Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
TWO-COMPONENT AQUEOUS COATING AND COATING LAYER WITH WEAR-RESISTANCE, LOW ICE ADHESIVENESS AND ANTI-ICING, AND PREPARATION METHOD AND USE THEREOF
Document Type and Number:
WIPO Patent Application WO/2015/100753
Kind Code:
A1
Abstract:
A method for preparing a two-component anti-icing aqueous coating and a coating layer thereof. The coating is composed of a component A of a core-shell polymer emulsion and inorganic nano particles and a component B containing a curing agent, wherein the outer layer of the core-shell polymer emulsion is a hydrophilic shell layer.

Inventors:
WANG JIANJUN (CN)
DOU RENMEI (CN)
LV JIANYONG (CN)
SONG YANLIN (CN)
Application Number:
PCT/CN2014/070189
Publication Date:
July 09, 2015
Filing Date:
January 06, 2014
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
CHINESE ACAD INST CHEMISTRY (CN)
International Classes:
C09D7/61; C09D123/00; C09D133/08; C09D163/00; C09D167/08; C09D175/04
Foreign References:
CN102993933A2013-03-27
CN102382536A2012-03-21
CN101781390A2010-07-21
CN1880396A2006-12-20
Other References:
HE, QINGDI ET AL.: "Progress in Self-Cleaning Coatings", COATINGS TECHNOLOGY & ABSTRACTS, 31 July 2012 (2012-07-31), pages 30 - 34
Attorney, Agent or Firm:
QINGFENG FORTUNE INTELLECTUAL PROPERTY LAW FIRM (CN)
北京庆峰财智知识产权代理事务所(普通合伙) (CN)
Download PDF:
Claims:
权利 要求

1.一种双组分水性耐磨、 低冰粘附防覆冰涂料, 其特征在于, 所述防覆冰涂料包 括含核壳结构聚合物乳液与无机纳米粒子的 A组分, 和含固化剂的 B组分组成。

2.根据权利要求 1的涂料,其特征在于,所述的无机纳米粒子的添加量为 A组分 质量的 1-20%, 优选为 2-15%, 更优选为 3-10%。

优选地, 所述核壳结构聚合物乳液的添加量为 A组分质量的 80-99%, 优选为 85-98%, 更优选为 90-97%。

还优选地, 所述的固化剂添加量为核壳结构聚合物乳液质量的 5-20%, 优选为 8-15%, 更优选 10-12%。

3.根据权利要求 1或 2的涂料, 其特征在于, 所述的核壳结构聚合物乳液选自聚 氨酯乳液、 丙烯酸酯乳液、 环氧树脂乳液、 环氧树脂-丙烯酸酯乳液、 环氧树脂 -聚氨 酯乳液、 环氧树脂 -丙烯酸酯-聚氨酯乳液、 醇酸树脂乳液、 聚烯烃乳液中的一种或几 种。 优选地, 所述乳液选自聚氨酯乳液、 环氧树脂乳液、 丙烯酸酯乳液的一种或几 种。

所述疏水单元为聚氨酯、 聚丙烯酸酯、 环氧树脂、 有机硅树脂、 醇酸树脂、 聚 烯烃等一种或几种聚合物上的疏水单元, 如上述聚合物的疏水性分子主链。 所述亲 水单元为聚氨酯、 聚丙烯酸酯、 环氧树脂、 有机硅树脂、 醇酸树脂、 聚烯烃等一种 或几种聚合物上的亲水单元, 如上述聚合物侧链上的羧基、 磺酸基、 氨基等, 或由 这些基团成盐之后形成的离子基团。

优先地, 所述无机纳米粒子选自但不限于硅藻土、 氧化铝、 氧化锌、 二氧化硅、 炭黑、 碳纳米管、 粘土或蒙脱土, 优选为粘土, 氧化铝, 二氧化硅和蒙脱土中的一 种或几种。

优选地, 所述防覆冰涂料中的固化剂为与所用乳液配套的固化剂。 所述固化剂 例如 Bayhydur 3100, YW-50, 或氮丙啶交联剂 ( XR-100 X

优选的固化剂选自多异氰酸酯, 氨基树脂、 环氧树脂、 聚氨酯、 氮丙啶, 脂肪 族二胺和多胺、 芳香族多胺、 有机酸、 酸肝等。 更优选地, 所述多异氰酸酯为二异 氰酸酯, 三异氰酸酯或异氰酸酯的低聚物, 例如六甲基二异氰酸酯, 甲苯二异氰酸 酯, 异佛尔酮二异氰酸酯, 二苯基甲烷二异氰酸酯。 优先地, 所述涂料还可以含有其他助剂, 如润湿剂、 流平剂、 消泡剂、 成膜助 剂、 增稠剂等本领域的常规助剂, 以及颜料和填料等。

