Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
CONTROL UNIT COMPRISING A CIRCUIT, AND METHOD FOR SHORT-CIRCUIT PROTECTION OF GROUND LINES AND SENSORS
Document Type and Number:
WIPO Patent Application WO/2019/034510
Kind Code:
A1
Abstract:
The invention relates to a control unit (6) for evaluating the sensor signal of a sensor (2), comprising at least one first sensor connection (21) and a second sensor connection (22) for connecting the sensor (2), wherein the second sensor connection (22) is connected to a short-circuit protection circuit (23), which is arranged between the second sensor connection (22) and a grounding (3), and which comprises a switchable transistor (7), by way of which the grounding (3) of the second sensor connection (22) can be interrupted.

Inventors:
BRUCKHAUS TIM (DE)
Application Number:
PCT/EP2018/071584
Publication Date:
February 21, 2019
Filing Date:
August 09, 2018
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
BOSCH GMBH ROBERT (DE)
International Classes:
G01D5/18; G01D5/244; G01D21/00
Foreign References:
EP2660843A12013-11-06
US20120033337A12012-02-09
DE19534825A11997-03-27
EP0846955A11998-06-10
Other References:
None
Download PDF:
Claims:
Patentansprüche

1. Steuergerät (6) zur Auswertung des Sensorsignals eines Sensors (2)

aufweisend mindestens einen ersten Sensoranschluss (21) und einen zweiten Sensoranschluss (22) zum Anschließen des Sensors (2), wobei der zweite Sensoranschluss (22) mit einer Kurzschlussschutzschaltung (23) verbunden ist, die zwischen dem zweiten Sensoranschluss (22) und einer Erdung (3) angeordnet ist und welche einen schaltbaren Transistor (7) umfasst, mit welchem die Erdung (3) des zweiten Sensoranschlusses (22) unterbrochen werden kann.

2. Steuergerät (6) nach Anspruch 1, wobei das Steuergerät weiter einen ersten Sensoranschluss (21) zum Anschließen des Sensors (2) und zur

Bereitstellung einer Sensorspannung zum Betrieb des Sensors (2) aufweist, wobei der erste Sensoranschluss (21) an eine Versorgungsspannungsquelle (5) angeschlossen ist.

3. Steuergerät (6) nach Anspruch 2, wobei zwischen der

Versorgungsspannungsquelle (5) und dem Sensor (2) ein erster Widerstand (1) angeordnet ist.

4. Steuergerät (6), nach einem der vorhergehenden Ansprüche, wobei der Transistor (7) in einem Unterbrechungspfad (25) angeordnet ist, in welchem sich in Serie zu dem Transistor (7) ein niederohmiger zweiter Widerstand (8) befindet.

5. Steuergerät (6) nach einem der vorhergehenden Ansprüche, wobei die

Kurzschlussschutzschaltung (23) einen Überbrückungspfad (24) aufweist, mit welchem der Transistor (7) überbrückt wird und in welchem sich ein hochohmiger dritter Widerstand (9) befindet.

6. Steuergerät (6) umfassend eine Auswerteschaltung (10), an welche

zumindest der erster Sensoranschluss (21) angebunden ist, und die dazu eingerichtet ist, ein Sensorsignal eines an den ersten Sensoranschluss (21) angeschlossenen Sensors (2) auszuwerten.

Steuergerät (6) nach Anspruch 6, wobei die Auswerteschaltung (10) zusätzlich an den zweiten Sensoranschluss (22) angebunden ist und bei der Auswertung eines Sensorsignals eines an den ersten Sensoranschluss (21) und an den zweiten Sensoranschlusses (22) angebundenen Sensors wahlweise auf eine Sensorspannung (16) zwischen dem ersten

Sensoranschluss (21) und einer Erdung (3) oder auf eine Sensorspannung (16) zwischen dem ersten Sensoranschluss (21) und dem zweiten

Sensoranschluss (22) zurückgreifen kann.

