Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
CRYSTALLIZATION OF 1 ALPHA-HYDROXY-20-METHYLENE-19,24,25,26,27-PENTANORVITAMIN D3
Document Type and Number:
WIPO Patent Application WO/2013/032740
Kind Code:
A1
Abstract:
A method of purifying 1α-hydroxy-20-methyl-2 -methylene- 19,24,25,26, 27- pentanorvitamin D3 to obtain 1α-hydroxy-20-methyl-2-methylene- 19,24,25, 26,27- pentanorvitamin D3 in crystalline form. The method includes the steps of preparing a solvent of either ethyl formate or a mixture of ethyl formate and hexane, dissolving a product containing 1α-hydroxy-20-methyl-2-methylene-l 9,24,25, 26,27-pentanorvitamin D3 to be purified in the solvent, cooling the solvent and dissolved product below ambient temperature for a sufficient amount of time to form a precipitate of 1α-hydroxy-20-methyl-2-methylene- 19,24,25,26,27- pentanorvitamin D3 crystals, and recovering the 1α-hydroxy-20-methyl-2-methylene- 19,24,25, 26,27-pentanorvitamin D3 crystals.

Inventors:
DELUCA HECTOR F (US)
GLEBOCKA AGNIESZKA (US)
THODEN JAMES B (US)
HOLDEN HAZEL M (US)
Application Number:
PCT/US2012/051384
Publication Date:
March 07, 2013
Filing Date:
August 17, 2012
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
WISCONSIN ALUMNI RES FOUND (US)
DELUCA HECTOR F (US)
GLEBOCKA AGNIESZKA (US)
THODEN JAMES B (US)
HOLDEN HAZEL M (US)
International Classes:
C07C401/00
Domestic Patent References:
WO2009086640A12009-07-16
Foreign References:
US5086191A1992-02-04
US5536713A1996-07-16
US5843928A1998-12-01
US20090170822A12009-07-02
Other References:
BYRN S ET AL: "PHARMACEUTICAL SOLIDS: A STRATEGIC APPROACH TO REGULATORY CONSIDERATIONS", PHARMACEUTICAL RESEARCH, KLUWER ACADEMIC PUBLISHERS, NEW YORK, NY, US, vol. 12, no. 7, 1 July 1995 (1995-07-01), pages 945 - 954, XP000996386, ISSN: 0724-8741, DOI: 10.1023/A:1016241927429
ANDREWS ET AL., J. ORG. CHEM., vol. 51, 1986, pages 1635
CALVERLEY ET AL., TETRAHEDRON, vol. 43, 1987, pages 4609
CHOUDRY ET AL., J ORG. CHEM., vol. 58, 1993, pages 1496
NEVINCKX ET AL., TETRAHEDRON, vol. 47, 1991, pages 9419
VANMAELE ET AL., TETRAHEDRON, vol. 41, 1985, pages 141
TETRAHEDRON, vol. 40, 1994, pages 1179
VANMAELE, TETRAHEDRON LETT., vol. 23, 1982, pages 995
J ORG. CHEM., vol. 45, 1980, pages 3253
PROC. NATL. ACAD. SCI USA., vol. 75, 1978, pages 2080
CRYSALIS CCD, OXFORD DIFFRACTION LTD.: "Version 1.171.28cycle2 beta (release CrysAlisl 71 .NET)Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm", 25 October 2005 (2005-10-25)
G. M. SHELDRICK, ACTA CRYSTALLOGR., vol. A46, 1990, pages 467 - 473
G. M. SHELDRICK: "Program for the Refinement of Crystal Structures.", UNIV. OF GOTTINGEN
A. J. C. WILSON,: "International Tables for Crystallography", vol. C, 1992, KLUWER:DORDRECHT
LYTHGOE ET AL., J CHEM. SOC. PERKIN TRANS., vol. 1, 1978, pages 590
LYTHGOE, CHEM. SOC. REV., vol. 9, 1983, pages 449
TOH ET AL., J ORG. CHEM., vol. 48, 1983, pages 1414
BAGGIOLINI ET AL., J ORG. CHEM., vol. 51, 1986, pages 3098
SARDINA ET AL., J ORG. CHEM., vol. 51, 1986, pages 1264
J ORG. CHEM., vol. 51, 1986, pages 1269
SICINSKI ET AL., J MED. CHEM., vol. 41, 1998, pages 4662
PERLMAN ET AL., TETRAHEDRON LETT., vol. 32, 1991, pages 7663
Attorney, Agent or Firm:
WOZNY, Thomas, M. et al. (Sceales Starke & Sawall, LLP,100 East Wisconsin Avenue,Suite 110, Milwaukee WI, US)
Download PDF:
Claims:
CLAIMS

We claim:

1. la-hydroxy-20-methyl-2-methylene-19,24,25,26,27-pentanorvitamin D3 in crystalline form.

2. The crystalline form of la-hydroxy-20-methyl-2-methylene- 19,24,25, 26,27- pentanorvitamin D3 having molecular packing arrangement defined by space group P2 and unit cell dimensions a=6.6A b=15.8A c=20.0A α=90°, β=90° and γ=90°.

3. A three dimensional structure for la-hydroxy-20-methyl-2-methylene- 19,24,25, 26,27-pentanorvitamin D3 as defined by the molecular packing arrangement set forth in claim 2.

