Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
FLAME-RETARDANT EXPANDABLE POLYMERS
Document Type and Number:
WIPO Patent Application WO/2011/035357
Kind Code:
A1
Abstract:
The invention relates to flame-retardant expandable polymers, in which a combination of at least one phosphorus compound as a flame retardant and at least one sulfur compound as an additional flame retardant or flame-retardant synergist is contained as a flame retardant system. According to the invention, the phosphorus compound is - elementary phosphorus and/or - at least one inorganic phosphorous compound and/or - at least one organic phosphorous compound of the following general formula (I) or (II), wherein the groups R1, R2, and R3 mean organic or inorganic groups independently of each other, and the sulfur compound is - elementary sulfur and/or - at least one inorganic or organic sulfur compound or compound containing sulfur.

Inventors:
EBERSTALLER ROMAN (AT)
HINTERMEIER GERHARD (AT)
Application Number:
PCT/AT2010/000346
Publication Date:
March 31, 2011
Filing Date:
September 22, 2010
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
SUNPOR KUNSTSTOFF GMBH (AT)
EBERSTALLER ROMAN (AT)
HINTERMEIER GERHARD (AT)
International Classes:
C08J9/00; C08K3/00; C08K5/00
Domestic Patent References:
WO2009035881A22009-03-19
WO2006027241A12006-03-16
WO2000034342A22000-06-15
WO2006027241A12006-03-16
Foreign References:
US4324865A1982-04-13
DE10256816A12004-03-18
FR1528215A1968-06-07
EP0834529A11998-04-08
JP2004035495A2004-02-05
JP2002069313A2002-03-08
JP2001115047A2001-04-24
Other References:
DATABASE WPI Week 200474, Derwent World Patents Index; AN 2004-750750, XP002615762
Attorney, Agent or Firm:
WILDHACK & JELLINEK PATENTANWÄLTE (AT)
Download PDF:
Claims:
Patentansprüche:

1. Flammgeschützte, vorzugsweise halogenfrei flammgeschützte, zumindest ein Treibmittel enthaltende, expandierbare Polymerisate, in denen als Flammschutzmittelsystem eine Kombination aus zumindest einer Phosphorverbindung als Flammschutzmittel und zumindest einer Schwefelverbindung, schwefelhältigen Verbindung und/oder Schwefel als zusätzliches Flammschutzmittel bzw. -Synergist enthalten ist, dadurch gekennzeichnet, dass

a) die Phosphorverbindung

elementarer Phosphor, insbesondere roter Phosphor, und/oder

- zumindest eine anorganische Phosphorverbindung oder Hydrolysate oder Salze davon und/oder

- zumindest eine organische Phosphorverbindung der folgenden allgemeinen For- mel (I) oder (II) oder Hydrolysate oder Salze davon, ist

R.

R--P: :0 R.-P:

2 I 2 i

R,

(I) (Ii) worin die Reste R t R2 und R3 jeweils unabhängig voneinander organische oder anorganische Reste bedeuten,

und dass

b) die Schwefelverbindung

elementarer Schwefel und/oder

- zumindest eine anorganische oder organische Schwefelverbindung bzw. schwefelhaltige Verbindung ist.

2. Expandierbare Polymerisate nach Anspruch 1 , dadurch gekennzeichnet, dass die Phosphorverbindung(en) in einer Menge von 0,5 bis 25 Gew.-%, insbesondere 3 bis 15 Gew.-%, bezogen auf das Gesamtgewicht des Polymers, enthalten ist/sind.

3. Expandierbare Polymerisate nach der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Schwefelverbindung(en) in einer Menge von 0,5 bis 25 Gew.-%, insbesondere 3 bis 15 Gew.-%, bezogen auf das Gesamtgewicht des Polymers, enthalten ist/sind.

4. Expandierbare Polymerisate nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass gelber Cyclooctaschwefel (S8) in einer Menge von 0,1 bis 10 Gew.- %, insbesondere in einer Menge von etwa 0,5 bis 5 Gew.-%, vorzugsweise etwa 2 Gew.- %, bezogen auf das Gesamtgewicht des Polymers enthalten ist.

5. Expandierbare Polymerisate nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Schwefelverbindung(en) bei einer Analyse mittels Thermogra- vimetrie unterhalb von 115°C eine Gewichtsabnahme von weniger als 10 Gew.-% aufwei- sen.

6. Expandierbare Polymerisate nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Phosphorverbindung(en) bei einer Analyse mittels Thermogra- vimetrie unterhalb von 115°C eine Gewichtsabnahme von weniger als 10 Gew.-% aufwei- sen.

7. Expandierbare Polymerisate nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Schwefelverbindung(en) zumindest eine S-S-Bindung aufweist, wobei zumindest eines der Schwefelatome in zweiwertiger Form vorliegt.

8. Expandierbare Polymerisate nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die expandierbaren Polymerisate expandierbare Styrolpolymerisate (EPS) bzw. expandierbare Styrolpolymer Granulate (EPS) sind, welche insbesondere aus Homo- und Copolymeren von Styrol, vorzugsweise glasklares Polystyrol (GPPS), Schlag- zähpolystyrol (HIPS), anionisch polymerisiertes Polystyrol oder Schlagzähpolystyrol (A- IPS), Styrol-alpha-Methylstyrol-copolymere, Acrylnitril-Butadien-Styrolpolymerisate (ABS), Styrol-Acrylnitril (SAN) Acrylnitril-Styrol-Acrylester (ASA), Methyacrylat-Butadien-Styrol (MBS), Methylmethacrylat-Acrylnitril-Butadien-Styrol (MABS)-polymerisate oder Mischungen davon oder mit Polyphenylenether (PPE) oder Polyphenylensulfid (PPS) bestehen.

9. Verfahren zur Herstellung von flammgeschützten, expandierbaren Polymerisaten gemäß einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass als Flammschutzmittel zumindest eine Phosphorverbindung gemäß einem der vorangehenden Ansprüche sowie als zusätzliches Flammschutzmittel bzw. -Synergist zumindest eine Schwefelver- bindung gemäß einem der vorangehenden Ansprüche eingesetzt wird.

10. Verfahren zur Herstellung von flammgeschützten, expandierbaren Styrolpolymeri- saten (EPS) nach Anspruch 9,

wobei die Phosphorverbindung(en) und die Schwefelverbindung(en) und ein Treibmittel mit einer Styrolpolymerschmelze mit Hilfe eines dynamischen bzw. statischen Mischers gemischt und anschließend granuliert werden

oder

wobei die Phosphorverbindung(en) und die Schwefelverbindung(en) mittels eines dynamischen bzw. statischen Mischers zu noch granulatförmigem Polystyrolpolymerisat zugemischt und aufgeschmolzen werden, und die Schmelze anschließend mit Treibmittel versetzt und granuliert wird

oder

wobei die Phosphorverbindung(en) und die Schwefelverbindung(en) mittels eines dynamischen bzw. statischen Mischers zu noch granulatförmigem EPS oder zugemischt werden, und die Mischung anschließend aufgeschmolzen und granuliert wird

oder

- wobei die Granulatherstellung durch Suspensions-Polymerisation von Styrol in wässriger Suspension in Gegenwart der Phosphorverbindung(en) und der Schwe- felverbindung(en) und eines Treibmittels erfolgt.

11. Verfahren zur Herstellung von flammgeschützten expandierbaren Styrolpolymeri- saten (EPS) nach Anspruch 9 oder 10 umfassend die Schritte:

Gemeinsames Dosieren in einen Extruder von PS- oder EPS-Granulat mit einem Molekulargewicht von Mw > 120 000 g/mol, bevorzugt von 150 000 bis 250 000 g/mol, besonders bevorzugt von 180 000 bis 220 000 g/mol, sowie von den Phos- phorverbindung(en) und den Schwefelverbindung(en) und gegebenenfalls von einem oder mehreren weiteren Additiven, insbesondere

a) Flammschutzsynergisten, z.B. thermische Radikalbildner, wie Dicumylperoxid, in einer Konzentration von 0,1 bis 20 Gew.-%,

b) Infrarottrübungsmittel, z.B. Graphit, Ruß, Aluminium, Titandioxid, in einer Konzentration von 0,1 bis 1 Gew.-%,

c) Stabilisatoren, z.B. Nitroxyl-Radikal bildende Substanzen, wie HTEMPO, in einer Konzentration von 0,1 bis 1 Gew.-%,

d) weitere halogenierte oder halogenfreie Flammschutzmittel, z.B. HBCD, DOP- O, Magnesiumhydroxid, in einer Konzentration von 0,1 bis 20 Gew.-% und/oder e) Füllstoffe, z.B. Kreide, Talkum, Silikate, in einer Konzentration von 1 bis 20 Gew.-%

Gemeinsame Aufschmelzung aller Komponenten im Extruder,

Optionale Zudosierung zumindest eines Treibmittels,

- Mischung aller Komponenten bei einer Temperatur > 120°C,

Granulierung mittels druckbeaufschlagter Unterwassergranulierung, bei z.B. 1-20 bar, zu einer Granulatgröße < 5 mm, bevorzugt 0,2 bis 2,5 mm, bei einer Wassertemperatur von 30 bis 100°C, insbesondere 50 bis 80°C,

gegebenenfalls oberflächliche Beschichtung mit Coatingmitteln, z.B. Silikate, Me- tallsalze von Fettsäuren, Fettsäureester, Fettsäureamide.

12. Flammgeschützte, expandierbare Styrolpolymerisate (EPS) erhältlich nach einem Verfahren gemäß einem der Ansprüche 9 bis 11. 13. Polymerschaumstoff, insbesondere Styrolpolymer-Partikelschaumstoff oder extru- dierter Polystyrol-Hartschaum (XPS), enthaltend als Flammschutzmittel zumindest eine Phosphorverbindung gemäß einem der Ansprüche 1 bis 8 sowie als zusätzliches Flammschutzmittel bzw. -Synergist zumindest eine Schwefelverbindung gemäß einem der Ansprüche 1 bis 8.

14. Polymerschaumstoff nach Anspruch 13 erhältlich aus flammgeschützten expandierbaren Polymerisaten gemäß einem der Ansprüche 1 bis 8, insbesondere aus expandierbaren Styrolpolymerisaten (EPS), insbesondere durch Aufschäumen und Vereintem der Polymerisate oder durch Extrusion.

15. Polymerschaumstoff nach Anspruch 13 oder 14 mit einer Dichte zwischen 7 und 200 g/l und/oder einer überwiegend geschlossenzelligen Zellstruktur mit mehr als 0,5 Zellen pro mm3 bzw. einer Struktur bei der mehr als 80% der Zellen geschlossenzellig sind. 16. Verwendung von zumindest einer Phosphorverbindung als Flammschutzmittel gemäß einem der Ansprüche 1 bis 8, in Kombination mit zumindest einer Schwefelverbindung als zusätzliches Flammschutzmittel bzw. -Synergist gemäß einem der Ansprüche 1 bis 8,

in expandierbaren Polymerisaten, insbesondere in expandierbaren Styrolpolymeri- säten (EPS) bzw. expandierbaren Styrolpolymer Granulaten (EPS) gemäß Anspruch 8,

oder in Polymerschaumstoffen, insbesondere in Styrolpolymer-Partikelschaumstoffen, erhältlich durch Aufschäumen aus expandierbaren Polymerisaten, oder in extru- dierten Polystyrol-Hartschäumen (XPS).

17. Flammgeschützte, zumindest ein Treibmittel enthaltende, expandierbare Polymerisate, in denen als Flammschutzmittel zumindest eine Phosphorverbindung der folgenden allgemeinen Formel (I) oder Hydrolysate oder Salze davon enthalten ist:

(I)

worin die Reste R jeweils unabhängig voneinander:

-H, substituiertes oder nicht substituiertes d-C15-Alkyl, d-C^-Alkenyl, C3-C8-Cycloalkyl, C6-C18-Aryl, C7-C30-Alkylaryl, Ci-C8-Alkoxy oder CrC8-Alkylthio, oder -OH oder -SH sowie Alkalimetall-, Erdalkalimetall-, Ammonium- oder Phosphonium-Salze davon, bedeuten, dadurch gekennzeichnet, dass als zusätzliches Flammschutzmittel bzw. -Synergist Schwefel und/oder zumindest eine schwefelhältige Verbindung bzw. Schwefelverbindung enthalten ist.

18. Expandierbare Polymerisate nach Anspruch 17, dadurch gekennzeichnet, dass die Reste R Alkyl-, Alkoxy- oder Alkylthiogruppen mit 1 bis 4 Kohlenstoffatomen, noch bevor- zugter 1 oder 2 Kohlenstoffatomen, darstellen.

