Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
COMPOSITION COMPRISING A STRUCTURED CONTINUOUS OIL PHASE
Document Type and Number:
WIPO Patent Application WO/2018/114452
Kind Code:
A1
Abstract:
The invention relates to an oil-continuous composition comprising at least 30 wt.% of a structured continuous oil phase and less than 10 wt.% water, said structured continuous oil phase comprising: - 96-99.7 wt.% fat, said fat having a solid fat content at 20°C (N20) of 0-50% and a liquid oil content at 20°C that equals 100%-N20; - particulate anhydrous non-defibrillated cell wall material from carrot parenchymal tissue, said particulate anhydrous non-defibrillated cell wall material having a particle size of between 25 µm and 500 µm; wherein the particulate anhydrous non-defibrillated cell wall material is present in the structured continuous oil phase in a concentration of 0.3-8% by weight of the liquid oil. The aforementioned particulate cell wall material is capable of structuring liquid oil at very low concentrations.

Inventors:
BOUWENS ELISABETH (NL)
VAN DER HIJDEN HENDRIKUS (NL)
KOSTER MARINUS (NL)
VREEKER ROBERT (NL)
Application Number:
PCT/EP2017/082334
Publication Date:
June 28, 2018
Filing Date:
December 12, 2017
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
UNILEVER NV (NL)
UNILEVER PLC (GB)
CONOPCO INC DBA UNILEVER (US)
International Classes:
A23D7/005; A23L19/10; A23L29/262; A23L33/22; A23L33/24
Domestic Patent References:
WO2002018486A22002-03-07
Foreign References:
US20080233238A12008-09-25
US20110281015A12011-11-17
EP0478401A21992-04-01
US20110281014A12011-11-17
US20110281015A12011-11-17
US20080233238A12008-09-25
Other References:
CHANTARO P ET AL: "Production of antioxidant high dietary fiber powder from carrot peels", LWT- FOOD SCIENCE AND TECHNOLOGY, ACADEMIC PRESS, UNITED KINGDOM, vol. 41, no. 10, 1 December 2008 (2008-12-01), pages 1987 - 1994, XP024528231, ISSN: 0023-6438, [retrieved on 20071223], DOI: 10.1016/J.LWT.2007.11.013
SHAOBO MA ET AL: "Physicochemical properties and intestinal protective effect of ultra-micro ground insoluble dietary fibre from carrot pomace", FOOD & FUNCTION, vol. 7, no. 9, 29 July 2016 (2016-07-29), GB, pages 3902 - 3909, XP055349772, ISSN: 2042-6496, DOI: 10.1039/C6FO00665E
MAHSA MAJZOOBI ET AL: "Improvement of the quality of gluten-free sponge cake using different levels and particle sizes of carrot pomace powder", INTERNATIONAL JOURNAL OF FOOD SCIENCE AND TECHNOLOGY., vol. 51, no. 6, 1 June 2016 (2016-06-01), GB, pages 1369 - 1377, XP055444266, ISSN: 0950-5423, DOI: 10.1111/ijfs.13104
THU H MCCANN ET AL: "Microstructure, rheology and storage stability of low-fat yoghurt structured by carrot cell wall particles", FOOD RESEARCH INTERNATIONAL, ELSEVIER, AMSTERDAM, NL, vol. 44, no. 4, 16 January 2011 (2011-01-16), pages 884 - 892, XP028202807, ISSN: 0963-9969, [retrieved on 20110122], DOI: 10.1016/J.FOODRES.2011.01.045
CANTARO ET AL., LWT-FOOD SCIENCE & TECHNOLOGY, vol. 41, no. 10, 2008, pages 1987 - 1994
SHAOBO MA ET AL., FOOD & FUNCTION, vol. 7, no. 9, July 2016 (2016-07-01), pages 3902 - 3909
SOUZA ET AL.: "A robust and universal NMR method for the compositional analysis of polysaccharides", CARBOHYD. POLYM., vol. 95, 2013, pages 657 - 663, XP028534188, DOI: doi:10.1016/j.carbpol.2013.02.036
VAN VELZEN ET AL.: "Magnetic resonance in Food science - Defining food by magnetic resonance", 2014, ROYAL SOCIETY OF CHEMISTRY, article "Quantitative NMR assessment of polysaccharides in complex food matrices", pages: 39 - 48
Attorney, Agent or Firm:
BROM, C R VAN DEN (NL)
Download PDF:
Claims:
CLAIMS

1. An oil-continuous composition comprising at least 30 wt.% of a structured

continuous oil phase and less than 10 wt.% water, said structured continuous oil phase comprising:

• 96-99.7 wt.% fat, said fat having a solid fat content at 20°C (N20) of 0-50% and a liquid oil content at 20°C that equals 100%-N20;

• particulate anhydrous non-defibrillated cell wall material from carrot

parenchymal tissue, said particulate anhydrous non-defibrillated cell wall material having a particle size of between 25 μηη and 500 μηη;

wherein the particulate anhydrous non-defibrillated cell wall material is present in the structured continuous oil phase in a concentration of 0.3-8% by weight of the liquid oil.

2. Composition according to claim 1 , wherein the composition is not a liquid at 20°C.

3. Composition according to claim 1 or 2, wherein the composition is not liquid at the melting temperature of the fat that is contained therein, said melting temperature being defined as the lowest temperature T at which the solid fat content (Nt) of the fat equals 0.

4. Composition according to claim 2, wherein the fat-continuous composition is non- liquid at 20°C, and the fat contained herein has a solid fat content at 20°C (N20) of at least 5%.

5. Composition according to any one of the preceding claims, wherein the

composition has a shear storage modulus G' at 20°C of at least 5,000 Pa. 6. Composition according to any one of the preceding claims, wherein the structured continuous oil phase contains not more than 6 wt.%, more preferably not more than 4 wt.% of the particulate anhydrous non-defibrillated cell wall material.

7. Composition according to any one of the preceding claims, wherein the

composition consists of the structured continuous oil phase.

8. Composition according to any one of the preceding claims, wherein the

composition contains:

• 30-90 wt% of the structured continuous oil phase; and

· 10-70 wt.% of solid particles selected from salt particles, sugar particles,

particles of intact plant tissue, particles of intact animal tissue and combinations thereof, said solid particles having a diameter in the range of 0.1-10 mm.

9. Composition according to any one of the preceding claims, wherein the anhydrous non-defibrillated cell wall material contains galacturonic acid and glucose in a molar ratio of less than 0.90, preferably of less than 0.80.