4. A method of purifying la-hydroxy-20-methyl-2-methylene-19,24,25,26,27- pentanorvitamin D3, comprising the steps of:

(a) preparing a solvent comprising ethyl formate;

(b) dissolving a product containing la-hydroxy-20-methyl-2-methylene- 19,24,25, 26,27-pentanorvitamin D3 to be purified in said solvent;

(c) cooling said solvent and dissolved product below ambient temperature for a sufficient amount of time to form a precipitate of la-hydroxy-20-methyl-2-methylene- 19,24,25, 26,27-pentanorvitamin D3 crystals; and

(d) separating the la-hydroxy-20-methyl-2-methylene- 19,24,25, 26,27- pentanorvitamin D3 crystals from the solvent.

5. The method of claim 4 including the further step of allowing said solvent and dissolved product to cool to ambient temperature prior to cooling below ambient temperature.

6. The method of claim 4 wherein said solvent comprises 100% ethyl formate, by volume.

7. The method of claim 4 wherein the step of separating comprises filtering the solvent and precipitate to obtain the crystals.

8. The method of claim 4 including a further step (e) comprising repeating steps (a) through (d) using the recovered crystals from step (d) as the product of step (b).

9. The method of claim 4 wherein said solvent comprises a mixture of ethyl formate and hexane.

10. The method of claim 9 wherein said mixture comprises about 75% ethyl formate and about 25% hexane, by volume.

1 1. A method of purifying la-hydroxy-20-methyl-2-methylene- 19,24, 25, 26,27- pentanorvitamin D3, comprising the steps of:

(a) preparing a solvent comprising ethyl formate;

(b) dissolving a product containing la-hydroxy-20-methyl-2-methylene- 19,24,25,26,27-pentanorvitamin D3 to be purified in said solvent;

(c) cooling said solvent and dissolved product below ambient temperature for a sufficient amount of time to form a precipitate of la-hydroxy-20-methyl-2- methylene-19,24,25,26,27-pentanorvitamin D3 crystals; and

(d) recovering the la-hydroxy-20-methyl-2-methylene-19, 24,25,26, 27- pentanorvitamin D3 crystals having a molecular packing arrangement defined by space group P2 and unit cell dimensions a=6.6A, b=15.8A , c=20.0A , ot-90°, β=90° and γ=90°, or any other space group that yields substantially the same crystalline packing arrangement.

12. The method of claim 1 1 wherein said solvent and dissolved product is allowed to cool to ambient temperature prior to cooling below ambient temperature.

13. The method of claim 1 1 wherein said solvent comprises a mixture of ethyl formate and hexane.

14. The method of claim 13 wherein said mixture comprises about 75% ethyl formate and about 25% hexane, by volume.

15. The method of claim 1 1 wherein the step of recovering comprises filtering the solvent and precipitate to obtain the crystals.

16. The method of claim 1 1 including a further step (e) comprising repeating steps (a) through (d) using the recovered crystals from step (d) as the product of step (b).

Description:
CRYSTALLIZATION OF 1 (/-II YDROX Y-20-MET H YL-2-M ETIIY LENE-

19,24,25,26,27-PENTANORVITAMIN D 3

BACKGROUND OF THE INVENTION

[0001] The present invention relates to purification of organic compounds, and more particularly to the purification of la-hydroxy-20-methyl-2-methylene- 19,24,25, 26,27- pentanorvitamin D 3 (referred to herein as "20DCM") by preparing it in crystalline form.

[0002] Purification of organic compounds, especially those designated for pharmaceutical use, is of considerable importance for chemists synthesizing such compounds. Preparation of the compound usually requires many synthetic steps and, therefore, the final product can be contaminated not only with side-products derived from the last synthetic step of the procedure but also with compounds that were formed in previous steps. Even chromatographic purification, which is a very efficient but relatively time-consuming process, does not usually provide compounds which are sufficiently pure to be used as drugs.

[0003] Depending on the method used to synthesize 1 a-hydroxy vitamin D compounds, different minor undesirable compounds can accompany the final product. Thus, for example, if direct C-l hydroxylation of 5,6-trans geometric isomer of vitamin D is performed, followed by Se0 2 /NMO oxidation and photochemical irradiation [see Andrews et al., J. Org. Chem. 51, 1635 (1986); Calverley et al, Tetrahedron 43, 4609 (1987); Choudry et al, J Org. Chem. 58, 1496 (1993)], the final 1 a-hydroxy vitamin D product can be contaminated with 1 β- hydroxy- as well as 5,6-trans isomers. If the method consists of C-l allylic oxidation of the 4- phenyl-l ,2,4-triazoline-3,5-dione adduct of the previtamin D compound, followed by cycloreversion of the modified adduct under basic conditions [Nevinckx et al., Tetrahedron Al, 9419 (1991); Vanmaele et al, Tetrahedron 41, 141 (1985) and 40, 1 179 (1994); Vanmaele et al., Tetrahedron Lett. 23. 995 (1982)], one can expect that the desired 1 α-hydroxy vitamin can be contaminated with the previtamin 5(10), 6,8-triene and Ι β-hydroxy isomer. One of the most useful C-l hydroxylation methods, of very broad scope and numerous applications, is the experimentally simple procedure elaborated by Paaren et al. [see J. Org. Chem. 45, 3253 (1980) and Proc. Natl. Acad. Sci U.S.A. 75, 2080 (1978)]. This method consists of allylic oxidation of 3,5-cyclovitamin D derivatives, readily obtained from the buffered solvolysis of vitamin D tosylates, with Se0 2 /t-BuOOH and subsequent acid-catalyzed cycloreversion to the desired la- hydroxy compounds. Taking into account this synthetic path it is reasonable to assume that the final product can be contaminated with 1 a-hydroxy epimer, 5,6-trans isomer and the previtamin D form. 1 a-hydroxyvitamin D 4 is another undesirable contaminant found in 1 a-hydroxyvitamin D compounds synthesized from vitamin D 2 or from ergosterol. 1 a-hydroxyvitamin D 4 results from C-l oxidation of vitamin D 4 , which in turn is derived from contamination of the commercial ergosterol material. Typically, the final product may contain up to about 1.5% by weight 1 α-hydroxyvitamin D 4 . Thus, a purification technique that would eliminate or substantially reduce the amount of 1 α-hydroxyvitamin D 4 in the final product to less than about 0.1 -0.2% would be highly desirable.