19. Expandierbare Polymerisate nach Anspruch 17 oder 18, dadurch gekennzeichnet, dass die Reste R einen schwefel- bzw. phosphorhältigen Substituenten aufweisen. 20. Expandierbare Polymerisate nach einem der Ansprüche 17 bis 19, dadurch gekennzeichnet, dass als Phosphorverbindung 9, 10-Dihydro-9-oxa-10-phosphaphenantren- 10-oxid (DOPO),

dessen Hydrolyseprodukt oder Metallsalz enthalten ist.

21. Expandierbare Polymerisate nach einem der Ansprüche 17 bis 20, dadurch ge- kennzeichnet, dass das/die Phosphorverbindung(en) als Flammschutzmittel in einer Menge von 0,5 bis 25 Gew.-%, insbesondere 3 bis 15 Gew.-%, bezogen auf das Gesamtgewicht des Polymers, enthalten ist/sind.

22. Expandierbare Polymerisate nach einem der Ansprüche 17 bis 21 , dadurch ge- kennzeichnet, dass gelber Cyclooctaschwefel (S8), insbesondere in einer Menge von 0,1 bis 10 Gew%, insbesondere in einer Menge von etwa 0,5 bis 5 Gew%, vorzugsweise etwa 2 Gew%, bezogen auf das Gesamtgewicht des Polymers enthalten ist.

23. Expandierbare Polymerisate nach einem der Ansprüche 17 bis 22, dadurch ge- kennzeichnet, dass die schwefelhaltigen Verbindungen bzw. Schwefelverbindungen bei einer Analyse mittels Thermogravimetrie unterhalb von 115°C eine Gewichtsabnahme von weniger als 10 Gew.-% aufweisen.

24. Expandierbare Polymerisate nach einem der Ansprüche 17 bis 23, dadurch ge- kennzeichnet, dass die schwefelhaltige Verbindung bzw. Schwefelverbindung zumindest eine S-S-Bindung aufweist, wobei zumindest eines der Schwefelatome in zweiwertiger Form vorliegt.

25. Expandierbare Polymerisate nach einem der Ansprüche 17 bis 24, dadurch ge- kennzeichnet, dass die expandierbaren Polymerisate expandierbare Styrolpolymerisate

(EPS) bzw. expandierbare Styrolpolymer Granulate (EPS) sind, welche insbesondere aus Homo- und Copolymeren von Styrol, vorzugsweise glasklares Polystyrol (GPPS), Schlagzähpolystyrol (Hl PS), anionisch polymerisiertes Polystyrol oder Schlagzähpolystyrol (A- IPS), Styrol-alpha-Methylstyrol-copolymere, Acrylnitril-Butadien-Styrolpolymerisate (ABS), Styrol-Acrylnitril (SAN) Acrylnitril-Styrol-Acrylester (ASA), Methyacrylat-Butadien-Styrol (MBS), Methylmethacrylat-Acrylnitril-Butadien-Styrol (MABS)-polymerisate oder Mischungen davon oder mit Polyphenylenether (PPE) bestehen.

26. Verfahren zur Herstellung von flammgeschützten, expandierbaren Polymerisaten gemäß einem der Ansprüche 17 bis 25, dadurch gekennzeichnet, dass als Flammschutzmittel zumindest eine Phosphorverbindung der allgemeinen Formel (I) gemäß ei- nem der Ansprüche 1 bis 21 , bzw. ringgeöffnete Hydrolysate oder Salze davon, eingesetzt wird, sowie als zusätzliches Flammschutzmittel bzw. -Synergist Schwefel und/oder zumindest eine schwefelhäitige Verbindung bzw. Schwefelverbindung gemäß einem der Ansprüche 1 , 22, 23 und/oder 24. 27. Verfahren zur Herstellung von flammgeschützten expandierbaren Styrolpolymeri- saten (EPS) nach Anspruch 26,

- wobei die Phosphorverbindung, der Schwefel bzw. die Schwefelverbindung und ein Treibmittel mit einer Styrolpolymerschmelze mit Hilfe eines dynamischen bzw. statischen Mischers gemischt und anschließend granuliert werden

oder

wobei die Phosphorverbindung und der Schwefel bzw. die Schwefelverbindung, mittels eines dynamischen bzw. statischen Mischers zu noch granulatförmigem Polystyrolpolymerisat zugemischt und aufgeschmolzen werden, und die Schmelze anschließend mit Treibmittel versetzt und granuliert wird

oder

- wobei die Phosphorverbindung und der Schwefel bzw. die Schwefelverbindung mittels eines dynamischen bzw. statischen Mischers zu noch granulatförmigem EPS oder zugemischt werden, und die Mischung anschließend aufgeschmolzen und granuliert wird

oder

wobei die Granulatherstellung durch Suspensions-Polymerisation von Styrol in wässriger Suspension in Gegenwart der Phosphorverbindung, des Schwefels bzw. der Schwefelverbindung und eines Treibmittels erfolgt. 28. Verfahren zur Herstellung von flammgeschützten expandierbaren Styrolpolymeri- saten (EPS) nach Anspruch 26 oder 27 umfassend die Schritte:

- Gemeinsames Dosieren in einen Extruder von PS- oder EPS-Granulat mit einem Molekulargewicht von Mw > 120 000 g/mol, bevorzugt von 150 000 bis 250 000 g/mol, besonders bevorzugt von 180 000 bis 220 000 g/mol, sowie von der Phosphorverbindung, dem Schwefel bzw. der Schwefelverbindung und gegebenenfalls von einem oder mehreren weiteren Additiven, insbesondere f) Flammschutzsynergisten, z.B. thermische Radikalbildner, wie Dicumylperoxid, in einer Konzentration von 0,1 bis 20 Gew%,

g) Infrarottrübungsmittel, z.B. Graphit, Ruß, Aluminium, Titandioxid, in einer Konzentration von 0,1 bis 1 Gew%,

h) Stabilisatoren, z.B. Nitroxyl-Radikal bildende Substanzen, wie HTEMPO, in einer Konzentration von 0,1 bis 1 Gew%,

i) weitere halogenierte oder halogenfreie' Flammschutzmittel, z.B. HBCD, DOP- O, agnesiumhydroxid, in einer Konzentration von 0,1 bis 20 Gew% und/oder j) Füllstoffe, z.B. Kreide, Talkum, Silikate, in einer Konzentration von 1 bis 20 Gew%

Gemeinsame Aufschmelzung aller Komponenten im Extruder,

Optionale Zudosierung zumindest eines Treibmittels,

Mischung aller Komponenten bei einer Temperatur > 120°C,

- Granulierung mittels druckbeaufschlagter Unterwassergranulierung, bei z.B. 1-20 bar, zu einer Granulatgröße < 5 mm, bevorzugt 0,2 bis 2,5 mm, bei einer Wassertemperatur von 30 bis 100°C, insbesondere 50 bis 80°C,

gegebenenfalls oberflächliche Beschichtung mit Coatingmitteln, z.B. Silikate, Metallsalze von Fettsäuren, Fettsäureester, Fettsäureamide.

29. Flammgeschützte, expandierbare Styrolpolymerisate (EPS) erhältlich nach Verfahren gemäß einem der Ansprüche 26 bis 28.

30. Polymerschaumstoff, insbesondere Styrolpolymer-Partikelschaumstoff oder extru- dierter Polystyrol-Hartschaum (XPS), enthaltend als Flammschutzmittel zumindest eine Phosphorverbindung der allgemeinen Formel (I) gemäß einem der Ansprüche 17 bis 21 , bzw. Hydrolysate oder Salze davon, sowie als zusätzliches Flammschutzmittel bzw. - Synergist Schwefel und/oder zumindest eine schwefelhältige Verbindung bzw. Schwefelverbindung gemäß einem der Ansprüche 17, 22, 23 und/oder 24. 31. Polymerschaumstoff nach Anspruch 30 erhältlich aus flammgeschützten expandierbaren Polymerisaten gemäß einem der Ansprüche 17 bis 25, insbesondere aus expandierbaren Styrolpolymerisaten (EPS), insbesondere durch Aufschäumen und Versintern der Polymerisate oder durch Extrusion.

32. Polymerschaumstoff nach Anspruch 30 oder 31 mit einer Dichte zwischen 7 und 200 g/l und/oder einer überwiegend geschlossenzelligen Zellstruktur mit mehr als 0,5 Zellen pro mm3 bzw. einer Struktur bei der mehr als 80% der Zellen geschlossenzellig sind.

33. Verwendung von zumindest einer Phosphorverbindung der allgemeinen Formel (I) gemäß einem der Ansprüche 17 bis 21 , bzw. von Hydrolysaten oder Salzen davon, in Kombination mit Schwefel und/oder einer schwefelhältigen Verbindung bzw. Schwefelverbindung gemäß einem der Ansprüche 17, 22, 23 und/oder 24 als Flammschutzmittel bzw. -Synergisten

in expandierbaren Polymerisaten, insbesondere in expandierbaren Styrolpolymeri- saten (EPS) bzw. expandierbaren Styrolpolymer Granulaten (EPS) gemäß Anspruch 25,

oder

in Polymerschaumstoffen, insbesondere in Styrolpolymer-Partikelschaumstoffen, erhältlich durch Aufschäumen aus expandierbaren Polymerisaten, oder in extru- dierten Polystyrol-Hartschäumen (XPS).

Description:
Flammgeschützte expandierbare Polymerisate

Die vorliegende Erfindung betrifft in einem ersten Aspekt flammgeschützte, zumindest ein Treibmittel enthaltende, expandierbare Polymerisate, in denen als Flamm- schutzmittelsystem eine Kombination aus zumindest einer Phosphorverbindung als Flammschutzmittel und zumindest einer Schwefelverbindung als zusätzliches Flammschutzmittel bzw. -Synergist enthalten ist.

Die Erfindung betrifft weiters Verfahren zur Herstellung dieser Polymerisate, weiters mit diesen Flammschutzmittelsystemen geschützte Polymerschaumstoffe und Verfah- ren zu deren Herstellung, sowie die besondere Verwendung obenstehender Flammschutzmittelsysteme in expandierbaren Polymerisaten sowie Polymerschaumstoffen.

Die Erfindung betrifft in einem zweiten besonders vorteilhaften Aspekt flammgeschützte, zumindest ein Treibmittel enthaltende, expandierbare Polymerisate, in denen als Flammschutzmittel zumindest eine Phosphorverbindung der folgenden allgemeinen Formel (I) oder Hydrolysate oder Salze davon enthalten ist:

(I)

worin die Reste R jeweils unabhängig voneinander:

-H, substituiertes oder nicht substituiertes CrCi 5 -Alkyl, CrCi 5 -Alkenyl, C 3 -C 8 -Cycloalkyl, C 6 -C 18 -Aryl, C 7 -C 3 o-Alkylaryl, d-Cg-Alkoxy oder C C 8 -Alkylthio, oder -OH oder -SH sowie Alkalimetall-, Erdalkalimetall-, Ammonium- oder Phosphonium-Salze davon, bedeuten.

Die Erfindung gemäß dem zweiten Aspekt betrifft weiters Verfahren zur Herstellung dieser Polymerisate, weiters mit diesen Flammschutzmitteln geschützte Polymerschaumstoffe und Verfahren zu deren Herstellung, sowie die besondere Verwendung o- benstehender Flammschutzmittel in expandierbaren Polymerisaten sowie Polymerschaumstoffen. erster Aspekt der Erfindung (Ansprüche 1 bis 16):

Die Ausrüstung von Polymerschaumstoffen mit Flammschutzmitteln ist für viele Bereiche von Bedeutung bzw. vorgeschrieben. Die Reglementierungen über die Verwen- dung von Polystyrol-Partikelschaumstoffen aus expandierbarem Polystyrol (EPS) oder von Polystyrol-Extrusionsschaumstoffplatten (XPS) als Isoliermaterial für Gebäude verlangen in den meisten Fällen eine Flammschutzausrüstung. Polystyrol-Homo- und Copo- lymere werden überwiegend mit halogenhaltigen, insbesondere bromierten organischen Verbindungen wie Hexabromcyclododecan (HBCD) schwer entflammbar gemacht. Diese und eine Reihe anderer bromierter Substanzen sind jedoch auf Grund ihrer potentiellen Umwelt- und Gesundheitsgefährdung in Diskussion geraten bzw. bereits verboten.

Als Alternative existieren zahlreiche halogenfreie Flammschutzmittel. Halogenfreie Flammschutzmittel müssen jedoch zur Erreichung der gleichen Flammschutzwirkung der halogenhaltigen Flammschutzmittel in der Regel in deutlich höheren Mengen eingesetzt werden.