4.根据权利要求 3的涂料, 其特征在于, 当所述核壳结构聚合物乳液为聚氨酯乳 液时, 固化剂优选为多异氰酸酯; 当所述核壳结构聚合物乳液为环氧树脂乳液时, 固化剂优选为脂肪族二胺和多胺、 芳香族多胺、 有机酸、 酸肝等; 当所述核壳结构 聚合物乳液为丙烯酸酯乳液时, 固化剂优选为氨基树脂、 环氧树脂、 聚氨酯、 氮丙 啶等。

5.—种权利要求 1-4任一项的防覆冰涂料的制备方法, 包括以下步骤:

( 1 )制备具有疏水单元内核和亲水单元外壳的核壳结构聚合物乳液;

( 2 )将占 A组分总质量 1-20%的无机纳米粒子, 与占 A组分总质量 80-99%的 所述核壳结构聚合物乳液搅拌混合均匀, 即得到所述的防覆冰涂料的 A组分。

( 3 )制备含有与核壳结构聚合物乳液配套固化剂的 B组分, 所述固化剂占核壳 结构聚合物乳液质量的 5-20%。

( 4 )制备防覆冰涂料, 施工前将 A组分和 B组分充分混合均匀, 得到防覆冰涂 料。

优选地, 步骤(2 )中, 优选将占 A组分总质量 2-15%的无机纳米粒子, 与占 A 组分总质量 85-98%的所述核壳结构聚合物乳液搅拌混合均匀, 即得到所述的防覆冰 涂料的 A组分。 更优选地, 将占 A组分总质量 3-10%的无机纳米粒子, 与占 A组分 总质量 90-97%的所述核壳结构聚合物乳液搅拌混合均匀, 即得到所述的防覆冰涂料 的 A组分。

优选地, 步骤(3 ) 中, 所述固化剂占核壳结构聚合物乳液质量的 5-20%。 优选 为 8-15%, 更优选 10-12%。

6.—种默组分水性耐磨、 低冰粘附防覆冰涂层的制备方法, 其特征在于, 包括 如下步骤:

( 1 )制备具有疏水单元内核和亲水单元外壳的核壳结构聚合物乳液;

( 2 )将占 A组分总质量 1-20%的无机纳米粒子, 与占 A组分总质量 80-99%的 所述核壳结构聚合物乳液搅拌混合均匀, 即得到所述的防覆冰涂料的 A组分。

( 3 )制备含有与核壳结构聚合物乳液配套固化剂的 B组分, 所述固化剂占核壳 结构聚合物乳液质量的 5-20%。 ( 4 )制备防覆冰涂料, 施工前将 A组分和 B组分充分混合均匀 , 得到防覆冰涂 料。

( 5 )制备防覆冰涂层, 通过刷涂、 辊涂、 喷涂或浸涂等施工方式将所述的防覆 冰涂料涂覆在基材表面, 经固化成膜即得到能产生水润滑层的耐磨、 低冰粘附强度 防覆冰涂层。

7.—种权利要求 1-4任一项的防覆冰涂料在防止基材表面覆冰中的应用。

8.—种防止基材表面覆冰的方法, 其特征在于, 所述方法包括将权利要求 1-4任 一项的防覆冰涂料刷涂、 辊涂、 喷涂或浸涂等施工方式涂覆在基材表面。 优选地, 所述方法还包括将涂覆在基材表面的防覆冰涂料经干燥固化成膜。

9.一种在基材表面形成防覆冰涂层的方法, 所述方法包括: 将权利要求 1-4任一 项所述的防覆冰涂料刷涂、 辊涂、 喷涂或浸涂等施工方式涂覆在基材表面, 在适当 的条件下干燥固化成膜, 获得防覆冰涂层。

优选地, 所述的环境温度是 0°C ~ -80°C , 优选 0°C ~ -40°C。

优选地, 所述的环境湿度是 0% ~ 99%, 优选 1% ~ 99%。

优选地,所述的固化温度为 20°C-150°C ,优选 60°C ~ 120 °C ,更优选 90°C-120°C。 优选地, 所述固化优选在烘箱中进行。

还更优选地, 所述固化优选为热固化, 固化时间为 1-15小时, 优选 3 - 12小时, 更优选 4-10小时。

10.根据权利要求 9的方法, 其特征在于, 所述的基材选自自铁、 碳钢、 不锈钢、 紫铜、 铝合金等金属或合金、 玻璃、 陶瓷等无机材料、 以及高分子材料等工程材料。 优选地, 所述基材选自铁、 碳钢、 不锈钢或铝合金。

