Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
MELT POLYMERIZATION OF LOW MELT VISCOSITY LIQUID CRYSTALLINE POLYMERS
Document Type and Number:
WIPO Patent Application WO/2013/032979
Kind Code:
A1
Abstract:
A method for forming a high molecular weight liquid crystalline polymer is provided. The method include melt polymerizing two or more precursor monomers (e.g., acetylated or non-acetylated) in the presence of an aromatic amide oligomer. The present inventors have discovered that such an oligomer can lower the melt viscosity of the viscous polymer as it is formed. The ability to lower melt viscosity in situ during melt polymerization enables the formation of high molecular weight polymers that display low melt viscosity and can still be removed from the reactor vessel without solidifying therein. This not only improves the ease of processing, but also allows molecular weights to be reached that are even higher than conventionally practical.

Inventors:
NAIR KAMLESH P (US)
GRAY STEVEN D (US)
Application Number:
PCT/US2012/052444
Publication Date:
March 07, 2013
Filing Date:
August 27, 2012
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
TICONA LLC (US)
NAIR KAMLESH P (US)
GRAY STEVEN D (US)
International Classes:
C08K5/20; C09K19/22; C09K19/30; C09K19/32; C09K19/34; C09K19/48
Domestic Patent References:
WO2004058851A12004-07-15
Foreign References:
EP1792942A12007-06-06
EP0569980A11993-11-18
DE3914048A11990-03-22
DE102005030391A12006-01-26
DE4017685A11991-12-05
US4161470A1979-07-17
US4473682A1984-09-25
US4522974A1985-06-11
US4375530A1983-03-01
US4318841A1982-03-09
US4256624A1981-03-17
US4219461A1980-08-26
US4083829A1978-04-11
US4184996A1980-01-22
US4279803A1981-07-21
US4337190A1982-06-29
US4355134A1982-10-19
US4429105A1984-01-31
US4393191A1983-07-12
US4421908A1983-12-20
US4434262A1984-02-28
US5541240A1996-07-30
US4339375A1982-07-13
US4355132A1982-10-19
US4351917A1982-09-28
US4330457A1982-05-18
US4351918A1982-09-28
US5204443A1993-04-20
US5616680A1997-04-01
US6114492A2000-09-05
US6514611B12003-02-04
Attorney, Agent or Firm:
JOHNSTON, Jason, W. (P.A.P O Box 144, Greenville South Carolina, US)
Download PDF:
Claims:
WHAT IS CLAIMED IS:

1. A method for forming a liquid crystalline polymer, the method comprising melt polymerizing two or more monomers in the presence of an aromatic amide oligomer, wherein the monomers are precursors for the liquid crystalline polymer, and further wherein the aromatic amide oligomer has the following general formula (I):

( Rs) iim

(I)

wherein,

ring B is a 6-membered aromatic ring wherein 1 to 3 ring carbon atoms are optionally replaced by nitrogen or oxygen, wherein each nitrogen is optionally oxidized, and wherein ring B may be optionally fused or linked to a 5- or 6- membered aryl, heteroaryl, cycloalkyl, or heterocyclyl;

R5 is halo, haloalkyl, alkyl, alkenyl, aryl, heteroaryl, cycloalkyl, or heterocyclyl;

m is from 0 to 4;

and X2 are independently C(0)HN or NHC(O); and

R-i and R2 are independently selected from aryl, heteroaryl, cycloalkyl, and heterocyclyl.

2. The method of claim , wherein the liquid crystalline polymer is wholly aromatic.

3. The method of claim 1 , wherein ring B is phenyl.

4. The method of claim 1 , wherein ring B is naphthyl.

5. The method of claim 1 , wherein the aromatic amide oligomer has the following general formula (IV):

(IV) wherein

and X2 are independently C(0)HN or NHC(O);

R5, R7, and R8 are independently selected from halo, haloalkyl, alkyl, alkenyl, alkynyl, aryl, heteroaryl, cycloalkyi, and heterocyclyl;

m is from 0 to 4; and

p and q are independently from 0 to 5.

6. The method of claim 5, wherein m, p, and q are 0.

7. The method of claim 5, wherein m is 0, p is from 1 to 5, and q is from 1 to 5.

8. The method of claim 7, wherein R7, Rs, or both are halo.

9. The method of claim 7, wherein R7, R8, or both are unsubstituted aryl, unsubstituted cycloalkyi, aryl substituted with and/or cycloalkyi substituted with an amide group having the structure: -C(0)R12N- or -NR 3C(0)-, wherein R12 and R13 are independently selected from hydrogen, alkyl, alkenyl, alkynyl, aryl, heteroaryl, cycloalkyi, and heterocyclyl.

