Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
WEB FRAME
Document Type and Number:
WIPO Patent Application WO/2013/166553
Kind Code:
A1
Abstract:
The web frame is a bonded assembly of panels and porous blanket layers, separated by an arrangement of isolated spacers. The panels and spacers are covered with a bonding means. A coating covers inner surfaces of the panels and spacers. The porous blanket is compressed and pinned between these panels, by spacers that are arranged as isolated nodes or columns The spacers have sharpened ends that penetrate the blanket and connect with the opposing panel. The web frame assembly provides thermal and sound insulation for buildings and other solid objects. These web frames are lightweight, durable, and permeable. Capillaries and passages throughout the panels and fibres of the blanket allow passage of moisture and air, thereby assisting in the management of condensation within the web frame.

Inventors:
BARR OWEN DEREK (AU)
Application Number:
PCT/AU2013/000476
Publication Date:
November 14, 2013
Filing Date:
May 10, 2013
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
BARR OWEN DEREK (AU)
International Classes:
E04B2/90; E04C2/34
Domestic Patent References:
WO2010009713A22010-01-28
Foreign References:
US2256961A1941-09-23
US4761928A1988-08-09
US5060441A1991-10-29
Download PDF:
Claims:
Claims:

1. The web frame is an assembly of stacked, bonded materials for application to a building or other solid object, the web frame comprising: a durable, resilient outer panel bonded to a web-sandwich, wherein the perimeter of the outer panel and the perimeter of the web-sandwich being coextensive, and wherein the web frame comprises a singular or plurality of web-sandwiches, each web-sandwich being a layered, bonded assembly consisting of an inner panel, a blanket layer confined within a defined zone, surface coatings, a means bonding, and spacers between panels, and wherein each web-sandwich is bonded to and positioned coextensively with an adjacent web-sandwich, wherein the perimeters of adjacent web- sandwiches are coextensive, and wherein each web-sandwich comprises:

(a) an inner panel that is separated from and parallel to an opposing panel by spacers within a defined zone, wherein the inner panel being flexible, durable and resilient, wherein the inner panel is selected from a group of panel configurations comprising:

(i) a formed panel that has spacer-nodes formed on the panel,

wherein one or more of the faces of the panel protrude in an assembly of nodes that are separated from each other; and

(ii) a planar panel or sheet;

(b) a defined zone or space confined between opposing panels;

(c) a blanket layer confined within a defined zone between opposing panels, wherein the blanket layer is pinned and compressed between these opposing panels, wherein the perimeter of the blanket layer is coextensive with the perimeter of the opposing panels, wherein the blanket layer is resilient, flexible and porous, having voids and passages throughout, and wherein the blanket layer is selected from one or more than one of the group of the materials comprising:

(i) bulk insulation;

(ii) woven fabric;

(Hi) non-woven fabric or batt; and

(iv) multi-layer mesh;

(d) independent spacers made from durable, resilient materials, arranged in a formation where each spacer is separated from each other in a plane parallel to an inner panel, wherein the spacers pin the blanket to adjacent panels and separate opposing panels, wherein these spacers connect with opposing panels, and wherein the spacers are selected from a group of configurations comprising:

(i) spacer-nodes that are formed within a surface or surfaces of an inner panel and protrude from that surface; and

(ii) spacer-columns that are independent shapes of materials not formed with a panel and are placed between opposing panels;

(e) a surface covering over the inner surfaces of all panels and spacer-nodes, wherein the perimeter of the surface covering is coextensive with the perimeter of the adjacent panels;

(f) a bonding layer or means bonding between each panel and the adjacent surface covering; and

(g) a bonding layer or means bonding between each panel and adjacent spacers.

2. A web frame as claimed in claim 1 , wherein fine capillaries penetrate throughout each inner panel (a) to allow passage of moisture and air through each inner panel, wherein the diameter of a typical capillary is in the range of 0.01mm to 2mm, but preferably 0.02mm.

3. A web frame as claimed in claim 1 , wherein fine capillaries penetrate throughout each outer panel to allow passage of moisture and air through the outer panel, wherein the diameter of a typical capillary is in the range of 0.01mm to 2mm, but preferably 0.02mm.

4. A web frame as claimed in claim 1 , wherein fine capillaries penetrate throughout the surface coverings (e) to allow passage of moisture and air through the surface coverings, wherein the diameter of a typical capillary is in the range of 0.01 mm to 2mm, but preferably 0.02mm.

