Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
PROCESS
Document Type and Number:
WIPO Patent Application WO/2002/046207
Kind Code:
A2
Abstract:
An improved process for preparing steroids, such as 3-oxo-4-azasteroids, is described. Compounds of this type are known to be useful in the preparation of compounds having 5a-reductase inhibitor activity. The process comprises the hydrogenation of the corresponding steroid alkene in the presence of ammonium acetate, ammonium formate, and/or ammonium propionate and an appropriate catalyst.

Inventors:
DAVIS ROMAN (US)
MILLAR ALAN (US)
STERBENZ JEFFREY THOMAS (US)
Application Number:
PCT/US2001/048173
Publication Date:
June 13, 2002
Filing Date:
November 02, 2001
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
GLAXO GROUP LTD (GB)
DAVIS ROMAN (US)
MILLAR ALAN (US)
STERBENZ JEFFREY THOMAS (US)
International Classes:
C07J73/00; C12N9/99; C07J75/00; (IPC1-7): C07J/
Foreign References:
GB2264494A1993-09-01
EP0155096A21985-09-18
Other References:
PANDE P P ET AL: "CATALYTIC TRANSFER HYDROGENATION FO UNSATURATED KETONES AND IMIDES VIA AMMONIUM FORMATE" SYNTHETIC COMMUNICATIONS, MARCEL DEKKER, INC., BASEL, CH, vol. 28, no. 22, 1998, pages 4193-4200, XP001027708 ISSN: 0039-7911
RASMUSSON G H ET AL: "AZASTEROIDS AS INHIBITORS OF RAT PROSTATIC 5ALPHA-REDUCTASE" JOURNAL OF MEDICINAL CHEMISTRY, AMERICAN CHEMICAL SOCIETY. WASHINGTON, US, vol. 27, no. 12, 1 December 1984 (1984-12-01), pages 1690-1701, XP002043194 ISSN: 0022-2623
RASMUSSON G H ET AL: "AZASTEROIDS: STRUCTURE-ACTIVITY RELATIONSHIPS FOR INHIBITION OF 5ALPHA-REDUCTASE AND OF ANDROGEN RECEPTOR BINDING" JOURNAL OF MEDICINAL CHEMISTRY, AMERICAN CHEMICAL SOCIETY. WASHINGTON, US, vol. 29, no. 11, 1 November 1986 (1986-11-01), pages 2298-2315, XP000568779 ISSN: 0022-2623
BAKSHI R K: "4,7-Dimethyl-4-azacholestan-3-one (MK-386) and related 4-azasteroids as selective inhibitors of human type 1 5-alpha-reductase" JOURNAL OF MEDICINAL CHEMISTRY, AMERICAN CHEMICAL SOCIETY. WASHINGTON, US, vol. 37, no. 23, 1994, pages 3871-3874, XP002086714 ISSN: 0022-2623
KURATA H ET AL: "SYNTHESIS AND TESTOSTERONE 5ALPHA-REDUCTASE-INHIBITORY ACTIVITY OF 4-AZA-5ALPHA-ANDROSTANE-17-CARBOXAMIDE COMPOUND WITH AN AROMATIC MOIETY IN THE C-17 CARBAMOYL GROUP" CHEMICAL AND PHARMACEUTICAL BULLETIN, PHARMACEUTICAL SOCIETY OF JAPAN. TOKYO, JP, vol. 44, no. 1, 1996, pages 115-121, XP000569266 ISSN: 0009-2363
BAKSHI R K ET AL: "4-Aza-3-oxo-5.alpha.-androst-1-ene-17.bet a.-N-arylcarboxamides as Dual Inhibitors of Human Type 1 and Type 2 Steroid 5.alpha.-Reductases. Dramatic Effect of N-Aryl Substituents on Type 1 and Type 2 5.alpha.-Reductase Inhibitory Potency" JOURNAL OF MEDICINAL CHEMISTRY, AMERICAN CHEMICAL SOCIETY. WASHINGTON, US, vol. 38, no. 17, 18 August 1995 (1995-08-18), pages 3189-3192, XP002087243 ISSN: 0022-2623
Attorney, Agent or Firm:
Levy, David J. (NC, US)
Download PDF:
Claims:
Claims :
1. A process for hydrogenating steriod alkenes comprising the step of hydrogenating one or more double bonds in the presence of ammonium acetate, ammonium formate or ammonium propionate or mixtures thereof and an appropriate catalyst.
2. A process for the preparation of a steroid comprising the method of claim 1.
3. A process as claimed in claim 2 wherein the steroid is a 3oxo4azasteroid and the corresponding steroid alkene is a 4azaandrosten3one.
4. A process as claimed in claim 3 wherein the 3oxo4azasteroid is a compound of formula (I) : wherein: R1 represents hydrogen, OH, C1 6 alkyl, aryl or a heteroaromatic group; R2 represents hydrogen, C1 6 alkyl, aryl or a heteroaromatic group; R3 represents hydrogen, OH, Cul6 straight or branched chain alkyl, C16 straight or branched chain alkoxy, aryl, heteroatom, or NHQ wherein Q represents hydrogen, OH, C16 straight or branched chain alkyl, C16 straight or branched chain alkoxy, (A) wherein R4 and R5 are independently hydrogen, lower alkyl, lower alkoxy, trifluoromethyl, cyano, halogen, phenyl (optionally substituted with one or more halogens), or when R4 and R5 are on adjacent carbons, taken together form a fused 5,6 or 7 member ring optionally containing one or more oxygen or sulfur atoms; W and Z are methylene groups which taken together with the carbon to which they are attached form a saturated, 3 to 12 member ring system optionally : 1) substituted independently with one or more lower alkyl groups, 2) containing an oxygen or sulfur atom, 3) two said methylene groups of said 3 to 12 member ring are joined with a (Cl6) alkylen group to form a bicyclic ring system; and X is hydrogen or halogen or (B) wherein R6 is trifluoromethyl, phenyl optionally substituted with one or more halogens or branched (C47) alkyl groups, or branched (C47) alkyl ; either of R7 or R8 is trifluoromethyl, halogen, phenyl optionally substituted with one or more halogens or branched (C47) alkyl groups, or branched (C47) alkyl, while the other is hydrogen or halogen; and X is hydrogen or halogen.
5. A process as claimed in claims 3 or 4 wherein the 4azaandrosten3one is 4azaandrost5en3one.
