Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
USE OF STROBILURIN TYPE COMPOUNDS FOR COMBATING PHYTOPATHOGENIC FUNGI CONTAINING AN AMINO ACID SUBSTITUTION F129L IN THE MITOCHONDRIAL CYTOCHROME B PROTEIN CONFERRING RESISTANCE TO QO INHIBITORS X
Document Type and Number:
WIPO Patent Application WO/2023/072670
Kind Code:
A1
Abstract:
The present invention relates to the use of strobilurin type compounds of formula I and the N-oxides and the salts thereof for combating phytopathogenic fungi containing an amino acid substitution F129L in the mitochondrial cytochrome b protein (also referred to as F129L mutation in the mitochondrial cytochrome b gene) conferring resistance to Qo inhibitors, and to methods for combating such fungi. The invention also relates to novel compounds, processes for preparing these compounds, to compositions comprising at least one such compound, and to seeds coated with at least one such compound.

Inventors:
KOCH ANDREAS (DE)
FEHR MARCUS (DE)
TEGGE VANESSA (DE)
DEY CHANDAN (IN)
LE VEZOUET RONAN (DE)
RATH RAKESH (IN)
POONOTH MANOJKUMAR (DE)
WINTER CHRISTIAN HARALD (DE)
KHANNA SMRITI (IN)
CRAIG IAN ROBERT (DE)
GRAMMENOS WASSILIOS (DE)
STAMMLER GERD (DE)
MENTZEL TOBIAS (DE)
DAS SAIKAT (IN)
LUDWIG LYDIA (DE)
RUDOLF GEORG CHRISTOPH (DE)
Application Number:
PCT/EP2022/078907
Publication Date:
May 04, 2023
Filing Date:
October 18, 2022
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
BASF SE (DE)
International Classes:
A01N37/36; A01N37/50; A01P3/00; C07C251/60; C07C255/49; C07C255/62
Domestic Patent References:
WO2021219390A12021-11-04
WO2021219388A12021-11-04
WO2021219387A12021-11-04
WO2021219386A12021-11-04
WO2022033906A12022-02-17
WO2020027216A12020-02-06
WO2013092224A12013-06-27
WO2017157923A12017-09-21
WO1998023156A11998-06-04
WO2018115380A12018-06-28
WO2001031042A22001-05-03
WO2001041558A12001-06-14
WO2002036831A22002-05-10
WO2011153186A12011-12-08
WO2013003558A12013-01-03
WO2002034946A22002-05-02
WO2002100163A22002-12-19
WO2003013224A22003-02-20
WO2004072235A22004-08-26
WO2004039986A12004-05-13
WO2005103266A12005-11-03
WO2006128573A22006-12-07
WO2007017186A12007-02-15
WO2008122406A12008-10-16
WO2008151780A12008-12-18
WO2012134808A12012-10-04
WO2013112527A12013-08-01
WO1998044140A11998-10-08
WO2004099447A22004-11-18
WO2004011601A22004-02-05
WO2005103301A22005-11-03
WO2005061720A22005-07-07
WO2005059103A22005-06-30
WO2006098952A22006-09-21
WO2006039376A22006-04-13
WO2007142840A22007-12-13
WO2007140256A12007-12-06
WO2008112019A22008-09-18
WO2009103049A22009-08-20
WO2009111263A12009-09-11
WO2010077816A12010-07-08
WO2011084621A12011-07-14
WO2011062904A12011-05-26
WO2011022469A22011-02-24
WO2013169923A22013-11-14
WO2014116854A12014-07-31
WO2015053998A12015-04-16
WO2015142571A12015-09-24
WO2014178910A12014-11-06
WO2014178913A12014-11-06
WO2014178941A12014-11-06
WO2014179276A12014-11-06
WO2016183445A12016-11-17
WO2017062831A12017-04-13
WO2017062825A12017-04-13
WO2000026345A12000-05-11
WO2000026356A12000-05-11
WO2004074492A12004-09-02
WO2006130436A22006-12-07
WO2006108674A22006-10-19
WO2006108675A22006-10-19
WO2008054747A22008-05-08
WO2008002872A22008-01-03
WO2009064652A12009-05-22
WO2009102873A12009-08-20
WO2010080829A12010-07-15
WO2010037016A12010-04-01
WO2011066384A12011-06-03
WO2011034704A12011-03-24
WO2012051199A22012-04-19
WO2012082548A22012-06-21
WO2013016527A12013-01-31
WO2013016516A12013-01-31
WO2014201235A22014-12-18
WO2018177894A12018-10-04
WO2020212513A12020-10-22
WO2000046148A12000-08-10
WO2000065913A12000-11-09
WO2001054501A22001-08-02
WO2001056358A22001-08-09
WO2002022583A22002-03-21
WO2002040431A22002-05-23
WO2003010149A12003-02-06
WO2003011853A12003-02-13
WO2003014103A12003-02-20
WO2003016286A12003-02-27
WO2003053145A12003-07-03
WO2003061388A12003-07-31
WO2003066609A12003-08-14
WO2003074491A12003-09-12
WO2004049804A22004-06-17
WO2004083193A12004-09-30
WO2005120234A22005-12-22
WO2005123689A12005-12-29
WO2005123690A12005-12-29
WO2005063721A12005-07-14
WO2005087772A12005-09-22
WO2005087773A12005-09-22
WO2006015866A12006-02-16
WO2006087325A12006-08-24
WO2006087343A12006-08-24
WO2007082098A22007-07-19
WO2007090624A22007-08-16
WO2010139271A12010-12-09
WO2011028657A12011-03-10
WO2012168188A12012-12-13
WO2007006670A12007-01-18
WO2011077514A12011-06-30
WO2013047749A12013-04-04
WO2010069882A12010-06-24
WO2013047441A12013-04-04
WO2003016303A12003-02-27
WO2009090181A22009-07-23
WO2013007767A12013-01-17
WO2013010862A12013-01-24
WO2013127704A12013-09-06
WO2013024009A12013-02-21
WO2013024010A12013-02-21
WO2013162072A12013-10-31
WO2013092224A12013-06-27
WO2011135833A12011-11-03
WO2012084812A12012-06-28
WO2009094442A22009-07-30
WO2014060177A12014-04-24
WO2013116251A22013-08-08
WO2008013622A22008-01-31
WO2015065922A12015-05-07
WO1994001546A11994-01-20
WO2007129454A12007-11-15
WO2012165511A12012-12-06
WO2011081174A12011-07-07
WO2013047441A12013-04-04
WO2016156241A12016-10-06
WO2016162265A12016-10-13
WO2009126473A12009-10-15
WO2014029697A12014-02-27
WO2011109395A22011-09-09
WO2013032693A22013-03-07
WO1996021358A11996-07-18
WO1991002051A11991-02-21
WO2016020371A12016-02-11
WO1995017806A11995-07-06
WO2014124369A12014-08-14
WO2008002371A12008-01-03
Foreign References:
EP0370629A11990-05-30
EP0463488A11992-01-02
US2102582A1937-12-14
US3126634A1964-03-31
US20070292854A12007-12-20
EP0141317A21985-05-15
EP0152031A21985-08-21
EP0226917A11987-07-01
EP0243970A11987-11-04
EP0256503A21988-02-24
EP0428941A11991-05-29
EP0532022A11993-03-17
EP1028125A12000-08-16
EP1035122A12000-09-13
EP1201648A12002-05-02
EP1122244A12001-08-08
JP2002316902A2002-10-31
DE19650197A11998-06-10
DE10021412A12001-06-21
DE102005009458A12006-09-07
US3296272A1967-01-03
CN1907024A2007-02-07
CN1456054A2003-11-19
CN103387541A2013-11-13
CN1309897A2001-08-29
EP2865265A12015-04-29
US8445255B22013-05-21
US20120149571A12012-06-14
US6406690B12002-06-18
US20100260735A12010-10-14
EP0585215B11999-09-15
US6994849B22006-02-07
US5026417A1991-06-25
EP0307510B11991-02-06
US6955912B22005-10-18
US5422107A1995-06-06
Other References:
GISI ET AL., PEST MANAG SCI, vol. 56, 2000, pages 833 - 841
KLOSOWSKI ET AL., PEST MANAG SCI, vol. 72, 2016, pages 1211 - 1215
CROP PROTECTION, vol. 27, 2008, pages 352 - 361
J ORG CHEM, vol. 63, no. 21, 1998, pages 7399 - 7407
NATURE COMM, vol. 8, no. 1, 2017, pages 1 - 7
ORG LETT, vol. 18, no. 7, 2016, pages 1630 - 1633
CHEM A EUR J, vol. 14, no. 18, 2008, pages 5555 - 5566
EUR J MED CHEM, vol. 102, 2015, pages 582 - 593
PNAS, vol. 107, no. 19, 2010, pages 8563 - 8568
"Technical Monograph No. 2", May 2008, CROPLIFE INTERNATIONAL, article "Catalogue of pesticide formulation types and international coding system"
MOLLETGRUBEMANN: "Formulation technology", 2001, WILEY VCH
KNOWLES: "Agrow Reports DS243", 2005, T&F INFORMA, article "New developments in crop protection product formulation"
MCCUTCHEON: "Emulsifiers & Detergents", vol. 1, 2008, MCCUTCHEON'S DIRECTORIES
KNOWLES: "Agrow Reports DS256", 2006, T&F INFORMA, article "Adjuvants and additives"
CAN. J. PLANT SCI., vol. 48, no. 6, 1968, pages 587 - 94
PLANT SOIL, vol. 331, 2010, pages 413 - 425
INT. J. SYST. EVOL. MICROBIOL., vol. 66, 2016, pages 1212 - 1217
J. PLANT DIS. PROT., vol. 105, 1998, pages 181 - 197
SYSTEM. APPL. MICROBIOL., vol. 27, 2004, pages 372 - 379
APPL. ENVIRON. MICROBIOL., vol. 73, no. 8, 2007, pages 2635
CAN. J. PLANT. SCI., vol. 70, 1990, pages 661 - 666
EUR. J. SOIL BIOL., vol. 45, 2009, pages 28 - 35
BIOL. FERTIL. SOILS, vol. 47, 2011, pages 81 - 89
SCIENCE, vol. 257, 1992, pages 85 - 88
J. INVERTEBRATE PATHOL., vol. 107, 2011, pages 112 - 126
BIOCONTROL SCIENCE TECHNOL., vol. 22, no. 7, 2012, pages 747 - 761
FEDERAL REGISTER, vol. 76, no. 22, 2 February 2011 (2011-02-02), pages 5808
FERTILIZER RES., vol. 39, 1994, pages 97 - 103
BIOCONTROL, vol. 57, 2012, pages 687 - 696
CHEM COMMUN, vol. 52, 2016, pages 13668 - 13670
Attorney, Agent or Firm:
BASF IP ASSOCIATION (DE)
Download PDF:
Claims:
Claims

1. Use of compounds of formula I wherein

R1 is selected from O and NH;

R2 is selected from CH and N;

R3 is selected from halogen, Ci-C4-alkyl, C2-C4-alkenyl, Ci-C2-monohaloalkyl, Ci-C2-dihaloalkyl, monohalo-ethenyl, dihalo-ethenyl, Cs-Ce-cycloalkyl and -O-Ci-C4-alkyl;

R4 is selected from Ci-Ce-alkyl, C2-C4-alkenyl, C2-C4-alkynyl, Ci-Ce-haloalkyl, C2-C4-haloalkenyl, C2-C4-haloalkynyl, -C(=O)-Ci-C4-alkyl, -(Ci-C2-alkyl)-O-(Ci-C2-alkyl), -(Ci-C2-alkyl)-O-(Ci-C2-haloalkyl) and -Ci-C4-alkyl-C3-Ce-cycloalkyl;

Ra is selected from halogen, CN, -NR5R6, Ci-C4-alkyl, C2-C4-alkenyl, C2-C4-alkynyl, -O-Ci-C4-alkyl, -C(=N-O-Ci-C4-alkyl)-Ci-C4-alkyl, -C(=O)-Ci-C4-alkyl, -O-CH2-C(=N-O-Ci-C4-alkyl)-Ci-C4-alkyl, Cs-Ce-cycloalkyl, Cs-Ce-cycloalkenyl, -Ci-C2-alkyl-C3-Ce-cycloalkyl, -O-Cs-Ce-cycloalkyl, phenyl, 3- to 6-membered heterocycloalkyl, 3- to 6-membered heterocycloalkenyl and 5- or 6-membered heteroaryl, wherein said heterocycloalkyl, heterocycloalkenyl and heteroaryl besides carbon atoms contain 1, 2 or 3 heteroatoms selected from N, O and S, wherein said phenyl, heterocycloalkyl, heterocycloalkenyl and heteroaryl are bound directly or via an oxygen atom or via a Ci-C2-alkylene linker, and wherein the aliphatic and cyclic moieties of Ra are unsubstituted or carry 1 , 2, 3, 4 or up to the maximum number of identical or different groups Rb:

Rb is selected from halogen, CN, NH2, NO2, Ci-C4-alkyl, Ci-C4-haloalkyl, -O-Ci-C4-alkyl, and -O-Ci-C4-haloalkyl;

R5, R6 are independently of each other selected from the group consisting of H, Ci-Ce-alkyl, Ci-Ce-haloalkyl and C2-C4-alkynyl; n is an integer selected from 0, 1, 2, 3, 4 and 5; and in form or stereoisomers and tautomers thereof, and the N-oxides and the agriculturally acceptable salts thereof, for combating phytopathogenic fungi containing an amino acid substitution F129L in the mitochondrial cytochrome b protein conferring resistance to Qo inhibitors.

2. The use according to claim 1 , wherein in formula I R1 is selected from O and NH; and R2 is selected from CH and N, provided that R2 is N in case R1 is NH.

3. The use according to claim 1 or claim 2, wherein in formula I R3 is selected from Ci-C2-alkyl, Ci-C2-monohaloalkyl, Ci-C2-dihaloalkyl, C3-C4-cycloalkyl and -O-Ci-C2-alkyl.

4. The use according to any of claims 1 to 3, wherein in formula I R4 is selected from Ci-C4-alkyl, C2-C4-alkenyl, -C(=O)-Ci-C2-alkyl, Ci-C4-haloalkyl, C2-C4-haloalkenyl and -(Ci-C2-alkyl)-O-(Ci-C2-alkyl).

5. The use according to any one of claims 1 to 4, wherein in formula I Ra is selected from is selected from Ci-Cs-alkyl, C2-Cs-alkenyl, C2-Cs-alkynyl, -O-Ci-Cs-alkyl, -C(=N-O-Ci-C2-alkyl)-Ci-C2-alkyl, -O-CH2-C(=N-O-Ci-C2-alkyl)-Ci-C2-alkyl, C3-C4-cyclo- alkyl, -Ci-C2-alkyl-C3-C4-cycloalkyl, -O-C3-C4-cycloalkyl, phenyl, 3- to 5-membered heterocycloalkyl and 5- or 6-membered heteroaryl, wherein said heterocycloalkyl and heteroaryl besides carbon atoms contain 1 or 2 heteroatoms selected from N, O and S, wherein said phenyl and heteroaryl are bound directly or via an oxygen atom or via a methylene linker, and wherein the aliphatic and cyclic moieties of Ra are unsubstituted or carry 1 , 2 or 3 of identical or different groups Rb which independently of one another are selected from halogen, CN, methyl and Ci-haloalkyl.

6. The use according to any one of claims 1 to 5, wherein the phytopathogenic fungi are soybean rust (Phakopsora pachyrhizi and/or P. meibomiae).

7. A method for combating phytopathogenic fungi containing an amino acid substitution F129L in the mitochondrial cytochrome b protein conferring resistance to Qo inhibitors, comprising: treating curatively and/or preventively the plants or the plant propagation material of said plants that are at risk of being diseased from the said phytopathogenic fungi, and/or applying to the said phytopathogenic fungi with an effective amount of at least one compound of formula I as defined in any of claims 1 to 5 or a composition comprising it thereof.

8. Compounds of formula I wherein

R1 is selected from O and NH; 175

R2 is selected from CH and N;

R3 is selected from Ci-C4-alkyl, C2-C4-alkenyl, Ci-C2-monohaloalkyl, Ci-C2-dihaloalkyl, monohalo-ethenyl, dihalo-ethenyl, Cs-Ce-cycloalkyl and -O-Ci-C4-alkyl;

R4 is selected from Ci-Ce-alkyl, C2-C4-alkenyl, C2-C4-alkynyl, Ci-Ce-haloalkyl, C2-C4-ha- loalkenyl, C2-C4-haloalkynyl, -C(=O)-Ci-C4-alkyl, -(Ci-C2-alkyl)-O-(Ci-C2-alkyl), -(Ci-C2-alkyl)-O-(Ci-C2-haloalkyl) and -Ci-C4-alkyl-C3-Ce-cycloalkyl;

Ra is selected from halogen, Ci-C4-haloalkyl, C2-C4-haloalkenyl, C2-C4-haloalkynyl, Cs-Ce-cycloalkyl, Cs-Ce-cycloalkenyl, -Ci-C2-alkyl-C3-Ce-cycloalkyl, phenyl, 3- to 6- membered heterocycloalkyl, 3- to 6-membered heterocycloalkenyl and 5- or 6- membered heteroaryl, wherein said heterocycloalkyl, heterocycloalkenyl and heteroaryl besides carbon atoms contain 1 , 2 or 3 heteroatoms selected from N, O and S, wherein said phenyl, heterocycloalkyl, heterocycloalkenyl and heteroaryl are bound directly or via an oxygen atom or via a Ci-C2-alkylene linker, and wherein the cyclic moieties of Ra carry 1 , 2 or 3 substituents selected from halogen and Ci-C4-haloalkyl, and wherein the aliphatic and cyclic moieties of Ra further carry 0, 1 , 2 or up to the maximum number of identical or different groups Rb:

Rb is selected from CN, NH2, NO2, Ci-C4-alkyl and -O-Ci-C4-alkyl; n is an integer selected from 0, 1 , 2, 3, 4 and 5; and in form or stereoisomers and tautomers thereof, and the N-oxides and the agriculturally acceptable salts thereof.

9. The compounds according to claim 8, wherein R1 is selected from O and NH; and R2 is selected from CH and N, provided that R2 is N in case R1 is NH.

10. The compound according to any one of the claims 8 to 9, wherein R3 is selected from Ci-C2-alkyl, Ci-C2-monohaloalkyl, Ci-C2-dihaloalkyl, C3-C4-cycloalkyl and -O-Ci-C2-alkyl.

11. The compound according to any one of the claims 8 to 10, wherein R4 is selected from Ci-Ce-alkyl, C2-C4-alkenyl, Ci-Ce-haloalkyl, C2-C4-haloalkenyl, -(Ci-C2-alkyl)-O-(Ci-C2-al- kyl) and -(Ci-C2-alkyl)-O-(Ci-C2-haloalkyl).

12. The compounds according to any one of the claims 8 to 11 , wherein n is 1 , 2 or 3.

13. The compounds according to any one of the claims 8 to 12, wherein Ra is selected from halogen, Ci-C4-haloalkyl, C2-C4-haloalkenyl, C2-C4-haloalkynyl, C3-C4-cycloalkyl, -CH2-C3-C4-cycloalkyl, phenyl, 3- to 5-membered heterocycloalkyl and 5- or 6-membered heteroaryl, wherein said heterocycloalkyl and heteroaryl besides carbon atoms contain 1 or 2 heteroatoms selected from N, O and S, wherein said phenyl, heterocycloalkyl and heteroaryl are bound directly or via a methylene linker, and wherein the cyclic moieties of 176

Ra carry 1 , 2, or 3 substituents selected from halogen and Ci-C2-haloalkyl, and wherein cyclic moieties of Ra further carry 0, 1 , 2 or 3 identical or different groups Rb selected from CN, NH2, NO2, Ci-C4-alkyl and -O-Ci-C4-alkyl. 14. Agrochemical compositions comprising an auxiliary and at least one compound of formula

I, as defined in any of claims 8 to 13 or in the form of a stereoisomer or an agriculturally acceptable salt or a tautomer or N-oxide thereof.

15. A method for combating phytopathogenic fungi comprising: treating curatively and/or preventively the plants or the plant propagation material of said plants that are at risk of being diseased from the said phytopathogenic fungi, and/or applying to the said phytopathogenic fungi, at least one compound of formula I as defined in any of the claims 8 to 13 or an agrochemical composition as defined in claim 14.

Description:
Use of strobilurin type compounds for combating phytopathogenic fungi containing an amino acid substitution F129L in the mitochondrial cytochrome b protein conferring resistance to Qo inhibitors X

Description

The present invention relates the use of strobilurin type compounds of formula I and the N-oxides and the salts thereof for combating phytopathogenic fungi containing an amino acid substitution F129L in the mitochondrial cytochrome b protein (also referred to as F129L mutation in the mitochondrial cytochrome b gene) conferring resistance to Qo inhibitors (Qol), and to methods for combating such fungi. The invention also relates to novel compounds, processes for preparing these compounds, to compositions comprising at least one such compound, to plant health applications, and to seeds coated with at least one such compound. The present invention also relates to a method for controlling soybean rust fungi (Phakopsora pachyrhizi) with the amino acid substitution F129L in the mitochondrial cytochrome b protein.

"Qo inhibitor," as used herein, includes any substance that is capable of diminishing and/or inhibiting respiration by binding to a ubihydroquinone oxidation center of a cytochrome bci complex in mitochondria. The oxidation center is typically located on the outer side of the inner mitochrondrial membrane. Many of these compounds are also known as strobilurin-type or strobilurin analogue compounds.

The mutation F129L in the mitochondrial cytochrome b (CYTB) gene shall mean any substitution of nucleotides of codon 129 encoding “F” (phenylalanine; e.g. TTT or TTC) that leads to a codon encoding “L” (leucine; e.g. TTA, TTG, TTG, CTT, CTC, CTA or CTG), for example the substitution of the first nucleotide of codon 129 ‘T’ to ‘C’ (TTT to CTT), in the CYTB (cytochrome b) gene resulting in a single amino acid substitution in the position 129 from F to L in the cytochrome b protein. Such F129L mutation is known to confer resistance to Qo inhibitors

Qol fungicides, often referred to as strobilurin-type fungicides (Sauter 2007: Chapter 13.2. Strobilurins and other complex III inhibitors. In: Kramer, W.; Schirmer, U. (Ed.) - Modern Crop Protection Compounds. Volume 2. Wiley-VCH Verlag 457-495), are conventionally used to control a number of fungal pathogens in crops. Qo inhibitors typically work by inhibiting respiration by binding to a ubihydroquinone oxidation center of a cytochrome bci complex (electron transport complex III) in mitochondria. Said oxidation center is located on the outer side of the inner mitochrondrial membrane. A prime example of the use of Qols includes the use of, for example, strobilurins on wheat for the control of Septoria tritici (also known as Mycosphaerella graminicola), which is the cause of wheat leaf blotch. Unfortunately, widespread use of such Qols has resulted in the selection of mutant pathogens which are resistant to such Qols (Gisi et al., Pest Manag Sci 56, 833-841 , (2000)). Resistance to Qols has been detected in several phytopathogenic fungi such as Blumeria graminis, Mycosphaerella fijiensis, Pseudoperonspora cubensis or Venturia inaequalis. The major part of resistance to Qols in agricultural uses has been attributed to pathogens containing a single amino acid residue substitution G143A in the cytochrome b gene for their cytochrome bci complex, the target protein of Qols which have been found to be controlled by specific Qols (WO 2013/092224). Despite several commercial Qol fungicides have also been widely used in soybean rust control, the single amino acid residue substitution G143A in the cytochrome b protein conferring resistance to Qol fungicides was not observed.

Instead soybean rust acquired a different genetic mutation in the cytochrome b gene causing a single amino acid substitution F129L which also confers resistance against Qol fungicides. The efficacy of Qol fungicides used against soybean rust conventionally, i.e. pyraclostrobin, azoxystrobin, picoxystrobin, orysastrobin, dimoxystrobin and metominostrobin, has decreased to a level with practical problems for agricultural practice (e.g. Klosowski et al (2016) Pest Manag Sci 72, 1211-1215).

Although it seems that trifloxystrobin was less affected by the F129L amino acid substitution to the same degree as other Qol fungicides such as azoxystrobin and pyraclostrobin, trifloxystrobin was never as efficacious on a fungal population bearing the F129L Qol resistance mutation as on a sensitive population (Crop Protection 27, (2008) 427-435).

WO 2017/157923 discloses the use of the tetrazole compound 1-[2-[[1-(4-chlorophenyl)- pyrazol-3-yl]oxymethyl]-3-methylphenyl]-4-methyltetrazol-5-o ne for combating phytopathogenic fungi containing said F129L amino acid substitution.

Thus, new methods are desirable for controlling pathogen induced diseases in crops comprising plants subjected to pathogens containing a F129L amino acid substitution in the mitochondrial cytochrome b protein conferring resistance to Qo inhibitors. Furthermore, in many cases, in particular at low application rates, the fungicidal activity of the known fungicidal strobilurin compounds is unsatisfactory, especially in case that a high proportion of the fungal pathogens contain a mutation in the mitochondrial cytochrome b gene conferring resistance to Qo inhibitors. Besides there is an ongoing need for new fungicidally active compounds which are more effective, less toxic and/or environmentally safer. Based on this, it was also an object of the present invention to provide compounds having improved activity and/or a broader activity spectrum against phytopathogenic fungi and/or even further reduced toxicity against non target organisms such as vertebrates and invertebrates.

The strobilurin-analogue compounds used to combat phytopathogenic fungi containing a F129L amino acid substitution in the mitochondrial cytochrome b protein conferring resistance to Qo inhibitors according to the present invention differ from trifloxystrobin inter alia by containing a specific group attached to the central phenyl ring in ortho position to the side chain defined herein as R 3 .

Accordingly, the present invention relates to the use of compounds of formula I wherein

R 1 is selected from O and NH;

R 2 is selected from CH and N;

R 3 is selected from halogen, Ci-C4-alkyl, C2-C4-alkenyl, Ci-C2-monohaloalkyl, Ci-C2-dihalo- alkyl, monohalo-ethenyl, dihalo-ethenyl, Cs-Ce-cycloalkyl and -O-Ci-C4-alkyl;

R 4 is selected from Ci-Ce-alkyl, C2-C4-alkenyl, C2-C4-alkynyl, Ci-Ce-haloalkyl, C2-C4-halo- alkenyl, C2-C4-haloalkynyl, -C(=O)-Ci-C4-alkyl, -(Ci-C2-alkyl)-O-(Ci-C2-alkyl), -(Ci-C2-al- kyl)-O-(Ci-C2-haloalkyl) and -Ci-C4-alkyl-C3-C6-cycloalkyl;

R a is selected from halogen, CN, -NR 5 R 6 , Ci-C4-alkyl, C2-C4-alkenyl, C2-C4-alkynyl, -O-Ci-C 4 -alkyl, -C(=N-O-Ci-C 4 -alkyl)-Ci-C 4 -alkyl, -C(=O)-Ci-C 4 -alkyl, -O-CH2-C(=N-O-Ci-C4-alkyl)-Ci-C4-alkyl, Cs-Ce-cycloalkyl, Cs-Ce-cycloalkenyl, -Ci-C2-alkyl-C3-Ce-cycloalkyl, -O-Cs-Ce-cycloalkyl, phenyl, 3- to 6-membered heterocycloalkyl, 3- to 6-membered heterocycloalkenyl and 5- or 6-membered heteroaryl, wherein said heterocycloalkyl, heterocycloalkenyl and heteroaryl besides carbon atoms contain 1 , 2 or 3 heteroatoms selected from N, O and S, wherein said phenyl, heterocycloalkyl, heterocycloalkenyl and heteroaryl are bound directly or via an oxygen atom or via a Ci-C2-alkylene linker, and wherein the aliphatic and cyclic moieties of R a are unsubstituted or carry 1 , 2, 3, 4 or up to the maximum number of identical or different groups R b :

R b is selected from halogen, CN, NH 2 , NO2, Ci-C4-alkyl, Ci-C4-haloalkyl, -O-Ci-C4-alkyl and -O-Ci-C4-haloalkyl;

R 5 , R 6 are independently of each other selected from the group consisting of H, Ci-C 6 -alkyl, Ci-C 6 -haloalkyl and C2-C4-alkynyl; n is an integer selected from 0, 1 , 2, 3, 4 and 5; and in form or stereoisomers and tautomers thereof, and the N-oxides and the agriculturally acceptable salts thereof, for combating phytopathogenic fungi containing an amino acid substitution F129L in the mitochondrial cytochrome b protein conferring resistance to Qo inhibitors.

The mutation F129L in the cytochrome b (cytb, also referred to as cob) gene shall mean any substitution of nucleotides of codon 129 encoding “F” (phenylalanine; e.g. TTT or TTC) that leads to a codon encoding “L” (leucine; e.g. TTA, TTG, TTG, CTT, CTC, CTA or CTG), for example the substitution of the first nucleotide of codon 129 ‘T’ to ‘C’ (TTT to CTT), in the cytochrome b gene resulting in a single amino acid substitution in the position 129 from F (phenylalanine) to L (leucine) (F129L) in the cytochrome b protein (Cytb). In the present invention, the mutation F129L in the cytochrome b gene shall be understood to be a single amino acid substitution in the position 129 from F (phenylalanine) to L (leucine) (F129L) in the cytochrome b protein.

