Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
COMPOSITE AND PROCESS FOR THE PRODUCTION THEREOF
Document Type and Number:
WIPO Patent Application WO/1996/033830
Kind Code:
A1
Abstract:
The invention concerns composites substantially consisting of: a cermet material having a binder metal phase of between 5 and 30 mass % and the remainder comprising at least one carbon nitride phase; or a hard metal with a hard material phase of between 70 and 100 %, the remainder being a binder metal phase, with the exception of a WC-Co hard metal, with up to 25 mass % cobalt as binder metal; or a powder-metallurgically produced steel. The invention further concerns a process for producing this composite. In order to improve bending strength and hardness, sintering is carried out in a microwave field.

Inventors:
KOLASKA HANS (DE)
WILLERT-PORADA MONIKA (DE)
ROEDIGER KLAUS (DE)
GERDES THORSTEN (DE)
Application Number:
PCT/DE1995/000548
Publication Date:
October 31, 1996
Filing Date:
April 26, 1995
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
WIDIA GMBH (DE)
KOLASKA HANS (DE)
WILLERT PORADA MONIKA (DE)
ROEDIGER KLAUS (DE)
GERDES THORSTEN (DE)
International Classes:
B22F3/10; B22F3/105; B22F3/14; B22F3/15; B22F3/24; C22C1/04; B01J19/12; C22C1/05; C22C29/00; C22C29/02; C22C29/04; (IPC1-7): B22F3/10; B22F3/15; B22F3/105; B01J19/12; C22C29/00; C22C1/04
Domestic Patent References:
WO1990005200A11990-05-17
Foreign References:
EP0382530A21990-08-16
DE3327103A11984-02-09
EP0219231A11987-04-22
EP0476346A11992-03-25
EP0503082A11992-09-16
US5397530A1995-03-14
Other References:
PATENT ABSTRACTS OF JAPAN vol. 016, no. 083 (M - 1216) 28 February 1992 (1992-02-28)
DATABASE WPI Section Ch Week 9203, Derwent World Patents Index; Class L02, AN 92-016636
Download PDF:
Claims:
Patentansprüche
1. Verbundwerkstoffe, im wesentlichen bestehend aus einem Cermetwerkstoff mit einer Bindemetallphase von 5 bis 30 Massen%, Rest mindestens eine Carbonitrid¬ phase oder einem Hartmetall mit einer Hartstoffphase von 70 bis 100 %, Rest Bindemetallphase, ausgenommen ein Wolf ramcarbidCobaltHartmetall mit bis zu 25 Massen% Cobalt als Bindemetall oder einem pulvermetallurgisch hergestelltem Stahl, d a d u r c h g e k e n n z e i c h n e t, daß der Verbundwerkstoff durch Sinterung in einem Mikro¬ wellenfeld hergestellt worden ist.
2. Verbundwerkstoff nach Anspruch l, dadurch gekennzeichnet, daß der Verbundwerkstoff zusätzlich einem abschließenden heißisostatischen Pressen (HIP) zur Nachverdichtung unter¬ zogen worden ist, vorzugsweise unter einem Druck zwischen 5 bar und 3000 bar bei Temperaturen von 1200*C bis 1750"C.
3. Verbundwerkstoff nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, daß das Cermet eine auf Ti, Zr, Hf, V, Nb, Ta, Cr, Mo und/oder W basierende Carbonitrid¬ phase und eine Bindemetallphase aus Co und/oder Ni auf¬ weist.
4. Verbundwerkstoff nach Anspruch 1 oder 2, dadurch gekenn¬ zeichnet, daß die Hartstoffphase Oxicarbide, Oxinitride, Oxicarbonitride oder Boride aufweist.
5. Verbundwerkstoff nach Anspruch 1, 2 oder 4, dadurch gekennzeichnet, daß das Hartmetall hexagonales WC als 1. Phase und kubisches Carbid des Mischkristalles aus W, Ti, Ta und/oder Nb als 2. Phase und eine Bindemetallphase aus Co, Ni. Fe oder Mischungen hiervon aufweist.
6. Verbundwerkstoff nach einem der Ansprüche 1, 2, 4 oder 5, dadurch gekennzeichnet, daß das Hartmetall aus hexagona¬ len Mischcarbiden WC mit MoC und/oder kubischen Mischcar biden der Elemente Ti, Zr, Hf, V, Nb, Ta, Cr, Mo und/oder W mit einer Bindemetallphase aus Co, Fe und/oder Ni besteht.
7. Verbundwerkstoff nach einem der Ansprüche l bis 6, dadurch gekennzeichnet, daß die Bindemetallphase bis zu 15 Massen% Mo, W, Ti, Mn und/oder AI bezogen auf die Gesamtmasse der Bindemetallphase aufweist.
