Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
WORKING MACHINE AND METHOD FOR REDUCING THE FORMATION OF DUST DURING TRACK CONSTRUCTION WORKS
Document Type and Number:
WIPO Patent Application WO/2022/243374
Kind Code:
A1
Abstract:
The invention relates to a working machine (20) for track construction works, wherein: the working machine (20) has at least one working region (21) in which ballast (32) is moved; and high-pressure water nozzles (28) are situated on the working machine (20) near to the working region (21) and are designed to generate a water spray of a defined width and length around the working region (21). The invention also relates to a method for reducing the formation of dust during track construction works using a working machine (20) for track construction works.

Inventors:
FRENZEL JÖRG (DE)
A CAMPO JULIUS (DE)
PRUST DAVID (DE)
Application Number:
PCT/EP2022/063441
Publication Date:
November 24, 2022
Filing Date:
May 18, 2022
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
HYPERION VERWALTUNG GMBH (DE)
International Classes:
E01B27/00; E01B27/06; E01B27/16
Domestic Patent References:
WO1991015630A11991-10-17
Foreign References:
EP1860240A12007-11-28
DE10139765A12003-03-06
GB2152984A1985-08-14
CN112626941A2021-04-09
Attorney, Agent or Firm:
PATENTANWÄLTE BRESSEL UND PARTNER MBB (DE)
Download PDF:
Claims:
Patentansprüche

1. Arbeitsmaschine (20) für Gleisbauarbeiten, wobei die Arbeitsmaschine (20) mindestens einen Arbeitsbereich (21) aufweist, an dem Schotter (32) bewegt wird dadurch gekennzeichnet, dass an der Arbeitsmaschine (20) in der Nähe des Arbeitsbereiches (21) mit Hochdruck betriebene Wasserdüsen (28) angeordnet sind, die derart ausgebildet sind, einen stehenden Wassernebel definierter Breite und Länge um den Arbeitsbereich (21) zu erzeugen.

2. Arbeitsmaschine nach Anspruch 1, dadurch gekennzeichnet, dass die Arbeitsmaschine derart ausgebildet ist, die Ausrichtung der Wasserdüsen und/oder den Hochdruck an den Wasserdüsen einzustellen.

3. Arbeitsmaschine nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Arbeitsmaschine (20) mindestens ein Gebläse (24) und Luftleit-Strukturen (26) zur Erzeugung einer laminaren Strömung (27) aufweist, wobei die Wasserdüsen (28) derart angeordnet sind, dass diese den Wassernebel in die laminare Strömung sprühen.

4. Arbeitsmaschine nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass die Arbeitsmaschine (20) mindestens eine Absaugvorrichtung (30) aufweist, die den Wasserdüsen (28) gegenüberliegend angeordnet ist.

5. Arbeitsmaschine nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass die Arbeitsmaschine (20) mindestens ein Förderband (33) für Schotter (32) aufweist, wobei mindestens entlang einer Teilstrecke des Förderbandes (33) das Förderband (33) durch ein umlaufendes Band (34) umhüllt ist, wobei die Arbeitsmaschine (20) weiter ein Wasserbad (36) aufweist, das derart angeordnet ist, dass jeweils ein Teil des umlaufenden Bandes (34) sich in dem Wasserbad (36) befindet.

6. Arbeitsmaschine nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass die Arbeitsmaschine (20) mindestens ein Förderband (33) für Schotter (32) aufweist, wobei mindestens entlang einer Teilstrecke des Förderbandes (33) zwei umlaufende Bänder (34) über dem Förderband (33) gespannt sind, wobei die Arbeitsmaschine (20) mindestens ein Wasserbad (36) aufweist, das derart angeordnet ist, dass jeweils ein Teil des umlaufenden Bandes (34) sich in dem Wasserbad (36) befindet.

7. Arbeitsmaschine nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass die Arbeitsmaschine (20) mindestens ein Förderband (33) für Schotter (32) aufweist, wobei mindestens entlang einer Teilstrecke des Förderbandes (33) Gebläse (44) zur Erzeugung eines laminaren Luftstroms (45) neben dem Förderband (33) angeordnet sind, wobei der Luftstrom (45) quer zur Förderrichtung (TR) des Förderbandes (33) ausgerichtet ist, wobei die Arbeitsmaschine (20) weiter Wasserdüsen (46) aufweist, die auf der gegenüberliegenden Seite des Förderbandes (33) angeordnet sind.

8. Arbeitsmaschine nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass die Arbeitsmaschine (20) mindestens ein Förderband (33) aufweist, wobei mindestens entlang eines Teilstücks des Förderbandes (33) eine Haube (39) über dem Förderband (33) angeordnet ist, wobei an der Haube (39) Wasserdüsen (40) angeordnet sind, die derart ausgebildet sind, einen radialen Wasserstrahl (41) an der Innenwand der Haube (39) zu erzeugen.

9. Arbeitsmaschine nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass die Arbeitsmaschine (20) mindestens eine Vorrichtung (1) aufweist, die derart ausgebildet ist, impulsartig einen Wassernebel vor der Arbeitsmaschine (20) zu erzeugen.

10. Verfahren zur Reduzierung der Staubentwicklung bei Gleisbauarbeiten mit einer Arbeitsmaschine (20) für Gleisbauarbeiten, wobei die Arbeitsmaschine (20) mindestens einen Arbeitsbereich (21) aufweist, an dem Schotter (32) bewegt wird, wobei mittels in der Nähe des Arbeitsbereiches (21) angeordneten Wasserdüsen (28) mit Hochdruck einen Wassernebel definierter Breite und Länge um den Arbeitsbereich (21) erzeugt wird.

