Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
WEIGHT PLATFORM TREADMILL
Document Type and Number:
WIPO Patent Application WO/2017/196446
Kind Code:
A1
Abstract:
A treadmill includes a deck, a first pulley disposed in a first portion of the deck, a second pulley disposed in a second portion of the deck, a tread belt surrounding the first pulley and the second pulley, and a platform incorporated into the deck.

Inventors:
WATTERSON SCOTT R (US)
Application Number:
PCT/US2017/023002
Publication Date:
November 16, 2017
Filing Date:
March 17, 2017
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
ICON HEALTH & FITNESS INC (US)
International Classes:
A63B22/02; A63B21/072; A63B24/00
Domestic Patent References:
WO2000030717A12000-06-02
Foreign References:
US20150251055A12015-09-10
US7070542B22006-07-04
US7132939B22006-11-07
US6527678B12003-03-04
Attorney, Agent or Firm:
CHANG, Richard (US)
Download PDF:
Claims:
WHAT IS CLAIMED IS:

1. A treadmill, comprising:

a deck;

a first pulley disposed in a first portion of the deck;

a second pulley disposed in a second portion of the deck;

a tread belt surrounding the first pulley and the second pulley;

a scale mechanism incorporated into the deck; and

a repetition counter incorporated into the treadmill.

2. The treadmill of claim 1 , further including

a motor in mechanical communication with at least one of the first pulley and the second pulley; and

a cover superjacent the motor;

wherein the scale mechanism is incorporated into the cover over the motor.

3. The treadmill of claim 1 , wherein the repetition counter comprises a piezoelectric material.

4. The treadmill of claim 3, wherein the piezoelectric material is incorporated into a cover superjacent a motor.

5. The treadmill of claim 1 , further comprising a free weight rack connected to the deck.

6. The treadmill of claim 1 , further comprising:

a processor and memory;

a display in communication with the processor;

wherein the processor is in communication with the scale mechanism and the repetition counter;

wherein the memory includes programmed instructions that, when executed, cause the processor to display a weight of a user.

7. The treadmill of claim 6, wherein the programmed instructions, when executed, further cause the processor to determine whether the user is holding a free weight.

8. The treadmill of claim 7, wherein determining whether the user is holding the free weight comprises measuring an increase with the scale mechanism.

9. The treadmill of claim 6, wherein the programmed instructions, when executed, further cause the processor to determine whether the user is executing an anaerobic exercise with a free weight.

10. The treadmill of claim 6, wherein the programmed instructions, when executed, further cause the processor to count anaerobic exercise repetitions performed by the user with the repetition counter.

11. The treadmill of claim 6, wherein the programmed instructions, when executed, further cause the display to present a count of the repetition counter.

12. The treadmill of claim 6, wherein the programmed instructions, when executed, further cause the processor to instruct the user to select a weight amount.

13. The treadmill of claim 12, wherein the programmed instructions, when executed, further cause the processor to instruct the user to perform an exercise with the weight amount.

14. The treadmill of claim 12, wherein the programmed instructions, when executed, further cause the processor to instruct the user to perform a pre-determined repetition count with the weight amount.

15. The treadmill of claim 12, wherein the programmed instructions, when executed, further cause the processor to verify that the user selected the weight amount by measuring the increase with the scale mechanism.

16. The treadmill of claim 12, wherein the programmed instructions, when executed, further cause the processor to verify that the user performed pre-determined repetitions with the repetition counter.

Description:
WEIGHT PLATFORM TREADMILL

CROSS-REFERENCE TO RELATED APPLICATIONS

[0001] This application claims priority to U.S. Provisional Patent Application No. 62/336,567, filed on May 13, 2016, which application is incorporated herein by reference in its entirety.

BACKGROUND

[0002] Aerobic exercise is a popular form of exercise that improves one's cardiovascular health by reducing blood pressure and providing other benefits to the human body. Aerobic exercise generally involves low intensity physical exertion over a long duration of time. Typically, the human body can adequately supply enough oxygen to meet the body's demands at the intensity levels involved with aerobic exercise. Popular forms of aerobic exercise include running, jogging, swimming, and cycling among others activities. In contrast, anaerobic exercise typically involves high intensity exercises over a short duration of time. Popular forms of anaerobic exercise include strength training and short distance running.

[0003] Many choose to perform aerobic exercises indoors, such as in a gym or their home. Often, a user uses an aerobic exercise machine to perform an aerobic workout indoors. One type of aerobic exercise machine is a treadmill, which is a machine that has a running deck attached to a support frame. The running deck can support the weight of a person using the machine. The running deck incorporates a tread belt that is driven by a motor. A user can run or walk in place on the tread belt by running or walking at the tread belt's speed. The speed and other operations of the treadmill are generally controlled through a control module that is also attached to the support frame and within a convenient reach of the user. The control module can include a display, buttons for increasing or decreasing a speed of the conveyor belt, controls for adjusting a tilt angle of the running deck, or other controls. Other popular exercise machines that allow a user to perform aerobic exercises indoors include elliptical machines, rowing machines, stepper machines, and stationary bikes to name a few. [0004] One type of treadmill is disclosed in U.S. Patent No. 4,729,558 issued to Hai P. Kuo. In this reference, an improved running exerciser comprises a base frame having a first shaft and second shaft, a pair of inverted U-shaped members each mounted at one side of the base frame, a track in the form of endless loop around the first shaft and the second shaft, a pulley fastened on one end of the first shaft, a motor assembly having a tubular rod enclosing the first shaft, a pair of conical clutch discs put over a driving shaft of the motor assembly, a belt connecting the pulley to the clutch discs, a speed control mechanism mounted on one of the inverted U-shaped members for regulating speed of the track, and a stand for lifting a front end of the base frame to incline the endless loop to form a slope.

SUMMARY

[0005] In one embodiment, a treadmill includes a deck, a first pulley disposed in a first portion of the deck, a second pulley disposed in a second portion of the deck, a tread belt surrounding the first pulley and the second pulley, a scale mechanism incorporated into the deck, and a repetition counter incorporated into the treadmill.

[0006] The treadmill may include a motor in mechanical communication with at least one of the first pulley and the second pulley, a cover superjacent the motor, wherein the scale mechanism is incorporated into the cover over the motor.

[0007] The repetition counter may include a piezoelectric material.

[0008] The piezoelectric material may be incorporated into the cover.

[0009] The treadmill may include a free weight rack connected to the deck.

[0010] The treadmill may include a processor and memory and a display in communication with the processor where the processor is in communication with the scale mechanism and the repetition counter. The memory may include programmed instructions that, when executed, cause the processor to display a weight of a user.

