Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
DEVICE AND METHOD FOR THE LASER-BEAM WELDING OF COMPONENTS
Document Type and Number:
WIPO Patent Application WO/2024/061944
Kind Code:
A1
Abstract:
The invention relates to a device and to a method for welding together a first component (6) and a second component (5) by means of laser-beam welding, in which a first laser-beam device (1a) directs a welding laser beam (2) onto the outer surface (4) of the first component (5) in order to weld the first component (5) and the second component (6), which has been brought into abutment against the first component, together along a weld seam (8) to be formed, by forming a component-spanning weld pool (7), wherein at least one second laser-beam device (1b) for generating a secondary laser beam (3) is associated with the first laser-beam device (1a) for generating the welding laser beam (2), the secondary laser beam (3), which extends at an acute angle (α) relative to the welding laser beam (2), being directed at an edge region (9) of the weld pool (7) generated in the first component (5) by the welding laser beam (2), so that a weld-pool expansion (10) forms along the edge.

Inventors:
PROELL JOHANNES (DE)
JOVIC GORAN (DE)
Application Number:
PCT/EP2023/075876
Publication Date:
March 28, 2024
Filing Date:
September 20, 2023
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
BOSCH GMBH ROBERT (DE)
International Classes:
B23K26/06; B23K26/067; B23K26/08; B23K26/26; B29C65/16; B23K101/18
Foreign References:
JP2009178768A2009-08-13
JPS60240395A1985-11-29
EP0771606B12002-12-11
DE19715102A11998-10-15
DE102021113430A12022-01-20
Other References:
JAN PILARCZYKA ET AL: "Various laser welding techniques - test results and possible applications", WELDING INTERNATIONAL, TAYLOR & FRANCIS, ABINGDON, GB, vol. 24, no. 11, 1 November 2010 (2010-11-01), pages 844 - 852, XP001558885, ISSN: 0950-7116, DOI: 10.1080/09507111003655085
Download PDF:
Claims:
Ansprüche

1 . Vorrichtung zum Laserstrahlschweißen eines ersten Bauteils (6) mit einem zweiten Bauteil (5), bei der eine erste Laserstrahleinrichtung (1 a) einen Schweißlaserstrahl (2) auf die Außenoberfläche (4) des ersten Bauteils (5) richtet, um entlang einer zu bildenden Schweißnaht (8) das erste Bauteil (5) mit dem hieran zur Anlage gebrachten zweiten Bauteil (6) durch Bildung eines bauteilübergreifenden Schmelzbads (7) zu verschweißen, dadurch gekennzeichnet, dass der ersten Laserstrahleinrichtung (1a) zur Erzeugung des Schweißlaserstrahls (2) mindestens eine zweite Laserstrahleinrichtung (1 b) zur Erzeugung eines Nebenlaserstrahls (3) zugeordnet ist, wobei der Nebenlaserstrahl (3) in einem spitzen Winkel (a) zum Schweißlaserstrahl (2) verlaufend auf einen Randbereich (9) des vom Schweißlaserstrahl (2) im ersten Bauteil (5) erzeugten Schmelzbads (7) ausgerichtet ist, so dass sich eine randseitige Schmelzbadaufweitung (10) ausbildet.

2. Vorrichtung nach Anspruch 1 , dadurch gekennzeichnet, dass eine elektronische Steuereinheit (100) zum synchronen Ansteuern der ersten Laserstrahleinrichtung (1 a) und der zweiten Laserstrahleinrichtung (1 b) vorgesehen ist.

3. Vorrichtung nach Anspruch 1 , dadurch gekennzeichnet, dass der Nebenlaserstrahl (3) der zweiten Laserstrahleinrichtung (1 b) entgegen der Vorschubrichtung (V) des Schweißlaserstrahls (2) und unter dem spitzen Winkel (a) den Schweißlaserstrahl (2) kreuzend ausgerichtet ist.

