Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
TURBINE HOUSING OF AN EXHAUST-GAS TURBOCHARGER
Document Type and Number:
WIPO Patent Application WO/2014/186129
Kind Code:
A1
Abstract:
The invention relates to a turbine housing (1) of an exhaust-gas turbocharger (15) having a turbine volute (7) which is delimited by a metallic outer shell (8) and which has an inner wall (9); and having a heat insulation layer (10) which is arranged on the inner wall (9) and which has a heat insulation core (6A, 6B) which, on its surface (12A, 12B) pointing into a volute interior space (11), is covered by a first sheet-metal shell (3A, 3B), wherein the heat insulation core (6A, 6B) is covered, on a surface (13A, 13B, 13'B) facing toward the inner wall (9), by a second sheet-metal shell (4A and 4B respectively).

More Like This:
JP5726066Fuel nozzle
JP2020012440GAS TURBINE
Inventors:
HENKE WALDEMAR (DE)
HOECKER PATRIC (DE)
MUENZ STEFAN (DE)
KROLL MATTHIAS (DE)
LOIBL WERNER (DE)
OBERTHUER HOLGER (DE)
Application Number:
PCT/US2014/036042
Publication Date:
November 20, 2014
Filing Date:
April 30, 2014
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
BORGWARNER INC (US)
ISOLITE GMBH (DE)
International Classes:
F01D25/08; F01D25/24; F02B39/00
Domestic Patent References:
WO2008141927A12008-11-27
Foreign References:
US7074009B22006-07-11
EP0374603A11990-06-27
JPH07189725A1995-07-28
US20040142152A12004-07-22
Attorney, Agent or Firm:
PENDORF, Stephan, A. et al. (1401 Hollywood BoulevardHollywood, FL, US)
Download PDF:
Claims:
CLAIMS

1. A turbine housing (1) of an exhaust-gas turbocharger (15)

having a turbine volute (7) which is delimited by a metallic outer shell (8) and which has an inner wall (9); and

having a heat insulation layer (10) which is arranged on the inner wall (9) and which has a heat insulation core (6 A, 6B) which, on its surface (12A, 12B) pointing into a volute interior space (11), is covered by a first sheet-metal shell (3 A, 3B), wherein

- the heat insulation layer (10) is formed as a separate component that can be placed into the turbine volute (7).

2. The turbine housing as claimed in claim 1, wherein the heat insulation core (6A, 6B) is covered, on a surface (13A, 13B, 13'B) facing toward the inner wall (9), by a second sheet-metal shell (4A and 4B respectively).

3. The turbine housing as claimed in claim 1 or 2, wherein the heat insulation layer (10) is divided into at least two insulation components (10A, 10B) which are joined together in the turbine volute (7).

4. The turbine housing as claimed in claim 3, wherein the insulation components (10A, 10B) each have a heat insulation core (6 A and 6B respectively) which is fully enclosed in each case by associated sheet-metal shells (3A, 4A and 3B, 4B respectively).

5. The turbine housing as claimed in one of claims 1 to 4, wherein the sheet-metal shells (3 A, 3B; 4A, 4B) are connected to one another.

6. The turbine housing as claimed in claim 5, wherein the sheet-metal shells (3A, 3B; 4A, 4B) are welded to one another.

7. The turbine housing as claimed in one of claims 1 to 6, wherein the heat insulation layer (10) or the heat insulation components (10A, 10B) are fixed in the volute interior space (11) by a press-on part (2). 8. The turbine housing as claimed in one of claims 1 to 7, wherein elevations (5; 5', 5", 5"') that project in the direction of the volute interior space (11) are arranged on the inner wall (9).

9. The turbine housing as claimed in claim 8, wherein the elevations (5, 5', 5", 5"') are produced by casting or by cutting processes.

10. The turbine housing as claimed in claim 8 or 9, wherein an insulation layer (21A, 21B, 21C) is arranged between the sheet-metal shells (4A, 4B), which point toward the inner wall (9), and the inner wall (9).

11. The turbine housing as claimed in one of claims 1 to 10, wherein the turbine volute (7) is divided, in undercut- free fashion, into two turbine volute parts (7 A, 7B) that can be connected to one another. 12. The turbine housing as claimed in one of claims 7 to 11, wherein the press-on part (2) is fixed to the turbine volute (7) with the interposition of a seal (14).

13. An exhaust-gas turbocharger (15)

having a compressor housing (19);

- having a bearing housing (17); and

having a turbine housing (1) which has:

• a turbine volute (7) which is delimited by a metallic outer shell (8) and which has an inner wall (9); and

• a heat insulation layer (10) which is arranged on the inner wall (9) and which has a heat insulation core (6 A, 6B) which, on its surface (12A, 12B) pointing into a volute interior space (11), is covered by a first sheet-metal shell (3 A, 3B), wherein the heat insulation layer (10) is formed as a separate component that can be placed into the turbine volute (7).