Many other phytopathogenic fungi acquired the F129L mutation in the cytochrome b gene conferring resistance to Qo inhibitors, such as rusts, in particular soybean rust (Phakopsora pachyrhizi and Phakopsora meibromiae) as well as fungi from the genera Alternaria, Pyreno- phora and Rhizoctonia.

Preferred fungal species are Alternaria solani, Phakopsora pachyrhizi, Phakopsora meibromiae, Pyrenophora teres, Pyrenophora tritici-repentis and Rhizoctonia solani’, in particular Phakopsora pachyrhizi.

In one aspect, the present invention relates to the method of protecting plants susceptible to and/or under attack by phytopathogenic fungi containing an amino acid substitution F129L in the mitochondrial cytochrome b protein conferring resistance to Qo inhibitors, which method comprises applying to said plants, treating plant propagation material of said plants with, and/or applying to said phytopathogenic fungi, at least one compound of formula I or a composition comprising at least one compound of formula I.

According to another embodiment, the method for combating phytopathogenic fungi, comprises: a) identifying the phytopathogenic fungi containing an amino acid substitution F129L in the mitochondrial cytochrome b protein conferring resistance to Qo inhibitors, or the materials, plants, the soil or seeds that are at risk of being diseased from phytopathogenic fungi as defined herein, and b) treating said fungi or the materials, plants, the soil or plant propagation material with an effective amount of at least one compound of formula I, or a composition comprising it thereof.

The term “phytopathogenic fungi an amino acid substitution F129L in the mitochondrial cytochrome b protein conferring resistance to Qo inhibitors” is to be understood that at least 10% of the fungal isolates to be controlled contain a such F129L substitution in the mitochondrial cytochrome b protein conferring resistance to Qo inhibitors, preferably at least 30%, more preferably at least 50%, even more preferably at at least 75% of the fungi, most preferably between 90 and 100%; in particular between 95 and 100%.

Although the present invention will be described with respect to particular embodiments, this description is not to be construed in a limiting sense.

Before describing in detail exemplary embodiments of the present invention, definitions important for understanding the present invention are given. As used in this specification and in the appended claims, the singular forms of "a" and "an" also include the respective plurals unless the context clearly dictates otherwise. In the context of the present invention, the terms "about" and "approximately" denote an interval of accuracy that a person skilled in the art will understand to still ensure the technical effect of the feature in question. The term typically indicates a deviation from the indicated numerical value of ±20 %, preferably ±15 %, more preferably ±10 %, and even more preferably ±5 %. It is to be understood that the term "comprising" is not limiting. For the purposes of the present invention the term "consisting of" is considered to be a preferred embodiment of the term "comprising of'.

Unless otherwise indicated, the following definitions are set forth to illustrate and define the meaning and scope of the various terms used to describe the invention herein and the appended claims. These definitions should not be interpreted in the literal sense as they are not intended to be general definitions and are relevant only for this application.

The term "compounds I" refers to compounds of formula I. Likewise, this terminology applies to all sub-formulae, e. g. "compounds 1.2" refers to compounds of formula 1.2 or "compounds V" refers to compounds of formula V, etc..

The term "independently" when used in the context of selection of substituents for a variable, it means that where more than one substituent is selected from a number of possible substituents, those substituents may be the same or different.

The organic moieties or groups mentioned in the above definitions of the variables are collective terms for individual listings of the individual group members. The term "C v -C w " indicates the number of carbon atom possible in each case.

The term "halogen" refers to fluorine, chlorine, bromine and iodine.

The term "Ci-C4-alkyl" refers to a straight-chained or branched saturated hydrocarbon group having 1 to 4 carbon atoms, for example, methyl (CH3), ethyl (C2H5), propyl, 1-methylethyl (isopropyl), butyl, 1 -methylpropyl, 2-methylpropyl, 1 , 1-dimethylethyl.

The term "C 2 -C4-alkenyl" refers to a straight-chain or branched unsaturated hydrocarbon radical having 2 to 4 carbon atoms and a double bond in any position such as ethenyl, 1 -propenyl, 2-propenyl, 1 -methylethenyl, 1-butenyl, 2-butenyl, 3-butenyl, 1-methyl-1 -propenyl, 2-methyl- 1-propenyl, 1-methyl-2-propenyl, 2-methyl-2-propenyl.

The term "C2-C4-alkynyl" refers to a straight-chain or branched unsaturated hydrocarbon radical having 2 to 4 carbon atoms and containing at least one triple bond such as ethynyl, prop-1-ynyl, prop-2-ynyl, but-1-ynyl, but-2-ynyl, but-3-ynyl, 1-methyl-prop-2-ynyl.

The term "Ci-C4-haloalkyl" refers to a straight-chained or branched alkyl group having 1 to 4 carbon atoms wherein some or all of the hydrogen atoms in these groups may be replaced by halogen atoms as mentioned above, for example chloromethyl, bromomethyl, dichloromethyl, trichloromethyl, fluoromethyl, difluoromethyl, trifluoromethyl, chlorofluoromethyl, dichlorofluoromethyl, chlorodifluoromethyl, 1-chloroethyl, 1-bromoethyl, 1 -fluoroethyl, 2-fluoroethyl, 2,2-di- fluoroethyl, 2,2,2-trifluoroethyl, 2-chloro-2-fluoroethyl, 2-chloro-2,2-difluoroethyl, 2,2-dichloro-

2-fluoroethyl, 2,2,2-trichloroethyl and pentafluoroethyl, 2-fluoropropyl, 3-fluoropropyl, 2,2-di- fluoropropyl, 2,3-difluoropropyl, 2-chloropropyl, 3-chloropropyl, 2,3-dichloropropyl, 2-bromo- propyl, 3-bromopropyl, 3,3,3-trifluoropropyl, 3,3,3-trichloropropyl, CH2-C2F5, CF2-C2F5, CF(CFs)2, 1-(fluoromethyl)-2-fluoroethyl, 1-(chloromethyl)-2-chloroethyl, 1-(bromomethyl)-2-bromoethyl,

4-fluorobutyl, 4-chlorobutyl, 4-bromobutyl or nonafluorobutyl.

The term “monohalo-ethenyl” refers to an ethenyl wherein one hydrogen atom is replaced by a halogen atom, e.g. 1-chloroethenyl, 1-bromoethenyl, 1-fluoroethenyl, 2-fluoroethenyl. Likewise, dihalo-ethenyl” refers to an ethenyl wherein two hydrogen atoms are replaced by halogen atoms.

The term "-O-Ci-C4-alkyl" refers to a straight-chain or branched alkyl group having 1 to 4 carbon atoms which is bonded via an oxygen, at any position in the alkyl group, e.g. OCH3, OCH2CH3, O(CH 2 )2CH 3 , 1 -methylethoxy, O(CH 2 )3CH 3 , 1-methyhpropoxy, 2-methylpropoxy or 1 ,1 -dimethylethoxy.

The term "Cs-Ce-cycloalkyl" refers to monocyclic saturated hydrocarbon radicals having 3 to 6 carbon ring members, such as cyclopropyl (C3H5), cyclobutyl, cyclopentyl or cyclohexyl. The term "Cs-Ce-cycloalkenyl " refers to monocyclic saturated hydrocarbon radicals having 3 to 6 carbon ring members and one or more double bonds.

The term "3- to 6-membered heterocycloalkyl” refers to 3- to 6-membered monocyclic saturated ring system having besides carbon atoms one or more heteroatoms, such as O, N, S as ring members. The term "Cs-Ce-membered heterocycloalkenyl” refers to 3- to 6-membered monocyclic ring system having besides carbon atoms one or more heteroatoms, such as O, N and S as ring members, and one or more double bonds.

The term "-Ci-C4-alkyl-C3-C6-cycloalkyl" refers to alkyl having 1 to 4 carbon atoms (as defined above), wherein one hydrogen atom of the alkyl radical is replaced by a cycloalkyl radical having 3 to 6 carbon atoms.

The term “phenyl” refers to CeHs.

The term "5- or 6-membered heteroaryl" which contains 1 , 2, 3 or 4 heteroatoms from the group consisting of O, N and S, is to be understood as meaning aromatic heterocycles having 5 or 6 ring atoms. Examples include:

5-membered heteroaryl which in addition to carbon atoms, e.g. contain 1 , 2 or 3 N atoms and/or one sulfur and/or one oxygen atom: for example 2-thienyl, 3-thienyl, 3-pyrazolyl, 4-pyrazolyl, 5-pyrazolyl, 2-oxazolyl, 4-oxazolyl, 5-oxazolyl, 2-thiazolyl, 4-thiazolyl, 5-thi- azolyl, 2-imidazolyl, 4-imidazolyl and 1 ,3,4-triazol-2-yl;

6-membered heteroaryl which, in addition to carbon atoms, e.g. contain 1 , 2, 3 or 4 N atoms as ring members, e.g. 2-pyridinyl, 3-pyridinyl, 4-pyridinyl, 3-pyridazinyl, 4-pyri- dazinyl, 2-pyrimidinyl, 4-pyrimidinyl, 5-pyrimidinyl and 2-pyrazinyl.

The term “Ci-C2-alkylene linker” means a divalent alkyl group such as -CH 2 - or -CH 2 -CH 2 - that is bound at one end to the core structure of formula I and at the other end to the particular substituent.

As used herein, the “compounds", in particular “compounds I” include all the stereoisomeric and tautomeric forms and mixtures thereof in all ratios, prodrugs, isotopic forms, their agriculturally acceptable salts, N-oxides and S-oxides thereof.

The term "stereoisomer" is a general term used for all isomers of individual compounds that differ only in the orientation of their atoms in space. The term stereoisomer includes mirror image isomers (enantiomers), mixtures of mirror image isomers (racemates, racemic mixtures), geometric (cis/trans or E/Z) isomers, and isomers of compounds with more than one chiral center that are not mirror images of one another (diastereoisomers). The term “tautomer” refers to the coexistence of two (or more) compounds that differ from each other only in the position of one (or more) mobile atoms and in electron distribution, for example, keto-enol tautomers. The term "agriculturally acceptable salts" as used herein, includes salts of the active compounds which are prepared with acids or bases, depending on the particular substituents found on the compounds described herein. “N-oxide” refers to the oxide of the nitrogen atom of a nitrogencontaining heteroaryl or heterocycle. N-oxide can be formed in the presence of an oxidizing agent for example peroxide such as m-chloro-perbenzoic acid or hydrogen peroxide. N-oxide refers to an amine oxide, also known as amine-N-oxide, and is a chemical compound that contains N^O bond.

In respect of the variables, the embodiments of the intermediates correspond to the embodiments of the compounds I.

Preference is given to those compounds I and where applicable also to compounds of all sub-formulae provided herein, e. g. formulae 1.1 and 1.2, and to the intermediates such as compounds II, III, IV and V, wherein the substituents and variables (such as n, R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R a , and R b ) have independently of each other or more preferably in combination (any possible combination of 2 or more substituents as defined herein) the following meanings:

Preference is also given to the uses, methods, mixtures and compositions, wherein the definitions (such as phytopathogenic fungi, treatments, crops, compounds II, further active ingredients, solvents, solid carriers) have independently of each other or more preferably in combination the following meanings and even more preferably in combination (any possible combination of 2 or more definitions as provided herein) with the preferred meanings of compounds I herein:

One embodiment of the invention relates to the abovementioned use and or method of application (herein collectively referred to as “use”) of compounds I, wherein R 1 is selected from O and NH; and R 2 is selected from CH and N, provided that R 2 is N in case R 1 is NH. More preferably R 1 is NH. In particular, R 1 is NH and R 2 is N.

According to another embodiment, R 3 is selected from halogen, Ci-C4-alkyl, C2-C4-alkenyl, Ci-C2-monohaloalkyl, Ci-C2-dihaloalkyl, monohalo-ethenyl, dihalo-ethenyl, Cs-Cs-cycloalkyl and -O-Ci-C4-alkyl; preferably from halogen, Ci-C2-alkyl, Ci-C2-monohaloalkyl, Ci-C2-dihaloalkyl, C3-C4-cycloalkyl and -O-Ci-C2-alkyl; more preferably from Ci-C2-alkyl, Ci-C2-monohaloalkyl, Ci-C2-dihaloalkyl, C3-C4-cycloalkyl and -O-Ci-C2-alkyl; even more preferably from halogen, Ci-C2-alkyl, C2-Cs-alkenyl, CHF 2 , CFH 2 , -O-Ci-C2-alkyl and cyclopropyl; even more preferably from Ci-C2-alkyl, ethenyl, CHF2, CFH2, OCH3 and cyclopropyl; particularly preferred from methyl, ethenyl, CHF2 and CFH2; in particular methyl.

According to one embodiment, R 4 is selected from is selected from Ci-Ce-alkyl, C2-C4-alken- yl, -C(=O)-Ci-C2-alkyl, Ci-Ce-haloalkyl, C2-C4-haloalkenyl, -(Ci-C2-alkyl)-O-(Ci-C2-alkyl) and -CH2-cyclopropyl; more preferably from Ci-C4-alkyl, C2-C4-alkenyl, -C(=O)-Ci-C2-alkyl, Ci-C4-haloalkyl, C2-C4-haloalkenyl, -(Ci-C2-alkyl)-O-(Ci-C2-alkyl) and -CH2-cyclopropyl; even more preferably from Ci-C4-alkyl and Ci-C4-haloalkyl, particularly preferably from methyl and Ci-haloalkyl; in particular methyl.

According to a further embodiment, n is 1 , 2, 3, 4 or 5; more preferably n is 1 , 2 or 3, even more preferably n is 1 or 2; in particular n is 1.

According to a further embodiment, n is 0, 1 , 2 or 3, more preferably 0, 1 or 2, in particular 0.

According to a further embodiment, n is 2 and the two substituents R a are preferably in positions 2,3 (meaning one substituent in position 2, the other in position 3); 2,4; 2,5; 3,4 or 3,5; even more preferably in positions 2,3 or 2,4.

According to a further embodiment, n is 3 and the two substituents R a are preferably in positions 2, 3 and 4.

According to a further embodiment, R a is selected from CN, Ci-C4-alkyl, C2-C4-alkenyl, C2-C4-alkynyl, -O-Ci-C4-alkyl, -C(=O)-Ci-C4-alkyl,-C(=N-O-Ci-C4-alkyl)-Ci-C4-alkyl, -O-CH 2 -(=N-O-Ci-C 4 -alkyl)-Ci-C 4 -alkyl, -C(=N-O-Ci-C 4 -alkyl)-C(=O-NH-Ci-C 4 -alkyl), C 3 -C 6 -cy- cloalkyl, Cs-Ce-cycloalkenyl, -Ci-C2-alkyl-C3-Ce-cycloalkyl, -O-Cs-Ce-cycloalkyl, phenyl, 3- to 5-membered heterocycloalkyl, 3- to 5-membered heterocycloalkenyl and 5- or 6-membered heteroaryl, wherein said heterocycloalkyl, hetercycloalkenyl and heteroaryl besides carbon atoms contain 1 , 2 or 3 heteroatoms selected from N, O and S, wherein said phenyl, heterocycloalkyl, hetercycloalkenyl and heteroaryl are bound directly or via an oxygen atom or via a Ci-C2-alkylene linker, and wherein the aliphatic and cyclic moieties of R a are unsubstituted or carry 1 , 2, or 3 of identical or different groups R b which independently of one another are selected from halogen, CN, NH 2 , NO2, Ci-C2-alkyl and Ci-C2-haloalkyl.

More preferably, R a is selected from CN, Ci-C4-alkyl, C2-C4-alkenyl, C2-C4-alkynyl, -O-Ci-C 4 -alkyl, -C(=O)-Ci-C 2 -alkyl,-C(=N-O-Ci-C 2 -alkyl)-Ci-C 2 -alkyl, -O-CH 2 -C(=N-O-Ci-C 2 -al- kyl)-Ci-C2-alkyl, -C(=N-O-Ci-C2-alkyl)-C(=O-NH-Ci-C2-alkyl), C3-C4-cycloalkyl, Cs-C4-cyclo- alkenyl, -Ci-C2-alkyl-C3-C4-cycloalkyl, -O-C3-C4-cycloalkyl, phenyl, 3- to 5-membered heterocycloalkyl and 5- or 6-membered heteroaryl, wherein said heterocycloalkyl and heterocycloalkyl and heteroaryl besides carbon atoms contain 1 or 2 heteroatoms selected from N, O and S, wherein said phenyl, heterocycloalkyl and heteroaryl are bound directly or via an oxygen atom or via a methylene linker, and wherein the aliphatic or cyclic moieties of R a are unsubstituted or carry 1 , 2, or 3 of identical or different groups R b which independently of one another are selected from halogen, CN, Ci-C2-alkyl and Ci-C2-haloalkyl.

Even more preferably R a is selected from Ci-Cs-alkyl, C2-Cs-alkenyl, C2-Cs-alkynyl, -O-Ci-Cs-alkyl, -C(=O)-Ci-C2-alkyl,-C(=N-O-Ci-C2-alkyl)-Ci-C2-alkyl, C3-C4-cycloalkyl, -Ci-C2-alkyl-C3-C4-cycloalkyl, -O-C3-C4-cycloalkyl, phenyl, 3- to 5-membered heterocycloalkyl and 5- or 6-membered heteroaryl, wherein said heterocycloalkyl and heteroaryl besides carbon atoms contain 1 or 2 heteroatoms selected from N, O and S, wherein said phenyl and heteroaryl are bound directly or via an oxygen atom or via a methylene linker, and wherein the aliphatic and cyclic moieties of R a are unsubstituted or carry 1 , 2 or 3 of identical or different groups R b which independently of one another are selected from halogen, CN, methyl and Ci-haloalkyl.

Particularly preferred R a are selected from halogen, Ci-C4-alkyl, C2-Cs-alkenyl, C2-Cs-alkyn- yl, -O-Ci-C4-alkyl, -C(=N-O-Ci-C2-alkyl)-Ci-C2-alkyl and phenyl, wherein the aliphatic or cyclic moieties of R a are unsubstituted or carry 1 , 2 or 3 of identical or different groups R b which independently of one another are selected from halogen, CN, methyl and Ci-haloalkyl.

According to a further embodiment, R 5 , R 6 are independently of each other preferably selected from the group consisting of H, Ci-C4-alkyl, Ci-C4-haloalkyl and C2-C4-alkynyl, more preferably from H and Ci-C4-alkyl.

According to a further preferred embodiment, the present invention relates to the use of compounds of formula I wherein: R 1 is selected from O and NH; and

R 2 is selected from CH and N, provided that R 2 is N in case R 1 is NH;

R 3 is selected from halogen, Ci-C4-alkyl, C2-C4-alkenyl, Ci-C2-monohaloalkyl, Ci-C2-dihalo- alkyl, C3-C4-cycloalkyl and -O-Ci-C4-alkyl;

R 4 is selected from Ci-C4-alkyl, Ci-C4-haloalkyl, -C(=O)-Ci-C4-alkyl, -(Ci-C2-alkyl)-O-(Ci-C2-alkyl) and -CH 2 -cyclopropyl;

R a is selected from halogen, CN, -NR 5 R 6 , Ci-C4-alkyl, C2-C4-alkenyl, C2-C4-alkynyl, -O-Ci-C 4 -alkyl, -C(=N-O-Ci-C 4 -alkyl)-Ci-C 4 -alkyl, -C(=O)-Ci-C 4 -alkyl, -O-CH2-C(=N-O-Ci-C4-alkyl)-Ci-C4-alkyl, Cs-Ce-cycloalkyl, Cs-Ce-cycloalkenyl, -C1-C2- alkyl-Cs-Ce-cycloalkyl, -O-Cs-Ce-cycloalkyl, phenyl, 3- to 6-membered heterocycloalkyl, 3- to 6-membered heterocycloalkenyl and 5- or 6-membered heteroaryl, wherein said heterocycloalkyl, heterocycloalkenyl and heteroaryl besides carbon atoms contain 1 , 2 or 3 heteroatoms selected from N, O and S, wherein said phenyl, heterocycloalkyl, heterocycloalkenyl and heteroaryl are bound directly or via an oxygen atom or via a Ci-C2-alkylene linker, and wherein the aliphatic and cyclic moieties of R a are unsubstituted or carry 1 , 2, 3, 4 or up to the maximum number of identical or different groups R b :

R b is selected from halogen, CN, NH 2 , NO2, Ci-C4-alkyl, Ci-C4-haloalkyl, -O-Ci-C4-alkyl and -O-Ci-C4-haloalkyl;

R 5 , R 6 are independently of each other selected from the group consisting of H, Ci-Ce-alkyl and C2-C4-alkynyl; n is an integer selected from 0, 1, 2 and 3; and in form or stereoisomers and tautomers thereof, and the N-oxides and the agriculturally acceptable salts thereof, for combating phytopathogenic fungi containing an amino acid substitution F129L in the mitochondrial cytochrome b protein conferring resistance to Qo inhibitors.

Certain strobilurin type compounds of formula I have been described in EP 370629 and WO 1998/23156. However, it is not mentioned that these compounds inhibit fungal pathogens containing a F129L substitution in the mitochondrial cytochrome b protein conferring resistance to Qo inhibitors.

The compounds according to the present invention differ from those described in the abovementioned publications that R 3 is an aliphatic or cyclic substituent and R a is a specific substituent as defined herein.

Therefore, according to a second aspect, the invention provides novel compounds of formula I which are represented by formula I wherein R 1 is selected from O and NH;

R 2 is selected from CH and N;

R 3 is selected from Ci-C4-alkyl, C2-C4-alkenyl, Ci-C2-monohaloalkyl, Ci-C2-dihaloalkyl, monohalo-ethenyl, dihalo-ethenyl, Cs-Ce-cycloalkyl and -O-Ci-C4-alkyl;

R 4 is selected from Ci-Ce-alkyl, C2-C4-alkenyl, C2-C4-alkynyl, Ci-Ce-haloalkyl, C2-C4-halo- alkenyl, C2-C4-haloalkynyl, -C(=O)-Ci-C4-alkyl, -(Ci-C2-alkyl)-O-(Ci-C2-alkyl), -(Ci-C2-al- kyl)-O-(Ci-C2-haloalkyl) and -Ci-C4-alkyl-Cs-Ce-cycloalkyl;

R a is selected from halogen, Ci-C4-haloalkyl, C2-C4-haloalkenyl, C2-C4-haloalkynyl, Cs-Ce- cycloalkyl, Cs-Ce-cycloalkenyl, -Ci-C2-alkyl-C3-Ce-cycloalkyl, phenyl, 3- to 6-membered heterocycloalkyl, 3- to 6-membered heterocycloalkenyl and 5- or 6-membered heteroaryl, wherein said heterocycloalkyl, heterocycloalkenyl and heteroaryl besides carbon atoms contain 1 , 2 or 3 heteroatoms selected from N, O and S, wherein said phenyl, heterocycloalkyl, heterocycloalkenyl and heteroaryl are bound directly or via an oxygen atom or via a Ci-C2-alkylene linker, and wherein the cyclic moieties of R a carry 1 , 2 or 3 substituents selected from halogen and Ci-C4-haloalkyl, and wherein the aliphatic and cyclic moieties of R a further carry 0, 1 , 2 or up to the maximum number of identical or different groups R b :

R b is selected from CN, NH2, NO2, Ci-C4-alkyl and -O-Ci-C4-alkyl; n is an integer selected from 0, 1 , 2, 3, 4 and 5; and in form or stereoisomers and tautomers thereof, and the N-oxides and the agriculturally acceptable salts thereof.

One embodiment of the invention relates to preferred compounds I, wherein R 1 is selected from O and NH; and R 2 is selected from CH and N, provided that R 2 is N in case R 1 is NH. More preferably R 1 is NH. In particular, R 1 is NH and R 2 is N.

According to another embodiment, R 3 is selected from halogen, Ci-C4-alkyl, C2-Cs-alkenyl, Ci-C2-monohaloalkyl, Ci-C2-dihaloalkyl, monohalo-ethenyl, dihalo-ethenyl, Cs-Ce-cycloalkyl and -O-Ci-C4-alkyl; preferably from halogen, Ci-C2-alkyl, Ci-C2-monohaloalkyl, Ci-C2-dihaloalkyl, Cs-C4-cycloalkyl and -O-Ci-C2-alkyl; preferably selected from Ci-C4-alkyl, C2-Cs-alkenyl, monohalo-methyl, dihalo-methyl, Cs-C4-cycloalkyl and -O-Ci-C4-alkyl; further more preferably selected from Ci-C2-alkyl, CHF2, CFH2, cyclopropyl and OCH3; particularly preferred from methyl, CHF2 and CFH2; in particular R 3 is methyl.

According to a further embodiment, R 4 is selected from is selected from Ci-C4-alkyl, C2-C4-alkenyl, -C(=O)-Ci-C2-alkyl, Ci-C4-haloalkyl, C2-C4-haloalkenyl, -(Ci-C2-alkyl)-O- (Ci-C2-alkyl) and -CH2-cyclopropyl; more preferably from Ci-C4-alkyl, and Ci-C4-haloalkyl, even more preferably from methyl and Ci-haloalkyl; in particular methyl.

According to a further embodiment, n is 1 , 2, 3, 4 or 5; more preferably n is 1 , 2 or 3, even more preferably n is 1 or 2; in particular n is 1.

According to a further embodiment, n is 0, 1 , 2 or 3, more preferably 0, 1 or 2, in particular 0.

According to a further embodiment, n is 2 and the two substituents R a are preferably in positions 2,3 (meaning one substituent in position 2, the other in position 3); 2,4; 2,5; 3,4 or 3,5; even more preferably in positions 2,3 or 2,4.

According to a further embodiment, n is 3 and the three substituents R a are preferably in positions 2, 3 and 4.

According to a further embodiment, R a is selected from halogen, Ci-C4-haloalkyl, C2-C4-halo- alkenyl, C2-C4-haloalkynyl, C3-C4-cycloalkyl, -Ci-C2-alkyl-C3-C4-cycloalkyl, phenyl, 3- to 5-mem- bered heterocycloalkyl and 5- or 6-membered heteroaryl, wherein said heterocycoalkyl and heteroaryl besides carbon atoms contain 1 , 2 or 3 heteroatoms selected from N, O and S, wherein said phenyl, heterocycloalkyl and heteroaryl are bound directly or via a Ci-C2-alkylene linker, and wherein the cyclic moieties of R a carry 1 , 2 or 3 substituents selected from halogen and Ci-C4-haloalkyl.

Preferably, R a is selected from halogen, Ci-C4-haloalkyl, C2-C4-haloalkenyl, C2-C4-halo- alkynyl, C3-C4-cycloalkyl, -CH2-C3-C4-cycloalkyl, phenyl, 3- to 4-membered heterocycloalkyl and 5- or 6-membered heteroaryl, wherein said heterocycloalkyl and heteroaryl besides carbon atoms contain 1 or 2 heteroatoms selected from N, O and S, wherein said phenyl, heterocycloalkyl and heteroaryl are bound directly or via a Ci-C2-alkylene linker, and wherein the cyclic moieties of R a carry 1 , 2 or 3 substituents selected from halogen and Ci-C2-haloalkyl.

More preferably, R a is selected from halogen, Ci-C2-haloalkyl, C2-C4-haloalkenyl, phenyl and 5-membered heteroaryl, wherein said heteroaryl besides carbon atoms contain 1 or 2 heteroatoms selected from N, O and S, wherein said phenyl and heteroaryl are bound directly or via a Ci-C2-alkylene linker, and wherein the cyclic moieties of R a carry 1 , 2 or 3 substituents selected from halogen and Ci-C2-haloalkyl.

Even more preferably, R a is selected from F, Cl, Br and Ci-haloalkyl.

According to the abovementioned embodiments for R a , the abovementioned heterocycloalkyl is more preferably a 4-membered heterocycloalkyl, wherein said heterocycloalkyl besides carbon atoms contains 1 heteroatom selected from N, O and S, preferably N.

According to the abovementioned embodiments for R a , the abovementioned heteroaryl is more preferably a 5-membered heteroaryl, wherein said heteroaryl besides carbon atoms contains 1 or 2 heteroatoms selected from N, O and S, preferably from N and O.

According to the abovementioned embodiments for R a , the aliphatic and cyclic moieties of R a further carry 0, 1 , 2 or up to the maximum number of identical or different groups R b selected from CN, NH2, NO2, Ci-C4-alkyl and -O-Ci-C4-alkyl; more preferably only the cyclic moieties of R a further carry 0, 1 , 2 or up to the maximum number of identical or different groups R b selected from CN, NH 2 , NO2, Ci-C4-alkyl and -O-Ci-C4-alkyl; even more preferably only the phenyl moiety of R a further carries 0, 1 , 2, 3, 4 or 5 identical or different groups R b selected from CN, Ci-C4-alkyl and -O-Ci-C4-alkyl; in particular said phenyl further carries 0, 1 , 2 or 3 identical or different groups R b selected from CN, Ci-C4-alkyl and -O-Ci-C4-alkyl.