Description:
一种双组分水性耐磨、 低冰粘附防覆冰涂料、 涂层及其制备方法与应用

技术领域

本发明属于化学化工、 材料技术领域, 涉及一种由核壳结构聚合物乳液组成的 耐磨、 低冰粘附防覆冰涂层的制备与应用。 背景技术

在公路、 飞机、 船舶、 海上石油平台、 风力涡轮机、 水坝、 电力线、 以及电信 设备等表面结冰及堆积给人们的生命财产安全 带来巨大危害和安全隐患。 如道路结 冰增加发生交通事故的几率; 大规模降雪、 霜冻天气引起的电缆电线结冰, 从而导 致电力运输系统破坏, 给国民经济带来巨大损失; 飞机表面与机翼结冰威胁飞行安 全, 如近些年在中国包头、 美国以及俄罗斯西伯利亚的多起飞机失事都与 机翼结冰 有关。 目前所采用的防覆冰方法一般存在耗能大和环 境污染等问题。 因此, 亟需开 发出一种涂层能够有效降低冰在其表面的粘附 强度, 以利于除冰。

目前, 防覆冰材料主要集中于利用超疏水表面或者在 材料表面添加油性润滑剂 来降低冰粘附强度。 而这些手段虽然能够降低冰粘附强度, 但是在应用中都存在着 一些问题: (1 )超疏水表面随温度的降低, 会失去了防冰霜的作用; 同时, 根据文 献报道 ( S. A. Kulinich, S. Farhadi, K. Nose, and X. W. Du. Langmuir, 2011, 27(1), 25-29 )超疏水表面会在除冰过程中遭到不断破坏, 失去超疏水性, 从而增大冰粘附 强度; (2 )表面涂抹的油性润滑剂难以持久, 会挥发或者在除冰过程中逐渐损耗, 且这种油性润滑剂通常污染较大, 给环境造成很大负担 (Konrad Rykaczewski, Kripa K. Varanasi. Langmuir, 2013, 29, 5230—5238)。 为了克服上述缺陷, 本发明提供一种 默组分水性耐磨、 低冰粘附防覆冰涂料及其涂层的制备方法。 发明内容

本发明的目的在于提供一种默组分水性耐磨、 低冰粘附防覆冰涂料及其制备方 法。 本发明的目的还在于提供一种双组分水性耐磨 、 低冰粘附防覆冰涂层及其制备 方法。

本发明的目的还在于提供一种双组分水性耐磨 、 低冰粘附防覆冰涂料与涂层的 应用。

本发明通过以下技术方案实现:

一种双组分水性耐磨、 低冰粘附防覆冰涂料, 由含核壳结构聚合物乳液与无机 纳米粒子的 A组分, 和含固化剂的 B组分组成。

根据本发明, 所述 A组分中的核壳结构聚合物乳液选自聚氨酯乳 、 丙烯酸酯 乳液、 环氧树脂乳液、 环氧树脂 -聚丙烯酸酯乳液、 环氧树脂-聚氨酯乳液和环氧树脂 -丙烯酸酯-聚氨酯乳液、 有机硅树脂乳液、 醇酸树脂乳液、 聚烯烃乳液等中的一种或 几种。 优选地, 所述乳液选自聚氨酯乳液、 环氧树脂乳液、 丙烯酸酯乳液中的一种 或几种。

根据本发明, 所述 A组分中的核壳结构聚合物乳液由核壳结构聚 物乳胶粒子 稳定分散在水中获得。 所述核壳结构是指聚合物乳胶粒子包括由亲水 单元构成的内 核和由疏水单元构成的外壳。 所述疏水单元为聚氨酯、 丙烯酸酯、 环氧树脂、 有机 硅树脂、 醇酸树脂、 聚烯烃等一种或几种聚合物的疏水单元, 如上述聚合物的疏水 性分子主链。 所述亲水单元为聚氨酯、 聚丙烯酸酯、 环氧树脂、 有机硅树脂、 醇酸 树脂、 聚烯烃等一种或几种聚合物上的亲水单元, 如上述聚合物侧链上的羧基、 磺 、 J ^等, 或由这些基团成盐之后形成的离子基团。

本发明中,所述无机纳米粒子均匀分散于核壳 结构聚合物乳液中形成 A组分。 A 组分与 B组分混合均匀得到防覆冰涂料。

根据本发明,所述 A组分中的无机纳米粒子均匀分散于核壳结构 合物乳液中。 所述的无机纳米粒子选自硅藻土、 氧化铝、 氧化锌、 二氧化硅、 炭黑、 碳纳米管、 粘土或蒙脱土等, 优选为粘土, 氧化铝, 二氧化硅和蒙脱土中的一种或几种。