14. The exhaust-gas turbocharger as claimed in claim 13, characterized by one of claims 2 to 12.

Description:
TURBINE HOUSING OF AN EXHAUST-GAS TURBOCHARGER

DESCRIPTION The invention relates to a turbine housing of an exhaust-gas turbocharger, as per the preamble of claim 1.

A turbine housing of this type is known from EP 0 374 603 Al . In the case of said turbine housing, heat insulation is provided in the turbine volute, which heat insulation has a layer of a heat insulation material on which there is arranged a layer of high-temperature-resistant metal.

The disadvantage of said arrangement can be seen in the fact that the generally brittle material of the heat insulation layer poses difficulties with regard to installation.

By contrast, it is an object of the present invention to provide a turbine housing according to the preamble part of claim 1 having a heat insulation layer that can be easily installed in the turbine volute of the turbine housing.

This object is achieved by the features of claim 1.

By virtue of the heat insulation layer being formed as a separate component which, after being produced, can be placed into the turbine volute of the turbine housing, the installation process is simplified considerably, resulting in an associated reduction of the overall production outlay for the turbine housing according to the invention.

The heat insulation core is in this case preferably formed as an insulator part, in particular as a ceramic core.

The dependent claims contain advantageous developments of the invention. The provision of two sheet-metal shells that encase the heat insulation core yields the advantage that the heat insulation core is enclosed on all sides, such that the heat insulation material, even if brittle, is held securely by the encasement.

Furthermore, the provision of the first and second sheet-metal shells, which are preferably of very thin- walled form, has the effect that the heat insulation layer has a low heat capacity, which advantageously results in fast heating of the surface of the turbine volute, such that, during operation, the turbine housing no longer constitutes a heat sink that would impair the cold-start characteristics of an engine equipped with an exhaust-gas turbocharger. It is preferably possible for the heat insulation layer to be divided into two insulation components which each have a heat insulation core which is surrounded by the first and second sheet-metal shells.

Here, the sheet-metal shells may be connected to one another, with a welded connection being particularly advantageous for this purpose.

The heat insulation components may be fixed within the turbine volute by means of a press-on part, which either is a separate pressed part or may be formed by the rear wall of a bearing housing which is connected to the turbine housing according to the invention in order to form an exhaust-gas turbocharger according to the invention.

It is particularly preferable for elevations to be provided on the inner wall of the turbine volute, which elevations firstly make it possible to realize dimensional and position tolerancing and furthermore make it possible to realize an additional insulating or heat insulation layer between the inner wall of the turbine volute and the heat insulation layer. Said additional insulation or insulating layer may for example be an air layer.

Here, the elevations may be produced either during the course of the casting of the turbine housing or, after the casting of the turbine housing, by cutting machining processes.

Claims 13 and 14 define an exhaust-gas turbocharger as an object which can be marketed independently.

Further details, advantages and features of the present invention emerge from the following description of exemplary embodiments with reference to the drawing, in which:

Figure 1 shows a schematically simplified illustration of one half of a turbine housing according to the invention,

Figure 2 shows a perspective illustration of the turbine housing

according to the invention,

Figure 3 shows a plan view of the turbine housing,

Figures 4 and 5 show schematically highly simplified diagrammatic illustrations of the turbine housing according to the invention, for explanation of the possible position of parting planes, and Figure 6 shows a schematically highly simplified diagrammatic illustration of an exhaust-gas turbocharger according to the invention that can be provided with the turbine housing according to the invention.

Figure 1 shows, in the illustration selected in Figure 1, an upper half of a turbine housing 1 according to the invention, which turbine housing may be part of an exhaust-gas turbocharger 15 according to the invention illustrated in Figure 6.

The turbine housing 1 has a turbine volute 7 which is delimited by a metallic outer shell 8. The metallic outer shell 8 may for example be a cast component and has an inner wall 9.

In the turbine volute 7 there is arranged a heat insulation layer 10, which in the exemplary embodiment illustrated in Figure 1 is divided into two insulation components 10A and 10B. Each of the insulation components 10A and 10B has an associated heat insulation core 6A and 6B respectively, which heat insulation cores may be produced from a suitable material, in particular a fibrous material or ceramic material.

Each of the heat insulation cores 6A, 6B is enclosed by an arrangement of two sheet-metal shells 3A and 3B, and 4A and 4B, respectively. Here, the sheet-metal shells 3A and 3B are arranged adjacent to a volute interior space 11 and accordingly form the flow-guiding surfaces during the operation of the turbine housing 1. In the installed state, the sheet-metal shells 4 A and 4B are arranged adjacent to the inner wall 9 and serve for fixing the insulation components 10A and 10B in the turbine volute 7.