According to a further preferred embodiment, the present invention relates to compounds of formula I wherein:

R 1 is selected from O and NH; and

R 2 is selected from CH and N, provided that R 2 is N in case R 1 is NH;

R 3 is selected from halogen, Ci-C4-alkyl, C2-C4-alkenyl, Ci-C2-monohaloalkyl, Ci-C2-dihalo- alkyl, monohalo-ethenyl, dihalo-ethenyl, C3-C4-cycloalkyl and -O-Ci-C4-alkyl;

R 4 is selected from Ci-C4-alkyl, Ci-C4-haloalkyl, -C(=O)-Ci-C4-alkyl, -(Ci-C2-alkyl)-O-(Ci-C2-alkyl) and -CH2-cyclopropyl;

R a is selected from halogen, Ci-C4-haloalkyl, C2-C4-haloalkenyl, phenyl, 3- to 5-membered heterocycloalkyl and 5-membered heteroaryl, wherein said heterocycloalkyl and heteroaryl besides carbon atoms contains 1 or 2 heteroatoms selected from N, O and S, wherein said phenyl, heterocycloalkyl and heteroaryl are bound directly or via a Ci-C2-al- kylene linker, and wherein the cyclic moieties of R a carry 1 or 2 substituents selected from halogen and Ci-C2-haloalkyl, and wherein the cyclic moieties of R a further carry 0, 1 , 2 or up to the maximum number of identical or different groups R b selected from CN, NH2, NO2, Ci-C4-alkyl and -O-C C4-al- kyl; n is an integer selected from 0, 1 , 2 and 3; and in form or stereoisomers and tautomers thereof, and the N-oxides and the agriculturally acceptable salts thereof.

According to a further embodiment, R 1 is O and R 2 is N, n is 0 or 1 and R 3 is CH3, which compounds are of formula 1.1 :

According to a further embodiment, R 1 is O and R 2 is CH, n is 0 or 1 and R 3 is CH3, which compounds are of formula 1.2:

According to a further embodiment, R 1 is NH and R 2 is N, n is 0 or 1 and R 3 is CH 3 , which compounds are of formula 1.3:

Preferably, R 3 of compounds I is one of the following radicals 3-1 to 3-6:

Even more preferably R 3 is CH3, OCH3, CHF2 or C3H5, in particular CH3. Particularly preferred embodiments of the invention relate to compounds I, wherein the R 4 is one of the following radicals 4-1 to 4-8: Particularly preferred embodiments of the invention relate to compounds I, wherein the R a is selected of one of the following radicals a-1 to a-46:

According to a further embodiment, n is 1. More preferably, R a is in ortho-position (2-R a ), which compounds are of formula I .A: wherein even more preferably R 1 is O and R 2 is N. According to a further embodiment, R a is in meta-position (3-R a ), which compounds are of formula I.B: wherein even more preferably R 1 is O and R 2 is N.

According to a further embodiment, n is 2. More preferably, n is 2 and the two R a substituents are both in meta -position (3,5-R a ), which compounds are of formula I.C: wherein even more preferably R 2 is N. According to a further embodiment, n is 2 and the two R a substituents are both in ortho-position (2,6-R a ), which compounds are of formula I.D: wherein even more preferably R 2 is N. According to a further embodiment, n is 2 and the two R a substituents are in ortho- and meta-position, which compounds are of formula I.E: wherein even more preferably R 2 is N. According to a further embodiment, n is 2 and the two R a substituents are in ortho- and para-position, which compounds are of formula I.F: wherein even more preferably R 2 is N.

In an embodiment, compounds I are of formula 1.3 and (R a ) n and R 4 are as per any row of per Table A below, which compounds are named I.3-A-1 to I.3-A-816.

In another embodiment, compounds I are of formula 1.2 and (R a ) n and R 4 are as per any row of Table A below, which compounds are named I.2-A-1 to I.2-A-816.

In an embodiment, compounds I are of formula 1.1 and (R a ) n and R 4 are as per any row of Table A below, which compounds are named I.1-A-1 to 1.1-A-816.

Table A: means n =0, otherwise n =1.

Synthesis

The compounds can be obtained by various routes in analogy to prior art processes known (e.g EP 463488) and, advantageously, by the synthesis shown in the following schemes 1 to 4 and in the experimental part of this application.

A suitable method to prepare compounds I is illustrated in Scheme 1 .

Scheme 1 :

It starts with the conversion of a ketone to the corresponding oxime using hydxroxylamine hydrochloride and a base such as pyridine, sodium hydroxide or sodium acetate in polar solvents such as methanol, methanol-water mixture, or ethanol at reaction temperatures of 60 to 100 °C, preferably at about 65 °C. In cases where a E/Z mixture was obtained, the isomers could be separated by purifycation techniques known in art (e.g. column chromatography, crystallization, distillation etc.). Then, coupling with the intermediate IV, wherein X is a leaving group such as halogen, toluene- and methanesulfonates, preferably X is Cl or Br, is carried out under basic conditions using e.g. sodium hydride, cesium carbonate or potassium carbonate as a base and using an organic solvent such as dimethyl formamide (DMF) or acetonitrile, preferably cesium carbonate as base and acetonitrile as solvent at room temperature (RT) of about 24 °C . The ester compound I wherein R 1 is O can be converted to the amide of formula I wherein R 1 is NH by reaction with methyl amine (preferably 40% aq. solution) using tetrahydrofuran (THF) as solvent at RT.

Another general method to prepare the compounds I is depicted in Scheme 2.

Intermediate IV is reacted with /V-hydroxysuccimide VI, using a base such as triethylamine in DMF. The reaction temperature is usually 50 to 70 °C preferably about 70 °C. Conversion to the correspondding O-benzyl hydroxyl amine, intermediate VIII, was achieved through removal of the phthalimide group, preferably using hydrazine hydrate in methanol as solvent at 25 °C. Alternatively, removal of the phthalimide group using methyl amine in methanol as solvent at 25 °C can provide intermediate IX. Intermediate VIII and intermediate IX, respectively can be condensed with ketones using acetic acid or pyridine in methanol as solvent at temperature of 50 to 65 °C. Alternatively, the condensation could also carried out with titanium (IV) ethoxide (Ti(OEt)4) using THF as solvent at about 70 °C. The desired product is usually accompanied by an undesired isomer, which can be removed e.g by column chromatography, crystallization.

A general method for preparation of intermediate IV is shown in Scheme 3. Scheme 3:

Compound XI could be obtained from X by lithium-halogen exchange or by generating Grignard reagent and further reaction with dimethyl oxalate or chloromethyl oxalate in presence of a solvent. The preferred solvent is THF, 2-methyl-THF and the temperature can be between -70 to -78 °C. Conversion of intermediate XI to intermediate XII can be achieved using N-methylhydro- xylamine hydrochloride and a base such as pyridine or sodium acetate in polar solvents such as methanol. The reaction temperature is preferably about 65 °C. An EIZ mixture is usually obtained, the isomers can be separated by purification techniques known in art (e.g. column chromatography, crystallization). Bromination of intermediate XII provides the desired intermediate compounds IV, wherein R 1 is O and R 2 = N. This reaction of intermediate XII with N-bromo- succinimide in solvents such as carbon tetrachloride, chlorobenzene, acetonitrile, using radical initiators such as 1,1'-azobis (cyclohexanecarbonitrile) or azobisisobutyronitrile and is carried out at temperatures of 70 to 100 °C. The preferred radical initiator is 1,1'-azobis (cyclohexanecarbonitrile), preferred solvent chlorobenzene and preferred temperature 80 °C. The synthesis of compounds containing different substituents R 3 follows similar sequence as in Scheme 3, wherein R 3 is bromo. Coupling of intermediate III with intermediate IV, wherein R 3 is bromo, provides compounds I as described above. Using standard chemical reactions, such as Suzuki or Stille reaction, the bromo group can be converted e.g. to other R 3 substituents such as cycloalkyl, alkoxy and alkenyl. Additional transformations e.g. of ethenyl provide compounds I with other R 3 substituents such as ethyl, CN and haloalkyl.

Most of the ketones of general formula II were commercially available, however for the ones which were not commercially available, preparation of these was carried out in house using methods known in prior art. Scheme 4 depicts various methods known in literature for the syn- thesis of these ketones.

Scheme 4:

The ketone II can be obtained from the corresponding halogen bearing precursors XIV, wherein X is preferably bromine or iodine. Lithium-halogen exchange (J Org Chem, 1998, 63 (21), 7399- 7407) in compound XIII using n-butyllithium or synthesis of the corresponding Grignard reagent (Nature Comm, 2017, 8(1), 1-7) using THF as solvent, and subsequent reaction with N-meth- oxy-N-methylacetamide at about -70 to -78 °C can provide the ketone II. Alternatively, the coupling reaction of compound XIV and tributyl(1-ethoxyvinyl)stannane in presence of a transition metal catalyst, preferably palladium, with suitable ligands in a solvent such as dioxane and at a reaction temperature of about 100 °C, followed by treatment with 1 N HCI can provide ketone II (Org Lett, 2016, 18(7), 1630-1633, WO 2018/115380). Reaction of XIV with 1 ,4-butanediol vinyl ether in the presence of transition metal catalyst, preferably palladium with suitable ligands and solvent such as 1 ,2-propane diol and base such as sodium carbonate and reaction temperature of about 120 °C followed by treatment with 1 N HCI can provide ketone II (Chem A Eur J, 2008, 14(18), 5555-5566). Another method uses acid compounds XV, which can be converted to the corresponding Weinreb amide or carboxylic ester XVII and subsequent reaction with methylmagnesium bromide (MeMgBr) in solvent such as THF and temperatures of -78 to 0 °C, preferably 0 °C, to provide ketone II. Another method uses the reaction of nitrile XVI with MeMgBr which is carried out in solvent such as THF or toluene, preferably THF, and reaction temperature is 25 to 60 °C, preferably 60 °C, followed by treatment with 1 N HCI (Eur J Med Chem, 2015, 102, 582-593).

The compounds I and the compositions thereof, respectively, are suitable as fungicides effective against a broad spectrum of phytopathogenic fungi, including soil-borne fungi, in particular from the classes of Plasmodiophoromycetes, Peronosporomycetes (syn. Oomycetes), Chytridiomycetes, Zygomycetes, Ascomycetes, Basidiomycetes, and Deuteromycetes (syn. Fungi imperfecti). They can be used in crop protection as foliar fungicides, fungicides for seed dressing, and soil fungicides.

The compounds I and the compositions thereof are preferably useful in the control of phytopathogenic fungi on various cultivated plants, such as cereals, e.g. wheat, rye, barley, triticale, oats, or rice; beet, e.g. sugar beet or fodder beet; fruits, e.g. pomes (apples, pears, etc.), stone fruits (e.g. plums, peaches, almonds, cherries), or soft fruits, also called berries (strawberries, raspberries, blackberries, gooseberries, etc.); leguminous plants, e.g. lentils, peas, alfalfa, or soybeans; oil plants, e.g. oilseed rape, mustard, olives, sunflowers, coconut, cocoa beans, castor oil plants, oil palms, ground nuts, or soybeans; cucurbits, e.g. squashes, cucumber, or melons; fiber plants, e.g. cotton, flax, hemp, or jute; citrus fruits, e.g. oranges, lemons, grapefruits, or mandarins; vegetables, e.g. spinach, lettuce, asparagus, cabbages, carrots, onions, tomatoes, potatoes, cucurbits, or paprika; lauraceous plants, e.g. avocados, cinnamon, or camphor; energy and raw material plants, e.g. corn, soybean, oilseed rape, sugar cane, or oil palm; corn; tobacco; nuts; coffee; tea; bananas; vines (table grapes and grape juice grape vines); hop; turf; sweet leaf (also called Stevia); natural rubber plants; or ornamental and forestry plants, e.g. flowers, shrubs, broad-leaved trees, or evergreens (conifers, eucalypts, etc.); on the plant propagation material, such as seeds; and on the crop material of these plants.

More preferably, compounds I and compositions thereof, respectively are used for controlling fungi on field crops, such as potatoes, sugar beets, tobacco, wheat, rye, barley, oats, rice, corn, cotton, soybeans, oilseed rape, legumes, sunflowers, coffee or sugar cane; fruits; vines; ornamentals; or vegetables, such as cucumbers, tomatoes, beans or squashes.

The term "plant propagation material" is to be understood to denote all the generative parts of the plant, such as seeds; and vegetative plant materials, such as cuttings and tubers (e.g. potatoes), which can be used for the multiplication of the plant. This includes seeds, roots, fruits, tubers, bulbs, rhizomes, shoots, sprouts and other parts of plants; including seedlings and young plants to be transplanted after germination or after emergence from soil.

Preferably, treatment of plant propagation materials with compounds I and compositions thereof, respectively, is used for controlling fungi on cereals, such as wheat, rye, barley and oats; rice, corn, cotton and soybeans.

According to the invention all of the above cultivated plants are understood to comprise all species, subspecies, variants, varieties and/or hybrids which belong to the respective cultivated plants, including but not limited to winter and spring varieties, in particular in cereals such as wheat and barley, as well as oilseed rape, e.g. winter wheat, spring wheat, winter barley etc, further including dwarf, semi-dwarf and full-dwarf varieties and/or hybrids with reduced height and thicker and shorter stems, e.g. short stature corn (also called ‘smart corn’), semi-dwarf wheat and dwarf rice.

Corn is also known as Indian corn or maize (Zea mays) which comprises all kinds of corn such as field corn and sweet corn. According to the invention all maize or corn subspecies and/or varieties are comprised, in particular flour corn (Zea mays var. amylacea), popcorn (Zea mays var. evert a), dent corn (Zea mays var. indentata), flint corn (Zea mays var. indurata), sweet corn (Zea mays var. saccharata and var. rugosa), waxy corn (Zea mays var. ceratina), amylomaize (high amylose Zea mays varieties), pod corn or wild maize (Zea mays var. tunicata) and striped maize (Zea mays var. japonica).

Most soybean cultivars are classifiable into indeterminate and determinate growth habit, whereas Glycine soja, the wild progenitor of soybean, is indeterminate (PNAS 2010, 107 (19) 8563-8568). The indeterminate growth habit (Maturity Group, MG 00 to MG 4.9) is characterized by a continuation of vegetative growth after flowering begins whereas determinate soybean varieties (MG 5 to MG 8) characteristically have finished most of their vegetative growth when flowering begins. According to the invention all soybean cultivars or varieties are comprised, in particular indeterminate and determinate cultivars or varieties.

The term "cultivated plants" is to be understood as including plants which have been modified by mutagenesis or genetic engineering to provide a new trait to a plant or to modify an already present trait. Mutagenesis includes random mutagenesis using X-rays or mutagenic chemicals, but also targeted mutagenesis to create mutations at a specific locus of a plant genome. Targeted mutagenesis frequently uses oligonucleotides or proteins like CRISPR/Cas, zinc-finger nucleases, TALENs or meganucleases. Genetic engineering usually uses recombinant DNA techniques to create modifications in a plant genome which under natural circumstances cannot readily be obtained by cross breeding, mutagenesis or natural recombination. Typically, one or more genes are integrated into the genome of a plant to add a trait or improve or modify a trait. These integrated genes are also referred to as transgenes, while plant comprising such transgenes are referred to as transgenic plants. The process of plant transformation usually produces several transformation events, wich differ in the genomic locus in which a transgene has been integrated. Plants comprising a specific transgene on a specific genomic locus are usually described as comprising a specific “event”, which is referred to by a specific event name. Traits which have been introduced in plants or have been modified include herbicide tolerance, insect resistance, increased yield and tolerance to abiotic conditions, like drought. Herbicide tolerance has been created by using mutagenesis and genetic engineering. Plants which have been rendered tolerant to acetolactate synthase (ALS) inhibitor herbicides by mutagenesis and breeding are e.g. available under the name Clearfield®. Herbicide tolerance to glyphosate, glufosinate, 2,4-D, dicamba, oxynil herbicides, like bromoxynil and ioxynil, sulfonylurea herbicides, ALS inhibitors and 4-hydroxyphenyl pyruvate dioxygenase (HPPD) inhibitors, like isoxaflutole and mesotrione, has been created via the use of transgenes.

Transgenes to provide herbicide tolerance traits comprise: for tolerance to glyphosate: cp4 epsps, epsps grg23ace5, mepsps, 2mepsps, gat4601, gat4621 , goxv247; for tolerance to glufosinate: pat and bar, for tolerance to 2,4-D: aad-1, aad-12; for tolerance to dicamba: dmo; for tolerance to oxynil herbicies: bxn; for tolerance to sulfonylurea herbicides: zm-hra, csr1-2, gm-hra, S4-HrA; for tolerance to ALS inhibitors: csr1-2; and for tolerance to HPPD inhibitors: hppdPF, W336, avhppd-03.

Transgenic corn events comprising herbicide tolerance genes include, but are not limited to, DAS40278, MON801 , MON802, MON809, MON810, MON832, MON87411 , MON87419, MON87427, MON88017, MON89034, NK603, GA21, MZHG0JG, HCEM485, VCO-01981-5, 676, 678, 680, 33121, 4114, 59122, 98140, Bt10, Bt176, CBH-351, DBT418, DLL25, MS3, MS6, MZIR098, T25, TC1507 and TC6275. Transgenic soybean events comprising herbicide tolerance genes include, but are not limited to, GTS 40-3-2, MON87705, MON87708, MON87712, MON87769, MON89788, A2704-12, A2704-21, A5547-127, A5547-35, DP356043, DAS44406-6, DAS68416-4, DAS-81419-2, GU262, SYHT0H2, W62, W98, FG72 and CV127. Transgenic cotton events comprising herbicide tolerance genes include, but are not limited to, 19-51a, 31707, 42317, 81910, 281-24-236, 3006-210-23, BXN10211, BXN10215, BXN10222, BXN10224, MON1445, MON1698, MON88701, MON88913, GHB119, GHB614, LLCotton25, T303-3 and T304-40. Transgenic canola events comprising herbicide tolerance genes are for example, but not excluding others, MON88302, HCR-1 , HCN10, HCN28, HCN92, MS1 , MS8, PHY14, PHY23, PHY35, PHY36, RF1 , RF2 and RF3.

Transgenes to provide insect resistance preferably are toxin genes of Bacillus spp. and synthetic variants thereof, like cry1A, crylAb, cry1Ab-Ac, crylAc, cry1A.1O5, cry1 F, cry1 Fa2, cry2Ab2, cry2Ae, mcry3A, ecry3.1Ab, cry3Bb1 , cry34Ab1 , cry35Ab1 , cry9C, vip3A(a), vip3Aa20. In addition, transgenes of plant origin, such as genes coding for protease inhibitors, like CpTI and pinll, can be used. A further approach uses transgenes such as dvsnf7 to produce double-stranded RNA in plants.

Transgenic corn events comprising genes for insecticidal proteins or double stranded RNA include, but are not limited to, Bt10, Bt11 , Bt176, MON801 , MON802, MON809, MON810, MON863, MON87411, MON88017, MON89034, 33121, 4114, 5307, 59122, TC1507, TC6275, CBH-351 , MIR162, DBT418 and MZIR098. Transgenic soybean events comprising genes for insecticidal proteins include, but are not limited to, MON87701 , MON87751 and DAS-81419. Transgenic cotton events comprising genes for insecticidal proteins include, but are not limited to, SGK321, MON531, MON757, MON1076, MON15985, 31707, 31803, 31807, 31808, 42317, BNLA-601 , Eventl, COT67B, COT102, T303-3, T304-40, GFM Cry1A, GK12, MLS 9124, 281- 24-236, 3006-210-23, GHB119 and SGK321.

Cultivated plants with increased yield have been created by using the transgene athb17 (e.g. corn event MON87403), or bbx32 (e.g. soybean event MON87712).

Cultivated plants comprising a modified oil content have been created by using the transgenes: gm-fad2-1, Pj.D6D, Nc.Fad3, fad2-1A and fatb1-A (e.g. soybean events 260-05, MON87705 and MON87769).

Tolerance to abiotic conditions, such as drought, has been created by using the transgene cspB (corn event MON87460) and Hahb-4 (soybean event IND-00410-5).

Traits are frequently combined by combining genes in a transformation event or by combining different events during the breeding process resulting in a cultivated plant with stacked traits. Preferred combinations of traits are combinations of herbicide tolerance traits to different groups of herbicides, combinations of insect tolerance to different kind of insects, in particular tolerance to lepidopteran and coleopteran insects, combinations of herbicide tolerance with one or several types of insect resistance, combinations of herbicide tolerance with increased yield as well as combinations of herbicide tolerance and tolerance to abiotic conditions.

Plants comprising singular or stacked traits as well as the genes and events providing these traits are well known in the art. For example, detailed information as to the mutagenized or integrated genes and the respective events are available from websites of the organizations “International Service for the Acquisition of Agri-biotech Applications (ISAAA)” (http://www.isaaa.org/gmapprovaldatabase) and the “Center for Environmental Risk Assessment (CERA)” (http://cera-gmc.org/GMCropDatabase). Further information on specific events and methods to detect them can be found for canola events MS1, MS8, RF3, GT73, MON88302, KK179 in WG01/031042, WG01/041558, WG01/041558, WG02/036831, WO1 1/153186, WO13/003558; for cotton events MON 1445, MON 15985, MON531 (MON15985), LLCotton25, MON88913, COT102, 281-24-236, 3006-210-23, COT67B, GHB614, T304-40, GHB119, MON88701 , 81910 in WO02/034946, W002/100163, W002/100163, W003/013224, WO04/072235, WO04/039986, WO05/103266, WO05/103266, WO06/128573, W007/017186, W008/122406, W008/151780, WO12/134808, WO13/112527; for corn events GA21, MON810, DLL25, TC1507, MON863, MIR604, LY038, MON88017, 3272, 59122, NK603, MIR162, MON89034, 98140, 32138, MON87460, 5307, 4114, MON87427, DAS40278, MON87411, 33121 , MON87403, MON87419 in W098/044140, US02/102582, US03/126634, WO04/099447, W004/011601, W005/103301, W005/061720, W005/059103, WO06/098952, WO06/039376, US2007/292854, WO07/142840, WO07/140256, WO08/112019, W009/103049, WO09/111263, W010/077816, WO11/084621, WO11/062904, WO11/022469, WO13/169923, WO14/116854, WO15/053998, WO15/142571; for potato events E12, F10, J3, J55, V11, X17, Y9 in WO14/178910, WO14/178913, WO14/178941, WO1 4/179276, WO16/183445, WO17/062831 , WO17/062825; for rice events LLRICE06, LLRICE601, LLRICE62 in WO00/026345, WO00/026356, WO00/026345; and for soybean events H7-1, MON89788, A2704-12, A5547-127, DP305423, DP356043, MON87701, MON87769, CV127, MON87705, DAS68416-4, MON87708, MON87712, SYHT0H2, DAS81419, DAS81419 X DAS44406-6, MON87751 in WO04/074492, W006/130436, WO06/108674, WO06/108675, WO08/054747, W008/002872, WO09/064652, WO09/102873, W010/080829, W010/037016, WO11/066384, WO11/034704, WO12/051199, WO12/082548, WO13/016527, WO13/016516, WO14/201235.

The use of compounds I and compositions thereof, respectively, on cultivated plants may result in effects which are specific to a cultivated plant comprising a certain transgene or event. These effects might involve changes in growth behavior or changed resistance to biotic or abiotic stress factors. Such effects may in particular comprise enhanced yield, enhanced resistance or tolerance to insects, nematodes, fungal, bacterial, mycoplasma, viral or viroid pathogens as well as early vigour, early or delayed ripening, cold or heat tolerance as well as changed amino acid or fatty acid spectrum or content.

The compounds I and compositions thereof, respectively, are particularly suitable for controlling the following causal agents of plant diseases:

Albugo spp. (white rust) on ornamentals, vegetables (e.g. A. Candida) and sunflowers (e.g. A. tragopogonis) Alternaria spp. (Alternaria leaf spot) on vegetables (e.g. A. dauci or A. porri), oilseed rape (A. brassicicola or brassicae), sugar beets (A. tenuis), fruits (e.g. A. grandis), rice, soybeans, potatoes and tomatoes (e.g. A. solani, A. grandis or A. alternata), tomatoes (e.g. A. solani or A. alternata) and wheat (e.g. A. triticina)', Aphanomyces spp. on sugar beets and vegetables; Ascochyta spp. on cereals and vegetables, e.g. A. tritici (anthracnose) on wheat and A. hordei on barley; Aureobasidium zeae (syn. Kapatiella zeae) on corn; Bipolaris and Drechslera spp. (teleomorph: Cochliobolus spp.), e.g. Southern leaf blight (D. maydis) or Northern leaf blight (8. zeicola) on corn, e.g. spot blotch (B. sorokiniana) on cereals and e.g. 8. oryzae on rice and turfs; Blumeria (formerly Erysiphe) graminis (powdery mildew) on cereals (e.g. on wheat or barley); Botrytis cinerea (teleomorph: Botryotinia fuckeliana'. grey mold) on fruits and berries (e.g. strawberries), vegetables (e.g. lettuce, carrots, celery and cabbages); 8. squamosa or 8. allii on onion family), oilseed rape, ornamentals (e.g. B eliptica), vines, forestry plants and wheat; Bremia lactucae (downy mildew) on lettuce; Ceratocystis (syn. Ophiostoma) spp. (rot or wilt) on broad-leaved trees and evergreens, e.g. C. ulmi (Dutch elm disease) on elms; Cercospora spp. (Cercospora leaf spots) on corn (e.g. Gray leaf spot: C. zeae-maydis) , rice, sugar beets (e.g. C. beticola), sugar cane, vegetables, coffee, soybeans (e.g. C. sojina or C. kikuchii) and rice; Cladobotryum (syn. Dactylium) spp. (e.g. C. mycophilum

(formerly Dactylium dendroides, teleomorph: Nectria albertinii, Nectria rosella syn. Hypomyces rosellus) on mushrooms; Cladosporium spp. on tomatoes (e.g. C. fulvunr. leaf mold) and cereals, e.g. C. herbarum (black ear) on wheat; Claviceps purpurea (ergot) on cereals; Cochliobolus (anamorph: Helminthosporium of Bipolaris) spp. (leaf spots) on corn (C. carbonum), cereals (e.g. C. sativus, anamorph: B. sorokiniana) and rice (e.g. C. miyabeanus, anamorph: H. oryzae), Colletotrichum (teleomorph: Glomerella) spp. (anthracnose) on cotton (e.g. C. gossypii), corn (e.g. C. graminicola: Anthracnose stalk rot), soft fruits, potatoes (e.g. C. coccodes’. black dot), beans (e.g. C. lindemuthianum), soybeans (e.g. C. truncatum or C. gloeosporioides), vegetables (e.g. C. lagenarium or C. capsici), fruits (e.g. C. acutatum), coffee (e.g. C. coffeanum or C. kahawae) and C. gloeosporioides on various crops; Corticium spp., e.g. C. sasakii (sheath blight) on rice; Corynespora cassiicola (leaf spots) on soybeans, cotton and ornamentals; Cycloconium spp., e.g. C. oleaginum on olive trees; Cylindrocarpon spp. (e.g. fruit tree canker or young vine decline, teleomorph: Nectria or Neonectria spp.) on fruit trees, vines (e.g. C. liriodendri, teleomorph: Neonectria liriodendrr. Black Foot Disease) and ornamentals; Dematophora (teleomorph: Rosellinia) necatrix (root and stem rot) on soybeans; Diaporthe spp., e.g. D. phaseolorum (damping off) on soybeans; Drechslera (syn. Helminthosporium, teleomorph: Pyrenophora) spp. on corn, cereals, such as barley (e.g. D. teres, net blotch) and wheat (e.g. D. tritici-repentis’. tan spot), rice and turf; Esca (dieback, apoplexy) on vines, caused by Formitiporia (syn. Phellinus) punctata, F. mediterranea, Phaeomoniella chlamydospora (formerly Phaeoacremonium chlamydosporum), Phaeoacremonium aleophilum and/or Botryosphaeria obtusa', Elsinoe spp. on pome fruits (E. pyri), soft fruits (E. veneta'. anthracnose) and vines (E. ampelina: anthracnose); Entyloma oryzae (leaf smut) on rice; Epicoccum spp. (black mold) on wheat; Erysiphe spp. (powdery mildew) on sugar beets (E. betae), vegetables (e.g. E. pisi), such as cucurbits (e.g. E. cichoracearum), cabbages, oilseed rape (e.g. E. cruciferarum Eutypa lata (Eutypa canker or dieback, anamorph: Cytosporina lata, syn. Libertella blepharis) on fruit trees, vines and ornamental woods; Exserohilum (syn. Helminthosporium) spp. on corn (e.g. E. turcicum Fusarium (teleomorph: Gibberella) spp. (wilt, root or stem rot) on various plants, such as F. graminearum or F. culmorum (root rot, scab or head blight) on cereals (e.g. wheat or barley), F. oxysporum on tomatoes, F. solani (f. sp. glycines now syn. F. virguliforme ) and F. tucumaniae and F. brasiliense each causing sudden death syndrome on soybeans, and F. verticillioides on corn; Gaeumannomyces graminis (take-all) on cereals (e.g. wheat or barley) and corn; Gibberella spp. on cereals (e.g. G. zeae) and rice (e.g. G. fujikuror. Bakanae disease); Glomerella cingulata on vines, pome fruits and other plants and G. gossypii on cotton; Grainstaining complex on rice; Guignardia bidwellii (black rot) on vines; Gymnosporangium spp. on rosaceous plants and junipers, e.g. G. sabinae (rust) on pears; Helminthosporium spp. (syn. Drechslera, teleomorph: Cochliobolus) on corn, cereals, potatoes and rice; Hemileia spp., e.g. H. vastatrix (coffee leaf rust) on coffee; Isariopsis clavispora (syn. Cladosporium vitis) on vines; Macrophomina phaseolina (syn. phaseoli) (root and stem rot) on soybeans and cotton; Microdochium (syn. Fusarium) nivale (pink snow mold) on cereals (e.g. wheat or barley); Microsphaera diffusa (powdery mildew) on soybeans; Monilinia spp., e.g. M. laxa, M. fructicola and M. fructigena (syn. Monilia spp.: bloom and twig blight, brown rot) on stone fruits and other rosaceous plants; Mycosphaerella spp. on cereals, bananas, soft fruits and ground nuts, such as e.g. M. graminicola (anamorph: Zymoseptoria tritici formerly Septoria triticr. Septoria blotch) on wheat or M. fijiensis (syn. Pseudocercospora fijiensis'. black Sigatoka disease) and M. musicola on bananas, M. arachidicola (syn. M. arachidis or Cercospora arachidis), M. berkeleyi on peanuts, M. pisi on peas and M. brassiciola on brassicas; Peronospora spp. (downy mildew) on cabbage (e.g. P. brassicae), oilseed rape (e.g. P. parasitica), onions (e.g. P. destructor), tobacco (P. tabacina) and soybeans (e.g. P. manshuricay Phakopsora pachyrhizi and P. meibomiae (soybean rust) on soybeans; Phialophora spp. e.g. on vines (e.g. P. tracheiphila and P. tetraspora) and soybeans (e.g. P. g reg ata'. stem rot); Phoma lingam (syn. Leptosphaeria biglobosa and L. maculans’. root and stem rot) on oilseed rape and cabbage, P. betae (root rot, leaf spot and damping-off) on sugar beets and P. zeae-maydis (syn. Phyllostica zeae) on corn; Phomopsis spp. on sunflowers, vines (e.g. P. viticola'. can and leaf spot) and soybeans (e.g. stem rot: P. phaseoli, teleomorph: Diaporthe phaseolorumy Physoderma maydis (brown spots) on corn; Phytophthora spp. (wilt, root, leaf, fruit and stem root) on various plants, such as paprika and cucurbits (e.g. P. capsici), soybeans (e.g. P. megasperma, syn. P. sojae), potatoes and tomatoes (e.g. P. infest ans'. late blight) and broad-leaved trees (e.g. P. ramorunr. sudden oak death); Plasmodiophora brassicae (club root) on cabbage, oilseed rape, radish and other plants; Plasmopara spp., e.g. P. viticola (grapevine downy mildew) on vines and P. halstedii on sunflowers; Podosphaera spp. (powdery mildew) on rosaceous plants, hop, pome and soft fruits (e.g. P. leucotricha on apples) and curcurbits (P. xanthii)', Polymyxa spp., e.g. on cereals, such as barley and wheat (P. graminis) and sugar beets (P. betae) and thereby transmitted viral diseases; Pseudocercosporella herpotrichoides (syn. Oculimacula yallundae, O. acuformis'. eyespot, teleomorph: Tapesia yallundae) on cereals, e.g. wheat or barley; Pseudoperonospora (downy mildew) on various plants, e.g. P. cubensis on cucurbits or P. humili on hop;