Steuergerät (6) nach einem der vorhergehenden Ansprüche umfassend ein Ansteuerungsschaltung (11), mit welcher die Kurzschlussschutzschaltung (23) angesteuert werden kann, um einen Kurzschluss zu verhindern.

9. Steuergerät (6) nach Anspruch 8, wobei die Ansteuerungsschaltung (11) dazu eingerichtet ist, die Kurzschlussschutzschaltung (23) zu unterbrechen, wenn ein unerwarteter Unterschied zwischen einem ersten Sensorsignal (14) an einem ersten Sensoranschluss (21) und einer Erdung (3) und einem zweiten Sensorsignal (15) zwischen einem ersten Sensoranschluss (21) und einem zweiten Sensoranschluss (22) vorliegt.

10. Verfahren zum Betrieb eines Sensors (2) mit einem Steuergerät (6) nach einem der vorhergehenden Ansprüche aufweisend zumindest eine der folgenden Maßnahmen:

Schließen des Transistors, wenn erkannt wurde, dass kein Kurzschluss vorliegt,

Öffnen des Transistors, wenn erkannt wurde, dass ein Kurzschluss vorliegt,

Schließen des Transistors vor einem Messzeitpunkt, Durchführen einer Messung mit dem Sensor und anschließendes Öffnen des Transistors.

11. Verfahren zum Betrieb eines Sensors (2) nach Anspruch 10, wobei zur Erkennung eines Kurzschlusses der Spannungsabfall über mindestens einen ersten Widerstand (1) oder einen zweiten Widerstand (8) durch ein

Steuergerät (27) erfasst wird.

12. Verfahren zum Betrieb eines Sensors (2) nach Anspruch 11, wobei der oder die Spannungsabfälle mit Schwellwerten verglichen werden, um einem Kurzschluss zu erkennen. 13. Verfahren zum Betrieb eines Sensors (2) nach Anspruch 11, wobei die

Änderung mindestens eines Spannungsabfalls mit mindestens einem Schwellwert verglichen wird, um einem Kurzschluss zu erkennen.

14. Verfahren zum Betrieb eines Sensors (2) nach Anspruch 11, wobei mittels zweier erfasster Spannungsabfälle über einen ersten Widerstande (1) oder einen zweiten Widerstand (8) die Ströme durch den ersten Widerstand (1) bzw. den zweiten Widerstand (8) in einem Steuergerät (27) berechnet werden, und durch den Vergleich der Differenz der Ströme ein Kurzschluss erkannt werden kann.

Description:
Titel

Steuergerät mit Schaltung und Verfahren zum Kurzschlussschutz von

Masseleitungen und Sensoren

Stand der Technik

Die Erfindung betriff ein Steuergerät mit einer Schaltung und Verfahren zum Kurzschlussschutz von Masseleitungen und Sensoren. Zur Auswertung resistiver

Sensoren, (z. B. NTC-Temperatursensoren, NTC = Negative Temperature Coefficient) wird häufig mit Hilfe eines (weiteren) ersten Widerstandes, der mit dem Sensor in Serie geschaltet ist, ein Spannungsteiler gebildet, durch den ein analoges Spannungssignal generiert wird.

Das Spannungssignal kann z. B. mit einem Analog-Digital-Wandler in einem Steuergerät erfasst und weiterverarbeitet werden. Der Spannungsteiler ist dabei so aufgebaut, dass ein Anschluß des Sensors auf einer Erdung bzw. einem Bezugspotential liegt und der andere Anschluß an den ersten Widerstand angeschlossen ist. Der erste Widerstand wird in diesem Zusammenhang häufig auch„Pull-Up-Widerstand" genannt. Der erste Widerstand ist an einem dem Sensor gegenüberliegenden Ende an eine Versorgungsspannungsquelle angeschlossen. Zwischen erstem Widerstand und dem Sensor wird das Signal gegriffen, welches das Steuergerät zur Auswertung der mit dem Sensor gemessenen Messgröße misst.