10. The method of claim 9, wherein R7 and R3 are phenyl substituted with -

C(0)HN- or -NHC(O)-.

11. The method of claim 9, wherein R7l R8, or both are heteroaryl.

12. The method of claim 1 , wherein the aromatic amide oligomer has the following gene

(V)

wherein

and X2 are independently C(0)HN or NHC(O);

R5, R7, and R8 are independently selected from halo, haloalkyl, alkyl, alkenyl, alkynyl, aryl, heteroaryl, cycloalkyi, and heterocyclyl;

m is from 0 to 4; and

p and q are independently from 0 to 5.

13. The method of claim 12, wherein m, p, and q are 0.

14. The method of claim 12, wherein m is 0, p is from 1 to 5, and q is from

1 to 5.

15. The method of claim 14, wherein R7, R8, or both are halo.

16. The method of claim 14, wherein R7, Re, or both are unsubstituted aryl, unsubstituted cycloalkyi, aryl substituted with and/or cycloalkyi substituted with an amide group having the structure: -C(0)Ri2 - or -NRi3C{0)-, wherein R12 and R13 are independently selected from hydrogen, alkyl, alkenyi, alkyny!, aryl, heteroaryl, cycloalkyi, and heterocyclyl.

17. The method of claim 16, wherein R7 and Rs are phenyl substituted with -C(0)HN- or -NHC(0)-.

18. The method of claim 16, wherein R7l R8, or both are heteroaryl.

19. The method of claim 1 , wherein the oligomer is selected from the group consisting of the following compounds:

20. The method of claim 1 , wherein the oligomer is N1.N4- diphenylterephthalamide, N1 ,N4-diphenylisoterephthaIamide) 1 ,3- Benzenedicarboxamide, N1 ,N3-dicyclohexyl, or 1 ,4-Benzenedicarboxamide, N1 ,N3-dicyclohexyl.

21. The method of claim 1 , wherein the oligomer contains from 2 to 4 amide functional groups per molecule.

22. The method of claim 1 , wherein the oligomer has an amide equivalent weight of from about 50 to about 500 grams per mole.

23. The method of claim 1 , wherein the oligomer has a molecular weight of from about 50 to about 750 grams per mole.

24. The method of claim 1 , wherein the precursor monomers are selected from the group consisting of aromatic hydroxycarboxyiic acids, aromatic dicarboxylic acids, aromatic diols, aromatic amines, aromatic diamines, and combinations thereof.

25. The method of claim 24, wherein the precursor monomers include two or more aromatic hydroxycarboxyiic acids.

26. The method of claim 24, wherein the precursor monomers include an aromatic hydroxycarboxyiic acid, aromatic amine, and aromatic dicarboxylic acid.

27. The method of claim 1 , further comprising:

supplying the monomers and the oligomer to a reactor vessel to form a reaction mixture; and

heating the reaction mixture to initiate a melt polycondensation reaction.

28. The method of claim 27, wherein at least one of the monomers is acetylated before being supplied to the reactor vessel.

29. The method of claim 27, wherein the reaction mixture is heated to a temperature within a range of from about 210°C to about 400°C to initiate the melt polycondensation reaction.

30. The method of claim 27, further comprising supplying an acetyiating agent to the reactor vessel so that the reaction mixture comprises the acetyiating agent, the monomers, and the oligomer.

31. The method of claim 27, wherein aromatic amide oligomers are employed in an amount of from about 0.1 to about 5 parts by weight relative to 100 parts by weight of the reaction mixture.

32. A thermotropic liquid crystalline polymer composition that comprises a liquid crystalline polymer melt polymerized in the presence of an aromatic amide oligomer, wherein the composition has an intrinsic viscosity of about 4 dL/g or more and a melt viscosity of about 50 Pa-s or less, determined at a shear rate of 1000 seconds"1 and a temperature of 350°C.

33. The polymer composition of claim 32, wherein the liquid crystalline polymer is wholly aromatic.

34. The polymer composition of claim 32, wherein the polymer has a melt viscosity of from about 1 to about 100 Pa-s, determined at a shear rate of 1000 seconds'1 and a temperature of 350°C.

35. The polymer composition of claim 32, wherein the polymer has a number average molecular weight of about 2,000 grams per mole or more.

36. The polymer composition of claim 32, wherein the polymer has a melting temperature of from about 250°C to about 400°C.