Pseudopezicula tracheiphila (red fire disease or .rotbrenner’, anamorph: Phialophora) on vines; Puccinia spp. (rusts) on various plants, e.g. P. triticina (brown or leaf rust), P. striiformis (stripe or yellow rust), P. hordei (dwarf rust), P. graminis (stem or black rust) or P. recondita (brown or leaf rust) on cereals, such as e.g. wheat, barley or rye, P. kuehnii (orange rust) on sugar cane and P. asparagi on asparagus; Pyrenopeziza spp., e.g. P. brassicae on oilseed rape; Pyrenophora (anamorph: Drechslera) tritici-repentis (tan spot) on wheat or P. teres (net blotch) on barley; Pyricularia spp., e.g. P. oryzae (teleomorph: Magnaporthe grisea'. rice blast) on rice and P. grisea on turf and cereals; Pythium spp. (damping-off) on turf, rice, corn, wheat, cotton, oilseed rape, sunflowers, soybeans, sugar beets, vegetables and various other plants (e.g. P. ultimum or P. aphanidermatum) and P. oligandrum on mushrooms; Ramularia spp., e.g. R. collo-cygni (Ramularia leaf spots, Physiological leaf spots) on barley, R. areola (teleomorph: Mycosphaerella areola) on cotton and R. beticola on sugar beets; Rhizoctonia spp. on cotton, rice, potatoes, turf, corn, oilseed rape, potatoes, sugar beets, vegetables and various other plants, e.g. R. solani (root and stem rot) on soybeans, R. solani (sheath blight) on rice or R. cerealis (Rhizoctonia spring blight) on wheat or barley; Rhizopus stolonifer (black mold, soft rot) on strawberries, carrots, cabbage, vines and tomatoes; Rhynchosporium secalis and R. commune (scald) on barley, rye and triticale; Sarocladium oryzae and S. attenuatum (sheath rot) on rice; Sclerotinia spp. (stem rot or white mold) on vegetables (S. minor and S. sclerotiorum) and field crops, such as oilseed rape, sunflowers (e.g. S. sclerotiorum) and soybeans, S. rolfsii (syn. Athelia rolfsii) on soybeans, peanut, vegetables, corn, cereals and ornamentals; Septoria spp. on various plants, e.g. S. glycines (brown spot) on soybeans, S. tritici (syn. Zymoseptoria tritici, Septoria blotch) on wheat and S. (syn. Stagonospora) nodorum (Stagonospora blotch) on cereals; Uncinula (syn. Erysiphe) necator (powdery mildew, anamorph: Oidium tuckeri) on vines; Setosphaeria spp. (leaf blight) on corn (e.g. S. turcicum, syn. Helminthosporium turcicum) and turf; Sphacelotheca spp. (smut) on corn, (e.g. S. reiliana, syn. Ustilago reiliana'. head smut), sorghum und sugar cane; Sphaerotheca fuliginea (syn. Podosphaera xanthii’. powdery mildew) on cucurbits; Spongospora subterranea (powdery scab) on potatoes and thereby transmitted viral diseases; Stagonospora spp. on cereals, e.g. S. nodorum (Stagonospora blotch, teleomorph: Leptosphaeria [syn. Phaeosphaeria] nodorum, syn. Septoria nodorum) on wheat; Synchytrium endobioticum on potatoes (potato wart disease); Taphrina spp., e.g. T. deformans (leaf curl disease) on peaches and T. pruni (plum pocket) on plums; Thielaviopsis spp. (black root rot) on tobacco, pome fruits, vegetables, soybeans and cotton, e.g. T. basicola (syn. Chalara elegans)’, Tilletia spp. (common bunt or stinking smut) on cereals, such as e.g. T. tritici (syn. T. caries, wheat bunt) and T. controversa (dwarf bunt) on wheat; Trichoderma harzianum on mushrooms’, Typhula incarnata (grey snow mold) on barley or wheat; Urocystis spp., e.g. U. occulta (stem smut) on rye; Uromyces spp. (rust) on vegetables, such as beans (e.g. U. appendiculatus, syn. U. phaseoli), sugar beets (e.g. U. betae or U. beticola) and on pulses (e.g. U. vignae, U. pisi, U. viciae-fabae and U. fabae) Ustilago spp. (loose smut) on cereals (e.g. U. nuda and U. avaenae), corn (e.g. U. maydis’. corn smut) and sugar cane; Venturia spp. (scab) on apples (e.g. . inaequalis) and pears; and Verticillium spp. (wilt) on various plants, such as fruits and ornamentals, vines, soft fruits, vegetables and field crops, e.g. . longisporum on oilseed rape, . dahliae on strawberries, oilseed rape, potatoes and tomatoes, and . fungicola on mushrooms; Zymoseptoria tritici on cereals.

The compounds I and compositions thereof, respectively, are particularly suitable for controlling the following causal agents of plant diseases: rusts on soybean and cereals (e.g. Phakopsora pachyrhizi and P. meibomiae on soy; Puccinia tritici and P. striiformis on wheat); molds on specialty crops, soybean, oil seed rape and sunflowers (e.g. Botrytis cinerea on strawberries and vines, Sclerotinia sclerotiorum, S. minor and S. rolfsii on oil seed rape, sunflowers and soybean); Fusarium diseases on cereals (e.g. Fusarium culmorum and F. graminearum on wheat); downy mildews on specialty crops (e.g. Plasmopara viticola on vines, Phytophthora infestans on potatoes); powdery mildews on specialty crops and cereals (e.g. Uncinula necatoron vines, Erysiphe spp. on various specialty crops, Blumeria graminis on cereals); and leaf spots on cereals, soybean and corn (e.g. Septoria tritici and S. nodorum on cereals, S. glycines on soybean, Cercospora spp. on corn and soybean).

Fungicide-resistant strains of the abovementioned phytopathgenic fungi have been reported, with strains resistant to one or more fungicides from various fungicidal mode of action classes being observed including but not limited to beta-tubulin assembly inhibitors, sterol demethylation-inhibitors (DMI), quinone-outside-inhibitors (Qol) and succinate dehydrogenase inhibitors (SDH I) by target-site mutations. Examples of mutation sites of genes encoding the such target protein in each plant disease fungus include those indicated in Table M below.

Table M:

Thus, compounds I are particularly useful to control such fungicide-resistant strains of phytopathogenic fungi described in Table M. Such strains may have one or more resistances derived from one or more mutations of one or more genes encoding target proteins of various kinds of the fungicides including but not limited to the mutations listed in Table M and/or a resistance derived from an overexpression of the target protein.

In addition, certain strains of fungi may have developed other type of resistances to fungicides some of which are called efflux type multidrug-resistant fungi.

The term of "efflux type multidrug resistant fungus" as used herein represents a fungus showing a resistance to multiple fungicides sometimes even from various fungicidal modes oof aciton by overexpressing various kinds of membrane transporters that are present on the cell membrane, and increasing an efflux pump function in exporting the plant disease control agent that is inflowed into cells outside of the cells. Examples of the membrane transporter include an ABC transporter and a MFS transporter, which are not limited thereto. As used herein, "ABC transporter" refers to an ATP-binding cassette transporter, and "MFS transporter" refers to a Major Facilitator Superfamily transporter. The overexpression of the membrane transporter is confirmed by usual method, for example, by measuring an amount of the membrane transporter or an amount of mRNA which corresponds to a gene encoding the membrane transporter.

It is sufficient that the efflux type multidrug resistant fungus shows any resistance to a plant disease control agent as a result of the overexpression of the membrane transporter regardless of the measured amount of mRNA. The measured amount of mRNA may be, for example, 5 fold, 20 fold, further 100 fold or more, relative to the mRNA amount of wild-type fungus.

The method of the present invention can be applied to control a plant disease that is caused by an efflux type multidrug resistant fungus.

The efflux type multidrug resistant fungus may have in addition one or more resistances derived from one or more mutations of one or more genes encoding target proteins of various kinds of the pfungicides including but not limited to the mutations listed in Table M and/or a resistance derived from an overexpression of the target protein.

Thus, compounds I are also particularly useful to control such efflux type multidrug-resistant fungi.

The compounds I and compositions thereof, respectively, are also suitable for controlling harmful microorganisms in the protection of stored products or harvest, and in the protection of materials.

The term "stored products or harvest" is understood to denote natural substances of plant or animal origin and their processed forms for which long-term protection is desired. Stored products of plant origin, for example stalks, leafs, tubers, seeds, fruits or grains, can be protected in the freshly harvested state or in processed form, such as pre-dried, moistened, comminuted, ground, pressed or roasted, which process is also known as post-harvest treatment. Also falling under the definition of stored products is timber, whether in the form of crude timber, such as construction timber, electricity pylons and barriers, or in the form of finished articles, such as furniture or objects made from wood. Stored products of animal origin are hides, leather, furs, hairs and alike. Preferably, "stored products" is understood to denote natural substances of plant origin and their processed forms, more preferably fruits and their processed forms, such as pomes, stone fruits, soft fruits and citrus fruits and their processed forms, where application of compounds I and compositions thereof can also prevent disadvantageous effects such as decay, discoloration or mold.

The term "protection of materials" is to be understood to denote the protection of technical and non-living materials, such as adhesives, glues, wood, paper, paperboard, textiles, leather, paint dispersions, plastics, cooling lubricants, fiber, or fabrics against the infestation and destruction by harmful microorganisms, such as fungi and bacteria.

When used in the protection of materials or stored products, the amount of active substance applied depends on the kind of application area and on the desired effect. Amounts customarily applied in the protection of materials are 0.001 g to 2 kg, preferably 0.005 g to 1 kg, of active substance per cubic meter of treated material.

The compounds I and compositions thereof, respectively, may be used for improving the health of a plant. The invention also relates to a method for improving plant health by treating a plant, its propagation material, and/or the locus where the plant is growing or is to grow with an effective amount of compounds I and compositions thereof, respectively.

The term "plant health" is to be understood to denote a condition of the plant and/or its products which is determined by several indicators alone or in combination with each other, such as yield (e.g. increased biomass and/or increased content of valuable ingredients), plant vigor (e.g. improved plant growth and/or greener leaves (“greening effect”)), quality (e.g. improved content or composition of certain ingredients), and tolerance to abiotic and/or biotic stress. The above identified indicators for the health condition of a plant may be interdependent or may result from each other.

The compounds I are employed as such or in form of compositions by treating the fungi, the plants, plant propagation materials, such as seeds; soil, surfaces, materials, or rooms to be protected from fungal attack with a fungicidally effective amount of the active substances. The application can be carried out both before and after the infection of the plants, plant propagation materials, such as seeds; soil, surfaces, materials or rooms by the fungi.

An agrochemical composition comprises a fungicidally effective amount of a compound I. The term "fungicidally effective amount" denotes an amount of the composition or of the compounds I, which is sufficient for controlling harmful fungi on cultivated plants or in the protection of stored products or harvest or of materials and which does not result in a substantial damage to the treated plants, the treated stored products or harvest, or to the treated materials. Such an amount can vary in a broad range and is dependent on various factors, such as the fungal species to be controlled, the treated cultivated plant, stored product, harvest or material, the climatic conditions and the specific compound I used.

Plant propagation materials may be treated with compounds I as such or a composition comprising at least one compound I prophylactically either at or before planting or transplanting.

When employed in plant protection, the amounts of active substances applied are, depending on the kind of effect desired, from 0.001 to 2 kg per ha, preferably from 0.005 to 2 kg per ha, more preferably from 0.05 to 0.9 kg per ha, and in particular from 0.1 to 0.75 kg per ha.

In treatment of plant propagation materials, such as seeds, e.g. by dusting, coating, or drenching, amounts of active substance of generally from 0.1 to 1000 g, preferably from 1 to 1000 g, more preferably from 1 to 100 g and most preferably from 5 to 100 g, per 100 kg of plant propagation material (preferably seeds) are required.

The user applies the agrochemical composition usually from a predosage device, a knapsack sprayer, a spray tank, a spray plane, or an irrigation system. Usually, the agrochemical composition is made up with water, buffer, and/or further auxiliaries to the desired application concentration and the ready-to-use spray liquor or the agrochemical composition according to the invention is thus obtained. Usually, 20 to 2000 liters, preferably 50 to 400 liters, of the ready- to-use spray liquor are applied per hectare of agricultural useful area.

The compounds I and the compositions containing them may be applied in combination with, or by utilizing smart agricultural technologies, such as precision agriculture, remote and proximate imaging and image recognition, or smart agricultural site management programs. Such technologies typically include models, e.g. computer programs, that support the user by considering information from a variety of sources to increase quality and yield of harvested material, reduce damage by pests including the prediction of pest pressure and smart application of crop protection products, secure environmental protection, support quick and reliable agronomic decision making, reduce usage of fertilizers and crop protection products, reduce product residues in consumables, increase spatial and temporal precision of agronomical measures, automate processes, and enable traceability of measures. Commercially available systems which include agronomic models are e.g. FieldScripts™ (The Climate Corporation), Xarvio™ (BASF) and AGLogic™ (John Deere).

Information input for these models include but is not limited to soil data, information on the plants that are currently growing or that may grow at the area of interest including crops and/or unwanted vegetation, weather information, information on the location of the area and directly derivable information thereof, information on pest pressure, information on beneficial organisms, comprising forecast, present and I or historic information of any of the aforementioned.

The information usable for precision agriculture may be based on input by at least one user, be accessible from external data sources and databases, or be based on sensor data. Data sources typically include proximate-detection systems like soil-borne sensors and remote sensing as may be achieved by imaging with unmanned airborne vehicles like drones, or satellites. Sensors may be included in an Internet-of-Things system and may be directly or indirectly connected to the processing unit, e.g. via a wireless network and/or cloud applications. The information is typically taken into account by at least one processing unit and used to provide recommendations, and to generate control signals.

Typical technologies that are used in smart agricultural technologies include self-steering robots (such as tractors, harvesters, drones), artificial intelligence (e.g. machine learning), imaging technologies (e.g. image segmentation technologies), big data analysis, and model gene-ra-'tion, cloud computing, and machine-to-machine communication.

Precision agriculture such as precision farming is characterized by spatially and/or temporally resolved, targeted application of active ingredients like pesticides, plant-growth-regulators, ferthlizers, and/or water including the variation of application rates over the agronomic site, zone or spot application, and of the spatially and/or temporally resolved, targeted planting or seeding of desired plant propagation material to an agronomic site. Precision farming typically includes the use of geo-positioning technologies like GPS for gaining information on the location and boundaries of the area of interest, the utilized application equipment, sensing equipment and recorded data, and to control the actions of farm vehicles such as spraying. By combining geo-positioning data with (digital) maps, it is possible to (semi)-automate agricultural measures at the site of interest, e.g. by using (semi)-autonomous spraying or seeding equipment.

Precision farming may typically include the application of smart spraying equipment, e.g. spot spraying, and precision spraying at a farm, e.g. by irrigation systems, tractors, robots, helicopters, airplanes, unmanned aerial vehicles, such as drones. Such equipment usually includes input sensors (e.g. a camera) and a processing unit configured to analyze the input data and configured to provide a recommendation or decision based on the analysis of input data to apply the compounds I or compositions comprising them to the agronomic site, e.g. the soil, the crop plants, or to control pests in a specific and precise manner. For example, pests may be detected, identified, and/or classified from imagery acquired by a camera. Such identification and/ classification can make use of image processing algorithms, which may utilize artificial intelligence (e.g. machine learning algorithms), or decision trees. In this manner, the compounds I or com-'po-'sitions described herein can be applied only at the required location, point in time and dose rate.

The compounds I, their N-oxides and salts can be converted into customary types of agrochemical compositions, e.g. solutions, emulsions, suspensions, dusts, powders, pastes, granules, pressings, capsules, and mixtures thereof. Examples for composition types (see also “Catalogue of pesticide formulation types and international coding system”, Technical Monograph No. 2, 6 th Ed. May 2008, CropLife International) are suspensions (e.g. SC, OD, FS), emulsifiable concentrates (e.g. EC), emulsions (e.g. EW, EO, ES, ME), capsules (e.g. CS, ZC), pastes, pastilles, wettable powders or dusts (e.g. WP, SP, WS, DP, DS), pressings (e.g. BR, TB, DT), granules (e.g. WG, SG, GR, FG, GG, MG), insecticidal articles (e.g. LN), as well as gel formulations for the treatment of plant propagation materials, such as seeds (e.g. GF). The compositions are prepared in a known manner, such as described by Mollet and Grubemann, Formulation technology, Wiley VCH, Weinheim, 2001; or by Knowles, New developments in crop protection product formulation, Agrow Reports DS243, T&F Informa, London, 2005. The invention also relates to agrochemical compositions comprising an auxiliary and at least one compound I.

Suitable auxiliaries are solvents, liquid carriers, solid carriers or fillers, surfactants, dispersants, emulsifiers, wetters, adjuvants, solubilizers, penetration enhancers, protective colloids, adhesion agents, thickeners, humectants, repellents, attractants, feeding stimulants, compatibilizers, bactericides, anti-freezing agents, anti-foaming agents, colorants, tackifiers, and binders.

Suitable solvents and liquid carriers are water and organic solvents, such as mineral oil fractions of medium to high boiling point, e.g. kerosene, diesel oil; oils of vegetable or animal origin; aliphatic, cyclic and aromatic hydrocarbons, e.g. toluene, paraffin, tetrahydronaphthalene, and alkylated naphthalenes; alcohols, e.g. ethanol, propanol, butanol, benzyl alcohol, cyclohexanol, glycols; DMSO; ketones, e.g. cyclohexanone; esters, e.g. lactates, carbonates, fatty acid esters, gamma-butyrolactone; fatty acids; phosphonates; amines; amides, e.g. /V-methyl pyrrolidone, fatty acid dimethyl amides; and mixtures thereof.

Suitable solid carriers or fillers are mineral earths, e.g. silicates, silica gels, talc, kaolins, limestone, lime, chalk, clays, dolomite, diatomaceous earth, bentonite, calcium sulfate, magnesium sulfate, magnesium oxide; polysaccharides, e.g. cellulose, starch; fertilizers, e.g. ammonium sulfate, ammonium phosphate, ammonium nitrate, ureas; products of vegetable origin, e.g. cereal meal, tree bark meal, wood meal, nutshell meal, and mixtures thereof.

Suitable surfactants are surface-active compounds, such as anionic, cationic, nonionic and amphoteric surfactants, block polymers, polyelectrolytes, and mixtures thereof. Such surfactants can be used as emulsifier, dispersant, solubilizer, wetter, penetration enhancer, protective colloid, or adjuvant. Examples of surfactants are listed in McCutcheon’s, Vol.1: Emulsifiers & Detergents, McCutcheon’s Directories, Glen Rock, USA, 2008 (Int. Ed. or North American Ed.).

Suitable anionic surfactants are alkali, alkaline earth or ammonium salts of sulfonates, sulfates, phosphates, carboxylates, and mixtures thereof. Examples of sulfonates are alkylaryl sulfonates, diphenyl sulfonates, alpha-olefin sulfonates, lignin sulfonates, sulfonates of fatty acids and oils, sulfonates of ethoxylated alkylphenols, sulfonates of alkoxylated arylphenols, sulfonates of condensed naphthalenes, sulfonates of dodecyl- and tridecylbenzenes, sulfonates of naphthalenes and of alkyl naphthalenes, sulfosuccinates, or sulfosuccinamates. Examples of sulfates are sulfates of fatty acids, of oils, of ethoxylated alkylphenols, of alcohols, of ethoxylated alcohols, or of fatty acid esters. Examples of phosphates are phosphate esters. Examples of carboxylates are alkyl carboxylates, and carboxylated alcohol or alkylphenol ethoxylates.

Suitable nonionic surfactants are alkoxylates, /V-substituted fatty acid amides, amine oxides, esters, sugar-based surfactants, polymeric surfactants, and mixtures thereof. Examples of alkoxylates are compounds such as alcohols, alkylphenols, amines, amides, arylphenols, fatty acids or fatty acid esters which have been alkoxylated with 1 to 50 equivalents. Ethylene oxide and/or propylene oxide may be employed for the alkoxylation, preferably ethylene oxide. Examples of /V-substituted fatty acid amides are fatty acid glucamides or fatty acid alkanolamides. Examples of esters are fatty acid esters, glycerol esters, or monoglycerides. Examples of sugar-based surfactants are sorbitans, ethoxylated sorbitans, sucrose and glucose esters, or alkylpolyglucosides. Examples of polymeric surfactants are home- or copolymers of vinyl pyrrolidone, vinyl alcohols, or vinyl acetate. Suitable cationic surfactants are quaternary surfactants, for example quaternary ammonium compounds with one or two hydrophobic groups, or salts of long-chain primary amines. Suitable amphoteric surfactants are alkylbetains and imidazolines. Suitable block polymers are block polymers of the A-B or A-B-A type comprising blocks of polyethylene oxide and polypropylene oxide, or of the A-B-C type comprising alkanol, polyethylene oxide, and polypropylene oxide. Suitable polyelectrolytes are polyacids or polybases. Examples of polyacids are alkali salts of polyacrylic acid or polyacid comb polymers. Examples of polybases are polyvinyl amines or polyethylene amines.

Suitable adjuvants are compounds, which have a negligible or even no pesticidal activity themselves, and which improve the biological performance of the compound I on the target. Examples are surfactants, mineral or vegetable oils, and other auxiliaries, e.g. as listed by Knowles, Adjuvants and additives, Agrow Reports DS256, T&F Informa UK, 2006, chapter 5. Suitable thickeners are polysaccharides (e.g. xanthan gum, carboxymethyl cellulose), inorganic clays (organically modified or unmodified), polycarboxylates, and silicates. Suitable bactericides are bronopol and isothiazolinone derivatives, such as alkylisothiazolinones and benzisothiazo- linones. Suitable anti-freezing agents are ethylene glycol, propylene glycol, urea, and glycerin. Suitable anti-foaming agents are silicones, long chain alcohols, and salts of fatty acids. Suitable colorants (e.g. in red, blue, or green) are pigments of low water solubility and water-soluble dyes. Examples are inorganic colorants (e.g. iron oxide, titan oxide, iron hexacyanoferrate) and organic colorants (e.g. alizarin-, azo- and phthalocyanine colorants). Suitable tackifiers or binders are polyvinyl pyrrolidones, polyvinyl acetates, polyvinyl alcohols, polyacrylates, biological or synthetic waxes, and cellulose ethers.

The agrochemical compositions generally comprise between 0.01 and 95 %, preferably between 0.1 and 90 %, more preferably between 1 and 70 %, and in particular between 10 and 60 %, by weight of active substances (e.g. at least one compound I). The agrochemical compositions generally comprise between 5 and 99.9 %, preferably between 10 and 99.9 %, more preferably between 30 and 99 %, and in particular between 40 and 90 %, by weight of at least one auxiliary. The active substances (e.g. compounds I) are employed in a purity of from 90 % to 100 %, preferably from 95-% to 100 % (according to NMR spectrum).

For the purposes of treatment of plant propagation materials, particularly seeds, solutions for seed treatment (LS), Suspoemulsions (SE), flowable concentrates (FS), powders for dry treatment (DS), water-dispersible powders for slurry treatment (WS), water-soluble powders (SS), emulsions (ES), emulsifiable concentrates (EC), and gels (GF) are usually employed. The compositions in question give, after two-to-tenfold dilution, active substance concentrations of from 0.01 to 60 % by weight, preferably from 0.1 to 40 %, in the ready-to-use preparations. Application can be carried out before or during sowing. Methods for applying compound I and compositions thereof, respectively, onto plant propagation material, especially seeds, include dressing, coating, pelleting, dusting, soaking, as well as in-furrow application methods. Preferably, compound I or the compositions thereof, respectively, are applied on to the plant propagation material by a method such that germination is not induced, e.g. by seed dressing, pelleting, coating, and dusting.

Various types of oils, wetters, adjuvants, fertilizers, or micronutrients, and further pesticides (e.g. fungicides, growth regulators, herbicides, insecticides, safeners) may be added to the compounds I or the compositions thereof as premix, or, not until immediately prior to use (tank mix). These agents can be admixed with the compositions according to the invention in a weight ratio of 1 : 100 to 100: 1 , preferably 1 : 10 to 10: 1. A pesticide is generally a chemical or biological agent (such as pestidal active ingredient, compound, composition, virus, bacterium, antimicrobial, or disinfectant) that through its effect deters, incapacitates, kills or otherwise discourages pests. Target pests can include insects, plant pathogens, weeds, mollusks, birds, mammals, fish, nematodes (roundworms), and microbes that destroy property, cause nuisance, spread disease or are vectors for disease. The term “pesticide” includes also plant growth regulators that alter the expected growth, flowering, or reproduction rate of plants; defoliants that cause leaves or other foliage to drop from a plant, usually to facilitate harvest; desiccants that promote drying of living tissues, such as unwanted plant tops; plant activators that activate plant physiology for defense of against certain pests; safeners that reduce unwanted herbicidal action of pesticides on crop plants; and plant growth promoters that affect plant physiology e.g. to increase plant growth, biomass, yield or any other quality parameter of the harvestable goods of a crop plant.

Biopesticides have been defined as a form of pesticides based on microorganisms (bacteria, fungi, viruses, nematodes, etc.) or natural products (compounds, such as metabolites, proteins, or extracts from biological or other natural sources) (U.S. Environmental Protection Agency: http://www.epa.gov/pesticides/biopesticides/). Biopesticides fall into two major classes, microbial and biochemical pesticides:

(1) Microbial pesticides consist of bacteria, fungi or viruses (and often include the metabolites that bacteria and fungi produce). Entomopathogenic nematodes are also classified as microbial pesticides, even though they are multi-cellular.

(2) Biochemical pesticides are naturally occurring substances that control pests or provide other crop protection uses as defined below, but are relatively non-toxic to mammals.

Mixing the compounds I or the compositions comprising them in the use form as fungicides with other fungicides results in many cases in an expansion of the fungicidal spectrum of activity or in a prevention of fungicide resistance development. Furthermore, in many cases, synergistic effects are obtained (synergistic mixtures).