[0004] The vitamin D conjugated triene system is not only heat- and light- sensitive but it is also prone to oxidation, leading to the complex mixture of very polar compounds. Oxidation usually happens when a vitamin D compound has been stored for a prolonged time. Other types of processes that can lead to a partial decomposition of vitamin D compounds consist of some water-elimination reactions; their driving force is allylic (la-) and homoallylic (3β-) position of the hydroxy groups. The presence of such above-mentioned oxidation and elimination products can be easily detected by thin-layer chromatography.

[0005] Usually, all la-hydro xylatation procedures require at least one chromatographic purification. However, even chromatographically purified 1 a-hydroxyvitamin D compounds, although showing consistent spectroscopic data, suggesting homogeneity, do not meet the purity criteria required for therapeutic agents that can be orally, parenterally or transdermally administered. Therefore, it was evident that a suitable method of purification of the 1 a-hydroxylated vitamin D compound 20DCM is required.

SUMARY OF THE INVENTION

[0006] The present invention relates to a method of purifying 20DCM by means of crystallization to obtain 20DCM in crystalline form. The solvent plays a crucial role in the crystallization process, and is typically an individual liquid substance or a suitable mixture of different liquids. For crystallizing 20DCM, the most appropriate solvent and/or solvent system is characterized by the following factors:

(1) low toxicity;

(2) low boiling point;

(3) significant dependence of solubility properties with regard to temperature (condition necessary for providing satisfactory crystallization yield); and

(4) relatively low cost.

[0007] Interestingly, hexane, so frequently used for crystallization purposes, was found less suitable as the sole solvent for crystallization of 20DCM. However, it was found that either ethyl formate, or a mixture of ethyl formate and hexane, was most useful for the crystallization of 20DCM. In particular, it was determined that a mixture of about 75% ethyl formate with about 25% hexane (by volume) performed well. The ethyl formate/hexane solvent mixture was also easy to remove by evaporation or other well known methods. In all cases the crystallization process occurred easily and efficiently; and the precipitated crystals were sufficiently large to assure their recovery by filtration or other means.

BRIEF DESCRIPTION OF THE DRAWINGS

[0008] FIG. 1 is an illustration of the three dimensional molecular structure for

20DCM as defined by the atomic positional parameters discovered and set forth herein;

DETAILED DESCRIPTION OF THE INVENTION

[0009] The present invention provides l -hydroxy-20-methyl-2-methylene-

19,24,25, 26,27-pentanorvitamin D 3 (20DCM) in crystalline form, a pharmacologically important compound, characterized by the formula I shown below:

[00010] The present invention also provides a valuable method of purification of 20DCM. The purification technique involves obtaining the 20DCM product in crystalline form by utilizing a crystallization procedure wherein the 20DCM material to be purified is dissolved using as the solvent either ethyl formate as the sole solvent, or a mixture comprised of ethyl formate and hexane. Preferably the mixture comprises about 75% ethyl formate and about 25% hexane (by volume). Thereafter, the solvent can be removed by evaporation, with or without vacuum, or other means as is well known, or the resultant crystals may be filtered from the mother liquor. The technique can be used to purify a wide range of final products containing 20DCM obtained from any known synthesis thereof, and in varying concentrations, i.e. from microgram amounts to kilogram amounts. As is well known to those skilled in this art, the amount of solvent utilized should be minimized and/or adjusted according to the amount of 20DCM to be purified.

[00011] The usefulness and advantages of the present crystallization procedure is shown in the following specific Examples 1 , 2 and 3. After crystallization, the precipitated material was observed under a microscope to confirm its crystalline form. Yields of crystals were relatively high and the obtained crystals showed a relatively sharp melting point of 140- 145°C. [00012] The described crystallization process of the synthetic 20DCM product represents a valuable purification method, which can remove most side products derived from the synthetic path. Such impurity is the result of the contamination of starting raw materials. The crystallization process occurred easily and efficiently; and the precipitated crystals were sufficiently large to assure their recovery by filtration, or other means.

|00013] Crystallization of a-hydrox -20-methyI-2-methylene- 19,24,25,26,27- pentanorvitamin D 3 (20DCM).

EXAMPLE 1

[00014] Crystallization from Ethyl Formate

[00015] la-Hydroxy-20-methyl-2-methylene-19,24,25,26,27-pentanorvita min D 3 ,

20DCM (15mg) , was dissolved in boiling ethyl formate (0.35 mL) and left at room temperature for about 1 hour, then it was kept in a refrigerator for about 18 hours. The precipitated crystals were filtered off, washed with a small volume of a cold (0°C) ethyl formate and dried to give 9 mg (60%) of crystalline material.

EXAMPLE 2

[00016] Crystallization from Ethyl Formate/hexane

[00017] l -Hydroxy-20-methyl-2-methylene-l 9,24,25, 26,27-pentanorvitamin D 3 ,

20DCM (15mg) , was dissolved in boiling ethyl formate (0.30 mL) and hexane (0.10 mL) was added. It was left at room temperature for about 1 hour, then it was kept in a refrigerator for about 18 hours. The precipitated crystals were filtered off, washed with a small volume of a cold (0°C) ethyl formate/hexane (3 : 1) mixture and dried to give 10 mg (67%) of crystalline material.