6. A process as claimed in claim 5 wherein the 4azaandrost5en3one is a compound of formula (II) wherein: R1 represents hydrogen, OH, C1 6 alkyl, aryl or a heteroaromatic group; R2 represents hydrogen, C16 alkyl, aryl or a heteroaromatic group; R3 represents hydrogen, OH, C16 straight or branched chain alkyl, C16 straight or branched chain alkoxy, aryl, heteroatom, or NHQ wherein Q represents hydrogen, OH, C16 straight or branched chain alkyl, Cul6 straight or branched chain alkoxy, (A) wherein R4 and R5 are independently hydrogen, lower alkyl, lower alkoxy, trifluoromethyl, cyano, halogen, phenyl (optionally substituted with one or more halogens), or when R4 and R5 are on adjacent carbons, taken together form a fused 5,6 or 7 member ring optionally containing one or more oxygen or sulfur atoms; W and Z are methylene groups which taken together with the carbon to which they are attached form a saturated, 3 to 12 member ring system optionally : 1) substituted independently with one or more lower alkyl groups, 2) containing an oxygen or sulfur atom, 3) two said methylene groups of said 3 to 12 member ring are joined with a (Cl6) alkylen group to form a bicyclic ring system; and X is hydrogen or halogen or (B) wherein R6 is trifluoromethyl, phenyl optionally substituted with one or more halogens or branched (C4 7) alkyl groups, or branched (C47) alkyl ; either of R7 or R8 is trifluoromethyl, halogen, phenyl optionally substituted with one or more halogens or branched (C4 7) alkyl groups, or branched (C47) alkyl, while the other is hydrogen or halogen ; and X is hydrogen or halogen.
7. A process as claimed in any one of claims 46 wherein R1 is hydrogen; R2 is hydrogen; R3 is hydrogen, OH, C14 alkyl, C14 alkoxy or NHQ.
8. A process as claimed in any one of claims 47 wherein Q is hydrogen, OH, Cul6 straight or branched chain alkyl, C16 straight or branched chain alkoxy, or (B) wherein R6 is trifluoromethyl or branched (C47) alkyl ; either of R7 or R8 is trifluoromethyl while the other is hydrogen; and X is hydrogen.
9. A process as claimed in any one of claims 48 wherein Q is hydrogen, C14 straight or branched chain alkyl or 2,5bis (trifluoromethyl) phenyl.
10. The process as claimed in any one of claims 19 wherein the process is carried out in the presence of ammonium acetate.
11. The process as claimed in any one of claims 110 wherein the ammonium acetate is present in the range 125% w/w.
12. The process as claimed in any one of claims 111 wherein the ammonium acetate is present in the range 2.010% w/w.
13. The process as claimed in any one of claims 112 wherein the catalyst is selected from Pt2O, Pt/C, Pd/C, Pd (OH) 2 and Ni catalysts.
14. The process as claimed in any one of claims 113 wherein the catalyst is selected from Pt2O, Pt/C, Pd/C or Pd (OH) 2.
15. The process as claimed in any one of claims 114 wherein the catalyst is Pt20.
16. The process as claimed in any one of claims 115 wherein the the process is carried out within the pressure range 1033447 kPa.
17. The process as claimed in any one of claims 116 wherein the pressure range is 103414 kPa.
18. The process as claimed in any one of claims 117 wherein the process is carried out within the temperature range 5070°C.
19. Use of a process as claimed in any one of claims 118 in the preparation of a 5areductase inhibitor.
20. Use of a process as claimed in claim 19 wherein the 5areductase inhibitor is selected from 17p (Ntbutylcarbamoyl)4aza5aandrost1en3one or 17p N (2, 5bis (trifluoromethyl)) phenylcarbamoyl4aza5aandrost1en3one.
21. Use of a process as claimed in claim 20 wherein the 5areductase inhibitor is 17pN (2, 5bis (trifluoromethyl)) phenylcarbamoyl4aza5a androst1en3 one.
22. A 5areductase inhibitor prepared by a method comprising a process as claimed in any one of claims 118.
23. A 5areductase inhibitor as claimed in claim 22 wherein the 5areductase inhibitor is selected from 17ß(Ntbutylcarbamoyl)4aza5aandrost1en3 one or 1 (2, 5bis (trifluoromethyl)) phenylcarbamoyl4aza5aandrost1 en3one.
24. A 5areductase inhibitor as claimed in claim 23 wherein the 5areductase inhibitor is 1 (2, 5bis (trifluoromethyl)) phenylcait bamoyl4aza5a androst1en3one.
25. A 5areductase inhibitor as claimed in claim 24 prepared by a method comprising a process as claimed in any one of claims 118 followed by (i) dehydrogenation to insert a double bond between carbons 1 and 2, (ii) reaction with the compound of formula (III) and (iii) if necessary and/or desired, subjecting the compound thus obtained to one or more further reactions comprising; (a) removing any protecting group or groups; and/or (b) converting the compound or a solvate thereof into a pharmaceutical acceptable solvate thereof.
Description:
Process Field of the Invention The present invention relates to an improvement in a process for the preparation of steroids. More particularly, the invention is concerned with improvements in a process for preparing steroids, such as 3-oxo-4-azasteroids, by hydrogenation of the corresponding steroid alkene. Compounds of this type are known to be useful in the preparation of compounds having 5a-reductase inhibitor activity.