Description:
PATENT

ATTORNEY DOCKET NO: CICT-96-PCT (2011-0104 2012P0047) MELT POLYMERIZATION OF LOW MELT VISCOSITY LIQUID CRYSTALLINE

POLYMERS

Background of the Invention

[0001] Thermotropic liquid crystalline polymers are condensation polymers that have relatively rigid and linear polymer chains so that they melt to form a liquid crystalline phase. A typical process for producing liquid crystalline aromatic polyesters involves mixing one or aromatic diols and dicarboxylic acids and/or hydroxycarboxylic acids with enough of a carboxylic acid anhydride (e.g., acetic anhydride) to acetylate the hydroxyl groups of the diols and/or hydroxycarboxylic acids present. Once formed, the acetylated monomers are thereafter heated to a high temperature to initiate a condensation reaction in which the monomers are converted to a polymer. To favor a reaction equilibrium that optimizes the production of a high molecular weight polymer, byproducts of the condensation reaction (e.g., acetic acid, phenolic derivatives, etc.) are generally removed. The mixture is eventually heated to a relatively high temperature, typically in latter stages under vacuum, to produce the final liquid crystalline polymer. This is done while the process mixture is a liquid (in the melt).

[0002] Due to their high melting temperature and strength, it is often desirable to form liquid crystalline polymers with a higher molecular weight.

Unfortunately, such polymers are highly viscous and thus tend to solidify in the reactor vessel used during melt polymerization, thereby making them extremely difficult to remove from the reactor. For this reason, conventional techniques for forming high molecular weight liquid crystalline polymers have normally involved "solid state polymerization." That is, before the polymer is fully formed (the molecular weight has reached the desired level), the liquid is cooled and then broken into small particles. These particles are heated while in the "solid state" under a stream of inert gas (e.g., nitrogen) or under a vacuum to raise the molecular weight to the desired level. While solid state polymerization techniques can help achieve the desired molecular weight, they can be overly complex and expensive. [0003] As such, a need exists for a method of melt polymerizing

molecular weight liquid crystalline polymer with a lower melt viscosity.

Summary of the Invention

[0004] In accordance with one embodiment of the present invention, a method for forming a liquid crystalline polymer is disclosed. The method

comprises melt polymerizing two or more monomers in the presence of an aromatic amide oligomer. The monomers are precursors for the liquid crystalline polymer, and the aromatic amide oligomer has the following general formula (I):

(I)

wherein,

ring B is a 6-membered aromatic ring wherein 1 to 3 ring carbon atoms are optionally replaced by nitrogen or oxygen, wherein each nitrogen is optionally oxidized, and wherein ring B may be optionally fused or linked to a 5- or 6- membered aryl, heteroaryl, cycloalkyl, or heterocyclyl;

R 5 is halo, haloalkyl, alkyl, alkenyl, aryl, heteroaryl, cycloalkyl, or

heterocyclyl;

m is from 0 to 4;

Xi and X 2 are independently C(0)HN or NHC(O); and

Ri and F¾ are independently selected from aryl, heteroaryl, cycloalkyl, and heterocyclyl.

[0005] In accordance with another embodiment of the present invention, a thermotropic liquid crystalline polymer composition that comprises a liquid crystalline polymer melt polymerized in the presence of an aromatic amide oligomer is disclosed. The composition has an intrinsic viscosity of from about 4 dL/g to about 15 dL/g and a melt viscosity of about 150 Pa-s or less, determined at a shear rate of 1000 seconds "1 and a temperature of 350°C.

[0006] Other features and aspects of the present invention are set forth in greater detail below. Brief Description of the Figures

[0007] A full and enabling disclosure of the present invention, including the best mode thereof to one skilled in the art, is set forth more particularly in the remainder of the specification, including reference to the accompanying figures, in which:

[0008] Fig. 1 is the Proton NMR characterization for N1 , N4- diphenylterephthalamide (Compound A);

[0009] Fig. 2 is the Proton NMR characterization for N1 , N4- diphenylisoterephthalamide (Compound B);

[0010] Fig. 3 is the Proton NMR characterization for N , N4-bis(2,3,4,5,6- pentafluorophenyl)terephthalamide (Compound C);

[0011] Fig. 4 is the Proton NMR characterization for N1 ,N3-bis(4- benzamidophenyl)benzene-1 t 3-dicarboxamide (Compound F2);

[0012] Fig. 5 is the Proton NMR characterization for N1 ,N3-bis(3- benzamidopheny!)benzene-1 ,3-dicarboxamide (Compound G2); and

[0013] Fig. 6 is the Proton NMR characterization for N1 ,N3,N5- triphenylbenzene- ,3,5-tricarboxamide (Compound J).

Detailed Description of Representative Embodiments

Definitions

[0014] It is to be understood that the terminology used herein is for the purpose of describing particular embodiments only and is not intended to limit the scope of the present invention.