Description:
Arbeitsmaschine und Verfahren zur Reduzierung der Staubentwicklung bei Gleisbauarbeiten

Die Erfindung betrifft eine Arbeitsmaschine für Gleisbauarbeiten, wobei die Arbeitsmaschine mindestens einen Arbeitsbereich aufweist, an dem Schotter bewegt wird, und ein Verfahren zur Reduzierung der Staubentwicklung bei Gleisbauarbeiten mit einer Arbeitsmaschine.

Derartige Arbeitsmaschinen sind beispielsweise Stopfmaschinen, Bettungsreinigungsmaschinen oder Umbauzüge (Gleisumbau in Fließbandtechnik) oder Bagger. Eine Gleisstopfmaschine, auch Schotterstopfmaschine oder Stopfzug genannt, ist eine Gleisbaumaschine zum Verdichten des Schotters (Stopfen) im Oberbau unter den Schwellen. Eine Stopfmaschine hat ein Stopfaggregat, das mit vibrierenden Stopfpickeln ausgestattet ist, die in den Schotter eintauchen und dann den Schotter durch horizontale Bewegungen unter die Schwellen drücken und verdichten. Eine Bettungsreinigungsmaschine nimmt den Schotter aus dem Gleisbett auf, reinigt diesen und bringt den Schotter wieder aus. Ein Umbauzug nimmt zusätzlich noch die Schwellen auf und tauscht diese aus.

Bei der Oberbauerneuerung wird Staub in Form von unlöslichem mineralischem Staub durch die Handhabung des Schotters freigesetzt. Schotter kann dabei Basalt-Schotter oder eine andere Gesteinsart als Schotter sein (z.B. Kalkstein).

Bei den Stopfmaschinen entsteht insbesondere im Arbeitsbereich der Stopfpickel zur Verdichtung des Schotters Staub. Bei Bettungsreinigungsmaschinen und Umbauzügen ist ein besonders staubbelasteter Arbeitsbereich die Schürfkette, mittels derer der Altschotter aus dem Gleisbett herausgeholt wird. Ein weiterer Arbeitsbereich mit hoher Staubentwicklung sind Übergabepunkte zwischen Förderbändern für den Schotter oder Abwurfstellen für den Schotter oder Bereiche, in denen Schwellen aus dem Schotter gelöst werden bzw. wieder eingebracht werden.

Partikel mit einem Durchmesser größer als 10 pm - der sogenannte Grobstaub - bleibt größtenteils an den Nasenhärchen oder den Schleimhäuten des Nasen-Rachenraums hängen. Kleinere und kleinste Staubpartikel können aber über die Luftröhre und die Bronchien bis tief in die Lunge (Lungenbläschen) Vordringen. Daher wird der Feinstaub auch als einatembarer Staub (E-Staub - Partikel kleiner als 10 pm) bzw. als alveolengängiger Staub (A-Staub - Partikel kleiner als 2,5 pm) bezeichnet. Neben dem Einfluss dieser Staubgrößen finden sich in allen Schotterarten zusätzlich noch der Bestandteil Quarz. So werden Quarz und bestimmte Asbestfasern (insbesondere Blauasbest) - entsprechend ihrer Hauptwirkung - zu den Narben bildenden (fibrogenen) Stäuben gezählt, da sie nach häufiger Einwirkung über lange Zeit (aufgrund chronischer Inhalation) zu einem fortschreitenden Umbau des Lungengewebes (Lungenfibrose) führen, die mit funktioneller Beeinträchtigung der Atmung und des Gasaustausches (Ventilations- und Diffusionsstörung) einhergeht.

Zur Lösung des Problems sind verschiedenste Maßnahmen bekannt, die häufig auch kombiniert werden:

Kombination von blasender Bewetterung und Entstaubung,

- ausreichende Auswetterzeiten Einhausungen

- Verwendung von Staubbindemitteln Befeuchtung, Benetzung oder Bedüsung der Fahrbahn

Der Einsatz von Wasser bringt teilweise neue Probleme mit sich, was dessen Einsatz beschränkt. Beispielsweise kann bei starkem Wassereinsatz (komplette vorherige Durchfeuchtung des Schotterhaufens) die Tunneldrainage stark belastet werden oder Schadstoffe aus dem Gleisbett ausgeschwemmt werden. Das so kontaminierte Wasser muss entsprechend aufgefangen und entsorgt oder aufbereitet werden.

Speziell im Bahnbau ist eine Absaugung des Staubes in Kombination mit vorher einzubringendem Wasser als bisher effektivstes Verfahren zur Minderung des Staubs seitens der BG BAU/ Eisenbahnbundesamt definiert. Absaug- und Einhausanlagen sind durch das Eisenbahnbundesamt im Bereich der entstehenden Staubquellen von Bettungsreinigungsmaschinen angeordnet worden. Dieses hat neben der enorm hohen erforderlichen Arbeitsleistung der Absauganlagen (400 kW) und damit verbundener Wärmeentwicklung durch Maschine und Einhausungen weitere Nachteile, da die dazugehörige Logistik (Verlauf der Absaugrohre, Filteranlage, automatische Reinigung der Filtereinsätze), der eigentliche Platzbedarf sowie die Aufbewahrung (und deren spätere Entsorgung) der kontaminierten Stäube während der Reinigungs- und Filterleistungen enorm sind. Auch wird durch die Anordnung der Absaug- und Filteranlagen der zugängliche Arbeitsbereich eingeschränkt und im Falle einer auf dem Parallelgleis (soweit überhaupt vorhanden!) mitfahrenden Filter- und Maschineneinheit das Gegengleis für sonstige Logistik- bzw. Bahnbauleistungen eingeschränkt. Die erzielbare Arbeitsleistung reduziert sich, die notwendige Arbeitszeit, in der sich Arbeitspersonal im Arbeitsbereich aufhält, erhöht sich und der zur Verfügung stehende Arbeits- und Sicherheitsbereich reduziert sich.