Unter anderem aus diesem Grund können halogenfreie Flammschutzmittel, die in kompakten thermoplastischen Polymeren einsetzbar sind, häufig nicht in gleicher Weise in Polymerschaumstoffen eingesetzt werden, da sie entweder den Schäumprozess stören oder die mechanischen und thermischen Eigenschaften des Polymerschaumstoffes be- einflussen. Bei der Herstellung von expandierbarem Polystyrol durch Suspensionspolymerisation können die hohen Flammschutzmittelmengen außerdem die Stabilität der Suspension verringern und somit das Herstellungsverfahren stören bzw. beeinträchtigen.

Die Wirkung der bei kompakten Polymeren eingesetzten Flammschutzmittel in Polymerschaumstoffen ist häufig aufgrund der Besonderheiten von derartigen Schaumstof- fen und des unterschiedlichen Brandverhaltens bzw. wegen unterschiedlicher Brandtests nicht vorhersagbar.

Aus dem Stand der Technik ist der Einsatz von phosphorhaltigen Substanzen in expandierbaren Polymerisaten grundsätzlich bekannt:

Die EP-A 834 529 beschreibt expandierbare Styrolpolymerisate, die als halogenfreies Flammschutzmittel eine Mischung aus einer Phosphorverbindung und einem wasserabspaltenden Metallhydroxid enthalten. Bevorzugt werden 5 bis 10 Gew.-% Mg(OH) und 5 bis 10 Gew.-% Triphenylphoshat (TPP) in einem Extruder in geschmolzenes Polystyrol eingearbeitet und granuliert und das Granulat in wässriger Suspension mit Treib- mittel nach imprägniert.

Die WO 00/34342 beschreibt ein Verfahren zur Herstellung von expandierbarem Polystyrol durch Suspensionspolymerisation von Styrol in Gegenwart von 5 bis 50 Gew.- % Blähgraphit und gegebenenfalls 2 bis 20 Gew.-% einer Phosphorverbindung als Flammschutzmittel.

Außerdem ist z.B. in der WO 2006/027241 ein halogenfreies Flammschutzmittel für Polymerschaumstoffe beschrieben, nämlich die Phosphorverbindung 9,10-Dihydro-9- oxa-10-phospha-phenantren-10-oxid (6H-Dibenz[c,e]-oxaphosphorin-6-oxid, DOP-O, CAS [35948-25-5]).

Dieses Flammschutzmittel ist bereits einigermaßen gut einsetzbar, es besteht jedoch der Bedarf, derartige Polymerisate bzw. Polymerschaumstoffe noch brandbeständiger zu machen und dies bei möglichst geringem Gehalt an Flammschutzmitteln bzw. ohne den Gehalt an Flammschutzmitteln zu erhöhen.

Aufgabe des ersten Aspektes der vorliegenden Erfindung ist es somit, ein gut brandbeständiges flammgeschütztes expandierbares Polymerisat mit geringem Gehalt an Flammschutzmitteln und guter Qualität zu schaffen.

Dabei ist es insbesondere wünschenswert, dass das Polymer auch die strengen

Anforderungen an die Brandbeständigkeit für z.B. Bauanwendungen erfüllen kann, wie beispielsweise den B2-Kleinbrennertest nach DIN 4102-2 oder den Brandtest nach EN 11925-2.

Weiters ist es Aufgabe des ersten Aspektes der der Erfindung, ein vorteilhaftes Verfahren zur Herstellung derartiger Polymerisate zu schaffen.

Eine weitere Aufgabe des ersten Aspektes der der Erfindung besteht darin, einen halogenfrei flammgeschützten, jedoch qualitativ entsprechenden, Polymerschaumstoff mit vorteilhaftem Brandverhalten sowie guten mechanischen Eigenschaften sowie ein vorteilhaftes Herstellungsverfahren dafür zu schaffen.

Diese Aufgaben werden durch die unabhängigen Ansprüche 1 , 9, 12 und 16 des ersten Aspektes der Erfindung gelöst.

Die Aufgabe wird bei einem Polymerisat bzw. einem Polymerschaumstoff der ein- gangs erwähnten Art dadurch gelöst, dass im Flammschutzmittelsystem die als Flammschutzmittel wirkende Phosphorverbindung

- elementarer Phosphor, insbesondere roter Phosphor, und/oder

- zumindest eine anorganische Phosphorverbindung oder Hydrolysate oder Salze davon und/oder

- zumindest eine organische Phosphorverbindung der folgenden allgemeinen Formel (I) oder (II) oder Hydrolysate oder Salze davon, ist ■? 1

R 2 -P:

2 i

R, R 3

(l) (Ii) worin die Reste Ri , R 2 und R 3 jeweils unabhängig voneinander organische oder anorganische Reste bedeuten,

und dass die als Flammschutzmittel bzw. -Synergist wirkende Schwefelverbindung

elementarer Schwefel und/oder

- zumindest eine anorganische oder organische Schwefelverbindung bzw. schwe- felhältige Verbindung ist. Überraschend wurde festgestellt, dass derart flammgeschützte Polymerisate und

Polymerschaumstoffe eine in unerwartetem Ausmaß verbesserte Wirkung als Flammschutzmittel aufweisen. Dadurch kann die Gesamtmenge an Flammschutzmitteln verringert werden, was zu einer Vielzahl an Vorteilen, u.a. im Herstellungsverfahren, bei den Kosten, den mechanischen Eigenschaften des Produktes etc. führt. Insbesondere werden auch der Schäumprozess und die mechanischen Eigenschaften des Schaums nicht wesentlich beeinflusst wodurch ein qualitativ hochwertiges Produkt entsteht.

Unter dem Begriff der Phosphorverbindungen werden im vorliegenden Text sowohl elementarer Phosphor als auch organische und anorganische Phosphorverbindungen und/oder phosphorhältige Verbindungen sowie Hydrolysate oder Salze davon verstanden bzw. subsumiert.

Elementarer Phosphor tritt in vier allotropen Modifikationen als weißer, roter, schwarzer und violetter Phosphor auf. Jeder dieser Grundtypen bildet verschiedene Kris- tallstrukturen, wodurch es auch zu Unterschieden in den physikalischen Eigenschaften und Reaktivitäten kommt. Als Flammschutzmittel ist der rote Phosphor am vorteilhaftesten einsetzbar.

Als anorganische Phosphorverbindungen kommen vorteilhafterweise die (Po- ly)phosphate, wie nicht kondensierte Salze der phosphorigen Säure oder kondensierte Salze, wie Ammoniumphosphat und Ammoniumpolyphosphat, in Frage.

Die erfindungsgemäß verwendeten organischen Phosphorverbindungen der allgemeinen Formel (I) oder (II) R R können aus den phosphororganischen Verbindungen, wie monomeren organischen Phosphorverbindungen, oder polymeren organischen Phosphorverbindungen, den anorganischen Phosphorverbindungen, etc. ausgewählt werden, wobei R 2 und R 3 unabhängig voneinander organische oder anorganische Reste bezeichnen, die dem Fachmann aus dem Stand der Technik bekannt sind. Die Substituenten bzw. Reste R sind untereinander unabhängig und können gleich oder verschieden sein bzw. sogar ganz fehlen. Die Reste R können vorzugsweise jeweils unabhängig voneinander bedeuten: -H, substituiertes oder nicht substituiertes C1-C15- Alkyl, d-C^-Alkenyl, C 3 -C 8 -Cycloalkyl, C 6 -C 18 -Aryl, C 7 -C 30 -Alkylaryl, CrC 8 -Alkoxy oder d-Ce-Alkylthio, oder -OH oder -SH sowie Alkalimetall-, Erdalkalimetall-, Ammonium- oder Phosphonium-Salze davon.

Unter dem "Alkyl"-Anteil der optionalen Substituenten R der Phosphorverbindungen gemäß Formel (I) sind sowohl gesättigte als auch ungesättigte Aliphaten zu verstehen, die unverzweigt oder verzweigt sein können, wobei ungesättigte Gruppen bevorzugt sind. Die Substituenten R umfassen vorzugsweise kurzkettige Alkylgruppen mit nicht mehr als 6, noch bevorzugter nicht mehr als 4 oder 3, noch bevorzugter nicht mehr als 2, Kohlenstoffatomen bzw. Phenyl als Arylgruppe. Kürzerkettige Reste sind bevorzugt, da längerkettige Reste, ein hoher Sättigungsgrad sowie eine größere Anzahl an Substituenten die Flammschutzwirkung nachteilig beeinflussen können. Besonders wirkungsvolle Phosphorverbindungen sind bevorzugt möglichst unsubstituiert.

Falls Substituenten R vorhanden sind, weisen diese vorzugsweise einen schwefelhaltigen Substituenten, wie z.B. -SH, -SO3NH4, -SO- oder -S0 2 -, oder einen phosphorhäl- tigen Substituenten, wie z.B. -PO(ONH 4 ) 2 oder dergleichen, auf, um so die Flammschutzwirkung weiter zu verbessern.

Von den optionalen Salzen etwaiger SH- oder OH-Gruppen der Phosphorverbin- düngen sind Ammonium- und Phosphoniumsalze bevorzugt, da diese ebenfalls zur Flammschutzwirkung beitragen können. Die Ammonium- und Phosphonium-Ionen können anstelle von Wasserstoffatomen jeweils bis zu vier organische Reste, z.B. oben definierte Substituenten R, aufweisen (d.h. NR 4 + bzw. PR 4 + ), wobei jedoch im Falle von Ammonium Wasserstoff als Substituent bevorzugt wird. Beispiele für solche Phosphorverbindungen der allgemeinen Formel (I) oder (II) sind organische Phosphorverbindungen und deren Salze, wie die monomeren organischen Phosphorverbindungen, eingeschlossen Phosphorsäureester-, Phosphorsäureami- dester- und Phosphonitrilverbindungen, organische Verbindungen der phosphorigen Säure, wie beispielsweise Ester der phosphorigen Säure, Verbindungen der hypophosphori- gen Säure, der Phosphine und Phosphinoxide, wie beispielsweise Triphenylphosphin, Triphenylphosphinoxid und Tricresylphosphinoxid, etc. Mit Ausnahme der halogenierten Phosphorverbindungen, haben Phosphorverbindungen den Nachteil, dass, wie einleitend erwähnt, in der Regel relativ hohe Konzentrationen davon eingesetzt werden müssen, um eine ausreichende flammhemmende Wirkung zu erzielen. In Polymerschaumstoffen führen diese hohen Konzentrationen meist zu einem Kollaps der Schaumstruktur. Daher war es Aufgabe der vorliegenden Erfindung die- se Konzentrationen möglichst zu reduzieren. Dies konnte dadurch erreicht werden, dass zusätzlich schwefelhaltige Verbindungen zugegeben wurden, die überraschenderweise eine überdurchschnittliche Verbesserung der flammhemmenden Wirkung zeigten.

Eine vorteilhafte Ausführungsform der expandierbaren Polymerisate besteht darin, dass die Phosphorverbindung(en) als Flammschutzmittel in einer Menge von 0,5 bis 25 Gew.-%, insbesondere 3 bis 15 Gew.-%, bezogen auf das Gesamtgewicht des Polymers, enthalten ist/sind.

Als vorteilhaft haben sich Phosphorverbindungen erwiesen, die bei der Analyse mittels Thermogravimetrie (TGA) unterhalb von 115°C eine Gewichtsabnahme von kleiner 10 Gew.-% aufweisen.

Unter dem Begriff der Schwefelverbindungen werden im vorliegenden Text sowohl elementarer Schwefel als auch organische und anorganische Schwefelverbindungen und/oder schwefelhaltige Verbindungen sowie Hydrolysate oder Salze davon verstanden bzw. subsumiert.

Eine vorteilhafte Ausführungsform der expandierbaren Polymerisate besteht darin, dass die Schwefelverbindung(en) als Flammschutzmittel in einer Menge von 0,5 bis 25 Gew.-%, insbesondere 3 bis 15 Gew.-%, bezogen auf das Gesamtgewicht des Polymers, enthalten ist/sind. Besonders gut geeignet ist elementarer Schwefel bzw. gelber Cyclooctaschwefel (S 8 ), der vorteilhafterweise in einer Menge von 0,1 bis 10 Gew.-%, bevorzugt 0,5 bis 5 Gew.-%, besonders bevorzugt etwa 2 Gew.-%, bezogen auf das erhaltene EPS- Granulat zugegeben wird.

Als Schwefelverbindungen sind beispielsweise Sulfide, Sulfite, Sulfate, Sulfane, Sulfoxylate, Sulfone, Sulfonate, Thiosulfate, Thionite, Thionate, Disulfate, Sulfoxide, Schwefelnitride, Schwefelhalogenide und/oder Organoschwefelverbindungen wie Thiole, Thioether, Thiophene, etc. vorteilhaft einsetzbar.