8. Verbundwerkstoff nach Anspruch 7, dadurch gekennzeichnet, daß die Bindemetallphase aus einer NiAILegierung mit einem NiAlVerhältnis von 90 : 10 bis 70 : 30 besteht.
9. Verbundwerkstoff nach Anspruch 8, dadurch gekennzeichnet, daß die Bindemetallphase bis zu 1 Massen% Bor (bezogen auf die Gesamtmasse der Bindemetallphase) enthält.
10. Verbundwerkstoff nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß die Bindemetallphase aus Ni3Äl, TiSi3, Ti2Si3, Ti3Al, Ti5Si3, TiAl, Ni2TiAl, TiSi2, NiSi, MoSi2, MoSi02 oder Mischungen hieraus besteht.
11. Verbundwerkstoff nach Anspruch 10, gekennzeichnet durch Zusätze von 0 bis 16 Massen% aus Co, Ni, Fe und/oder Sel tenerdMetallen.
12. Verbundwerkstoff nach einem der Ansprüche l, 2 oder 4, gekennzeichnet durch eine warmfeste Bindemetallphase, bestehend aus pulvermetallurgisch hergestelltem Schnell arbeitsstahl und/oder einer Superlegierung.
13. Verbundwerkstoff nach einem der Ansprüche 1, 2 oder 4, gekennzeichnet durch eine Bindemetallphase aus Ni und Cr.
14. Verbundwerkstoff nach Anspruch 13, gekennzeichnet durch Zusätze von Mo, Mn, AI, Si und Cu in Mangan von 0,01 bis zu 5 Massen%.
15. Verbundwerkstoff nach einem der Ansprüche 1 bis 14, gekennzeichnet durch eine oder mehrere mittels PVD, CVD und/oder PCVD, vorzugsweise in einem Mikrowellenfeld auf¬ getragene Schichten.
16. Verfahren zur Herstellung der Verbundwerkstoffe nach einem der Ansprüche 1 bis 15, dadurch gekennzeichnet, daß der vorgepreßte Formkörper in einem Mikrowellenfeld von 0,01 bis 10 W/cm3 Energiedichte erwärmt und gesintert wird.
17. Verfahren nach Anspruch 16, dadurch gekennzeichnet, daß der Formkörper kontinuierlich oder gepulst mit Mikrowellen bestrahlt und mit Aufheizraten von 0.1 bis 104°C/min erhitzt wird.
18. Verfahren nach Anspruch 16 oder 17, dadurch gekennzeich¬ net, daß der Formkörper nach dem Aufheizen mindestens 10 bis 60 Minuten bei konstanter Temperatur gesintert wird.
19. Verfahren nach einem der Ansprüche 16 bis 18, dadurch gekennzeichnet, daß der vorgepreßte Formkörper Plastifi¬ zierer, wie Wachs, enthält, die vorzugsweise während der Aufheizung ausgetrieben werden.
20. Verfahren nach einem der Ansprüche 16 bis 19, dadurch gekennzeichnet, daß der vorgepreßte Formkörper während des Aufheizens und Sinterns auf einer Unterlage aus mikrowel¬ lentransparentem Material, wie AI2O3, Quarz, Glas oder Bornitrid gelagert ist.
21. Verfahren nach einem der Ansprüche 16 bis 19, dadurch gekennzeichnet, daß der vorgepreßte Formkörper auf einer Unterlage aus mikrowellenabsorbierendem Material wie Koh¬ lenstoff, Siliciumcarbid, Zirkoniumdioxid, Wolframcarbid, WolframcarbidCobalt gelagert ist.
22. Verfahren nach einem der Ansprüche 16 bis 21, dadurch gekennzeichnet, daß die Sinterung in einer Vakuum, einer Inertgas oder einer reduzierenden Atmosphäre durchgeführt wird.
23. Verfahren nach Anspruch 22, dadurch gekennzeichnet, daß die InertgasAtmosphäre bis zu 5 Volumen% H2 enthält.
24. Verfahren nach Anspruch 22, dadurch gekennzeichnet, daß die reduzierende Atmosphäre aus Wasserstoff, Kohlenmon oxid, Methan oder Mischungen hieraus besteht.
25. Verfahren nach einem der Ansprüche 22 bis 24, dadurch gekennzeichnet, daß die Sinterung unter einem Druck von maximal 200 bar durchgeführt wird.
26. Verfahren nach einem der Ansprüche 16 bis 25, dadurch gekennzeichnet, daß die PVD, CVD oder PCVDBeschichtung ohne zwischenzeitige Abkühlung im Anschluß an das Sintern aufgetragen wird.
27. Verfahren nach Anspruch 26, dadurch gekennzeichnet, daß die PVD, CVD oder PCVDBeschichtung durch Wechsel der Gaszusammensetzung aufgetragen wird.
28. Verfahren nach einem der Ansprüche 16 bis 27, dadurch gekennzeichnet, daß dem Formkörper zur Steuerung der Eindringtiefe der verwendeten Mikrowellenstrahlung inerte organische und/oder anorganische Zusätze mit geringen dielektrischen Verlusten zugegeben werden.
Description:
Beschreibung