Der Erfindung liegt das technische Problem zugrunde, eine Arbeitsmaschine für Gleisbauarbeiten zu schaffen, die mindestens einen Arbeitsbereich aufweist, an dem Schotter bewegt wird, bei der die Reduzierung der Staubentwicklung verbessert ist. Ein weiteres Problem ist das Zurverfügungstellen eines entsprechenden Verfahrens.

Die Lösung des technischen Problems ergibt sich durch eine Arbeitsmaschine mit den Merkmalen des Anspruchs 1 sowie ein Verfahren mit den Merkmalen des Anspruchs 10. Weitere vorteilhafte Ausgestaltungen der Erfindung ergeben sich aus den Unteransprüchen.

Die Arbeitsmaschine für Gleisbauarbeiten weist mindestens einen Arbeitsbereich auf, an dem Schotter bewegt wird. An der Arbeitsmaschine sind in der Nähe des Arbeitsbereichs mit Hochdruck betriebene Wasserdüsen angeordnet, die derart ausgebildet sind, einen Wassernebel definierter Breite und Länge um den Arbeitsbereich zu erzeugen. Unter Hochdruck wird dabei ein Druck von > 40 bar verstanden. Vorzugsweise liegt der Druck dabei zwischen 40 bis 80 bar. Weiter vorzugsweise wird der Wassernebel permanent und stehend erzeugt. Es sind aber auch Ausführungen möglich, wo der Wassernebel impulsartig, beispielsweise alle drei bis fünf Sekunden, erzeugt wird. Dabei können dann noch höhere Drücke zur Anwendung kommen. Die Tröpfchengröße des Wassernebels ist vorzugsweise kleiner als 1 mm und liegt vorzugsweise zwischen 50 bis 150 pm. Die Länge und Breite des Wassernebels ist dabei vorzugsweise abhängig von der Art der Arbeitsmaschine bzw. der Art des Arbeitsbereiches. Vorzugsweise ist die Breite des Wassernebels größer als 3 m und kann bis zu 20 m und mehr. Die Breite kann aber auch in Einzelfällen weniger als 3 m betragen. Insbesondere wird eine gewisse Breite unmittelbar vor und in dem Arbeitsbereich vernebelt, sodass bei einer Längsbewegung der Arbeitsmaschine der Arbeitsbereich stets in einem vorhandenen, stehenden Wassernebel einfährt. Dabei kann auch vorgesehen sein, dass die Breite des Wassernebels an die Länge der Schwellen angepasst wird, wobei beispielsweise die Breite des Wassernebels mindestens 5 bis 10cm größer als die Länge der Schwellen ist. Die Länge des Wassernebels ist vorzugsweise größer als 2 m, weiter vorzugsweise größer als 4 m. Es gibt aber auch Anwendungen bei denen der Wassernebel kleiner als 2 m lang ist. Dabei können die Wasserdüsen derart ausgerichtet sein, dass diese den Wassernebel in Längsrichtung bzw. Bewegungsrichtung der Arbeitsmaschine erzeugen. Sind die Wasserdüsen vor dem Arbeitsbereich angeordnet, sprühen diese zurück (entgegen der Bewegungsrichtung). Sind diese hinter dem Arbeitsbereich angeordnet, sprühen diese in Fahrtrichtung. Auch können die Wasserdüsen zusätzlich oder nur seitlich angeordnet sein und sprühen dann quer zur Bewegungsrichtung. Der Arbeitsbereich ist vorzugsweise eine Schürfkette und/ oder ein Übergabepunkt von Schotter zwischen zwei Förderbändern und/ oder der Eintauchpunkt der Stopfpickel einer Stopfmaschine oder einer Schaufel oder ähnliches an einem Bagger und/ oder Abwurfpunkte für Schotter in ein Gleisbett.

Die Anzahl der Wasserdüsen liegt je stauberzeugender Stelle vorzugsweise zwischen 4 bis 50, die weiter vorzugsweise von einer gemeinsamen Pumpe mit Waser versorgt werden. Mit größer werdender Anzahl von Wasserdüsen muss die Pumpe eine entsprechend größere Pumpleistung aufbringen oder es müssen mehrere Pumpen eingesetzt werden. Dabei hat sich als besonders effizient herausgestellt, wenn die Anzahl der Wasserdüsen zwischen 30 bis 40 liegt. Die Pumpleistung liegt dabei beispielsweise zwischen 200 bis 300 l/h.

Ein Vorteil in der Vernebelung liegt auch darin, dass sich hierdurch feine Staubpartikel zu größeren Körnern agglomerieren können. Diese sinken dann zu Boden und können dann mit dem aufzunehmenden, ebenfalls angefeuchteten Schotter wegtransportiert werden, bzw. lassen sich auch leichter einsaugen. Durch Zusatz von Staubbindemitteln kann diese Agglomerationswirkung gegebenenfalls noch weiter gesteigert werden, wobei in diesem Fall ein weiterer Vorteil der Vernebelung darin besteht, dass die Menge an eingesetztem Bindemittel gegenüber der üblichen Ausbringungsweise deutlich reduziert werden kann. Gegenüber zuvor beschriebenen bekannten Verfahren zur Staubvermeidung ergibt sich somit eine deutliche Reduktion des Materialeinsatzes.