Weiters haben sich Schwefelverbindungen als vorteilhaft erwiesen, die bei der A- nalyse mittels Thermogravimetrie (TGA) unterhalb von 115°C eine Gewichtsabnahme von kleiner 10 Gew.-% aufweisen, z.B Ammoniumthiosulfat, Dicaprolactamdisulfid, Zinksulfid, Polyphenylensulfid, etc..

Besonders vorteilhaft ist es, wenn die schwefelhaltige Verbindung bzw. Schwefelverbindung zumindest eine S-S-Bindung aufweist, wobei zumindest eines der Schwefelatome in zweiwertiger Form vorliegt, z.B. Disulfite, Dithionite, Cystin, Amylphenoldisulfid, Poly-tert-butylphenoldisulfid etc.

Besonders bevorzugte Kombinationen von Phosphorverbindungen und Schwefelverbindungen sind:

Ammoniumpolyphosphat mit gelben Schwefel (S 8 ),

- Ammoniumpolyphosphat mit Ammoniumthiosulfat,

- Ammoniumpolyphosphat mit Zinksulfid,

Triphenylphosphin mit Cystin und

Triphenylphosphin mit Polyphenylensulfid.

Die erfindungsgemäßen expandierbaren Polymerisate sind vorzugsweise expan- dierbare Styrolpolymerisate (EPS) bzw. expandierbare Styrolpolymer Granulate (EPS), welche insbesondere aus Homo- und Copolymeren von Styrol, vorzugsweise glasklares Polystyrol (GPPS), Schlagzähpolystyrol (Hl PS), anionisch polymerisiertes Polystyrol oder Schlagzähpolystyrol (A-IPS), Styrol-alpha-Methylstyrol-copolymere, Acrylnitril-Butadien- Styrolpolymerisate (ABS), Styrol-Acrylnitril (SAN) Acrylnitril-Styrol-Acrylester (ASA), Me- thyacrylat-Butadien-Styrol (MBS), Methylmethacrylat-Acrylnitril-Butadien-Styrol (MABS)- polymerisate oder Mischungen davon oder mit Polyphenylenether (PPE) oder Polypheny- lensulfid (PPS) bestehen. Gerade für Polystyrol ist der Bedarf an qualitativ hochwertigen Produkten besonders hoch.

Die genannten Styrolpolymere können zur Verbesserung der mechanischen Ei- genschaften oder der Temperaturbeständigkeit gegebenenfalls unter Verwendung von Verträglichkeitsvermittlern mit thermoplastischen Polymeren, wie Polyamiden (PA), Polyo- lefinen, wie Polypropylen (PP) oder Polyethylen (PE), Polyacrylaten, wie Polymethyl- methacrylat (PMMA), Polycarbonat (PC), Polyestern, wie Polyethylenterephthalat (PET) oder Polybutylenterephthalat (PBT), Polyethersulfonen (PES), Polyetherketonen oder Polyethersulfiden (PES) oder Mischungen davon in der Regel in Anteilen von insgesamt bis maximal 30 Gew.-%, bevorzugt im Bereich von 1 bis 10 Gew.-%, bezogen auf die Polymerschmelze, abgemischt werden.

Des weiteren sind Mischungen in den genannten Mengenbereichen auch mit z. B hydrophob modifizierten oder funktionalisierten Polymeren oder Oligomeren, Kautschu- ken, wie Polyacrylaten oder Polydienen, z. B. Styrol-Butadien-Blockcopolymeren oder biologisch abbaubaren aliphatischen oder aliphatisch/aromatischen Copolyestem möglich.

Als Verträglichkeitsvermittler eignen sich z.B. Maleinsäureanhydrid-modifizierte Styrolcopolymere, Epoxidgruppenhaltige Polymere oder Organosilane. Die Wirksamkeit des Flammschutzsystems kann durch den Zusatz geeigneter

Flammschutzsynergisten, wie die thermischen Radikalbildner Dicumylperoxid, Ditert- butylperoxid oder Dicumyl, noch weiter verbessert werden.

Auch können zusätzlich weitere Flammschutzmittel, wie Melamin, Melamincyanu- rate, Metalloxide, Metallhydroxide oder Synergisten wie Sb 2 0 3 oder Zn-Verbindungen, eingesetzt werden.

Wenn auf die vollständige Halogenfreiheit des Polymerisats oder des Polymerschaumstoffes verzichtet werden kann, können halogenreduzierte Schaumstoffe durch die Verwendung der Phosphorverbindungen und den Zusatz geringerer Mengen an halogen- haltigen, insbesondere bromierten Flammschutzmitteln, wie Hexabromcyclododecan (HBCD), bevorzugt in Mengen im Bereich von 0,05 bis 1 , insbesondere 0,1 bis 0,5 Gew.- %, hergestellt werden. Ein weiterer Aspekt der Erfindung betrifft die Herstellung derartiger Polymerisate.

Erfindungsgemäß können die eingangs erwähnten flammgeschützten, expandierbaren Polymerisate durch Beimischung der obenstehenden Phosphorverbindungen sowie Schwefel und/oder zumindest einer schwefelhaltigen Verbindung bzw. Schwefelverbindung in an sich bekannter Weise hergestellt werden.

Eine vorteilhafte Verfahrensführung sieht dabei vor, dass eine oder mehrere Phosphorverbindungen, die Schwefelverbindung(en) und ein Treibmittel mit einer Styrol- polymerschmelze mit Hilfe eines dynamischen bzw. statischen Mischers gemischt und anschließend granuliert werden.

Alternativ kann vorgesehen werden, dass eine oder mehrere Phosphorverbindungen, sowie die Schwefelverbindung(en) mittels eines dynamischen bzw. statischen Mischers zu noch granulatförmigem Polystyrolpolymerisat zugemischt und aufgeschmolzen werden und die Schmelze anschließend mit Treibmittel versetzt und granuliert wird.

Alternativ kann weiters vorgesehen werden, dass eine oder mehrere Phosphorverbindungen und die Schwefelverbindung(en) mittels eines dynamischen bzw. statischen Mischers zu noch granulatförmigem EPS oder zugemischt werden und die Mischung anschließend aufgeschmolzen und granuliert wird.

Alternativ kann weiters vorgesehen werden, dass die Granulatherstellung durch

Suspensions-Polymerisation von Styrol in wässriger Suspension in Gegenwart einer oder mehrerer Phosphorverbindungen, der Schwefelverbindung(en) und eines Treibmittels erfolgt. Ein weiteres erfindungsgemäßes Verfahren zur Herstellung der erfindungsgemäßen flammgeschützten expandierbaren Styrolpolymerisate (EPS) umfasst die Schritte:

Gemeinsames Dosieren in einen Extruder von PS- oder EPS-Granulat mit einem Molekulargewicht von Mw > 120 000 g/mol, bevorzugt von 150 000 bis 250 000 g/mol, besonders bevorzugt von 180 000 bis 220 000 g/mol, sowie von einer oder mehrerer Phosphorverbindungen, der Schwefelverbindung(en) und gegebenenfalls von einem oder mehreren weiteren Additiven,

Gemeinsames Aufschmelzen aller Komponenten im Extruder

Optionale Zudosierung zumindest eines Treibmittels

Mischung aller Komponenten bei einer Temperatur > 20°C

- Granulierung mittels druckbeaufschlagter Unterwassergranulierung, bei z.B. 1-20 bar, zu einer Granulatgröße < 5 mm, bevorzugt 0,2 bis 2,5 mm, bei einer Wassertemperatur von 30 bis 100°C, insbesondere 50 bis 80°C,

- gegebenenfalls oberflächliche Beschichtung mit Coatingmitteln, z.B. Silikate, Metallsalze von Fettsäuren, Fettsäureester, Fettsäureamide.

Die erfindungsgemäßen halogenfrei flammgeschützten, expandierbaren Styrolpo- lymere (EPS) und Styrolpolymerextrusionschaumstoffe (XPS) können durch Einmischen eines Treibmittels, einer oder mehrerer Phosphorverbindungen sowie von elementarem Schwefel und/oder einer schwefelhaltigen Verbindung bzw. Schwefelverbindung in die Polymerschmelze und anschließende Extrusion zu Schaumstoffplatten, Schaumstoffsträngen, oder expandierbaren Granulaten hergestellt werden.

Bevorzugt weist das expandierbare Styrolpolymer ein Molekulargewicht > 120.000, besonders bevorzugt im Bereich von 180.000 bis 220.000 g/mol auf. Aufgrund des Moleku- largewichtsabbau durch Scherung und/oder Temperatureinwirkung liegt das Molekulargewicht des expandierbaren Polystyrols in der Regel etwa 10.000 g/mol unter dem Mole- kulargewicht des eingesetzten Polystyrols.

Der Styrolpolymerschmelze können auch Polymerrezyklate der genannten thermoplastischen Polymeren, insbesondere Styrolpolymere und expandierbare Styrolpoly- mere (EPS) in Mengen zugemischt werden, die deren Eigenschaften nicht wesentlich verschlechtern, in der Regel in Mengen von maximal 50 Gew.-%, insbesondere in Mengen von 1 bis 20 Gew.-%.

Die treibmittelhaltige Styrolpolymerschmelze enthält in der Regel eine oder mehrere Treibmittel in homogener Verteilung in einem Anteil von insgesamt 2 bis 10 Gew.-% bevorzugt 3 bis 7 Gew.-%, bezogen auf die treibmittelhaltige Styrolpolymerschmelze. Als Treibmittel eignen sich die üblicherweise in EPS eingesetzten physikalischen Treibmittel, wie aliphatische Kohlenwasserstoffe mit 2 bis 7 Kohlenstoffatomen, Alkohole, Ketone, Ether oder halogenierte Kohlenwasserstoffe. Bevorzugt wird iso-Butan, n-Butan, iso- Pentan, n-Pentan eingesetzt. Für XPS werden bevorzugt C0 2 oder Mischungen mit Alkoholen oder Ketonen eingesetzt.

Die zugesetzte Treibmittelmenge wird so gewählt, dass die expandierbaren Styrolpolymere (EPS) ein Expansionsvermögen von 7 bis 200 g/l, bevorzugt 10 bis 50 g/l aufweisen.

Die erfindungsgemäßen expandierbaren Styrolpolymergranulate (EPS) weisen in der Regel eine Schüttdichte von höchstens 700 g/l bevorzugt im Bereich von 590 bis 660 g/l auf.

Des weiteren können der Styrolpolymerschmelze Additive, Keimbildner, Füllstoffe, Weichmacher, lösliche und unlösliche anorganische und/oder organische Farbstoffe und Pigmente, z.B. IR-Absorber, wie Russ, Graphit oder Aluminiumpulver, gemeinsam oder räumlich getrennt, z.B. über Mischer oder Seitenextruder, zugegeben werden. In der Regel werden die Farbstoffe und Pigmente in Mengen im Bereich von 0,01 bis 30, bevorzugt im Bereich von 1 bis 10 Gew.-%, zugesetzt. Zur homogenen und mikrodispersen Verteilung der Pigmente in dem Styrolpolymer kann es insbesondere bei polaren Pigmenten zweckmäßig sein, ein Dispergierhilfsmittel, z.B Organosilane, epoxygruppenhaltige Polymere oder Maleinsäureanhydrid-gepfropfte Styrolpolymere, einzusetzen. Bevorzugte Weichmacher sind Mineralöle, Phthalate, die in Mengen von 0,05 bis 10 Gew.-%, bezogen auf das Styrolpolymerisat, eingesetzt werden können.

Ein weiterer Aspekt der Erfindung betrifft einen Polymerschaumstoff, insbesondere einen Styrolpolymer-Partikelschaumstoff oder einen extrudierten Polystyrol-Hartschaum (XPS), enthaltend als Flammschutzmittel zumindest eine der eingangs beschriebenen Phosphorverbindungen, sowie elementaren Schwefel und/oder zumindest eine Schwefel- hältige Verbindung bzw. Schwefelverbindung.

Ein vorteilhafter Polymerschaumstoff ist erhältlich aus den erfindungsgemäßen flammgeschützten expandierbaren Polymerisaten, insbesondere aus expandierbaren Sty- rolpolymerisaten (EPS), insbesondere durch Aufschäumen und Versintern der Polymeri- satkügelchen oder durch Extrusion des Granulates.