EXAMPLE 3

Experimental

[00018] All crystal measurements were performed on a KM4CCD κ-axis diffractometer with graphite-monochromated MoK a radiation. The crystal was positioned at 62 mm from the CCD camera. 2186 frames were measured at 0.5° intervals with a counting time of 12 sec. The data were corrected for Lorentz and polarization effects. Empirical correction for absorption was applied 1] Data reduction and analysis were carried out with the Oxford Diffraction programs. J [00019] The structure was solved by direct methods 131 and refined using SHELXL. [4] The refinement was based on F " for all reflections except those with very negative F 2 . Weighted R factors wR and all goodness-of-fit S values are based on F 2 . Conventional R

2 2 2

factors are based on F with F set to zero for negative F . The F 0 >2o(F 0 ) criterion was used only for calculating R factors and is not relevant to the choice of reflections for the refinement. The R factors based on F are about twice as large as those based on F. All hydrogen atoms were located geometrically and their position and temperature factors were not refined. Scattering factors were taken from Tables 6.1.1.4 and 4.2.4.2 in Reference 5.

[00020] The three dimensional structure of 20DCM as defined by the following physical data and atomic positional parameters described and calculated herein is illustrated in FIG. 1.

Table 1. Crystal data and structure refinement for 20DCM.

Identification code 20dcm

Empirical formula C24 H38 02

Formula weight 358.54

Temperature 100(2) K

Wavelength 0.71073 A

Crystal system, space group Orthorhombic, P2(l)2(l)2(l)

Unit cell dimensions:

a = 6.6085(2) A alpha = 90 deg.

b = 15.8069(5) A beta = 90 deg.

c = 20.0641(7) A gamma = 90 deg.

Z, Calculated density 4, 1.136 Mg/m A 3

Absorption coefficient 0.070 mm A -l

F(000) 792

Crystal size 0.70 x 0.40 x 0.35 mm

Theta range for data collection 2.77 to 28.73 deg.

Limiting indices -8<=h<=8, -20<=k<=21, -26<=1<=26 Reflections collected / unique 35848 / 3009 [R(int) = 0.0196] Completeness to theta = 28.00 99.7 %

Absorption correction Semi-empirical from equivalents Max. and min. transmission 0.98 and 0.96

Refinement method Full-matrix least-squares on F A 2 Data / restraints / parameters 3009 / 13 / 261

Goodness-of-fit on F A 2 1.084

Final R indices [I>2sigma(I)] Rl = 0.0412, wR2 = 0.1 103 R indices (all data) Rl = 0.0479, wR2 = 0.1 136 Largest diff. peak and hole 0.217 and -0.256 e.A A -3 4 2

Table 2. Atomic coordinates (x 10 ) and equivalent isotropic displacement parameters (A x 10 3 ) for 20DCM. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

X y z U(eq)

0(1) 8264(2) -1494(1) 9984(1) 30(1)

0(2) 2152(2) -1902(1) 10503(1) 35(1)

C(l) 6215(2) -1295(1) 10144(1) 26(1)

C(2) 5551(3) -1666(1) 10802(1) 33(1)

C(2') 6749(3) -21 10(2) 11 197(1) 54(1)

C(3) 3382(3) -1462(1) 10976(1) 34(1)

C(4) 3028(3) -510(1) 10959(1) 39(1)

C(5) 3801(3) -104(1) 10329(1) 33(1)

C(6) 2600(3) 403(1) 9970(1) 37(1)

C(7) 3083(3) 859(1) 9363(1) 36(1)

C(8) 1807(3) 1350(2) 9016(1) 40(1)

C(9) -379(3) 1525(2) 9198(1) 58(1)

C(10) 5961(3) -331(1) 10158(1) 30(1)

C(l l) -833(4) 2464(2) 9220(1) 67(1)

C(12) -225(4) 2915(2) 8572(1) 58(1)

C(13) 2015(3) 2770(1) 8411(1) 38(1)

C(14) 2368(3) 1800(1) 8383(1) 37(1)

C(15) 4498(3) 1722(1) 8100(1) 37(1)

C(16) 4621(3) 2444(1) 7585(1) 34(1)

C(17) 2724(3) 3012(1) 7691(1) 36(1)

C(18) 3346(4) 3155(1) 8960(1) 45(1)

C(20) 3039(4) 3933(1) 7453(1) 49(1)

C(20') 4583(6) 4425(2) 7858(1 ) 72(1)

C(21) 3813(5) 3899(2) 6726(1) 57(1)

C(22A) 1282(8) 4571(3) 7457(3) 53(1)

C(23A) -387(7) 4296(3) 6993(3) 71(2)

C(22B) 749(8) 4221(5) 7469(4) 49(2)

C(23B) 348(13) 5097(5) 7183(4) 71(3) Table 3. Bond lengths ΓΑΐ for 20DCM.

0(1)-C(1) 1.426(2)

0(1)-H(10) 0.8400

0(2)-C(3) 1.430(2)

0(2)-H(20) 0.8400

C(l )-C(2) 1.510(2)

C(l )-C(10) 1.534(2)

C(l)-H(l) 1.0000

C(2)-C(2') 1.321(3)

C(2)-C(3) 1.510(3)

C(2')-H(2'A) 0.9500

C(2')-H(2'B) 0.9500

C(3)-C(4) 1.524(3)

C(3)-H(3) 1.0000

C(4)-C(5) 1.507(3)

C(4)-H(4A) 0.9900

C(4)-H(4B) 0.9900

C(5)-C(6) 1.338(3)

C(5)-C(10) 1.512(3)

C(6)-C(7) 1.452(3)

C(6)-H(6) 0.9500

C(7)-C(8) 1.340(3)