In einer Ausführungsform ist die Arbeitsmaschine derart ausgebildet, die Ausrichtung der Wasserdüsen und/oder den Hochdruck an die Wasserdüsen einzustellen. Die Einsteilbarkeit kann dabei manuell oder automatisch erfolgen. Durch die Einsteilbarkeit kann dabei die Arbeitsmaschine auf wechselnde äußere Einflüsse wie beispielsweise Wind reagieren. In Abhängigkeit von der Wndstärke und -richtung wird die Nebelwand beeinflusst. Durch die Einstellungen können diese Beeinflussungen zumindest teilweise kompensiert werden, sodass immer nahezu vergleichbare Arbeitsbedingen vorliegen. Bei der automatischen Einstellung kann beispielsweise vorgesehen sein, dass die Wndstärke und -richtung sensorisch gemessen werden, wobei dann die Parameter für die Ausrichtung der Wasserdüsen und/oder der eingestellte Hochdruck aus einer Kennlinie oder Tabelle ausgelesen werden. Zusätzlich oder alternativ kann auch eine Kamera oder Laser vorgesehen sein, die den Wassernebel aufnimmt und anhand der erfassten Bilddaten die Einstellungen verändert, bis die gewünschte Form des Wassernebels erreicht wird.

In einer Ausführungsform weist die Arbeitsmaschine mindestens ein Gebläse und Luftleit- Strukturen zur Erzeugung einer laminaren Strömung auf, wobei die Wasserdüsen derart ausgebildet sind, dass diese den Wassernebel in die laminare Strömung sprühen. Hierdurch kann insbesondere erreicht werden, dass der Wassernebel ausreichend lang eingestellt werden kann. Die Luftleit-Strukturen sind beispielsweise Luftleitbleche, die noch zusätzliche Beschichtungen aufweisen können.

In einerweiteren Ausführungsform weist die Arbeitsmaschine mindestens eine Absaugvorrichtung auf, die den Wasserdüsen gegenüberliegend angeordnet ist.

Hierdurch können die Wasser-Staub-Partikel eingesammelt werden. Beispielsweise ist die Absaugvorrichtung als Sauggebläse mit Zyklonabscheider ausgebildet. Anschließend kann dann das Wasser gereinigt und wieder den Wasserdüsen zugeführt werden. Dabei kann auch vorgesehen sein, dass auch die Ausrichtung der Absaugvorrichtung einstellbar ist.

In einerweiteren Ausführungsform weist die Arbeitsmaschine mindestens ein Förderband für Schotter auf, wobei mindestens entlang einer Teilstrecke des Förderbandes das Förderband durch ein umlaufendes Band umhüllt ist, wobei die Arbeitsmaschine weiter ein Wasserbad aufweist, das derart ausgebildet ist, dass jeweils ein Teil des umlaufenden Bandes sich in dem Wasserbad befindet. Hierdurch kann das befeuchtete Band aufsteigenden Staub vom Förderband aufnehmen und zum Wasserbad ableiten. Das umlaufende Band ist beispielsweise als Vlies ausgebildet. Alternativ kann das Band auch elektrostatisch aufgeladen sein, wobei dann das Wasserbad entfällt. In einer alternativen oder ergänzenden Ausführungsform weist die Arbeitsmaschine mindestens ein Förderband für Schotter auf, wobei mindestens entlang einer Teilstrecke des Förderbandes zwei umlaufende Bänder über dem Förderband gespannt sind, wobei die Arbeitsmaschine mindestens ein Wasserbad aufweist, das derart ausgebildet ist, dass jeweils ein Teil des umlaufenden Bandes sich in dem Wasserbad befindet. Auch hier sind die Bänder vorzugsweise als Vlies ausgebildet. Weiter ist vorzugsweise jedem Band ein eigenes Wasserbad zugeordnet. Weiter vorzugsweise ist jeweils eine Anpresswalze vorgesehen, die das mit Staub kontaminierte Schmutzwasser aus dem Band herauspresst, bevor dieses wieder in das Wasserbad eintaucht. Das Schmutzwasser kann dann gereinigt und dem Wasserbad oder auch anderen Einheiten der Arbeitsmaschine zugeführt werden. Alternativ können die Bänder elektrostatisch aufgeladen werden, wobei dann die Wasserbäder wieder entfallen.

In einerweiteren alternativen oder ergänzenden Ausführungsform weist die Arbeitsmaschine mindestens ein Förderband für Schotter auf, wobei mindestens entlang einer Teilstrecke des Förderbandes eine Haube über dem Förderband angeordnet ist, wobei an der Haube Wasserdüsen angeordnet sind, die derart ausgebildet sind, einen radialen Wasserstrahl an der Innenwand der Haube zu erzeugen. Der Wasserstrahl wird dann an einer Seite der Haube derart eingespritzt, dass die Haube über ihre gesamte Länge und Breite mit einem dauerhaft geschlossenen Wasserfilm bedeckt ist. Dabei nimmt der Wasserstrahl Staubpartikel auf und fließt an der gegenüberliegenden Seite ab. Das abfließende Schmutzwasser kann anschließend gereinigt werden. Die Luftströmung in dem geschlossenen Raum zwischen Förderband und Haube kann hierbei turbulent ausgeprägt sein, um zusätzliche Staubpartikel aus dem transportierten Schotter zu lösen und bereits in der Luft befindliche Staubpartikel mit dem umgebenden Wasserstrahl in Berührung zu bringen. Alternativ kann die Haube auch elektrostatisch aufgeladen werden, wobei dann der Wasserstrahl entfällt.