根据本发明, 所述无机纳米粒子添加量为 A组分质量的 1-20%,优选为 2-15%, 更优选为 3-10%。

根据本发明, 所述核壳结构聚合物乳液的添加量为 A组分质量的 80-99%,优选 为 85-98%, 更优选为 90-97%。 根据本发明, 所述 B组分中的固化剂与所述的聚合物乳液配套使 。 所述的固 化剂是本领域公知的固化剂, 可以通过商购或自行合成。 例如 Bayhydur 3100, YW-50, 或氮丙啶交联剂 (XR-100 )。

根据本发明, 所述 B组分中的固化剂选自但不限于多异氰酸酯, 氨基树脂、 环 氧树脂、 聚氨酯、 氮丙啶, 脂肪族二胺和多胺、 芳香族多胺、 有机酸、 酸酐等中的 一种或几种。 更优选地, 所述多异氰酸酯为二异氰酸酯, 三异氰酸酯或异氰酸酯的 低聚物, 例如六曱基二异氰酸酯, 甲苯二异氰酸酯, 异佛尔酮二异氰酸酯, 二苯基 曱烷二异氰酸酯中的一种或几种。

根据本发明, 所述 B组分中的固化剂, 当所述的核壳结构聚合物乳液为聚氨酯 乳液时, 固化剂优选但不限于多异氰酸酯; 当所述的核壳结构聚合物乳液为环氧树 脂乳液时, 固化剂优选自但不限于脂肪族二胺和多胺、 芳香族多胺、 有机酸、 酸酐 等中的一种或几种; 当所述的核壳结构聚合物乳液为丙烯酸酯乳液 时, 固化剂优选 自但不限于 树脂、 环氧树脂、 聚氨酯、 氮丙啶等中的一种或几种。

根据本发明, 所述 B组分中的固化剂添加量为所述的核壳结构聚 物乳液的 5-20%, 优选为 8-15%, 更优选 10-12%。

根据本发明, 所述 B组分中的固化剂, 非水溶性或非水分散性固化剂可以分散 于曱醇、 乙醇、 异丙醇、 丙酮、 丁酮、 乙二醇曱醚、 乙二醇丁酸、 丁内酯等水溶性 介质中; 水溶性或水分散性固化剂可以溶解或分散在水 中, 也可以不分散。

根据本发明, 所述防覆冰涂料还可以含有其他助剂, 如润湿剂、 流平剂、 消泡 剂、 成膜助剂、 增稠剂等本领域的常规助剂, 以及颜料和填料等。

根据本发明, 所述 A组分与 B组分于施工前混合均匀得到防覆冰涂料。

根据本发明, 所述的防覆冰涂料通过刷涂、 辊涂、 喷涂或浸涂的施工方式涂覆 在基材表面 , 经固化成膜即得到防覆冰涂层。

本发明中, 防覆冰包括两个方面, 一方面是指防止基材表面结冰现象的发生, 从而基材表面没有冰层的覆盖; 另一方面是指如果基材表面发生结冰, 冰可以在很 小的外力, 如风力, 或自身重力的作用下从表面脱落, 从而难以在基材表面覆盖过 厚的冰层。

本发明还提供一种防覆冰涂层, 其特征在于, 所述涂层包括基材以及涂覆在基 材上的上述涂料。 根据本发明, 所述涂料通过刷涂、 辊涂、 喷涂或浸涂的施工方式涂覆在金属及 合金、 陶瓷等无机材料和高分子材料等基材表面, 经固化成膜即得到防覆冰涂层。

本发明中, 所述涂层的主要成膜物质是核壳结构聚合物乳 液中的核壳结构聚合 物乳胶粒子。 核壳结构聚合物乳胶粒子以亲水单元为壳层, 固化成膜形成涂层之后 亲水单元能够吸收环境中的水并发生溶胀, 在涂层表面形成一层水润滑层, 而此类 水润滑层具有较低的冰点, 能够在零度以下保持液态。 这一涂层和水润滑层还能降 低基材的表面粗糙度, 减少基材与冰的接触面积, 从而大大降低冰在基材表面的粘 附强度。 刚性无机纳米粒子的加入能够提高所述防覆冰 涂层的机械性能和耐磨性, 延长了其使用寿命。

本发明还提供一种双组分水性耐磨、 低冰粘附防覆冰涂料的制备方法, 包括以 下步骤:

( 1 )制备具有疏水单元内核和亲水单元外壳的核 结构聚合物乳液;

( 2 )将占 A组分总质量 1-20%的无机纳米粒子, 与占 A组分总质量 80-99%的 所述核壳结构聚合物乳液搅拌混合均匀, 即得到所述的防覆冰涂料的 A组分。