[0015] "Alky!" refers to monovalent saturated aliphatic hydrocarbyl groups having from 1 to 10 carbon atoms and, in some embodiments, from 1 to 6 carbon atoms. "C x-y alkyi" refers to alkyl groups having from x to y carbon atoms. This term includes, by way of example, linear and branched hydrocarbyl groups such as methyl (CH 3 ), ethyl (CH 3 CH 2 ), n-propy! (CH 3 CH 2 CH 2 ), isopropyl ((CH 3 ) 2 CH), n- butyl (CH 3 CH 2 CH2CH 2 ), isobutyl ((CH 3 ) 2 CHCH 2 ), sec-butyl ((CH 3 )(CH 3 CH 2 )CH), f- butyl ((CH 3 ) 3 C), n-pentyl (CH 3 CH 2 CH 2 CH 2 CH 2 ), and neopentyl ((CH 3 ) 3 CCH 2 ).

[00 6] "Alkenyl" refers to a linear or branched hydrocarbyl group having from 2 to 10 carbon atoms and in some embodiments from 2 to 6 carbon atoms or

2 to 4 carbon atoms and having at least 1 site of vinyl unsaturation (>C=C<). For example, (C x -C y )alkenyl refers to alkenyl groups having from x to y carbon atoms and is meant to include for example, ethenyl, propenyl, 1 ,3-butadienyl, and so forth.

[0017] "Alkynyl" refers to refers to a linear or branched monovalent hydrocarbon radical containing at least one triple bond. The term "alkynyl" may also include those hydrocarbyl groups having other types of bonds, such as a double bond and a triple bond.

[0018] "Ary!" refers to an aromatic group of from 3 to 14 carbon atoms and no ring heteroatoms and having a single ring (e.g., phenyl) or multiple condensed (fused) rings (e.g., naphthyl or anthryl). For multiple ring systems, including fused, bridged, and spiro ring systems having aromatic and non-aromatic rings that have no ring heteroatoms, the term "Aryl" applies when the point of attachment is at an aromatic carbon atom (e.g., 5,6,7,8 tetrahydronaphthalene-2-y[ is an aryl group as its point of attachment is at the 2-position of the aromatic phenyl ring).

[0019] "Cycloalkyl" refers to a saturated or partially saturated cyclic group of from 3 to 14 carbon atoms and no ring heteroatoms and having a single ring or multiple rings including fused, bridged, and spiro ring systems. For multiple ring systems having aromatic and non-aromatic rings that have no ring heteroatoms, the term "cycloalkyl" applies when the point of attachment is at a non-aromatic carbon atom (e.g. 5,6,7,8,-tetrahydronaphthalene-5-yl). The term "cycloalkyl" includes cycloalkenyl groups, such as adamantyl, cyclopropyl, cyclobutyl, cyclopentyl, cyclooctyl, and cyclohexenyl. The term "cycloalkenyl" is sometimes employed to refer to a partially saturated cycloalkyl ring having at least one site of >C=C< ring unsaturation.

[0020] "Halo" or "halogen" refers to fluoro, chloro, bromo, and iodo.

[0021] "Haioalkyl" refers to substitution of alkyl groups with 1 to 5 or in some embodiments 1 to 3 halo groups.

[0022] "Heteroaryl" refers to an aromatic group of from 1 to 14 carbon atoms and 1 to 6 heteroatoms selected from oxygen, nitrogen, and sulfur and includes single ring (e.g. imidazolyl) and multiple ring systems (e.g. benzimidazol-2-yi and benzimidazol-6-yl). For multiple ring systems, including fused, bridged, and spiro ring systems having aromatic and non-aromatic rings, the term "heteroaryl" applies if there is at least one ring heteroatom and the point of attachment is at an atom of an aromatic ring (e.g. 1 ,2,3,4-tetrahydroquinolin-6-yi and 5,6,7,8- tetrahydroquinolin-3-yl). In some embodiments, the nitrogen and/or the sulfur ring atom(s) of the heteroaryl group are optionally oxidized to provide for the N oxide (N→0), sulfinyl, or sulfonyl moieties. Examples of heteroaryl groups include, but are not limited to, pyridyl, furanyl, thienyl, thiazolyl, isothiazolyl, triazolyl, imidazolyl, imidazo!inyl, isoxazolyl, pyrrolyl, pyrazo!yl, pyridaziny!, pyrimidiny!, purinyl, phthalazyl, naphthy!pryidyl, benzofuranyl, tetrahydrobenzofuranyl, isobenzofuranyl, benzothiazolyl, benzoisothiazolyl, benzotriazolyl, indolyl, isoindolyl, indolizinyl, dihydroindolyl, indazolyl, indolinyl, benzoxazolyl, quinolyl, isoquinolyl, quinolizyl, quianazolyl, quinoxaiyl, tetrahydroquinolinyl, isoquinolyl, quinazolinonyl,

benzimidazolyl, benzisoxazolyl, benzothienyl, benzopyridazinyl, pteridinyl, carbazolyl, carbolinyi, phenanthridinyl, acridinyl, phenanthrolinyl, phenazinyl, phenoxazinyl, phenothiazinyl, and phthalimidyl.