In einerweiteren alternativen oder ergänzenden Ausführungsform weist die Arbeitsmaschine mindestens ein Förderband für Schotter auf, wobei mindestens entlang einer Teilstrecke des Förderbandes Gebläse zur Erzeugung eines laminaren Luftstroms neben dem Förderband angeordnet sind, wobei der Luftstrom quer zur Förderrichtung des Förderbandes ausgerichtet ist, wobei die Arbeitsmaschine weiter Wasserdüsen aufweist, die auf der gegenüberliegenden Seite des Förderbandes angeordnet sind. Die Wasserdüsen erzeugen neben dem Förderband einen vertikal abfallenden Wassernebel, der den Staub bindet. Die Tröpfchengröße liegt hierbei vorzugsweise zwischen 50 pm und 500 pm und weiter vorzugsweise zwischen 50 und 100 pm. Das nach unten fallende Schmutzwasser kann in einer beispielsweise parallel zum Förderband verlaufenden Rinne aufgefangen und anschließend gereinigt und wieder verwendet werden.

In einerweiteren Ausführungsform weist die Arbeitsmaschine zusätzlich mindestens eine Vorrichtung auf, die derart ausgebildet ist, impulsartig einen Wassernebel vor der Arbeitsmaschine zu erzeugen. Hierdurch fährt die Arbeitsmaschine stets in einen niedersinkenden Wassernebel, sodass die Staubbildung um die Arbeitsmaschine wirkungsvoll reduziert wird. Die Vorrichtung erzeugt einen Wassernebel mit einer Tröpfchengröße kleiner 500 pm, wobei vorzugsweise eine Tröpfchengröße von 100 pm erzeugt wird. Der Druck liegt vorzugsweise zwischen 20 bis 30 bar und weiter vorzugsweise bei 25 bar. Vorzugsweise ist dabei ein Zwischenspeicher vorgesehen, der den Druck vorhält. Der Druck im Zwischenspeicher liegt dabei vorzugsweise zwischen 27 bis 40 bar, weiter vorzugsweise zwischen 35 bis 40 bar und weiter vorzugsweise zwischen 38 und 40 bar. Die Länge des Wassernebels liegt vorzugsweise zwischen 35 bis 50 m. Die Breite liegt vorzugsweise zwischen 3 bis 5 m. Vorzugsweise ist der Wassernebel ca. 1 m über dem Gleisbett vor der Arbeitsmaschine. Dies ermöglicht ein gezieltes Absetzen des Wassers und behindert gleichzeitig nicht die Sicht, sodass die Arbeitssicherheit erhöht wird. Anschaulich wird ein Wassernebel-Tunnel bzw. eine Wassernebel-Decke gebildet, in den sich die mobile Arbeitsmaschine hineinbewegt. Da sich die Arbeitsbereiche bzw. Arbeitseinheiten (z.B. eine Schürfkette) meist nicht direkt am Kopf der Arbeitsmaschine befinden, sondern einige Meter dahinter, ist es von Vorteil, wenn sich die Arbeitsmaschine in den Wassernebel-Tunnel hineinbewegt. Der dann aufsteigende Staub nimmt die Feuchtigkeit in Form der Wassertröpfchen auf und sinkt wieder zu Boden. Der Wasserverbrauch ist dabei erheblich geringer als bei bekannten Berieselungen. So kann mit 125 Litern impulsartig vernebelten Wassers ein ähnlicher Effekt erzielt werden wie mit 10.000 Liter Wasser bei Berieselung zur Benetzung des Gleisbettes. Über eine achtstündige Schicht reichen ca. 17.000 Liter Wasser, dem ca. 240.000 Liter Luft beigemischt werden. Vorzugsweise werden 3 bis 6 Pulse pro Minute erzeugt. Der Wassernebel kann aus reinem Wasser bestehen oder aber auch Zusätze enthalten. Vorrichtungen zur Erzeugung von derartigen Wassernebel-Tunneln sind beispielsweise aus der Brandbekämpfung bekannt, wo diese für das sogenannte Impulslöschverfahren verwendet werden und beispielsweise von der Firma IFEX hergestellt werden. Dabei muss auch nicht die komplette Vorrichtung in die Arbeitsmaschine integriert sein. Beispielsweise ist nur die eigentliche Impulskanone in die Arbeitsmaschine integriert, wohingegen andere Teile, wie beispielsweise Wassertank und Druckspeicher, auf einer schienengebundenen Plattform vor der Arbeitsmaschine angeordnet sind.

Verfahrensmäßig kann alternativ oder zusätzlich vorgesehen sein, dass ein Mensch die Vorrichtung zur impulsartigen Vernebelung trägt.

In einer alternativen Ausführungsform umfasst die Vorrichtung zur Reduzierung der Staubentwicklung bei Gleisbauarbeiten mindestens eine Wasserkammer, mindestens eine Druckkammer, mindestens ein Schnellverschlussventil, mindestens eine Düse und eine Steuerung, wobei die Steuerung derart ausgebildet ist, das mindestens eine Schnellverschlussventil impulsartig anzusteuern, sodass Druckkammer und Wasserkammer drucktechnisch verbunden sind und ein Wassernebel erzeugt wird, wobei die Vorrichtung Mittel aufweist, um die Vorrichtung lösbar mit einer schienengebundenen Plattform zu verbinden, oder die Vorrichtung eine schienengebundene Plattform aufweist.

Dabei kann die Plattform vor der Arbeitsmaschine angeordnet sein und von der Arbeitsmaschine geschoben werden.

In einer Ausführungsform sind die Mittel zur Erzeugung der Wassernebel auf einer von der Antriebsmaschine getrennten Plattform angeordnet, wobei der Wassernebel entgegen der Bewegungsrichtung der Arbeitsmaschine erzeugt wird. Dabei kann die Plattform einen eigenen Antrieb aufweisen oder aber gezogen werden. Der Vorteil dabei ist, dass keine zusätzliche mechanische Belastung auf den Bereich vor der Arbeitsmaschine und somit in der Nähe des prozessbedingten Gleislochs im Bereich der Räumungsketten einer Arbeitsmaschine auftritt.