C(7)-H(7) 0.9500

C(8)-C(14) 1.503(3)

C(8)-C(9) 1.516(3)

C(9)-C(l l) 1.515(4)

C(9)-H(9A) 0.9900

C(9)-H(9B) 0.9900

C(10)-H(10A) 0.9900

C(10)-H(10B) 0.9900

C(l l )-C(12) 1.535(4) C(1 1)-H(11A) 0.9900

C(1 1)-H(11B) 0.9900

C(12)-C(13) 1.533(3)

C(12)-H(12A) 0.9900

C(12)-H(12B) 0.9900

C(13)-C(18) 1.535(3)

C(13)-C(14) 1.552(3)

C(13)-C(17) 1.565(3)

C(14)-C(15) 1.523(3)

C(14)-H(14) 1.0000

C(15)-C(16) 1.541 (3)

C(15)-H(15A) 0.9900

C(15)-H(15B) 0.9900

C(16)-C(17) 1.556(3)

C(16)-H(16A) 0.9900

C(16)-H(16B) 0.9900

C(17)-C(20) 1.547(3)

C(17)-H(17) 1.0000

C(18)-H(18A) 0.9800

C(18)-H(18B) 0.9800

C(18)-H(18C) 0.9800

C(20)-C(20') 1.518(4)

C(20)-C(22A) 1.537(4)

C(20)-C(21) 1.547(3)

C(20)-C(22B) 1.580(5)

C(20')-H(20D) 0.9800

C(20')-H(20E) 0.9800

C(20')-H(20F) 0.9800

C(21)-H(21A) 0.9800

C(21)-H(21B) 0.9800

C(21)-H(21C) 0.9800 C(22A)-C(23A) 1.507(8) C(22A)-H(22A) 0.9900 C(22A)-H(22B) 0.9900 C(23A)-H(23A) 0.9800 C(23A)-H(23B) 0.9800 C(23A)-H(23C) 0.9800 C(22B)-C(23B) 1.523(9) C(22B)-H(22C) 0.9900 C(22B)-H(22D) 0.9900 C(23B)-H(23D) 0.9800 C(23B)-H(23E) 0.9800 C(23B)-H(23F) 0.9800

Table 4. Bond angles H for 20DCM.

C(l)-0(1)-H(10) 109.5

C(3)-0(2)-H(20) 109.5

0(1)-C(1)-C(2) 1 12.81(14)

O(l)-C(l)-C(10) 109.03(14)

C(2)-C(l)-C(10) 109.76(15)

0(1)-C(1)-H(1) 108.4

C(2)-C(l)-H(l) 108.4

C(10)-C(l)-H(l) 108.4

C(2')-C(2)-C(3) 122.96(18)

C(2')-C(2)-C(l) 123.77(18)

C(3)-C(2)-C(l) 1 13.25(15)

C(2)-C(2')-H(2'A) 120.0

C(2)-C(2')-H(2'B) 120.0

H(2'A)-C(2')-H(2'B) 120.0

0(2)-C(3)-C(2) 106.43(15)

0(2)-C(3)-C(4) 1 12.18(16)

C(2)-C(3)-C(4) 1 10.58(17)

0(2)-C(3)-H(3) 109.2

C(2)-C(3)-H(3) 109.2

C(4)-C(3)-H(3) 109.2

C(5)-C(4)-C(3) 112.82(16)

C(5)-C(4)-H(4A) 109.0

C(3)-C(4)-H(4A) 109.0

C(5)-C(4)-H(4B) 109.0

C(3)-C(4)-H(4B) 109.0

H(4A)-C(4)-H(4B) 107.8

C(6)-C(5)-C(4) 120.34(18)

C(6)-C(5)-C(10) 125.47(18)

C(4)-C(5)-C(10) 1 14.19(18)

C(5)-C(6)-C(7) 128.22(18) C(5)-C(6)-H(6) 115.9

C(7)-C(6)-H(6) 115.9

C(8)-C(7)-C(6) 125.78(18)

C(8)-C(7)-H(7) 117.1

C(6)-C(7)-H(7) 117.1

C(7)-C(8)-C(14) 123.88(17)

C(7)-C(8)-C(9) 125.5(2)

C(14)-C(8)-C(9) 110.64(19)

C(ll)-C(9)-C(8) 112.0(2)

C(11)-C(9)-H(9A) 109.2

C(8)-C(9)-H(9A) 109.2

C(11)-C(9)-H(9B) 109.2

C(8)-C(9)-H(9B) 109.2

H(9A)-C(9)-H(9B) 107.9

C(5)-C(10)-C(l) 110.07(15)

C(5)-C(10)-H(10A) 109.6

C(1)-C(10)-H(10A) 109.6

C(5)-C(10)-H(10B) 109.6

C(1)-C(10)-H(10B) 109.6

H(10A)-C(10)-H(10B) 108.2

C(9)-C(ll)-C(12) 112.3(2)

C(9)-C(11)-H(11A) 109.1

C(12)-C(11)-H(11A) 109.1

C(9)-C(11)-H(11B) 109.1

C(12)-C(11)-H(11B) 109.1

H(11A)-C(11)-H(11B) 107.9

C(13)-C(12)-C(ll) 111.20(18)

C(13)-C(12)-H(12A) 109.4

C(11)-C(12)-H(12A) 109.4

C(13)-C(12)-H(12B) 109.4

C(11)-C(12)-H(12B) 109.4 H(12A)-C(12)-H(12B) 108.0

C(12)-C(13)-C(18) 1 10.03(17)

C(12)-C(13)-C(14) 107.5(2)

C(18)-C(13)-C(14) 109.37(15)