The following list of pesticides II, in conjunction with which the compounds I can be used, is intended to illustrate the possible combinations but does not limit them:

A) Respiration inhibitors

Inhibitors of complex III at Q 0 site: azoxystrobin (A.1.1), coumethoxystrobin (A.1.2), coumoxystrobin (A.1.3), dimoxystrobin (A.1.4), enestroburin (A.1.5), fenaminstrobin (A.1.6), fenoxystrobin/flufenoxystrobin (A.1.7), fluoxastrobin (A.1.8), kresoxim-methyl (A.1.9), mandestrobin (A.1.10), metominostrobin (A.1.11), orysastrobin (A.1.12), picoxystrobin (A.1.13), pyraclostrobin (A.1.14), pyrametostrobin (A.1.15), pyraoxystrobin (A.1.16), trifloxy- strobin (A.1.17), 2-(2-(3-(2,6-dichlorophenyl)-1-methyl-allylideneaminooxymeth yl)-phenyl)- 2-methoxyimino-/V-methyl-acetamide (A.1.18), pyribencarb (A.1.19), triclopyricarb/chloro- dincarb (A.1.20), famoxadone (A.1.21), fenamidone (A.1.21), methyl-/V-[2-[(1 ,4-dimethyl- 5-phenyl-pyrazol-3-yl)oxylmethyl]phenyl]-/V-methoxy-carbamat e (A.1.22), metyltetraprole (A.1.25), (Z,2E)-5-[1-(2,4-dichlorophenyl)pyrazol-3-yl]-oxy-2-methoxyi mino-/V,3-dimethyl- pent-3-enamide (A.1.34), (Z,2E)-5-[1-(4-chlorophenyl)pyrazol-3-yl]oxy-2-methoxyimino- A/,3-dimethyl-pent-3-enamide (A.1.35), pyriminostrobin (A.1.36), bifujunzhi (A.1.37), 2-(or- tho-((2,5-dimethylphenyl-oxymethylen)phenyl)-3-methoxy-acryl ic acid methylester (A.1.38);

- inhibitors of complex III at Qi site: cyazofamid (A.2.1), amisulbrom (A.2.2), [(6S,7R,8R)-8-benzyl-3-[(3-hydroxy-4-methoxy-pyridine-2-carb onyl)amino]-6-methyl-4,9-di- oxo-1 , 5-dioxonan-7-yl] 2-methylpropanoate (A.2.3), fenpicoxamid (A.2.4), florylpicoxamid (A.2.5), metarylpicoxamid (A.2.6); - inhibitors of complex II: benodanil (A.3.1), benzovindiflupyr (A.3.2), bixafen (A.3.3), boscalid (A.3.4), carboxin (A.3.5), fenfuram (A.3.6), fluopyram (A.3.7), flutolanil (A.3.8), fluxapyroxad (A.3.9), furametpyr (A.3.10), isofetamid (A.3.11), isopyrazam (A.3.12), mepronil (A.3.13), oxycarboxin (A.3.14), penflufen (A.3.15), penthiopyrad (A.3.16), pydiflumetofen (A.3.17), pyraziflumid (A.3.18), sedaxane (A.3.19), tecloftalam (A.3.20), thifluzamide (A.3.21), inpyrfluxam (A.3.22), pyrapropoyne (A.3.23), fluindapyr (A.3.28), N-[2-[2-chloro-4-(trifluoro- methyl)phenoxy]phenyl]-3-(difluoromethyl)-5-fluoro-1-methyl- pyrazole-4-carboxamide

(A.3.29), methyl (E)-2-[2-[(5-cyano-2-methyl-phenoxy)methyl]phenyl]-3-methoxy -prop- 2-enoate (A.3.30), isoflucypram (A.3.31), 2-(difluoromethyl)-/V-(1 ,1,3-trimethyl-indan-4-yl)- pyridine-3-carboxamide (A.3.32), 2-(difluoromethyl)-/V-[(3R)-1 , 1 ,3-trimethylindan-4-yl]- pyridine-3-carboxamide (A.3.33), 2-(difluoromethyl)-/V-(3-ethyl-1,1-dimethyl-indan-4-yl)- pyridine-3-carboxamide (A.3.34), 2-(difluoromethyl)-/V-[(3R)-3-ethyl-1,1-dimethyl-indan-4-yl] - pyridine-3-carboxamide (A.3.35), 2-(difluoromethyl)-/V-(1 ,1-dimethyl-3-propyl-indan-4-yl)py- ridine-3-carboxamide (A.3.36), 2-(difluoromethyl)-/V-[(3R)-1 ,1-dimethyl-3-propyl-indan-4-yl]- pyridine-3-carboxamide (A.3.37), 2-(difluoromethyl)-/V-(3-isobutyl-1 ,1-dimethyl-indan-4-yl)- pyridine-3-carboxamide (A.3.38), 2-(difluoromethyl)-/V-[(3/?)-3-isobutyl-1,1-dimethyl-indan- 4-yl]pyridine-3-carboxamide (A.3.39) cyclobutrifluram (A.3.24);

- other respiration inhibitors: diflumetorim (A.4.1); nitrophenyl derivates: binapacryl (A.4.2), dinobuton (A.4.3), dinocap (A.4.4), fluazinam (A.4.5), meptyldinocap (A.4.6), ferimzone (A.4.7); organometal compounds: fentin salts, e.g. fentin-acetate (A.4.8), fentin chloride (A.4.9) or fentin hydroxide (A.4.10); ametoctradin (A.4.11); silthiofam (A.4.12);

B) Sterol biosynthesis inhibitors (SBI fungicides)

- C14 demethylase inhibitors: triazoles: azaconazole (B.1.1), bitertanol (B.1.2), bromu- conazole (B.1.3), cyproconazole (B.1.4), difenoconazole (B.1.5), diniconazole (B.1.6), diniconazole-M (B.1.7), epoxiconazole (B.1.8), fenbuconazole (B.1.9), fluquinconazole (B.1.10), flusilazole (B.1.11), flutriafol (B.1.12), hexaconazole (B.1.13), imibenconazole (B.1.14), ipconazole (B.1.15), metconazole (B.1.17), myclobutanil (B.1.18), oxpoconazole (B.1.19), paclobutrazole (B.1.20), penconazole (B.1.21), propiconazole (B.1.22), prothio- conazole (B.1.23), simeconazole (B.1.24), tebuconazole (B.1.25), tetraconazole (B.1.26), triadimefon (B.1.27), triadimenol (B.1.28), triticonazole (B.1.29), uniconazole (B.1.30), 2-(2,4-difluorophenyl)-1,1-difluoro-3-(tetrazol-1-yl)-1-[5-[ 4-(2,2,2-trifluoroethoxy)phenyl]- 2-pyridyl]propan-2-ol (B.1.31), 2-(2,4-difluorophenyl)-1 ,1-difluoro-3-(tetrazol-1-yl)-1-[5-[4-(tri- fluoromethoxy)phenyl]-2-pyridyl]propan-2-ol (B.1.32), fluoxytioconazole (B.1.33), ipfen- trifluconazole (B.1.37), mefentrifluconazole (B.1.38), (2R)-2-[4-(4-chlorophenoxy)-2-(trifluoro- methyl)phenyl]-1-(1,2,4-triazol-1-yl)propan-2-ol, (2S)-2-[4-(4-chlorophenoxy)-2-(trifluorometh- yl)phenyl]-1-(1 ,2,4-triazol-1-yl)propan-2-ol, 2-(chloromethyl)-2-methyl-5-(p-tolylmethyl)- 1-(1 ,2,4-triazol-1-ylmethyl)cyclopentanol (B.1.43); imidazoles: imazalil (B.1.44), pefurazoate (B.1.45), prochloraz (B.1.46), triflumizol (B.1.47); pyrimidines, pyridines, piperazines: fena- rimol (B.1.49), pyrifenox (B.1.50), triforine (B.1.51), [3-(4-chloro-2-fluoro-phenyl)-5-(2,4-diflu- orophenyl)isoxazol-4-yl]-(3-pyridyl)methanol (B.1.52), 4-[[6-[2-(2,4-difluorophenyl)-1 , 1 -diflu- oro-2-hydroxy-3-(1 ,2,4-triazol-1-yl)propyl]-3-pyridyl]oxy]benzonitrile (B.1.53), 2-[6-(4-bromo- phenoxy)-2-(trifluoromethyl)-3-pyridyl]-1-(1 ,2,4-triazol-1-yl)propan-2-ol (B.1.54), 2-[6-(4-chlo- rophenoxy)-2-(trifluoromethyl)-3-pyridyl]-1-(1 ,2,4-triazol-1-yl)propan-2-ol (B.1.55), methyl 2- [2-chloro-4-(4-chlorophenoxy)phenyl]-2-hydroxy-3-(1,2,4-tria zol-1-yl)propanoate (B.1.56), methyl 2-[2-chloro-4-(4-chlorophenoxy)phenyl]-2-hydroxy-3-(1,2,4-tr iazol-1-yl)propanoic acid (B.1.57);

- Delta14-reductase inhibitors: aldimorph (B.2.1), dodemorph (B.2.2), dodemorph-acetate (B.2.3), fenpropimorph (B.2.4), tridemorph (B.2.5), fenpropidin (B.2.6), piperalin (B.2.7), spiroxamine (B.2.8);

- Inhibitors of 3-keto reductase: fenhexamid (B.3.1);

- Other Sterol biosynthesis inhibitors: chlorphenomizole (B.4.1);

C) Nucleic acid synthesis inhibitors

- phenylamides or acyl amino acid fungicides: benalaxyl (C.1.1), benalaxyl-M (C.1.2), kiralaxyl (C.1.3), metalaxyl (C.1.4), metalaxyl-M (C.1.5), ofurace (C.1.6), oxadixyl (C.1.7);

- other nucleic acid synthesis inhibitors: hymexazole (C.2.1), octhilinone (C.2.2), oxolinic acid (C.2.3), bupirimate (C.2.4), 5-fluorocytosine (C.2.5), 5-fluoro-2-(p-tolylmethoxy)pyrimidin- 4-amine (C.2.6), 5-fluoro-2-(4-fluorophenylmethoxy)pyrimidin-4-amine (C.2.7), 5-fluoro- 2-(4-chlorophenylmethoxy)pyrimidin-4 amine (C.2.8);

D) Inhibitors of cell division and cytoskeleton

- tubulin inhibitors: benomyl (D.1.1), carbendazim (D.1.2), fuberidazole (D1.3), thiabendazole (D.1.4), thiophanate-methyl (D.1.5), pyridachlometyl (D.1.6), /\/-ethyl-2-[(3-ethynyl-8-methyl- 6-quinolyl)oxy]butanamide (D.1.8), /V-ethyl-2-[(3-ethynyl-8-methyl-6-quinolyl)oxy]-2-methyl- sulfanyl-acetamide (D.1.9), 2-[(3-ethynyl-8-methyl-6-quinolyl)oxy]-/\/-(2-fluoroethyl)bu tan- amide (D.1.10), 2-[(3-ethynyl-8-methyl-6-quinolyl)oxy]-/\/-(2-fluoroethyl)-2 -methoxy-acet- amide (D.1.11), 2-[(3-ethynyl-8-methyl-6-quinolyl)oxy]-/\/-propyl-butanamide (D.1.12), 2-[(3-ethynyl-8-methyl-6-quinolyl)oxy]-2-methoxy-/\/-propyl- acetamide (D.1 .13), 2-[(3-ethynyl- 8-methyl-6-quinolyl)oxy]-2-methylsulfanyl-/\/-propyl-acetami de (D.1.14), 2-[(3-ethynyl-8-meth- yl-6-quinolyl)oxy]-/V-(2-fluoroethyl)-2-methylsulfanyl-aceta mide (D.1.15), 4-(2-bromo-4-fluoro- phenyl)-/V-(2-chloro-6-fluoro-phenyl)-2,5-dimethyl-pyrazol-3 -amine (D.1.16);

- other cell division inhibitors: diethofencarb (D.2.1), ethaboxam (D.2.2), pencycuron (D.2.3), fluopicolide (D.2.4), zoxamide (D.2.5), metrafenone (D.2.6), pyriofenone (D.2.7), phenamacril (D.2.8);

E) Inhibitors of amino acid and protein synthesis

- methionine synthesis inhibitors: cyprodinil (E.1.1), mepanipyrim (E.1.2), pyrimethanil (E.1.3);

- protein synthesis inhibitors: blasticidin-S (E.2.1), kasugamycin (E.2.2), kasugamycin hydro- chloride-hydrate (E.2.3), mildiomycin (E.2.4), streptomycin (E.2.5), oxytetracyclin (E.2.6);

F) Signal transduction inhibitors

- MAP I histidine kinase inhibitors: fluoroimid (F.1.1), iprodione (F.1.2), procymidone (F.1.3), vinclozolin (F.1.4), fludioxonil (F.1.5);

- G protein inhibitors: quinoxyfen (F.2.1);

G) Lipid and membrane synthesis inhibitors

- Phospholipid biosynthesis inhibitors: edifenphos (G.1.1), iprobenfos (G.1.2), pyrazophos (G.1.3), isoprothiolane (G.1.4);

- lipid peroxidation: dicloran (G.2.1), quintozene (G.2.2), tecnazene (G.2.3), tolclofos-methyl (G.2.4), biphenyl (G.2.5), chloroneb (G.2.6), etridiazole (G.2.7), zinc thiazole (G.2.8);

- phospholipid biosynthesis and cell wall deposition: dimethomorph (G.3.1), flumorph (G.3.2), mandipropamid (G.3.3), pyrimorph (G.3.4), benthiavalicarb (G.3.5), iprovalicarb (G.3.6), valifenalate (G.3.7);

- compounds affecting cell membrane permeability and fatty acides: propamocarb (G.4.1);

- inhibitors of oxysterol binding protein: oxathiapiprolin (G.5.1), fluoxapiprolin (G.5.3), 4-[1-[2-[3-(difluoromethyl)-5-methyl-pyrazol-1-yl]acetyl]-4- piperidyl]-/\/-tetralin-1-yl-pyridine- 2-carboxamide (G.5.4), 4-[1-[2-[3,5-bis(difluoromethyl)pyrazol-1 -yl]acetyl]-4-piperidyl]-/\/-te- tralin-1-yl-pyridine-2-carboxamide (G.5.5), 4-[1-[2-[3-(difluoromethyl)-5-(trifluoromethyl)pyr- azol-1-yl]acetyl]-4-piperidyl]-/\/-tetralin-1-yl-pyridine-2- carboxamide (G.5.6), 4-[1-[2-[5-cyclo- propyl-3-(difluoromethyl)pyrazol-1-yl]acetyl]-4-piperidyl]-/ V-tetralin-1-yl-pyridine-2-carbox- amide (G.5.7), 4-[1-[2-[5-methyl-3-(trifluoromethyl)pyrazol-1-yl]acetyl]-4- piperidyl]-/V-tetralin- 1-yl-pyridine-2-carboxamide (G.5.8), 4-[1-[2-[5-(difluoromethyl)-3-(trifluoromethyl)pyrazol- 1-yl]acetyl]-4-piperidyl]-/V-tetralin-1-yl-pyridine-2-carbox amide (G.5.9), 4-[1-[2-[3,5-bis(trifluo- romethyl)pyrazol-1-yl]acetyl]-4-piperidyl]-/V-tetralin-1-yl- pyridine-2-carboxamide (G.5.10), (4-[1 -[2-[5-cyclopropyl-3-(trifluoromethyl)pyrazol-1-yl]acetyl]-4 -piperidyl]-/\/-tetralin-1 -yl-pyri- dine-2-carboxamide (G.5.11);

H) Inhibitors with Multi Site Action

- inorganic active substances: Bordeaux mixture (H.1.1), copper (H.1.2), copper acetate (H.1.3), copper hydroxide (H.1.4), copper oxychloride (H.1.5), basic copper sulfate (H.1.6), sulfur (H.1.7);

- thio- and dithiocarbamates: ferbam (H.2.1), mancozeb (H.2.2), maneb (H.2.3), metam (H.2.4), metiram (H.2.5), propineb (H.2.6), thiram (H.2.7), zineb (H.2.8), ziram (H.2.9);

- organochlorine compounds: anilazine (H.3.1), chlorothalonil (H.3.2), captafol (H.3.3), captan (H.3.4), folpet (H.3.5), dichlofluanid (H.3.6), dichlorophen (H.3.7), hexachlorobenzene (H.3.8), pentachlorphenole (H.3.9) and its salts, phthalide (H.3.10), tolylfluanid (H.3.11);

- guanidines and others: guanidine (H.4.1), dodine (H.4.2), dodine free base (H.4.3), guazatine (H.4.4), guazatine- acetate (H.4.5), iminoctadine (H.4.6), iminoctadine-triacetate (H.4.7), iminoctadine-tris(albesilate) (H.4.8), dithianon (H.4.9), 2,6-dimethyl-1/7,5/7-[1 ,4]di- thiino[2,3-c:5,6-c']dipyrrole-1 ,3,5,7(2/7,6/-/)-tetraone (H.4.10);

I) Cell wall synthesis inhibitors

- inhibitors of glucan synthesis: validamycin (1.1.1), polyoxin B (1.1.2);

- melanin synthesis inhibitors: pyroquilon (1.2.1), tricyclazole (1.2.2), carpropamid (1.2.3), dicyclomet (1.2.4), fenoxanil (1.2.5);

J) Plant defence inducers

- acibenzolar-S-methyl (J.1.1), probenazole (J.1.2), isotianil (J.1.3), tiadinil (J.1.4), prohexa- dione-calcium (J.1.5); phosphonates: fosetyl (J.1.6), fosetyl-aluminum (J.1.7), phosphorous acid and its salts (J.1.8), calcium phosphonate (J.1.11), potassium phosphonate (J.1.12), potassium or sodium bicarbonate (J.1.9), 4-cyclopropyl-/V-(2,4-dimethoxyphenyl)thiadiazole- 5-carboxamide (J.1.10);

K) Unknown mode of action

- bronopol (K.1.1), chinomethionat (K.1.2), cyflufenamid (K.1.3), cymoxanil (K.1.4), dazomet (K.1.5), debacarb (K.1.6), diclocymet (K.1.7), diclomezine (K.1.8), difenzoquat (K.1.9), di- fenzoquat-methylsulfate (K.1.10), diphenylamin (K.1.11), fenitropan (K.1 .12), fenpyrazamine (K.1.13), flumetover (K.1.14), flumetylsulforim (K.1.60), flusulfamide (K.1.15), flutianil

(K.1.16), harpin (K.1.17), methasulfocarb (K.1 .18), nitrapyrin (K.1.19), nitrothal-isopropyl (K.1.20), tolprocarb (K.1.21), oxin-copper (K.1.22), proquinazid (K.1.23), seboctylamine (K.1.61), tebufloquin (K.1.24), tecloftalam (K.1.25), triazoxide (K.1.26), /\/-(4-(4-chloro-3- trifluoromethyl-phenoxy)-2,5-dimethyl-phenyl)-/\/-ethyl-/\/- methyl formamidine (K.1.27), /\/-(4- (4-fluoro-3-trifluoromethyl-phenoxy)-2,5-dimethyl-phenyl)-/\ /-ethyl-/\/-methyl formamidine (K.1.28), /V -[4-[[3-[(4-chlorophenyl)methyl]-1 ,2,4-thiadiazol-5-yl]oxy]-2,5-dimethyl-phenyl]-/\/- ethyl-/V-methyl-formamidine (K.1 .29), /V’-(5-bromo-6-indan-2-yloxy-2-methyl-3-pyridyl)-/\/- ethyl-/V-methyl-formamidine (K.1 .30), /V’-[5-bromo-6-[1-(3,5-difluorophenyl)ethoxy]-2-methyl- 3-pyridyl]-/V-ethyl-/V-methyl-formamidine (K.1.31), /V-[5-bromo-6-(4-isopropylcyclohexoxy)-2- methyl-3-pyridyl]-/V-ethyl-/V-methyl-formamidine (K.1 .32), /V’-[5-bromo-2-methyl-6-(1- phenylethoxy)-3-pyridyl]-/V-ethyl-/V-methyl-formamidine (K.1 .33), /\/’-(2-methyl-5- trifluoromethyl-4-(3-trimethylsilanyl-propoxy)-phenyl)-/\/-e thyl-/\/-methyl formamidine (K.1.34), /V’-(5-difluoromethyl-2-methyl-4-(3-trimethylsilanyl-propo xy)-phenyl)-/\/-ethyl-/\/-methyl formamidine (K.1.35), 2-(4-chloro-phenyl)-/V-[4-(3,4-dimethoxy-phenyl)-isoxazol-5- yl]-2-prop- 2-ynyloxy-acetamide (K.1.36), 3-[5-(4-chloro-phenyl)-2,3-dimethyl-isoxazolidin-3-yl]-pyrid ine (pyrisoxazole) (K.1.37), 3-[5-(4-methylphenyl)-2,3-dimethyl-isoxazolidin-3-yl]-pyridi ne (K.1.38), 5-chloro-1-(4,6-dimethoxy-pyrimidin-2-yl)-2-methyl-1 /-/-benzoimidazole (K.1.39), ethyl (Z)-3-amino-2-cyano-3-phenyl-prop-2-enoate (K.1.40), picarbutrazox (K.1.41), pentyl /V-[6-[[(Z)-[(1-methyltetrazol-5-yl)-phenyl-methylene]amino] oxymethyl]-2-pyridyl]carbamate (K.1.42), but-3-ynyl /V-[6-[[(Z)-[(1-methyltetrazol-5-yl)-phenyl-methylene]amino] oxymethyl]-2- pyridyl]carbamate (K.1.43), ipflufenoquin (K.1.44), quinofumelin (K.1.47), benziothiazolinone (K.1.48), bromothalonil (K.1.49), 2-(6-benzyl-2-pyridyl)quinazoline (K.1.50), 2-[6-(3-fluoro- 4-methoxy-phenyl)-5-methyl-2-pyridyl]quinazoline (K.1.51), dichlobentiazox (K.1.52), / -(2,5- dimethyl-4-phenoxy-phenyl)-/V-ethyl-/V-methyl-formamidine (K.1.53), aminopyrifen (K.1.54), fluopimomide (K.1.55), /V'-[5-bromo-2-methyl-6-(1-methyl-2-propoxy-ethoxy)-3-pyridy l]-/\/- ethyl-/V-methyl-formamidine (K.1 .56), /V-[4-(4,5-dichlorothiazol-2-yl)oxy-2,5-dimethyl- phenyl]-/V-ethyl-/V-methyl-formamidine (K.1.57), flufenoxadiazam (K.1.58), /V-methyl-4-[5- (trifluoromethyl)-l ,2,4-oxadiazol-3-yl]benzenecarbothioamide (K.1.59), /V-methoxy-/V-[[4-[5- (trifluoromethyl)-l ,2,4-oxadiazol-3-yl]phenyl]methyl]cyclopropanecarboxamide (K.1.60; WO2018/177894, WO 2020/212513), /V-((4-[5-(trifluoromethyl)-1 ,2,4-oxadiazol-3- yl]phenyl)methyl)propanamide (K.1.62), 3,3,3-trifluoro-/V-[[3-fluoro-4-[5-(trifluoromethyl)-

1 .2.4-oxadiazol-3-yl]phenyl]methyl]propanamide (K.1.63), 3,3,3-trifluoro-/V-[[2-fluoro-4-[5-(tri- fluoromethyl)-1 ,2,4-oxadiazol-3-yl]phenyl]methyl]propanamide (K.1.64), /\/-[2,3-difluoro- 4-[5-(trifluoromethyl)-1 ,2,4-oxadiazol-3-yl]benzyl]butanamide (K.1.65), /\/-[[2,3-difluoro- 4-[5-(trifluoromethyl)-1 ,2,4-oxadiazol-3-yl]phenyl]methyl]-3,3,3-trifluoro-propanami de (K.1.66), 1-methoxy-1-methyl-3-[[4-[5-(trifluoromethyl)-1 ,2,4-oxadiazol-3-yl]phenyl]methyl]- urea (K.1 .67), 1 , 1 -diethyl-3-[[4-[5-[trifluoromethyl]- 1 ,2,4-oxadiazol-3-yl]phenyl]methyl]urea (K.1.68), /V,2-dimethoxy-/V-[[4-[5-(trifluoromethyl)-1 ,2,4-oxadiazol-3-yl]phenyl]methyl]propan- amide (K.1 .69), /V-ethyl-2-methyl-/V-[[4-[5-(trifluoromethyl)-1 ,2,4-oxadiazol-3-yl]phenyl]meth- yl]propanamide (K.1.70), 1-methoxy-3-methyl-1-[[4-[5-(trifluoromethyl)-1 ,2,4-oxadiazol-3-yl]- phenyl]methyl]urea (K.1.71), 1-[[4-[5-(trifluoromethyl)-1 ,2,4-oxadiazol-3-yl]phenyl]methyl]pyr- rolidin-2-one (K.1.72), 1-[[4-[5-(trifluoromethyl)-1 ,2,4-oxadiazol-3-yl]phenyl]methyl]piperidin-

2-one (K.1.73), 4-[[4-[5-(trifluoromethyl)-1 ,2,4-oxadiazol-3-yl]phenyl]methyl]morpholin-3-one (K.1.74), 4,4-dimethyl-2-[[4-[5-(trifluoromethyl)-1 ,2,4-oxadiazol-3-yl]phenyl]methyl]isoxazoli- din-3-one (K.1.75), 2-[[4-[5-(trifluoromethyl)-1 ,2,4-oxadiazol-3-yl]phenyl]methyl]isoxazolidin-

3-one (K.1.76), 5,5-dimethyl-2-[[4-[5-(trifluoromethyl)-1 ,2,4-oxadiazol-3-yl]phenyl]methyl]- isoxazolidin-3-one (K.1 .77), 3,3-dimethyl-1-[[4-[5-(trifluoromethyl)-1 ,2,4-oxadiazol-3-yl]phen- yl]methyl]piperidin-2-one (K.1 .78), 2-[[4-[5-(trifluoromethyl)-1 ,2,4-oxadiazol-3-yl]phenyl]meth- yl]oxazinan-3-one (K.1.79), 1-[[3-fluoro-4-[5-(trifluoromethyl)-1 ,2,4-oxadiazol-3-yl]phenyl]- methyl]azepan-2-one (K.1.80), 4,4-dimethyl-1-[[4-[5-(trifluoromethyl)-1 ,2,4-oxadiazol-3-yl]- phenyl]methyl]pyrrolidin-2-one (K.1.81), 5-methyl-1-[[4-[5-(trifluoromethyl)-1 ,2,4-oxadiazol- 3-yl]phenyl]methyl]pyrrolidin-2-one (K.1.82), ethyl 1-[[4-[5-(trifluoromethyl)-1 ,2,4-oxadiazol-

3-yl]phenyl]methyl]pyrazole-4-carboxylate (K.1.83), /V-methyl-1-[[4-[5-(trifluoromethyl)-

1 .2.4-oxadiazol-3-yl]phenyl]methyl]pyrazole-4-carboxamide (K.1 .84), /V,/V-dimethyl- 1-[4-[5-(trifluoromethyl)-1 ,2,4-oxadiazol-3-yl]benzyl]-1 H-1 ,2,4-triazol-3-amine (K.1.85), /V-methoxy-/V-methyl-1-[[4-[5-(trifluoromethyl)-1 ,2,4-oxadiazol-3-yl]phenyl]methyl]pyrazole-

4-carboxamide (K.1.86), propyl-1-[[4-[5-(trifluoromethyl)-1 ,2,4-oxadiazol-3-yl]phenyl]methyl]- pyrazole-4-carboxamide (K.1.87), /V-methoxy-1-[[4-[5-(trifluoromethyl)-1 ,2,4-oxadiazol- 3-yl]phenyl]methyl]pyrazole-4-carboxamide (K.1.88), /V-al lyl-/V-[[4-[5- (trifl uoromethy I)- 1.2.4-oxadiazol-3-yl]phenyl]methyl]propanamide (K.1.89), 3-ethyl-1-methoxy-1-[[4-[5-(tri- fluoromethyl)-1 ,2,4-oxadiazol-3-yl]phenyl]methyl]urea (K.1.90), 1 ,3-dimethoxy-1-[[4-[5-(tri- fluoromethyl)-1 ,2,4-oxadiazol-3-yl]phenyl]methyl]urea (K.1.91), /V-allyl-/V-[[4-[5-(trifluoro- methyl)-1,2,4-oxadiazol-3-yl]phenyl]methyl]acetamide (K.1.92), /V-[4-[5-(trifluoromethyl)-

1.2.4-oxadiazol-3-yl]benzyl]cyclopropanecarboxamide (K.1.93), 1-methyl-3-[[4-[5-(trifluoro- methyl)-1,2,4-oxadiazol-3-yl]phenyl]methyl]urea (K.1.94), /\/'-[2-chloro-4-(2-fluorophenoxy)- 5-methyl-phenyl]-/\/-ethyl-/\/-methyl-formamidine (K.1.95), /V'-[2-chloro-4-[(4-methoxy- phenyl)methyl]-5-methyl-phenyl]-/\/-ethyl-/\/-methyl-formami dine (K.1.96), /V '-[2-chloro-4-[(4- cyano-phenyl)methyl]-5-methyl-phenyl]-/V-ethyl-/V-methyl-for mamidine (K.1.97), A/'-[2,5- dimethyl-4-(o-tolylmethyl)phenyl]-/\/-ethyl-N-methyl-formami dine (K.1.98), 6-chloro-3-(3- cyclopropyl-2-fluoro-phenoxy)-/V-[2-(2,4-dimethylphenyl)-2,2 -difluoro-ethyl]-5-methyl-pyri- dazine-4-carboxamide (K.1.99), 3-(3-bromo-2-fluoro-phenoxy)-6-chloro-/V-[2-(2-chloro-