Die einzelnen Maßnahmen können aber auch kombiniert werden. So können erste Mittel auf einer von der Arbeitsmaschine getrennten Plattform angeordnet sein, wobei weitere Mittel in die Arbeitsmaschine integriert sind und/oder unmittelbar vor dieser angeordnet sind.

Dabei kann weiter vorgesehen sein, dass die Mittel vor oder in der Arbeitsmaschine in verschiedene Richtungen den Wassernebel erzeugen (vor, zurück, links rechts). Dabei kann weiter vorgesehen sein, dass die Mittel im oder unmittelbar vor der Arbeitsmaschine den Wassernebel mit geringerem Druck und kürzerer Länge erzeugen.

In einerweiteren Ausführungsform wird mittels mindestens einer Sensorik der Wassernebel erfasst und die Frequenz der Impulse in Abhängigkeit der Daten der Sensorik angepasst. Somit wird sichergestellt, dass stets eine ausreichende Wassernebel-Wand vorhanden ist. Die Sensorik ist beispielsweise als Kamera ausgebildet. Zusätzlich kann mittels der Sensorik eine Objekterkennung durchgeführt werden. Dabei kann vorgesehen sein, dass bei der Erfassung eines Objekts (z.B. ein Mensch) die Erzeugung des Wassernebels unterbrochen wird.

In einerweiteren Ausführungsform ist eine Sensorik zur Erfassung einer Entfernung zur Arbeitsmaschine vorgesehen, deren Daten zur Ansteuerung einer Antriebsmaschine der Plattform oder aber der Mittel selbst verwendet werden können. So kann beispielsweise das Mittel vertikal verschwenkt werden oder aber der Arbeitsdruck angepasst werden. Die Sensorik kann dabei als Laser-, Radar- oder Lidarsensor ausgebildet sein. Die Sensorik kann aber auch als Stereo-Kamera ausgebildet sein. Auch die Daten der Sensorik zur Erfassung der Entfernung der Arbeitsmaschine können zusätzlich für eine Objekterkennung verwendet werden.

In einerweiteren Ausführungsform sind mehrere Mittel parallel angeordnet. Hierdurch kann einerseits einfacher eine gewünschte Breite der Wassernebel-Wand eingestellt werden. Ein weiterer Vorteil ist, dass die verschiedenen Mittel zeitlich versetzt zueinander angesteuert werden können, sodass sich eine insgesamt höhere Impulsrate erzeugen lässt. Dabei können auch einzelne Mittel nur situativ angesteuert werden, wenn beispielsweise die Sensorik, die den Wassernebel erfasst, einen zu geringen Wassernebel erfasst. Alternativ können die mehreren Mittel auch radial um eine Achse verteilt angeordnet sein, wobei sich dann die Mittel revolvierend um die Achse drehen lassen und zeitlich nacheinander einen Wassernebel erzeugen.

In einerweiteren Ausführungsform sind die Mittel schwenkbar ausgebildet. Dabei können die Mittel horizontal und/oder vertikal schwenkbar ausgebildet sein. Durch die vertikale Schwenkung kann dabei der Abschlusswinkel des Wassernebels und somit auch dessen Länge eingestellt werden. So kann beispielsweise das Mittel in Abhängigkeit der Daten der Sensorik zur Erfassung der Entfernung zur Arbeitsmaschine verschwenkt werden. Weiter kann vorgesehen sein, dass die Düsen überwacht werden, beispielsweise auf Verstopfung oder Vereisung. Dabei kann auch vorgesehen sein, dass die Düsen bei Vereisungsgefahr beheizt werden.

In einer weiteren Ausführungsform ist die Düse verstellbar ausgebildet und/oder derart ausgebildet, dass Aufsätze vor ihr befestigt werden können, um so die Vernebelung einzustellen. Die Aufsätze können beispielsweise Gitter sein. Weiter können auch Lochscheiben vorgesehen sein, die gegeneinander vordrehbar sind. So kann beispielsweise bei Einsatz an der Arbeitsmaschine die Vernebelung vergrößert werden, was aber auf Kosten der Länge des Wassernebels geht.

Die Druckkammer ist dabei vorzugsweise mit einem Kompressor verbunden, der immer wieder den notwendigen Druck von beispielsweise 25 bar aufbaut. Dabei kann zwischen Druckkammer und Kompressor der zuvor erwähnte Zwischenspeicher angeordnet sein. Die Wasserkammer ist mit einem Wassertank oder einer Wasserleitung verbunden, sodass die Wasserkammer immer wieder befülltwird. Dabei kann auch der Wassertank mit einer Wasserleitung verbunden sein. Dabei kann das Wasser unter Druck von dem Wassertank in die Wasserkammer befördert werden. Hierzu kann auch der Kompressor für die Druckkammer verwendet werden, der dann zwei Funktionen aufweist.

In einerweiteren Ausführungsform weist die Vorrichtung mindestens eine Sensorik zur Erfassung des Wassernebels auf, wobei die Steuereinheit derart ausgebildet ist, das Schnellverschlussventil in Abhängigkeit der Daten der Sensorik anzusteuern.

In einerweiteren Ausführungsform ist die Vorrichtung schwenkbar ausgebildet. Dies ermöglicht es, insbesondere die Breite der Wassernebel-Wand einzustellen.

Die zuvor beschriebenen Vorrichtungen zur impulsartigen Vernebelung können auch in Alleinstellung, d.h. ohne die beschriebenen Wasserdüsen mit Hochdruck, zur Staubreduzierung verwendet werden, sodass diese auch alleine eine Erfindung darstellen.