[0011] The programmed instructions, when executed, may cause the processor to determine whether the user is holding a weight.

[0012] Determining whether the user is holding the weight may include measuring an increase with the scale mechanism.

[0013] The programmed instructions, when executed, may cause the processor to determine whether the user is executing an anaerobic exercise with a weight. [0014] The programmed instructions, when executed, may cause the processor to count anaerobic exercise repetitions performed by the user with the repetition counter.

[0015] The programmed instructions, when executed, may cause the display to present a count of the anaerobic exercise repetitions.

[0016] The programmed instructions, when executed, may cause the processor to instruct the user to select a weight.

[0017] The programmed instructions, when executed, may cause the processor to instruct the user to perform an exercise with the weight.

[0018] The programmed instructions, when executed, may cause the processor to instruct the user to perform a pre-determined repetition count with the weight.

[0019] The programmed instructions, when executed, may cause the processor to verify that user selected weight by measuring the increase with the scale mechanism.

[0020] The programmed instructions, when executed, may cause the processor to verify that user performed the pre-determined repetitions with the repetition counter.

[0021] In one embodiment, a treadmill includes a deck, a first pulley disposed in a first portion of the deck, a second pulley disposed in a second portion of the deck, a tread belt surrounding the first pulley and the second pulley, a motor in mechanical communication with at least one of the first pulley and the second pulley, a cover superjacent the motor, a scale mechanism incorporated into the cover over the motor, a repetition counter having a piezoelectric material that is incorporated into the cover, and a free weight rack connected to the deck.

[0022] The treadmill may further include a processor and memory, a display in communication with the processor where the processor is also in communication with the scale mechanism and the repetition counter, and where the memory includes programmed instructions that, when executed, cause the processor to display a weight of a user.

[0023] The programmed instructions, when executed, may cause the processor to instruct the user to select a weight and verify that user selected the weight by measuring the increase with the scale mechanism.

[0024] In one embodiment, a treadmill includes a deck, a first pulley disposed in a first portion of the deck, a second pulley disposed in a second portion of the deck, a tread belt surrounding the first pulley and the second pulley, a motor in mechanical communication with at least one of the first pulley and the second pulley, a cover superjacent the motor, a scale mechanism incorporated into the cover over the motor, a repetition counter having a piezoelectric material that is incorporated into the cover, a free weight rack connected to the deck, a processor and memory, and a display in communication with the processor. The processor is in communication with the scale mechanism and the repetition counter and the memory includes programmed instructions that, when executed, cause the processor to instruct the user to select a weight, instruct the user to perform an exercise with the weight, instruct the user to perform a pre-determined repetition count with the weight, verify that user selected weight by measuring the increase with the scale mechanism, and verify that user performed the pre-determined repetitions with the repetition counter.

[0025] In one embodiment, a treadmill includes a deck, a first pulley disposed in a first portion of the deck, a second pulley disposed in a second portion of the deck, a tread belt surrounding the first pulley and the second pulley, a platform incorporated into the deck, and a vibration sensor is communication with the platform.

[0026] The platform may include a vibration mechanism.

[0027] The treadmill may further include a vibration isolator connecting the platform to at least one of the first portion and the second portion of the deck. The vibration isolator may at least mitigate a strength of a vibration passing from the platform to the at least one of the first portion and the second portion when the vibration mechanism is active.

[0028] The treadmill may further include an upright portion connected to the deck. The vibration isolator may at least mitigate a strength of a vibration passing from the platform to the upright structure when the vibration mechanism is active.

[0029] The treadmill may include a display connected to the upright portion.

[0030] The treadmill may include a repetition count of an exercise performed on the platform.

[0031] The display may include a type of exercise performed on the platform.

[0032] The display may include instruction for performing an exercise on the platform.

[0033] The vibration isolator may be a passive vibration isolator.

[0034] The vibration isolator may be an active vibration isolator.

[0035] The treadmill may include a free weight rack connected to the deck.

[0036] The treadmill may further include a processor, memory in communication with the processor, a display in communication with the processor, and a vibration sensor in communication with the processor. The memory may include programmed instructions that, when executed, cause the processor to record a vibration signature of the platform when a user is on the platform and the vibration mechanism is active, perform a comparison the vibration signature to a baseline signature when no user is on the platform and the vibration mechanism is active, and determine at least one parameter about the user based on the comparison.

[0037] The at least one parameter may be a weight of the user.

[0038] The at least one parameter may be an amount of weight held by the user.

[0039] The at least one parameter may be a type of exercise performed by a user.

[0040] The at least one parameter may be a repetition count of an exercise performed by the user.

[0041] In one embodiment, a treadmill includes a deck, a first pulley disposed in a first portion of the deck, a second pulley disposed in a second portion of the deck, a tread belt surrounding the first pulley and the second pulley, a platform incorporated into the deck, a vibration mechanism incorporated into the platform, a processor, a memory in communication with the processor, a display in communication with the processor, and a vibration sensor in communication with the processor. The memory includes programmed instructions that, when executed, cause the processor to record a vibration signature of the platform when a user is on the platform and the vibration mechanism is active, perform a comparison of the vibration signature to a baseline signature when no user is on the platform and the vibration mechanism is active, and determine at least one parameter about the user based on the comparison.

[0042] The at least one parameter may be a weight of the user.

[0043] The at least one parameter may be a type of exercise performed by a user.

[0044] The at least one parameter may be a repetition count of an exercise performed by the user.

[0045] In one embodiment, a treadmill includes a deck, an upright portion connected to the deck, a display connected to the upright portion, a first pulley disposed in a first portion of the deck, a second pulley disposed in a second portion of the deck, a tread belt surrounding the first pulley and the second pulley, a platform incorporated into the deck, a vibration mechanism incorporated into the platform, a processor, a memory in communication with the processor, a display in communication with the processor, a vibration sensor in communication with the processor, and a vibration isolator connecting the platform to at least one of the first portion of the deck, the second portion, the upright structure, and the display. The vibration isolator at least mitigates a strength of a vibration passing from the platform to the at least one of the first portion, the second portion, the upright portion, and the display when the vibration mechanism is active. The memory includes programmed instructions that, when executed, cause the processor to record a vibration signature of the platform when a user is on the platform and the vibration mechanism is active, perform a comparison the vibration signature to a baseline signature when no user is on the platform and the vibration mechanism is active, and determine at least one parameter about the user based on the comparison.

BRIEF DESCRIPTION OF THE DRAWINGS

[0046] The accompanying drawings illustrate various embodiments of the present apparatus and are a part of the specification. The illustrated embodiments are merely examples of the present apparatus and do not limit the scope thereof.