( 3 )制备含有与核壳结构聚合物乳液配套固化剂 B组分, 所述固化剂占核壳 结构聚合物乳液质量的 5-20%。

( 4 )制备防覆冰涂料, 施工前将 A组分和 B组分充分混合均匀 , 得到防覆冰涂 料。

根据本发明, 步骤(2 )中, 优选将占 A组分总质量 2-15%的无机纳米粒子, 与 占 A组分总质量 85-98%的所述核壳结构聚合物乳液搅拌混合均匀 ,即得到所述的防 覆冰涂料的 A组分。 更优选地, 将占组分 A总质量 3-10%的无机纳米粒子, 与占 A 组分总质量 90-97%的所述核壳结构聚合物乳液搅拌混合均匀 , 即得到所述的防覆冰 涂料的 A组分。

根据本发明, 步骤(3 ) 中, 所述固化剂占核壳结构聚合物乳 «:量的 5-20%。 优选为 8-15%, 更优选 10-12%。

本发明还提供一种双组分水性耐磨、 低冰粘附防覆冰涂层的制备方法, 包括以 下步骤:

通过刷涂、 辊涂、 喷涂或浸涂等施工方式将所述的防覆冰涂料涂 覆在基材表面, 经固化成膜即得到能产生水润滑层的耐磨、 低冰粘附强度防覆冰涂层。 根据本发明, 所述防覆冰涂料通过上述方法制备。

根据本发明, 步骤(2 )中, 优选将占 A组分总质量 1-15%的无机纳米粒子, 与 占 A组分总质量 85-98%的所述核壳结构聚合物乳液搅拌混合均匀 ,即得到所述的防 覆冰涂料的 A组分。 更优选地, 将占 A组分总质量 3-10%的无机纳米粒子, 与占 A 组分总质量 90-97%的所述核壳结构聚合物乳液搅拌混合均匀 , 即得到所述的防覆冰 涂料的 A组分。

根据本发明, 步骤(3 ) 中, 所述固化剂占核壳结构聚合物乳¾ ^量的 5-20%。 优选为 8-15%, 更优选 10-12%。

本发明所述的防覆冰涂料以水为分散介质, 绿色环保。 所述的防覆冰涂料及涂 层制备工艺简单, 施工方便, 可大面积应用于各种基材表面进行防覆冰处理 。

本发明还提供一种上述防覆冰涂料或涂层在防 止基材覆冰中的应用。

根据本发明, 所述防覆冰涂料与涂层可应用于航空、 船舶、 车辆、 桥梁、 电力、 大坝、 换热器和制冷机等任何需要防止表面覆冰的领 域。

本发明还提供一种防止基材表面覆冰的方法, 所述方法包括: 将所述的防覆冰 涂料以刷涂、 辊涂、 喷涂和浸涂等方式涂覆在基材表面。 优选地, 所述方法还包括 将涂覆在基材表面的防覆冰涂料经干燥固化成 膜。

本发明还提供一种在基材表面形成防覆冰涂层 的方法, 所述方法包括: 将所述 的防覆冰涂料以刷涂、 辊涂、 喷涂和浸涂等方式涂覆在基材表面, 在适当的条件下 干燥固化成膜, 获得防覆冰涂层。 所述涂层具有耐磨性和低冰粘附强度。

当环境温度及环境湿度能够导致基材表面结冰 时, 或涂层表面沉积冰或雪时, 所述的防覆冰涂层中的亲水单元能吸收氛围的 水形成水润滑层, 该水润滑层具有较 低的冰点, 能够在 0°C以下保持液态, 形成不结冰的水膜, 起到隔离冰层与基材表面 的作用, 同时减小了基材表面的粗糙度和基材与冰层的 接触面积, 使得基材表面的 冰层易于除去。

根据本发明, 所述的环境温度是 0°C ~ -80°C, 优选 0°C ~ -40°C。

根据本发明, 所述的环境湿度是 0% ~ 99%, 优选 1% ~ 99%。

根据本发明, 所述的固化温度为 20°C-150°C, 优选 60°C ~ 120°C , 更优选 90°C -120 °C。

根据本发明, 所述固化优选在烘箱中进行。 才艮据本发明, 所述固化优选为热固化, 固化时间为 3-15小时, 优选 5 - 12小时, 更优选 8-10小时。

根据本发明, 所述的基材选自铁、 碳钢、 不锈钢、 紫铜、 铝合金等金属或合金、 玻璃、 陶瓷等无机材料、 以及高分子材料等工程材料。 优选地, 所述基材选自铁、 碳钢、 不锈钢或铝合金。

本发明的一种由核壳结构聚合物乳液组成的耐 磨、 低冰粘附防覆冰涂层, 相比 其它防覆冰材料具有以下优点:

( 1 )工艺简单: 本发明所述防覆冰涂料的制备及施工工艺简单 , 只需将所述原 料混合均匀, 通过刷涂、 辊涂、 喷涂或浸涂等施工方式, 即可制备防覆冰涂料;