4-methyl-phenyl)-2,2-difluoro-ethyl]-5-methyl-pyridazine- 4-carboxamide (K.1.100), 6-chloro- /\/-[2-(2-chloro-4-methyl-phenyl)-2,2-difluoro-ethyl]-3-(3-c yclopropyl-2-fluoro-phenoxy)-

5-methyl-pyridazine-4-carboxamide (K.1.101), 6-chloro-3-(3-cyclopropyl-2-fluoro-phenoxy)- /V-[2-(3,4-dimethylphenyl)-2,2-difluoro-ethyl]-5-methyl-pyri dazine-4-carboxamide (K.1.102),

6-chloro-3-(3-chloro-2-fluoro-phenoxy)-/V-[2-(2,4-dimethy lphenyl)-2,2-difluoro-ethyl]-5-meth- yl-pyridazine-4-carboxamide (K.1.103), /V-[2-(2-bromo-4-methyl-phenyl)-2,2-difluoro-ethyl]- 6-chloro-3-(3-cyclopropyl-2-fluoro-phenoxy)-5-methyl-pyridaz ine-4-carboxamide (K.1.104);

L) Biopesticides

L1) Microbial pesticides with fungicidal, bactericidal, viricidal and/or plant defense activator activity: Ampelomyces quisqualis, Aspergillus flavus, Aureobasidium pullulans, Bacillus altitudinis, B. amyloliquefaciens, B. amyloliquefaciens ssp. plantarum (also referred to as B. velezensis), B. megaterium, B. mojavensis, B. mycoides, B. pumilus, B. simplex, B. solisalsi, B. subtilis, B. subtilis var. amyloliquefaciens, B. velezensis, Candida oleo- phila, C. saitoana, Clavibacter michiganensis (bacteriophages), Coniothyrium minitans, Cryphonectria parasitica, Cryptococcus albidus, Dilophosphora alopecuri, Fusarium oxysporum, Clonostachys rosea f. catenulate (also named Gliocladium catenulatum), Gliocladium roseum, Lysobacter antibioticus, L. enzymogenes, Metschnikowia fructi- cola, Microdochium dimerum, Microsphaeropsis ochracea, Muscodor albus, Paeni- bacillus alvei, Paenibacillus epiphyticus, P. polymyxa, Pantoea vagans, Penicillium bilaiae, Phlebiopsis gigantea, Pseudomonas sp., Pseudomonas chloraphis, Pseudo- zyma flocculosa, Pichia anomala, Pythium oligandrum, Sphaerodes mycoparasitica, Streptomyces griseoviridis, S. lydicus, S. violaceusniger, Ta/aromyces flavus, Tricho- derma asperelloides, T. asperellum, T. atroviride, T. fertile, T. gamsii, T. harmatum, T. harzianum, T. polysporum, T. stromaticum, T. virens, T. viride, Typhula phacorrhiza, Ulocladium oudemansii, Verticillium dahlia, zucchini yellow mosaic virus (avirulent strain);

L2) Biochemical pesticides with fungicidal, bactericidal, viricidal and/or plant defense activator activity: harpin protein, Reynoutria sachalinensis extract;

L3) Microbial pesticides with insecticidal, acaricidal, molluscidal and/or nematicidal activity: Agrobacterium radiobacter, Bacillus cereus, B. firmus, B. thuringiensis, B. thuringiensis ssp. aizawai, B. t. ssp. israelensis, B. t. ssp. galleriae, B. t. ssp. kurstaki, B. t. ssp. tene- brionis, Beauveria bassiana, B. brongniartii, Burkholderia spp., Chromobacterium sub- tsugae, Cydia pomonella granulovirus (CpGV), Cryptophlebia leucotreta granulovirus (CrleGV), Flavobacterium spp., Helicoverpa armigera nucleopolyhedrovirus (HearNPV), Helicoverpa zea nucleopolyhedrovirus (HzNPV), Helicoverpa zea single capsid nucleopolyhedrovirus (HzSNPV), Heterorhabditis bacteriophora, Isaria fumoso- rosea, Lecanicillium longisporum, L. muscarium, Metarhizium anisopliae, M. anisopliae var. anisopliae, M. anisopliae var. acridum, Nomuraea rileyi, Paecilomyces fumoso- roseus, P. lilacinus, Paenibacillus popilliae, Pasteuria spp., P. nishizawae, P. penetrans, P. ramosa, P. thornea, P. usgae, Pseudomonas fluorescens, Spodoptera litto- ralis nucleopolyhedrovirus (SpliNPV), Steinernema carpocapsae, S. feltiae, S. kraussei, Streptomyces gal bus, S. microflavus',

L4) Biochemical pesticides with insecticidal, acaricidal, molluscidal, pheromone and/or nematicidal activity: L-carvone, citral, (E,Z)-7,9-dodecadien-1-yl acetate, ethyl formate, (E,Z)-2,4-ethyl decadienoate (pear ester), (Z,Z,E)-7,11 ,13-hexadecatrienal, heptyl butyrate, isopropyl myristate, lavanulyl senecioate, cis-jasmone, 2-methyl 1 -butanol, methyl eugenol, methyl jasmonate, (E,Z)-2,13-octadecadien-1-ol, (E,Z)-2,13-octadecadien-1-ol acetate, (E,Z)-3,13-octadecadien-1-ol, (R)-1-octen-3-ol, pentatermanone, (E,Z,Z)-3,8,11-tetradecatrienyl acetate, (Z,E)-9,12-tetradecadien-1-yl acetate, (Z)-7-tetradecen-2-one, (Z)-9-tetradecen-1-yl acetate, (Z)-11-tetradecenal, (Z)-11-tetra- decen-1-ol, extract of Chenopodium ambrosiodes, Neem oil, Quillay extract;

L5) Microbial pesticides with plant stress reducing, plant growth regulator, plant growth promoting and/or yield enhancing activity: Azospirillum amazonense, A. brasilense, A. lipoferum, A. irakense, A. halopraeferens, Bradyrhizobium spp., B. elkanii, B. japoni- cum, B. liaoningense, B. lupini, Delftia acidovorans, Glomus intraradices, Mesorhizo- bium spp., Rhizobium leguminosarum bv. phaseoli, R. I. bv. trifolii, R. I. bv. viciae, R. tropici, Sinorhizobium melilotr,

O) Insecticides from classes O.1 to 0.29

O.1 Acetylcholine esterase (AChE) inhibitors: aldicarb, alanycarb, bendiocarb, benfuracarb, butocarboxim, butoxycarboxim, carbaryl, carbofuran, carbosulfan, ethiofencarb, fenobucarb, formetanate, furathiocarb, isoprocarb, methiocarb, methomyl, metolcarb, oxamyl, pirimicarb, propoxur, thiodicarb, thiofanox, trimethacarb, XMC, xylylcarb, triazamate; acephate, aza- methiphos, azinphos-ethyl, azinphosmethyl, cadusafos, chlorethoxyfos, chlorfenvinphos, chlormephos, chlorpyrifos, chlorpyrifos-methyl, coumaphos, cyanophos, demeton-S-methyl, diazinon, dichlorvos/ DDVP, dicrotophos, dimethoate, dimethylvinphos, disulfoton, EPN, ethion, ethoprophos, famphur, fenamiphos, fenitrothion, fenthion, fosthiazate, heptenophos, imicyafos, isofenphos, isopropyl O-(methoxyaminothio-phosphoryl) salicylate, isoxathion, malathion, mecarbam, methamidophos, methidathion, mevinphos, monocrotophos, naled, omethoate, oxydemeton-methyl, parathion, parathion-methyl, phenthoate, phorate, phosa- lone, phosmet, phosphamidon, phoxim, pirimiphos- methyl, profenofos, propetamphos, pro- thiofos, pyraclofos, pyridaphenthion, quinalphos, sulfotep, tebupirimfos, temephos, terbufos, tetrachlorvinphos, thiometon, triazophos, trichlorfon, vamidothion;

O.2 GABA-gated chloride channel antagonists: endosulfan, chlordane; ethiprole, fipronil, flufiprole, pyrafluprole, pyriprole;

0.3 Sodium channel modulators: acrinathrin, allethrin, d-cis-trans allethrin, d-trans allethrin, bifenthrin, kappa-bifenthrin, bioallethrin, bioallethrin S-cylclopentenyl, bioresmethrin, cycloprothrin, cyfluthrin, beta-cyfluthrin, cyhalothrin, lambda-cyhalothrin, gamma-cyhalothrin, cypermethrin, alpha-cypermethrin, beta-cypermethrin, theta-cypermethrin, zeta-cyper- methrin, cyphenothrin, deltamethrin, empenthrin, esfenvalerate, etofenprox, fenpropathrin, fenvalerate, flucythrinate, flumethrin, tau-fluvalinate, halfenprox, heptafluthrin, imiprothrin, meperfluthrin, metofluthrin, momfluorothrin, epsilon-momfluorothrin, permethrin, phenothrin, prallethrin, profluthrin, pyrethrin (pyrethrum), resmethrin, silafluofen, tefluthrin, kappa-teflu- thrin, tetramethylfluthrin, tetramethrin, tralomethrin, transfluthrin; DDT, methoxychlor;

0.4 Nicotinic acetylcholine receptor (nAChR) agonists: acetamiprid, clothianidin, cycloxaprid, dinotefuran, imidacloprid, nitenpyram, thiacloprid, thiamethoxam; 4,5-dihydro-/V-nitro-

1-(2-oxiranylmethyl)-1/7-imidazol-2-amine, (2E)-1-[(6-chloropyridin-3-yl)methyl]-/\/’-nitro-

2-pentylidenehydrazinecarboximidamide; 1-[(6-chloropyridin-3-yl)methyl]-7-methyl-8-nitro- 5-propoxy-1 ,2,3,5,6,7-hexahydroimidazo[1 ,2-a]pyridine; nicotine; sulfoxaflor, flupyradifurone, triflumezopyrim, fenmezoditiaz, flupyrimin;

0.5 Nicotinic acetylcholine receptor allosteric activators: spinosad, spinetoram;

0.6 Chloride channel activators: abamectin, emamectin benzoate, ivermectin, lepimectin, milbemectin;

0.7 Juvenile hormone mimics: hydroprene, kinoprene, methoprene; fenoxycarb, pyriproxyfen;

0.8 miscellaneous non-specific (multi-site) inhibitors: methyl bromide and other alkyl halides; chloropicrin, sulfuryl fluoride, borax, tartar emetic;

0.9 Chordotonal organ TRPV channel modulators: afidopyropen, pymetrozine, pyrifluquinazon;

0.10 Mite growth inhibitors: clofentezine, hexythiazox, diflovidazin; etoxazole;

0.11 Microbial disruptors of insect midgut membranes: Bacillus thuringiensis, B. sphaericus and the insecticdal proteins they produce: Bacillus thuringiensis subsp. israelensis, B. sphaericus, B. thuringiensis subsp. aizawai, B. thuringiensis subsp. kurstaki, B. thuringiensis subsp. tenebrionis, the Bt crop proteins: CrylAb, CrylAc, CrylFa, Cry2Ab, mCry3A, Cry3Ab, Cry3Bb, Cry34/35Ab1;

0.12 Inhibitors of mitochondrial ATP synthase: diafenthiuron; azocyclotin, cyhexatin, fenbutatin oxide, propargite, tetradifon;

0.13 Uncouplers of oxidative phosphorylation via disruption of the proton gradient: chlorfenapyr, DNOC, sulfluramid;

0.14 Nicotinic acetylcholine receptor (nAChR) channel blockers: bensultap, cartap hydrochloride, thiocyclam, thiosultap sodium;

0.15 Inhibitors of the chitin biosynthesis type 0: bistrifluron, chlorfluazuron, diflubenzuron, flucycloxuron, flufenoxuron, hexaflumuron, lufenuron, novaluron, noviflumuron, teflubenzuron, triflumuron;

0.16 Inhibitors of the chitin biosynthesis type 1: buprofezin;

0.17 Moulting disruptors: cyromazine;

0.18 Ecdyson receptor agonists: methoxyfenozide, tebufenozide, halofenozide, fufenozide, chromafenozide;

0.19 Octopamin receptor agonists: amitraz;

0.20 Mitochondrial complex III electron transport inhibitors: hydramethylnon, acequinocyl, fluacrypyrim, bifenazate;

0.21 Mitochondrial complex I electron transport inhibitors: fenazaquin, fenpyroximate, pyrimidifen, pyridaben, tebufenpyrad, tolfenpyrad; rotenone;

0.22 Voltage-dependent sodium channel blockers: indoxacarb, metaflumizone, 2-[2-(4-cyano- phenyl)-1-[3-(trifluoromethyl)phenyl]ethylidene]-/\/-[4-(dif luoromethoxy)phenyl]-hydrazine- carboxamide, /V-(3-chloro-2-methylphenyl)-2-[(4-chlorophenyl)-[4-[methyl( methylsulfonyl)- amino]phenyl]methylene]-hydrazinecarboxamide, /\/-[4-chloro-2-[[(1 ,1-dimethylethyl)ami- no]carbonyl]-6-methylphenyl]-1-(3-chloro-2-pyridinyl)-3-(flu oromethoxy)-1/7-pyrazole-5-car- boxamide, 2-[2-(4-cyanophenyl)-1-[3-(trifluoromethyl)phenyl]ethylidene ]-/\/-[4-(difluorometh- oxy)phenyl]-hydrazinecarboxamide;

0.23 Inhibitors of the of acetyl CoA carboxylase: spirodiclofen, spiromesifen, spirotetramat, spiropidion, spirobudifen, 11-(4-chloro-2,6-dimethylphenyl)-12-hydroxy-1 ,4-dioxa-9- azadispiro[4.2.4.2]tetradec-11-en-10-one, spidoxamat;

0.24 Mitochondrial complex IV electron transport inhibitors: aluminium phosphide, calcium phosphide, phosphine, zinc phosphide, cyanide;

0.25 Mitochondrial complex II electron transport inhibitors: cyenopyrafen, cyflumetofen, cyetpyrafen, pyflubumide;

0.28 Ryanodine receptor-modulators: chlorantraniliprole, cyantraniliprole, cyclaniliprole, flubendiamide, fluchlodiniliprole, (R)-3-chloro-/V 1 -{2-methyl-4-[1 ,2,2,2 -tetrafl uoro-1- (trifluoromethyl)ethyl]phenyl}-/\/ 2 -(1-methyl-2-methylsulfonylethyl)phthalamide, (S)-3-chloro- /V 1 -{2-methyl-4-[1 ,2,2,2-tetrafluoro-1-(trifluoromethyl)ethyl]phenyl}-/\/ 2 -(1-methyl-2- methylsulfonylethyl)phthalamide, methyl-2-[3,5-dibromo-2-({[3-bromo-1-(3-chloropyridin-2- yl)-1/7-pyrazol-5-yl]carbonyl}amino)benzoyl]-1 ,2-dimethylhydrazinecarboxylate; A/-[4,6- dichloro-2-[(diethyl-lambda-4-sulfanylidene)carbamoyl]-pheny l]-2-(3-chloro-2-pyridyl)-5- (trifluoromethyl)pyrazole-3-carboxamide; /\/-[4-chloro-2-[(diethyl-lambda-4- sulfanylidene)carbamoyl]-6-methyl-phenyl]-2-(3-chloro-2-pyri dyl)-5-(trifluoromethyl)pyrazole-

3-carboxamide; /V-[2-(5-amino-1 ,3,4-thiadiazol-2-yl)-4-chloro-6-methylphenyl]-3-bromo-1-(3- chloro-2-pyridinyl)-1/7-pyrazole-5-carboxamide; 3-chloro-1-(3-chloro-2-pyridinyl)-/V-[2,4- dichloro-6-[[(1-cyano-1-methylethyl)amino]carbonyl]phenyl]-1 /7-pyrazole-5-carboxamide; tetrachlorantraniliprole; tetraniliprole; tiorantraniliprole; /\/-[4-chloro-2-[[(1 ,1-dimethylethyl)- amino]carbonyl]-6-methylphenyl]-1-(3-chloro-2-pyridinyl)-3-( fluoromethoxy)-1/7-pyrazole- 5-carboxamide; cyhalodiamide; /V-[2-(5-amino-1 ,3,4-thiadiazol-2-yl)-4-chloro-6-methyl- phenyl]-3-bromo-1-(3-chloro-2-pyridinyl)-1/7-pyrazole-5-carb oxamide;

0.29 Chordotonal organ modulators: flonicamid;

0.30 GABA-gated chloride channel allosteric modulators: broflanilide, fluxametamide, isocycloseram;

0.33 Calcium-activated potassium channel modulators: acynonapyr;

0.34 Mitochondrial complex III electron transport inhibitors at Qi site: flometoquin;

O.IIN Insecticidal compounds of unknown or uncertain mode of action: afoxolaner, azadirachtin, amidoflumet, ben-zoximate, bromopropylate, chino-rnethionat, cryolite, cyproflanilid, dicloro- mezotiaz, dicofol, dimpropyridaz, flufenerim, flometoquin, fluensulfone, fluhexafon, fluopy- ram, fluralaner, metaldehyde, metoxadiazone, piperonyl butoxide, pyridalyl, tioxazafen, trifluenfuronate, umifoxolaner, 11-(4-chloro-2,6-dimethylphenyl)-12-hydroxy-1 ,4-dioxa- 9-azadispiro[4.2.4.2]-tetradec-11-en-10-one, 3-(4’-fluoro-2,4-dimethylbiphenyl-3-yl)-4-hy- droxy-8-oxa-1-azaspiro[4.5]dec-3-en-2-one, 4-cyano-/V-[2-cyano-5-[[[2,6-dibromo-

4-[1 ,2,2,3,3,3-hexafluoro-1-(trifluoromethyl)propyl]phenyl]amino ]carbonyl]phenyl]-2-methyl- benzamide, 4-cyano-3-[(4-cyano-2-methyl-benzoyl)amino]-/\/-[2,6-dichlor o-4-[1 ,2,2,3,3,3-he- xafluoro-1-(trifluoromethyl)propyl]phenyl]-2-fluoro-benzamid e, /\/-[5-[[[2-chloro-6-cyano- 4-[1 ,2,2,3,3,3-hexafluoro-1-(trifluoromethyl)propyl]phenyl]amino ]carbonyl]-2-cyano-phenyl]- 4-cyano-2-methyl-benzamide, /V-[5-[[[2-bromo-6-chloro-4-[2,2,2-trifluoro-1-hydroxy-1-(tr iflu- oromethyl)ethyl]phenyl]amino]carbonyl]-2-cyano-phenyl]-4-cya no-2-methyl-benzamide, /V-[5-[[[2-bromo-6-chloro-4-[1,2,2,3,3,3-hexafluoro-1-(trifl uoromethyl)propyl]phenyl]amino]- carbonyl]-2-cyano-phenyl]-4-cyano-2-methyl-benzamide, 4-cyano-/V-[2-cyano-5-[[[2,6-di- chloro-4-[1 ,2,2,3,3,3-hexafluoro-1-(trifluoromethyl)propyl]phenyl]amino ]carbonyl]phenyl]- 2-methyl-benzamide, 1-[2-fluoro-4-methyl-5-[(2,2,2-trifluoroethyl)sulfinyl]pheny l]-3-(trifluoro- methyl)-1 H-1 ,2, 4- triazole- 5-amine, /\/-[5-[[[2-bromo-6-chloro-4-[1 ,2,2,2-tetrafluoro-1-(trifluoro- methyl)ethyl]phenyl]amino]carbonyl]-2-cyano-phenyl]-4-cyano- 2-methyl-benzamide, 4-cy- ano-/V-[2-cyano-5-[[[2,6-dichloro-4-[1,2,2,2-tetrafluoro-1-( trifluoromethyl)ethyl]phenyl]amino]- carbonyl]phenyl]-2-methyl-benzamide, actives on basis of Bacillus firmus (Votivo, 1-1582); fluazaindolizine; 5-[3-[2,6-dichloro-4-(3,3-dichloroallyloxy)phenoxy]propoxy]- 1 /7-pyrazole; /V-[5-[[2-bromo-6-chloro-4-[1 ,2,2,3,3,3-hexafluoro-1-(trifluoromethyl)-propyl]phenyl]carb a- moyl]-2-cyano-phenyl]-4-cyano-2-methyl-benzamide; 4-cyano-N-[2-cyano-5-[[2,6-dichloro- 4-[1 ,2,2,3,3,3-hexafluoro-1-(trifluoromethyl)-propyl]phenyl]carb amoyl]phenyl]-2-methyl- benzamide; 4-cyano-/V-[2-cyano-5-[[2,6-dichloro-4-[1 ,2,2,2-tetrafluoro-1-(trifluoromethyl)- ethyl]phenyl]carbamoyl]- , phenyl]-2-methyl-benzamide; /\/-[5-[[2-bromo-6-chloro-

4-[1 ,2,2,2-tetrafluoro-1-(trifluoromethyl)ethyl]phenyl]carba- , moyl]-2-cyano-phenyl]-4-cyano-

2-methyl-benzamide; 2-(1 ,3-dioxan-2-yl)-6-[2-(3-pyridinyl)-5-thiazolyl]-pyridine; 2-[6-[2-(5-flu- oro-3-pyridinyl)-5-thiazo- , lyl]-2-pyridinyl]-pyrimidine; 2-[6-[2-(3-pyridinyl)-5-thiazolyl]-2-pyri- dinyl]-pyrimidine; /V-methylsuhfonyl-6-[2-(3-pyridyl)thiazol-5-yl]pyridine-2-ca rboxamide;

/V-methylsulfonyl-6-[2-(3-pyridyl)thiazol-5-yl]pyridine-2 -carboxamide; 1-[(6-chloro-3-pyridinyl)- methyl]-1 ,2,3,5,6,7-hexahydro-5-methoxy-7-methyl-8-nitro-imidazo[1 ,2-a]pyridine; 1-[(6-chlo- ropyridin-3-yl)methyl]-7-methyl-8-nitro-1 ,2,3,5,6,7-hexahydroimidazo[1 ,2-a]pyridin-5-ol;

/V-(3-chloro-2-methylphenyl)-2-[(4-chlorophenyl)[4-[methy l(methylsulfonyl)amino]phenyl]- methylene]-hydrazinecarboxamide; 1-[(6-chloro-3-pyridinyl)methyl]-1 ,2,3,5,6,7-hexahydro-

5-methoxy-7-methyl-8-nitro-imidazo[1 ,2-a]pyridine; 2-(3-pyridinyl)-/V-(2-pyrimidinylmethyl)- 2H-indazole-5-carboxamide; tyclopyrazoflor; sarolaner, lotilaner; /\/-[4-chloro-3-[[(phenyl- methyl)amino]carbonyl]phenyl]-1-methyl-3-(1 , 1 ,2,2, 2-pentafluoroethyl)-4-(trifluoromethyl)- 1/7-pyrazole-5-carboxamide; /V-[4-chloro-3-[[(phenylmethyl)amino]carbonyl]phenyl]-1-meth yl-

3-(1 ,1 ,2,2,2-pentafluoroethyl)-4-(trifluoromethyl)-1/7-pyrazole-5- carboxamide; 2-(3-ethylsul- fonyl-2-pyridyl)-3-methyl-6-(tri-fluoromethyl)imidazo[4,5-b] pyridine, 2-[3-ethylsulfonyl-5-(tri- fluoromethyl)-2-pyridyl]-3-methyl-6-(trifluoromethyl)imidazo [4,5-b]pyridine; /\/-[4-chloro-3-(cy- clopropylcarbamoyl)phenyl]-2-methyl-5-(1 , 1 ,2,2,2-pentafluoroethyl)-4-(trifluoromethyl)- pyrazole-3-carboxamide, /V-[4-chloro-3-[(1-cyanocyclopropyl)carbamoyl]phenyl]-2-meth yl- 5-(1 , 1 ,2,2,2-pentafluoroethyl)-4-(trifluoromethyl)pyrazole-3-carbo xamide; benzpyrimoxan; tigolaner; oxazosulfyl; [(2S,3R,4R,5S,6S)-3,5-dimethoxy-6-methyl-4-propoxy-tetrahydr o- pyran-2-yl]-/V-[4-[1-[4-(trifluoromethoxy)phenyl]-1 ,2,4-triazol-3-yl]phenyl]carbamate;

[(2S,3R,4R,5S,6S)-3,4,5-trimethoxy-6-methyl-tetrahydropyr an-2-yl]-/\/-[4-[1-[4-(trifluorometh- oxy)phenyl]-1 ,2,4-triazol-3-yl]phenyl]carbamate; [(2S,3R,4R,5S,6S)-3,5-dimethoxy-6-methyl-

4-propoxy-tetrahydropyran-2-yl]-/V-[4-[1-[4-(1 ,1 ,2,2,2-pentafluoroethoxy)phenyl]-1 ,2,4-triazol- 3-yl]phenyl]carbamate; [(2S,3R,4R,5S,6S)-3,4,5-trimethoxy-6-methyl-tetrahydropyran- 2-yl]- /V-[4-[1-[4-(1 ,1 ,2,2,2-pentafluoroethoxy)phenyl]-1 ,2,4-triazol-3-yl]phenyl]carbamate;

(2Z)-3-(2-isopropylphenyl)-2-[(E)-[4-[1-[4-(trifluorometh oxy)phenyl]-1 ,2,4-triazol-3-yl]phenyl]- methylenehydrazono]thiazolidin-4-one, (2Z)-3-(2-isopropylphenyl)-

2-[(E)-[4-[1-[4-(1 ,1 ,2,2,2-pentafluoroethoxy)phenyl]-1 ,2,4-triazol-3-yl]phenyl]methylene- hydrazono]thiazolidin-4-one, (2Z)-3-(2-isopro- , pyhphenyl)-2-[(E)-[4-[1-[4-(1 , 1 ,2,2, 2-pentaflu- oroethoxy)phenyl]-1 ,2,4-triazol-3-yl]phenyl]methylenehydrazono]thiazolidin-4-on e; 2-(6-chlo- ro-3-ethylsulfonyl-imidazo[1 ,2-a]pyridin-2-yl)-3-methyl-6-(trifluoromethyl)imidazo[4,5-b ]pyri- dine, 2-(6-bromo-3-ethylsulfonyl-imidazo[1 ,2-a]pyridin-2-yl)-3-methyl-6-(trifluoromethyl)imi- dazo[4,5-b]pyridine, 2-(3-ethylsulfonyl-6-iodo-imidazo[1 ,2-a]pyridin-2-yl)-3-methyl-6-(trifluoro- methyl)imidazo[4,5-b]pyridine, 2-(7-chloro-3-ethylsulfonyl-imidazo[1 ,2-a]pyridin-2-yl)-3-meth- yl-6-(trifluoromethyl)imidazo[4,5-b]pyridine, 2-(7-chloro-3-ethylsulfonyl-imidazo[1 ,2-a]pyridin- 2-yl)-3-methyl-6-(trifluoromethyl)imidazo[4,5-b]pyridine, 2-(3-ethylsulfonyl-7-iodo-imidazo- [1 ,2-a]pyridin-2-yl)-3-methyl-6-(trifluoromethyl)imidazo[4,5-b ]pyridine, 3-ethylsulfonyl-6-iodo- 2-[3-methyl-6-(trifluoromethyl)imidazo[4,5-b]pyridin-2-yl]im idazo[1 ,2-a]pyridine-8-carbonitrile, 2-[3-ethylsulfonyl-8-fluoro-6-(trifluoromethyl)imidazo[1 ,2-a]pyridin-2-yl]-3-methyl-6-(trifluoro- methyl)imidazo[4,5-b]pyridine, 2-[3-ethylsulfonyl-7-(trifluoromethyl)imidazo[1 ,2-a]pyridin- 2-yl]-3-methyl-6-(trifluoromethylsulfinyl)imidazo[4,5-b]pyri dine, 2-[3-ethylsulfonyl-7-(trifluoro- methyl)imidazo[1 ,2-a]pyridin-2-yl]-3-methyl-6-(trifluoromethyl)imidazo[4,5-c ]pyridine,

2-(6-bromo-3-ethylsulfonyl-imidazo[1 ,2-a]pyridin-2-yl)-6-(trifluoromethyl)pyrazolo[4,3-c]pyri- dine; /V-[[2-fluoro-4-[(2S,3S)-2-hydroxy-3-(3,4,5-trichlorophenyl) -3-(trifluoromethyl)pyrrolidin- 1-yl]phenyl]methyl]cyclopropanecarboxamide; 2-[2-fluoro-4-methyl-5-(2,2,2-trifluoroethylsul- finyl)phenyl]imino-3-(2,2,2-trifluoroethyl)thiazolidin-4-one ; flupentiofenox, /\/-[3-chloro-

1-(3-pyridyl)pyrazol-4-yl]-2-methylsulfonyl-propanamide, cyclobutrifluram; /\/-[4-chloro-

3-[(1-cyanocyclopropyl)carbamoyl]phenyl]-2-methyl-4-methy lsulfonyl-5-(1 , 1 ,2,2, 2-penta- fluoroethyl)pyrazole-3-carboxamide, cyproflanilide, nicofluprole; 1 ,4-dimethyl-2-[2-(pyridin- 3-yl)-2/7-indazol-5-yl]-1 , 2, 4-triazolidine-3, 5-dione, 2-[2-fluoro-4-methyl-5-(2,2,2-trifluoroethyl- sulfanyl)phenyl]imino-3-(2,2,2-trifluoroethyl)thiazolidin-4- one, indazapyroxamet, /\/-[4-chloro-

2-(3-pyridyl)thiazol-5-yl]-/V-ethyl-3-methylsulfonyl-prop anamide, /\/-cyclopropyl-5-[(5S)- 5-(3,5-dichloro-4-fluoro-phenyl)-5-(trifluoromethyl)-4/7-iso xazol-3-yl]isoquinoline-8-carbox- amide, 5-[(5S)-5-(3,5-dichloro-4-fluoro-phenyl)-5-(trifluoromethyl) -4/7-isoxazol-3-yl]-/\/-(pyri- midin-2-ylmethyl)isoquinoline-8-carboxamide, /V-[1-(2,6-difluorophenyl)pyrazol-3-yl]-2-(tri- fluoromethyl)benzamide, 5-((1R,3R)-3-(3,5-bis(trifluoromethyl)phenyl)-2,2-dichlorocy clopro- pane-1-carboxamido)-2-chloro-/\/-(3-(2,2-difluoroacetamido)- 2,4-difluorophenyl)benzamide, 1-[6-(2,2-difluoro-7-methyl-[1 ,3]dioxolo[4,5-f]benzimidazol-6-yl)-5-ethylsulfonyl-3-pyridy l]- cyclopropanecarbonitrile, 6-(5-cyclopropyl-3-ethylsulfonyl-2-pyridyl)-2,2-difluoro-7-m ethyl- [1 ,3]dioxolo[4,5-f] benzimidazole.