[0023] "Heterocyclic" or "heterocycle" or "heterocycloalkyl" or "heterocyclyl" refers to a saturated or partially saturated cyclic group having from 1 to 14 carbon atoms and from 1 to 6 heteroatoms selected from nitrogen, sulfur, or oxygen and includes single ring and multiple ring systems including fused, bridged, and spiro ring systems. For multiple ring systems having aromatic and/or non-aromatic rings, the terms "heterocyclic", "heterocycle", "heterocycloalkyl", or "heterocyclyl" apply when there is at least one ring heteroatom and the point of attachment is at an atom of a non-aromatic ring (e.g. decahydroquinolin-6-yl). In some

embodiments, the nitrogen and/or sulfur atom(s) of the heterocyclic group are optionally oxidized to provide for the N oxide, sulfinyl, sulfonyl moieties. Examples of heterocyclyl groups include, but are not limited to, azetidinyl, tetrahydropyranyl, piperidinyl, N-methylpiperidin-3-yl, piperazinyl, N-methylpyrrolidin-3-yl, 3- pyrrolidinyl, 2-pyrrolidon-1-yl, morpholinyl, thiomorpholinyl, imidazolidinyl, and pyrrolidinyl.

[0024] It should be understood that the aforementioned definitions encompass unsubstituted groups, as well as groups substituted with one or more other functional groups as is known in the art. For example, an aryl, heteroaryl, cycloalkyl, or heterocyclyl group may be substituted with from 1 to 8, in some embodiments from 1 to 5, in some embodiments from 1 to 3, and in some embodiments, from 1 to 2 substituents selected from alkyl, alkenyl, alkynyl, alkoxy, acyl, acylamino, acyloxy, amino, quaternary amino, amide, imino, amidino, aminocarbonylamino, amidinocarbonylamino, aminothiocarbonyl, aminocarbonylamino, aminothiocarbonylamino, aminocarbonyloxy, aminosulfonyl, aminosulfonyloxy, aminosulfonylamino, aryl, aryioxy, arylthio, azido, carboxyl, carboxyl ester, (carboxyl ester)amino, (carboxyl ester)oxy, cyano, cycloalkyl, cycloalkyloxy, cycloalkylthio, guanidino, halo, haloalkyl, haloalkoxy, hydroxy, hydroxyamino, alkoxyamino, hydrazino, heteroaryl, heteroaryloxy, heteroary!thio, heterocyciyl, heterocycly!oxy, heterocyclylthio, nitro, oxo, thione, phosphate, phosphonate, phosphinate, phosphonamidate, phosphorodiamidate,

phosphoramidate monoester, cyclic phosphoramidate, cyclic phosphorodiamidate, phosphoramidate diester, sulfate, sulfonate, sulfonyl, substituted sulfonyl, sulfonyloxy, thioacyl, thiocyanate, thiol, alkylthio, etc., as well as combinations of such substituents.

[0025] "Liquid crystalline polymer" or "liquid crystal polymer" refers to a polymer that can possess a rod-like structure that allows it to exhibit liquid crystalline behavior in its molten state (e.g., thermotropic nematic state). The polymer may contain aromatic units (e.g., aromatic polyesters, aromatic

polyesteramides, etc.) so that it is wholly aromatic (e.g., containing only aromatic units) or partially aromatic (e.g., containing aromatic units and other units, such as cycloaliphatic units). The polymer may also be fully crystalline or semi-crystalline in nature.

Detailed Description

[0026] It is to be understood by one of ordinary skill in the art that the present discussion is a description of exemplary embodiments only, and is not intended as limiting the broader aspects of the present invention.

[0027] Generally speaking, the present invention is directed to a method for forming a high molecular weight liquid crystalline polymer. More particularly, two or more precursor monomers (e.g., acetylated or non-acetylated) are melt polymerized in the presence of an aromatic amide oligomer having the following general formula (1):

(I)

wherein,

ring B is a 6-membered aromatic ring wherein 1 to 3 ring carbon atoms are optionally replaced by nitrogen or oxygen, wherein each nitrogen is optionally oxidized, and wherein ring B may be optionally fused or linked to a 5- or 6- membered aryl, heteroaryl, cyctoalkyl, or heterocyclyl;

R 5 is halo, haloalkyl, alkyl, aikenyl, aryl, heteroaryl, cycloalkyl, or

heterocyclyl;

m is from 0 to 4;

and X 2 are independently C(0)HN or NHC(O); and

Ri and R 2 are independently selected from aryl, heteroaryl, cycloalkyl, and heterocyclyl.