( 2 )适用范围广, 易于大面积施工: 所述的防覆冰涂料能广泛适用于铝、 不锈 钢、 铝合金等金属及合金, 陶瓷等无机材料, 以及高分子材料等基材表面, 而且易 于大面积施工。

( 3 )防冰性能优异: 由于在所述的防覆冰涂层与冰层之间存在着一 层水润滑层, 降低了冰的粘附强度, 同时将表面粗糙度到降低到纳米尺度, 并减小冰与涂层的接 触面积;

( 4 )机械性能优越: 由于本发明中所述的防覆冰涂层是由交联的聚 合物和刚性 无机纳米粒子组成, 刚性无机纳米粒子的添加提高了涂层的机械性 能及耐磨性, 大 大延长涂层的使用寿命;

( 5 )涂层易于修复: 所述防覆冰涂层, 即使在长时间使用过程中由于多次除冰 导致涂层表面破损或脱落, 只需重新涂覆一层该防覆冰涂层即可实现涂层 的修复。 附图说明

图 1.本发明的实施例 1 - 2的冰粘附强度, 在板材表面温度为 -5°C、 环境湿度为 20%、 冰样品冷冻 5小时后冰粘附强度的大小。

图 2.本发明的实施例 3 - 4的冰粘附强度, 在板材表面温度为 -25°C、环境湿度为 60%、 冰样品冷冻 5小时后冰粘附强度的大小。

图 3.本发明的实施例 5 - 6的冰粘附强度, 在板材表面温度为 -52 °C、环境湿度为 99%、 冰样品冷冻 5小时后冰粘附强度的大小。 具体实施方式

以下结合实施例对本发明做进一步描述, 需要说明的是, 下述实施例不能作为 对本发明保护范围的限制, 本领域技术人员理解, 任何在本发明基础上所作的改进 都在本发明的保护范围之内。 实施例 1

( 1 )将真空脱水后的聚己二酸辛戊二醇酯 (M n =2000 ) 90g, 甲苯二异氰酸酯 ( TDI ) 76g,加入三口烧瓶中, 混合均匀后升温至 85 °〇左右反应 1.5 h吗, 再加入 10 g DMPA, 85°C左右反应 l h, 最后加入 23 g—缩二乙二醇, 并加几滴催化剂, 丙酮 适量, 60 °C反应 4-5 h, 降温至 25 V , 将预聚体用三乙胺中和后加水 500 g进行高速 乳化, 得到白色乳液。

( 2 )将占 A组分总质量 15%的蒙脱土, 与占 A组分总质量 85%的聚氨酯乳液 混合搅拌均匀, 即得到所述的防覆冰涂料 A组分。

( 3 )添加占核壳结构聚合物乳 «:量 10%的固化剂于 A组分中,搅拌均匀即可 得到所述防覆冰涂料。

( 4 )将步骤(3 )制备得到的防覆冰涂料直接涂覆在陶瓷表面 干燥成膜, 待 干燥成膜后放入温度为 80 °C的烘箱中热固化 5小时, 即可得到具有耐磨、 低冰粘附 强度的防覆冰涂层。

当环境温度为 0°C ~ -52 °C及环境湿度为 0% ~ 99%, 能在基材表面结冰时, 由 上述方法制备得到的防覆冰涂层中核壳结构聚 合物乳液中亲水壳中所含的亲水基团 能够吸水, 而后形成水溶液, 该水溶液具有较低的冰点, 使防覆冰涂层的表面形成 不结冰的水膜, 在冰与涂层之间引入了一层水润滑层, 使得不锈钢表面的冰层在较 低剪切力下就能除去。 实施例 2

( 1 )在装有冷凝管温度计、滴液漏斗、搅拌器的 口烧瓶中加入聚乙烯醇( PVA ) 15 g、 NaHC0 3 2g、 乳化剂 TX-10 6 g、 H 2 0 560 g, 调节温度至 70°C , 充分搅拌。 然 后加入 (NH 4 ) 2 S 2 0 8 1.8 g 7j溶液, 加入单体丙烯酸 150 g、 苯乙烯 30 g、 甲基丙烯酸 30 g、 丙烯酰胺 12 g于漏斗中混合均匀, 3h滴加完毕, 然后继续在 80°C下搅拌 lh, 冷却至室温即可得丙烯酸酯乳液。

( 2 )将占 A组分总质量 20%的活性氧化铝, 与占 A组分总质量 80%的丙烯酸 酯乳液混合搅拌均匀, 即得到所述的防覆冰涂料 A组分。

( 3 )添加占丙烯酸酯乳液质量 10%的固化剂于 A组分中,搅拌均匀即可得到所 述防覆冰涂料。

( 4 )将步骤(3 )制备得到的防覆冰涂料直接涂覆在铝合金表 上干燥成膜, 待干燥成膜后^温度为 80 °C的烘箱中热固化 8小时, 即可得到具有耐磨、 低冰粘 附强度的防覆冰涂层。