Background of the Invention Steroid 5a-reductases catalyze conversion of testosterone to DHT in an NADPH dependent fashion as shown in Scheme A. OHOH OH OH 5-reductases H+ e 5d6t oast / NADPH NAP+ N Testosterone Dihydrotestosterone SCHEME A The inhibition of the conversion of testosterone to DHT is anticipated to be useful in the treatment of a variety of androgen responsive diseases, e. g., benign prostatic hyperplasia, prostate cancer, acne, male pattern baldness and hirsutism. Hence, 5a-reductase inhibitors have been the subject of active research worldwide. For example, see: Hsia, S. and Voight, W., J. Invest.

Derm., 62,224 (1973); Robaire, B. et al., J. Steroid Biochem., 8,307 (1977); Petrow, V. et al., Steroids, 38,121 (1981); Liang, T. et al., J. Steroid Biochem., 19,385 (1983); Holt, D. et al., J. Med. Chem., 33,937 (1990); U. S. Patent No.

4,377,584, U. S. Patent No. 4,760,071 and U. S. Patent No. 5,017,568. One

particularly promising 5a-reductase inhibitor is MK-906 (Merck), known by the generic name, finasteride, and marketed under the trademark, Proscar, is an inhibitor of type 2 5a-reductase. In addition, dual inhibitors of type 1 and 2 human 5a-reductase are disclosed in WO 95/07926 and WO 95/07927, the contents of which are incorporated herein by reference.

Processes for the preparation of the 5a-reductase inhibitors are described in WO 95/07926, WO 95/07927, US 4,760,071, US 4,377,584, US 4,179,453, US 5,670,643 and Bhattacharya, A. et al., J. Am. Chem. Soc., 110,3318 (1988). Important intermediates in the preparation of 5a-reductase inhibitors are 4-aza- 5a-androstan-3-ones, e. g. 3-oxo-4-azaandrost-17ß-carboxylic acid, which can be prepared by hydrogenation of the corresponding 4-aza-androst-5-en-3-one, e. g. 3-oxo-4-azaandrost-5-en-17p-carboxylic acid. WO 95/07926 and W095/07927 describe a process by which a 17p-substituted 4-aza-androst-5- en-3-one is converted to the corresponding 17p-substituted 4-aza-5a-androstan- 3-one by hydrogenation. For example, the hydrogenation may be carried out in acetic acid at 60 to 70°C and 276-414 kPa (40-60 psi) hydrogen pressure in the presence of catalytic platinum oxide.