[0028] The present inventors have discovered that such an oligomer can lower the melt viscosity of the viscous polymer as it is formed. The ability to lower melt viscosity in situ during melt polymerization enables the formation of high molecular weight polymers that display low melt viscosity and can still be removed from the reactor vessel without solidifying therein. This not only improves the ease of processing, but also allows molecular weights to be reached that are even higher than conventionally practical. Another benefit of the oligomer is that it is not easily volatized or decomposed, which allows the oligomer to be processed at relatively high temperatures during the polymerization reaction. Without intending to be limited by theory, it is believed that active hydrogen atoms of the amide functional groups are capable of forming a hydrogen bond with the backbone of liquid crystalline polyesters or polyesteramides. Such hydrogen bonding strengthens the attachment of the oligomer to the liquid crystalline polymer and thus minimizes the likelihood that it becomes volatilized. While providing the benefits noted, the aromatic amide oligomer does not generally react with the polymer backbone of the liquid crystalline polymer to any appreciable extent so that the mechanical properties of the polymer are not adversely impacted.

[0029] The aromatic amide oligomer generally has a relatively low

molecular weight so that it can effectively serve as a flow aid for the polymer composition. For example, the oligomer typically has a molecular weight of about 1 ,000 grams per mole or less, in some embodiments from about 50 to about 750 grams per mole, in some embodiments from about 100 to about 600 grams per mole, and in some embodiments, from about 150 to about 500 grams per mole. In addition to possessing a relatively low molecular weight, the oligomer also generally possesses a high amide functionality so it is capable of undergoing a sufficient degree of hydrogen bonding with the liquid crystalline polymer. The degree of amide functionality for a given molecule may be characterized by its "amide equivalent weight", which reflects the amount of a compound that contains one molecule of an amide functional group and may be calculated by dividing the molecular weight of the compound by the number of amide groups in the molecule. For example, the aromatic amide oligomer may contain from 1 to 10, in some embodiments from 2 to 8, and in some embodiments, from 2 to 4 amide functional groups per molecule. The amide equivalent weight may likewise be from about 10 to about 1 ,000 grams per mole or less, in some embodiments from about 50 to about 500 grams per mole, and in some embodiments, from about 100 to about 300 grams per mole.

[0030] As indicated above, it is desirable that the amide oligomer is also generally unreactive so that it does not form covalent bonds with the liquid crystalline polymer backbone. To help better minimize reactivity, the oligomer typically contains a core formed from one or more aromatic rings (including heteroaromatic). The oligomer may also contain terminal groups formed from one or more aromatic rings and/or cycloalkyl groups. Such an "aromatic" oligomer thus possesses little, if any, reactivity with the base liquid crystalline polymer.

[0031] In certain embodiments, Ring B in Formula (I) above may be selected from the following: (

wherein,

m is 0, 1 , 2, 3, or 4, in some embodiments m is 0, 1 , or 2, in some embodiments m is 0 or 1 , and in some embodiments, m is 0; and

R 5 is halo, haloalkyl, alkyl, alkenyl, aryl, heteroaryl, cycloalkyl, or

heterocyclyl. Ring B may be phenyl.

[0032] In certain embodiments, the oligomer is a di-functional compound in that Ring B is directly bonded to only two (2) amide groups (e.g., C(O)HN or NHC(O)). In such embodiments, m in Formula (I) may be 0. Of course, in certain embodiments, Ring B may also be directly bonded to three (3) or more amide groups. For example, one embodiment of such a compound is provided by general formula (II):

Rs (II)

wherein,

ring B, R 5 , Xi, X2, Ri, and R 2 are as defined above; m is from 0 to 3;

X 3 is C(0)HN or HC(0); and

R 3 is selected from aryl, heteroaryl, cycloalkyi, and heterocyciyi.

[0033] Another embodiment of such a compound is provided by general formula (III):

R4

wherein,

ring B, R5, Xi , X 2 , X3, Ri , R2, and R 3 are as defined above;

X4 IS C(0)HN or HC(0); and

R 4 is selected from aryl, heteroaryl, cycloalkyi, and heterocycly!.