4. Vorrichtung nach Anspruch 1 , dadurch gekennzeichnet, dass sich die vom Nebenlaserstrahl (3) der zweiten Laserstrahleinrichtung (1 b) erzeugte Schmelzbadaufweitung (10) über einen kleineren Bereich (Q) erstreckt als das vom Schweißlaserstrahl (2) erzeugte Schmelzbad (7). Vorrichtung nach Anspruch 1 , dadurch gekennzeichnet, dass der Schweißlaserstrahl (2) der ersten Laserstrahleinrichtung (1 a) aus einem Aufschmelz-Laserstrahlanteil (11) zur Erzeugung der Schmelzbad-Breite (B) und einen hiervon umgebenen Tiefschweiß-Laserstrahlanteil (12) zur Erzeugung der Schmelzbad-Tiefe (T) besteht. Verfahren zum Laserstrahlschweißen eines ersten Bauteils (6) mit einem zweiten Bauteil (5) mit einer Vorrichtung nach einem der vorstehenden Ansprüche, bei dem durch eine erste Laserstrahleinrichtung (1 a) ein Schweißlaserstrahl (2) auf die Außenoberfläche (4) des ersten Bauteils (5) gerichtet wird, so dass entlang einer zu bildenden Schweißnaht (8) das erste Bauteil (5) mit dem hieran zur Anlage gebrachten zweiten Bauteil (6) durch Bildung eines bauteilübergreifenden Schmelzbads (7) verschweißt wird, dadurch gekennzeichnet, dass die erste Laserstrahleinrichtung (1 a) zur Erzeugung des Schweißlaserstrahls (2) mit mindestens einer zweiten Laserstrahleinrichtung (1 b) zur Erzeugung eines Nebenlaserstrahls (3) derart kombiniert wird, dass der Nebenlaserstrahl (3) in einem spitzen Winkel (a) zum Schweißlaserstrahl (2) verlaufend auf einen Randbereich (9) des vom Schweißlaserstrahl (2) im ersten Bauteil (5) erzeugten Schmelzbads (7) ausgerichtet wird, um eine randseitige Schmelzbadaufweitung (10) auszubilden. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass der Schweißlaserstrahl (2) mit einer materialspezifischen Wellenlänge im Bereich zwischen 343 nm bis 10.600 nm, vorzugsweise 400 nm bis 1070 nm generiert wird. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass der Nebenlaserstrahl (3) mit einer materialspezifischen Wellenlänge im Bereich zwischen 343 nm bis 10.600 nm, vorzugsweise 400 nm bis 1070 nm generiert wird. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass der Schweißlaserstrahl (2) sowie der zugeordnete Nebenlaserstrahl (3) mit einer Vorschubgeschwindigkeit (V) im Bereich zwischen 1 m/min bis 120 m/min bewegt wird. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass der Spotdurchmesser des Schweißlaserstrahls (2) und des Nebenlaserstrahls (3) an der Außenoberfläche (4) des oberen Bauteils (5) im Bereich zwischen 15 pm bis 600 pm, vorzugsweise 50 pm bis 200 pm, beträgt Bauteilanordnung, umfassend mindestens ein erstes Bauteil (6) und mindestens ein zweites Bauteil (5), die durch ein Verfahren gemäß einem der vorstehenden Ansprüche 6 bis 10 durch Laserstrahlschweißen stoffschlüssig miteinander verbunden sind.

Description:
Beschreibung

Titel:

Vorrichtung und Verfahren zum Laserstrahlschweißen von Bauteilen

Die Erfindung betrifft eine Vorrichtung und ein Verfahren zum Laserstrahlschweißen, insbesondere Laserstrahltiefschweißen, eines ersten Bauteils mit einem zweiten Bauteil, bei dem eine Laserstrahleinrichtung einen Schweißlaserstrahl auf die Außenoberfläche des ersten Bauteils richtet, um entlang einer zu bildenden Schweißnaht das erste Bauteil mit dem hieran zur Anlage gebrachten zweiten Bauteil durch Bildung eines bauteilübergreifenden Schmelzbads zu verschweißen.

Das Einsatzgebiet der Erfindung erstreckt sich auf stoffschlüssige Verbindungen, welche vornehmlich für großformatige flächige Bauteile aller Art, insbesondere Metallbleche oder Metallfolien, herzustellen sind. Das hier interessierende Lasertiefstrahlschweißen kann neben Metallbauteilen auch auf Kunststoffbauteile unter entsprechender Anpassung der Prozessparameter angewendet werden.