Verbundwerkstoff und Verfahren zu seiner Herstellung

Die Erfindung betrifft Verbundwerkstoffe, im wesentlichen bestehend aus einem Cermetwerkstoff mit einer Bindemetallphase von 5 bis 30 Massen-%, Rest mindestens eine Carbonitridphase oder einem Hartmetall mit einer Hartstoffphase von 70 bis 100 %, Rest Bindemetallphase, ausgenommen ein WC-Co-Hartmetall mit bis zu 25 Massen-% Cobalt als Binde¬ metall oder einem pulvermetallurgisch hergestelltem Stahl.

Die Erfindung betrifft ferner ein Verfahren zur Herstellung dieses Verbundwerkstoffes.

Verbundwerkstoffe der genannten Art werden insbesondere als Schneidplatten zur zerspanenden Bearbeitung oder als Hochtempe¬ ratur-Werkstoffe eingesetzt. Werkstoffe aus der vorgenannten Stoffklasse werden nach dem Stand der Technik durch Sintern von Preßkörpern, die aus den entsprechenden Gemischen von Hartstof¬ fen und Metallpulvern bzw. Metallpulvern hergestellt. Die Sin¬ terung erfolgt in beheizbaren Öfen, die beispielsweise mit Gra¬ phitheizelementen ausgerüstet sind, wobei die Erwärmung der Proben indirekt mittels der von den Heizelementen emittierten Strahlung sowie durch Konvektion bzw. Wärmeleitung erfolgt. Der Nachteil dieser Verfahrenstechnik liegt darin, daß die Wahl der Ofenatmosphäre durch die chemischen Eigenschaften der Heizele¬ mente eingeschränkt ist. Darüber hinaus erfolgt die Erwärmung der Hartmetalle, Cermets oder Stähle von außen nach innen und wird im wesentlichen durch die Wärmeleitfähigkeit und die Emissivität der Proben kontrolliert. Je nach Wärmeleitfähigkeit der Proben ist die Variationsbreite der Aufheiz- und

Abkühlraten stark eingeschränkt, weshalb zum Teil aufwendige Maßnahmen, wie ein hoher apparativer und prozeßtechnischer Auf¬ wand erforderlich sind, um beispielsweise Ultrafein-Hartmetalle zufriedenstellend sintern zu können.