Eine solche Anordnung wird z.B. häufig in Kraftfahrzeugen verwendet, um einem Steuergerät z.B. die Messung einer Temperatur außerhalb des Steuergerätes zu ermöglichen. Ein weiterer Anwendungsfall einer solchen Anordnung liegt in Hybrid- und Elektrofahrzeugen vor, in denen mit solchen Anordnungen die

Temperatur elektrischer Maschinen erfasst werden kann. Die Leitungen, die den Sensor kontaktieren, laufen dabei gegebenenfalls außerhalb des Steuergerätes über den Kraftfahrzeugkabelbaum. Es ist aber auch möglich, dass Leitungen über ein separates Kabel vom Steuergerät zur elektrischen Maschine geführt sind. Offenbarung der Erfindung

Im Automobilbereich besteht im Allgemeinen die Anforderung, dass die weiter oben beschriebene Anordnung einen Kurzschluss einer der beiden

Sensorleitungen, an die der Sensor angeschlossen ist, und den in der Folge ggf. fließenden Kurzschlussstrom unbeschadet überstehen soll.

Ein Kurzschlussstrom ist hier im Allgemeinen als ein Strom zu verstehen, der über eine der Sensorleitungen fließt und welcher einen definierten Grenzstrom übersteigt. Ein solcher Strom kann beispielsweise auftreten, wenn an einer der beiden Sensorleitungen (erste Sensorleitung und zweite Sensorleitung) eine große Spannung anliegt. Die Betriebsspannung des Bordnetzes, die

beispielsweise 14 Volt beträgt, reicht häufig schon aus, um bei einem

Kurzschluss zu dieser Spannung einen Strom fließen zu lassen, der den Sensor, die Leitungen oder die Schaltung überlasten.

Ein Kurzschluss ist hier als eine ungewollte, niederohmige elektrische

Verbindung zu einem Signal zu verstehen, welches eine Spannung führen kann, durch die Ströme durch den Sensor, über die Leitungen oder in das Steuergerät fließen können, die deutlich größer als die Betriebsströme im regulären Betrieb sein können.

Bei Leitungen, die im Steuergerät hochohmig angebunden sind, bei denen also das Steuergerät selbst schon einen hochohmigen Widerstand bildet, ist ein

Kurzschlussschutz häufig bereits durch die hochohmige Dimensionierung der Schaltung im Steuergerät gegeben.

Dennoch besteht für den Sensor das Risiko der Überlastung und Zerstörung durch einen Kurzschluss, da über den Sensor dann trotzdem die volle

Bordnetzspannung (von beispielsweise 14 Volt) anliegen kann. Wenn

beispielsweise an einer ersten Leitung des Sensors, welche an der der Erdung gegenüber liegenden Seite angeschlossen ist, die volle Bordnetzspannung von 14 Volt auftritt, kann der Sensor durch Überlastung zerstört werden, weil er für eine solche Spannung nicht ausgelegt ist. Diese Problematik wird verstärkt, wenn es sich z. B. um einen NT- Temperatursensor (NTC = Negative Temperature Coefficient) handelt. Der Widerstand eines solchen NTC-Temperatursensors sinkt mit zunehmender Erwärmung weiter, so dass sich die Verlustleistung immer weiter erhöht. Reicht die Entwärmung des Sensors zum Abführen dieser Erwärmung nicht aus, führt diese Mitkopplung häufig zur Zerstörung des Sensors.

Bei Leitungen, die im Steuergerät niederohmig angebunden sind (z. B.

Masseleitungen von Sensoren), ist ein Kurzschlussschutz unabhängig vom Verhalten des Sensors nicht gegeben. Ein Kurzschluss gegen Spannungen, die vom Bezugspotential des Steuergeräts (normalerweise die Erdung) abweichen, kann zur Zerstörung der Leitungen zu dem Sensor, des Steuergerätes oder des Sensors führen. Aus Gründen der Messgenauigkeit kann aber oft nicht auf eine niederohmige Anbindung eines der Sensoranschlüsse verzichtet werden.