As shown in detail in Figure 1 , the sheet-metal shell 3 A bears against a surface 12 A, which points toward the volute interior space 11, of the heat insulation core 6 A. The sheet-metal shell 4A bears against a surface 13 A, which points toward the inner wall 9, of the heat insulation core 6A. The encasement on all sides by the sheet-metal shells 3 A and 4A results in the stabilization of the heat insulation core 6A explained in the introduction, and prevents parts of said heat insulation core 6A from passing into the turbine volute 7.

Correspondingly, the heat insulation core 6B is constructed such that the shell 3B accordingly bears against the surface 12B and the shell 4B bears against the surface 13B and against a further surface 13'B which is arranged adjacent to a press-on part 2. The insulation components 10A, 10B, which after being produced (independently of the turbine housing 1) are placed into the turbine volute 7, can be fixed in the turbine volute 7 by means of said press-on part 2.

Here, the press-on part 2 may be a separate press-on part or may be the rear wall of a bearing housing such as the bearing housing 17, illustrated in Figure 6, of the exhaust-gas turbocharger 15.

The particularly preferred embodiment illustrated in Figure 1 also has elevations 5, 5' and 5" which are formed on the inner wall 9 so as to point in the direction of the volute interior space 11. As a result of the provision of said elevations 5, 5' and 5", the heat insulation core 6A, when in the installed state, bears by way of its outer shell 4 A against said elevations 5, 5' and 5". This yields the advantage that three further insulating or insulation layers 21 A, 2 IB and 21C are created, which further insulating or insulation layers may for example be filled with air and yield thermal decoupling between the turbine volute 7, or the outer shell 8 thereof, and the heat insulation core 6A.

For the production of the turbine housing 1 according to the invention, said turbine housing is initially cast, and the heat insulation layer 10, or the insulation components 10A and 10B thereof, are manufactured separately in the manner explained above. It is self-evident here that, in principle, it is also possible for the heat insulation layer 10 to be divided not only into two insulation components, as shown in Figure 1, but also into multiple such insulation components, which can then be assembled and fixed in the turbine volute 7. Furthermore a single, unitary heat insulation layer 10 is also conceivable.

After the arrangement of the insulation components 10A and 10B, said insulation components are fixed in the turbine volute 7 by the pressing-on of the press- on part 2, wherein a seal 14, for example in the form of a V-section seal, may preferably be provided between the press-on part 2 and the outer shell 8 of the turbine volute 7.

Figure 2 shows the turbine housing 1 according to the invention in a perspective illustration in order to illustrate the possible position of the elevations 5, 5', 5" and 5"' already described with regard to Figure 1. In this respect, reference is hereby explicitly made to the diagrammatic illustration of Figure 2.

Figure 3 shows a possible eccentric arrangement E of the turbine housing axis A2 with respect to the bearing housing axis or press-on part axis Al, which arrangement reduces the space requirement because the uneven space requirement of the turbine housing in the radial direction owing to a spiral shape is partially compensated.

Figures 4 and 5 are schematically highly simplified illustrations of the turbine housing 1 , which in these illustrations has a split turbine volute divided into turbine volute parts 7 A and 7B. Here, the respective undercut-free parting planes TE are indicated in Figures 4 and 5. The turbine volute parts 7A and 7B may be connected to one another in a suitable manner, for example by means of screw connections or by means of welded connections.

Figure 6 is a schematically highly simplified illustration of the above- mentioned exhaust-gas turbocharger 15 according to the invention having the turbine housing 1 which may be designed in accordance with the principles explained above on the basis of Figures 1 to 5. As is conventional, the turbine housing 1 accommodates a turbine wheel 16 which is arranged on one end of a shaft 18, on the other end of which shaft there is arranged a compressor wheel 20 which is arranged in a compressor housing 19. Here, the shaft 18 is mounted in the usual way by means of the bearing housing 17.

In addition to the above written disclosure, reference is hereby explicitly made, for supplementation thereof, to the diagrammatic illustration of the invention in Figures 1 to 6.

LIST OF REFERENCE SIGNS

1 Turbine housing

2 Press-on part

3A, 3B Inner sheet-metal shells

4A, 4B Outer sheet-metal shells

5, 5', 5", 5"' Elevations

6A, 6B Heat insulation core

7 Turbine volute

7 A, 7B Turbine volute parts

8 Outer shell

9 Inner wall

10 Heat insulation layer

10A, 10B Insulation components

11 Volute interior space

12A, 12B, 13A, 13B, 13'B Surfaces of the heat insulation cores 6A, 6B

14 Seal

15 Exhaust-gas turbocharger

16 Turbine wheel

17 Bearing housing

18 Shaft

19 Compressor housing

20 Compressor wheel

21A, 21B, 21C Isolation or insulation layers

L Longitudinal axis of the exhaust-gas turbocharger

E Eccentricity

Al Bearing housing axis or press-on part axis

A2 Turbine housing axis

TE Undercut-free parting planes