In der CN 1050908 ist zwar bereits vorgeschlagen worden, ein WC-Co-Hartmetall mit 6 Massen-% und einem kleinen Zusatz von 0,5 Massen-% TaC in einer WasserStoffatmosphäre bei 1250°C 10 bis 20 Minuten in einem Mikrowellenfeld zu sintern, jedoch schien dieses Verfahren auf solche Körper beschränkt, die nur einen geringen Metallanteil aufweisen. Bei massiven, metalli¬ schen Körpern ist nämlich festzustellen, daß sich diese in der Mikrowelle praktisch nicht aufheizen lassen, vielmehr reflek¬ tieren sie aufgrund ihrer hohen elektrischen Leitfähigkeit und der auftretenden Wirbelströme die eingestrahlte Leistung schon im Bereich der Oberfläche.

Es ist Aufgabe der vorliegenden Erfindung, einen Verbundkörper der eingangs genannten Art hinsichtlich seiner Biegebruchfe¬ stigkeit und seiner Härte zu verbessern und ein Verfahren zur Herstellung solcher Verbundwerkstoffe anzugeben.

Diese Aufgabe wird durch den Verbundwerkstoff nach Anspruch 1 gelöst, der erfindungsgemäß dadurch gekennzeichnet ist, daß er durch Sinterung in einem Mikrowellenfeld hergestellt worden ist. überraschenderweise hat sich nämlich herausgestellt, daß mit größer werdenden Bindemetallgehalten des vorgeformten Pre߬ körpers die Effektivität der Aufheizung durch Mikrowellen auch bei Hartmetallen gesteigert werden kann. Mikrowellengesinterte Cermetwerkstoffe sowie mikrowellengesinterte pulvermetallur¬ gisch hergestellte Stähle sind bisher in der Fachliteratur erst gar nicht erwähnt worden. Die Mikrowellensinterung stellt im Gegensatz zur bisherigen konventionellen Sinterung eine direkte Erwärmung im Volumen der Verbundwerkstoffe beliebiger Geometrie dar, einzig die Voraussetzung, daß die Größe der Sinterkörper in der Größenordnung der Wellenlänge der verwendeten

Mikrowellenstrahlung liegt, ist zu beachten. Damit können im Gegensatz zur bisherigen Praxis auch große Bauteile drucklos gesintert werden, da die große Variabilität der Aufheizbedin- gungen eine gezielte Gefügeeinstellung im gesamten Bauteil erlaubt. Obwohl die Verbundwerkstoffe mit guter elektrischer Leitfähigkeit je nach Bindemetallphasengehalt einen Teil der Mikrowellenstrahlung reflektieren, ermöglicht die besondere Mikrostruktur, insbesondere poröser Hartmetall- und Cermet- grünlinge, bereits bei tiefen Temperaturen eine hohe Eindring¬ tiefe der Mikrowellenstrahlung in den vorgepreßten Preßkörper.

Weiterbildungen des erfindungsgemäßen Verbundkörpers sind in den Ansprüchen 2 bis 15 beschrieben.