Mit dem hier vorgestellten Steuergerät und dem entsprechenden

Betriebsverfahren sollen sowohl der Sensor als auch niederohmig angebundene Zuleitungen zum Sensor im Falle eines Kurzschlusses vor Überlastung und Zerstörung geschützt werden. Dies soll ohne einen signifikanten Verlust an Messgenauigkeit erreicht werden.

Das hier beschriebene Steuergerät zur Auswertung des Sensorsignals eines Sensors weist mindestens einen ersten Sensoranschluss zum Anschließen des Sensors auf, wobei der erste Sensoranschluss mit einer

Kurzschlussschutzschaltung verbunden ist, die zwischen dem ersten

Sensoranschluss und einer Erdung angeordnet ist und welche einen schaltbaren Transistor umfasst, mit welchem die Erdung des ersten Sensoranschlusses unterbrochen werden kann. Mit dem schaltbaren Transistor der

Kurzschlussschutzschaltung kann eine Erdung des ersten Sensoranschlusses unterbrochen werden. So kann verhindert werden, dass durch den ersten Sensoranschluss ein Kurzschlussstrom auftreten kann. Der erste

Sensoranschluss ist bevorzugt ein niederohmiger Sensoranschluss, über welchen ohne die beschriebene Kurzschlussschutzschaltung schnell ein Kurzschlussstrom auftreten könnte.

Der Transistor ist beispielsweise ein MOSFET (MOSFET = Metall-Oxid- Halbleiter-Feldeffekttransistor) oder ein vergleichbares Bauteil. Durch eine Unterbrechung des Stromfluss durch den Sensor mit dem Transistor kann eine Zerstörung von dem Steuergerät, dem Sensor oder der Leitung verhindert werden. Gleichzeitig ist der Einfluss der Kurzschlussschutzschaltung auf die Genauigkeit der Sensorauswertung bei entsprechender Dimensionierung sehr gering.

Wie beschrieben ist der Sensor insbesondere ein resistiver Sensor und besonders bevorzugt ein Temperatursensor, der wiederum bevorzugt ein NTC- Sensor (NTC = Negative Temperature Coefficient) ist. Der hier behandelte

Kurzschlussschutz ist allerdings nicht auf ein spezielles Sensorprinzip

beschränkt. Bei NTC-Sensoren kommt allerdings der Vorteil der hier

beschriebenen Kurzschluss-Schutzschaltung besonders zum Tragen, weil NTC- Sensoren bei Erwärmung immer niederohmiger werden und der

Kurzschlussstrom somit immer weiter steigt, wenn durch den Kurzschlussstrom eine Eigenerwärmung des Sensors auftritt. Diese Steigerung erfolgt bis der Sensor oder die Leitung zerstört. Somit ist bei NTC-Sensoren sowohl ein Kurzschluss an einer Masseleitung als auch ein Kurzschluss an einer

Signalleitung kritisch.

Das Steuergerät hat bevorzugt weiter einen zweiten Sensoranschluss zum Anschließen des Sensors und zur Bereitstellung einer Sensorspannung zum Betrieb des Sensors, wobei der zweite Sensoranschluss an eine

Spannungsquelle angeschlossen ist. Die Spannungsquelle dient dazu, dass über dem Sensor eine Spannung anliegt. Diese Spannung ist dazu notwendig, dass durch den Sensor ein Messstrom fließt, welcher zur Nutzung des Messprinzips des Sensors erforderlich ist.

Für den Anschluß einer ersten Sensorleitung gibt es zwei gängige Varianten. Gemäß einer ersten Variante ist die erste Sensorleitung direkt an eine

Versorgungsspannung angeschlossen. Dies kommt zum Einsatz, wenn es sich um einen aktiven Sensor handelt, der sein Ausgangssignal selbst erzeugt.