[0047] FIG. 1 illustrates a perspective view of an example of a treadmill in accordance with the present disclosure.

[0048] FIG. 2 illustrates a perspective view of an example of a treadmill in accordance with the present disclosure.

[0049] FIG. 3 illustrates a perspective view of an example of a treadmill in accordance with the present disclosure.

[0050] FIG. 4 illustrates a cross sectional view of an example of a treadmill in accordance with the present disclosure.

[0051] FIG. 5 illustrates a view of an example of display incorporated into an exercise device in accordance with the present disclosure.

[0052] FIG. 6 illustrates a perspective view of an example of an instruction system incorporated into an exercise device in accordance with the present disclosure.

[0053] FIG. 7 illustrates a perspective view of an example of a treadmill incorporated into an exercise device in accordance with the present disclosure.

[0054] FIG. 8 illustrates a perspective view of an example of a display incorporated into an exercise device in accordance with the present disclosure.

[0055] FIG. 9 illustrates a perspective view of an example of a display incorporated into an exercise device in accordance with the present disclosure.

[0056] FIG. 10 illustrates a cross sectional view of an example of a platform incorporated into an exercise device in accordance with the present disclosure. [0057] FIG. 1 1 illustrates a cross sectional view of an example of a platform in accordance with the present disclosure.

[0058] Throughout the drawings, identical reference numbers designate similar, but not necessarily identical, elements.

DETAILED DESCRIPTION

[0059] For purposes of this disclosure, the term "aligned" means parallel, substantially parallel, or forming an angle of less than 35.0 degrees. For purposes of this disclosure, the term "transverse" means perpendicular, substantially perpendicular, or forming an angle between 55.0 and 125.0 degrees. Also, for purposes of this disclosure, the term "length" means the longest dimension of an object. Also, for purposes of this disclosure, the term "width" means the dimension of an object from side to side. For the purposes of this disclosure, the term "above" generally means superjacent, substantially superjacent, or higher than another object although not directly overlying the object. Further, for purposes of this disclosure, the term "mechanical communication" generally refers to components being in direct physical contact with each other or being in indirect physical contact with each other where movement of one component affect the position of the other.

[0060] Particularly, with reference to the figures, FIG. 1 depicts an example of a treadmill 100 having a deck 102 with a first pulley disposed in a first portion of the deck 102 and a second pulley incorporated into a second portion of the deck 102. A tread belt 104 surrounds the first pulley and the second pulley. A motor 105 is in mechanical communication with either the first pulley or the second pulley. A cover 106 is superjacent the motor 105. A scale mechanism is incorporated into the deck 102, and a repetition counter 1 10 is also incorporated into the treadmill.

[0061] The treadmill 100 also includes an upright portion 112 that supports a console 1 14. In this example, the repetition counter 1 10 is incorporated into the upright portion 1 12. In this example, the scale mechanism is obscured from view, but is incorporated into the cover 106 near the base of the upright portion 112.

[0062] Also incorporated into the treadmill 100 is a free weight rack 116. In this example, a first portion 1 18 of the free weight rack 120 is connected to a first side 120 of the deck 102, and a second portion 122 of the free weight rack 120 is connected to a second side 124 of the deck 102. The free weight rack 120 may include multiple tiers. In this example, each of the portions of the free weight rack 120 include a first tier 126 and a second tier 128. In some cases, each of the tiers include a cross member that includes features that prevent the free weights from slipping off of the rack. For example, the feature may include a lip, a recess, another type of feature, or combinations thereof.

[0063] FIG. 2 depicts an example of a treadmill 200. In this example, the treadmill 200 includes a deck 202, and a tread belt 204 that surrounds a first pulley and second pulley incorporated into the deck 202. A free weight rack 206 is also incorporated into the treadmill 200. In this example, the free weight rack 206 includes a single tier and supports an adjustable dumbbell 208.

[0064] A weight scale 210 is incorporated into the deck 202 at a front end 212 of the treadmill 200. In this example, the weight scale 210 is positioned over the motor that drives the first pulley and therefore drives the tread belt 204. As a user stands on the weight scale 210, the weight of the user can be presented in the console 214, in a display incorporated into the weight scale 210, in a mobile device, or in another computing device in

communication with the weight scale, or combinations thereof. Additionally, when the user lifts the free weights off of the rack 206, the weight scale measures the combined weight of the user and the free weights. In some cases, the dynamic fluctuation of the weight scale's measurements that occur as the user performs an anaerobic exercise with the free weights is used by the repetition counter to determine how many lifts the user has performed.

[0065] FIG. 3 depicts an example of a user 300 performing an anaerobic workout with the free weights 302 on the weight scale 304. In this situation, the dynamic fluctuation of the weight scale's measurements while the user performs lifts with the free weights is used by the repetition counter to determine how many lifts the user has performed. In this example, the amount of weight lifted by the user 300 is depicted in the console 306.

[0066] FIG. 4 depicts a cross sectional view of a treadmill 400. In this example, the treadmill 400 includes a deck 402 with a first pulley 403 in a first portion 404 of the deck 402 and a second pulley 406 in a second portion 408 of the deck. A tread belt 410 surrounds the first pulley 403 and the second pulley 406. A motor 412 drives the first pulley 403 to move the tread belt 410. A weight scale 414 is positioned over the motor 412. A rack 416 is attached to the deck 402 adjacent to the weight scale 414. An upright portion 418 of the treadmill 400 is attached to the deck 402, and a console 420 is attached to the upright portion 418. [0067] FIG. 5 depicts an example of a display 500 incorporated into a console of an exercise device. The exercise device may be like the exercise device depicted in the other figures that incorporate a weight scale. In this example, the display includes instructions 502 to perform a certain type of lift, including the weight amount to be lifted and the number of repetitions. The display 500 also includes a repetition counter 504, which presents the number of repetitions that the user has already performed. The display 500 also includes instructions 506 for what the user is to do after the anaerobic exercise is completed. In this case, the instructions includes running on the treadmill for 15 minutes.

[0068] FIG. 6 depicts an example of an instruction system 600. In this example, the instruction system 600 includes processing resources 602, such as a processor, and memory resources 604, such as memory. The memory resources 604 may cause the processing resources 602 to carry out functions programmed in the memory resources 604. In this example, the memory resources 604 include an aerobic exercise instructor 606, an anaerobic exercise instructor 608, a weight selector 610, a repetition count instructor 612, a weight verifier 614, a count verifier 616 signature recorder 626, and signature comparer 628. Further, the processing resources 602 may be in communication with a repetition count sensor 618, a scale mechanism 620, a console 622, a speaker 624, platform 630, vibration mechanism 632, vibration isolator 634, and/or combinations thereof.