10. A process of preparing an oil-continuous composition, said process comprising mixing 100 parts by weight of fat with 0.1 -10 parts by weight of particulate anhydrous non-defibrillated cell wall material from carrot parenchymal tissue; said fat having a solid fat content at 20°C (N20) of 0-50%; said particulate anhydrous non-defibrillated cell wall material having a bulk density of less than 50 g/l and at least 90 wt.% of said particulate anhydrous non-defibrillated cell wall material having a particle size between 25 μηη and 500 μηη.

1 1. Process according to claim 10, wherein the particulate anhydrous non-defibrillated cell wall material when dispersed in demineralised water in a concentration of 3 wt.% produces a suspension having a conductivity of less than 200 μ8/οη"ΐ. 12. Process according to claim 10 or 1 1 , wherein the process comprises mixing 100 parts by weight of fat with 0.4-4 parts by weight of the particulate anhydrous non- defibrillated cell wall material.

13. Process according to any one of claims 10-12, wherein the process yields an oil- continuous composition according to any one of claims 1 -9.

14. Use of particulate anhydrous non-defibrillated cell wall material from carrot

parenchymal tissue for structuring oil, said particulate anhydrous non-defibrillated cell wall material having a bulk density of less than 50 g/l and at least 90 wt.% of said particulate anhydrous non-defibrillated cell wall material having a particle size between 25 μηη and 500 μηη.

15. A method of preparing particulate anhydrous non-defibrillated cell wall material having a bulk density of less than 50 g/l, at least 90 wt.% of said particulate anhydrous non-defibrillated cell wall material having a particle size between 25 μηη and 500 μηη, said method comprising:

• providing plant material having a water content of at least 50 wt.% and

comprising parenchymal tissue from carrot, said parenchymal tissue providing at least 80 wt.% of the dry matter in the starting material;

• heating the plant material to a temperature T exceeding Tmin of 70°C during a time period Ύ wherein temperature T (in °C) and the time period t (in minutes) meet the following equation:

t > 1200/(T-69)1 4;

· washing the heated plant material or a fraction of the heated plant material with water to reduce the concentration of monosaccharides to less than 10% by weight of dry matter, said monosaccharides being selected from glucose, fructose and combinations thereof; and

• drying the washed plant material;

wherein the plant material is comminuted before the washing step to produce a pulp.

Description:
COMPOSITION COMPRISING A STRUCTURED CONTINUOUS OIL PHASE

FIELD OF THE INVENTION

The present invention relates to a composition comprising of a structured continuous oil phase, more particularly a composition that comprises at least 30 wt.% of a structured continuous oil phase that contains particulate anhydrous non-defibrillated cell wall material from carrot and less than 10 wt.% water. The invention also relates to a process of preparing such a composition.

BACKGROUND TO THE INVENTION

Compositions comprising a structured continuous oil phase are well-known. There are edible products that consist essentially of a structured oil phase, such as, for instance, shortenings. There are also edible products that comprise a continuous oil phase in combination with a dispersed phase, e.g. a dispersed aqueous phase or a dispersed phase of solid or semi-solid particles. Examples of the latter group of edible products include margarine and peanut butter. The structured continuous oil phase of the aforementioned products largely determines the rheological and textural properties as well as the stability of these compositions.

Traditionally the oil phase of edible compositions is structured by a crystalline high melting fat matrix. However, it is desirable to reduce the amount of high melting (hard stock) fat in these compositions, e.g. because of limited natural availability of these high melting fats (such as palm oil) or because of adverse effects on consumer health (due to high levels of saturated fatty acids).

Cellulose is an organic compound with the formula (C6HioOs)n, a polysaccharide consisting of a linear chain of several hundred to many thousands of β(1→4) linked D- glucose units. Cellulose is an important structural component of the primary cell wall of green plants, many forms of algae and the oomycetes. Some species of bacteria secrete it to form biofilms. Plant-derived cellulose is usually found in a mixture with hemicellulose, lignin, pectin and other substances, while bacterial cellulose is quite pure. Cellulose is a straight chain polymer: unlike starch, no coiling or branching occurs, and the molecule adopts an extended and rather stiff rod-like conformation, aided by the equatorial conformation of the glucose residues. The multiple hydroxyl groups on the glucose from one chain form hydrogen bonds with oxygen atoms on the same or on a neighbor chain, holding the chains firmly together side-by-side and forming microfibrils with high tensile strength. This confers tensile strength in cell walls, where cellulose microfibrils are meshed into a polysaccharide matrix.

Microfibrillated cellulose, also referred to a nanofibrillated cellulose, is the term used to describe a material that is composed of cellulose microfibrils (or cellulose nanofibrils) that can be isolated from disrupted and disentangled cellulose containing primary or secondary plant cell material or pellicles (in the case of bacterial cellulose). These cellulose microfibrils typically have a diameter of 3-70 nanometers and a length that can vary within a wide range, but usually measures several micrometers. Aqueous suspensions of microfibrillated cellulose are pseudo-plastic and exhibit a property that is also observed in certain gels or thick (viscous) fluids, i.e. they are thick (viscous) under normal conditions, but flow (become thin, less viscous) over time when shaken, agitated, or otherwise stressed. This property is known as thixotropy. Microfibrillated cellulose can be obtained and isolated from a cellulose containing source through high- pressure, high temperature and high velocity impact homogenization, grinding or microfluidization.

The carrot (Daucus carota subsp. sativus) is a root vegetable, usually orange in colour, though purple, black, red, white, and yellow varieties exist. The most commonly eaten part of the plant is the taproot, although the greens are sometimes eaten as well. The domestic carrot has been selectively bred for its greatly enlarged, more palatable, less woody-textured taproot.

WO 02/18486 describes a vegetable oil comprising a composition that contains:

(a) hydrophilic insoluble cellulose; and

(b) a co-agent capable of forming hydrogen bonds with said hydrophilic insoluble cellulose, wherein said co-agent is soluble in a water-immiscible liquid.

US 201 1/0281014 and US 201 1/0281015 disclose shortening compositions comprising an admixture of a cellulose fiber, a hard fat, and a liquid oil, wherein the shortening composition comprises less than about 1 % water by weight based on total weight of the composition.

US 2008/233238 discloses methods for producing a carrot fibre product by contacting carrot feedstock with supercritical carbon dioxide.