Gemäß einer zweiten Variante ist die erste Sensorleitung ist über einen

(zusätzlichen) (ersten) Widerstand an die Versorgungsspannung angeschlossen.

Der erste Widerstand wird beispielsweise auch Pull-Up-Widerstand genannt. Dieser erste Widerstand wirkt mit dem Widerstand des Sensors als Spannungsteiler, um den Sensor mittels des Sensorsignals auswerten zu können. Dieser Widerstand definiert zusammen mit dem Sensorwiderstand die über den Sensor anliegende Sensorspannung.

Der Transistor ist in einem Unterbrechungspfad angeordnet, in welchem sich Serie zu dem Transistor ein niederohmiger zweiter Widerstandbefinden kann.

Der zweite niederohmige Widerstand kann in Varianten auch entfallen bzw. auch von dem Transistor gebildet werden, welcher üblicherweise auch einen

(niederohmigen) Eigenwiderstand aufweist.

Wenn der Transistor geschlossen ist und ein Kurzschlussstrom durch den Transistor fließen kann, hilft dieser niederohmige Widerstand, den

Kurzschlussstrom zu begrenzen. Mit der Bezeichnung„niederohmig" ist hier insbesondere gemeint, dass dieser Widerstand im Vergleich zu dem ersten Widerstand und dem im Folgenden noch beschriebenen dritten Widerstand gering ist.

Eine Strombegrenzung kann die Reaktionszeit, bis zu der ein Kurzschlussfall erkannt werden muss und der Transistor der Kurzschlussschutzschaltung geöffnet werden muss, verlängern. Zur Strombegrenzung kann der optionale zweite Widerstand dienen, weil er eine Stromgegenkopplung des Transistors bewirkt. Eine gewisse Strombegrenzung ist auch ohne die Verwendung des zweiten Widerstandes gegeben, weil der Transistor abhängig von der eingestellten Gate-Source-Spannung beim Kurzschluss im

Abschnürrbereich betrieben wird und damit ebenfalls eine strombegrenzende Wirkung besitzt. Insbesondere MOSFETs verhalten sich im Abschnürrbereich allerdings nicht nicht mehr wie ein Widerstand.

Je nach Dimensionierung des Transistors und seiner Gate-Spannung kann so auch eine dauerhafte Robustheit gegen Kurzschlüsse realisiert sein. Das Gate von dem Transistor kann hierzu auf einem festen Potential liegen und eine intelligente Ansteuerung des Gates über eine Ansteuerungsschaltung könnte entfallen. Diese (einfache) Schaltung wird auch„Clamping-Schaltung" genannt. Außerdem vorteilhaft ist es, wenn die Kurzschlussschutzschaltung einen

Umgehungspfad aufweist, mit welchem der Transistor überbrückt wird, in welchem sich ein hochohmiger dritter Widerstand befindet.

Mit der Bezeichnung„hochohmig" ist hier gemeint, dass der dritte Widerstand insbesondere im Vergleich zu dem zweiten Widerstand und dem ersten

Widerstand sehr groß ist. Dieser Widerstand führt zu einem permanenten Stromabfluss, unabhängig davon, ob der Transistor geöffnet ist oder nicht.

Dieser dritte Widerstand wird auch als Pull-Down-Widerstand bezeichnet. Der dritte Widerstand ermöglicht es, zu unterscheiden, ob ein Kurzschluss an einer Leitung zu dem Sensor oder an einer zweiten Leitung zu dem Sensor vorliegt, wenn der Transistor geöffnet ist.

In dem Steuergerät ist bevorzugt eine Auswerteschaltung vorgesehen, an welche zumindest der erster Sensoranschluss angebunden ist, und die dazu eingerichtet ist, ein Sensorsignal eines an den ersten Sensoranschluss angeschlossenen Sensors auszuwerten. Zur Auswertung des Sensors ist in erster Linie das Signal am zweiten Sensoranschluss (zwischen Pull-Up und Sensor) gedacht. Optional kann zur Auswertung auch zusätzlich das Signal am ersten Sensoranschluss zwischen Sensor und Schutzschaltung verwendet werden, wie nachfolgend auch noch im Detail beschrieben wird.