[0069] FIG. 7 depicts an example of a treadmill 700 with a deck 702. The deck 702 includes a first pulley in a first portion 704 and a second pulley in a second portion 706. A tread belt 704 surrounds the first pulley and the second pulley. The treadmill 700 also includes an upright structure 708, and a display 710 connected to the upright structure 708.

[0070] The deck 702 also includes a platform 712. The platform 712 includes a vibration mechanism that causes the top surface 714 of the platform to vibrate. Free weights 716, such as dumbbells, kettlebells, or other types of weights, may be positioned adjacent to the top surface 714 to be within a convenient reach of the user. The user may use the weights to perform an anaerobic exercise on the platform. The anaerobic exercise may constitute the entire exercise routine. In other examples, the anaerobic exercise may constitute a portion of the exercise routine. In some cases, the exercise routine includes anaerobic components and aerobic components. The aerobic components of the exercise may include exercises that are performed on the tread belt of the deck. [0071] FIG. 8 is a display 800 that is incorporated into the treadmill 800. In some examples, the display 800 is incorporated into the upright structure. In yet other examples, the display 800 is incorporated into the deck, such as into the platform.

[0072] The display 800 may include a field 802 that depicts different parameters about the user's workout on the platform. For example, the field may depict a vibration amplitude, a time duration of the workout, or a frequency of the vibration. In some cases, just one of the parameters is depicted at a time. In other examples, at least two of the parameters are depicted in the display simultaneously.

[0073] An input mechanism 804 may be proximate the display 800. The input mechanism 804 may be a push button, a touch screen input, a level, a dial, a switch, a microphone, another type of input mechanism, or combinations thereof.

[0074] FIG. 9 depicts another example of a display 900 incorporated into the treadmill. In this example, the display 900 is connected to the upright structure that is attached to the deck. In this example, the display 900 includes a repetition count 902, a name 904 of the exercise type, an image 906 of the how the exercise type is performed (e.g. visual instructions on performing the exercise type), a heart rate 908, a calorie count 910, and a routine sequence 912. The routine sequence 912 includes the types of exercises that are coming up next in the exercise routine and the number of repetitions to perform. In some examples, the display may include a video segment and an audio segment that describes how the exercise is to be performed.

[0075] FIG. 10 depicts an example of a treadmill 1000. In this example, the treadmill 1000 includes a platform 1006 adjacent to the tread belt. The platform 1006 includes a top plate 1008 that is connected to a vibration mechanism 1010. The vibration mechanism 1010, when activated, can vibrate the top plate 1008. Additionally, the platform 1006 may include at least one vibration isolator 1012 that at least mitigates the strength of the vibrations as the vibrations pass from the platform to the other portions of the deck, the upright structure, the display, other components of the treadmill, or combinations thereof. In some examples, the vibration isolator 1012 eliminates vibrations from passing from the platform to the other components of the treadmill.

[0076] In this example, the vibration mechanism 1010 includes a camming mechanism where a cam 1014 has an eccentric mass. As the eccentric mass rotates about an axle, the rotation generates a vibration in the top plate 1008. [0077] FIG. 1 1 depicts an example of a treadmill 1 100. In this example, the vibration isolator 1 102 is an active vibration isolator 1 102 that detects a vibration and then actively imposes a cancelation wave that cancels the vibrations that could be potentially transmitted to the other portions of the treadmill 1 100. In this example, the vibration isolators 1102 on attached to components of the treadmill 1 100 that are off of the platform's top plate 1104.

GENERAL DESCRIPTION

[0078] In general, the invention disclosed herein may provide a user with a treadmill that has several advantages over conventional treadmills. The treadmill may include a running deck that has first pulley and a second pulley. A tread belt may surround the first and second pulley. A motor can be attached to either the first or the second pulley so that as the motor rotates its shaft, the connected pulley also rotates which drives movement of the tread belt. In those examples where the treadmill includes just a single motor, the movement of the tread belt drives movement of the other pulley that is not connected to the motor. A user may perform aerobic exercises on the tread belt, such as walking, running, cycling, or another type of aerobic exercise.

[0079] The treadmill may also include a platform where the user may perform anaerobic exercises. Free weights or other types of weights that can be used to perform the anaerobic exercises may be positioned on the platform or at least proximate the platform so that the weights are conveniently accessible to the user while standing on the platform. In some cases, the platform includes a top plate on which the user can exercise and at least one weight rack that is separate from the top plate.

[0080] In some cases, a free weight rack may be incorporated into the treadmill. In this example, the free weight rack may have a first portion incorporated into a first side of the treadmill and a second portion incorporated into a second side of the treadmill. Each of the portions of the free weight rack may position the free weights within a convenient reach of each of the user's hands. Thus, the free weights may be accessible to the user when the user is on the exercise deck.

[0081] For purposes of this disclosure, the term "free weight" refers broadly to free weights that are intended to be used to execute lifts associated with strength training. In some cases, the free weights may be intended to be held in a single hand where free weights for a first hand are positioned in the first portion 718 of the free weight rack 716, and free weights intended for the second hand are positioned in the second portion 722 of the free weight rack 716. These free weights may include dumbbells, kettlebells, balls, adjustable dumbbells, weight plates, Bulgarian bags, other types of weighted bags, barbells, curl bars, other types of free weights, or combinations thereof.

[0082] In some cases, the user can work out on the portion of the exercise deck that includes the tread belt. In this example, the user may desire to mix up the anaerobic exercise and aerobic exercise portions of his or her workout. During the anaerobic portions of the workout, the tread belt may be stopped while the user performs the free weight exercises. When the anaerobic portion of the workout is completed, the user may resume the operation of the tread belt to perform an aerobic portion of the workout. In other examples, the user may want to use the free weights while the tread belt is in operation. For example, the user may want to carry dumbbells during a run.

[0083] In other examples, the treadmill incorporates a separate area on the exercise deck where the user can perform exercises with the free weights. In some cases, this free weight area may be in the front end of the treadmill proximate the treadmill's upright portion. A console supported by the upright portion can provide information about the user's workout such as the time, distance, and speed at which the user executed the aerobic portions and the anaerobic portions of the workout.

[0084] In some examples, the platform includes a vibration mechanism, a weight scale, another feature, or combinations thereof. In examples with the vibration mechanism, the vibration mechanism may be used to vibrate a top plate of the platform. The vibrations may provide multiple benefits. One benefit is that the vibrations cause the user to work harder while performing an anaerobic exercise. The vibrations therefore increase the number of calories burned and stimulate additional stabilization muscles during the anaerobic portion of the workout.