[0034] In some embodiments, R-i , R2, R3 and/or R 4 in the structures noted above may be selected from the following:

wherein,

n is 0, 1 , 2, 3, 4, or 5, in some embodiments n is 0, 1 , or 2, and in some embodiments, n is 0 or 1 ; and

R 6 is halo, haloalky!, alkyi, alkenyi, alkynyl, aryl, heteroaryl, cycloalkyl, or heterocyclyl.

[0035] In one particular embodiment, the aromatic amide oligomer has the following general formula (IV):

wherein,

Xi and X 2 are independently C(0)HN or NHC(O);

R 5 , R 7 , and Re are independently selected from halo, haloaikyl, alkyl, alkenyi, alkynyl, aryi, heteroaryl, cycloalkyl, and heterocyclyl;

m is from 0 to 4; and

p and q are independently from 0 to 5.

[0036] In another embodiment, the aromatic amide oligomer has the following general formula (V):

wherein,

X-i, X 2 , R5, R7, e, m, P, and q are as defined above.

[0037] For example, in certain embodiments, m, p, and q in Formula (IV) and Formula (V) may be equal to 0 so that the core and terminal aromatic groups are unsubstituted. In other embodiments, m may be 0 and p and q may be from 1 to 5. In such embodiments, for example, R 7 and/or R 8 may be halo (e.g., fluorine). In other embodiments, R 7 and/or R 8 may be aryl (e.g., phenyl), cycloalkyl (e.g., coclyhexyl), or aryl and/or cycloalkyl substituted with an amide group having the structure: -C(0)Ri 2 N- or -NRi 3 C(0)~, wherein R 2 and R13 are independently selected from hydrogen, alkyl, alkenyl, alkynyl, aryl, heteroaryl, cycloalkyl, and heterocyclyl. In one particular embodiment, for example, R 7 and/or R 8 are phenyl substituted with -C(0)HN- or -NHC(O)-. In yet other embodiments, R 7 and/or R 8 may be heteroaryl (e.g., pyridinyl).

[0038] In yet another embodiment, the aromatic amide oligomer has the following general formula (VI):

(VI)

wherein,

Xi, X 2 , and X3 are independently C(0)HN or NHC(O);

R5, R7» R8, and R 9 are independently selected from halo, haloalkyl, alkyl, alkenyl, alkynyl, aryl, heteroaryl, cycloalkyl, and heterocyclyl;

m is from 0 to 3; and

p, q, and r are independently from 0 to 5.

[0039] In yet another embodiment, the aromatic amide oligomer has the following general formula (VII):

(VI!) wherein,

X-i , X2, X3,Rs, R7, Re, R9, m, p, q, and r are as defined above.

[0040] For example, in certain embodiments, m, p, q, and r in Formula (VI) or in Formula (VII) may be equal to 0 so that the core and terminal aromatic groups are unsubstituted. In other embodiments, m may be 0 and p, q, and r may be from 1 to 5. In such embodiments, for example, R 7 , Rs, and/or R 9 may be halo (e.g., fluorine). In other embodiments, R 7 , Rs, and/or R 9 may be aryl (e.g., phenyl), cycloalkyl (e.g., cyclohexyl), or aryl and/or cycloalkyl substituted with an amide group having the structure: -C(0)Ri 2 N~ or -NR 13 C(0)-, wherein R1 2 and R13 are independently selected from hydrogen, alkyl, alkenyl, alkynyl, aryl, heteroaryl, cycloalkyl, and heterocyclyl. In one particular embodiment, for example, R 7 , R 8 , and/or R 9 are phenyl substituted with -C(0)HN- or -NHC(O)-. In yet other embodiments, R 7 , Rs, and/or R 9 may be heteroaryl (e.g., pyridinyl).

[0041] Specific embodiments of the aromatic amide oligomer of the present invention are also set forth in the table below:

[0042] The precursor monomers employed during the formation of the liquid crystalline polymer may generally vary as is known in the art. For example, suitable thermotropic liquid crystalline polymers may include instance, aromatic polyesters, aromatic poly(esteramides), aromatic poly(estercarbonates), aromatic polyamides, etc., and may likewise contain repeating units formed from one or more aromatic or aliphatic hydroxycarboxylic acids, aromatic or aliphatic

dicarboxylic acids, aromatic or aliphatic diols, aromatic or aliphatic aminocarboxylic acids, aromatic or aliphatic amines, aromatic or aliphatic diamines, etc., as well as combinations thereof.