Hinsichtlich der verfahrensmäßigen Ausgestaltung wird vollinhaltlich auf die vorangegangenen Ausführungen Bezug genommen. Die Erfindung wird nachfolgend anhand bevorzugter Ausführungsbeispiele näher erläutert. Die Figuren zeigen:

Fig. 1 eine schematische Darstellung einer Arbeitsmaschine für Gleisbauarbeiten,

Fig. 2 eine schematische Detail-Ansicht im Bereich des Arbeitsbereichs,

Fig. 3 eine schematische Vorderansicht auf ein Förderband für Schotter in einer ersten Ausführungsform,

Fig. 4 eine schematische Vorderansicht auf ein Förderband für Schotter in einer zweiten Ausführungsform,

Fig. 5 eine schematische Vorderansicht auf ein Förderband für Schotter in einer dritten Ausführungsform,

Fig. 6 eine schematische Perspektivdarstellung auf ein Förderband für Schotter in einerweiteren Darstellung,

Fig. 7 eine stark vereinfachte schematische Darstellung einer Vorrichtung zur impulsartigen Erzeugung von Wassernebel,

Fig. 8 eine schematische Draufsicht auf eine Vorrichtung und eine Arbeitsmaschine und

Fig. 9 eine schematische Seitenansicht auf Vorrichtung und Arbeitsmaschine.

In der Fig. 1 ist schematisch eine Arbeitsmaschine 20 für Gleisbauarbeiten dargestellt, die sich in Fahrtrichtung F bewegt. Die Arbeitsmaschine 20 ist beispielsweise ein Umbauzug, eine Bettungsreinigungsmaschine oder eine Stopfmaschine. Die Arbeitsmaschine 20 weist mindestens einen Arbeitsbereich 21 auf, an dem Schotter bewegt wird. In dem dargestellten Beispiel ist dies beispielsweise eine Schürfkette, mittels derer Schotter aus dem Gleisbett zur Reinigung herausgeholt wird. In der Fig. 2 ist eine Vorrichtung 22 zur Reduzierung der Staubentwicklung an einem Arbeitsbereich 21 der Arbeitsmaschine 20 dargestellt. Im Arbeitsbereich 21 wird dabei Schotter bewegt, sodass Staubpartikel 23 nach oben steigen. Die Vorrichtung 22 weist mindestens ein Gebläse 24 auf, das Umgebungsluft 25 ansaugt und die angesaugte Luft durch Luftleit-Strukturen 26 presst, sodass eine laminare Luftströmung 27 entsteht. Am Gebläse 24 entgegengesetzten Ende der Luftleit-Strukturen 26 sind Wasserdüsen 28 angeordnet, die mittels Hochdruck von > 40 bar feine Wassertröpfchen 29 bilden, die einen Durchmesser von 100 bis 500 pm aufweisen. Die Wassertröpfchen 29 werden dabei von der laminaren Luftströmung 27 mitgenommen. Treffen dann Staubpartikel 23 auf Wassertröpfchen 29, so kommt es zur Verbindung. An der den Wasserdüsen 28 gegenüberliegenden Seite des Arbeitsbereiches ist eine Absaugvorrichtung 30 angeordnet, die beispielsweise ein Sauggebläse zum Antreiben eines Zyklonabscheiders aufweist. Mittels der Absaugvorrichtung 30 werden dann die Wassertröpfchen 29 mit den gebundenen Staubpartikeln 23 angesaugt. Das so gesammelte Schmutzwasser kann dann gereinigt werden und wieder den Wasserdüsen 28 zugeführt werden. Mittels der Vorrichtung 22 kann somit wirkungsvoll die Staubexposition reduziert werden.

In der Fig. 3 ist eine Vorrichtung 31 zur Reduzierung der Staubentwicklung beim Transportieren von Schotter 32 auf einem Förderband 33 dargestellt. Die Vorrichtung 31 weist ein das Förderband 33 einhüllendes umlaufendes Band 34 auf, das über Rollen 35 läuft. Dabei müssen nicht alle Rollen als Antriebsrollen ausgebildet sein. Einige Rollen 35 können auch als einfache Umlenkrollen ausgebildet sein. Weiter weist die Vorrichtung 31 ein Wasserbad 36 auf, wobei ein Teil des umlaufenden Bandes 34 sich stets im Wasserbad 36 befindet. Steigen dann während der Bewegung Staubpartikel auf, so bleiben diese an dem feuchten Band 34 haften und werden zum Wasserbad 36 abtransportiert, wo diese sich lösen. Zusätzlich können mechanische Mittel vorgesehen sein, um die am Band 34 anhaftenden Staubpartikel vom Band 34 zu lösen.

In der Fig. 4 ist eine alternative Vorrichtung 31 zur Reduzierung der Staubentwicklung beim Transportieren von Schotter 32 auf einem Förderband 33 dargestellt. Im Gegensatz zur Ausführung gemäß Fig. 3 weist die Vorrichtung 31 zwei umlaufende Bänder 34 auf, die das Förderband 33 nahezu komplett überdecken. Zusätzlich ist jedem Band 34 eine Anpresswalze 37 zugeordnet, mittels derer beim Rücktransport des Bandes 34 das Wasser mit den anhaftenden Staubpartikeln 23 aus dem Band 34 gepresst und in einen Schmutzwassertank 38 geleitet wird, wo dieses dann anschließend gereinigt werden kann.

In der Fig. 5 ist eine weitere alternative Vorrichtung 31 zur Reduzierung der Staubentwicklung beim Transportieren von Schotter 32 auf einem Förderband 33 dargestellt. Dabei ist neben und über dem Förderband 33 eine Haube 39 angeordnet. An einem Rand der Haube 39 ist eine Wasserdüse 40 angeordnet, die einen Wasserstrahl 41 aus Frischwasser 43 erzeugt, der radial an der Innenwand der Haube 39 verläuft und an dem gegenüberliegenden Rand als Schmutzwasser 42 abließt.