[0085] In some examples, the vibration mechanism includes a camming mechanism where a cam has an eccentric mass. As the eccentric mass rotates about an axle, the rotation generates a vibration in the top plate. The eccentric mass may include any appropriate type of shape. While these examples have been described with the vibration mechanism including a camming mechanism, any appropriate type of vibration mechanism may be used in accordance with the principles described in the present disclosure.

[0086] The vibrations also provide a benefit for determining at least one parameter of the user's workout. For example, a vibration sensor may be used to measure the vibrations of the top plate when the user is on the top plate to determine the user's weight, the amount of weight being used by the user, the type of exercise being performed by the user, a repetition count of the exercise, another type of exercise, or combinations thereof. In some examples, the vibration sensor may include an accelerometer, a multi-axis accelerometer, a distance sensor, an optical sensor, a laser displacement sensor, a velocity sensor, a capacitance sensor, a proximity probe, a magnet, a piezoelectric device, a potentiometric sensor, a strain gauge, a geophone, another type of sensor, or combinations thereof.

[0087] In some examples, the vibration sensor may be used to determine a baseline measurement. The baseline measurement may be the vibrations recorded by the sensor when the plate is vibrating, but the user and other objects are not on the top plate of the platform. In other examples, the baseline measurement may be a vibration signature that was recorded on a different treadmill with a platform. The baseline measurement may have a unique baseline signature that can be compared to other vibration signatures. In some examples, the baseline signature has a consistent amplitude and frequency.

[0088] The baseline measurement may be compared to vibration measurements taken when the user is performing an anaerobic exercise on the platform. For instance, when the user is standing on the platform while the platform is vibrating, the vibration signature will be different than the baseline signature. The user's weight affects the signature's amplitude. In those situations where the user is not moving while standing on the vibrating top plate, the signature may also have a consistent amplitude and frequency. The comparison of the vibration signature and the baseline signature can identify the amount of weight on the top plate.

[0089] In those situations where the user picks up a free weight, the additional weight of the free weight will further affect the vibration signature. Thus, the vibration signature can identify the combined weight of the user and the free weigh. During the anaerobic portion of the workout, the user will pick up and return the free weights. In those moments where the user is not holding a weight, the vibration signature can be compared with the baseline to determine the user's weight. In some examples, the treadmill may provide instructions for the user to stand still on the vibration plate to determine the user's weight before instructing the user to lift weights. In other examples, the treadmill determines the user's weight by determining the amount of weight on the top plate throughout the exercise routine. As a result, the vibration signature includes moments where the user is holding additional weight and moments where the user is not holding additional weight. In some examples, the treadmill identifies those characteristics of the vibration signature that depict a consistent vibration reading that indicates the lowest weight on the treadmill to determine the user's baseline weight. With the baseline weight, the treadmill can determine the amount of weight being held by the user at any given time during the anaerobic workout.

[0090] As the user performs anaerobic exercises on the platform, the user's movements may also affect the vibration signature when the vibration mechanism is active. For example, when the user lifts a weight, the acceleration of the weight's movement may momentarily increase the load on the top plate, which can affect the amplitude of the vibration signature at that moment. This change in the vibration signature may be time stamped and classified as a lift. Each event in the vibration signature with these types of characteristics may also be classified as a lift. To determine the repetition count, the treadmill or processor may count these types of events, such as the number of times when the amplitude changes in the vibration signature. In examples where these events are time stamped, the user's lift rate can be determined.

[0091] Additionally, certain movements performed on the top plate may create different patterns in the vibration signature. These patterns may be distinct for certain a types of exercises. As a result, the type of exercise being performed by the user may be

distinguished from other types of exercises. For example, performing a military press exercise may generate a different vibration pattern than performing a lung exercise, a curl exercise, a jumping exercise, a push-up exercise, leg lift exercise, a sit-up exercise, another type of exercise, or combinations thereof.

[0092] In some examples, the type of exercise is determined by factors other than the vibration signature. In some instances, the treadmill may instruct the user to perform a certain type of exercise. In these examples, the treadmill may determine that the type of exercise instructed to be performed is the exercise being performed by the user. In other examples, a camera is in communication with the treadmill where the user is in the camera's field of view. An analysis may be performed on the footage captured by the camera to determine the type of exercise performed by the user. In yet other examples, the top plate may include a load cell, a scale, a level, or another type of sensor that detects the location of a load on the top plate. While the user may perform many types of exercises in a central region of the top plate, other types of exercises, such as push-ups and sit-ups may load the top plate asymmetrically. This asymmetric loading may be used to determine the exercise type.

[0093] While the examples above have been described with reference to how anaerobic exercises affect the amplitude of a vibration signature, the performance of anaerobic exercises may affect the vibration signature in other ways. For example, certain movements on the top plate may generate a different vibration frequency than the vibration frequency imposed by the vibration mechanism. This distinct vibration frequency may increase or decrease the vibration frequency imposed by the vibration mechanism. Additionally, these user imposed vibrations may cause vibrations imposed by the vibration mechanism to cancel, diminish, amplify, or change in another detectable way.

[0094] Any appropriate number of vibration sensors may be used in accordance with the principles described in the present disclosure. For example, a vibration sensor may be attached to each corner of the top plate. In other examples, a single sensor is attached to a single side of the top plate. In yet another example, a single sensor is attached to a central region of the top plate. In some cases, the sensor is attached to a top surface of the plate, an underside of the plate, proximate the plate, another location, or combinations thereof.

[0095] Further, in some cases, no vibration mechanism is used to impose a vibration on the top plate. The user's movements while performing the anaerobic exercise may generate vibrations in the top plate that can determine parameters about the user's workout, such as the amount of weight added, the type of exercise being performed, the repetition count of the exercise, another type of parameter of the exercise, or combinations thereof.

[0096] In some examples, a display is connected to the treadmill. In some instances, the display may provide information, including information about instructions to the user on which exercise to perform, how to perform each exercise, the repetition count, other information relating the anaerobic portion of the workout, or combinations thereof.

[0097] The treadmill may also be in communication with a remote device over a network, such as the internet. The user may access the records of his or her exercise history, previous workouts, exercise recommendation, personal information, or combinations thereof. The remote device may record the workout information and/or the physiological information associated with the workout. An example of a user program that may be compatible with the principles described herein can be found at www.ifit.com, which is administered through Icon Health and Fitness, Inc. located in Logan, Utah, U.S.A.