Cantaro et al, LWT-Food Science & Technology vol. 41 , no 10, 2008, pp 1987-1994 relates to the production of anti-oxidant high dietary fibre powder from carrot peels. Shaobo Ma et al, Food & Function, Vol. 7 No 9, July 2016 pp 3902-3909 discloses an ultra- micro ground insoluble dietary fibre from carrot pomace. Both the water-holding and oil-holding capacity of this material was investigated and reported.

SUMMARY OF THE INVENTION

The inventors have discovered a new, very effective way of structuring the oil phase of oil-continuous compositions. In particular, it was found that particulate anhydrous non- defibrillated parenchymal cell wall material from carrot having a particle size of between 25 μηη and 500 μηη is capable of structuring liquid oil at very low concentrations, typically at concentrations of not more than 8 wt.%. This particulate cell wall material differs from microfibrillated cellulose in that it does not largely consist of cellulose microfibrils that have been isolated from disrupted and disentangled cellulose containing primary or secondary plant cell material. Instead the particulate anhydrous non-defibrillated cell wall material that is used in accordance with the present invention is largely composed of particles that contain carrot cell wall fragments in which the cellulose microfibrils are still linked via hemicellulosic tethers into a cellulose- hemicellulose network that is embedded in a pectin matrix.

Thus, the present invention provides an oil-continuous composition comprising at least 30 wt.% of a structured continuous oil phase and less than 10 wt.% water, said structured continuous oil phase comprising:

• 96-99.7 wt.% fat, said fat having a solid fat content at 20°C (N 20 ) of 0-50% and a liquid oil content at 20°C that equals 100%-N 20 ;

• particulate anhydrous non-defibrillated cell wall material from carrot parenchymal tissue, said particulate anhydrous non-defibrillated cell wall material having a particle size of between 25 μηη and 500 μηη; wherein the particulate anhydrous non-defibrillated cell wall material is present in the structured continuous oil phase in a concentration of 0.3-8% by weight of the liquid oil.

The particulate cell wall material of the present invention has an extremely low bulk density, i.e. typically a bulk density of less than 50 g/l. In other words, the particles within the particulate cell wall material have a very high porosity. Although the inventors do not wish to be bound by theory, it is believed that liquid oil is capable of entering the particles within the particulate cell wall material. These oil-filled particles increase the viscosity of the oil phase and at higher concentration they can even render the oil- phase semi-solid. It is believed that the structuring capability of the particulate cell wall material is due to its capacity to build a space-filling (percolating) network. Thus, surprisingly, the particulate cell wall material, which is hydrophilic in nature, remains suspended within the hydrophobic oil phase. The particulate cell wall material that is employed in accordance with the present invention may suitably be produced by (i) comminuting carrot parenchymal tissue, (ii) subjecting the tissue to a heat treatment before, during or after comminution, (iii) extensively washing the heat treated and comminuted material with water, and (iv) drying the washed material. The washing step results in the removal of water-soluble components such as pectin, sugars and water-soluble salts. As a result of the removal of pectin, the ratio of galacturonic acid to glucose in the polysaccharide component of the starting material (carrot parenchymal tissue) is reduced substantially.

The functionality of the particle cell wall material may be further enhanced by subjecting the heat treated and comminuted material to conditions of high shear.

The particulate cell wall material of the present invention can suitably be used to full or partially replace hard stock fat in oil-continuous products such as shortenings, savoury concentrates, nut spreads, pesto's, tapenades, marinades and oil continuous seasonings.

Another aspect of the invention relates to a process of preparing an oil-continuous composition, said process comprising mixing 100 parts by weight of fat with 0.1-10 parts by weight of particulate anhydrous non-defibrillated cell wall material from carrot parenchymal tissue; said fat having a solid fat content at 20°C (N20) of 0-50%; said particulate anhydrous non-defibrillated cell wall material having a bulk density of less than 50 g/l and at least 90 wt.% of said particulate anhydrous non-defibrillated cell wall material having a particle size between 25 μηη and 500 μηη. The invention further relates to the use of particulate anhydrous non-defibrillated cell wall material from carrot parenchymal tissue for structuring oil, said particulate anhydrous non-defibrillated cell wall material having a bulk density of less than 50 g/l and at least 90 wt.% of said particulate anhydrous non-defibrillated cell wall material having a particle size between 25 μηη and 500 μηη.

Finally, the invention provides a method of preparing particulate anhydrous non- defibrillated cell wall material having a bulk density of less than 50 g/l, at least 90 wt.% of said particulate anhydrous non-defibrillated cell wall material having a particle size between 25 μηη and 500 μηη, said method comprising:

· providing plant material having a water content of at least 50 wt.% and comprising parenchymal tissue from carrot, said parenchymal tissue providing at least 80 wt.% of the dry matter in the starting material;

• heating the plant material to a temperature T exceeding T m in of 70°C during a time period Ύ wherein temperature T (in °C) and the time period t (in minutes) meet the following equation:

t > 1200/(T-69) 1 4 ;

• washing the heated plant material or a fraction of the heated plant material with water to reduce the concentration of monosaccharides to less than 10% by weight of dry matter, said monosaccharides being selected from glucose, fructose and combinations thereof; and

• drying the washed plant material;

wherein the plant material is comminuted before the washing step to produce a pulp.

DETAILED DESCRIPTION OF THE INVENTION

A first aspect of the present invention relates to an oil-continuous composition comprising at least 30 wt.% of a structured continuous oil phase and less than 10 wt.% water, said structured continuous oil phase comprising:

• 96-99.7 wt.% fat, said fat having a solid fat content at 20°C (N 20 ) of 0-50% and a liquid oil content at 20°C that equals 100%-N 20 ; • particulate anhydrous non-defibrillated cell wall material from carrot parenchymal tissue, said particulate anhydrous non-defibrillated cell wall material having a particle size of between 25 μηη and 500 μηη;

wherein the particulate anhydrous non-defibrillated cell wall material is present in the structured continuous oil phase in a concentration of 0.3-8% by weight of the liquid oil.

The term "fat" as used herein refers to glycerides selected from triglycerides, diglycerides, monoglycerides, phosphoglycerides, free fatty acids and combinations thereof.

The terms 'fat' and 'oil' are used interchangeably, unless specified otherwise. Where applicable the prefix 'liquid' or 'solid' is added to indicate if the fat or oil is liquid or solid at 20°C. "Hard stock" is an example of a solid fat. Hard stock typically has a solid fat content at 20°C (N 20 ) of at least 30%.