C(12)-C(13)-C(17) 1 16.55(16)

C(18)-C(13)-C(17) 1 13.17(19)

C(14)-C(13)-C(17) 99.38(15)

C(8)-C(14)-C(15) 120.36(17)

C(8)-C(14)-C(13) 113.59(16)

C(15)-C(14)-C(13) 103.42(17)

C(8)-C(14)-H(14) 106.2

C(15)-C(14)-H(14) 106.2

C(13)-C(14)-H(14) 106.2

C(14)-C(15)-C(16) 103.82(16)

C(14)-C(15)-H(15A) 1 1 1.0

C(16)-C(15)-H(15A) 1 11.0

C(14)-C(15)-H(15B) 1 1 1.0

C(16)-C(15)-H(15B) 1 11.0

H(15A)-C(15)-H(15B) 109.0

C(15)-C(16)-C(17) 107.05(16)

C(15)-C(16)-H(16A) 110.3

C(17)-C(16)-H(16A) 1 10.3

C(15)-C(16)-H(16B) 1 10.3

C(17)-C(16)-H(16B) 1 10.3

H(16A)-C(16)-H(16B) 108.6

C(20)-C(17)-C(16) 1 13.09(18)

C(20)-C(17)-C(13) 123.75(16)

C(16)-C(17)-C(13) 103.07(15)

C(20)-C(17)-H(17) 105.1

C(16)-C(17)-H(17) 105.1

C(13)-C(17)-H(17) 105.1 C(13)-C(18)-H(18A) 109.5

C(13)-C(18)-H(18B) 109.5

H(18A)-C(18)-H(18B) 109.5

C(13)-C(18)-H(18C) 109.5

H(18A)-C(18)-H(18C) 109.5

H(18B)-C(18)-H(18C) 109.5

C(20')-C(20)-C(22A) 99.7(3)

C(20')-C(20)-C(17) 1 14.01(17)

C(22A)-C(20)-C(17) 120.9(3)

C(20')-C(20)-C(21) 107.5(2)

C(22A)-C(20)-C(21) 106.1(3)

C(17)-C(20)-C(21) 107.65(17)

C(20')-C(20)-C(22B) 1 19.1(4)

C(17)-C(20)-C(22B) 97.8(3)

C(21)-C(20)-C(22B) 1 10.2(3)

C(20)-C(20')-H(20D) 109.5

C(20)-C(20')-H(20E) 109.5

H(20D)-C(20')-H(20E) 109.5

C(20)-C(20')-H(20F) 109.5

H(20D)-C(20')-H(20F) 109.5

H(20E)-C(20')-H(20F) 109.5

C(20)-C(21)-H(21A) 109.5

C(20)-C(21)-H(21B) 109.5

H(21A)-C(21)-H(21B) 109.5

C(20)-C(21)-H(21 C) 109.5

H(21A)-C(21)-H(21 C) 109.5

H(21 B)-C(21)-H(21C) 109.5

C(23A)-C(22A)-C(20) 1 1 1.1(4)

C(23A)-C(22A)-H(22A) 109.4

C(20)-C(22A)-H(22A) 109.4

C(23A)-C(22A)-H(22B) 109.4 C(20)-C(22A)-H(22B) 109.4

H(22A)-C(22A)-H(22B) 108.0

C(23B)-C(22B)-C(20) 114.9(6)

C(23B)-C(22B)-H(22C) 108.5

C(20)-C(22B)-H(22C) 108.5

C(23B)-C(22B)-H(22D) 108.5

C(20)-C(22B)-H(22D) 108.5

H(22C)-C(22B)-H(22D) 107.5

C(22B)-C(23B)-H(23D) 109.5

C(22B)-C(23B)-H(23E) 109.5

H(23D)-C(23B)-H(23E) 109.5

C(22B)-C(23B)-H(23F) 109.5

H(23D)-C(23B)-H(23F) 109.5

H(23E)-C(23B)-H(23F) 109.5

Symmetry transformations used to generate equivalent atoms:

Table 5. Anisotropic displacement parameters (A 2 x 10 3 ) for 20DCM. The anisotropic displacement factor exponent takes the form: -27t 2 [h 2 * 2 Un + ... + 2hka*6*Ui2]

Ul l U22 U33 U23 U13 U12

0(1) 17(1) 39(1) 35(1) 7(1) -2(1) 1(1)

0(2) 19(1) 38(1) 49(1) 3(1) -5(1) 1(1)

C(l) 16(1) 36(1) 25(1) 5(1) -2(1) -2(1)

C(2) 23(1) 47(1) 28(1) 11(1) -3(1) -7(1)

C(2') 29(1) 91(2) 41(1) 35(1) -4(1) -6(1)

C(3) 26(1) 49(1) 27(1) 7(1) 4(1) -6(1)

C(4) 37(1) 49(1) 32(1) -7(1) 1 1(1) -7(1)

C(5) 30(1) 35(1) 34(1) -7(1) 9(1) -5(1)

C(6) 27(1) 43(1) 42(1) -7(1) 10(1) 3(1)

C(7) 24(1) 45(1) 39(1) -5(1) 9(1) 5(1)

C(8) 24(1) 59(1) 36(1) -5(1) 6(1) 9(1)

C(9) 23(1) 109(2) 43(1) 5(1) 8(1) 18(1)

C(10) 24(1) 35(1) 30(1) 0(1) 3(1) -4(1)

C(l l) 35(1) 124(3) 43(1) 7(1) 10(1) 47(2)

C(12) 37(1) 102(2) 36(1) 1(1) 1 (1) 43(1)

C(13) 31 (1) 60(1) 23(1) -6(1) -4(1) 26(1)