So hat es sich insbesondere hinsichtlich einer höheren Dichte als vorteilhaft erwiesen, wenn die Verbundwerkstoffe zusätzlich einem abschließenden heißisostatischen Pressen (HIP) unterzogen worden sind, vorzugsweise unter einem Druck zwischen 5 bar und 3000 bar bei Temperaturen von 1200 * C bis 1750'C. Das heißisostatische Pressen ist grundsätzlich bekannt und wird beispielsweise in "Pulvermetallurgie der Hartmetalle" H. Kolaska, Fachverband Pulvermetallurgie, 1992, Seite 6/11 f. beschrieben.

Hinsichtlich der Materialauswahl haben sich Cermets bewährt, die eine auf Titan, Zirkonium, Hafnium, Vanadin, Niob, Tantal, Chrom, Molybdän und/oder Wolfram basierende Carbonitridphase und eine Bindemetallphase aus Cobalt und/oder Nickel aufweisen.

Gleichermaßen haben sich Hartmetalle mit einer Hartstoffphase, bestehend aus Oxicarbiden, Oxinitriden, Oxicarbonitriden oder Boriden bewährt. Gleiches gilt für Hartmetalle mit einem hexagonalen Wolframcarbid als erster Phase und einem kubischen Mischcarbid des Wolframs, Titans, Tantals und/oder Niobs als zweiter Phase und einer Bindemetallphase aus Cobalt, Nickel, Eisen oder Mischungen hieraus. Die vorgenannten Hartmetalle

können auch anstelle der reinen hexagonalen Wolframcarbid-Phase eine hexagonale Mischcarbid-Phase des Wolframcarbid mit Molyb- däncarbid aufweisen.

Variationen der Bindemetallphase beschreiben die Ansprüche 7 bis 14. So kann die üblicherweise aus Eisen, Cobalt und/oder Nickel bestehende Bindemetallphase bis zu 15 Massen-% Molybdän, Wolfram, Titan, Mangan und/oder Aluminium aufweisen. Insbeson¬ dere kann als Bindemetallphase eine Nickel-Aluminium-Legierung mit einem Nickel/Aluminium-Verhältnis von 90 : 10 bis 70 : 30 verwendet werden. Beimengungen bis zu 1 Massen-% Bor der genannten Bindemetallphasen sind möglich.

Alternativ dazu kann die Bindemetallphase auch aus den in Anspruch 10 beschriebenen Stoffen oder Mischungen daraus beste¬ hen. Hierbei können Zusätze von 0 bis 16 Massen-% aus Cobalt, Nickel, Eisen oder Seltenerd-Metalle enthalten sein.

Nach einer weiteren Ausgestaltung der Erfindung kann eine warm¬ feste Bindemetallphase aus pulvermetallurgisch hergestelltem Schnellarbeitsstahl und/oder einer Superlegierung bestehen. Auch haben sich korrosionsfeste Bindemetallphase aus Nickel und Chrom bewährt, die ggf. Zusätze von Molybdän, Mangan, Alumi¬ nium, Silicium und/oder Kupfer in Mangan von 0,01 bis zu 5 Massen-% enthalten.

Nach einer weiteren Ausgestaltung der Erfindung kann der Ver¬ bundwerkstoff eine oder mehrere Oberflächenschichten besitzen, die durch PVD-, CVD- oder PCVD-Verfahren aufgetragen worden sind, vorzugsweise in einem Mikrowellenfeld.

Verfahrenstechnisch wird die eingangs gestellte Aufgabe durch Maßnahmen nach den Ansprüchen 16 bis 28 gelöst.

Bei einer Erwärmung des vorgepreßten Formkörpers in einem Mikrowellenfeld kann eine geregelte Temperaturerhöhung des Pro-

benkörpers selbst bei tiefen Temperaturen erreicht werden. Bei tiefen Temperaturen der Sinterkörper (bis ca. 1000"C) und bei niedrigen bis mittleren Mikrowellenstrahlungsleistungen spielen Wirbelströme eine große Rolle. Die besonderen Eigenschaften der Mikrowellen erlauben ferner durch einfache Regelung der Lei¬ stung und geeignete Materialauswahl zusätzlich die Induktion einer Plasmaheizung, die je nach Bedarf verstärkt oder unter¬ drückt werden kann. Je nach Oberflächentemperatur der Sinter¬ körper kann auf die Plasmaheizung verzichtet werden, um die Gefahr einer überhitzung der Sinterkörperoberfläche zu verhin¬ dern. Hierdurch kann ein Ausdampfen der Metallanteile des Sin¬ terkörpers vermieden werden.