The term "structured continuous oil phase" as used herein refers to a continuous oil phase that contains a non-liquid component that introduces non-Newtonian behaviour into the oil phase. The terminology "particulate anhydrous non-defibrillated cell wall material" as used herein refers to particulate cell wall material in which the cellulose microfibrils are linked via hemicellulosic tethers into a cellulose-hemicellulose network that is embedded in a pectin matrix particles, said particulate cell wall material having a water content of not more than 15 wt.%.

The term "liquid" as used herein refers to a state in which a material is a nearly incompressible fluid that conforms to the shape of its container. As such, it is one of the four fundamental states of matter (the others being solid, gas, and plasma), and is the only state with a definite volume but no fixed shape. The term "liquid" also

encompasses viscous liquids.

The solid fat content of a fat at a temperature of t °C (N t ) can suitably be determined using ISO 8292-1 (2012) - Determination of solid fat content by pulsed NMR. The particles size distribution of the particulate anhydrous non-defibrillated cell wall material can suitably be determined by means of sieving in oil, i.e. by employing a set of sieves of different mesh sizes and by dispersing the cell wall material into a sufficient quantity of oil before sieving. This same technique can be used to determine the particle size distribution of other non-fat particulate components of the oil-continuous composition.

The term "bulk density" as used herein, unless indicated otherwise, refers to freely settled bulk density.

The molar ratio of galacturonic acid to glucose as referred to herein is determined by first completely hydrolysing the polysaccharides (>10 monosaccharide units) and oligosaccharides (2-10 monosaccharide units) present, followed by quantification of the galacturonic acid and glucose content.

The galacturonic acid and glucose content can suitably be determined by means of the following procedure. Firstly, samples are pre-solubilized using 72% w/w sulfuric acid-cfe at room temperature for 1 h. Subsequently the samples are diluted with D2O to 14% w/w sulfuric acid-c/2 and hydrolyzed in an oven at 100 °C for 3h. The galacturonic acid and glucose content of the hydrolyzed samples are then determined using the NMR method described by de Souza et al. (A robust and universal NMR method for the compositional analysis of polysaccharides (2013) Carbohyd. Polym. 95, 657-663 and van Velzen et al. (Quantitative NMR assessment of polysaccharides in complex food matrices (2014) in Magnetic resonance in Food science - Defining food by magnetic resonance pp 39-48 F. Capozzi, L. Laghi and P.S. Belton (Eds.) Royal Society of Chemistry, Cambridge, UK).

Whenever reference is made herein to the water content of a composition or a material, unless indicated otherwise, this includes all the water that is present in said

composition or material. The word "comprising" as used herein is intended to mean "including" but not necessarily "consisting of" or "composed of." In other words, the listed steps or options need not be exhaustive.

Unless indicated otherwise, weight percentages (wt.%) are based on the total weight of a composition. Unless specified otherwise, numerical ranges expressed in the format "from x to y" are understood to include x and y. When for a specific feature multiple preferred ranges are described in the format "from x to y", it is understood that all ranges combining the different endpoints are also contemplated. For the purpose of the invention ambient temperature is defined as a temperature of about 20 degrees Celsius.

The oil-continuous composition of the present invention preferably contains at least 50 wt.%, more preferably at least 80 wt.%, even more preferably at least 90 wt.% and most preferably at least 95 wt.% of the structured continuous oil phase

The oil-continuous composition preferably has a shear storage modulus G' at 20°C of at least 5,000 Pa, more preferably of at least 8,000 Pa and most preferably of at least 10,000 Pa. In accordance with one embodiment of the invention the oil-continuous composition consists of the structured continuous oil phase.

In accordance with another embodiment of the invention the oil-continuous composition contains:

· 30-90 wt% of the structured continuous oil phase; and

• 10-70 wt.% of solid particles selected from salt particles, sugar particles, particles of intact plant tissue, particles of intact animal tissue and combinations thereof, said solid particles having a diameter in the range of 0.1 -10 mm. The oil-continuous composition of the present invention is preferably selected from shortenings, savoury concentrate, nut spreads, pesto's, tapenades, marinades and oil continuous seasonings.

The water content of the present composition preferably does not exceed 7 wt.%, more preferably it does not exceed 5 wt.% and most preferably it does not exceed 3 wt.%.

The water activity of the oil-continuous composition preferably does not exceed 0.7, more preferably it does not exceed 0.6 and most preferably it does not exceed 0.4. Besides the structured continuous oil phase, the composition can contain one or more dispersed components. Examples of such dispersed components include particles that comprise one or more edible ingredients selected from sugar, salt, sodium glutamate, yeast extract, vegetables, herbs, spices, flour, thickening agents and gelling agents.

Besides fat and the particulate cell wall material, the structured continuous oil phase may include dissolved components (e.g. anti-oxidants, flavourings, colourants, vitamins) and/or dispersed components having a diameter of less than 5 μηη. These components are regarded as part of the structured continuous oil phase. In other words, dispersed components having a diameter of larger than 5 μηη other than the particulate plant material of the present invention, are not part of the structured continuous oil phase.

The fat in the structured continuous oil phase preferably comprises at least 80 wt.%, more preferably at least 90 wt.% and most preferably at least 95 wt.% of one or more natural fats selected from coconut oil, palm kernel oil, palm oil, marine oils (including fish oil), lard, tallow fat, butter fat, soybean oil, safflower oil, cotton seed oil, rapeseed oil, linseed oil, sesame oil, poppy seed oil, corn oil (maize oil), sunflower oil, peanut oil, rice bran oil, olive oil, algae oil, shea fat, alanblackia oil; fractions of these oils. These fats may also be employed in hydrogenated and/or interesterified form.

According to a preferred embodiment, the fat present in the structured continuous oil phase preferably contains at least 50 wt.% of liquid oil selected from soybean oil, sunflower oil, rape seed (canola) oil, cotton seed oil, peanut oil, rice bran oil, safflower oil, palm olein, linseed oil, fish oil, high omega-3 oil derived from algae, corn oil (maize oil), sesame oil, olive oil, and combinations thereof. More preferably the liquid oil is selected from soybean oil, sunflower oil, rape seed oil, corn oil (maize oil), olive oil, linseed oil, palm olein and combinations thereof The fat that is contained in the structured continuous oil phase of the present composition preferably has a solid fat content at 20°C (N20) of 0-30%, more preferably of 0-20% and most preferably of 0-15%.