[0098] In some examples, the top plate is vibrationally isolated from other components of the treadmill. Vibration isolators may be used to cancel, reduce, and/or eliminate vibrations from the top plate to other portions of the treadmill. In those examples where the platform is included in a rear portion of the treadmill, the vibration isolators may cancel, reduce, and/or eliminate vibrations from passing from the platform into the rear portion of the treadmill, which also protects the front portion of the treadmill, including the upright structure, and the display and other electronics attached to the upright structure, from the vibrations. Further, in those examples where the platform is located in a front portion of the treadmill, the vibration isolators may protect the front portion, which protects the rear portion, and protect the upright structure from the platform's vibrations.

[0099] A passive vibration isolator may be used to reduce and/or eliminate vibrations from passing to other components of the treadmill. In some examples, the passive vibration isolators may include an elastomeric material that connects the top plate and/or the platform to other components of the treadmill. The elastomeric material may include rubber.

[00100] Another type of passive vibration isolator may include pneumatic, air, or hydraulic bladder, canister, or other types of containers. These bladders or canister may include a compressed air and/or liquid. In some cases, the pressure is maintained with a source that continuously feeds the bladder and/ canister. In some examples, the passive isolator may include an air spring in the form of a rubber bladder which provides damping.

[00101] In other examples, the isolators may include mechanical springs and/or spring-dampers. Pads or sheets of flexible materials such as elastomers, rubber, cork, dense foam, laminate materials, other types of material, or combinations thereof may also be used as vibration isolators. Elastomer pads, dense closed cell foams, laminate materials, molded and bonded rubber, elastomeric isolators and mounts, or combinations thereof may also be used. In some cases, the isolators are made of layers of neoprene and steel with a low horizontal stiffness.

[00102] In some cases, the vibration isolators are active isolators that impose a vibration that reduces and/or cancels the vibrations from the vibration mechanism or from the vibrations generated by the user's workout on the top plate. The active vibration isolators may include a spring, a feedback circuit which includes a sensor, a controller, and an actuator. The vibration from the top plate is processed to determine the characteristics of the top plate. The characteristics of the vibration are fed to the actuator to produce another vibration that either reduces and/or cancels the vibrations from the top plate. The sensors may be positioned on a component of the treadmill or the platform that is connected to the top plate. In some examples, the active isolators may impose the canceling vibrations to components connected to the top plate, but not to the actual top plate. Further, in some examples, a combination of passive isolators and active isolators are used. The passive isolators may be used to reduce the vibrations that travel from the top plate to the other treadmill components, and the active isolators may be attached to the treadmill components that are intended to be vibration free.

[00103] The vibration isolators may be used to extend the life of the other treadmill components. For example, the vibration isolators may insulate and/or isolate the display, upright structure, pulleys in the deck, the tread belt, processors, memory, electronics, other components, or combinations thereof.

[00104] In some cases, the platform may include a weight scale. The weight scale may be large enough to allow the user to stand and/or exercise on the weight scale. One advantage to working out on a platform with a weight scale is that as the user performs certain types of exercises, like thrusting free weights over his head, the load felt by the weight scale changes. Detecting this change can be used to determine when and if the user actually performed the overhead lift. For example, in situations where the dumbbells are thrust over the user's head, the scale may measure an increased amount of weight. The processing resources in communication with the weight scale may associate a time stamp with the measured increase. Thus, the processing resources can determine statistics about the user's workout (e.g. how long the user executed the workout, how long between each repetition, start times, end times, and so forth).

[00105] The weight scale can also determine how much weight the user is using during the workout. For example, the weight scale can determine the weight of the user when the user is standing on the scale without holding weights. When the user picks up free weights, the weight scale can subtract the user's body weight from the total weight being measured. The difference between the total weight and the user's body weight can be determined to be the weight amount the user is holding. [00106] Exercising on the scale can provide inputs for determining how many repetitions the user performed. For example, the weight scale may recognize weight fluctuation patterns that are characteristic of the user lifting or lowering free weights. As these patterns are recognized, the weight scale may cause a repetition counter to increment by one when a lift pattern is recognized.

[00107] The weight scale may include any appropriate type of measuring mechanism. In some examples, the weight scale includes a piezoelectric material that changes its electrical properties in response to a mechanical load. In other examples, the weight scale may include a magneto strictive material that changes its magnetic properties in response the mechanical load. In yet other examples, the weight scale may also include a spring mechanism, a strain gauge, a hydraulic mechanism, a pneumatic mechanism, another type of measuring mechanism, or combinations thereof.

[00108] In some cases, the tread belt passes over the region of the treadmill deck that contains the weight scale. In this example, the treadmill can determine when the user is holding weight while standing on the tread belt, like in situations where the user is carrying free weights during a walk or run. In response to determining that the user is carrying free weights during a walk or run, the treadmill can increase the calorie burn count.

[00109] In some situations, the treadmill guides the user with a programmed workout. In some cases, the programmed workout alters the tread belt's speed, the incline of the deck, and other factors affecting the aerobic portion of the workout. Additionally, the programmed workout may include anaerobic portions as well. In these instances, the programmed workout may instruct the user to perform certain types of lifts with the free weights. In some cases, the programmed workout may select the amount of weight that the user is to lift. In embodiments where the free weight rack includes an adjustable dumbbell, the treadmill may cause the adjustable dumbbell to select the amount of weight prescribed by the programmed workout. In other instances, the treadmill may allow the user to select the amount of weight to lift even if the programmed workout instructs the user to lift a predetermined amount.

[00110] The predetermined weight amount recommended in the programmed workout may be based on information about the user. This information may be derived from history compiled with fitness trackers, previous workouts on the treadmill, age information, height information, body composition information, gender information, other types of personal information, or combinations thereof. In some instances, the treadmill is in communication with a remote computing device that contains a user profile detailing fitness information about the user. The treadmill or a remote computing device may also take into consideration the user's fitness goals when selecting the type of lifts to perform, the amount of weight to perform with the lifts, and the number of repetitions.

[00111] The weight scale can be used to determine if the user selected the recommended weight amount. In those situations where the user selected a different weight amount than the recommended amount, the programmed workout can alter an aspect of the workout. For example, if the user selected a weight amount that is heavier than the recommended amount, the programmed workout can reduce the number of repetitions that the user is instructed to lift. Further, the calorie burn count can also be adjustable based on the weight amount that the user actually selects instead of the weight amount instructed by the programmed workout.

[00112] The weight scale can also be used to verify that the user performs the number of recommended lifts. In this example, the weight scale can cause a repetition counter to increment by one when the weight scale detects a weight fluctuation pattern characteristic of performing a lift. In some examples, a separate repetition counter is used to determine the number of repetitions performed by the user. For example, an optical camera can be incorporated into the treadmill's upright structure. The optical camera can record and analyze information to determine the number of lifts performed by the user and, in some instances, whether the user performed the type of lift instructed by the programmed workout.

