partitions which are mounted so as to form a series-parallel connection circuit of pipes, which makes it possible to increase the speed of the product and prevent coking in the event of heating of oil and petroleum products. Fuel combustion efficiency is provided as a result of the thorough mixing of gas and the fuel exiting the air duct by means of the swirler, which, as a result, leads to more intensive heating of the liquid in the heat exchanger and increased power of the furnace with small dimensions and weight.

Inventors:
KOROLEV PETR VASILYEVICH (RU)
VALUYEV YURY ANATOLYEVICH (RU)
TSVETKOV YEVGENY NIKOLAYEVICH (RU)
MAZHEIKIN ARTEM IGOREVICH (RU)
Application Number:
PCT/RU2016/000287
Publication Date:
January 12, 2017
Filing Date:
May 12, 2016
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
ZAKRYTOYE AKTSIONERNOYE OBSHCHESTVO NAUCHNO-PROIZVODSTVENNY TSENTR ENERGETICHESKOGO OBORUDOVANIA (RU)
International Classes:
F27B5/00; F23N3/00; F28F1/00
Foreign References:
RU43011U12004-12-27
RU2027101C11995-01-20
SU1610221A11990-11-30
SU735888A21980-05-25
Attorney, Agent or Firm:
PILISHKINA, Lyudmila Stanislavovna (RU)
Download PDF:
Claims:
Формула изобретения

1. Трубчатая печь, содержащая камеру сгорания с горелкой, сообщенную с камерой теплообмена, в которой размещены продуктовые трубы, отличающаяся тем, что горелка включает газовые стволы и воздуховод при этом концы газовых стволов размещены в камере сгорания вокруг выходного отверстия воздуховода, в камере сгорания установлен завихритель воздушного потока, а продуктовые трубы представляют собой трубчатый теплообменник с поперечно обтекаемым пучком труб. 2. Печь по п. 1, отличающаяся тем, что в коллекторах трубчатого теплообменника установлены перегородки с образованием последовательно-параллельной схемы соединения труб.

3. Печь по п. 1, отличающаяся тем, что камера сгорания имеет цилиндрическую форму, а камера теплообмена в поперечном сечении имеет прямоугольную форму.

4. Печь по п. 3, отличающаяся тем, что оси газовых стволов параллельны оси воздуховода и камеры сгорания.

5. Печь по п. 1, отличающаяся тем, что завихритель представляет собой лопаточный завихритель, между лопатками которого расположены концы газовых стволов.

Description:
Трубчатая печь с теплообменником

Изобретение относится к нагревательной технике и может быть использовано в области нефтепереработки и нефтехимии для нагрева нефти, нефтепродуктов и других углеводородных смесей.

Известны трубчатые печи, используемые в нефтеперабатывающей и нефтехимической промышленности, содержащие радиантную и конвективную камеры со змеевиками и установленный в нижней части радиантной камеры горелки (Евтус Н.Р., Шарихин В. В. трубчатые печи в нефтеперабатывающей и нефтехимической промышленности. М.: Химия, 1987, с. 7-14; RU 2409610 С2, 20.01.2011 ; RU 2439125 С1, 10.01.2012).

Недостатком этих печей являются большие габариты радиантной камеры с большой радиационной поверхностью для нагрева труб змеевика, расположенных вблизи этой поверхности.

Наиболее близкой к предложенному устройству является трубчатая печь для нагрева нефтепродуктов, содержащая конвективную камеру коробчатой формы с двухрядным продуктовым змеевиком, в основании корпуса печи размещена камера сгорания циклонного типа с подводом воздуха от радиального вентилятора, а в торцевых стенах корпуса печи выполнены газоотводящие каналы (RU 43011 U1 , 27.12.2004). Печь имеет несколько уменьшенные габариты (на 15-20% по сравнению с печами, имеющими радиантную камеру) за счет исключения из конструкции радиантной камеры.

В известной печи отсутствуют условия для полного сгорания топлива в камере сгорания, так как не полностью сгоревшие раскаленные дымовые газы (фактически, пламя) касаются холодных труб змеевика, остывают и не сгорают полностью. Это приводит к образованию оксида углерода СО. Несмотря на закрутку воздуха в камере сгорания циклонного типа интенсивного перемешивания с газом достичь не удастся, поскольку пламя выходит в конвективную камеру, и скорости перемешивания низкие из-за больших размеров этой камеры. Трубы змеевика имеют большой диаметр и расположены с большими зазорами, поэтому теплоотдача недостаточно велика.

Кроме того, так как не регулируется скорость движения продукта по змеевику, в более нагруженных трубах возможен процесс коксования на стенке труб.

Задачей изобретения является создание устройства для нагрева жидкостей высокой мощности и эффективности.

Задача решается тем, что трубчатая печь содержит камеру сгорания с горелкой, сообщенную с камерой теплообмена, в которой размещены продуктовые трубы, причем согласно изобретению горелка включает газовые стволы и воздуховод, при этом концы газовых стволов размещены в камере сгорания вокруг выходного отверстия воздуховода, в камере сгорания установлен завихритель воздушного потока, продуктовые трубы представляют собой трубчатый теплообменник с поперечно обтекаемым пучком труб.