The problem to be solved by the present invention is the provision of a superior, and more selective process for the hydrogenation of steroid alkens.

Summary of the Invention Scheme 1 shows the hydrogenation of a steroid, 3-oxo-4-azaandrost-5-en-17p- carboxylic acid, to the corresponding 5a-androstane and 5ß-androstane isomers. 5a-androstane isomer produced using the reaction can be used in the preparation of 5a-reductase inhibitors. For large scale manufacture, a hydrogenation process which could be carried out at atmospheric pressure was desired. However, as demonstrated by the experiments below, considerable problems relating to a: ß ratios were experienced when hydrogenation was carried out at atmospheric pressure.

Scheme 1: The present inventors have found a process for hydrogenating steroid alkenes which can be performed at atmospheric pressure. The problem of low a: ß ratios was solved by carrying out the hydrogenation in the presence of ammonium acetate, ammonium formate or ammonium propionate.

Accordingly, the present invention provides a process for hydrogenating steroid alkenes comprising the step of hydrogenating one or more double bonds in the presence of ammonium acetate, ammonium formate, ammonium propionate, or mixtures thereof and an appropriate catalyst.

A further aspect of the invention is the use of the process of the invention in the preparation of a 5a-reductase inhibitor.

Detailed Description of the Invention The hydrogenation process provided by the present invention may be used in place of previous hydrogenation processes in the preparation of 5a-reductase inhibitors, for example, in the preparation of 5a-reductase inhibitors as described in WO 95/07926, W095/07927, US 4,377,584, US 4,760,071, US 4,179,453, US 5,670,643, and Bhattacharya, A. et al., J. Am. Chem. Soc., 110,3318 (1988).

In one embodiment, the invention provides a process for the preparation of a steroid which comprises the hydrogenation of the corresponding steroid alkene in the presence of ammonium acetate, ammonium formate and/or ammonium

propionate and an appropriate catalyst. Preferably the steroid is a 3-oxo-4- azasteroid. Preferably, the steroid alkene is a 4-aza-androsten-3-one.

In a preferred aspect of the invention, the 3-oxo-4-azasteroid is a compound of formula (I) wherein: R'represents hydrogen, OH, C1 6 alkyl, aryl or a heteroaromatic group; R2 represents hydrogen, C1 6 alkyl, aryl or a heteroaromatic group; R3 represents hydrogen, OH, C1-6 straight or branched chain alkyl, C1-6 straight or branched chain alkoxy, aryl, heteroatom, or NHQ wherein Q represents hydrogen, OH, Cul-6 straight or branched chain alkyl, C1-6 straight or branched chain alkoxy, (A) wherein R4 and R5 are independently hydrogen, lower alkyl, lower alkoxy, trifluoromethyl, cyano, halogen, phenyl (optionally substituted with one or more halogens), or when R4 and R5 are on adjacent carbons, taken together form a fused 5,6 or 7 member ring optionally containing one or more oxygen or sulfur atoms ;

W and Z are methylene groups which taken together with the carbon to which they are attached form a saturated, 3 to 12 member ring system optionally : 1) substituted independently with one or more lower alkyl groups, 2) containing an oxygen or sulfur atom, 3) two said methylene groups of said 3 to 12 member ring are joined with a (Cl-6) alkylen group to form a bicyclic ring system; and X is hydrogen or halogen ; or (B) wherein R6 is trifluoromethyl, phenyl optionally substituted with one or more halogens or branched (C4-7) alkyl groups, or branched (C4-7) alkyl ; either of R7 or R8 is trifluoromethyl, halogen, phenyl optionally substituted with one or more halogens or branched (C4-7) alkyl groups, or branched (C4-7) alkyl, while the other is hydrogen or halogen ; and X is hydrogen or halogen.

Preferably the 4-aza-androsten-3-one is 4-aza-androst-5-en-3-one. More preferably the 4-aza-androst-5-en-3-one is a compound of formula (11) : wherein the R groups are as defined above.

As used herein the term"lower"in relation to alkyl and alkoxy means 1 to 6 carbons, especially 1 to 4, straight or branched. As used herein the term "branched (C4-7) alkyl"means 3-6 carbons attached via a quaternary carbon, e. g., t-butyl, t-amyl, etc.