Bei tiefen Temperaturen der Sinterkörper beruht das erfindungs¬ gemäße Verfahren auf der Nutzung des sogenannten "skin-Effek- tes". Bei Stoffgemischen aus elektrisch leitenden Einzelkompo¬ nenten wird, je nach Korngröße und Phaseverteilung im Gemisch, jedes einzelne Korn durch einen Wirbelstrom erwärmt, wodurch das durch Mikrowellen geheizte Volumen in der Größenordnung des Probenvolumens liegt. Damit wird aufgrund der MikroStruktur der Sinterkörper nicht nur eine dünne Randschicht des Sinterkörpers beheizt, sondern die Mikrowellenstrahlung kann die Probe durch¬ dringen. Bei höheren Temperaturen und insbesondere bei Ausbil¬ dung kleinster Mengen einer Schmelzphase kann die Mikrowellen¬ strahlung direkt im gesamten Sinterkörper durch Relaxationspro¬ zesse in Wärme umgewandelt werden, wodurch beliebige Aufheizra¬ ten möglich sind. Hierdurch ist es möglich, physikalische Pro¬ zesse, wie die Auflösung und Ausscheidung von Phasen in einem weit größeren Maße zu variieren als bei einer konventionellen Sinterung. Darüber hinaus ist eine vollständige Verdichtung der Sinterkörper bei geringeren Haltezeiten möglich. Desgleichen wird die Geschwindigkeit von chemischen Reaktionen durch die Mikrowelle positiv beeinflußt. Insgesamt erlaubt die Mikrowel¬ lensinterung eine Optimierung der Eigenschaften in einem weit größeren Ausmaß als dies von konventionellen Wärmebehandlungen

bekannt ist. Insbesondere konnten die Härte, die Korrosionsnei¬ gung, magnetische, elektrische und thermomechanische Kenngrößen für bekannte Zusammensetzungen erheblich verbessert werden.

Die vorgepreßten Formkörper können entweder mit einer kontinu¬ ierlichen Aufheizrate oder im Pulsbetrieb aufgebrachten Auf¬ heizrate erhitzt werden, wobei die Aufheizrate 0,1 bis 10 * C/min beträgt.

Die sich an das Aufheizen anschließende Sinterung bei konstan¬ ter Temperatur wird vorzugsweise über eine Dauer von 10 bis 60 Minuten durchgeführt.

Zur Herstellung von Hartmetallen und Cermets werden bei den Grünkörpern Plastifizierer, wie z.B. Wachse, verwendet, die während der Aufheizung ausgetrieben werden. Dieser Proze߬ schritt kann durchgeführt werden unabhängig davon, ob die ver¬ wendeten Wachse selbst die Mikrowellenstrahlung absorbieren oder für Mikrowellen transparent sind, wie es bei den üblicher¬ weise verwendeten Wachsen der Fall ist. Je nach dem, ob gewünscht ist, daß die Mikrowellen den vorgepreßten Formkörper auf allen Oberflächenseiten erreichen, kann der Formkörper bzw. können die Formkörper auf einer Unterlage aus mikrowellen¬ transparentem Material, wie Aluminiumoxid, Quarz, Glas oder Bornitrid, oder auf einer Unterlagen aus mikrowellenabsorbie¬ rendem Material, wie Kohlenstoff, Siliciumcarbid, Zirkondioxid, Wolframcarbid oder Wolframcarbid-Cobalt gelagert sein. Ferner kann durch Auswahl des Materials für die Unterlage und den Ofenraum zusätzlich zur direkten Mikrowellenheizung eine indi¬ rekte Heizung der Formkörper durch Mikrowellenheizung der Unterlagen und des Ofenraumes erfolgen.