当环境温度为 0°C ~ -52 °C及环境湿度为 0% ~ 99%, 能在基材表面结冰时, 由 上述方法制备得到的防覆冰涂层中核壳结构聚 合物粒子中亲水性外壳中所含的亲水 基团能够吸水, 而后形成水润滑层, 该水润滑层具有较低的冰点, 使防覆冰涂层的 表面形成不结冰的水膜, 对冰与涂层起到隔离作用, 使得不锈钢表面的冰层在较低 剪切力下就能除去。 实施例 3

( 1 )取 50 g环氧树脂 E-44加入三口瓶中,加入 4g乙醇和 8 乙二醇单丁醚的混 合溶剂,通氮气保护, 升温至 80°C, 恒温搅拌使树脂完全溶解后, 加入对 ^^苯甲酸, 在 80 °C氮气保护下继续反映 13.5 h, 随着反应的进行, 反应体系颜色变身, 粘度增 大, 反应完成后, 抽去溶剂, 将样品用乙醇和水(1:5体积比)的混合溶剂洗 涤, 去 除未反应的对氨基苯曱酸, 然后真空干燥 48 h。 将所改性环氧树脂用 DMF ( 1:1体 积比)溶解, 加入乙醇胺中和, 在搅拌下逐滴加入水制成环氧树脂乳液。

( 2 )将占 A组分总质量 3%的二氧化硅,与占 A组分总质量 97%的环氧树脂乳 液混合搅拌均勾, 即得到所述的防覆冰涂料 A组分。

( 3 )添加占乳液质量 20%的固化剂于 A组分中,搅拌均匀即可得到所述防覆冰 涂料。

( 4 )将步骤(3 )制备得到的防覆冰涂料直接涂覆在不锈钢表 上干燥成膜, 待干燥成膜后放入温度为 120 °C的烘箱中热固化 5小时, 即可得到一种由核壳结构 聚合物乳液组成的耐磨低冰粘附防覆冰涂层。 当环境温度为 0°C ~ -52 °C及环境湿度为 0% ~ 99%, 能在基材表面结冰时, 由 上述方法制备得到的防覆冰涂层中核壳结构高 分子颗粒中亲水壳中所含的亲水基团 能够吸水, 而后形成水溶液, 该水溶液具有较低的冰点, 使防覆冰涂层的表面形成 不结冰的水膜, 在冰与涂层之间引入了一层润滑层, 使得不锈钢表面的冰层在较低 剪切力下就能除去。 实施例 4

( 1 )将真空脱水后的聚己二酸辛戊二醇酯 (M n =2000 ) 90g, 甲苯二异氰酸酯 ( TDI ) 76g,加入三口烧瓶中, 混合均匀后升温至 85 °〇左右反应 1.5 h吗, 再加入 10 g DMPA, 85°C左右反应 l h, 最后加入 23 g—缩二乙二醇, 并加几滴催化剂, 丙酮 适量 60 °C反应 4-5 h, 降温至 25 V出料。 将预聚体用三乙胺中和后加水 500 进行 高速乳化, 得到白色乳液。

( 2 )将占 A组分总质量 5%的粘土,与占 A组分总质量 95%的上述乳液混合搅 拌均匀, 即得到所述的防覆冰涂料 A组分。

( 3 )添加占上述核壳结构聚合物乳液质量 10%的固化剂于 A组分中,搅拌均匀 即可得到所述防覆冰涂料。

( 4 )将步骤(3 )制备得到的防覆冰涂料直接涂覆在铝表面上 燥成膜, 待干 燥成膜后放入温度为 80 °C的烘箱中热固化 5小时, 即可得到一种由核壳结构聚合物 乳液组成的耐磨低冰粘附防覆冰涂层。

当环境温度为 0°C ~ -52 °C及环境湿度为 40% ~ 99%, 能在基材表面结冰时, 由 上述方法制备得到的防覆冰涂层中核壳结构高 分子颗粒中亲水壳中所含的亲水基团 能够吸水, 而后形成水溶液, 该水溶液具有较低的冰点, 使防覆冰涂层的表面形成 不结冰的水膜, 在冰与涂层之间引入了一层润滑层, 使得不锈钢表面的冰层在较低 剪切力下就能除去。 实施例 5

( 1 )将真空脱水后的聚己二酸辛戊二醇酯 (M n =2000 ) 90g, 甲苯二异氰酸酯 ( TDI ) 76g,加入三口烧瓶中, 混合均匀后升温至 85 °〇左右反应 1.5 h吗, 再加入 10 g DMPA, 85°C左右反应 l h, 最后加入 23 g—缩二乙二醇, 并加几滴催化剂, 丙酮 适量 60 °C反应 4-5 h, 降温至 25 。C出料。 将预聚体用三乙胺中和后加水 500 进行 高速乳化, 得到白色乳液。