C(14) 22(1) 58(1) 30(1) -8(1) 2(1) 10(1)

C(15) 30(1) 37(1) 43(1) -6(1) 10(1) 10(1)

C(16) 29(1) 42(1) 30(1) -7(1) 2(1) 6(1)

C(17) 34(1) 55(1) 21 (1) -10(1) -9(1) 19(1)

C(18) 59(1) 52(1) 23(1) -7(1) -10(1) 30(1)

C(20) 69(2) 54(1) 22(1) -5(1) -10(1) 33(1)

C(20') 135(3) 43(1) 37(1) 3(1) -22(2) 4(2)

C(21) 83(2) 61(1) 27(1) -1(1) -6(1) 25(2)

C(22A) 71(3) 32(2) 54(2) 3(2) 1(2) 26(2)

C(23A) 46(2) 60(3) 107(4) 30(3) -18(3) 13(2) C(22B) 72(4) 28(3) 47(3) 5(3) 1(3) 22(3) C(23B) 70(5) 54(4) 88(5) 33(4) 9(4) 20(4)

Table 6. Hydrogen coordinates (x 10 4 ) and isotropic displacement parameters (A 2 x 10 3 ) for 20DCM.

X y z U(eq)

H(10) 8320 -1979 9815 45

H(20) 1091 -1624 10431 53

H(l) 5325 -1529 9785 31

H(2'A) 6255 -2317 1 1610 64

H(2'B) 8104 -2223 11066 64

H(3) 3079 -1679 1 1433 41

H(4A) 1559 -398 1 1000 47

H(4B) 3709 -248 1 1346 47

H(6) 1262 474 10134 44

H(7) 4422 805 9196 43

H(9A) -1276 1251 8867 70

H(9B) -672 1274 9640 70

H(10A) 6888 -84 10493 35

H(10B) 6316 -92 9717 35

H(1 1A) -95 2722 9598 80

H(1 1B) -2299 2547 9297 80

H(12A) -1066 2702 8200 70

H(12B) -482 3530 8618 70

H(14) 1435 1579 8031 44

H(15A) 4697 1 165 7883 44

H(15B) 5528 1795 8453 44

H(16A) 4632 2212 7127 40

H(16B) 5872 2778 7653 40

H(17) 1668 2773 7388 44

H(18A) 3262 2804 9362 67

H(18B) 2873 3728 9062 67

H(18C) 4753 3179 8806 67 H(20D) 4016 4558 8297 108

H(20E) 4922 4952 7625 108

H(20F) 5809 4083 7913 108

H(21 A) 5186 3665 6719 86

H(21B) 3829 4472 6538 86

H(21C) 2915 3539 6460 86

H(22A) 741 4623 7915 63

H(22B) 1788 5133 7318 63

H(23A) -924 3749 7140 107

H(23B) 149 4242 6540 107

H(23C) -1472 4719 6998 107

H(22C) -64 3804 7216 59

H(22D) 274 4210 7937 59

H(23D) 595 5091 6701 106

H(23E) 1251 5509 7395 106

H(23F) -1062 5256 7268 106

Table 7. Torsion angles [deg] for 20DCM.

0(1)-C(1)-C(2)-C(2') 1.5(3)

C(10)-C(l)-C(2)-C(2') -120.3(2)

0(1)-C(1)-C(2)-C(3) -179.83(15)

C(10)-C(l)-C(2)-C(3) 58.4(2)

C(2')-C(2)-C(3)-0(2) -1 13.9(2)

C(l)-C(2)-C(3)-0(2) 67.4(2)

C(2')-C(2)-C(3)-C(4) 124.0(2)

C(l)-C(2)-C(3)-C(4) -54.7(2)

0(2)-C(3)-C(4)-C(5) -69.2(2)

C(2)-C(3)-C(4)-C(5) 49.5(2)

C(3)-C(4)-C(5)-C(6) 128.9(2)

C(3)-C(4)-C(5)-C(10) -50.6(2)

C(4)-C(5)-C(6)-C(7) 178.79(18)

C(10)-C(5)-C(6)-C(7) -1.8(3)

C(5)-C(6)-C(7)-C(8) 178.8(2)

C(6)-C(7)-C(8)-C(14) -179.09(19)

C(6)-C(7)-C(8)-C(9) 0.6(4)

C(7)-C(8)-C(9)-C(l l) 127.4(3)

C(14)-C(8)-C(9)-C(l l) -52.9(3)

C(6)-C(5)-C(10)-C(l) -126.2(2)

C(4)-C(5)-C(10)-C(l) 53.3(2)

O(l)-C(l)-C(10)-C(5) -179.82(14)

C(2)-C(l)-C(10)-C(5) -55.79(19)

C(8)-C(9)-C(l l)-C(12) 53.4(3)

C(9)-C(l l)-C(12)-C(13) -56.1(3)

C(l l)-C(12)-C(13)-C(18) -63.1(3)

C(l l)-C(12)-C(13)-C(14) 56.0(3)

C(l l)-C(12)-C(13)-C(17) 166.4(2) C(7)-C(8)-C(14)-C(15) -0.5(3)

C(9)-C(8)-C(14)-C(15) 179.8(2)

C(7)-C(8)-C(14)-C(13) -123.9(2)

C(9)-C(8)-C(14)-C(13) 56.4(3)

C(12)-C(13)-C(14)-C(8) -57.8(2)

C(18)-C(13)-C(14)-C(8) 61.7(2)

C(17)-C(13)-C(14)-C(8) -179.57(16)

C(12)-C(13)-C(14)-C(15) 170.08(15)

C(18)-C(13)-C(14)-C(15) -70.5(2)

C(17)-C(13)-C(14)-C(15) 48.27(18)