[00113] In some cases, the programmed workout's instructions can be presented to the user through a display in the console. The programmed workout can present the number of lifts to perform, the type of lifts to perform, the next type of exercise to perform, and so forth. In some case, the display screen can instruct the user on how to perform the lift. For instance, the programmed workout may instruct the user to perform negatives by lifting up quickly and lowering the weight slowly, or the programmed workout may instruct the user to perform the same type of lift by lifting up and lowering the weight at the same rate. In other examples, a speaker may be used to audibly instruct the user about the programmed workout.

[00114] Information relating to both the anaerobic and aerobic portions of the workout can be present to the user. For instance, the repetition count may be presented in the display, the calories burned during the workout may be presented in the display, the user's heart rate or other physiological parameters be presented in the display, and so forth.

[00115] In some case, the treadmill is in communication with a remote device, and the information recorded about the workout is sent to the remote device. In one instance, the information is sent to the user's mobile device and the user follows the workout with his or her mobile device.

[00116] The instruction system for instructing the user about the workout may include a combination of hardware and programmed instructions for executing the functions of the instruction system. The instruction system may include processing resources that are in communication with memory resources. Processing resources include at least one processor and other resources used to process the programmed instructions. As described herein, the memory resources may represent generally any memory capable of storing data such as programmed instructions or data structures used by the instruction system.

[00117] The processing resources may include I/O resources that are capable of being in communication with a remote device that stores user information, workout history, external resources, databases, or combinations thereof. The remote device may be a mobile device, a cloud based device, a computing device, another type of device, or combinations thereof. In some examples, the instruction system communicates with the remote device through a mobile device which relays communications between the instruction system and the remote device. In other examples, the mobile device has access to information about the user. The remote device may collect information about the user throughout the day, such as tracking calories, exercise, activity level, sleep, other types of information, or combination thereof.

[00118] The remote device may execute a program that can provide useful information to the instruction system. An example of a program that may be compatible with the principles described herein includes the iFit program which is available through www.ifit.com identified above. An example of a program that may be compatible with the principles described in this disclosure is described in U.S. Patent No. 7,980,996 issued to Paul Hickman. U.S. Patent No. 7,980,996 is herein incorporated by reference for all that it discloses. In some examples, user information accessible through the remote device includes the user's age, gender, body composition, height, weight, health conditions, other types of information, or combinations thereof. [00119] The processing resources, memory resources, and remote devices may communicate over any appropriate network and/or protocol through the input/output resources. In some examples, the input/output resources includes a transmitter, a receiver, a transceiver, or another communication device for wired and/or wireless communications. For example, these devices may be capable of communicating using the ZigBee protocol, Z-Wave protocol, Blue Tooth protocol, Wi-Fi protocol, Global System for Mobile Communications (GSM) standard, another standard, or combinations thereof. In other examples, the user can directly input some information into the instruction system through a digital input/output mechanism, a mechanical input/output mechanism, another type of mechanism, or combinations thereof.

[00120] The memory resources may include a computer readable storage medium that contains computer readable program code to cause tasks to be executed by the processing resources. The computer readable storage medium may be a tangible and/or non-transitory storage medium. The computer readable storage medium may be any appropriate storage medium that is not a transmission storage medium. A non-exhaustive list of computer readable storage medium types includes non-volatile memory, volatile memory, random access memory, write only memory, flash memory, electrically erasable program read only memory, magnetic based memory, other types of memory, or combinations thereof.

[00121] The memory resources may include instructions for simulating an aerobic exercise instructor that represent programmed instructions that, when executed, cause the processing resources to control the aerobic portion of the user's workout. The aerobic exercise may include, but is not limited to, walking, running, shuffling, skipping, biking, jumping, or otherwise moving while the tread belt is in operation. The aerobic exercise instructor may control the speed of the tread belt based on the user's heart rate or other physiological readings, the user's goals, programmed workouts, inputs from the user, or combinations thereof.

[00122] The memory resources may also include instructions for simulating an anaerobic exercise instructor that represent programmed instructions that, when executed, cause the processing resources to control the anaerobic portions of the user's workout. The anaerobic exercise instructor may instruct the user to perform lifts, perform a number of repetitions, perform a type of lift, perform other aspects of the anaerobic portion of the workout, perform other aspects of the workout, or combinations thereof.

[00123] The memory resources may also include a weight selector that represents programmed instructions that, when executed, cause the processing resources to select the amount of weight to lift. In one embodiment, the free weights include an adjustable dumbbell, and a selector is incorporated into the rack. The selector adjusts the dumbbell so that the desired amount of weight is automatically attached to the dumbbell's handle, and the user does not have to make the adjustment manually.

[00124] The repetition count instructor represents programmed instructions that, when executed, cause the processing resources to instruct the user to perform a number of lifts. The lift number may be presented to the user through a display, through a speaker, another mechanism, or combinations thereof.

[00125] The weight verifier represents programmed instructions that, when executed, cause the processing resources to verify that the user is lifting the weight. In some cases, the weight verifier also verifies that the user is lifting the amount of weight instructed by the instruction system.

[00126] The counter verifier represents programmed instructions that, when executed, cause the processing resources to verify that the user is performing the instructed number of lifts. This count verification may be based on images captured with an optical sensor, the fluctuations measured at the weight scale, another type of sensor, or combinations thereof. The count verification may be presented in a console or display integrated into the treadmill, a mobile device in communication with the treadmill, a remote device in

communication with the treadmill, or combinations thereof.

[00127] The vibration recorder represents programmed instructions that, when executed, cause the processing resources to record vibrations imposed from the top plate. The vibrations may be imposed by the vibration mechanism or by the movements of the user. In some cases, the vibration recorder records the vibrations when no one is on the top plate. This recorded vibration may become a baseline signature to which other vibrations signatures are compared to. The recorder may also record the vibrations of the top plate when a user is standing on the top plate of the platform or otherwise performing exercises on the top plate.

[00128] The vibration comparer represents programmed instructions that, when executed, cause the processing resources to compare baseline signature with the vibration signatures taken when the user is on the plate or performing movements on the plate. Based on the characteristics of the vibration signatures the processor may determine the weight of the user, the amount of weight used by the user, the type of exercise performed by the user, the number of repetitions performed by the user, other characteristics about the user's workout, or combinations thereof.

[00129] Further, the memory resources may be part of an installation package. In response to installing the installation package, the programmed instructions of the memory resources may be downloaded from the installation package's source, such as a portable medium, a server, a remote network location, another location, or combinations thereof. Portable memory media that are compatible with the principles described herein include DVDs, CDs, flash memory, portable disks, magnetic disks, optical disks, other forms of portable memory, or combinations thereof. In other examples, the program instructions are already installed. Here, the memory resources can include integrated memory such as a hard drive, a solid state hard drive, or the like.