Die Sinterung kann in einer Vakuum-, Inertgas- oder einer redu¬ zierenden Atmosphäre durchgeführt werden, wobei als Inertgase

insbesondere Argon, in Sonderfällen auch Helium, infrage kom¬ men. Helium kann ggf. als Unterdrückung von Plasmen eingesetzt werden. Die genannten Inertgasatmosphären können vorzugsweise bis zu 5 % Wasserstoff enthalten.

Als reduzierende Atmosphären bieten sich Wasserstoff, Kohlen- monoxid, Methan oder Mischungen hieraus an. Der Sinterdruck soll 200 bar nicht übersteigen.

Zur Aufbringung von Oberflächenbeschichtungen bieten sich zwei Möglichkeiten an: Die erste besteht darin, die PVD-, CVD- oder PCVD-Beschichtung ohne zwischenzeitige Abkühlung im Anschluß an das Sintern durchzuführen, vorzugsweise durch Wechsel der Gas¬ zusammensetzung. Alternativ hierzu können jedoch der Sinterpro¬ zeß und/oder der HIP-Prozeß und der Beschichtungsprozeß in getrennten Anlagen durchgeführt werden.

Dem Formkörper können nach einer weiteren Ausgestaltung der Erfindung zur Steuerung der Eindringtiefe der verwendeten Mikrowellenstrahlung inerte organische und/ anorganische Zusätze mit geringen dielektrischen Verlusten zugegeben werden. Dies können beispielsweise wie bei der Herstellung von Hartmetallen und Cermets Plastifizierer sein, die den Grünkör¬ pern beigegeben worden sind und die die Mikrowellenstrahlung nicht absorbieren. Diese Zusätze steuern die Eindringtiefe der Mikrowellenstrahlung derart, daß abhängig von der Menge und der räumlichen Verteilung dieser Zusätze der Perkolationsgrad der stark absorbierenden Bestandteile des Grünkörpers vermindert wird. Die sich daraus ergebende Verminderung der elektrischen Leitfähigkeit des Grünkörpers führt zur Erhöhung der Eindring¬ tiefe. Ferner kann durch eine besondere Verteilung der nicht absorbierenden Binder und Zusätze die Bildung von ikrostrei- fenleiterähnlichen Strukturen zwischen diesen Bindern und Zusätzen und den elektrisch leitenden Bestandteilen der

Grünkörper herbeigeführt werden. Dadurch wird eine Penetration des Grünkörpers durch Mikrowellenstrahlung entlang der mikrostreifenleiterähnlichen Strukturen erreicht, wodurch eine weitere Erhöhung der Eindringtiefe erzielbar ist.

Im folgenden wird die Erfindung anhand von Ausführungsbeispie¬ len näher erläutert.

Aus einer 25 Gew.-% Cobalt mit einem Gehalt von 1,5 Gew.-% Wachse als Plastifizierer, Rest WC bestehende Wendeschneidplat¬ ten-Preßkörper werden gemäß der Ofengeometrie gleichmäßig ver¬ teilt angeordnet und bei einer Leistungsdichte von 0,3 W/cm 3 mittels Mikrowellen aufgeheizt. Die Temperaturregelung erfolgt über die Einstellung der Mikrowellenleistung. Die Preßkörper ruhen auf Auflagen aus porösem AI2O 3 in einem Behälter als ebenfalls porösem AI2O 3 , der gleichzeitig als Wärmeisolierman¬ tel dient. Als Inertgasatmosphäre wird Argon und ab 350"C ein Argon-Wasserstoffgemisch mit 5 % Wasserstoffgehalt verwendet. Die Aufheizrate bis 350 * C beträgt 0,1 bis maximal 3 * C/min. Bis zu dieser Aufheizung ist der Plastifizierer vollständig ausge¬ brannt, weshalb die Aufheizrate stufenweise erhöht wird, näm¬ lich auf 15 * C/min bis 1000 * C und auf 50°C/min zwischen 1000 * C und 1250° . Hiernach wurde eine Haltezeit von 10 Minuten einge¬ halten, bevor die Wendeschneidplatten mit einer Rate von 20 * C/min abgekühlt worden sind.