The aforementioned fat preferably has a solid fat content at 35°C (N35) of 0-10%, more preferably of 0-5% and most preferably of 0-3%. The fat in the structured continuous oil phase preferably contains at least 50 wt.%, more preferably at least 80 wt.% and most preferably at least 90 wt.% triglycerides. According to a particularly preferred embodiment, the composition of the present invention is not a liquid at 20°C, more preferably, the composition is solid or semi-solid at 20°C. Likewise, it is preferred that also the structured continuous oil phase per se is not a liquid at 20°C. More preferably, the structured continuous oil phase per se is solid or semi-solid at 20°C

If applied in a sufficiently high concentration, the particulate cell wall material of the present invention can render the composition non-flowing. Accordingly, in a preferred embodiment, the present composition is non-flowing in that a sample of the

composition of 30 ml that has been prepared in a polypropylene jar with an internal diameter of 5.2 cm, after equilibration at 20°C for 1 hour, does not flow within 1 minute after the jar is turned upside down.

The particulate cell wall material of the present invention can be used to produce a fat- continuous composition that is non-liquid, and that does not become liquid even when the fat contained therein is liquid or when it is liquefied by heating.

Accordingly, in a first embodiment, the oil-continuous composition of the present invention is non-liquid at 20°C even though the fat contained therein is liquid at 20°C. In other words, in accordance with this embodiment, at 20°C the oil-continuous composition is non-liquid (e.g. solid or semi-solid) thanks to the structuring effect of the particulate cell wall material.

In a second embodiment, the oil-continuous composition is not liquid at the melting temperature of the fat that is contained therein, said melting temperature being defined as the lowest temperature T at which the solid fat content (N t ) of the fat equals 0. It is noted that various fats (e.g. sunflower oil and soybean oil) have melting points below ambient temperature.

The particulate cell wall material of the present invention can also be used to produce a fat-continuous composition that is non-liquid by employing said particulate cell wall material in combination with another oil structuring agent, especially high melting (hard stock) fat. Using a combination of particulate cell wall material and hardstock fat offers the advantage that the amount of hardstock can be reduced whilst at the same time maintaining desirable product properties that are associated with the melting behaviour of the hardstock.

Accordingly, in an alternative preferred embodiment, the fat-continuous composition is non-liquid at 20°C, and the fat contained herein has a solid fat content at 20°C (N20) of at least 5%, more preferably of 8-50% and most preferably of 10-40%. The fat contained in the composition preferably has a solid fat content at 35°C (N35) of less than 10%, more preferably of less than 5% and most preferably of less than 2%. The fat preferably exhibits a difference in solid fat content at 20°C and 35°C (N20-N35) of at least 5%, more preferably of at least 8%, most preferably of at least 10%. Preferably, in the latter embodiment of the oil-continuous composition becomes liquid at temperatures at which it no longer contains solid fat. Thus, in another preferred embodiment, the oil-continuous composition is a liquid at the melting temperature of the fat that is contained therein, said melting temperature being defined as the lowest temperature T at which the solid fat content (N t ) of the fat equals 0.

In accordance with a particularly preferred embodiment, the structured continuous oil phase contains not more than 6 wt.%, more preferably not more than 4 wt.%, more preferably not more than 3 wt.% and most preferably not more than 2.0 wt.% of the particulate anhydrous non-defibrillated cell wall material. The concentration of said particulate cell wall material in the structured continuous oil phase preferably is at least 0.1 wt.%, more preferably at least 0.2 wt.% and most preferably at least 0.3 wt.%.

Calculated by weight of the liquid oil that is present in the fat of the structured continuous oil phase, said oil phase preferably contains not more than 5 wt.%, more preferably not more than 3.0 wt.%, even more preferably not more than 2.5 wt.% and most preferably not more than 2.0 wt.% of the particulate anhydrous non-defibrillated cell wall material. Again, calculated by weight of the liquid oil that is present in the fat of the structured continuous oil phase, the concentration of the particulate cell wall material in the structured continuous oil phase preferably is at least 0.35 wt.%, more preferably at least 0.40 wt.% and most preferably at least 0.45 wt.%. The oil-continuous composition of the present invention preferably contains, calculated by weight of the liquid oil, at least 0.3 wt.%, more preferably at least 0.4 wt.% and most preferably at least 0.45 wt.% of particulate anhydrous non-defibrillated cell wall material having a particle size between 40 μηη and 300 μηη.

The particulate anhydrous non-defibrillated cell wall material of the present invention contains not more than 15 wt.% water. Preferably the water content of said particulate cell wall material is less than 12 wt.%, more preferably less than 9 wt.% and most preferably less than 7 wt.%.

The particulate cell wall material of the present invention may comprise both primary cell wall material and secondary cell wall material. Preferably, at least 85 wt.%, more preferably at least 90 wt.% and most preferably at least 95 wt.% of said particulate cell wall material is primary cell wall material.

Primary plant cell walls of carrot contain not more than a minor amount of lignin, if at all. The particulate anhydrous cell wall material preferably contains less than 10 wt.%, more preferably less than 3 wt.% and most preferably less than 1 wt.% lignin.

The particulate anhydrous non-defibrillated cell wall material employed in accordance with the present invention preferably originates from carrot root.

As explained earlier, the particulate cell wall material that is employed in accordance with the present invention may suitably be produced from carrot parenchymal tissue by (i) comminuting said tissue, (ii) subjecting the tissue to a heat treatment before, during or after comminution, (iii) extensively washing the heat treated and comminuted material with water, and (iv) drying the washed material. Due to the removal of pectin during the washing step, the ratio of galacturonic acid to glucose in the polysaccharide component of the starting material (carrot parenchymal tissue) is reduced substantially.

Accordingly, in a preferred embodiment of the invention, the particulate cell wall material contains:

• galacturonic acid and glucose in a molar ratio of less than 0.9, preferably of less than 0.8, most preferably of less than 0.7; • 0-1 wt.% , more preferably 0-0.5 wt.%, most preferably 0-0.1 wt.% of small saccharides selected from monosaccharides, disaccharides, trisaccharides and combinations thereof;

• 0-15 wt.% water.

This particulate cell wall material preferably has a structuring value of at least 0.0030, more preferably of at least 0.0040 and most preferably of at least 0.0050.

The "structuring value" is determined by means of confocal scanning laser microscopy (CSLM) using the procedure that is specified in the Examples.