[00130] In some examples, the processing resources and the memory resources are located within the treadmill, the adjustable dumbbell, the mobile device, an external device, another type of device, or combinations thereof. The memory resources may be part of any of these device's main memory, caches, registers, non-volatile memory, or elsewhere in their memory hierarchy. Alternatively, the memory resources may be in communication with the processing resources over a network. Further, data structures, such as libraries or databases containing user and/or workout information, may be accessed from a remote location over a network connection while the programmed instructions are located locally.

APPENDIX

17. A treadmill, comprising:

a deck;

a first pulley disposed in a first portion of the deck;

a second pulley disposed in a second portion of the deck;

a tread belt surrounding the first pulley and the second pulley;

a motor in mechanical communication with at least one of the first pulley and the second pulley;

a cover superjacent the motor;

a scale mechanism incorporated into the cover over the motor;

a repetition counter having a piezoelectric material that is incorporated into the cover; and

a free weight rack connected to the deck.

18. The treadmill of claim 17, further including:

a processor and memory;

a display in communication with the processor;

wherein the processor is also in communication with the scale mechanism and the repetition counter;

wherein the memory includes programmed instructions that, when executed, cause the processor to display a weight of a user.

19. The treadmill of claim 18, wherein the programmed instructions, when executed, further cause the processor to:

instruct the user to select a free weight; and

verify that the user selected the free weight by measuring the increase with the scale mechanism.

20. A treadmill, comprising:

a deck;

a first pulley disposed in a first portion of the deck; a second pulley disposed in a second portion of the deck;

a tread belt surrounding the first pulley and the second pulley;

a motor in mechanical communication with at least one of the first pulley and the second pulley;

a cover superjacent the motor;

a scale mechanism incorporated into the cover over the motor;

a repetition counter having a piezoelectric material that is incorporated into the cover; a free weight rack connected to the deck;

a processor and memory; and

a display in communication with the processor;

wherein the processor is in communication with the scale mechanism and the repetition counter;

wherein the memory includes programmed instructions that, when executed, cause the processor to:

instruct a user to select a free weight;

instruct the user to perform an exercise with the free weight;

instruct the user to perform a pre-determined repetition count with the free weight;

verify that user selected the free weight by measuring the increase with the scale mechanism; and

verify that user performed pre-determined repetitions with the repetition counter.

21. A treadmill, comprising:

a deck;

a first pulley disposed in a first portion of the deck;

a second pulley disposed in a second portion of the deck;

a tread belt surrounding the first pulley and the second pulley;

a platform incorporated into the deck; and

a vibration sensor in communication with the platform.

22. The treadmill of claim 21, wherein the platform further comprises a vibration mechanism.

23. The treadmill of claim 22, further comprising:

a vibration isolator disposed between the platform and at least one of the first portion and the second portion of the deck;

wherein the vibration isolator at least mitigates a strength of a vibration passing from the platform to the at least one of the first portion and the second portion of the deck when the vibration mechanism is active.

24. The treadmill of claim 23, wherein the vibration isolator comprises a passive vibration isolator.

25. The treadmill of claim 23, wherein the vibration isolator comprises an active vibration isolator.

26. The treadmill of claim 23, further comprising:

an upright portion connected to the deck;

wherein the vibration isolator at least mitigates the strength of the vibration passing from the platform to the upright portion when the vibration mechanism is active.

27. The treadmill of claim 22, further comprising:

a processor;

a memory in communication with the processor; and

a display in communication with the processor;

wherein the vibration sensor is in communication with the processor;

wherein the memory includes programmed instructions that, when executed, cause the processor to:

record a vibration signature of the platform when a user is on the platform and the vibration mechanism is active;

perform a comparison the vibration signature to a baseline signature when no user is on the platform and the vibration mechanism is active; and

determine at least one parameter about the user based on the comparison. 28. The treadmill of claim 27, wherein the at least one parameter comprises a weight of the user.

29. The treadmill of claim 27, wherein the at least one parameter comprises an amount of weight held by the user.

30. The treadmill of claim 27, wherein the at least one parameter comprises a type of exercise performed by the user.

31. The treadmill of claim 27, wherein the at least one parameter comprises a repetition count of an exercise performed by the user.

32. The treadmill of claim 21, further comprises:

an upright portion connected to the deck; and

a display connected to the upright portion.

33. The treadmill of claim 32, wherein the display further comprises:

a repetition count of an exercise performed on the platform.

34. The treadmill of claim 32, wherein the display further comprises a type of exercise performed on the platform.

35. The treadmill of claim 32, wherein the display further comprises instruction for performing an exercise on the platform.

36. The treadmill of claim 21, further comprising a free weight rack connected to the deck.

37. A treadmill, comprising:

a deck;

a first pulley disposed on a first portion of the deck;

a second pulley disposed on a second portion of the deck; a tread belt surrounding the first pulley and the second pulley;

a platform incorporated into the deck;

a vibration mechanism incorporated into the platform;

a processor;

a memory in communication with the processor;

a display in communication with the processor; and

a vibration sensor in communication with the processor;

wherein the memory includes programmed instructions that, when executed, cause the processor to:

record a vibration signature of the platform when a user is on the platform and the vibration mechanism is active;

perform a comparison the vibration signature to a baseline signature when no user is on the platform and the vibration mechanism is active; and

determine at least one parameter about the user based on the comparison.

38. The treadmill of claim 37, wherein the at least one parameter comprises a weight of the user.

39. The treadmill of claim 37, wherein the at least one parameter comprises a repetition count of an exercise performed by the user.

40. A treadmill, comprising:

a deck;

an upright portion connected to the deck;

a display connected to the upright portion;

a first pulley disposed in a first portion of the deck;

a second pulley disposed in a second portion of the deck;

a tread belt surrounding the first pulley and the second pulley;

a platform incorporated into the deck;

a vibration mechanism incorporated into the platform;

a processor;

a memory in communication with the processor, wherein the display is in communication with the processor;

a vibration sensor in communication with the processor;

a vibration isolator disposed between the platform and at least one of the first portion of the deck, the second portion, the upright portion, and the display;

wherein the vibration isolator at least mitigates a strength of a vibration passing from the platform to the at least one of the first portion, the second portion, the upright portion, and the display when the vibration mechanism is active;

wherein the memory includes programmed instructions that, when executed, cause the processor to:

record a vibration signature of the platform when a user is on the platform and the vibration mechanism is active;

perform a comparison the vibration signature to a baseline signature when no user is on the platform and the vibration mechanism is active; and

determine at least one parameter about the user based on the comparison.