The active substances referred to as component 2, their preparation and their activity e.g. against harmful fungi is known (cf.: https://pesticidecompendium.bcpc.org/); these substances are commercially available. The compounds described by IIIPAC nomenclature, their preparation and their pesticidal activity are also known (cf. Can. J. Plant Sci. 48(6), 587-94, 1968; EP-A 141 317; EP-A 152 031 ; EP-A 226 917; EP-A 243 970; EP-A 256 503; EP- A 428 941 ; EP-A 532 022; EP-A 1 028 125; EP-A 1 035 122; EP-A 1 201 648; EP-A 1 122 244, JP 2002316902; DE 19650197; DE 10021412; DE 102005009458; US 3,296,272;

US 3,325,503; WO 98/46608; WO 99/14187; WO 99/24413; WO 99/27783; WO 00/29404;

WO 00/46148; WO 00/65913; WO 01/54501 ; WO 01/56358; WO 02/22583; WO 02/40431 ;

WO 03/10149; WO 03/11853; WO 03/14103; WO 03/16286; WO 03/53145; WO 03/61388;

WO 03/66609; WO 03/74491 ; WO 04/49804; WO 04/83193; WO 05/120234; WO 05/123689;

WO 05/123690; WO 05/63721 ; WO 05/87772; WO 05/87773; WO 06/15866; WO 06/87325; WO 06/87343; WO 07/82098; WO 07/90624, WO 10/139271 , WO 11/028657, WO 12/168188, WO 07/006670, WO 11/77514; WO 13/047749, WO 10/069882, WO 13/047441 , WO 03/16303, WO 09/90181 , WO 13/007767, WO 13/010862, WO 13/127704, WO 13/024009, WO 13/24010, WO 13/047441 , WO 13/162072, WO 13/092224, WO 11/135833, CN 1907024, CN 1456054, CN 103387541 , CN 1309897, WO 12/84812, CN 1907024, WO 09094442, WO 14/60177, WO 13/116251 , WO 08/013622, WO 15/65922, WO 94/01546, EP 2865265, WO 07/129454, WO 12/165511 , WO 11/081174, WO 13/47441 , WO 16/156241 , WO 16/162265). Some compounds are identified by their CAS Registry Number which is separated by hyphens into three parts, the first consisting from two up to seven digits, the second consisting of two digits, and the third consisting of a single digit.

At least one of the compounds of the abovementioned list of pesticides II are preferably mixed with at least one of the compounds I which are explicitely disclosed herein e.g. in the Tables such as compounds I.1-A-1 to 1.1-A-816, compounds I.2-A-1 to I.2-A-816, compounds I.3-A-1 to I.3-A-816 and example compounds 1 to 464.

According to the invention, the solid material (dry matter) of the biopesticides (with the exception of oils such as Neem oil) are considered as active components (e.g. to be obtained after drying or evaporation of the extraction or suspension medium in case of liquid formulations of the microbial pesticides). The weight ratios and percentages used for a biological extract such as Quillay extract are based on the total weight of the dry content (solid material) of the respective extract(s).

The total weight ratios of compositions comprising at least one microbial pesticide in the form of viable microbial cells including dormant forms, can be determined using the amount of CFU of the respective microorganism to calculate the total weight of the respective active component with the following equation that 1 x 10 10 CFU equals one gram of total weight of the respective active component. Colony forming unit is measure of viable microbial cells. In addition, CFU may also be understood as the number of (juvenile) individual nematodes in case of nematode biopesticides, such as Steinernema feltiae.

In the binary mixtures the weight ratio of the component 1) and the component 2) generally depends from the properties of the components used, usually it is in the range of from 1 :10,000 to 10,000:1 , often from 1 :100 to 100:1 , regularly from 1 :50 to 50:1 , preferably from 1 :20 to 20:1 , more preferably from 1 : 10 to 10:1 , even more preferably from 1 :4 to 4: 1 and in particular from 1 :2 to 2:1. According to further embodiments, the weight ratio of the component 1) and the component 2) usually is in the range of from 1000:1 to 1 :1 , often from 100: 1 to 1 :1 , regularly from 50:1 to 1 :1 , preferably from 20:1 to 1 :1 , more preferably from 10:1 to 1 :1 , even more preferably from 4:1 to 1 :1 and in particular from 2:1 to 1 :1. According to further embodiments, the weight ratio of the component 1) and the component 2) usually is in the range of from 20,000:1 to 1 :10, often from 10,000:1 to 1 :1 , regularly from 5,000:1 to 5:1 , preferably from 5,000:1 to 10:1 , more preferably from 2,000:1 to 30:1 , even more preferably from 2,000:1 to 100:1 and in particular from 1 ,000:1 to 100:1. According to further embodiments, the weight ratio of the component 1) and the component 2) usually is in the range of from 1 :1 to 1 :1000, often from 1 :1 to 1 :100, regularly from 1 :1 to 1 :50, preferably from 1 :1 to 1 :20, more preferably from 1 :1 to 1 :10, even more preferably from 1 :1 to 1 :4 and in particular from 1 :1 to 1 :2. According to further embodiments, the weight ratio of the component 1) and the component 2) usually is in the range of from 10:1 to 1 :20,000, often from 1 :1 to 1 :10,000, regularly from 1 :5 to 1 :5,000, preferably from 1 :10 to 1 :5,000, more preferably from 1 :30 to 1 :2,000, even more preferably from 1 :100 to 1 :2,000 to and in particular from 1 :100 to 1 :1 ,000.

In the ternary mixtures, i.e. compositions comprising the component 1) and component 2) and a compound III (component 3), the weight ratio of component 1) and component 2) depends from the properties of the active substances used, usually it is in the range of from 1 :100 to 100:1 , regularly from 1 :50 to 50:1 , preferably from 1 :20 to 20:1 , more preferably from 1 :10 to 10:1 and in particular from 1 :4 to 4:1 , and the weight ratio of component 1) and component 3) usually it is in the range of from 1 :100 to 100:1 , regularly from 1 :50 to 50:1 , preferably from 1 :20 to 20:1 , more preferably from 1 :10 to 10:1 and in particular from 1 :4 to 4:1. Any further active components are, if desired, added in a ratio of from 20:1 to 1 :20 to the component 1). These ratios are also suitable for mixtures applied by seed treatment.

When mixtures comprising microbial pesticides are employed in crop protection, the application rates range from 1 x 10 6 to 5 x 10 16 (or more) CFU/ha, preferably from 1 x 10 8 to 1 x 10 13 CFU/ha, and even more preferably from 1 x 10 9 to 5 x 10 15 CFU/ha and in particular from 1 x 10 12 to 5 x 10 14 CFU/ha. In the case of nematodes as microbial pesticides (e.g. Steinernema feltiae), the application rates regularly range from 1 x 10 5 to 1 x 10 12 (or more), preferably from 1 x 10 8 to 1 x 10 11 , more preferably from 5 x 10 8 to 1 x 10 10 individuals (e.g. in the form of eggs, juvenile or any other live stages, preferably in an infetive juvenile stage) per ha.

When mixtures comprising microbial pesticides are employed in seed treatment, the application rates generally range from 1 x 10 6 to 1 x 10 12 (or more) CFU/seed, preferably from 1 x 10 6 to 1 x 10 9 CFU/seed. Furthermore, the application rates with respect to seed treatment generally range from 1 x 10 7 to 1 x 10 14 (or more) CFU per 100 kg of seed, preferably from 1 x 10 9 to 1 x 10 12 CFU per 100 kg of seed.

Preference is given to mixtures comprising as component 2) at least one active substance selected from inhibitors of complex III at Q o site in group A), more preferably selected from compounds (A.1.1), (A.1.4), (A.1.8), (A.1.9), (A.1.10), (A.1.12), (A.1.13), (A.1.14), (A.1.17), (A.1.21), (A.1.25), (A.1.34) and (A.1.35); particularly selected from (A.1.1), (A.1.4), (A.1.8), (A.1.9), (A.1.13), (A.1.14), (A.1.17), (A.1.25), (A.1.34) and (A.1.35).

Preference is also given to mixtures comprising as component 2) at least one active substance selected from inhibitors of complex III at Qi site in group A), more preferably selected from compounds (A.2.1), (A.2.3), (A.2.4) and (A.2.6); particularly selected from (A.2.3), (A.2.4) and (A.2.6).

Preference is also given to mixtures comprising as component 2) at least one active substance selected from inhibitors of complex II in group A), more preferably selected from compounds (A.3.2), (A.3.3), (A.3.4), (A.3.7), (A.3.9), (A.3.11), (A.3.12), (A.3.15), (A.3.16), (A.3.17), (A.3.18), (A.3.19), (A.3.20), (A.3.21), (A.3.22), (A.3.23), (A.3.24), (A.3.28), (A.3.31), (A.3.32), (A.3.33), (A.3.34), (A.3.35), (A.3.36), (A.3.37), (A.3.38) and (A.3.39); particularly selected from (A.3.2), (A.3.3), (A.3.4), (A.3.7), (A.3.9), (A.3.12), (A.3.15), (A.3.17), (A.3.19), (A.3.22), (A.3.23), (A.3.24), (A.3.31), (A.3.32), (A.3.33), (A.3.34), (A.3.35), (A.3.36), (A.3.37), (A.3.38) and (A.3.39).

Preference is also given to mixtures comprising as component 2) at least one active substance selected from other respiration inhibitors in group A), more preferably selected from compounds (A.4.5) and (A.4.11); in particular (A.4.11).

Preference is also given to mixtures comprising as component 2) at least one active substance selected from C14 demethylase inhibitors in group B), more preferably selected from compounds (B.1.4), (B.1.5), (B.1.8), (B.1.10), (B.1.11), (B.1.12), (B.1.13), (B.1.17), (B.1.18), (B.1.21), (B.1.22), (B.1.23), (B.1.25), (B.1.26), (B.1.29), (B.1.33), (B.1.34), (B.1.37), (B.1.38), (B.1.43), (B.1.46), (B.1.53), (B.1.54) and (B.1.55); particularly selected from (B.1.5), (B.1.8), (B.1.10), (B.1.17), (B.1.22), (B.1.23), (B.1.25), (B.1.33), (B.1.34), (B.1.37), (B.1.38), (B.1.43) and (B.1.46).

Preference is also given to mixtures comprising as component 2) at least one active substance selected from Delta 14-reductase inhibitors in group B), more preferably selected from compounds (B.2.4), (B.2.5), (B.2.6) and (B.2.8); in particular (B.2.4).

Preference is also given to mixtures comprising as component 2) at least one active substance selected from phenylamides and acyl amino acid fungicides in group C), more preferably selected from compounds (C.1.1), (C.1.2), (C.1.4) and (C.1.5); particularly selected from (C.1.1) and (C.1.4).

Preference is also given to mixtures comprising as component 2) at least one active substance selected from other nucleic acid synthesis inhibitors in group C), more preferably selected from compounds (C.2.6), (C.2.7) and (C.2.8).

Preference is also given to mixtures comprising as component 2) at least one active substance selected from group D), more preferably selected from compounds (D.1.1), (D.1.2), (D.1.5), (D.2.4) and (D.2.6); particularly selected from (D.1.2), (D.1.5) and (D.2.6).

Preference is also given to mixtures comprising as component 2) at least one active substance selected from group E), more preferably selected from compounds (E.1.1), (E.1.3), (E.2.2) and (E.2.3); in particular (E.1.3).

Preference is also given to mixtures comprising as component 2) at least one active substance selected from group F), more preferably selected from compounds (F.1.2), (F.1.4) and (F.1.5).

Preference is also given to mixtures comprising as component 2) at least one active substance selected from group G), more preferably selected from compounds (G.3.1), (G.3.3), (G.3.6), (G.5.1), (G.5.3), (G.5.4), (G.5.5), G.5.6), G.5.7), (G.5.8), (G.5.9), (G.5.10) and (G.5.11); particularly selected from (G.3.1), (G.5.1) and (G.5.3).

Preference is also given to mixtures comprising as component 2) at least one active substance selected from group H), more preferably selected from compounds (H.2.2), (H.2.3), (H.2.5), (H.2.7), (H.2.8), (H.3.2), (H.3.4), (H.3.5), (H.4.9) and (H.4.10); particularly selected from (H.2.2), (H.2.5), (H.3.2), (H.4.9) and (H.4.10).

Preference is also given to mixtures comprising as component 2) at least one active substance selected from group I), more preferably selected from compounds (1.2.2) and (1.2.5).

Preference is also given to mixtures comprising as component 2) at least one active substance selected from group J), more preferably selected from compounds (J.1.2), (J.1.5), (J.1.8), (J.1.11) and (J.1.12); in particular (J.1.5).

Preference is also given to mixtures comprising as component 2) at least one active substance selected from group K), more preferably selected from compounds (K.1.41), (K.1.42), (K.1.44), (K.1.47), (K.1.57), (K.1.58) and (K.1.59); particularly selected from (K.1.41), (K.1.44), (K.1.47), (K.1.57), (K.1.58) and (K.1.59).

Any of the abovmeenetioned mixtures comprises as component 1) preferably a compound I which is explicitely disclosed herein e.g. in the Tables, even more preferably selected from the list of compounds I.1-A-1 to I.1-A-816; compounds I.2-A-1 to I.2-A-816, compounds I.3-A-1 to I.3-A-816 and example compounds 1 to 464.

The biopesticides from group L1) and/or L2) may also have insecticidal, acaricidal, molluscidal, pheromone, nematicidal, plant stress reducing, plant growth regulator, plant growth promoting and/or yield enhancing activity. The biopesticides from group L3) and/or L4) may also have fungicidal, bactericidal, viricidal, plant defense activator, plant stress reducing, plant growth regulator, plant growth promoting and/or yield enhancing activity. The biopesticides from group L5) may also have fungicidal, bactericidal, viricidal, plant defense activator, insecticidal, acaricidal, molluscidal, pheromone and/or nematicidal activity.

The microbial pesticides, in particular those from groups L1), L3) and L5), embrace not only the isolated, pure cultures of the respective microorganism as defined herein, but also its cell- free extract, its suspension in a whole broth culture and a metabolite-containing culture medium or a purified metabolite obtained from a whole broth culture of the microorganism.

Many of these biopesticides have been deposited under deposition numbers mentioned herein (the prefices such as ATCC or DSM refer to the acronym of the respective culture collection, for details see e.g. here: http://www. wfcc.info/ccinfo/collection/by acronym/), are referred to in literature, registered and/or are commercially available: mixtures of Aureobasidium pullulans DSM 14940 and DSM 14941 isolated in 1989 in Konstanz, Germany (e.g. blastospores in Blossom Protect® from bio-ferm GmbH, Austria), Azospirillum brasilense Sp245 originally isolated in wheat reagion of South Brazil (Passo Fundo) at least prior to 1980 (BR 11005; e.g. GELFIX® Gramineas from BASF Agricultural Specialties Ltd., Brazil), A. brasilense strains Ab-V5 and Ab-V6 (e.g. in AzoMax from Novozymes BioAg Produtos papra Agricultura Ltda., Quattro Barras, Brazil or Simbiose-Maiz® from Simbiose-Agro, Brazil; Plant Soil 331 , 413-425, 2010), Bacillus amyloliquefaciens strain AP-188 (NRRL B-50615 and B-50331 ; US 8,445,255); B. amyloliquefaciens ssp. plantarum strains formerly also sometimes referred to as B. subtilis, recently together with B. methylotrophicus, and B. velezensis classified as B. velezensis (Int. J. Syst. Evol. Microbiol. 66, 1212-1217, 2016): B. a. ssp. plantarum or B. velezensis D747 isolated from air in Kikugawa-shi, Japan (US 20130236522 A1 ; FERM BP-8234; e.g. Double Nickel™ 55 WDG from Certis LLC, USA), B. a. ssp. plantarum or B. velezensis FZB24 isolated from soil in Brandenburg, Germany (also called SB3615; DSM 96-2; J. Plant Dis. Prot. 105, 181-197, 1998; e.g. Taegro® from Novozyme Biologicals, Inc., USA), B. a. ssp. plantarum or B. velezensis FZB42 isolated from soil in Brandenburg, Germany (DSM 23117; J. Plant Dis. Prot. 105, 181-197, 1998; e.g. RhizoVital® 42 from AbiTEP GmbH, Germany), B. a. ssp. plantarum or B. velezensis MBI600 isolated from faba bean in Sutton Bonington, Nottinghamshire, U.K. at least before 1988 (also called 1430; NRRL B-50595; US 2012/0149571 A1 ; e.g. Integral® from BASF Corp., USA), B. a. ssp. plantarum or B. velezensis QST-713 isolated from peach orchard in 1995 in California, U.S.A. (NRRL B-21661 ; e.g. Serenade® MAX from Bayer Crop Science LP, USA), B. a. ssp. plantarum or B. velezensis TJ1000 isolated in 1992 in South Dakoda, U.S.A, (also called 1 BE; ATCC BAA-390; CA 2471555 A1 ; e.g. QuickRoots™ from TJ Technologies, Watertown, SD, USA); B. firmus CNCM 1-1582, a variant of parental strain EIP-N1 (CNCM 1-1556) isolated from soil of central plain area of Israel (WO 2009/126473, US 6,406,690; e.g. Votivo® from Bayer CropScience LP, USA), B. pumilus GHA 180 isolated from apple tree rhizosphere in Mexico (IDAC 260707-01 ; e.g. PROMIX® BX from Premier Horticulture, Quebec, Canada), B. pumilus INR-7 otherwise referred to as BU-F22 and BU-F33 isolated at least before 1993 from cucumber infested by Erwinia tracheiphila (NRRL B-50185, NRRL B-50153; US 8,445,255), B. pumilus KFP9F isolated from the rhizosphere of grasses in South Africa at least before 2008 (NRRL B-50754;

WO 2014/029697; e.g. BAC-UP or FUSION-P from BASF Agricultural Specialities (Pty) Ltd., South Africa), B. pumilus QST 2808 was isolated from soil collected in Pohnpei, Federated States of Micronesia, in 1998 (NRRL B-30087; e.g. Sonata® or Ballad® Plus from Bayer Crop Science LP, USA), B. simplex ABU 288 (NRRL B-50304; US 8,445,255), 8. subtilis FB17 also called UD 1022 or UD10-22 isolated from red beet roots in North America (ATCC PTA-11857; System. Appl. Microbiol. 27, 372-379, 2004; US 2010/0260735; WO 2011/109395); 8. thurin- giensis ssp. aizawai ABTS-1857 isolated from soil taken from a lawn in Ephraim, Wisconsin, U.S.A., in 1987 (also called ABG-6346; ATCC SD-1372; e.g. XenTari® from BioFa AG, Munsingen, Germany), 8. t. ssp. kurstaki ABTS-351 identical to HD-1 isolated in 1967 from diseased Pink Bollworm black larvae in Brownsville, Texas, U.S.A. (ATCC SD-1275; e.g. Dipel® DF from Valent BioSciences, IL, USA), B. t. ssp. kurstaki SB4 isolated from E. saccharina larval cadavers (NRRL B-50753; e.g. Beta Pro® from BASF Agricultural Specialities (Pty) Ltd., South Africa), B. t. ssp. tenebrionis NB-176-1 , a mutant of strain NB-125, a wild type strain isolated in 1982 from a dead pupa of the beetle Tenebrio molitor (DSM 5480; EP 585 215 B1 ; e.g. Novodor® from Valent BioSciences, Switzerland), Beauveria bassiana GHA (ATCC 74250; e.g. BotaniGard® 22WGP from Laverlam Int. Corp., USA), 8. bassiana JW-1 (ATCC 74040; e.g. Naturalis® from CBC (Europe) S.r.l., Italy), 8. bassiana PPRI 5339 isolated from the larva of the tortoise beetle Conchyloctenia punctata (NRRL 50757; e.g. BroadBand® from BASF Agricultural Specialities (Pty) Ltd., South Africa), Bradyrhizobium elkanii strains SEMIA 5019 (also called 29W) isolated in Rio de Janeiro, Brazil and SEMI A 587 isolated in 1967 in the State of Rio Grande do Sul, from an area previously inoculated with a North American isolate, and used in commercial inoculants since 1968 (Appl. Environ. Microbiol. 73(8), 2635, 2007; e.g. GELFIX 5 from BASF Agricultural Specialties Ltd., Brazil), B. japonicum 532c isolated from Wisconsin field in U.S.A. (Nitragin 61A152; Can. J. Plant. Sci. 70, 661-666, 1990; e.g. in Rhizoflo®, Histick®, Hicoat® Super from BASF Agricultural Specialties Ltd., Canada), B. japonicum E-109 variant of strain USDA 138 (INTA E109, SEMIA 5085; Eur. J. Soil Biol. 45, 28-35, 2009; Biol. Fertil. Soils 47, 81-89, 2011); B. japonicum strains deposited at SEMIA known from Appl. Environ. Microbiol. 73(8), 2635, 2007: SEMIA 5079 isolated from soil in Cerrados region, Brazil by Embrapa-Cerrados used in commercial inoculants since 1992 (CPAC 15; e.g. GELFIX 5 or ADHERE 60 from BASF Agricultural Specialties Ltd., Brazil), B. japonicum SEMIA 5080 obtained under lab condtions by Embrapa-Cerrados in Brazil and used in commercial inoculants since 1992, being a natural variant of SEMIA 586 (CB1809) originally isolated in U.S.A. (CPAC 7; e.g. GELFIX 5 or ADHERE 60 from BASF Agricultural Specialties Ltd., Brazil); Burkholderia sp. A396 isolated from soil in Nikko, Japan, in 2008 (NRRL B-50319; WO 2013/032693; Marrone Bio Innovations, Inc., USA), Coniothyrium minitans CON/M/91-08 isolated from oilseed rape (WO 1996/021358; DSM 9660; e.g. Contans® WG, Intercept® WG from Bayer CropScience AG, Germany), harpin (alpha-beta) protein (Science 257, 85-88, 1992; e.g. Messenger™ or HARP-N-Tek from Plant Health Care pic, U.K.), Helicoverpa armigera nucleopolyhedrovirus (HearNPV) (J. Invertebrate Pathol. 107, 112-126, 2011; e.g. Helicovex® from Adermatt Biocontrol, Switzerland; Diplomata® from Koppert, Brazil; Vivus® Max from AgBiTech Pty Ltd., Queensland, Australia), Helicoverpa zea single capsid nucleopolyhedrovirus (HzSNPV) (e.g. Gemstar® from Certis LLC, USA), Helicoverpa zea nucleopolyhedrovirus ABA- NPV-U (e.g. Heligen® from AgBiTech Pty Ltd., Queensland, Australia), Heterorhabditis bacteriophora (e.g. Nemasys® G from BASF Agricultural Specialities Limited, UK), Isaria fumosorosea Apopka-97 isolated from mealy bug on gynura in Apopka, Florida, U.S.A. (ATCC 20874; Biocontrol Science Technol. 22(7), 747-761, 2012; e.g. PFR-97™ or PreFeRal® from Certis LLC, USA), Metarhizium anisopliae var. anisopliae F52 also called 275 or V275 isolated from codling moth in Austria (DSM 3884, ATCC 90448; e.g. Met52® Novozymes Biologicals BioAg Group, Canada), Metschnikowia fructicola 277 isolated from grapes in the central part of Israel (US 6,994,849; NRRL Y-30752; e.g. formerly Shemer® from Agrogreen, Israel), Paecilomyces ilacinus 251 isolated from infected nematode eggs in the Philippines (AGAL 89/030550; WO1991/02051; Crop Protection 27, 352-361, 2008; e.g. BioAct®from Bayer CropScience AG, Germany and MeloCon® from Certis, USA), Paenibacillus alvei NAS6G6 isolated from the rhizosphere of grasses in South Africa at least before 2008 (WO 2014/029697; NRRL B-50755; e.g. BAC-UP from BASF Agricultural Specialities (Pty) Ltd., South Africa), Paenibacillus strains isolated from soil samples from a variety of European locations including Germany: P. epiphyticus Lu17015 (WO 2016/020371; DSM 26971), P. polymyxa ssp. plantarum Lu16774 (WO 2016/020371; DSM 26969), P. p. ssp. plantarum strain Lu17007 (WO 2016/020371 ; DSM 26970); Pasteuria nishizawae Pn1 isolated from a soybean field in the mid-2000s in Illinois, U.S.A. (ATCC SD-5833; Federal Register 76(22), 5808, February 2, 2011; e.g. Clariva™ PN from Syngenta Crop Protection, LLC, USA), Penicillium bilaiae (also called P. biiaii) strains ATCC 18309 (= ATCC 74319), ATCC 20851 and/or ATCC 22348 (= ATCC 74318) originally isolated from soil in Alberta, Canada (Fertilizer Res. 39, 97-103, 1994; Can. J. Plant Sci. 78(1), 91-102, 1998; US 5,026,417, WO 1995/017806; e.g. Jump Start®, Provide® from Novozymes Biologicals BioAg Group, Canada), Reynoutria sachalinensis extract (EP 0307510 B1 ; e.g. Regalia® SC from Marrone BioInnovations, Davis, CA, USA or Milsana® from BioFa AG, Germany), Steinernema carpocapsae (e.g. Millenium® from BASF Agricultural Specialities Limited, UK), S. feltiae (e.g. Nemashield® from BioWorks, Inc., USA; Nemasys® from BASF Agricultural Specialities Limited, UK), Streptomyces microflavus NRRL B-50550

(WO 2014/124369; Bayer CropScience, Germany), Trichoderma asperelloides JM41R isolated in South Africa (NRRL 50759; also referred to as T. fertile e.g. Trichoplus® from BASF Agricultural Specialities (Pty) Ltd., South Africa), T. harzianum T-22 also called KRL-AG2 (ATCC 20847; BioControl 57, 687-696, 2012; e.g. Plantshield® from BioWorks Inc., USA or SabrEx™ from Advanced Biological Marketing Inc., Van Wert, OH, USA).