C(8)-C(14)-C(15)-C(16) -165.00(19)

C(13)-C(14)-C(15)-C(16) -36.93(18)

C(14)-C(15)-C(16)-C(17) 10.8(2)

C(15)-C(16)-C(17)-C(20) 154.93(16)

C(15)-C(16)-C(17)-C(13) 19.0(2)

C(12)-C(13)-C(17)-C(20) 74.9(3)

C(18)-C(13)-C(17)-C(20) -54.2(2)

C(14)-C(13)-C(17)-C(20) -170.08(19)

C(12)-C(13)-C(17)-C(16) -155.4(2)

C(18)-C(13)-C(17)-C(16) 75.53(19)

C(14)-C(13)-C(17)-C(16) -40.34(18)

C(16)-C(17)-C(20)-C(20') -66.7(3)

C(13)-C(17)-C(20)-C(20 * ) 58.8(3)

C(16)-C(17)-C(20)-C(22A) 174.4(3)

C(13)-C(17)-C(20)-C(22A) -60.1 (4)

C(16)-C(17)-C(20)-C(21) 52.4(2)

C(13)-C(17)-C(20)-C(21) 177.91(19)

C(16)-C(17)-C(20)-C(22B) 166.6(3)

C(13)-C(17)-C(20)-C(22B) -67.9(4) C(20')-C(20)-C(22A)-C(23A) 171.3(4)

C(l 7)-C(20)-C(22A)-C(23 A) -62.9(5)

C(21 )-C(20)-C(22 A)-C(23 A) 59.8(5)

C(22B)-C(20)-C(22A)-C(23A) -43.7(9)

C(20')-C(20)-C(22B)-C(23B) 63.7(7)

C(22A)-C(20)-C(22B)-C(23B) 23.3(8)

C(l 7)-C(20)-C(22B)-C(23B) -173.2(6)

C(21)-C(20)-C(22B)-C(23B) -61.1(7)

Table 8. Hydrogen bonds for 20DCM [A and deg.]

D-H...A d(D-H) d(H...A) d(D...A) <(DHA)

0(1 )-H(10)...0(2)#1 0.84 2.03 2.8149(19) 154.8

0(2)-H(20)...0(l)#2 0.84 2.08 2.8466(17) 150.9

Symmetry transformations used to generate equivalent atoms:

# 1 x+ 1 /2,-y- 1 /2,-z+2 #2 x- 1 ,y,z

References

[1] CrysAlis RED, Oxford Diffraction Ltd.,Version 1.171.28cycle2 beta (release 25-10-2005 CrysAlis l 71 .NET) (compiled Oct 25 2005,08:50:05). Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

[2] CrysAlis CCD, Oxford Diffraction Ltd., Version 1 .171 .28cycle2 beta; CrysAlis RED, Oxford Diffraction Ltd., Version 1.171.28cycle2 beta

[3] G. M. Sheldrick, Acta Crystallogr. 1990, A46, 467-473.

[4] G. M. Sheldrick, SHELXL93. Program for the Refinement of Crystal Structures., Univ. of Gottingen, Germany.

[5] International Tables for Crystallography, Ed. A. J. C. Wilson, Kluwer: Dordrecht, 1992, Vol.C.

EXAMPLE 4

Synthesis of 20DCM

[00021] The preparation of 20DCM having the basic structure I can be accomplished by a common general method, i.e. the condensation of a bicyclic Windaus- Grundmann type ketone II with the allylic phosphine oxide III to the corresponding 2-methylene- 19-nor-vitamin D analog IV followed by deprotection at C-1 and C-3 in the latter compound IV to obtain compound I, i.e. 20DCM.

[00022] In phosphine oxide III, Yi and Y 2 are preferably hydroxy-protecting groups such as silyl protecting groups. The t-butyldimethylsilyl (TMDMS) group is an example of a particularly useful hydroxy-protecting group. The process described above represents an application of the convergent synthesis concept, which has been applied effectively to the preparation of numerous vitamin D compounds (see Lythgoe et al., J. Chem. Soc. Per kin Trans. I, 590 (1978); Lythgoe, Chem. Soc. Rev. 9, 449 (1983); Toh et al., J. Org. Chem. 48, 1414 (1983); Baggiolini et al., J. Org. Chem. 51 , 3098 (1986); Sardina et al., J. Org. Chem. 51 , 1264 (1986); J Org. Chem. 51, 1269 (1986); DeLuca et al, U.S. Pat. No. 5,086,191 ; DeLuca et al., U.S. Pat. No. 5,536,713; and DeLuca et al, U.S. Pat. No. 5,843,928 all of which are hereby incorporated by reference in their entirety and for all purposes as if fully set forth herein.

[00023] Phosphine oxide III is a convenient reagent that can be used to prepare a large number of 19 -nor- vitamin D compounds and is prepared according to the procedures described by Sicinski et al., J. Med. Chem. , 41 , 4662 (1998), DeLuca et al., U.S. Pat. No. 5,843,928; Perlman et al., Tetrahedron Lett. 32, 7663 (1991); and DeLuca et al, U.S. Pat. No. 5,086,191 which are hereby incorporated by reference in their entirety as if fully set forth herein.

[00024] The overall process of the synthesis of compound I is illustrated and described more completely in U.S. Pat. No. 5,843,928 entitled "2-Alkylidene-19-Nor-Vitamin D Compounds" and in application Ser. No. 12/343,602 filed December 24, 2008, entitled "2- Methylene-20-Methyl-l 9,24,25, 26,27-Pentanor-Vitamin D Analogs" published as U.S. Publication No. US 2009/0170822 the specifications of which are specifically incorporated herein by reference.