As used herein, the term"heteroaromatic group"means rings containing one or more heteroatoms selected from nitrogen, sulphur and oxygen atoms. Examples of 5-membered groups include thiophene, thiazole, pyrrole, pyrazol, imidazole and furan, whilst 6-membered groups include pyridyl, pyrazyl and pyrimidyl.

As used herein, the term"halogen"means fluorine, chlorine, bromine and iodine.

As used herein, the term"steroid"means a tetracyclic cyclopenta [a] phenanthrene.

As used herein, the term"steroid alkene"means a steroid having one or more double bonds.

Preferably, R1 is hydrogen.

Preferably R2 is hydrogen.

Preferably R3 is hydrogen, OH, C14 alkyl, C14 alkoxy or NHQ. More preferably R3 is hydrogen.

Preferably Q is hydrogen, OH, C1 6 straight or branched chain alkyl, C1-6 straight or branched chain alkoxy, or (B) wherein R6 is trifluoromethyl or branched (C4-7) alkyl ; either of R7 or R8 is trifluoromethyl while the other is hydrogen; and X is hydrogen. More preferably Q is hydrogen, Cl-4 straight or branched chain alkyl or 2,5-

bis (trifluoromethyl)) phenyl. Most preferably Q is ter-butyl or 2,5- bis(trifluoromethyl)) phenyl.

It is to be understood that the present invention covers all combinations of suitable, convenient and preferred groups described hereinabove.

The hydrogenation process is suitably carried out in the presence of ammonium acetate, ammonium formate and/or or ammonium propionate. Ammonium acetate, ammonium formate, ammonium propionate or a mixture thereof are suitably present in the range 1-25% w/w compared to substrate, preferably 2- 10%, more preferably 2.5-5%, most preferably approximately 2.5%. The hydrogenation process is preferably carried out in the presence of ammonium acetate. Preferably the ammonium acetate, ammonium formate and/or ammonium propionate is added to the reaction mixture at the start of the reaction.

Suitable catalysts for the hydrogenation reaction are: Pt20, Pt/C, Pd/C, Pd (OH) 2 and Ni catalysts. Preferably the catalyst is Pt2O, Pt/C, Pd/C or Pd (OH) 2, more preferably Pt20.

The process of the invention is suitably carried out at a pressure range 103-3447 kPa (15-500 psi). Preferably the pressure range is 103-414 kPa (15-60psi).

The process of the invention is suitably carried out at temperature 50-75°C.

Preferably at approximately 55°C.

4-aza-androsten-3-ones may be prepared by any method known in the art for the preparation of compounds of analogous structure. For example, a suitable method for the preparation of compounds of formula (II) is disclosed in WO 95/07926.

Those skilled in the art will appreciate that in the preparation of the compound of formula (I) or a solvate thereof it may be necessary and/or desirable to protect one or more sensitive groups in the molecule to prevent undesirable side reactions. The protecting groups used in the preparation of the compound of

formula (I) may be used in a conventional manner. See for Example Protective Groups in Organic Chemistry, Ed. J. F. W. McOmie, Plenum Press, London (1973) or Protective Groups in Organic Synthesis, Theodora Green, John Wiley and Sons, New York (1981).

The process of the invention can be used in the preparation of 5a-reductase inhibitors by any method known in the art, for example as described in WO 95/07926, W095/07927, US 4,377,584, US 4,760,071, US 4,179,453, US 5,670,643, Bhattacharya, A. etal., J. Am. Chem. Soc., 110,3318 (1988), and as shown in the Examples. A further aspect of the invention is therefore the use of the process of the invention in the preparation of a 5a-reductase inhibitor, such as, 17p- (N-t-butylcarbamoyl)-4-aza-5a-androst-1-en-3-one or 1 (2, 5- bis (trifluoromethyl)) phenylcarbamoyl-4-aza-5a-androst-1-en-3vone. In other words, a 5a-reductase inhibitor, such as zu (N-t-butylcarbamoyl)-4-aza-5a- androst-1-en-3-one or 1 7ß-N-(2, 5-bis (trifluoromethyl)) phenylcarbamoyl-4-aza- 5a-androst-1-en-3-one, may be prepared using a process comprising the process of the invention. In the preparation of 5a-reductase inhibitors it will be understood that the process of the invention may be used either for the elimination of a double bond at an intermediate stage in the preparation of the 5a-reductase inhibitor, or as the last main step in a preparative sequence. For example, in the preparation of 17ß-N-(2, 5-bis (trifluoromethyl)) phenylcarbamoyl- 4-aza-5a-androst-1-en-3-one the hydrogenation process may be used for the elimination of a double bond at an intermediate stage in preparation, see for example Scheme 2 below. Preferably, 1 (2, 5- bis (trifluoromethyl)) phenylcarbamoyl-4-aza-5a-androst-1-en-3-one is prepared by a method comprising the process of the invention, e. g. hydrogenating a compound of formula (II) to a compound of formula (I), followed by: (i) dehydrogenation, e. g. of a compound of formula (I) such as 4-aza-5a- androstan-3-one-17p-carboxylic acid, to insert a double bond between carbons 1 and 2; (ii) reaction with the compound of formula (III)

(iii) if necessary and/or desired, subjecting the compound thus obtained to one or more further reactions comprising; (a) removing any protecting group or groups; and/or (b) converting the compound or a solvate thereof into a pharmaceutically acceptable solvate thereof.