According to a particularly preferred embodiment, the oil-continuous composition is obtainable by, more preferably obtained by a process of preparing an oil-continuous composition as described herein. Likewise, it is preferred that the particulate cell wall material that is contained in the oil- continuous composition is obtainable by, more preferably obtained by a method of preparing particulate anhydrous non-defibrillated cell wall material as described herein.

Another aspect of the present invention relates to a process of preparing an oil- continuous composition, said process comprising mixing 100 parts by weight of fat with

0.1 -10 parts by weight of particulate anhydrous non-defibrillated cell wall material from carrot parenchymal tissue; said fat having a solid fat content at 20°C (N20) of 0-50%; said particulate anhydrous non-defibrillated cell wall material having a bulk density of less than 50 g/l, preferably of less than 30 g/l, more preferably of less than 20 g/l, even more preferably of less than 17 g/l and most preferably of less than 15 g/l; and at least

90 wt.% of said particulate anhydrous non-defibrillated cell wall material having a particle size between 25 μηη and 500 μηη.

The present process preferably employs particulate anhydrous non-defibrillated cell wall material as defined herein before. Likewise, also the fat employed preferably is a fat as defined herein before.

The mixing of fat with the particulate cell wall material may be achieved in different ways. In one embodiment, the particulate cell wall material is in the form of a powder when it is mixed with the fat. In accordance with a particularly preferred embodiment, the fat is fully liquid or liquefied when it is mixed the powder.

In an alternative embodiment, the mixing is achieved by combining the fat with a dispersion of the particulate cell wall material in a low boiling polar organic solvent (boiling point <90°C), followed by removal of the polar organic solvent, i.e. separation from the fat and the particular cell wall material. Examples of low boiling polar organic solvents that may be employed in accordance with this embodiment include ethanol, iso-propanol and mixtures thereof. After the dispersion of the particulate cell wall material has been combined with the fat, the polar organic solvent may be removed by means of filtration and/or evaporation. This particular embodiment offers the advantage that the energy demanding drying of wet particulate cell wall material can be avoided. The water in the wet particulate cell wall material that is produced after one or more washings with water can simply be replaced by the aforementioned polar organic solvent (solvent exchange). Due to the low boiling point of the polar organic solvent, this solvent can easily be removed from the mixture of fat and particulate cell wall material.

Preferably, the present process comprises mixing 100 parts by weight of fat with 0.2-5 parts by weight, more preferably 0.3-3 parts by weight and most preferably 0.4-2 parts by weight of the particulate cell wall material.

In accordance with another preferred embodiment, the process comprises combining 100 parts by weight of fat with at least 0.1 parts by weight, more preferably at least 0.2 parts by weight, most preferably at least 0.3 parts by weight of particulate anhydrous non-defibrillated cell wall material having a bulk density of less than 50 g/l and at least 90 wt.% of said particulate anhydrous non-defibrillated cell wall material having a particle size between 40 μηη and 300 μηη. The particulate cell wall material employed in the present process typically contains not more than a limited amount of water soluble salt. Accordingly, when dispersed in demineralised water in a concentration of 3 wt.% the particulate cell wall material produces a suspension having a conductivity of less than 250 μ8/οη-ι, preferably of less than 100 pS/cm. According to another preferred embodiment, the particulate cell wall material employed in the present invention produces a structured oil phase having a shear storage modulus G' at 20°C of at least 5,000 Pa, more preferably of at least 8,000 Pa and most preferably of at least 10,000 Pa when said material is dispersed through sunflower oil in a concentration of 1 wt.%.

According to a particularly preferred embodiment, the present process yields an oil- continuous composition as defined herein before. It is further preferred that the particulate cell wall material that is employed in the present process is obtainable by, more preferably obtained by a method of preparing particulate anhydrous non-defibrillated cell wall material as described herein.

A further aspect of the present invention relates to the use of the particulate anhydrous non-defibrillated cell wall material as defined herein for structuring oil.

Yet another aspect of the invention relates to a method of preparing particulate anhydrous non-defibrillated cell wall material having a bulk density of less than 50 g/l, at least 90 wt.% of said particulate anhydrous non-defibrillated cell wall material having a particle size between 25 μηη and 500 μηη, said method comprising:

• providing plant material having a water content of at least 50 wt.% and comprising parenchymal tissue from carrot, said parenchymal tissue providing at least 80 wt.% of the dry matter in the starting material;

• heating the plant material to a temperature T exceeding T m in of 70°C during a time period Ύ wherein temperature T (in °C) and the time period t (in minutes) meet the following equation:

t > 1200/(T-69) 1 4 ;

• washing the heated plant material or a fraction of the heated plant material with water to reduce the concentration of monosaccharides to less than 10% by weight of dry matter, said monosaccharides being selected from glucose, fructose and combinations thereof; and

• drying the washed plant material;

wherein the plant material is comminuted before the washing step to produce a pulp. It is noted that plant material having a water content of at least 50 wt.% may be provided in the form of reconstituted dry plant material.

Preferably, the present method of preparing a particulate cell wall material produces a particulate anhydrous non-defibrillated cell wall material as defined herein before.

The plant material employed in the present method is preferably obtained from carrot root. According to a particularly preferred embodiment of the present process T m in is 75°C. Even more preferably T m in is 80°C, especially 90°C and most preferably 100°C.

Typically, the temperature T employed in the present process does not exceed 150°C, more preferably it does not exceed 120°C and most preferably it does not exceed 102°C.

The heating period Ύ preferably exceeds 1 minute, more preferably it exceeds 2 minutes. Most preferably, the heating period t is in the range of 3-120 minutes. Due to the washing step of the present method the concentration of monosaccharides in the plant material is typically reduced to less than 10% by weight of dry matter, more preferably less than 5% by weight of dry matter and most preferably to less than 3% by weight of dry matter. The washing step of the present process advantageously employs in total at least 50 litres of water per kg of dry matter that is contained in the material that is subjected to the washing step. More preferably, at least 100 litres, even more preferably at least 200 litres, especially at least 400 litres and most preferably at least 800 litres of water are employed in the washing per kg of dry matter contained in the material that is subjected to the washing step.

The washed plant material is preferably dried to a water content of less than 15 wt.%, more preferably a water content of less than 10 wt.%, and most preferably of less than 7 wt.%. Drying techniques that may suitably be employed to dry the washed plant material include freeze drying, drum drying, solvent exchange, extrusion drying. Most preferably, the washed plant material is dried by means of freeze drying. According to another particularly preferred embodiment, before the washing step, the heated plant material is subjected to shear by using industrial shear devices like Silverson, Turrax or Thermomix, high pressure homogenisation and Microfluidiser. Suitable operating conditions are specified below:

• HPH: 100-2000 bar

· Microfluidiser: 500-2,000 bar.