Stand der Technik

Aus der DE 10 2021 113 430 A1 geht ein Verfahren zum Laserstrahltiefschweißen zweier flacher Bauteile hervor, bei dem eine Laserstrahleinrichtung einen vertikalen Laserstrahl mit einem Tiefschweiß- Laserstrahlanteil erzeugt, der mit einer Vorschubgeschwindigkeit entlang einer zu bildenden Schweißnaht bewegt wird, wobei der Tiefschweiß-Laserstrahlanteil im Werkstoff eine Dampfkapillare erzeugt, die von einem Schmelzbad umgeben ist und die sich mit dem Laserstrahl in Schweißrichtung durch den Werkstoff der Bauteile bewegt. Dabei wird das erste Bauteil durchschweißt und der Laserstrahl dringt nur teilweise in das darunterliegende zweite Bauteil ein, um dieses nur über einen Teilbereich seiner Dicke aufzuschmelzen. Dabei wird eine Kapillarumströmung gebildet, bei der eine an der Kapillarfront befindliche Metallschmelze über beidseitig der Dampfkapillare gebildete Schmelzbadkanäle in Richtung Kapillarrückseite strömt und dort erstarrt.

Beim Laserstrahlschweißen der hier interessierenden Art kann es zu einer Ablösung von Schmelztropfen aus dem hochdynamischen Schmelzbad kommen, welche sich als Schweißspritzer an der Außenoberfläche des oberen Bauteils ablagern und hieran anheften können. Diese sind gewöhnlich nach dem Schweißvorgang mechanisch oder anderweitig zu entfernen, um eine möglichst glatte Außenoberfläche zu erhalten. Im Extremfall erfordert eine solche Ablösung von Schmelztropfen sogar ein Wiederauffüllen der Dampfkapillare mit zurückfließender Schmelze, um eine hinreichend stabile Schweißnaht sicherzustellen. Dies lässt sich steuerungstechnisch nur recht aufwändig überwachen und umsetzen.

Gemäß dem allgemein bekannten Stand der Technik wird zur Vermeidung von Spritzern beim Laserstrahlschweißen bereits das so genannte Nebendüsenverfahren verwendet. Hierbei wird eine gegenüber dem Schweißlaserstrahl angestellte Gasströmung auf das Schmelzbad gerichtet, die von einer Nebendüse erzeugt wird und infolge der Übertragung des Strömungsimpulses auf das Schmelzbad zu einer Kapillaraufweitung führt. Allerdings lassen sich die Prozessparameter des Gasstroms und dessen Fokussierung nur recht aufwändig und innerhalb enger Wirksamkeitsgrenzen einstellen.

Es ist daher die Aufgabe der vorliegenden Erfindung eine Vorrichtung sowie ein Verfahren zum Laserstrahlschweißen der vorstehend beschriebenen Art dahingehend weiter zu verbessern, dass eine Ablösung von Schmelztropfen aus dem Schmelzbad mit geringem technischem Aufwand vermieden oder zumindest reduziert wird. Offenbarung der Erfindung

Die Erfindung schließt die technische Lehr ein, dass ein herkömmlicher Schweißlaserstrahl zum Laserstrahlschweißen mit mindestens einem Nebenlaserstrahl derart kombiniert wird, dass der Nebenlaserstrahl in einem spitzen Winkel a zum Schweißlaserstrahl verlaufend auf einen Randbereich des vom Schweißlaserstrahl im ersten Bauteil erzeugten Schmelzbads gerichtet ist, um an dieser Stelle eine randseitige Schmelzbadaufweitung zu erzeugen. Unter dem Begriff Schmelzbadaufweitung fällt auch eine hiermit verbundene Kapillaraufweitung im Schmelzbad, die um den Laserstrahl entsteht. Als Randbereich des Schmelzbades wird ferner die sich an der Außenoberfläche des ersten Bauteils beim Schweißen gebildete Grenze zwischen dem festen Werkstoff und dem flüssigen Schmelzbad verstanden.

Der Vorteil der erfindungsgemäßen Lösung besteht insbesondere darin, dass durch die Schmelzbadaufweitung eine spritzerreduzierende Kapillaraufweitung des gewöhnlich vom Schweißlaserstrahl erzeugten Schmelzbads erzielt wird. Da der hierfür vorgesehene Nebenlaserstrahl hinsichtlich seiner Prozessparameter, wie insbesondere Wellenlänge und Spotdurchmesser über die Laserstrahleinrichtung frei skalierbar ist, lässt sich die Wirksamkeit hinsichtlich einer minimalen Spritzeremission auch bei unterschiedlichen Materialien flexibel anpassen.