The following examples illustrate aspects of this'invention but should not be construed as limiting the scope of the invention in any way.

Examples : EXAMPLE 1: Preparation of 17ß-N-(2, 5-bis (trifluoromethyl)) phenylcarbamoyl-4- aza-5a-androst-1-en-3-one Scheme 2: OH CO2H STAGE1 STAGE 2 KMn04, Na104, Na2C03 NH40Ac t-BuOH, H2O, 100°G HOAc, 120°C C02H C02H COZN STAGE3 STAGE4 Pt02, H2'BSTFA, DDQ --RWc, 2 dioxane, 100°C ot HN ICF3 O N H- H lu O H N COZY STAGNE5 1) SOCS2 _ CFa 2) 2, 5-bis (trifluoromethyl)-3 anilin 5 0"'N uene, 100*C H FUI Stage 1: 17p-carboxy-5-oxo-A-nor-3, 5-secoandrostan-3-oic acid (1) Typical scale 34.0 kg A solution of sodium periodate (183 kg, 7.9 eq.) and potassium permanganate (1.4 kg, catalytic.) in water (410 I) was heated at 75-80°C with stirring to effect solution. A mixture of 3-oxo-4-androstene-17pcarboxylic acid (CC14837, 17- ADCA) (34.0 kg, 1 eq.), Na2CO3 (29 kg, 2.5 eq.), tert-butanol (580 I) and water (60 I) was heated at reflux (75-80°C) under a nitrogen atmosphere. The aqueous solution of sodium periodate/potassium permanganate was added to the refluxing CC14837/t-butanol/water slurry, allowing for evolution of carbon dioxide at a controlled rate. Water (25 I) was used as a line wash following the addition. The mixture was heated at reflux (75-80°C) for about 1 hour. The

mixture was cooled, and acetic acid (135 I) added while the contents were further cooled. The mixture was filtered, and the filter cake washed with tert- butanol (130 I) and acetic acid (135 I). The filtrate/wash was transferred back into the reaction vessel through a filter, and vacuum distilled at <65°C. Water (1000 I) was added while the slurry was stirred. The product was collected by filtration, washed with water and dried in vacuo at up to 80°C with a nitrogen purge. Weight range: 20-23 kg (58-66% theory, 59-67% w/w).

Stage 2: 3-oxo-4-aza-5-androstene-17p-carboxylic acid (2) Typical scale 54.0 kg A mixture of the Seco-Acid 1 (54.0 kg, 1 eq.), NH40ac (47 kg, 4.1 equiv.) and HOAc (190 I) were stirred at reflux for at least three hours. The mixture was cooled and water (190 I) was added. The mixture was stirred for at least 2 hours. The product was isolated by filtration, washed with water and dried at up to 55°C under vacuum with a nitrogen purge. Weight range: 45-51 kg (85-95% theory, 83-93% w/w).

Stage 3: 4-aza-5a-androstan-3-one-17ß-carboxylic acid (3).

Typical scale 33.5 kg The hydrogenation vessel was charged with acetic acid (530 I), 3-oxo-4-aza-5- androstene-17p-carboxylic acid 2 (33.5 kg.), and ammonium acetate (1.0 kg, 0.1 eq.). After purging at 20-25°C with nitrogen, the platinum oxide catalyst (3.0 kg.) was charged, the stirrer started and the temperature adjusted to 20-25°C. After purging with hydrogen, the stirring batch was allowed to take up hydrogen. After 30 minutes at <30°C, the temperature was adjusted to 60-65°C, and stirring continued until hydrogen uptake ceased. After purging with nitrogen, Solka Floc (1.7 kg.) was charged, and the hot reaction mixture recirculated through a filter until the solution was clear. The hot reaction filtrate was transferred to a clean vessel. The reactor was rinsed with hot acetic acid (100 I.), and the rinse was recirculated as a wash through the filter. The combined filtrates/wash were distilled under vacuum at <70°C to about 3.6 volumes. The resulting slurry was cooled to #25°C. Methanol (130 I.) was added and the mixture stirred for at least 2 hours at <25°C. The product was collected by filtration; the cake washed with methan31 and dried in vacuo at <60°C. Weight range: 25-28. 5 kg (75-85% theory, 75-85% w/w).