Die halogenfreien, flammgeschützten Polymerschaumstoffe weisen bevorzugt eine Dichte im Bereich von 8 bis 200 g/l, besonders bevorzugt im Bereich von 10 bis 50 g/l auf und sind bevorzugt zu mehr als 80 %, besonders bevorzugt zu 95 bis 100%, geschlos- senzellig bzw. besitzen eine überwiegend geschlossenzellige Zellstruktur mit mehr als 0,5 Zellen pro mm 3 .

Erfindungsgemäß wird zumindest eine der Phosphorverbindungen, in Kombination mit Schwefel und/oder einer schwefelhältigen Verbindung bzw. Schwefelverbindung als Flammschutzmittel bzw. -Synergist in expandierbaren Polymerisaten, insbesondere in expandierbaren Styrolpolymerisaten (EPS) bzw. expandierbaren Styrolpolymer Granulaten (EPS) oder in Polymerschaumstoffen, insbesondere in Styrolpolymer- Partikelschaumstoffen, erhältlich durch Aufschäumen aus expandierbaren Polymerisaten, oder in extrudierten Polystyrol-Hartschäumen (XPS), eingesetzt.

Zur Herstellung von flammgeschütztem extrudierten Polystyrol-Hartschaum (XPS) werden die Phosphorverbindungen, die Schwefelverbindungen und ein Treibmittel mit einer Styrolpolymerschmelze mit Hilfe eines dynamischen bzw. statischen Mischers ge- mischt und anschließend geschäumt oder die Phosphorverbindungen und die Schwefelverbindungen werden mittels eines dynamischen bzw. statischen Mischers zu noch gra- nulatförmigem Polystyrolpolymerisat zugemischt und aufgeschmolzen, und die Schmelze anschließend mit Treibmittel versetzt und geschäumt.

Dem Fachmann sind die einsetzbaren Phosphorverbindungen und die Schwefel- Verbindungen als solche, ebenso wie Verfahren zu ihrer Herstellung aus dem allgemeinen Fachwissen bekannt.

Verfahren zur Herstellung von damit flammgeschützten expandierbaren Polymerisaten, z.B. von EPS, in Form von Granulaten bzw. Perlen sind dem Fachmann ebenfalls an sich bekannt. Die Herstellung der erfindungsgemäßen Polymerisate mit obenstehen- den Phosphorverbindungen und Schwefelverbindungen funktioniert im wesentlichen analog. So können beispielsweise die Ausführungsbeispiele der WO 2006/027241 herangezogen werden. Ebensolches gilt auch für die Polymerschaumstoffe bzw. für XPS.

Wie die Zugabe des Schwefels bzw. der Schwefelverbindungen erfolgen kann, ist ebenfalls bekannt. So kann elementarer Schwefel beispielsweise in verkapselter Form bzw. als beschichtete Granulate oder Partikel eingebracht werden.

Die vorliegende Erfindung wird gemäß ihrem ersten Aspekt nachstehend nunmehr beispielhaft anhand von fünf konkreten, jedoch nicht einschränkend zu verstehenden, Ausführungsbeispielen 1 bis 5 detailliert beschrieben. Bei den Beispielen 6 bis 10 handelt es sich um Vergleichsbeispiele, um die synergistische Wirkung des Flammschutzmittelsystems zu zeigen:

Die konkreten vorteilhaften Ausführungsbeispiele zeigen die Flammschutzmittelkombinationen aus

- Ammoniumpolyphosphat (APP) mit gelben Schwefel (S 8 ),

- Ammoniumpolyphosphat (APP) mit Ammoniumthiosulfat (ATS),

- Ammoniumpolyphosphat (APP) mit Zinksulfid (ZnS),

Triphenylphosphin mit Cystin und

- Triphenylphosphin mit Polyphenylensulfid (PPS).

Beispiel 1 (Ausführungsbeispiel - APP + S):

Einem Styrolpolymer (SUNPOR EPS-STD: 6 Gew.-% Pentan, Kettenlänge Mw = 200.000 g/mol, Uneinheitlichkeit w/ n =2,5) wurde im Einzugsbereich eines Doppelschnecke- nextruders 12 Gew.-% Ammoniumpolyphosphat (APP) und 2 Gew.-% gelber Schwefel (S 8 ), bezogen auf das erhaltene EPS-Granulat, beigemischt und im Extruder bei 190°C aufgeschmolzen. Die so enthaltene Polymerschmelze wurde mit einem Durchsatz von 20 kg/h durch eine Düsenplatte gefördert und mit einem druckbeaufschlagten Unterwas- sergranulierer zu kompakten EPS-Granulaten granuliert.

Beispiel 2 (Ausführungsbeispiel - APP + ATS):

Einem Styrolpolymer (SUNPOR EPS-STD: 6 Gew.-% Pentan, Kettenlänge Mw = 200.000 g/mol, Uneinheitlichkeit Mw/Mn =2,5) wurde im Einzugsbereich eines Doppelschneckenextruders 12 Gew.-% Ammoniumpolyphosphat (APP) und 5 Gew.-% Ammoniumthiosul- fat (ATS), bezogen auf das erhaltene EPS-Granulat, beigemischt und im Extruder bei 150°C aufgeschmolzen. Die so enthaltene Polymerschmelze wurde mit einem Durchsatz von 20 kg/h durch eine Düsenplatte gefördert und mit einem druckbeaufschlagten Unter- wassergranulierer zu kompakten EPS-Granulaten granuliert.

Beispiel 3 (Ausführunqsbeispiel - APP + ZnS):

Einem Styrolpolymer (SUNPOR EPS-STD: 6 Gew.-% Pentan, Kettenlänge Mw = 200.000 g/mol, Uneinheitlichkeit Mw/Mn =2,5) wurde im Einzugsbereich eines Doppelschneckenextruders 12 Gew.-% Ammoniumpolyphosphat (APP) und 5 Gew.-% Zinksulfid (ZnS), bezogen auf das erhaltene EPS-Granulat, beigemischt und im Extruder bei 190°C aufgeschmolzen. Die so enthaltene Polymerschmelze wurde mit einem Durchsatz von 20 kg/h durch eine Düsenplatte gefördert und mit einem druckbeaufschlagten Unterwassergranu- lierer zu kompakten EPS-Granulaten granuliert.

Beispiel 4 (Ausführungsbeispiel - Triphenylphosphin + Cystin):

Einem Styrolpolymer (SUNPOR EPS-STD: 6 Gew.-% Pentan, Kettenlänge Mw = 200.000 g/mol, Uneinheitlichkeit Mw/Mn =2,5) wurde im Einzugsbereich eines Doppelschnecke- nextruders 12 Gew.-% Triphenylphosphin und 5 Gew.-% Cystin, bezogen auf das erhaltene EPS-Granulat, beigemischt und im Extruder bei 190°C aufgeschmolzen. Die so enthaltene Polymerschmelze wurde mit einem Durchsatz von 20 kg/h durch eine Düsenplatte gefördert und mit einem druckbeaufschlagten Unterwassergranulierer zu kompakten EPS- Granulaten granuliert.

Beispiel 5 (Ausführungsbeispiel - Triphenylphosphin + PPS):

Einem Styrolpolymer (SUNPOR EPS-STD: 6 Gew.-% Pentan, Kettenlänge Mw = 200.000 g/mol, Uneinheitlichkeit Mw/Mn =2,5) wurde im Einzugsbereich eines Doppelschneckenextruders 12 Gew.-% Triphenylphosphin und 5 Gew.-% Polyphenylensulfid (PPS), bezo- gen auf das erhaltene EPS-Granulat, beigemischt und im Extruder bei 190°C aufgeschmolzen. Die so enthaltene Polymerschmelze wurde mit einem Durchsatz von 20 kg/h durch eine Düsenplatte gefördert und mit einem druckbeaufschlagten Unterwassergranu- lierer zu kompakten EPS-Granulaten granuliert.

Beispiel 6 (Vergleichsbeispiel zu Beispiel 1 bis 3 - nur APP):

Beispiel 1 wurde wiederholt mit dem Unterschied, dass kein Schwefel bzw. keine Schwefelverbindung zugegeben wurde.

Beispiel 7 (Vergleichsbeispiel zu Beispiel 4 und 5 - nur Triphenylphosphin):

Beispiel 4 wurde wiederholt mit dem Unterschied, dass kein Schwefel bzw. keine Schwe- felverbindung zugegeben wurde.

Beispiel 8 (Vergleichsbeispiel zu Beispiel 3 - nur ZnS):

Beispiel 3 wurde wiederholt mit dem Unterschied, dass keine Phosphorverbindung zugegeben wurde.

Beispiel 9 (Vergleichsbeispiel zu Beispiel 5 - nur PPS):

Beispiel 5 wurde wiederholt mit dem Unterschied, dass keine Phosphorverbindung zugegeben wurde. Beispiel 10 (Referenzbeispiel - HBCD):

Einem Styrolpolymer (SUNPOR EPS-STD: 6 Gew.-% Pentan, Kettenlänge MW = 200.000 g/mol, Uneinheitlichkeit MW/Mn=2,5) wurde im Einzugsbereich eines Doppelschneckenextruders 2 Gew.-% HBCD (Hexabromcyclododecan), bezogen auf das erhaltene EPS- Granulat, beigemischt und im Extruder bei 190°C aufgeschmolzen. Die so enthaltene Po- lymerschmelze wurde mit einem Durchsatz von 20 kg/h durch eine Düsenplatte gefördert und mit einem druckbeaufschlagten Unterwassergranulierer zu kompakten EPS- Granulaten granuliert.

Nachfolgende Tabelle 1 stellt die Ergebnisse übersichtlich nebeneinander, wobei das Brandverhalten von definierten Prüfkörpern sowie die Zeit bis zum Kollaps der aufgeschäumten Schaumstoffperlen bzw. die Stabilität überprüft wurde.

Tabelle : Prüfung der expandierbaren Polymerisate bzw. der Polymerschaumstoffe

Brandprüfung Stabilität

Versuch 1 (nach Beispiel 1) 2 1

Versuch 2 (nach Beispiel 2) 2 1 Versuch 3 (nach Beispiel 3) 3 1

Versuch 4 (nach Beispiel 4) 1 3

Versuch 5 (nach Beispiel 5) 2 2

Versuch 6 (nach Beispiel 6) 5 1

Versuch 7 (nach Beispiel 7) 4 3

Versuch 8 (nach Beispiel 8) 5 1

Versuch 9 (nach Beispiel 9) 4 1

Referenzversuch (nach Beispiel 10) 1 1

Die Ergebnisse der Versuche in den beiden rechten Spalten wurden durch Prüfungen mit Produkten der zuvor beschriebenen Beispiele 1 bis 10 gewonnen.

Dabei stellen die Beispiele 6 bis 9 die Bezugspunkte für die Beispiele 1 bis 5 dar. Als Referenz für den Stand der Technik gilt Beispiel 10.

Auf diesem Referenzversuch 10 nehmen alle Bewertungen der Prüfungen Bezug, indem die Resultate mit Zahlenwerten von 1 bis 5 bezeichnet sind, wobei kleine Zahlen, insbesondere 1 , dabei tendenziell vorteilhafter, größere Zahlen, insbesondere 5, nachteiliger sind. im Detail:

Brandprüfung (Spalte 2 in Tabelle 1):

Die aus den Beispielen erhaltenen EPS-Granulate wurden mit gesättigtem Was- serdampf zu Schaumstoffperlen mit einer Rohdichte von 15 bis 25 kg/m 3 vorgeschäumt, für 24 Stunden zwischengelagert und in einem Formteilautomaten zu Schaumstoffplatten geformt.

Aus den Schaumstoffplatten wurden Prüfkörper mit 2 cm Dicke geschnitten, die nach 72 Stunden Konditionierung bei 70°C in einem Brandtest nach DIN 4102-2 (B2 - Kleinbrennertest) unterzogen wurden.

Die mit Zahlen zwischen 1 und 5 bewerteten Ergebnisse wurden relativ zu mit He- xabromcyclododecan (HBCD) flammgeschützen EPS (Beispiel 8) bewertet. Dabei bedeuten in Spalte„Brandprüfung" Werte von 1 , dass sich die Testsubstanz hinsichtlich ihres Brandverhaltens gleich gut wir HBCD-geschütztes EPS verhält. Werte von 5 bedeuten, dass das Brandverhalten sehr schlecht ist und dem von nicht flammgeschützten EPS entspricht.

Stabilität (Spalte 3 in Tabelle 1) der Schaumstrukturen: Die aus den Beispielen erhaltenen EPS-Granulate wurden gesättigtem Wasserdampf ausgesetzt und die Zeit bestimmt, bis ein Kollabieren der Perlen eintrat. Diese Zeit wurde in der Zusammenfassung der Ergebnisse relativ zu EPS Partikel ohne Flammschutzmittel bewertet. Durch die weichmachende Wirkung der Flammschutzmittel auf Phosphorbasis zeigten die EPS Partikel unterschiedliche Stabilität beim Vorschäumen.