( 2 )将占 A组分总质量 5%的氧化锌,与占组分 A总质量 95%的聚氨酯乳液混 合搅拌均匀, 即得到所述的防覆冰涂料 A组分。

( 3 )添加占核壳结构聚合物乳 «:量 10%的固化剂于 A组分中,搅拌均匀即可 得到所述防覆冰涂料。

( 4 )将步骤(3 )制备得到的防覆冰涂料直接涂覆在铁表面上 燥成膜, 待干燥成膜后放入温度为 80 °C的烘箱中热固化 5小时, 即可得到具有耐磨、 低 冰粘附强度的防覆冰涂层。

当环境温度为 0°C ~ -52 °C及环境湿度为 40% ~ 99%, 能在基材表面结冰时, 由 上述方法制备得到的防覆冰涂层中核壳结构高 分子颗粒中亲水壳中所含的亲水基团 能够吸水, 而后形成水溶液, 该水溶液具有较低的冰点, 使防覆冰涂层的表面形成 不结冰的水膜, 在冰与涂层之间引入了一层润滑层, 使得不锈钢表面的冰层在较低 剪切力下就能除去。 实施例 6

( 1 )在装有冷凝管温度计、滴液漏斗、搅拌器的 口烧瓶中加入聚乙烯醇( PVA ) 15 g、 NaHC0 3 2g、 乳化剂 TX-10 6 g、 H 2 0 560 g, 调节温度至 70°C, 充分搅拌。 然 后加入 (NH 4 ) 2 S 2 0 8 1.8 g 7j溶液, 加入单体丙烯酸 150 g、 苯乙烯 30 g、 甲基丙烯酸 30 g、 丙烯酰胺 12 g于漏斗中混合均匀, 3h滴加完毕, 然后继续在 80°C下搅拌 lh, 冷却至室温即可得丙烯酸酯乳液。

( 2 )将占 A组分总质量 5%的粘土,与占组分 A总质量 95%的丙烯酸酯乳液混 合搅拌均匀, 即得到所述的防覆冰涂料 A组分。

( 3 )添加占核壳结构聚合物乳 «:量 10%的固化剂于 A组分中,搅拌均匀即可 得到所述防覆冰涂料。

( 4 )将步骤(3 )制备得到的防覆冰涂料直接涂覆在铁基材表 上干燥成膜, 待干燥成膜后^温度为 80 °C的烘箱中热固化 8小时, 即可得到具有耐磨、 低冰粘 附强度的防覆冰涂层。 当环境温度为 0°C ~ -52 °C及环境湿度为 0% ~ 99%, 能在基材表面结冰时, 由 上述方法制备得到的防覆冰涂层中核壳结构高 分子颗粒中亲水壳中所含的亲水基团 能够吸水, 而后形成水溶液, 该水溶液具有较低的冰点, 使防覆冰涂层的表面形成 不结冰的水膜, 在冰与涂层之间引入了一层润滑层, 使得不锈钢表面的冰层在较低 剪切力下就能除去。 试验例 1

将上述实施例 1 ~ 2制备得到的表面涂覆有所述的防覆冰涂料的 材在 -5 °C、 湿 度为 20%、 结冰样品冷冻 5小时后进行冰粘附强度的大小测试, 结果如图 1所示。

由图 1 可以看出, 未涂覆本专利所述涂料的基材表面的冰粘附强 度高达 1200 kPa, 涂覆该涂料以后能显著降低冰粘附强度至 27 kPa左右。 试验例 2

将上述实施例 3 ~ 4制备得到的表面涂覆有所述的防覆冰涂料的 材在 -25°C、湿 度为 60%、 结冰样品冷冻 5小时后进行冰粘附强度的大小测试, 结果如图 2所示。

由图 2可以看出, 在环境温度更低, 湿度更大的情况下, 涂覆有本专利所述涂 料仍然能降低冰粘附强度至 27 kPa左右。 试验例 3

将上述实施例 5 ~ 6制备得到的表面涂覆有所述的防覆冰涂料的 材在 -52°C、湿 度为 80%、 结冰样品冷冻 5小时后进行冰粘附强度的大小测试, 结果如图 3所示。

由图 3可以看出, 当温度达到 -52 °C,湿度高达 99%时, 专利所述涂料依然保持了 极好地降低冰粘附强度的效果。

由试验例 1-3的结果表明 , 使用本专利所述涂料对不同材料的基底涂覆时 , 都 能显著降低冰粘附强度, 效果改善几近两个数量级; 同时, 所述涂料能在低温、 高 湿度条件下仍然保持防覆冰效果。