• Silverson: 4,000-8,000 rpm

• Ultra Turrax: tipspeed of 10-23 m/s

• Thermomix (speed 2-10) The homogenization of the heated plant material prior to the washing step ensures that most of the cell walls are ruptured and that water-soluble components can more easily be removed during the washing step.

The invention is further illustrated by means of the following non-limiting examples.

EXAMPLES Example 1

154 g finely cut press cake residue from carrot juice production (26% DM, stored frozen) was dispersed in just boiled demineralized water (total weight 1.5 kg, 2.7% DM). The sample was heated in a microwave oven and pureed in a Thermomix. The sample was washed with 4 liter demineralized water using filter cloth and the residue was redispersed in demineralized water (1 .5 kg total mass). The sample was sheared using a Silverson mixer, heated in a Thermomix (30 min at 90 °C), washed with 2L demineralized water and sheared again (Silverson mixer with fine emulsor screen, 10 minutes at 7000 rpm). The dispersion was washed on Miracloth filter with 1 liter demineralized water. The residue was collected and redispersed in demineralized water. 300 gram dispersion was homogenized at 500 bar using a high pressure homogenizer. The sample was washed on Miracloth filter using 1 liter demineralized water. The residue was collected and redispersed in demineralized water (300 g total weight). The suspension was added dropwise to liquid nitrogen, quickly frozen and freeze dried. The bulk density of freeze dried carrot particles was determined to be 7 g/L.

Example 2

Finely cut press cake residue from carrot juice production was processed in the same way as described in Example 1 , except that this time immediately before the Silverson treatment the washed filtered residue material was added dropwise to liquid nitrogen, quickly frozen and freeze dried.

Example 3

Finely cut press cake residue from carrot juice production was processed in the same way as described in Example 1 , except that this time immediately after Silverson treatment and washing the filtration residue was added dropwise to liquid nitrogen, quickly frozen and freeze dried.

Example 4

Finely cut press cake residue from carrot juice production was processed in the same way as described in Example 2, except that an extra Silverson treatment was done (10 min., 7000 rpm) prior to freeze drying.

Example 5

Finely cut press cake residue from carrot juice production (90 g) was added to water (1210 g), heated in a microwave oven and blended in a Thermomix. The puree was sheared using a Silverson mixer (10 minutes, 7000 rpm), again pureed in a Thermomix and sheared once more using a Silverson mixer (20 min, 7000 rpm). The puree was then washed with demineralized water (2L) using filter cloth and the residue was redispersed in demineralized water (dry matter content ca. 0.75 wt%). The carrot dispersion was sheared once more (Silverson mixer, 10 min, 7000 rpm) and homogenized at 1000 bar. The homogenized sample was poured onto a pre-cooled metal plate, frozen at -80 °C and freeze dried. Example 6

Finely cut press cake residue from carrot juice production (154 g) was added to boiling water (1 .346 kg), heated in a microwave oven and pureed in a Thermomix. The puree was sheared using a high-shear Silverson mixer (10 min, 5000 rpm), pureed in a Thermomix and washed with 3L demineralized water. The washed puree was sheared again (Silverson mixer, 10 min 7000 rpm) and homogenized at 2000 bar. 240 grams of the homogenized carrot suspension was mixed with 960 ml ethanol (96% pure) and filtrated using Whatmann filter paper. The alcohol insoluble carrot residue was washed twice with 50 ml ethanol.

Alcohol was exchanged with sunflower oil as follows. Sunflower oil (4 x 50 ml) was poured on top of the carrot residue and left standing until the oil had passed through the residue and filter paper. The carrot residue was heated in a microwave oven until boiling to remove residual ethanol by evaporation. The dry matter content of the final preparation is 2.9 wt%.

Comparative Example A

Finely cut press cake residue from carrot juice production was freeze dried by adding the material to liquid nitrogen, followed by freeze drying.

Comparative example B

3 grams of finely cut press cake residue from carrot juice production (26% DM, stored frozen) was dispersed in 7 gram just boiled demineralized water and heated in a microwave oven (30 seconds, 1000 W) until boiling. After waiting for some time the carrot particles were heated once more in the microwave oven (20 seconds, 1000 W). The sample was diluted with demineralized water to 20 g (total weight) and cooled to 4 °C. After cooling the sample was added dropwise to liquid nitrogen, quickly frozen and freeze dried. Example 7

The oil structuring capacity of the freeze dried powders of Examples 1 , 3, 4, 5 and of Comparative Example A was assessed using the methods described below. The structured oil from Example 6 was subjected to the same analyses. Assessment of oil structuring capacity

The oil structuring capacity was assessed by dispersing the powder into sunflower oil at different concentrations. The following procedure was followed:

· An amount of slightly less than 30 g of sunflower oil is introduced into a glass

beaker having an internal diameter of 5.2 cm

• a predetermined quantity of powder is thoroughly dispersed through the oil by

means of a spatula to produce in total 30 grams of a dispersion

• the mixture is kept at 20°C for 60 minutes

· the beaker is turned upside down to see if the sample flows (observation time: 1 minute)

Structured oil compositions were made using sunflower oil (fully refined and winterised, ex Unilever Rotterdam). The structured oil compositions (batch size 30 g) were made by manually dispersing the freeze dried powders into the liquid oil using a spatula (no high- shear mixing device was needed). The resulting structured oil samples were stored at 4 °C until analysis.

Measurement of G'

G' of the sample was determined by small-deformation oscillatory measurements [see e.g. H.A. Barnes, J.F. Hutton and K. Walters, An introduction to Rheology, Amsterdam, Elsevier, 1989)]. Oscillatory measurements were performed using an AR2000 or AR G2 rheometer (TA Instruments) equipped with plate-plate geometry. Plates were sandblasted to avoid wall slip effects. Diameter of the upper plate was 4 cm, gap size was 1 mm. Optionally, a sandblasted sample cup (57 mm inner diameter, depth 2100 μηη) was mounted on the lower plate of the rheometer. In this case sample loading was as follows: the sample cup was slightly overfilled and excess sample was removed by dragging the edge of a spatula across the top of the cup. The upper plate was then lowered to a distance of 2050 μηη from the bottom of the sample cup. Oscillatory measurements were performed at 1 Hz frequency and 0.5% strain (within the linear viscoelastic region) at a temperature of 20 °C. Measurements started 2 minutes after the sample had reached the desired temperature. G' was recorded during a period of 5 minutes (time-sweep measurement); the value of G' measured at t = 5 min is reported.