5. A web frame as claimed in claim 1 , wherein an arrangement of isolated spacer- nodes (d)(i) being separated from each other are formed on the inner face or faces of an inner panel, wherein these nodes (d)(i) protrude from an inner panel (a) or panels and separate opposing panels, and wherein these spacer-nodes pin the blanket (c) between opposing panels.

6. A web frame as claimed in claim 1 , wherein an arrangement of isolated spacer- columns (d)(ii) being separated from each other, wherein these spacer columns (d)(ii) separate opposing panels, and wherein these spacer columns pin the blanket (c) between opposing panels.

7. A web frame as claimed in claim 1 , wherein the isolated spacer-nodes (d)(i)

protrude a distance between 2mm to 50mm, but preferably 20mm.

8. A web frame as claimed in claim 1 , wherein the isolated spacer-columns (d)(ii) have a length between 2mm and 50mm perpendicular to adjacent panels, wherein the spacer-columns (d)(ii) are preferably 20mm long.

9. A web frame as claimed in claim 1 , wherein the isolated spacer-nodes (d)(i) have a width across each node, wherein the width being between 2mm and 50mm, but preferably 10mm.

10. A web frame as claimed in claim 1 , wherein the isolated spacer-columns (d)(ii) have a width across each spacer-column, the width being between 2mm and 50mm, but preferably 10mm.

11. A web frame as claimed in claim 5, wherein an arrangement of isolated nodes are formed on the inner face or faces of an inner panel or panels, and wherein the nodes are arranged in a grid pattern of between 20mm x 20mm space between nodes and 200mm x 200mm space between nodes.

12. A web frame as claimed in claim 11 , wherein an arrangement of isolated nodes are formed on the inner face or faces of an inner panel or panels, and wherein the nodes are arranged in a grid pattern of 50mm x 50mm space between nodes.

13. A web frame as claimed in claim 6, wherein an arrangement of isolated spacer- columns separate opposing inner surfaces of panels, and wherein the spacer columns are arranged in a grid pattern of between 20mm x 20mm space between columns and 200mm x 200mm space between columns.

14. A web frame as claimed in claim 13, wherein an arrangement of isolated spacer- columns separate opposing inner surfaces of panels, and wherein the spacer- columns are arranged in a grid pattern of 50mm x 50mm space between columns.

15. A web frame as claimed in claims 1 and 5, wherein the spacer-nodes (d) have an end tip sharpened to penetrate the blanket (c), wherein the sharpened tip of the node assists the connection between each spacer-node (d) and the opposing, panel.

16. A web frame as claimed in claims 1 and 6, wherein the spacer-columns (d) have one or more than one outer end sharpened to penetrate the blanket (c), wherein the column's sharpened end or ends assist the connection between each spacer- column and the opposing panel or panels.

17. A web frame as claimed in claims 1 and 5, wherein the spacer-nodes (d)(i) are separated from each other, wherein the spacer-nodes are selected from one or more than one of the group comprising:

(i) cylinders;

(ii) spheres;

(iii) balls;

(iv) cones;

(v) rings; and

(vi) blocks. 8. A web frame as claimed in claims 1 and 5, wherein the spacer-columns (d)(ii) are separated from each other, wherein the spacer-columns are selected from one or more than one of the group comprising:

(i) cylinders;

(ii) spheres;

(iii) balls;

(iv) cones; (v) rings; and

(vi) blocks.

19. A web frame as claimed in claim 1 , wherein the resilient, flexible, porous blanket layer (c) is compressed between opposing panels, wherein the compressed thickness of the blanket layer is in the range of 2mm to 50mm but preferably 20mm.

20. A web frame as claimed in claims 1 and 19, wherein the blanket layer (c)

consists of a porous material having spaces between strands and openings in the passages of the blanket layer of a range of 0.1mm and 2mm, but preferably 0.2mm.

21. A web frame as claimed in claim 1 , wherein material for the surface covering (e) is selected from any one or more than one of the group of materials comprising: (i) metallic reflective film or foil; (ii) metallic reflective coating or paint; (iii) waterproof coating; and (iv) a fire-retarding coating.

22. A web frame as claimed in claim 1 , wherein material for the outer panel is

selected from any one or more than one of the group of materials comprising:

(i) reinforced concrete;

(ii) autoclaved aerated concrete;

(iii) polyurethane;

(iv) polystyrene;

(v) polypropylene;

(vi) plywood;

(vii) fibre cement;

(viii) metal sheeting;

(ix) particle board;

(x) cardboard; and

(xi) timber.