Vorzugsweise ist eine elektronische Steuereinheit zum derart synchronen Ansteuern der ersten Laserstrahleinrichtung und der zweiten Laserstrahleinrichtung vorgesehen, dass der Nebenlaserstrahl in dem vorstehend spezifizierten spitzen Winkel a zum Schweißlaserstrahl verlaufend ausgerichtet ist. Die Steuereinheit stellt vorzugsweise eine gleichzeitige Ausgabe des Schweißlaserstrahls und des Nebenlaserstrahls sicher. Die beiden Laserstrahleinrichtungen können dabei zu einer gemeinsamen Baueinheit zusammengefasst sein.

Gemäß einer bevorzugten Ausführungsform der Erfindung ist der Nebenlaserstrahl entgegen der Vorschubrichtung des Schweißlaserstrahls unter dem spitzen Winkel a den Schweißlaserstrahl kreuzend ausgerichtet. Hierdurch zielt der Nebenlaserstrahl auf den rückwärtigen Teil des Schmelzbads, der zur Bildung der Schweißnaht aufgrund der Vorschubbewegung stückweise erstarrt Mit anderen Worten wird bei dieser speziellen Anordnung durch den Nebenlaserstrahl ein optischer Druck auf die Kapillarrückwand erzeugt Hierdurch ergibt sich eine Nahtmodifikation, welche sich in der erstarrten Schweißnaht abzeichnet und einen höheren Stoffschluss zwischen oberem und unterem Bauteil gewährleistet Dank der erfindungsgemäß aufgeweiteten Dampfkapillare, ist auch ein schnelleres Schweißen mit im Vergleich zum herkömmlichen Laserstrahlschweißen höherer Vorschubgeschwindigkeit möglich, ohne dass hierdurch eine Spritzerbildung verstärkt wird.

Gemäß einer bevorzugten Ausführungsform erstreckt sich die vom Nebenlaserstrahl erzeugte Schmelzbadaufweitung über einen kleineren Bereich Q als das vom Schweißlaserstrahl erzeugte Schmelzbad. Hierdurch hat der herkömmliche Schweißlaserstrahl einen höheren Anteil an der Entstehung der zu bildenden Schweißnaht als der Nebenlaserstrahl, welcher primär der Kapillaraufweitung und damit Spritzerreduzierung dient.

Der Schweißlaserstrahl besteht zum Laserstrahlschweißen vorzugsweise aus einem Aufschmelz-Laserstrahlanteil zur Erzeugung der Schmelzbad-Breite B und einem hiervon umgebenen Tiefschweiß-Laserstrahlanteil zur Erzeugung der Schmelzbad-Tiefe T.

Hinsichtlich der Prozessparameter für die Laserstrahleinrichtung lässt sich Spritzer vermeidend eine stabile Schweißnaht dadurch erzielen, dass eine materialspezifische Wellenlänge des Schweißlaserstrahls im Bereich zwischen 343 Nanometern (nm) bis 10.600 nm gewählt wird. Vorzugsweise beträgt die Wellenlänge des Schweißlaserstrahls 400 nm bis 1070 nm. Dieser über Versuche ermittelte Vorzugsbereich beruht insbesondere auf den relativ hohen Absorptionskoeffizienten bei technisch relevanten Metallen, beispielsweise Eisenbasis-, Kupfer-, Aluminium- oder Titanlegierungen, und richtet sich daher bekannter Maßen nach dem Material.

Hinsichtlich des Nebenlaserstrahls können analog dieselben Prozessparameter in den Vorzugsbereichen gewählt werden, da auch das Maß an Kapillaraufweitung in direktem Zusammenhang mit den Absorptionskoeffizienten von Metallen steht. Es ist jedoch auch möglich, für den Schweißlaserstrahl und den Nebenlaserstrahl im Rahmen des angegebenen Bereichs unterschiedliche Wellenlängen zu wählen, sofern ein Aufschmelzen des Materials sichergestellt bleibt.

Der Schweißlaserstrahl sowie der diesem bewegungskoordiniert zugeordnete Nebenlaserstrahl kann mit einer synchronen Vorschubgeschwindigkeit V im Bereich zwischen 1 Meter pro Minute (m/min) bis 120 m/min betrieben werden. Somit sind hinsichtlich der unteren Bereichsgrenze besonders geringe Vorschübe darstellbar, um insbesondere große Materialdicken zuverlässig spritzerarm zu verbinden. Diese Vorteile der erfindungsgemäßen Lösung lassen sich insbesondere auch bei relativ dünneren Bauteilen bis zu einer Vorschubgeschwindigkeit von 120 m/min aufrechterhalten. Somit sind auch besonders schnelle Vorschubgeschwindigkeiten realisierbar, welche es insbesondere ermöglichen an großflächigen Bauteilen besonders lange Schweißnähte innerhalb einer kurzen Bearbeitungszeit herzustellen.