Die Auswerteschaltung kann zudem dazu eingerichtet sein, das Sensorsignal eines an einen zweiten Sensoranschluss angeschlossen Sensors auszuwerten, wozu auch ein zweiter Sensoranschluss an die Auswerteschaltung angebunden sein kann.

Der erste Sensoranschluss und der zweiten Sensoranschluss sind bevorzugt an einander gegenüberliegende Pole, Enden oder Anschlüsse des Sensors angeschlossen. Eine Sensorspannung zwischen dem ersten Sensoranschluss und der Erdung wird als erstes Sensorsignal bezeichnet. Eine Sensorspannung zwischen dem zweitem Sensoranschluss und der Erdung wird als zweites Sensorsignal bezeichnet. Die Differenzspannung zwischen dem ersten

Sensorsignal und dem zweiten Sensorsignal wird als zweites Sensorsignal bezeichnet. Zur Auswertung des Sensors über ein erstes Sensorsignal ist der Transistor geschlossen. Der Transistor und der gegebenenfalls vorhandene zweite Widerstand sind bevorzugter Weise so niederohmig dimensioniert, dass der Spannungsabfall über den zweiten Widerstand und dem Transistor gegenüber dem Spannungsabfall über dem Sensor und dem ersten Widerstand

vernachlässigbar ist.

Ist der Spannungsabfall über den Transistor und den zweiten Widerstand nicht vernachlässigbar und nicht hinreichend bekannt, so kann auch das zweite Sensorsignal zwischen dem ersten Sensoranschluss und dem zweiten

Sensoranschluss ausgewertet werden. Es reicht zur Auswertung resistiver Sensoren das Signal zwischen Sensor und Pull-Up-Widerstand, wenn der Widerstand des Transistors und des Widerstandes unter dem Transistors bekannt sind.

Das Steuergerät umfasst eine Ansteuerungsschaltung, mit welcher die

Kurzschlussschutzschaltung (bzw. der Transistor der

Kurzschlussschutzschaltung) angesteuert werden kann, um einen Kurzschluss zu verhindern.

Eine Kurzschlusserkennung kann insbesondere gemäß den folgenden Varianten erfolgen:

Auswertung Spannungsabfall über Transistor und Widerstand und Vergleich mit Schwellwert erwarteten Werten,

Auswertung Spannung am Sensorsignal zwischen Sensor und erstem- Widerstand (Pull-Up-Widerstand) und Vergleich mit

Schwellwert erwarteten Werten, oder Detektion der Spannungsabfälle über den Widerständen, sowie Berechnung der Ströme und

Stromdifferenzen. Wenn kein Kurzschluss vorhanden ist, sind die Ströme gleich. Ist ein Kurzschluss vorhanden, sorgt der Strom, der über den Kurzschluss in die Schaltung rein- bzw. ausfließt, für eine Differenz der Ströme.

Die Unterbrechung der Kurzschlussschutzschaltung bzw. der Erdung verhindert den weiteren Kurzschluss. Die Ansteuerung des Transistors mit Hilfe einer Ansteuerungsschaltung erfordert die Erkennung eines Kurzschlusses. Dies kann über die erste Leitung und die zweite Leitung bzw. anhand des beschriebenen ersten Sensorsignals und/oder des beschriebenen zweiten Sensorsignals erreicht werden. Zum Erkennen eines Kurzschlusses ist der Transistor bevorzugt geöffnet. (

Die Prüfung, ob ein Kurzschluss an der ersten Leitung oder an der zweiten Leitung anliegt, wird auch„Pin-Pointing" genannt. Zur Prüfung, ob ein