Stage 4: 4-aza-5α-androst-1-ene-3-one-17ß-carboxylic (4).

Typical scale 20.0 kg The reaction vessel was charged with dioxane (180 I), 4-aza-5α-androstant-3- one-17p-carboxylic acid 3 (20.0 kg, 1 eq.) and 2,3-dichloro-5,6- dicyanobenzoquinone (DDQ) (15.6 kg, 1.1 eq.).

Bis (trimethylsilyl) trifluoroacetamide (BSTFA) (78 I, 4.7 eq.) was added. The reaction mixture was heated to reflux and maintained at reflux for 2-4 hours.

The mixture was cooled to <30°C and transferred to a second vessel containing a stirring mixture of dichloromethane (440 I) and a 1% aqueous solution of sodium metabisulfite (150 I). Dioxane (80 I) was used as a vessel and line wash to ensure complete transfer. The resultant mixture was stirred at <25°C for 45- 90 minutes. The mixture was filtered, the filter cake washed with dichloromethane (105 I), and the combined filtrates allowed to settle before phase separation. The organic layer was washed with 1 N hydrochloric acid (125 I), diluted with acetonitrile (220 I) and concentrated in vacuo to eight volumes.

Acetonitrile (220 I) was added and the resultant slurry cooled to <5°C. The crude product was collected by filtration and washed with acetonitrile (40 I). The crude product was reslurried in refluxing acetonitrile (200 I) for at least 1 hour, cooled and aged for at least 1 hour at <5°C. The solid was collected by filtration, washed with acetonitrile (30 I.) and dried in vacuo at <60°C. Weight range: 14- 18 kg (70-85% theory, 70-85% w/w).

Stage 5: (5a, 17ß)-N-[2,5-bis(trifluoromethyl)phenyl]-3-oxo-4-azaandrost- 1- ene-17-carboxamide (5).

Typical scale 18.0 kg A mixture of 4-aza-5a-androst-1-ene-3-one-17ß-carboxylic acid 4 (18.0 kg, 1 eq.), toluene (540 I), pyridine (11.2 kg, 2.5 eq.) and dimethylformamide (0.2 kg, cat.) was stirred and cooled to #-5°C. Thionyl chloride (8. 1 kg, 1.2 eq.) in toluene (9 I) was added, at such a rate that the temperature was maintained at <0°C. The mixture was maintained for 2-3 hours at 15-25°C. To the mixture 2,5-bis (trifluoromethyl) aniline (14.2 kg, 1.1 eq.) and dimethylaminopyridine (0.14 kg, cat.) were added using toluene (9 I) as a line wash to ensure complete transfer. The mixture was heated at 95-105°C for 18-24 hours. The reaction completion may be monitored by in-process check (HPLC). After cooling, the

solids were removed by filtration and washed with ethyl acetate (270 I). The combined filtrate/wash was extracted four times with 10% potassium hydroxide (57 1 each). The organic solution was washed with 1 N hydrochloric acid (57 I) and water (57 I). The resulting solution was concentrated in vacuo at <80°C to four volumes. Pyridine (290 I) was added, and the solution is again concentrated in vacuo to four volumes. Pyridine (72 I) was added, and the solution is again concentrated in vacuo to 4 volumes. The solution was clarified, the vessel and line were washed through with pyridine (18 I) to ensure complete transfer, and filtered acetonitrile (18 I) was added. The stirring solution was warmed to 45-55° and water (110 I) was added slowly in portions to effect crystallization. The resulting slurry was cooled to <15°C, stirred for 1-2 hours, and the solid collected by filtration in a filter-dryer. The reactor was rinsed with 1: 1 pyridine: water (36 I), and the rinse directed as a wash to the filter cake. The reactor was further rinsed with filtered acetonitrile (45 I), and the rinse directed to the filter cake. The intermediate-grade product and filtered acetonitrile (54 I) was stirred and heated in the filter-dryer to reflux, then cooled to <15°C and filtered.

The solid was washed with acetonitrile (18 I). The resulting solid and filtered acetonitrile (110 I) were stirred and heated in the filter-dryer at reflux for 2-3 hours. The mixture was then chilled to #15°C and filtered. The solid was washed with acetonitrile (18 I). The solid was dried in vacuo at #90°C.

Offloading via the filter-dryer chute gave the product as a white to off-white solid.

Weight range: 11 to 17 kg (37-57% theory, 61-94% w/w).