Hinsichtlich des Spotdurchmessers des Schweißlaserstrahls sowie des Nebenlaserstrahls an der Außenoberfläche des oberen Bauteils können Durchmesserwerte zwischen 15 pm bis 1200 pm gewählt werden. Hierdurch lassen sich insbesondere bei dünnen Bauteilen besonders feine Schweißnähte ziehen, wohingegen es die erfindungsgemäße Lösung auch ermöglicht, besonders dicke Schweißnähte in entsprechend dicken Bauteilen auszubilden. Vorzugsweise wird ein Spotdurchmesser zwischen 50 bis 200 pm vorgeschlagen. Dies ist besonders für solche Anwendungen von Vorteil, bei denen relativ dünne Bauteile (im Zehntel mm-Bereich) schnell und gleichzeitig prozesssicher, d.h. mit ausreichender Anbindung in ggf. korrosiver Umgebung miteinander verbunden werden sollen.

Es ist jedoch auch möglich, für den Schweißlaserstrahl und den Nebenlaserstrahl im Rahmen des angegebenen Bereichs unterschiedliche Spotdurchmesser zu wählen, beispielsweise einen geringeren Spotdurchmesser für den Nebenlaserstrahl im Vergleich zum Schweißlaserstrahl, um eine nur geringfügige Schmelzbadaufweitung zu erzielen. Im Rahmen der vorliegenden Erfindung werden vorzugsweise ein unteres Bauteil mit einem oberen Bauteil, beispielsweise Metallbleche oder Metallfolien miteinander verschweißt, insbesondere über einen Überlappungsstoß. Es ist jedoch auch denkbar, mehrere übereinander gestapelte oder selbst runde Bauteile sowie nebeneinander auf einer Ebene liegende Bauteile auch per Stumpfstoß mit der erfindungsgemäßen Lösung zu verbinden.

Detailbeschreibung anhand Zeichnung

Weitere die Erfindung verbessernde Maßnahmen werden nachstehend gemeinsam mit der Beschreibung eines bevorzugten Ausführungsbeispiels der Erfindung anhand der Figuren näher dargestellt. Es zeigt:

Fig. 1 eine schematische Seitenansicht einer Vorrichtung zum Laserstrahlschweißen eines ersten Bauteils mit einem zweiten Bauteil, und

Fig. 2 ein Flussdiagramm zur Veranschaulichung der Verfahrensschritte zur Durchführung des erfindungsgemäßen Laserstrahlschweißens.

Gemäß Fig. 1 umfasst eine Vorrichtung zum Laserstrahlschweißen eine erste Laserstrahleinrichtung 1 a, welche einen im wesentlichen vertikalen Schweißlaserstrahl 2 generiert sowie eine benachbarte zweite Laserstrahleinrichtung 1 b zur Erzeugung eines in einem spitzen Winkel a hierzu angestellten Nebenlaserstrahl 3. Der Schweißlaserstrahl 2 sowie der Nebenlaserstrahl 3 sind auf einer Außenoberfläche 4 eines ersten oberen flachen

Bauteils 5 gerichtet. Unter dem ersten oberen flachen Bauteil 5 ist ein zweites unteres flaches Bauteil 6 angeordnet und in der Solllage fixiert. Bei diesem Ausführungsbeispiel bestehen das erste Bauteil 5 und das hiermit stoffschlüssig zu verbindende zweite Bauteil 6 aus einem materialgleichen Stahlblech. Der von der Laserstrahleinrichtung 1 a generierte Schweißlaserstrahl 2 ist hinsichtlich seiner Prozessparameter derart eingestellt, dass das erste Bauteil 5 vollständig durchschweißt wird und das zweite Bauteil 6 durch Bildung eines bauteilübergreifenden Schmelzbades 7 aufgeschmolzen wird, so dass sich nach Erstarren des Schmelzbades 7 im rückwärtigen Bereich des Schweißlaserstrahls 2 - also entgegen der Vorschubrichtung - eine Schweißnaht 8 für die gewünschte stoffschlüssige Bauteilverbindung ausbildet