Kurzschluss an der ersten Leitung oder an der zweiten Leitung anliegt, dient der dritte Widerstand. Ist der dritte Widerstand nicht vorhanden und der Transistor geöffnet, so liegen an der ersten Leitung und an der zweiten Leitung in beiden Kurzschlussfällen (Kurzschluss an der ersten Leitung und Kurzschluss an der zweiten Leitung) die gleichen Spannungen an, da über den Sensor kein Strom fließen kann. Eine Unterscheidung ist dann nicht möglich. Ist der dritte

Widerstand vorhanden, so stellen sich je nach Kurzschluss an der ersten Leitung oder an der zweiten Leitung unterschiedliche Spannungen ein. Damit ist eine Unterscheidung zwischen einem Kurzschluss an der ersten Leitung oder einem Kurzschluss an der zweiten Leitung möglich.

Hier auch beschrieben werden soll ein Verfahren zum Betrieb eines Sensors mit einem Steuergerät nach einem der vorhergehenden Ansprüche aufweisend zumindest eine der folgenden Maßnahmen:

- Schließen des Transistors, wenn erkannt wurde, dass kein Kurzschluss vorliegt,

- Öffnen des Transistors, wenn erkannt wurde, dass ein Kurzschluss vorliegt,

- Schließen des Transistors vor einem Messzeitpunkt, Durchführen einer

Messung mit dem Sensor und anschließendes Öffnen des Transistors.

Die beschriebenen Maßnahmen können einzeln oder in Kombination

durchgeführt werden, um mit dem beschriebenen Steuergerät einen effektiven Kurzschlussschutz für einen Sensor zu erreichen.

Besonders vorteilhaft erfolgt bei dem Betrieb des Sensors eine Erkennung eines Kurzschlusses, wenn ein unerwarteter Unterschied zwischen einem ersten Sensorsignal an einem ersten Sensoranschluss und einer Erdung und einem zweiten Sensorsignal zwischen einem ersten Sensoranschluss und einem zweiten Sensoranschluss vorliegt. Besonders vorteilhaft ist das Verfahren auch, wenn zur Erkennung eines

Kurzschlusses der Spannungsabfall über mindestens einen ersten Widerstand oder einen zweiten Widerstand durch ein Steuergerät erfasst wird. Es können auch sowohl der Spannungsabfall über den ersten Widerstand als auch der Spannungsabfall über den zweiten Widerstand erfasst werden, um einen

Kurzschluss besonders präzise zu erkennen.

Außerdem besonders vorteilhaft ist das Verfahren, wenn die Spannungsfälle mit Schwellwerten verglichen werden, um einem Kurzschluss zu erkennen.

Weiterhin besonders vorteilhaft ist das Verfahren, wenn die Änderung mindestens eines Spannungsfalls mit mindestens einem Schwellwert verglichen wird, um einem Kurzschluss zu erkennen.

Darüber hinaus können mittels zweier erfasster Spannungsabfälle über einen ersten Widerstande und/oder einen zweiten Widerstand die Ströme durch den ersten Widerstand bzw. den zweiten Widerstand in einem Steuergerät berechnet werden. Durch den Vergleich der Differenz der Ströme kann ein Kurzschluss erkannt werden.

Gemäß einer weiteren Betriebsweise bleibt der Transistor dauerhaft

geschlossen. Im Falle eines Kurzschlusses wird der Strom durch den Sensor, den Transistor und dem zweiten Widerstand (passiv) auf ein tragbares Maß begrenzt.

Die Offenbarung wird nachfolgend anhand der Figuren näher erläutert. Es ist darauf hinzuweisen, dass die in den Figuren dargestellten Größenverhältnisse nur schematisch sind. Merkmale aus den Figuren sind beliebig miteinander kombinierbar. Es zeigen:

Fig. 1: eine bekanntes Steuergerät zur Auswertung eines Sensors und

Fig. 2: das hier beschriebene Steuergerät zur Auswertung eines Sensors.