23. A web frame as claimed in claim 1 , wherein the outer panel is 2mm to 200mm thick.

24. A web frame as claimed in claim 23, wherein the outer panel is 5mm to 20mm thick.

25. A web frame as claimed in claim 1 , wherein material for an inner panel (a) is selected from any one or more than one of the group of materials comprising:

(i) reinforced concrete;

(ii) autoclaved aerated concrete;

(iii) polyurethane;

(iv) polystyrene;

(v) polypropylene;

(vi) plywood;

(vii) fibre cement;

(viii) metal sheeting;

(ix) particle board;

(x) cardboard; and

(xi) timber.

26. A web frame as claimed in claims 1 , wherein an inner panel (a) is 2mm to 150mm thick.

27. A web frame as claimed in claims 21 , wherein an inner panel (a) is 5mm to 20mm thick.

28. A web frame as claimed in claim 1 , wherein further a durable, permeable, flexible, weatherproof, fire-retarding, thermal-reflective cover-sheet is attached to the web frame and extended beyond the perimeter of the web frame, wherein the extended portion of the cover-sheet is folded over and attached to the exposed edges of the web frame, wherein the cover-sheet allows a passage of moisture yet reduces access of weather, pollution and thermal fluctuations through the exposed edges of the web frame.

29. A method of forming a web frame as defined in any one or more than one of claims 1 to 27 comprising: an outer panel, a defined space, an inner panel or panels, a blanket layer or layers, isolated spacers, surface coverings, means bonding.

30. A method defined in claim 29 further comprising: placing a bonding means onto inner surfaces of panels and spacer-nodes.

31. A method defined in claim 30 further comprising: placing a covering layer onto inner surfaces of panels and spacer-nodes.

32. A method defined in claim 31 further comprising: placing a bonding means on both ends of spacer-columns and the tips of spacer-nodes.

33. A method defined in claim 32 further comprising: placing the blunt end of the spacer-columns in an assembly onto an inner panel or panels, wherein the spacer- columns abut and adhere to the inner panel or panels.

34. A method defined in claim 33 further comprising: placing a blanket layer or layers onto the sharpened ends of the spacers, wherein the blanket layer is confined between and coextensive with opposing panels.

35. A method defined in claim 34 further comprising: pinning a blanket layer between opposing panels, wherein the sharpened ends of the spacers penetrate the blanket.

36. A method defined in claim 35 further comprising: pressing the opposing panels and blanket together, wherein the sharpened ends of the spacers connect with the opposing panel.

37. A method defined in claim 36 further comprising: compressing together items defined in claim 29 to form a web frame.

38. A method defined in claims 28 and 37 further comprising: attaching a durable, permeable, flexible, weatherproof, fire-retarding, thermal-reflective cover-sheet to the web frame, wherein the cover-sheet is extended beyond the perimeter of the web frame.

39. A method as defined in claim 38 further comprising: folding the extended portion of the cover-sheet over the exposed edges around the perimeter of the web frame.

40. A method as defined in claim 39 further comprising: attaching the extended

portion of the cover-sheet over the exposed edges around the perimeter of the web frame.

Description:
Title of Invention: Web frame Technical Field:

[0001] The invention relates to a multi layer web frame that attaches to a wall, floor, ceiling or roof of a building or solid object. The invention provides thermal and sound insulation while assisting the management of condensation within the frame. The invention also relates to a method of assembling the items that make the multi-layer web frame.

Background Art:

[0002] It is known to those who are familiar with frames and panels applied to buildings as cladding, lining or cavity panels, that these panels have a protective covering which seals the panels from water. However such sealants create an impervious surface which prevents moisture from escaping from within or passing through the panels. Absence of capillaries through these panels prevents the panel from breathing, resulting in an accumulation of moisture.

[0003] In current art, panels and impervious insulation assemblies are placed within wall cavities where condensation accumulates undetected in the early life of the building. Consequently, the trapped condensation causes dampness in the adjacent frames leading to building deterioration.

[0004] Accumulation of condensation also provides moisture for moss and « mildew to grow. These growths are considered major health risks to inhabitants of buildings. To compensate for this moisture accumulation, existing art includes are a number of add-on processes that include the creation of additional escape channels, using battens and furring members behind the panels. These additional processes require skilled labour, project time and costs. These add-on channels are subject to blockage from construction material and waste.