Der Schweißlaserstrahl 2 ist mit dem von der Laserstrahleinrichtung 1 b erzeugten Nebenlaserstrahl 3 derart kombiniert, dass der Nebenlaserstrahl 3 einen spitzen Winkel a zum Schweißlaserstrahl 2 verlaufend auf einen rückwärtigen Randbereich 9 des vom Schweißlaserstrahl 2 im oberen Bauteil erzeugten Schmelzbades 7 zielt, um an dieser Stelle eine randseitige Schmelzbadaufweitung 10 zu erzeugen. Dabei ist der Nebenlaserstrahl 3 entgegen der Vorschubrichtung V des Schweißlaserstrahls 2 und unter dem spitzen Winkel a den Schweißlaserstrahl 2 kreuzend ausgerichtet. Da der Nebenlaserstrahl 3 der Laserstrahleinrichtung 1 b mit der Laserstrahleinrichtung 1 a für den Schweißlaserstrahl 2 zu einer Baueinheit verbunden ist, bewegen sich Schweißlaserstrahl 2 und Nebenlaserstrahl 3 mit derselben Vorschubgeschwindigkeit in der gezeigten Vorschubrichtung V. Die Schmelzbadaufweitung 10 erstreckt sich ersichtlicherweise über einen kleineren Bereich Q als das vom Schweißlaserstrahl 2 erzeugte Schmelzbad 7.

Die Strichlinie zwischen der ersten Laserstrahleinrichtung 1 a und der zweiten Laserstrahleinrichtung 1 a deutet an, dass beide Laserstrahleinheiten 1 a und 1 b optional auch separat ausgeführt sein können. In jedem Fall werden beide Laserstrahleinheiten 1 a und 1 b durch eine elektronische Steuereinheit 100 synchron angesteuert, mit der diese somit in kommunikativer Verbindung stehen.

Der Schweißlaserstrahl 2 besteht zum Laserstrahlschweißen aus einem Aufschmelz-Laserstrahlanteil 11 größeren Durchmessers, welcher im Wesentlichen die Schmelzbad-Breite B erzeugt. Hiervon eingeschlossen ist ein Tiefschweiß-Laserstrahlanteil 12 des Schweißlaserstrahls 2, welcher zur Erzeugung der Schmelzbad-Tiefe T und der Dampfkapillare dient. Gemäß Fig. 2 geht das Verfahren zum Laserstrahlschweißen der beiden Bauteile 5 und 6 durch die vorstehend beschriebene Vorrichtung von einem Bereitstellen A der beiden übereinander liegend angeordnet fixierten Bauteile 5 und 6 aus. Anschließend wird durch die erste Laserstrahleinrichtung 1a der vertikale Schweißlaserstrahl 2 im Rahmen eines Prozessschrittes B generiert und unmittelbar darauf folgend oder gleichzeitig mittels der zweiten Laserstrahleinrichtung 1 b der auf den Randbereich des Schmelzbades zielende Nebenlaserstrahl 3 im Rahmen des Prozessschrittes C. Durch Fortbewegung der beiden Laserstrahleinrichtungen 1 a und 1 b in Vorschubrichtung V erfolgt schließlich die spritzerarme Verschweißung der beiden Bauteile 5 und 6.

Die Erfindung ist nicht beschränkt auf das vorstehend beschriebene bevorzugte Ausführungsbeispiel. Es sind vielmehr auch Abwandlungen hiervon denkbar, welche vom Schutzbereich der nachfolgenden Ansprüche mit umfasst sind. So ist es beispielsweise möglich materialgleiche Bauteile unterschiedlicher Art zu verschweißen, beispielsweise auch Kunststoffbauteile. Hierfür sind die Schweißparameter, wie insbesondere Wellenlänge, Spotdurchmesser und Vorschubgeschwindigkeit des Schweißlaserstrahls sowie des Nebenlaserstrahls material- und geometriespezifisch anzupassen. Darüber hinaus ist es nicht zwingend erforderlich, dass der Schweißlaserstrahl orthogonal ausgerichtet ist. Es ist denkbar, dass dieser selbst unter einem spitzen Winkel auf das Bauteil einfällt. Wichtig ist die Einhaltung des spitzen Winkels zwischen Schweißlaserund Nebenlaserstrahl. So ist es auch denkbar, den Schweißlaserstrahl beispielsweise unter 20° Einfallswinkel zu betreiben und den Nebenlaserstrahl unter 50°, sodass sich zwischen den beiden Strahlen ein Winkel von 30° einstellt.