In Fig. 1 ist ein Steuergerät 6 zu sehen, welches einen ersten Sensoranschluss 21 zum Anschluß einer ersten Leitung 12 eines Sensors 2 und einen zweiten Sensoranschluss 22 zum Anschluß einer zweiten Leitung 13 eines Sensors 2 aufweist. Der zweite Sensoranschluss 22 ist auf Seiten bzw. innerhalb des Steuergerätes 6 an eine Erdung 3 angeschlossen. Der erste Sensoranschluss 21 ist auf Seiten bzw. innerhalb des Steuergerätes 6 mit einer

Versorgungsspannungsquelle 5 verbunden, wobei zwischen der

Versorgungsspannungsquelle 5 und dem ersten Sensoranschluss 21 bzw. dem Sensor 2 noch ein erster Widerstand 1 angeordnet ist. Innerhalb des

Steuergerätes 6 existiert zwischen dem ersten Widerstand 1 und dem Sensor 2 ein Signalanschluß 4, an welchem ein erstes Sensorsignal 14 des Sensors 2 zur Auswertung abgegriffen werden kann.

Das hier beschriebene und in Fig. 2 dargestellte Steuergerät 6 ist entsprechend zu dem Steuergerät 6 in Fig. 1 aufgebaut. Zusätzlich weist es allerdings zwischen dem zweiten Sensoranschluss 22 bzw. dem Sensor 2 und der Erdung 3 eine Kurzschlussschutzschaltung 23 auf, die den Sensor 2 und das

Steuergerät 6 sowie die Leitungen (insbesondere die erste Leitung 12 und die zweite Leitung 13) vor Kurzschlüssen schützt.

Die Kurzschlussschutzschaltung 23 hat zwei parallele Pfade, nämlich einen Unterbrechungspfad 25 und einen Überbrückungspfad 24, die parallel zueinander angeordnet sind und eine Erdung des zweiten Sensoranschlusses 22 darstellen. Der Überbrückungspfad 24 hat einen hochohmigen dritten Widerstand 9. Der Unterbrechungspfad 25 hat in Serie einen Transistor 7 und einen niederohmigen zweiten Widerstand 8. Der Unterbrechungspfad 25 kann mit dem Transistor 7 gezielt geöffnet und geschlossen werden, um ggf. einen

Kurzschlussschutz zu erreichen.

Die beiden möglichen Kurzschlussfälle sind in der Fig. 2 schematisch anhand der Kurzschlussspannungsquelle 19 dargestellt, die ein Potential auf den Sensor 2 bzw. auf das Steuergerät 6 beaufschlagen kann. Als Schalter dargestellt sind ein erster Kurzschluss 17 auf der ersten Leitung 12 sowie ein zweiter Kurzschluss 18 auf der zweiten Leitung 13.

Das in Fig. 2 dargestellte Steuergerät 6 ermöglicht nicht nur ein erstes

Sensorsignal 14 auszuwerten, das auch bei dem Steuergerät 6 gemäß Fig. 1 ausgewertet werden kann, sondern zusätzlich auch die Auswertung eines zweiten Sensorsignals 15, welches ein Differenzsignal zwischen dem ersten Sensoranschluss 21 und dem zweiten Sensoranschluss 22 bildet. Zur

Auswertung ist hier auch eine Auswerteschaltung 10 dargestellt, die

üblicherweise auch einen Analog-Digital-Wandler 27 umfasst, mit welchem das analoge Spannungssignal des Sensors 2 in ein digitales Signal zur weiteren Auswertung umgewandelt werden kann. Hier ebenfalls dargestellt ist eine

Ansteuerungsschaltung 11, die den Transistor 7 ansteuern kann und die von der Auswerteschaltung 10 ein Signal 26 hinsichtlich der auftretenden Spannungen an dem ersten Anschluß 21 und an dem zweiten Anschluß 22 erhalten kann, um einen Kurzschluss zu erkennen und den Transistor 7 ggf. zu öffnen oder auch wieder zu schließen.