[0005] It is known to those who are familiar in the art of covering buildings and other objects that materials should be easy to handle. However, many of these existing panel systems are heavy, requiring expensive lifting apparatus to apply them to a building.

[0006] Existing composite panel systems that use insulation layers between panels, fail to provide sufficient passages within the assembly for air or moisture to pass. This lack of ventilation causes condensation.

[0007] Existing insulation systems place a " metallic reflective film within a wall cavity to reflect heat back towards the cavity. In such circumstances, the air in the cavity gains heat which is reflected back into the outer wall material -the main source of heat initially. This outer wall material in turn radiates heat back into the cavity. This heat compounding process continues with a resulting heat gain in the cavity air, which has no ventilation. This whole process illustrates the inadequate insulation of such art.

[0008] Existing bulk insulation products are often poorly supported within existing insulating systems. The lack of adequate and enduring support of the bulk insulation results in the fibres sagging; which eventually leaves a thick collapsed layer near the base of the panel and thin layer of bulk insulation near the top of the panel. The thin layer has considerably reduced capacity of insulation compared with the original capacity, leading to reduced heat and sound insulation after an indefinite period.

[0009] Any discussion of documents, acts, materials, devices, articles or the like which has been included in the present specification is solely for the purpose of providing a context for the present invention. It is not to be taken as an admission that any or all of these matters form part of the prior art base or were common general knowledge in the field relevant to the present invention as it existed before the priority date of each claim of this application.

Summary of the invention:

[0010] The invention describes a web frame which consists of an assembly of materials that provide thermal and sound insulation, and provide passages for moisture and air to permeate. The web frame has an outer panel bonded coextensively to a first web-sandwich.

[0011] In a further embodiment of the web frame, an outer panel is bonded coextensively to a first web-sandwich, wherein the first web-sandwich is bonded coextensively to one or more web-sandwiches in series. Each web-sandwich comprises an inner panel, means bonding, surface coatings on the inner surfaces of the panels, an assembly of spacer items that separate opposing panels, and a blanket layer confined to a finite space between opposing panels.

[0012] A blanket layer is pressed between opposing panels, pinned to the opposing panel by an assembly of spacer items, which prevent the blanket layer from sagging.

[0013] The spacer items have sharpened ends that penetrate the blanket layer thereby obtaining a positive connection between spacer items and the opposing panel.

[0014] The spaces between strands and openings within the porous blanket layer provides a drainage passage within the blanket layer that allows moisture to pass through the web frame. The space ranges from 0.01 mm to 2mm, but preferably 0.02mm space. [0015] In one embodiment of a web-sandwich the blanket layer is an open- weaved bulk insulation.

[0016] In a further embodiment of a web-sandwich the blanket layer is a woven fabric.

[0017] In a further embodiment of a web-sandwich the blanket layer is a non- woven fabric or batt with openings throughout the blanket layer.

[0018] In a further embodiment of a web-sandwich the blanket layer is a multi- layered mesh.

[00 9] The inner surfaces of all panels are bonded to and covered with a coating or film, being selected from one or more than one of the following group:

(i) metallic reflective film;

(ii) metallic reflective coating;

(iii) weatherproof coating; and

(iv) fire-retardant coating.

[0020] In one particular embodiment of the web frame, the inner surfaces of the panels are coated with metallic reflective coating, which provides thermal insulation by reflection. The limited amount of heat emitted through these reflective surfaces heats the air in the confined space between panels, wherein warm air dissipates through the passages of the adjacent porous blanket.

[0021 ] In a further embodiment of the invention, fine capillaries exist throughout the panels and surface coverings, the capillaries providing passages through which air and moisture may pass. [0022] In a further embodiment of the invention the panels, spacer items, means bonding, surface coverings and blanket layers are selected from a group of lightweight materials, and assembled to form a lightweight web frame. This lightweight web frame is easy to handle, and reduces application costs

[0023] In a further application of the invention, the web frame can be applied to a wall, facade, ceiling, floor, or a roof.

[0024] In further application of the invention, the web frame functions as a structural, stand alone wall.

[0025] The outer panel is made from materials that are durable and resilient and selected from one or more than one of a group of materials comprising:

(·) reinforced concrete;

(ii) autoclaved aerated concrete;

(iii) polyurethane;

(iv) polystyrene;

(v) polypropylene;

(vi) plywood;

(vii) fibre cement;

(viii) metal sheeting;

(ix) particle board;

(x) cardboard; and

(xi) timber.