In der Fig. 6 ist eine weitere alternative Vorrichtung 31 zur Reduzierung der Staubentwicklung beim Transportieren von Schotter auf einem Förderband 33 dargestellt. Entlang einer Teilstrecke des Förderbandes 33 sind Gebläse 44 angeordnet, die einen laminaren Luftstrom 45 quer zur Transportrichtung TR des Förderbandes 33 erzeugen. An der gegenüberliegenden Seite des Förderbandes 33 sind Wasserdüsen 46 angeordnet, die von oben einen nach unten gerichteten Wassernebel 47 erzeugen. Während des Transports nach oben aufsteigende Schotterpartikel 23 werden von dem laminaren Luftstrom 45 in den Wassernebel 47 geblasen, sich mit Wassertröpfchen verbinden und nach unten in eine Ablaufrinne 48 fallen. Dieses Schmutzwasser 49 wird einer Filtereinheit 50 zugeführt und das gereinigte Wasser 51 wieder den Wasserdüsen 46 zugeführt.

In der Fig. 7 ist die Vorrichtung 1 zur Reduzierung der Staubentwicklung dargestellt, die zusätzlich oder alternativ zu den Wasserdüsen 28 mit Hochdruck zur Anwendung kommen kann. Die Vorrichtung 1 weist eine Druckkammer 2 und eine Wasserkammer 3 auf, die über ein Schnellverschlussventil 4 miteinander verbunden sind. Weiter weist die Vorrichtung 1 einen Kompressor 5 auf, der mit der Druckkammer 2 verbunden ist. Dabei kann noch zwischen Druckkammer 2 und Kompressor 5 ein Zwischenspeicher angeordnet sein, der einen höheren Druck als der Arbeitsdruck in der Druckkammer 2 ist. Die Wasserkammer 3 ist mit einem Wassertank 6 verbunden. An der Wasserkammer 3 ist eine Düse 7 angeordnet. Weiter weist die Vorrichtung 1 Sensoriken 8 zur Erfassung eines Wassernebels und einer Entfernung zur Arbeitsmaschine auf sowie eine Steuerung 9, die das Schnellverschlussventil 4 ansteuert. Durch Öffnen des Schnellverschlussventils 4 wird das Wasser in der Wasserkammer 3 durch die Düse 7 gepresst und erzeugt einen Wassernebel. Die Austrittsgeschwindigkeit kann dabei bis zu 400 km/h und mehr betragen. Die Länge L des Wassernebels liegt dabei vorzugsweise zwischen 35 m bis 50 m und die Breite zwischen 3 m bis 5 m. Aufgrund der dabei auftretenden Rückstoßkräfte muss dabei die Vorrichtung 1 entsprechend gelagert sein. Weiter kann in der Druckkammer 2 ein nicht dargestellter Drucksensor angeordnet sein, der datentechnisch mit der Steuerung 9 verbunden ist. Somit steuert die Steuerung 9 das Schnellverschlussventil 4 erst an, wenn der gewünschte Arbeitsdruck in der Druckkammer 2 erreicht ist. Der gewünschte Arbeitsdruck ist einstellbar und liegt vorzugsweise bei 25 bar. Der Arbeitsdruck kann aber auch in Abhängigkeit der Daten der Sensoriken 8 während des Betriebes verändert werden.

In der Fig. 8 ist eine Draufsicht dargestellt, wobei die Vorrichtung 1 auf einer Plattform 10 angeordnet ist. Die Plattform 10 bewegt sich ca. 50 m vor einer Arbeitsmaschine 20, beispielsweise eine Bettungsreinigungsmaschine, die sich in Fahrtrichtung F bewegt. Die Bewegung von Plattform 10 und Arbeitsmaschine 20 kann dabei synchronisiert sein. Die Vorrichtung 1 erzeugt dabei einen Wassernebel 12, der eine Länge L, eine Breite B und eine Höhe H aufweist, wobei die Höhe H unmittelbar vor der Arbeitsmaschine 20 ca. 1 m ist (siehe Fig. 9). Der Wassernebel 12 bildet eine Wassernebel-Wand, die durch den aufsteigenden Staub nicht überwunden werden kann. Die Vorrichtung 1 ist dabei auf der Plattform 10 entsprechend gelagert, um die Rückstoßkräfte aufzunehmen. Weiter kann die Vorrichtung 1 auf der Plattform 10 horizontal und/oder vertikal schwenkbar ausgebildet sein.

Bezugszeichenliste

1 Vorrichtung

2 Druckkammer

3 Wasserkammer

4 Schnellverschlussventil

5 Kompressor

6 Wassertank

7 Düse

8 Sensoriken

9 Steuerung

10 Plattform

12 Wassernebel

20 Arbeitsmaschine

21 Arbeitsbereich

22 Vorrichtung

23 Staubpartikel

24 Gebläse

25 Umgebungsluft

26 Luftleit-Struktur

27 Luftströmung

28 Wasserdüse

29 Wassertröpfchen

30 Absaufvorrichtung

31 Vorrichtung

32 Schotter

33 Förderband

34 Band

35 Rolle

36 Wasserbad

37 Anpresswalze

38 Schmutzwassertank

39 Haube

40 Wasserdüse

41 Wasserstrahl 2 Schmutzwasser

43 Frischwasser

44 Gebläse

45 Luftstrom

46 Wasserdüse

47 Wassernebel

48 Ablaufrinne

49 Schmutzwasser

50 Filtereinheit

51 gereinigtes Wasser

L Länge

B Breite

H Höhe

F Fahrtrichtung

TR Transportrichtung