Dabei bedeuten in Spalte 3 Werte von 1 , dass die Perlen normale Stabilität aufweisen. Werte von 5 bedeuten, dass die Perlen unmittelbar kollabieren ohne dass eine Schaumstruktur entsteht, die für die Formteilherstellung geeignet wäre.

Wie sich aus den Ergebnissen deutlich erkennen lässt, weisen die Werkstoffe der Beispiele 1 bis 5 überraschend deutlich verbesserte Ergebnisse bei der Brandprüfung im Vergleich zu den Werkstoffen der Beispiele 6 bis 9 auf, die - vor allem auch in dieser Höhe - nicht zu erwarten waren.

Weder durch die Zugabe von Phosphorverbindungen allein (Beispiele 6 und 7) noch durch die Zugabe von Schwefelverbindungen allein (Beispiele 8 und 9) konnten vergleichbare Ergebnisse erzielt werden.

Das Brandschutzverhalten hat sich durch die gleichzeitige Zugabe der Phosphorverbindungen und der Schwefelverbindungen synergistisch gesteigert.

Die erfindungsgemäßen bzw. auf diese Weise geschützten Polymerisate und

Schaumstoffe sind somit hinsichtlich ihres Brandverhaltens wesentlich vorteilhafter als nur mit Phosphorverbindungen oder Schwefelverbindungen allein geschützte Polymerisate.

Ebenfalls überraschend wurde die Stabilität nur unwesentlich beeinflusst bzw. sogar gesteigert.

zweiter Aspekt der Erfindung (Ansprüche 17 bis 33):

Die vorliegende Erfindung betrifft in einem zweiten, besonders vorteilhaften Aspekt flammgeschützte, zumindest ein Treibmittel enthaltende, expandierbare Polymerisate, in denen als Flammschutzmittel zumindest eine Phosphorverbindung der folgenden allgemeinen Formel (I) oder Hydrolysate oder Salze davon enthalten ist:

(l)

worin die Reste R jeweils unabhängig voneinander:

-H, substituiertes oder nicht substituiertes d-C^-Alkyl, CrC 15 -Alkenyl, C 3 -C 8 -Cycloalkyl, C 6 -C 18 -Aryl, C 7 -C 30 -Alkylaryl, C C 8 -Alkoxy oder (VCe-Alkylthio, oder -OH oder -SH sowie Alkalimetall-, Erdalkalimetall-, Ammonium- oder Phosphonium-Salze davon, bedeuten.

Die Erfindung gemäß dem zweiten Aspekt betrifft weiters Verfahren zur Herstellung dieser Polymerisate, weiters mit diesen Flammschutzmitteln geschützte Polymerschaumstoffe und Verfahren zu deren Herstellung, sowie die besondere Verwendung o- benstehender Flammschutzmittel in expandierbaren Polymerisaten sowie Polymerschaumstoffen.

Die Ausrüstung von Polymerschaumstoffen mit Flammschutzmitteln ist für viele Bereiche von Bedeutung bzw. vorgeschrieben. Die Reglementierungen über die Verwen- dung von Polystyrol-Partikelschaumstoffen aus expandierbarem Polystyrol (EPS) oder von Polystyrol-Extrusionsschaumstoffplatten (XPS) als Isoliermaterial für Gebäude verlangen in den meisten Fällen eine Flammschutzausrüstung. Polystyrol-Homo- und Copo- lymere werden überwiegend mit halogenhaltigen, insbesondere bromierten organischen Verbindungen wie Hexabromcyclododecan (HBCD) schwer entflammbar gemacht. Diese und eine Reihe anderer bromierter Substanzen sind jedoch auf Grund ihrer potentiellen Umwelt- und Gesundheitsgefährdung in Diskussion geraten bzw. bereits verboten.

Als Alternative existieren zahlreiche halogenfreie Flammschutzmittel. Halogenfreie Flammschutzmittel müssen jedoch zur Erreichung der gleichen Flammschutzwirkung der halogenhaltigen Flammschutzmittel in der Regel in deutlich höheren Mengen eingesetzt werden. Unter anderem aus diesem Grund können halogenfreie Flammschutzmittel, die in kompakten thermoplastischen Polymeren einsetzbar sind, häufig nicht in gleicher Weise in Polymerschaumstoffen eingesetzt werden, da sie entweder den Schäumprozess stören oder die mechanischen und thermischen Eigenschaften des Polymerschaumstoffes be- einflussen. Bei der Herstellung von expandierbarem Polystyrol durch Suspensionspolymerisation können die hohen Flammschutzmittelmengen außerdem die Stabilität der Suspension verringern und somit das Herstellungsverfahren stören bzw. beeinträchtigen.

Die Wirkung der bei kompakten Polymeren eingesetzten Flammschutzmittel in Polymerschaumstoffen ist häufig aufgrund der Besonderheiten von derartigen Schaumstof- fen und des unterschiedlichen Brandverhaltens bzw. wegen unterschiedlicher Brandtests nicht vorhersagbar.

Aus dem Stand der Technik ist diesbezüglich in der WO 2006/027241 ein halogenfreies Flammschutzmittel für Polymerschaumstoffe beschrieben, das den Schäumprozess und die mechanischen Eigenschaften nicht wesentlich beeinflusst und auch die Herstellung von überwiegend geschlossenzelligen Polymerschaumstoffen ermöglicht. Bei diesem Flammschutzmittel handelt es sich um eine seit den frühen 1970er-Jahren bekannte und gebräuchliche Phosphorverbindung, die beispielsweise gemäß der JP-A 2004-035495, der JP-A 2002-069313 oder der JP-A 2001-115047 herzustellen ist. Besonders bevorzugt, aber nicht ausschließlich, wird die Phosphorverbindung 9,10-Dihydro-9-oxa-10-phospha- phenantren-10-oxid (6H-Dibenz[c,e]-oxaphosphorin-6-oxid, DOP-O, CAS [35948-25-5]) erwähnt:

Dieses Flammschutzmittel ist bereits einigermaßen gut einsetzbar, es besteht jedoch der Bedarf, derartige Polymerisate bzw. Polymerschaumstoffe noch brandbeständiger zu machen und dies bei möglichst geringem Gehalt an Flammschutzmitteln bzw. ohne den Gehalt an Flammschutzmitteln zu erhöhen. Aufgabe des zweiten Aspektes der vorliegenden Erfindung ist es somit, ein gut brandbeständiges flammgeschütztes expandierbares Polymerisat mit geringem Gehalt an Flammschutzmitteln und guter Qualität zu schaffen. Weiters ist es Aufgabe des zweiten Aspektes der Erfindung, ein vorteilhaftes Verfahren zur Herstellung derartiger Polymerisate zu schaffen.

Eine weitere Aufgabe des zweiten Aspektes der Erfindung besteht darin, einen halogenfrei flammgeschützten, jedoch qualitativ entsprechenden, Polymerschaumstoff mit vorteilhaftem Brandverhalten sowie guten mechanischen Eigenschaften sowie ein vorteilhaftes Herstellungsverfahren dafür zu schaffen.

Dabei ist es insbesondere wünschenswert, dass das Polymerisat bzw. der Polymerschaumstoff auch die strengen Anforderungen an die Brandbeständigkeit für z.B. Bauanwendungen erfüllt, wie beispielsweise den B2-Kleinbrennertest nach DIN 4102-2 oder den Brandtest nach EN 11925-2.

Diese Aufgaben werden durch die unabhängigen Ansprüche 17, 26, 29 bzw. 33 gelöst. Die Aufgabe gemäß dem zweiten Aspekt der Erfindung wird für das Polymerisat durch die kennzeichnenden Merkmale des Anspruchs 17 gelöst, indem als Flammschutzmittel bzw. -Synergist zusätzlich Schwefel und/oder zumindest eine schwefelhältige Verbindung bzw. Schwefelverbindung zugegeben wird.

Überraschend wurde festgestellt, dass derart flammgeschützte Polymerisate und Polymerschaumstoffe eine in unerwartetem Ausmaß verbesserte Wirkung als Flammschutzmittel aufweisen. Dadurch kann die Gesamtmenge an Flammschutzmitteln verringert werden, was zu einer Vielzahl an Vorteilen, u.a. im Herstellungsverfahren, bei den Kosten, den mechanischen Eigenschaften des Produktes etc. führt. Insbesondere werden auch der Schäumprozess und die mechanischen Eigenschaften des Schaums nicht we- sentlich beeinflusst wodurch ein qualitativ hochwertiges Produkt entsteht.

Die Substituenten bzw. Reste R in Formel (I) sind untereinander unabhängig und können gleich oder verschieden sein bzw. sogar ganz fehlen. So können an jedem der beiden Benzenringe der Verbindung (I) jeweils 0 bis 4 untereinander gleiche oder unter- schiedliche Reste ausgebildet sein, die wiederum gleich oder unterschiedlich zu den Resten des jeweils anderen Benzenrings sind.

Unter dem "Alkyl"-Anteil der optionalen Substituenten R der Phosphorverbindungen gemäß Formel (I) sind sowohl gesättigte als auch ungesättigte Aliphaten zu verstehen, die unverzweigt oder verzweigt sein können, wobei ungesättigte Gruppen bevorzugt sind. Die Substituenten R umfassen vorzugsweise kurzkettige Alkylgruppen mit nicht mehr als 6, noch bevorzugter nicht mehr als 4 oder 3, noch bevorzugter nicht mehr als 2, Kohlenstoffatomen bzw. Phenyl als Arylgruppe. Kürzerkettige Reste sind bevorzugt, da längerkettige Reste, ein hoher Sättigungsgrad sowie eine größere Anzahl an Sub- stituenten die Flammschutzwirkung nachteilig beeinflussen können. Besonders wirkungsvolle Phosphorverbindungen sind bevorzugt unsubstituiert, z.B. DOPO. Falls Substituenten R vorhanden sind, weisen diese vorzugsweise einen schwefelhaltigen Substituenten, wie z.B. -SH, -S0 3 NH 4 , -SO- oder -S0 2 -, oder einen phosphorhäl- tigen Substituenten, wie z.B. -PO(ONH 4 ) 2 oder dergleichen, auf, um so die Flammschutzwirkung weiter zu verbessern. Von den optionalen Salzen etwaiger SH- oder OH-Gruppen der Phosphorverbindungen sind Ammonium- und Phosphoniumsalze bevorzugt, da diese ebenfalls zur Flammschutzwirkung beitragen können. Die Ammonium- und Phosphonium-Ionen können anstelle von Wasserstoffatomen jeweils bis zu vier organische Reste, z.B. oben definierte Substituenten R, aufweisen (d.h. NR 4 + bzw. PR 4 + ), wobei jedoch im Falle von Ammonium Wasserstoff als Substituent bevorzugt wird.

Besonders bevorzugter Vertreter der Phosphorverbindungen ist die Verbindung 9,10-Dihydro-9-oxa-10-phosphaphenantren-10-oxid (DOPO)

sowie ringgeöffnete Hydrolysate davon.

Bei weiteren bevorzugten Phosphorverbindungen ist der Rest R1 ein -OH, -ONH 4 , -SH, - S-DOPO, oder -S-DOPS. Daraus ergeben sich folgende Phosphorverbindungen: 9, 10-Dihydro-10-hydroxy-9-oxa-10-phosphaphenantren-10-oxid (DOPO-OH), 9,10- Dihydro-10-hydroxy-9-oxa-10-phosphaphenantren-10-oxid-ammoni umsalz (DOPO- ONH 4 ), 9, 10-Dihydro-10-mercapto-9-oxa-10-phosphaphenantren-10-oxid (DOPO-SH), Bis(9, 10-Dihydro-9-oxa-10-oxo-10-phosphaphenantren-10-yl)oxid (DOPO-S-DOPO) oder 9,10-Dihydro-10-(9,10-Dihydro-10-hydroxy-9-oxa-10-phospha-10 -thioxophenanthren-10- ylthio)-9-oxa-10-phosphaphenantren-10-oxid (DOPO-S-DOPS). Eine vorteilhafte Ausführungsform der expandierbaren Polymerisate besteht darin, dass die Phosphorverbindungen als Flammschutzmittel in einer Menge von 0,5 bis 25 Gew.-%, insbesondere 3 bis 15 Gew.-%, bezogen auf das Gesamtgewicht des Polymers, enthalten ist/sind.