[0026] The outer panel is typically 2mm to 200mm thick, and most preferably 5mm to 20mm thick. [0027] The inner panels are made from materials that are durable, resilient and flexible, that are materials selected from one or more than one of a group comprising:

(i) reinforced concrete;

00 autoclaved aerated concrete;

(iii) polyurethane;

(iv) polystyrene;

(v) polypropylene;

(vi) plywood;

(vii) fibre cement;

(viii) metal sheeting;

(ix) particle board;

(x) cardboard; and

(xi) timber

[0028] The inner panels are typically 2mm to 150mm thick, and most preferably 5mm to 20mm thick.

[0029] The opposing panels are spaced apart by a series of spacer-nodes that are arranged in an assembly of spacer items, wherein these spacer-nodes are independent and separated. The separation of these spacer-nodes is typically in a range from 20mm to 200mm, and most preferably 50mm separation.

[0030] The spacer-nodes protrude from the adjacent inner panel on which they are; formed. The node protrusion dimension ranges from 2mm to 50mm, but typically protrude 20mm.

[0031] In another configuration, the opposing panels are spaced apart by a series of spacer-columns arranged in such an assembly that these independent spacer- columns are separated from each other. The separation between these spacer-columns is typically in a range from 20mm to 200mm, and most preferably 50mm separation.

[0032] The spacer-columns butt onto and are positioned between opposing panels, the spacer-columns each being isolated items not formed with any panel. The spacer-column length ranges from 2mm to 50mm, but typically 20mm.

[0033] The blanket layer is confined to a defined space between opposing panels. The blanket layer is compressed to a thickness ranging from 2mm to 50mm, but typically 20mm thick.

[0034] The web frame has a cover-sheet attached to its outer edges, around the perimeter of the web frame. The cover-sheet is made from material that is durable, flexible, weatherproof, fire-retarding and thermally reflective.

[0035] The cover-sheet extends beyond the perimeter of the web frame, wherein the extended portion of the cover-sheet is folded over and attached to the outer edges of the web frame around the perimeter.

[0036] The cover-sheet protects the outer edges of the web frame from access of moisture, pollution and external heat.

[0037] It should be understood that words used in this application have the following meaning:

(i) web-sandwich, means a laminate of a panel, blanket, spacers, and surface coverings bonded together coextensively to create a compressed sandwich of defined building items;

(ii) web frame, means an assembly of an outer panel bonded to a web-sandwich that may be further bonded to another web-sandwich to create a frame; (iii) nodes, means material that is formed on the surface of an inner panel and protrudes from the face of the panel, wherein the node acts as a spacer between opposing panels; wherein the node is separated from adjacent nodes, and may have a variety of shapes;

(iv) spacer-columns are isolated items of material not formed with any panel, wherein the spacer-columns are made in a variety of shapes and separate opposing panels;

(v) capillaries, means the fine air passages throughout a material;

. (vi) Passages, are finite openings throughout the blanket layers that permit air and moisture to permeate;

(vii) Cover-sheets, are defined as sheets or webbing of a flexible, resilient

permeable material that extends from the web frame and folds over to cover the outer edges of the web frame.

Brief Description of the Drawings:

[0038] Specific embodiments of the invention will now be described by example only and with reference to the accompanying drawings in which:

Fig. I shows a first embodiment of a web frame with a web-sandwich having a formed inner panel;

Fig II shows a second embodiment of a web frame with an alternative type of web- sandwich having a planar inner panel, and spacer-columns;

Fig. Ill shows a third embodiment of a web frame formed with two types of web- sandwich, one with a formed inner panel the other with a planar panel and spacer- columns;

Fig. IV shows a fourth embodiment of a web frame formed with two types of web- sandwiches having capillaries throughout; ,

Fig. V shows a series of shapes that describe the spacers; and

Fig. VI shows a cover-sheet that wraps over the exposed edges of a web frame. Detailed Description of a Preferred Embodiment:

[0039] Referring to Fig. I wherein web frame 23 comprising an outer panel 10 whose thickness ranges between 2mm and 200mm, and in the particular embodiment the outer panel 10 is bonded coextensively to a web-sandwich 22 comprising an outer panel 11 , a defined open zone 13 in which a blanket layer 14 is confined, with spacer- nodes 15, surface covering 17 and means bonding 18.