Технический результат, достигаемый предложенным устройством, заключается в повышении полноты сгорания топлива в камере сгорания за счет интенсивного перемешивания газа и выходящего из воздуховода воздуха с помощью завихрителя, что в результате приводит к более интенсивному нагреву жидкости в теплообменнике и к увеличению мощности печи при малых габаритах и массе. Кроме того, использование трубчатого теплообменника с поперечно обтекаемым пучком труб позволяет увеличить число труб, уменьшить зазоры между ними и, в результате, увеличить поверхность теплоотдачи и эффективность теплообмена. В предпочтительном варианте выполнения в коллекторах трубчатого теплообменника установлены перегородки с образованием последовательно-параллельной схемы соединения труб, что позволяет обеспечить увеличение скорости движения продукта и предотвращение коксования в случае нагрева нефти или нефтепродуктов.

В предпочтительном варианте выполнения камера сгорания и воздуховод имеют цилиндрическую форму, а камера теплообмена в поперечном сечении имеет прямоугольную форму.

При этом оси газовых стволов параллельны оси воздуховода и камеры сгорания.

В частном случае завихритель может представлять собой лопаточный завихритель, обеспечивающий интенсивное перемешивание. При этом концы газовых стволов расположены между лопатками завихрителя.

На фиг. 1 показана предложенная трубчатая печь, осевой разрез. На фиг. 2 - теплообменник, вид сверху.

На фиг. 3 - теплообменник, вид сбоку.

На фиг. 4 - сечение А-А на фиг. 3.

Трубчатая печь содержит камеру 1 сгорания, с нижней частью которой соединена горелка 2. Камера 1 сгорания сообщена с камерой 3 теплообмена, в которой размещены продуктовые трубы. С камерой 1 сгорания соединен цилиндрический корпус горелки 2, в котором соосно расположен воздуховод 4, и по периферии корпуса вокруг воздуховода 4 размещены газовые стволы 5. Концы газовых стволов 5 расположены в камере 1 сгорания. Торцы газовых стволов 5 и воздуховода 4 с выходными отверстиями обращены в сторону камеры 3 теплообмена. Оси газовых стволов 5 параллельны оси воздуховода 4 и камеры 1 сгорания. Камера 1 сгорания и воздуховод 4 имеют цилиндрическую форму, а камера 3 теплообмена в поперечном сечении имеет прямоугольную форму. На выходе воздуховода 4 установлен завихритель 6 воздушного потока. В приведенном примере выполнения изобретения завихритель 6 может представлять собой лопаточный завихритель, обеспечивающий интенсивное перемешивание. Концы газовых стволов 5 расположены между лопатками завихрите ля 6.

Продуктовые трубы представляют собой трубчатый теплообменник 7 с поперечно обтекаемым пучком труб, в коллекторах 8 и 9 которого могут быть установлены перегородки 10 с образованием последовательно-параллельной схемы прохождения теплоносителя.

Камера 1 сгорания представляет собой цилиндр диаметром в зависимости от мощности печи (для 2 МВт - 280 мм, для 70 МВт - 2 м) и высотой от 1 до 2 метров. Теплообмена в камере 1 сгорания нет. Продукты сгорания проходят через камеру 3 теплообмена и, благодаря совмещенному радиационному и конвективному теплообмену, полностью передают тепло трубкам теплообменника 7. КПД печи выбирается в зависимости от количества рядов теплообменника и может быть от 85 до 98%.

Конструкция теплообменника 7 с двумя камерами - коллекторами 8 и 9 позволяет варьировать скоростью теплоносителя, так как благодаря перегородкам 10 в камерах возможна последовательно- параллельная схема соединения. Наибольшая скорость потока при последовательном соединении труб теплообменника 7 и наименьшая скорость при параллельном. Таким образом, выбирая схему соединения и, следовательно, увеличивая скорость движения продукта, можно предотвращать коксование в случае нагрева нефти или нефтепродуктов.

В качестве горелки 2 может применяться модернизированная серийно выпускаемая горелка (можно типа ГКВД). Модернизация заключается в применении завихрителя 6 воздушного потока. Завихритель 6 лопаточный. Угол наклона лопаток составляет 15 градусов к горизонту. Газовые стволы 5 горелки проходят между лопатками завихрителя 6. Воздух к горелке 2 подается от воздуходувки по воздуховоду 4. Давление воздуха перед горелкой 2 - 200-300 мм в. ст.

Теплообменник 7 выполнен из стальных труб с расстоянием между ними от 5 до 12 мм. Камера 1 сгорания поставляется на монтажную площадку в готовом виде и собирается с теплообменником 7. Затем обвязывают печь по газу, продукту, подсоединяют дутьевой воздух к горелке 2 и запускают печь. Мощность печи не ограничена. На печи мощностью от 100 кВт до 70 МВт используется одна горелка.

Поток воздуха проходит через завихритель 6 и интенсивно перемешивается с газом, после чего попадает в камеру 1 сгорания. Чем выше скорость перемешивания, тем выше опережающим темпом скорость горения. Таким образом, в камере 1 происходит полное сгорание топлива без продуктов неполного горения, таких как СО, как при малых, так и при больших нагрузках.

Отношение мощности к массе предложенной печи составляет 2 Гкал на тонну, что в 5-10 раз меньше чем у известных трубчатых печей, имеющих радиантную камеру.