Storage moduli and flowability of the structured oil compositions are shown in Table 1. Table 1

Example 8

The freeze dried powders of Examples 1 , 2 and 3, and of Comparative Examples A and B were analysed. For each of these powders the molar ratio of galacturonic acid to glucose was determined after full hydrolysis of the polysaccharide and oligosaccharide component. In addition, the bulk density and the oil structuring value were determined.

Assessment of oil structuring value

Oil structuring values were assessed by confocal microscopy and image analysis.

Samples for confocal microscopy were prepared by adding 25 mg of a water-soluble fluorophore (Direct Yellow 96 ex Sigma Aldrich) to an aqueous suspension of particulate cell wall material containing 1 gram dry matter. The suspension was mixed well to assure complete dissolution of the Direct Yellow. Samples were then quickly frozen in liquid nitrogen and freeze dried. After freeze drying particles were dispersed in sunflower oil at 1 % dry matter. Confocal microscopy was performed using a Leica TCS SP5 confocal system in combination with a DMI6000 inverted microscope. The fluorescent dye was excited using the 458 nm laser line of an Argon ion laser at 25% of its maximum power and the AOTF set at 23%. Fluorescence was detected with PMT2 set at a wavelength range of 470-570 nm. The pinhole was set to 1 airy. Scanning was done at 400Hz and 8 bit (values 0 to 255) data collection. The objective used was 40x HCX PL APO CS 40.0 NA 1 .25 OIL UV, refraction index 1 .52, no zoom was applied. Contrast during imaging was controlled by the detector gain and offset controls. The detector gain control was adjusted such that minimal over-exposure occurs. No offset adjustment was required. To enlarge the total acquired volume, tile scanning 2x2 was combined with the acquisition of a Z-stack. Four tiles of 1024x1024 pixels (greyscale) with a pixel size (in XY-direction) of 0.38 μηη were acquired as a 2x2 matrix for each Z-plane position. The tiles were stitched together using an overlap of 10% yielding 1 slice. Z-axis acquisition steps were setup to be also 0.38 μηη to obtain an isotropic voxel size. For the stacks a maximum of about 250-300 slices can be acquired, depending on the exact starting position, and the thickness of the droplet on the glass slide. At least 225 usable slices were acquired for each sample.

Stacks of greyscale images were pre-processed using Matlab R2016a in addition with DipLib library V2.8 (a Scientific Image Analysis Library from the Quantitative Imaging Group, Delft University of Technology 1995-2015). Noise was removed using a median filter. A size of 7 pixels (2D) and an elliptic shape was chosen which effectively removed noise and tiny speckles while retaining detail. To achieve consistency in the dynamic range for a set of data and enhance the contrast, a histogram stretch function was applied. This works by defining two brightness levels, a minimum and a maximum percentile. Contrast was maximized between those levels. This was done by moving all pixels darker than the minimum percentile to a brightness of 0, and all pixels brighter than the maximum percentile to a brightness of 255. Values in between the minimum and maximum were proportionately distributed in the range of 0 to 255. The minimum was set to the 50th percentile, and the maximum to the 99th percentile. The stretch was consistently applied to all images (slice by slice) in the stack. Next, each slice was binarised using an automatic ISO data method (black, or 0 is background, and white or 255 are features of interest). This method was determined by trying out four different automatic thresholding methods; Otsu, entropy, factorisation and iso-data. Except for the entropy method, the algorithms yielded stable values close to 80. The result was stored as a set of images in TIFF format.

Skeletonization of a stack of CSLM images, acquired using the method described above, allowed derivation of a distinctive parameter (total segment length [jj.m]/volume [μηι 3 ]), which was used as a measure for coarseness of the structure of the dispersed plant material. A stack of binary TIFF images was imported into Avizo Fire software (from FEIA SG, V9.0.1 ). The procedure "Auto-skeleton" was applied, which performs a series of operations on 3D shapes. A skeleton of a shape is a thin version of that shape that is equidistant to its boundaries (background). The Avizo module extracts the centerline of filamentous structures from the stack of image data by first calculating a distance map of the segmented volume. This map labels each pixel of the image with the distance to the nearest background pixel. Next, thinning was performed by removing voxel by voxel from the segmented object until only a string of connected voxels remains. This thinning was ordered according to the distance map input. The voxel skeleton was then converted to a spatial graph object. Two parameters influence the construction of the traced graph object. The "smooth" value is a coefficient that controls the influence of neighboring points on the position of a point. This parameter can take values greater than 0 and smaller than 1 . The greater the value the smoother the result Spatial Graph becomes. A default value of 0.5 was used, together with an iteration value of 10. Another parameter named "attach to data" controls the influence of the initial coordinate on the new position. The higher the value the more the initial position will be retained. The default value of 0.25 was used. The distance to the nearest boundary (boundary distance map) was stored at every point in the spatial graph object as thickness attribute. This value was used as an estimate of the local thickness.

Visualizations of the skeleton were created which show these variations in local thickness; the segments of the graphs were drawn as tubes whose diameter (and color) depends on the thickness defined by the distance map (the distance to the nearest boundary was stored at every point in the Spatial Graph object as a thickness attribute). From the resulting graphs, the number of segments and the total length of these segments were calculated with the spatial graph statistics module. Next the total length was normalized for the imaged volume, and this value (total segment length |^m]/volume [μηη 3 ]) was reported as oil structuring value.

The results of the different assessments are shown in Table 2. Table 2

• Soluble solids (e.g. glucose) were removed by alcohol extraction prior to the analysis (procedure as described by in J Agric Food Chem. (2006) 54, 8471-9). Example 9

Finely cut press cake residue from carrot juice production was processed in the same way as in Example 1 . This time not only the high pressure homogenized suspension, but also the finely cut press cake residue, the washed and blended residue and the Silverson sheared suspension were freeze dried. Equal quantities (weight) of the powders so obtained were introduced into transparent jar. A picture of the jars containing the powders is shown in Figure 1 . From left to right this picture shows 0.3g of powder from:

• Freeze dried finely cut press cake residue

• Freeze dried washed blended residue

· Freeze dried Silverson sheared suspension

• Freeze dried Silverson & HPH sheared suspension