Die gesinterten Wendeschneidplatten weisen eine hohe Härte, eine gute Biegebruchfestigkeit und eine Weibull-Verteilung nach folgender Tabelle auf.

Ergebnisse der Mikrowellensinterung von WC-Co 25 % Gewicht

Kennwerte Mikrowellen Konventionelle Sinterung Sinterung

Biegebruchfestigkeit σg 3017 2620

Weibull-Modulus 24,8 16

Härte H V 3o 836 798

Zur Verbesserung der Verschleißfestigkeit können Hartmetalle und Cermets oder auch Stähle mit Hartstoffen beschichtet wer¬ den. So kann unmittelbar in der Abkühlphase der Sinterkörper eine chemische Probenbehandlung erfolgen, insbesondere durch weitere Mikrowellenplasma-Atmosphäre. Sobald die flüssige Phase erstarrt ist, ist die Relaxation der Mikrowellenstrahlung im Volumen der Hartmetalle und Cermets kein effektiver Wärmeerzeu¬ gungsprozeß mehr. Eine Wärmeerzeugung findet nur noch im Rand¬ bereich der gesinterten Körper durch Wirbelströme statt. Damit sind die Voraussetzungen gegeben, die eingestrahlte Mikrowel¬ lenleistung zur Aufrechterhaltung eines Mikrowellenplasmas zu nutzen, ohne eine unerwünschte Wärmebelastung der Sinterkörper zu verursachen. Diese Verfahrensweise ist bei PVD-Beschichtun- gen möglich und hier als integrierter Prozeß unmittelbar im Anschluß an die Sinterung durchführbar. Besondere Vorteile ergeben sich auch beim Einsatz von Mikrowellen zur Sinterung von Hartmetallen und Cermets bei einer abschließenden CVD- Beschichtung. Da die Sinterkörper nach einer Abkühlphase heißer sind als die Umgebung, findet die CVD-Reaktion bevorzugt an den Sinterkörpern statt. Ferner muß im Gegensatz zu konventionellen Sinterverfahren bei der Wahl der Ofenatmosphäre keine Rücksicht auf die chemischen Eigenschaften von Heizelementen genommen werden.

Die Herstellung von Hartmetallen und Cermets durch Erwärmung mittels Mikrowellen führt zu einer erheblichen Vereinfachung des Herstellungsprozesses und damit zu einer erheblichen Ver¬ kürzung der gesamten Prozeßdauer. Die Aufheizraten können im Bereich von lO -1 "C/min für die Entwachsung bis hin zu 5 • 10 3 °C/min bei Temperaturen oberhalb 1000"C variiert werden, Die Abkühlung ist nicht primär von der thermischen Masse des Ofens abhängig, sondern von der thermischen Masse der Sintercharge. Vorteilhafterweise steht der Ofen nach einer Sinterung sofort für eine Neubelegung zur Verfügung.

Wie aus der in der einzigen Figur gezeigten Abhängigkeit der elektrischen Leitfähigkeit eines Hartmetall-Grünkörpers vom Gewichtsanteil des Binders ersichtlich, wird bei ca. 4% Paraffinanteil die Perkolationsgrenze der leitfähigen Bestand¬ teile des Grünkörpers erreicht. Bei diesem Paraffinanteil er¬ höht sich auch die Eindringtiefe der Mikrowellenstrahlung sprunghaft und erreicht Werte, die typisch für Volumenheizung sind.