Als Schwefelverbindungen sind beispielsweise Sulfide, Sulfite, Sulfate, Sulfane, Sulfoxylate, Sulfone, Sulfonate, Thiosulfate, Thionite, Thionate, Disulfate, Sulfoxide, Schwefelnitride, Schwefelhalogenide und/oder Organoschwefelverbindungen wie Thiole, Thioether, Thiophene, etc. verwendbar.

Besonders gut geeignet ist elementarer Schwefel bzw. gelber Cyclooctaschwefel (S 8 ), der vorteilhafterweise in einer Menge von 0,1 bis 10 Gew%, bevorzugt 0,5 bis 5 Gew%, besonders bevorzugt etwa 2 Gew%, bezogen auf das erhaltene EPS-Granulat zugegeben wird.

Vorteilhaft ist es, wenn die schwefelhaltigen Verbindungen bzw. Schwefelverbindungen bei einer Analyse mittels Thermogravimetrie (TGA) unterhalb von 115°C eine Gewichtsabnahme von weniger als 10 Gew.-% aufweisen, z.B. Ammoniumthiosulfat, Di- caprolactamdisulfid, Polyphenylensulfid, Zinksulfid, etc.

Besonders vorteilhaft ist es, wenn die schwefelhaltige Verbindung bzw. Schwefelverbindung zumindest eine S-S-Bindung aufweist, wobei zumindest eines der Schwefelatome in zweiwertiger Form vorliegt, z.B. Disulfite, Dithionite, Cystin, Amylphenoldisulfid, Poly-tert-butylphenoldisulfid etc.

Die erfindungsgemäßen expandierbaren Polymerisate sind vorzugsweise expandierbare Styrolpolymerisate (EPS) bzw. expandierbare Styrolpolymer Granulate (EPS), welche insbesondere aus Homo- und Copolymeren von Styrol, vorzugsweise glasklares Polystyrol (GPPS), Schlagzähpolystyrol (HIPS), anionisch polymerisiertes Polystyrol oder Schlagzähpolystyrol (A-IPS), Styrol-alpha-Methylstyrol-copolymere, Acrylnitril-Butadien- Styrolpolymerisate (ABS), Styrol-Acrylnitril (SAN) Acrylnitril-Styrol-Acrylester (ASA), Me- thyacrylat-Butadien-Styrol (MBS), Methylmethacrylat-Acrylnitril-Butadien-Styrol (MABS)- polymerisate oder Mischungen davon oder mit Polyphenylenether (PPE) bestehen. Gerade für Polystyrol ist der Bedarf an qualitative hochwertigen Produkten besonders hoch.

Die genannten Styrolpolymere können zur Verbesserung der mechanischen Eigenschaften oder der Temperaturbeständigkeit gegebenenfalls unter Verwendung von Verträglichkeitsvermittlern mit thermoplastischen Polymeren, wie Polyamiden (PA), Polyo- lefinen, wie Polypropylen (PP) oder Polyethylen (PE), Polyacrylaten, wie Polymethyl- methacrylat (PMMA), Polycarbonat (PC), Polyestern, wie Polyethylenterephthalat (PET) oder Polybutylenterephthalat (PBT), Polyethersulfonen (PES), Polyetherketonen oder Polyethersulfiden (PES) oder Mischungen davon in der Regel in Anteilen von insgesamt bis maximal 30 Gew.-%, bevorzugt im Bereich von 1 bis 10 Gew.-%, bezogen auf die Polymerschmelze, abgemischt werden.

Des weiteren sind Mischungen in den genannten Mengenbereichen auch mit z. B hydrophob modifizierten oder funktionalisierten Polymeren oder Oligomeren, Kautschu- ken, wie Polyacrylaten oder Polydienen, z. B. Styrol-Butadien-Blockcopolymeren oder biologisch abbaubaren aliphatischen oder aliphatisch/aromatischen Copolyestem möglich.

Als Verträglichkeitsvermittler eignen sich z.B. Maleinsäureanhydrid-modifizierte Styrolcopolymere, Epoxidgruppenhaltige Polymere oder Organosilane. Die Wirksamkeit der Phosphorverbindungen kann durch den Zusatz geeigneter

Flammschutzsynergisten, wie die thermischen Radikalbildner Dicumylperoxid, Ditert- butylperoxid oder Dicumyl, noch weiter verbessert werden.

Auch können zusätzlich weitere Flammschutzmittel, wie Melamin, Melamincyanu- rate, Metalloxide, Metallhydroxide, Phosphate, Phosphinate oder Synergisten wie Sb 2 0 3 oder Zn-Verbindungen, eingesetzt werden.

Wenn auf die vollständige Halogenfreiheit des Polymerisats oder des Polymerschaumstoffes verzichtet werden kann, können halogenreduzierte Schaumstoffe durch die Verwendung der Phosphorverbindungen und den Zusatz geringerer Mengen an halogen- haltigen, insbesondere bromierten Flammschutzmitteln, wie Hexabromcyclododecan (HBCD), bevorzugt in Mengen im Bereich von 0,05 bis 1 , insbesondere 0,1 bis 0,5 Gew.- %, hergestellt werden. Ein weiterer Aspekt der Erfindung betrifft die Herstellung derartiger Polymerisate.

Erfindungsgemäß können die eingangs erwähnten flammgeschützten, expandierbaren Polymerisate durch Beimischung der obenstehenden Flammschutzmittel sowie Schwefel und/oder zumindest einer schwefelhältigen Verbindung bzw. Schwefelverbindung in an sich bekannter Weise hergestellt werden.

Eine vorteilhafte Verfahrensführung sieht dabei vor, dass das Flammschutzmittel, beispielsweise DOPO, die Schwefelverbindung(en) und ein Treibmittel mit einer Styrolpo- lymerschmelze mit Hilfe eines dynamischen bzw. statischen Mischers gemischt und anschließend granuliert werden.

Alternativ kann vorgesehen werden, dass das Flammschutzmittel, beispielsweise DOPO, sowie die Schwefelverbindung (en) mittels eines dynamischen bzw. statischen Mischers zu noch granulatförmigem Polystyrolpolymerisat zugemischt und aufgeschmolzen werden und die Schmelze anschließend mit Treibmittel versetzt und granuliert wird.

Alternativ kann weiters vorgesehen werden, dass das Flammschutzmittel, beispielsweise DOPO und die Schwefelverbindung(en) mittels eines dynamischen bzw. statischen Mischers zu noch granulatförmigem EPS oder zugemischt werden und die Mischung anschließend aufgeschmolzen und granuliert wird.

Alternativ kann weiters vorgesehen werden, dass die Granulatherstellung durch Suspensions-Polymerisation von Styrol in wässriger Suspension in Gegenwart des Flammschutzmittels, beispielsweise DOPO, der Schwefelverbindung(en) und eines Treibmittels erfolgt.

Ein weiteres erfindungsgemäßes Verfahren zur Herstellung der erfindungsgemäßen flammgeschützten expandierbaren Styrolpolymerisate (EPS) umfasst die Schritte:

Gemeinsames Dosieren in einen Extruder von PS- oder EPS-Granulat mit einem Molekulargewicht von Mw > 120 000 g/mol, bevorzugt von 150 000 bis 250 000 g/mol, besonders bevorzugt von 180 000 bis 220 000 g/mol, sowie von dem Flammschutzmittel, insbesondere DOPO, der Schwefelverbindung und gegebenenfalls von einem oder mehreren weiteren Additiven,

Gemeinsames Aufschmelzen aller Komponenten im Extruder

Optionale Zudosierung zumindest eines Treibmittels

Mischung aller Komponenten bei einer Temperatur > 120°C

Granulierung mittels druckbeaufschlagter Unterwassergranulierung, bei z.B. 1-20 bar, zu einer Granulatgröße < 5 mm, bevorzugt 0,2 bis 2,5 mm, bei einer Wassertemperatur von 30 bis 100°C, insbesondere 50 bis 80°C,

gegebenenfalls oberflächliche Beschichtung mit Coatingmitteln, z.B. Silikate, Metallsalze von Fettsäuren, Fettsäureester, Fettsäureamide.

Die erfindungsgemäßen halogenfrei flammgeschützten, expandierbaren Styrolpo- lymere (EPS) und Styrolpolymerextrusionschaumstoffe (XPS) können durch Einmischen eines Treibmittels, einer Phosphorverbindung der allgemeinen Formel (I) oder des Hydrolyseproduktes oder eines Salzes davon, sowie von elementarem Schwefel und/oder einer schwefelhältigen Verbindung bzw. Schwefelverbindung in die Polymerschmelze und an- schließende Extrusion zu Schaumstoffplatten, Schaumstoffsträngen, oder expandierbaren Granulaten hergestellt werden.

Bevorzugt weist das expandierbare Styrolpolymer ein Molekulargewicht > 120.000, be- sonders bevorzugt im Bereich von 180.000 bis 220.000 g/mol auf. Aufgrund des Molekulargewichtsabbau durch Scherung und/oder Temperatureinwirkung liegt das Molekulargewicht des expandierbaren Polystyrols in der Regel etwa 10.000 g/mol unter dem Molekulargewicht des eingesetzten Polystyrols. Der Styrolpolymerschmelze können auch Polymerrezyklate der genannten thermoplastischen Polymeren, insbesondere Styrolpolymere und expandierbare Styrolpolymere (EPS) in Mengen zugemischt werden, die deren Eigenschaften nicht wesentlich verschlechtern, in der Regel in Mengen von maximal 50 Gew.-%, insbesondere in Mengen von 1 bis 20 Gew.-%.

Die treibmittelhaltige Styrolpolymerschmelze enthält in der Regel eine oder mehrere Treibmittel in homogener Verteilung in einem Anteil von insgesamt 2 bis 10 Gew.-% bevorzugt 3 bis 7 Gew.-%, bezogen auf die treibmittelhaltige Styrolpolymerschmelze. Als Treibmittel eignen sich die üblicherweise in EPS eingesetzten physikalischen Treibmittel, wie aliphatische Kohlenwasserstoffe mit 2 bis 7 Kohlenstoffatomen, Alkohole, Ketone, Ether oder halogenierte Kohlenwasserstoffe. Bevorzugt wird iso-Butan, n-Butan, iso- Pentan, n-Pentan eingesetzt. Für XPS werden bevorzugt C0 2 oder Mischungen mit Alkoholen oder Ketonen eingesetzt.

Die zugesetzte Treibmittelmenge wird so gewählt, dass die expandierbaren Styrol- polymere (EPS) ein Expansionsvermögen von 7 bis 200 g/l, bevorzugt 10 bis 50 g/l aufweisen.

Die erfindungsgemäßen expandierbaren Styrolpolymergranulate (EPS) weisen in der Regel eine Schüttdichte von höchstens 700 g/l bevorzugt im Bereich von 590 bis 660 g/l auf.

Des weiteren können der Styrolpolymerschmelze Additive, Keimbildner, Füllstoffe, Weichmacher, lösliche und unlösliche anorganische und/oder organische Farbstoffe und Pigmente, z.B. IR-Absorber, wie Russ, Graphit oder Aluminiumpulver, gemeinsam oder räumlich getrennt, z.B. über Mischer oder Seitenextruder, zugegeben werden. In der Re- gel werden die Farbstoffe und Pigmente in Mengen im Bereich von 0,01 bis 30, bevorzugt im Bereich von 1 bis 10 Gew.-%, zugesetzt. Zur homogenen und mikrodispersen Verteilung der Pigmente in dem Styrolpolymer kann es insbesondere bei polaren Pigmenten zweckmäßig sein, ein Dispergierhilfsmittel, z.B Organosilane, epoxygruppenhaltige Polymere oder Maleinsäureanhydrid-gepfropfte Styrolpolymere, einzusetzen. Bevorzugte Weichmacher sind Mineralöle, Phthalate, die in Mengen von 0,05 bis 10 Gew.-%, bezogen auf das Styrolpolymerisat, eingesetzt werden können.

Ein weiterer Aspekt der Erfindung betrifft einen Polymerschaumstoff, insbesondere einen Styrolpolymer-Partikelschaumstoff oder einen extrudierten Polystyrol-Hartschaum (XPS), enthaltend als Flammschutzmittel zumindest eine der eingangs erwähnten Phosphorverbindungen der allgemeinen Formel (I) bzw. ringgeöffnete Hydrolysate oder Salze davon, sowie elementaren Schwefel und/oder zumindest eine schwefelhältige Verbindung bzw. Schwefelverbindung.

Ein vorteilhafter Polymerschaumstoff ist erhältlich aus den erfindungsgemäßen flammgeschützten expandierbaren Polymerisaten, insbesondere aus expandierbaren Sty- rolpolymerisaten (EPS), insbesondere durch Aufschäumen und Versintern der Polymeri- satkügelchen oder durch Extrusion des Granulates.