According to another embodiment of the mixtures, the at least one pesticide II is selected from the groups L1) to L5):

L1) Microbial pesticides with fungicidal, bactericidal, viricidal and/or plant defense activator activity: Aureobasidium pullulans DSM 14940 and DSM 14941 (L1.1), Bacillus amylolique- faciens AP-188 (L.1.2), B. amyloliquefaciens ssp. plantarum D747 (L.1.3), B. amylolique- faciens ssp. plantarum FZB24 (L.1.4), B. amyloliquefaciens ssp. plantarum FZB42 (L.1.5), B. amyloliquefaciens ssp. plantarum MBI600 (L.1.6), B. amyloliquefaciens ssp. plantarum QST-713 (L.1.7), B. amyloliquefaciens ssp. plantarum TJ1000 (L.1.8), B. pumilus GB34 (L.1.9), 8. pumilus GHA 180 (L.1.10), 8. pumilus INR-7 (L.1.11), 8. pumilus KFP9F (L.1.12), 8. pumilus QST 2808 (L.1.13), 8. simplex ABU 288 (L.1.14), 8. subtilis FB17 (L.1.15), Coniothyrium minitans CON/M/91-08 (L.1.16), Metschnikowia fructicola NRRL Y-30752 (L.1.17), Paenibacillus alvei NAS6G6 (L.1.18), P. epiphyticus Lu17015 (L.1.25), P. polymyxa ssp. plantarum Lu16774 (L.1.26), P. p. ssp. plantarum strain Lu17007 (L.1.27), Penicillium bilaiae ATCC 22348 (L.1.19), P. bilaiae ATCC 20851 (L.1.20), Penicillium bilaiae ATCC 18309 (L.1.21), Streptomyces microflavus NRRL B-50550 (L.1.22), Trichoderma asperelloides JM41R (L.1.23), T. harzianum T-22 (L.1.24);

L2) Biochemical pesticides with fungicidal, bactericidal, viricidal and/or plant defense activator activity: harpin protein (L.2.1), Reynoutria sachalinensis extract (L.2.2);

L3) Microbial pesticides with insecticidal, acaricidal, molluscidal and/or nematicidal activity: Bacillus firmus 1-1582 (L.3.1); B. thuringiensis ssp. aizawai ABTS- 1857 (L.3.2), B. t. ssp. kurstaki ABTS-351 (L.3.3), B. t. ssp. kurstaki SB4 (L.3.4), 8. t. ssp. tenebrionis NB-176-1 (L.3.5), Beauveria bassiana GHA (L.3.6), 8. bassiana JW-1 (L.3.7), B. bassiana PPRI 5339 (L.3.8), Burkholderia sp. A396 (L.3.9), Helicoverpa armigera nucleopolyhedrovirus (HearNPV) (L.3.10), Helicoverpa zea nucleopolyhedrovirus (HzNPV) ABA-NPV-U (L.3.11), Helicoverpa zea single capsid nucleopolyhedrovirus (HzSNPV) (L.3.12), Heterohabditis bacteriophora (L.3.13), Isaria fumosorosea Apopka-97 (L.3.14), Metarhizium anisopliae var. anisopliae F52 (L.3.15), Paecilomyces lilacinus 251 (L.3.16), Pasteuria nishizawae Pn1 (L.3.17), Steinernema carpocapsae (L.3.18), S. feltiae (L.3.19);

L4) Biochemical pesticides with insecticidal, acaricidal, molluscidal, pheromone and/or nematicidal activity: cis-jasmone (L.4.1), methyl jasmonate (L.4.2), Quillay extract (L.4.3);

L5) Microbial pesticides with plant stress reducing, plant growth regulator, plant growth promoting and/or yield enhancing activity: Azospirillum brasilense Ab-V5 and Ab-V6 (L.5.1), A. brasilense Sp245 (L.5.2), Bradyrhizobium elkanii SEMIA 587 (L.5.3), B. elkanii SEMIA 5019 (L.5.4), B. japonicum 532c (L.5.5), B. japonicum E-109 (L.5.6), B. japonicum SEMIA 5079 (L.5.7), B. japonicum SEMIA 5080 (L.5.8).

The present invention furthermore relates to agrochemical compositions comprising a mixture of at least one compound I (component 1) and at least one biopesticide selected from the group L) (component 2), in particular at least one biopesticide selected from the groups L1) and L2), as described above, and if desired at least one suitable auxiliary.

The present invention furthermore relates to agrochemical compositions comprising a mixture of of at least one compound I (component 1) and at least one biopesticide selected from the group L) (component 2), in particular at least one biopesticide selected from the groups L3) and L4), as described above, and if desired at least one suitable auxiliary.

Preference is also given to mixtures comprising as pesticide II (component 2) a biopesticide selected from the groups L1), L3) and L5), preferably selected from strains denoted above as (L.1.2), (L.1.3), (L.1.4), (L.1.5), (L.1.6), (L.1.7), (L.1.8), (L.1.10), (L.1.11), (L.1.12), (L.1.13), (L.1.14), (L.1.15), (L.1.17), (L.1.18), (L.1.19), (L.1.20), (L.1.21), (L.1.25), (L.1.26), (L.1.27), (L.3.1); (L.3.9), (L.3.16), (L.3.17), (L.5.1), (L.5.2), (L.5.3), (L.5.4), (L.5.5), (L.5.6), (L.5.7), (L.5.8); (L.4.2), and (L.4.1); even more preferably selected from (L.1.2), (L.1.6), (L.1.7), (L.1.8), (L.1.11), (L.1.12), (L.1.13), (L.1.14), (L.1.15), (L.1.18), (L.1.19), (L.1.20), (L.1.21), (L.3.1); (L.3.9), (L.3.16), (L.3.17), (L.5.1), (L.5.2), (L.5.5), (L.5.6); (L.4.2), and (L.4.1). These mixtures are particularly suitable for treatment of propagation materials, i. e. seed treatment purposes and likewise for soil treatment. These seed treatment mixtures are particularly suitable for crops such as cereals, corn and leguminous plants such as soybean.

Preference is also given to mixtures comprising as pesticide II (component 2) a biopesticide selected from the groups L1), L3) and L5), preferably selected from strains denoted above as (L1.1), (L.1.2), (L.1.3), (L.1.6), (L.1.7), (L.1.9), (L.1.11), (L.1.12), (L.1.13), (L.1.14), (L.1.15), (L.1.17), (L.1.18), (L.1.22), (L.1.23), (L.1.24), (L.1.25), (L.1.26), (L.1.27), (L.2.2); (L.3.2), (L.3.3), (L.3.4), (L.3.5), (L.3.6), (L.3.7), (L.3.8), (L.3.10), (L.3.11), (L.3.12), (L.3.13), (L.3.14), (L.3.15), (L.3.18), (L.3.19); (L.4.2), even more preferably selected from (L.1.2), (L.1.7), (L.1.11), (L.1.13), (L.1.14), (L.1.15), (L.1.18), (L.1.23), (L.3.3), (L.3.4), (L.3.6), (L.3.7), (L.3.8), (L.3.10), (L.3.11), (L.3.12), (L.3.15), and (L.4.2). These mixtures are particularly suitable for foliar treatment of cultivated plants, preferably of vegetables, fruits, vines, cereals, corn, and leguminous crops such as soybeans.

The compositions comprising mixtures of active ingredients can be prepared by usual means, e.g. by the means given for the compositions of compounds I.

When living microorganisms, such as pesticides II from groups L1), L3) and L5), form part of the compositions, such compositions can be prepared by usual means (e.g. H.D. Burges: Formulation of Microbial Biopesticides, Springer, 1998; WO 2008/002371 , US 6,955,912, US 5,422,107).

Examples:

Synthetic process

Example 1 : Methyl (2E)-2-[2-[[(E)-3-(2-fluorophenyl)ethylideneamino]oxymethyl] -3-methyl- phenyl]-2-methoxyimino-acetate

Step 1 : 1-(2-Fluorophenyl)ethanone oxime

1-(2-fluorophenyl)ethenone (10 g, 1.0 eq) was taken in methanol (300 ml) and hydroxyl amine hydrochloride (7.54 g, 1.8 eq) was added. Pyridine (33.45 g, 2 eq) was added drop wise at 25 °C. Reaction mixture was stirred at 50 °C for 2 hr. Reaction was monitored using LCMS & TLC. Methanol was evaporated under vacuum. Crude mass was diluted with water (200 ml) and it was extracted with ethyl acetate (3 x 100 ml). Combined organic layer was again washed with water and brine. Organic layer was dried over sodium sulphate and concentrated under vacuum. Crude compound was purified by flash column chromatography. Pure compound was eluted with 0% to 20% ethyl acetate (EtOAc) in heptane. Evaporation of solvent afforded 8 g title compound as white solid (Yield 72%). 1 H NMR 300 MHz, DMSO-d6: 5 11.4 (s ,1 H), 7.46- 7.41 (m, 2 H), 7.27-7.23 (m, 2H), 2.14 (s, 3H).

Step 2: Ethyl (2E)-2-[2-[[(E)-1-(2-fluorophenyl)ethylideneamino]oxymethyl] -3-methyl-phenyl]-2- methoxyimino-acetate (Ex. 2)

1-(2-fluorophenyl)ethanone oxime (0.3 g, 3 eq) was taken in dimethyl formamide (DMF, 5 ml) and CS2CO3 (3.27 g, 2.0 eq) was added. The reaction mixture was stirred for 30 minutes at room temperature (RT; at about 25 °C) and then added methyl (2E)-2-[2-(bromomethyl)-3- methyl-phenyl]-2-methoxyimino-acetate (0.6 g, 3.02 eq). The reaction mixture was stirred at RT for 32 hr and monitored by TLC and LCMS. Reaction was quenched with water (45 ml) and the product was extracted in ethyl acetate (3 x 35 ml). The combined organic layer was washed with brine (50 ml), dried over sodium sulphate and concentrated under vacuum. Crude material was purified by flash chromatography. Pure compound was eluted by using 35-20% EtOAc in heptane. Evaporation of solvent afforded an off-white solid title compound (0.328 g, 45% yield). 1 H NMR (300 MHz, DMSO-d6): 5 7.56 - 7.36 (m, 2H), 7.33 - 7.32 (m, 4H), 7.03 (dd, J = 6.2, 2.8 Hz, 3H), 5.00 (s, 2H), 3.93 (s, 3H), 3.64 (s, 3H), 2.42 (s, 3H), 2.08 (d, J = 2.5 Hz, 3H).

Example 2: (2E)-2-[2-[[(E)-1-(2-fluorophenyl)ethylideneamino]oxymethyl] -3-methyl-phenyl]-2- methoxyimino-N-methyl-acetamide

Methyl (2E)-2-[2-[[(E)-1-(2-fluorophenyl)ethylideneamino]oxymethyl] -3-methyl-phenyl]-2- methoxyimino-acetate (ex. 1 ; 8 g, 1 eq) was taken in THF (80 ml) and methylamine (40% aqueous) solution (16 ml, 2 vol) was added. The reaction mixture was stirred at 25 °C for 5 hr and monitored by TLC and LCMS. Reaction was quenched with water (200 ml) and the product was extracted in ethyl acetate (3 x 150 ml). The combined organic layer was washed with brine (150 ml), dried over sodium sulphate and concentrated under vacuum. Crude material was purified by flash chromatography. Pure compound was eluted by using 30-40% EtOAc in heptane. Evaporation of solvent afforded white solid title compound (7 g, 87.7% yield). 1 H NMR (500 MHz, DMSO-d6): 5 8.20 (q, J = 4.7 Hz, 1 H), 7.44 (ddt, J = 7.8, 5.6, 2.0 Hz, 2H), 7.37 - 7.14 (m, 4H), 6.95 (dd, J = 7.1, 2.0 Hz, 1H), 5.01 (s, 2H), 3.86 (s, 3H), 2.65 (d, J = 4.8 Hz, 3H), 2.42 (s, 3H), 2.09 (d, J = 2.6 Hz, 3H).

Example 3: Methyl (2E)-2-[2-[[(E)-1-(3,5-dichlorophenyl)ethylideneamino]oxymet hyl]-3-methyl- phenyl]-2-methoxyimino-acetate

Step 1: 1-(3,5-dichlorophenyl)ethanone oxime

3-(3,5-Dichlorophenyl)ethanone (3.0 g, 3eq) was taken in methanol (30 ml) and NH2OH (0.735 g, 2 eq) followed by pyridine (3.04 g, 2.5 eq) were added. Reaction mixture was heated to 70 °C and stirred for 3 hr. Reaction was monitored using LCMS & TLC. Solvent was evaporated and the residue was diluted with water (50 ml). The product was extracted in with ethyl acetate (3 x 30 ml). The combined organic layer was washed with brine (50 ml), dried over sodium sulphate and concentrated under vacuum. Crude material was purified by flash chromatography. Pure compound was eluted by using 15-20% EtOAc in heptane. Evaporation of solvent afforded white solid compound 1-(3,5-dichlorophenyl)ethanone oxime (1 g, 92.6% yield).

Step 2: Methyl (2E)-2-[2-[[(E)-1-(3,5-dichlorophenyl)ethylideneamino]oxymet hyl]-3-methyl- phenyl]-2-methoxyimino-acetate

3-(3,5-Dichlorophenyl)ethanone oxime (0.4 g, 1 eq) was taken in acetonitrile (10 ml) and CS2CO3 (1.8 g, 2.5 eq) was added. The reaction mixture was stirred for 30 min at RT and then added methyl (2E)-2-[2-(bromomethyl)-3-methyl-phenyl]-2-methoxyimino-acet ate (0.65 g, 1.05 eq). The reaction mixture was stirred at RT for 3 hr and monitored by TLC and LCMS. Reaction was quenched with water (50 ml) and the product was extracted in ethyl acetate (3 x 30 ml). The combined organic layer was washed with brine (50 ml), dried over sodium sulphate and concentrated under vacuum. Crude material was purified by flash chromatography. Pure compound was eluted by using 20-25% EtOAc in heptane. Evaporation of solvent afforded an off-white solid title compound (0.6 g, 68% yield). 1 H NMR (500 MHz, DMSO-d6): 5 7.66 (t, J = 1.9 Hz, 1 H), 7.61 (d, J = 1.9 Hz, 2H), 7.36 - 7.23 (m, 2H), 7.05 - 6.98 (m, 1 H), 5.04 (s, 2H), 3.91 (s, 3H), 3.70 (s, 3H), 2.43 (s, 3H), 2.30 (s, 3H).

Example 4: (2E)-2-[2-[[(E)-1-(3,5-dichlorophenyl)ethylideneamino]oxymet hyl]-3-methyl-phenyl]-

2-methoxyimino-N-methyl-acetamide

Methyl (2E)-2-[2-[[(E)-3-(3,5-dichlorophenyl)ethylideneamino]oxymet hyl]-3-methyl-phenyl]-2- methoxyimino-acetate (ex. 3; 0.6 g, 1 eq) was taken in THF (6 ml) and methyl amine (40% aq.) solution (1.2 ml, 2v) was added. The reaction mixture was stirred at RT for 3 hr and monitored by TLC and LCMS. Reaction was quenched with water (25 ml) and the product was extracted in ethyl acetate (3 x 20 ml). The combined organic layer was washed with brine (25 ml), dried over sodium sulphate and concentrated under vacuum. Crude material was purified by flash chromatography. Pure compound was eluted by using 40-45% EtOAc in heptane. Evaporation of solvent afforded white solid title compound (example 2, 0.53 g, 85% yield). 1 H NMR (500 MHz, DMSO-d6): 5 8.24 (d, J = 4.8 Hz, 1 H), 7.69 - 7.58 (m, 3H), 7.37 - 7.15 (m, 2H), 6.95 (dd, J = 7.1 , 1.9 Hz, 1 H), 5.05 (s, 2H), 3.86 (s, 3H), 2.68 (d, J = 4.7 Hz, 3H), 2.42 (s, 3H), 2.11 (s, 3H).

Example 5: Methyl (2E)-2-methoxyimino-2-[3-methyl-2-[[(E)-1-(p-tolyl)ethyliden eamino] oxymethyl]phenyl]acetate

Step 1 : 1-(p-tolyl)ethanone oxime

To a solution of 1-(p-tolyl)ethanone (1.0 g, 4.45 mmol, 3 eq.) in methanol (10 mL) was added hydroxylamine hydrochloride (0.77 g, 11.17 mmol, 1.5 eq) followed by addition of sodium acetate (1.82 g, 15 mmol, 2 eq.) at RT under nitrogen atmosphere. Reaction mixture was refluxed for 2 hrs. Reaction was monitored by TLC. Reaction mixture was concentrated on rotavapor. To this crude residue was added water (20 mL) and stirred for 0.5 hr. Solid material filtered and dried to obtain pure title compound (1.1 g, yield 98 %) as white solid. MS: [M + H] + 150.

Step 2: Methyl (2E)-2-methoxyimino-2-[3-methyl-1-[[(E)-3-(p-tolyl)ethyliden eamino] oxymethyl]phenyl]acetate

To a stirred solution of 1-(p-tolyl)ethanone oxime (0.15g, 1.0 mmol, 1 eq) in acetonitrile (2mL) was added CS2CO3 (0.66 g, 2.0 mmol, 2 eq). The reaction mixture was stirred at 25 °C for 30 min. Then, methyl (2E)-2-[2-(bromomethyl)-3-methyl-phenyl]-2-methoxyimino-acet ate (0.33 g, 1.1 mmol, 1.1 eq) was added. The mixture was stirred at 25 °C for 6 h. Reaction was monitored by TLC and LCMS. To this reaction mixture was added water (30 mL) and extracted with EtOAc (3 x 30 mL). Combined organic layer was washed with H2O (2 x 25 mL), followed by brine wash (2 x 20 mL). Organic layer was dried over Na2SO4 and Concentrated to afford crude compound which was further purified by flash column chromatography using 0-20% EtOAc in heptane as the eluent to obtain pure title compound as white solid (0.37 g, Yield 96%). 1 H NMR (500 MHz, chloroform-d): 5 7.42 (d, J = 8.2 Hz, 2H), 7.26 - 7.19 (m, 3H), 7.07 (d, J = 8.0 Hz, 2H), 6.94 (dd, J = 7.2, 1.8 Hz, 2H), 5.03 (s, 2H), 3.94 (s, 3H), 3.70 (s, 3H), 2.41 (s, 3H), 2.27 (s, 3H), 2.06 (s, 3H). MS: [M + H] + 369.

Example 6: (2E)-2-Methoxyimino-N-methyl-2-[3-methyl-2-[[(E)-1-(p-tolyl) ethylidene- amino]oxymethyl]phenyl]acetamide

To a stirred solution of methyl (2E)-2-methoxyimino-2-[3-methyl-1-[[(E)-3-(p-tolyl)- ethylideneamino]oxymethyl]phenyl]acetate in THF (5 mL), methyl amine solution in water (5.0 mL, 40 %) was added at RT. Reaction was continued for 1 hr. Reaction was monitored by TLC. Reaction mixture was evaporated on rotavapor, residue was diluted with EtOAc (20 mL) and washed with 1 N HCI (3 x 20 mL), followed by brine wash (2 x 20 mL). Organic layer was dried over Na2SO4 and Concentrated to afford crude compound which was further purified by flash column chromatography using 0-50% EtOAc in heptane as the eluent to afford pure title compound as white solid (0.200 g, Yield 88%). 1 H NMR (500 MHz, DMSO-cfe): 6 8.20 (d, J = 5.0 Hz, 1H), 7.54 - 7.48 (m, 2H), 7.31 - 7.22 (m, 2H), 7.19 (d, J = 8.0 Hz, 2H), 6.95 (dd, J = 6.9, 2.1 Hz, 1H), 4.99 (s, 2H), 3.86 (s, 3H), 2.69 (d, J = 4.7 Hz, 3H), 2.43 (s, 3H), 2.31 (s, 3H), 2.08 (s, 3H). MS: [M + H] + 368.

Example 7: (2E)-2-methoxyimino-N-methyl-2-[3-methyl-2-[[(E)-[3,3,3-trif luoro-1-[3-(tri- fluoromethyl)phenyl]propylidene]amino]oxymethyl]phenyl]aceta mide

3,3,3-Trifluoro-1-[3-(trifluoromethyl)phenyl]propan-1-one (0.5 g, 1 eq), prepared in analogy to prior art process (Chem Commun, 2016, 52, 13668-13670), was taken in THF (10 ml) and (2E)- 2-[2-(aminooxymethyl)-3-methyl-phenyl]-2-methoxyimino-/\/-me thyl-acetamide (0.98 g, 2 eq) followed by Ti(OEt) 4 (1.33g, 3 eq) were added. The mixture was heated to 70°C and stirred for 12 hr. The reaction was monitored by TLC and LCMS. The reaction was quenched with water (25 ml) followed by EtOAc (25 ml). The emulsion formed was filtered through celite and washed with EtOAc (50 ml). The layers were separated and the aequous layer was extracted in EtOAc (2 x 25ml). The combined organic layer was washed with brine (25 ml), dried over sodium sulphate and concentrated under vacuum. Crude material was purified by flash chromatography. Pure compound was eluted by using 40-45% EtOAc in heptane. Evaporation of solvent followed by crystallization in heptane afforded an off-white solid (0.34g, 35% yield). 1 H NMR (500 MHz, DMSO-d6): 5 8.27 (q, J = 4.7 Hz, 1 H), 8.07 - 8.00 (m, 2H), 7.85 - 7.79 (m, 1H), 7.68 (t, J = 7.8 Hz, 1H), 7.35 - 7.24 (m, 2H), 6.97 (dd, J = 7.3, 1.7 Hz, 1 H), 5.12 (s, 2H), 4.03-3.96 (q, J = 10 Hz, 2H), 3.86 (s, 3H), 2.67 (d, J = 4.7 Hz, 3H), 2.43 (s, 3H). The following examples in Table S were synthesized as per general Scheme 1 described above (except Ex. 7 and 212 which were synthesized as per scheme 2) and characterized by LCMS as described in Table L.

Table L: LCMS Methods

Used LCMS Method in Table S to be found in Column LCMS.

Table S:

Biological studies

Green House and detached leaf tests

The compound was dissolved in a mixture of acetone and/or dimethylsulfoxide and the wetting agent/emulsifier Wettol, which is based on ethoxylated alkylphenoles, in a ratio (volume) solvent-emulsifier of 99 to 1 to give a total volume of 5 ml. Subsequently, water was added to total volume of 100 ml. This stock solution was then diluted with the described solvent- emulsifier-water mixture to the final concentration given in the table below.

Use example 1. Curative control of soybean rust on soybeans caused by Phakopsora pachyrhizi (PHAKPA K4)

Leaves of potted soybean seedlings were inoculated with spores of Phakopsora pachyrhizi. The strain used contains the amino acid substitution F129L in the mitochondrial cytochrome b protein conferring resistance to Qo inhibitors. To ensure the success of the artificial inoculation, the plants were transferred to a humid chamber with a relative humidity of about 95% and 20 to 24 °C for 24 hr. The next day the plants were cultivated for 3 days in a greenhouse chamber at 23 to 27 °C and a relative humidity between 60 and 80 %. Then the plants were sprayed to runoff with the previously described spray solution, containing the concentration of active ingredient or their mixture as described below. The plants were allowed to air-dry. Then the trial plants were cultivated for up to 14 days in a greenhouse chamber at 23 to 27 °C and a relative humidity between 60 and 80 %. The extent of fungal attack on the leaves was visually assessed as % diseased leaf area, the disease level of untreated controls was usually higher than 85 %.

Use example 2. Protective control of soybean rust on soybeans caused by Phakopsora pachyrhizi (PHAKPA P2)

Leaves of potted soybean seedlings were sprayed to run-off with the previously described spray solution, containing the concentration of active ingredient or their mixture as described below. The plants were allowed to air-dry. The trial plants were cultivated for 2 days in a greenhouse chamber at 23-27 °C and a relative humidity between 60 and 80 %. Then the plants were inoculated with spores of Phakopsora pachyrhizi. The strain used contains the amino acid substitution F129L in the mitochondrial cytochrome b protein conferring resistance to Qo inhibitors. To ensure the success the artificial inoculation, the plants were transferred to a humid chamber with a relative humidity of about 95 % and 20 to 24 °C for 24 hr. The trial plants were cultivated for up to 14 days in a greenhouse chamber at 23 to 27 °C and a relative humidity between 60 and 80 %. The extent of fungal attack on the leaves was visually assessed as % diseased leaf area, the disease level of untreated controls was usually higher than 85 %.

Use example 3. Protective control of soybean rust on soybeans caused by Phakopsora pachyrhizi (PHAKPA P6)

Leaves of potted soybean seedlings were sprayed to run-off with the previously described spray solution, containing the concentration of active ingredient as described below. The plants were allowed to air-dry. The trial plants were cultivated for six days in a greenhouse chamber at 23-27 °C and a relative humidity between 60 and 80 %. Then the plants were inoculated with spores of Phakopsora pachyrhizi. The strain used contains the amino acid substitution F129L in the mitochondrial cytochrome b protein conferring resistance to Qo inhibitors. To ensure the success the artificial inoculation, the plants were transferred to a humid chamber with a relative humidity of about 95 % and 23 to 27 °C for 24 hr. The trial plants were cultivated for up to 14 days in a greenhouse chamber at 23 to 27 °C and a relative humidity between 60 and 80 %. The extent of fungal attack on the leaves was visually assessed as % diseased leaf area, the disease level of untreated controls was usually higher than 85 %.

Use example 4. Protective control of soybean rust on detached soybean leaves caused by Phakopsora pachyrhizi (PHAKPA P1 DL)

Leaves of potted soybean seedlings were sprayed to run-off with the previously described spray solution, containing the concentration of active ingredient as described below. The plants were left for drying in a green house chamber at 20 °C and 14 hours lightning over night. The next day, leaves were harvested and placed on water agar plates. Subsequently, the leaves were inoculated with spores of Phakopsora pachyrhizi. Two different isolates were used: one being sensitive to Qo inhibitors (wt); and one which contains the amino acid substitution F129L in the mitochondrial cytochrome b protein conferring resistance to Qo inhibitors (F129L). Inoculated leaves were incubated for 16 to 24 h at room temperature in a dark dust chamber, followed by incubation for 2 to 3 weeks in an incubator at 20 °C and 12 hours light/day. The extent of fungal attack on the leaves was visually assessed as % diseased leaf area.

Micro titer plate tests

The active compounds were formulated separately as a stock solution having a concentration of 10,000 ppm in dimethyl sulfoxide. The stock solutions were mixed according to the ratio, pipetted onto a micro titer plate (MTP) and diluted with water to the stated concentrations.

After addition of the respective spore suspension as indicated in the different use examples below, plates were placed in a water vapor-saturated chamber at a temperature of 18°C. Using an absorption photometer, the MTPs were measured at 405 nm 7 days after the inoculation. The measured parameters were compared to the growth of the active compound-free control variant (100%) and the fungus-free blank value to determine the relative growth in % of the pathogens in the respective active compounds.

Use example 5. Activity against Pyricularia oryzae causing rice blast (PYRIOR)

A spore suspension of Pyricularia oryzae in an aqueous biomalt or yeast-bactopeptone- glycerine or DOB solution was used.

Use example 6. Activity against Septoria tritici causing leaf blotch on wheat (SEPTTR)

A spore suspension of Septoria tritici in an aqueous biomalt or yeast-bactopeptone-glycerine or DOB solution was used.

Use example 7. Activity against Colletotrichum orbiculare causing anthracnose (COLLLA) A spore suspension of Colletotrichum orbiculare in an aqueous 2% malt solution was used. Use example 8. Activity against Leptosphaeria nodorum causing wheat leaf spots (LEPTNO) A spore suspension of Leptosphaeria nodorum in an aqueous biomalt or yeast- bactopeptone-glycerine or DOB solution was used.

Use example 9. Activity against Alternaria solani causing early blight (ALTESO, wt and F129L)

Two different spore suspensions of Alternaria solani in an aqueous biomalt or yeast-bacto- peptone-glycerine or DOB solution were used: a sensitive wild-type isolate (wt) and a Qo inhibitor-resistant isolate containing the amino acid substitution F129L in the mitochondrial cytochrome b protein conferring resistance to Qo inhibitors (F129L).

Use example 10. Activity against Pyrenophora teres causing net blotch on barley (PYRNTE, wt and F129L)

Two different spore suspensions of Pyrenophora teres in an aqueous biomalt or yeast-bacto- peptone-glycerine or DOB solution were used: a sensitive wild-type isolate (wt) and a Qo inhibitor-resistant isolate containing the amino acid substitution F129L in the mitochondrial cytochrome b protein conferring resistance to Qo inhibitors (F129L).

Use example 11. Activity against Cercospora sojina causing frogeye leaf spot of soybeans (CERCSO)

A spore suspension of Cercospora sojina in an aqueous biomalt or yeast-bactopeptone- glycerine or DOB solution was then added.

Use example 12. Activity against Microdochium nivale causing snow mould (MONGNI)

A spore suspension of Microdochium nivale in an aqueous biomalt or yeast-bactopeptone- glycerine or DOB solution was used.

The results of the abovementioned use examples are given in the following Tables.

The test results in Tables 1 and C1 to C4 below are given for the control of phytopathogenic fungi containing the amino acid substitution F129L in the mitochondrial cytochrome b protein conferring resistance to Qo inhibitors.

Table 1:

Comparative trials Tabled:

Table C2:

Table C3:

Table C4:

The results in Tables C1 to C4 show that the specific substituent at position R 3 improves the fungicidal activity against phytopathogenic fungi containing the amino acid substitution F129L in the mitochondrial cytochrome b protein conferring resistance to Qo inhibitors compared to compounds where the position R 3 is unsubstituted.

Table C5:

Table C6a:

Table C6b:

The results in Tables C5 to C6b show that the compounds to the present invention significantly improve the fungicidal activity against phytopathogenic fungi containing the amino acid substitution F129L in the mitochondrial cytochrome b protein conferring resistance to Qo inhibitors compared to the use of a compound disclosed in WO 2017/157923.

Table C7a:

Table C7b: Table C8a:

Table C8b:

The results in Table C7a to C8b show that the specific substituent R a of the terminal phenyl improves the fungicidal activity against phytopathogenic fungi compared to compounds from the prior art.

Table C9:

Table C10: Tabled 1a: Tabled 1b:

Table C12:

Table C13:

Table C14: Table C15a:

Table C15b:

Table C16a:

Table C16b:

Table C17:

Table C18:

The result in Tables C9 to C18 show that the specific substituent R 4 improves the fungicidal activity against phytopathogenic fungi compared to compounds from the prior art.