EXAMPLE 2: Influence of ammonium acetate on the hydrogenation of 3-oxo- 4azaandrost-5-ene-177p-carboxylic acid Scheme 3: Experimental The hydrogenation vessel was charged with HOAc (16 vol.), 3-oxo-4- azaandrost-5-ene-17ß-carboxylic acid (1 wt), and NH40Ac (0.025 wt), while maintaining the temperature at 20-25°C. The system was purged three times with N2. The Pt02 (0.12 wt) was charged, stirring was initiated and the temperature was adjusted to 20-25°C. The vessel was again purged three times with N2; following the third purge, stirring was stopped and the vessel purged three times with H2. Stirring was resumed and the batch allowed to take up hydrogen. The temperature was maintained at 20-25°C for the first 30 minutes, adjusted to 60-65°C over 30 minutes, and maintained until the reaction was complete. Following reaction completion, stirring was stopped and the vessel was purged three times with N2. Solka Floc (0.05 wt) was charged and stirring was resumed. The hot reaction mixture was recirculated through a GAF filter until the solution was clear and the hot reaction filtrate was then transferred to a clean vessel. The reaction vessel was charged with HOAc (3 vol.), heated to 60- 65°C and stirred for at least 5 minutes. The hot rinse was filtered through the GAF filter and combined with the reaction filtrate. Volume was reduced in vacuo to 3.6 volumes and the resulting slurry was cooled to 20-25°C. Methanol (4 vol) was added to the slurry and the mixture was"aged"to obtain a more filtrable particle for 2-24 hours at 20-25°C. The product was isolated by filtration and

washed with methanol (1.5 vol). The resulting solid was dried on the filter for at least 30 minutes, then dried in vacuo at 50-60 °C for 12-18 hours.

Results Following successful campaigns using 276-345 kPa (40-50 psi) H2 pressure, where a : p ratios had been >9: 1, manufacturing constraints necessitated additional investigations at atmospheric H2 pressure. Unfortunately, atmospheric hydrogenation resulted in a : ß ratios of <5: 1. In a comparable study conducted on a 17 (3-alkyl 4-azaandrost-5-ene, Miller et al. (Tetrahedron Letters 36 (44): 7949-7952,1995) screened a variety of catalysts in high pressure hydrogenation. Other catalysts were screened, but a: ß ratios of acceptable levels could not be achieved at atmospheric hydrogenation. However, it was surprisingly found that addition of 2.5-10% (w/w vs. substance) of NH40Ac restored a : 3 ratios to >10: 1 (Table 1). Contrary to literature precedent, ammonium chloride was not effective. Also ineffective were ammonium dihydrogen phosphate, and sodium acetate. Tetramethylethylenediammonium (TMEDA) acetate, was effective at improving the a : p ratio, but significantly retarded the hydrogenation.

The results of a pilot study at 0%, 2.5% and 10% NH40Ac loads are shown in Table 2. Atmospheric hydrogenation at 2.5 w/w% NH40Ac load was successfully applied to batches of >30 kg input each (Table 3), supplying 83- 85% isolated yields of 3-oxo-4-aza-5aandrostane (2) of >99% purity.

Table 1: Various Additives/Modifiers INPUT (g) OUTPUT 1 PtO2 additive 1 (%) 2 (%) 3 (%) a: ß ratio (2.5%w/w) 20 2. 4 None nd 85. 96 12. 94 4. 6 20 2. 4 NH40Ac nd 91. 83 6. 83 13. 4 20 2. 4 NH4H2P04 84. 51 3. 19 7. 21 0. 4 20 2. 4 TMEDA 87. 24 10. 95 0. 6 18. 2 20 2. 4 NaOAc nd 84. 00 141.13 6. 0

nd = not detected Table 2: a : p Ratio at Various NH40Ac Loads/1 atm. H2 NH40AC In-Process HPLC Data (area %) Th. Yield (%) % (1) % α (2) % ß (3) a: ß ratio % 0.0 Nd 78. 8 20.8 3. 8 79 2.5 Nd 90.5 7.5 12.1 92 10. 0 3.5 89.0 6.9 12. 9 93 Table 3: a: f3 Ratio and Yield (at 2.5% NH40Ac toad/1 atm H2) INPUT (kg) In-Process HPLC OUTPUT yield (2) Data (area %) (1) Pt02 NH40Ac % (1) % α (2) % ß (3) α:ß ratio kg % 0.2 0.02 0.005 nd 90.5 7.5 12.1 0.17 83.0 33.5 4 0.84 0.5 91.3 8. 2 11. 1 28. 5 84.7 33.5 4 0.84 0.3 92.9 6. 8 13.7 28.3 84. 0