Die halogenfreien, flammgeschützten Polymerschaumstoffe weisen bevorzugt eine Dichte im Bereich von 8 bis 200 g/l, besonders bevorzugt im Bereich von 10 bis 50 g/l auf und sind bevorzugt zu mehr als 80 %, besonders bevorzugt zu 95 bis 100%, geschlos- senzellig bzw. besitzen eine überwiegend geschlossenzellige Zellstruktur mit mehr als 0,5 Zellen pro mm 3 .

Erfindungsgemäß wird zumindest eine der Phosphorverbindungen der allgemeinen Formel (I) bzw. ringgeöffnete Hydrolysate oder Salze davon, in Kombination mit Schwefel und/oder einer schwefelhältigen Verbindung bzw. Schwefelverbindung als Flammschutzmittel bzw. -Synergist in expandierbaren Polymerisaten, insbesondere in expandierbaren Styrolpolymerisaten (EPS) bzw. expandierbaren Styrolpolymer Granulaten (EPS) oder in Polymerschaumstoffen, insbesondere in Styrolpolymer- Partikelschaumstoffen, erhältlich durch Aufschäumen aus expandierbaren Polymerisaten, oder in extrudierten Polystyrol-Hartschäumen (XPS), eingesetzt.

Zur Herstellung von flammgeschütztem extrudierten Polystyrol-Hartschaum (XPS) werden die Phosphorverbindungen, die Schwefelverbindungen und ein Treibmittel mit einer Styrolpolymerschmelze mit Hilfe eines dynamischen bzw. statischen Mischers ge- mischt und anschließend geschäumt oder die Phosphorverbindungen und die Schwefelverbindungen werden mittels eines dynamischen bzw. statischen Mischers zu noch gra- nulatförmigem Polystyrol polymerisat zugemischt und aufgeschmolzen, und die Schmelze anschließend mit Treibmittel versetzt und geschäumt.

Die bei der Erfindung einsetzbaren Phosphorverbindungen gemäß (I) und deren Herstellung ist dem Fachmann hinlänglich bekannt. Die Herstellung von damit flammgeschützten expandierbaren Polymerisaten, z.B. von EPS, in Form von Granulaten bzw. Perlen ist dem Fachmann an sich ebenfalls bekannt. Die Herstellung der erfindungsgemäßen Polymerisate mit obenstehenden Flammschutzmitteln und Schwefel bzw. einer Schwefelverbindung funktioniert im wesentlichen analog. So können beispielsweise die Ausführungsbeispiele der WO 2006/027241 herangezogen werden. Ebensolches gilt auch für die Polymerschaumstoffe bzw. für XPS.

Wie die Zugabe des Schwefels bzw. der Schwefelverbindungen erfolgen kann, ist ebenfalls bekannt. So kann elementarer Schwefel beispielsweise in verkapselter Form bzw. als beschichtete Granulate oder Partikel eingebracht werden.

Die vorliegende Erfindung gemäß dem zweiten Aspekt wird nachstehend nunmehr beispielhaft anhand von vier konkreten, jedoch nicht einschränkend zu verstehenden, Ausführungsbeispielen 1 bis 4 detailliert beschrieben. Bei den Beispielen 5 bis 8 handelt es sich um Vergleichsbeispiele, um die synergistische Wirkung von DOPO und Schwefel zu zeigen:

Beispiel 1 (Ausführungsbeispiel - DOPO 7,5%+S):

Einem Styrolpolymer (SUNPOR EPS-STD: 6 Gew% Pentan, Kettenlänge MW = 200.000 g/mol, Uneinheitlichkeit MW/Mn =2,5) wurde im Einzugsbereich eines Doppelschnecke- nextruders 7,5 Gew% 9,10-Dihydro-9-oxa-10-phospha-phenanthren-10-oxid (DOPO) und 2 Gew% gelber Schwefel (S 8 ), bezogen auf das erhaltene EPS-Granulat, beigemischt und im Extruder bei 190°C aufgeschmolzen. Die so enthaltene Polymerschmelze wurde mit einem Durchsatz von 20 kg/h durch eine Düsenplatte gefördert und mit einem druckbeaufschlagten Unterwassergranulierer zu kompakten EPS-Granulaten granuliert.

Beispiel 2 (Ausführunqsbeispiel - DOPO 15%+S):

Beispiel 1 wurde wiederholt mit dem Unterschied, dass 15 Gew% 9,10-Dihydro-9-oxa-10- phospha-phenanthren-10-oxid (DOPO), bezogen auf das erhaltene EPS-Granulat, zudosiert wurden.

Beispiel 3 (Ausführunqsbeispiel - DOPO 15%+ATS): Beispiel 2 wurde wiederholt mit dem Unterschied, dass 6 Gew% Ammoniumthiosulfat (ATS), bezogen auf das erhaltene EPS-Granulat, zudosiert wurden.

Beispiel 4 (Ausführungsbeispiel - POPP 15%+DCDS):

Beispiel 2 wurde wiederholt mit dem Unterschied, dass 7 Gew% Dicaprolactamdisulfid (DCDS), bezogen auf das erhaltene EPS-Granulat, zudosiert wurden.

Beispiel 5 (Vergleichsbeispiel zu Beispiel 1 - nur POPP 7,5% - ohne S):

Beispiel 1 wurde wiederholt mit dem Unterschied, dass kein Schwefel zugegeben wurde.

Beispiel 6 (Vergleichsbeispiel zu Beispiel 2 - nur PGPP 15% - ohne S):

Beispiel 2 wurde wiederholt mit dem Unterschied, dass kein Schwefel zugegeben wurde.

Beispiel 7 (Vergleichsbeispiel - nur S - ohne PPPP):

Einem Styrolpolymer (SUNPGR EPS-STP: 6 Gew% Pentan, Kettenlänge MW = 200.000 g/mol, Uneinheitlichkeit MW/Mn=2,5) wurde im Einzugsbereich eines Poppelschnecke- nextruders 2 Gew% gelber Schwefel (S 8 ), bezogen auf das erhaltene EPS-Granulat, beigemischt und im Extruder bei 190°C aufgeschmolzen. Pie so enthaltene Polymerschmelze wurde mit einem Purchsatz von 20 kg/h durch eine Püsenplatte gefördert und mit ei- nem druckbeaufschlagten Unterwassergranulierer zu kompakten EPS-Granulaten granuliert.

Beispiel 8 (Vergleichsbeispiel - nur HBCP - ohne S, ohne PGPP):

Einem Styrolpolymer (SUNPPR EPS-STP: 6 Gew% Pentan, Kettenlänge MW = 200.000 g/mol, Uneinheitlichkeit MW/Mn=2,5) wurde im Einzugsbereich eines Poppelschnecke- nextruders 2 Gew% HBCP (Hexabromcyclododecan), bezogen auf das erhaltene EPS- Granulat, beigemischt und im Extruder bei 190°C aufgeschmolzen. Pie so enthaltene Polymerschmelze wurde mit einem Purchsatz von 20 kg/h durch eine Püsenplatte gefördert und mit einem druckbeaufschlagten Unterwassergranulierer zu kompakten EPS- Granulaten granuliert.

Nachfolgende Tabelle 1 stellt die Ergebnisse übersichtlich nebeneinander, wobei das Brandverhalten von definierten Prüfkörpern, die Stabilität bzw. die Zeit bis zum Kollaps der aufgeschäumten Schaumstoffperlen sowie der Geruch überprüft wurden. Tabelle 1 : Prüfung der erfindungsgemäßen Polymerisate bzw. der Polymerschaumstoffe

Die Ergebnisse der Versuche in den rechten Spalten wurden durch Prüfungen mit Produkten der zuvor beschriebenen Beispiele 1 bis 8 gewonnen.

Dabei stellt z.B. Beispiel 6, entsprechend einem nur mit DOPO und ohne Schwefel flammgeschützten Polymerisat bzw. Schaumstoff, einen direkten Referenz- bzw. Bezugspunkt zu den Beispielen 2, 3 und 4 dar, da die gleichen Mengen an DOPO enthalten sind.

Als weitere Referenz für den Stand der Technik gilt Beispiel 8. Auf diesen Refe- renz- Versuch 8 nehmen alle Bewertungen der Prüfungen Bezug, indem die Resultate mit Zahlenwerten von 1 bis 5 bezeichnet sind, wobei kleine Zahlen, insbesondere 1 , dabei tendenziell vorteilhafter, größere Zahlen, insbesondere 5, nachteiliger sind. im Detail:

Brandprüfung (Spalte 2 in Tabelle 1)::

Die aus den Beispielen erhaltenen EPS-Granulate wurden mit gesättigtem Wasserdampf zu Schaumstoffperlen mit einer Rohdichte von 15 bis 25 kg/m 3 vorgeschäumt, für 24 Stunden zwischengelagert und in einem Formteilautomaten zu Schaumstoffplatten geformt.

Aus den Schaumstoffplatten wurden Prüfkörper mit 2 cm Dicke geschnitten, die nach 72 Stunden Konditionierung bei 70°C in einem Brandtest nach DIN 4102-2 (B2 - Kleinbrennertest) unterzogen wurden.

Die mit Zahlen zwischen 1 und 5 bewerteten Ergebnisse wurden relativ zu mit He- xabromcyclododecan (HBCD) flammgeschützen EPS (Beispiel 8) bewertet. Dabei bedeuten in der Spalte„Brandprüfung" Werte von 1 , dass sich die Testsubstanz hinsichtlich ihres Brandverhaltens gleich gut wir HBCD-geschütztes EPS verhält. Werte von 5 bedeuten, dass das Brandverhalten sehr schlecht ist und dem von nicht flammgeschützten EPS entspricht. Stabilität der Schaumstrukturen (Spalte 3 in Tabelle 1):

Die aus den Beispielen erhaltenen EPS-Granulate wurden gesättigtem Wasserdampf ausgesetzt und die Zeit bis ein Kollabieren der Perlen eintrat, bestimmt. Diese Zeit wurde in der Zusammenfassung der Ergebnisse relativ zu EPS Partikel ohne Flamm- Schutzmittel bewertet. Durch die weichmachende Wirkung der Flammschutzmittel auf Phosphorbasis zeigten die EPS Partikel unterschiedliche Stabilität beim Vorschäumen.

Dabei bedeuten in Spalte 3 Werte von 1 , dass die Perlen normale Stabilität aufweisen. Werte von 5 bedeuten, dass die Perlen unmittelbar kollabieren, ohne dass eine Schaumstruktur entsteht, die für die Formteilherstellung geeignet wäre.

Geruch (Spalte 4 in Tabelle 1):

Die aus den Beispielen erhaltenen EPS-Granulate wurden mit gesättigtem Wasserdampf zu Schaumstoffperlen mit einer Rohdichte von 15 bis 25 kg/m 3 vorgeschäumt, für 24 Stunden zwischengelagert und in einem Formteilautomaten zu Schaumstoffplatten geformt.

Aus den Schaumstoffplatten wurden Prüfkörper mit 2 cm Dicke geschnitten und einer sensorischen Geruchsprüfung durch mehrere Labormitarbeiter unterzogen. Die Bewertung erfolgte subjektiv nach den Kriterien„nicht wahrnehmbar" entsprechend der Bewertung 1 bis„unangenehm störend" mit der Bewertung 5..

Wie sich aus den Versuchen deutlich erkennen lässt, weisen die Werkstoffe der Beispiele 2, 3 und 4 eine deutlich verbesserte Brandprüfung im Vergleich zum Werkstoff von Beispiel 6 auf. Obwohl, wie aus Beispiel 7 ersichtlich, die Zugabe nur von Schwefel allein ein vergleichlich schlechteres Brandverhalten liefert, ergaben sich in den Versuchen 2 bis 4 überraschend gute Ergebnisse, die auch in dieser Höhe nicht zu erwarten waren. Die erfindungsgemäßen bzw. auf diese Weise geschützten Polymerisate und Schaumstoffe sind somit zumindest hinsichtlich ihres Brandverhaltens wesentlich vorteilhafter als nur mit DOPO allein geschützte Polymerisate als auch mit reinem Schwefel versetzte Po- lymerisate.

Bereits bei geringeren Mengen an DOPO zeigte sich eine deutliche und unerwartete Steigerung bzw. Verbesserung der Brandbeständigkeit (Beispiel 1 im Vergleich zu Beispiel 5).

Ebenfalls überraschend wurde die Stabilität nur unwesentlich beeinflusst bzw. so- gar gesteigert. Auf den Geruch hatte die Zugabe der schwefelhältigen Substanzen zwar einen nachweisbaren Effekt, doch hielt sich dieser beispielsweise bei Versuch 4 mit Dicaprolac- tamdisulfid in Grenzen.