[0040] The surface covering 17 is bonded to all inner surfaces by a bonding means 18. The blanket 14 is pinned and compressed between the outer panel 10 and the inner panel 11 by means of an assembly of spacer-nodes 15 arranged as isolated nodes separate from each other and formed on the surface of the inner panel 11.

[0041 ] The blanket layer 14 is made of one or more than one of a selection of materials that are porous, flexible, durable, and resilient.

[0042] The thickness of the compressed blanket 14 ranges between 2mm and 50mm, but preferably 20mm.

[0043] The spacer nodes 15 have sharpened tips 20 that penetrate the blanket 14 and contact the opposing panel. The sharpened tips 20 of the spacer-nodes 15 have bonding means 19 at each tip to bond the spacer-node 15 to the outer panel 10.

[0044] The blanket 14 consists of a porous material with voids and passages 24 between fibres and strands of the blanket layer 14, wherein these voids 24 allow air and moisture to pass throughout the blanket layer 14. These voids and passages 24 have a diameter in the range of 0.01 mm and 2mm, but preferably 0.02mm diameter. [0045] Referring to Fig. II where a web frame 27 comprising an outer panel 10 whose thickness is in the range of 2mm and 200mm, and in the particular embodiment the outer panel 10 is bonded coextensively to a web-sandwich 26 comprising an inner panel 12, a defined zone 13 in which a blanket layer 14 is confined, spacer-columns 16, surface coverings 17 and means bonding.18.

[0046] The surface covering 17 is bonded to all inner surfaces of all panels by a bonding means 18.

[0047] The blanket 14 is pinned and compressed between the outer panel 10 and the inner panel 12 by means of an assembly of spacer-columns 16 arranged as isolated columns separate from each other and located in a plane parallel to and between opposing panels. The thickness of the compressed blanket layer 14 ranges between 2mm and 50mm, but preferably 20mm thick.

[0048] The spacer-columns 16 have sharpened tips 21 that penetrate the blanket 14 and contact the opposing panel. The sharpened tips 21 of the spacer-columns 16 have bonding means 19 at each tip 21 to bond with opposing panels.

[0049] The blanket layer 14 consists of a porous material having voids and passages 24 between fibres and strands of the blanket 14, wherein these passages 24 allow air and moisture to permeate through the blanket layer 14.

[0050] These voids and passages 24 have a diameter of openings or gaps between fibres in a range of 0.01 mm and 2mm, but preferably 0.02mm diameter.

[0051] Fig III illustrates a combination of an outer panel 10 and two different web- sandwiches 22 and 26. In a further embodiment of the web frame 28, the outer panel 10 is bonded to and is coextensive with web-sandwich 26 as described in Fig. II, wherein a further web-sandwich 22, as described in Fig. I, is bonded to the first web-sandwich 26. [0052] Fig. IV shows a further embodiment of a web frame 31 , wherein fine capillaries 25 permeate the outer panel 10 and the web-sandwiches 29 and 30, and allow moisture and air through the web frame 31. The diameter of such capillaries 25 are in the range of 0.01 mm and 2mm, and are spaced apart where such spacing ranges from 5mm to 100mm between adjacent capillaries.

[0053] Fig, V illustrates the various alternative shapes of spacer-node 15 and spacer-columns 16, wherein the shapes shown comprise:

(i) Cylinder with sharpened ends 20 for spacer-node, and 21 for spacer-column;

(ii) Sphere with sharpened ends 20 for spacer-node, and 21 for spacer-column;

(iii) Ball with sharpened ends 20 for spacer-node, and 21 for spacer-column;

(iv) Cone with sharpened ends 20 for spacer-node, and 21 for spacer-column;

(v) Ring with sharpened ends 20 for spacer-node, and 21 for spacer-column; and

(vi) Block with sharpened ends 20 for spacer-node, and 21 for spacer-column.

[0054] The sharpened ends 20 and 21 respectively, penetrate the blanket Iayer1 and pin the blanket to the opposing panel, preventing the blanket 14 from sagging.

[0055] Fig. VI illustrates a cover-sheet 32 which extends beyond the web frame 31 , wherein the cover-sheet folds over the outer edge of the web frame 31 and is attached to the outer edge of web frame 31 , thereby the cover-sheet 32 protects the outer edges of web frame 31 from weather, pollution, and thermal fluctuations.

[0056] The cover-sheet 32 is permeable with pin-hole penetrations 33 throughout the cover-sheet 32, wherein these pin-hole penetrations 33 allow moisture to permeate through the cover sheet 31.