[0043] Aromatic polyesters, for instance, may be obtained by polymerizing

(1 ) two or more aromatic hydroxycarboxylic acids; (2) at least one aromatic hydroxycarboxylic acid, at least one aromatic dicarboxylic acid, and at least one aromatic diol; and/or (3) at least one aromatic dicarboxylic acid and at least one aromatic diol. Examples of suitable aromatic hydroxycarboxylic acids include, 4- hydroxybenzoic acid; 4-hydroxy-4'-biphenylcarboxylic acid; 2-hydroxy-6-naphthoic acid; 2-hydroxy-5-naphthoic acid; 3-hydroxy-2-naphthoic acid; 2-hydroxy-3- naphthoic acid; 4'-hydroxyphenyl-4-benzoic acid; 3'-hydroxyphenyl-4-benzoic acid;

4'-hydroxyphenyl-3-benzoic acid, etc., as well as alkyl, alkoxy, aryl and halogen substituents thereof. Examples of suitable aromatic dicarboxylic acids include terephthalic acid; isophthalic acid; 2,6-naphthalenedicarboxylic acid; diphenyl ether-4,4'-dicarboxylic acid; 1 ,6-naphthalenedicarboxylic acid; 2,7- naphthalenedicarboxylic acid; 4,4'-dicarboxybiphenyl; bis(4-carboxyphenyl)ether; bis(4-carboxyphenyl)butane; bis{4-carboxyphenyl)ethane; bis(3- carboxyphenyl)ether; bis(3-carboxyphenyl)ethane, etc., as well as alkyl, alkoxy, aryl and halogen substituents thereof. Examples of suitable aromatic diols include hydroquinone; resorcinol; 2,6-dihydroxynaphthalene; 2,7-dihydroxynaphthalene;

1 ,6-dihydroxynaphthalene; 4,4'-dihydroxybiphenyl; 3,3'-dihydroxybiphenyl; 3,4'- dihydroxybiphenyl; 4,4 -dihydroxybiphenyl ether; bis(4-hydroxyphenyl)ethane, etc., as well as alkyl, alkoxy, aryl and halogen substituents thereof. In one particular embodiment, the aromatic polyester contains monomer repeat units derived from

4-hydroxybenzoic acid and 2,6-hydroxynaphthoic acid. The monomer units derived from 4-hydroxybenzoic acid may constitute from about 45% to about 85%

(e.g., 73%) of the polymer on a mole basis and the monomer units derived from

2,6-hydroxynaphthoic acid may constitute from about 15% to about 55% (e.g.,

27%) of the polymer on a mole basis. Such aromatic polyesters are commercially available from Ticona, LLC under the trade designation VECTRA® A. The synthesis and structure of these and other aromatic polyesters may be described in more detail in U.S. Patent Nos. 4,161 ,470; 4,473,682; 4,522,974; 4,375,530;

4,318,841 ; 4,256,624; 4,219,461 ; 4,083,829; 4,184,996; 4,279,803; 4,337,190;

4,355,134; 4,429,105; 4,393,191 ; 4,421 ,908; 4,434,262; and 5,541 ,240.

[0044] Liquid crystalline polyesteramides may likewise be obtained by polymerizing (1) at least one aromatic hydroxycarboxylic acid and at least one aromatic aminocarboxylic acid; (2) at least one aromatic hydroxycarboxylic acid, at least one aromatic dicarboxylic acid, and at least one aromatic amine and/or diamine optionally having phenolic hydroxy groups; and (3) at least one aromatic dicarboxylic acid and at least one aromatic amine and/or diamine optionally having phenolic hydroxy groups. Suitable aromatic amines and diamines may include, for instance, 3-aminophenol; 4-aminophenol; 1 ,4-phenylenediamine; 1 ,3- phenylenediamine, etc., as well as alkyl, alkoxy, aryl and halogen substituents thereof. In one particular embodiment, the aromatic polyesteramide contains monomer units derived from 2,6-hydroxynaphthoic acid, terephthalic acid, and 4- aminophenol. The monomer units derived from 2,6-hydroxynaphthoic acid may constitute from about 35% to about 85% of the polymer on a mole basis (e.g., 60%), the monomer units derived from terephthalic acid may constitute from about 5% to about 50% (e.g., 20%) of the polymer on a mole basis, and the monomer units derived from 4-aminophenol may constitute from about 5% to about 50% (e.g., 20%) of the polymer on a mole basis. Such aromatic polyesters are commercially available from Ticona, LLC under the trade designation

VECTRA® B. In another embodiment, the aromatic polyesteramide contains monomer units derived from 2,6-hydroxynaphthoic acid, and 4-hydroxybenzoic acid, and 4-aminophenol, as well as other optional monomers (e.g., 4,4'- dihydroxybiphenyl and/or terephthalic acid). The synthesis and structure of these and other aromatic poly(esteramides) may be described in more detail in U.S. Patent Nos. 4,339,375; 4,355,132; 4,351 ,917; 4,330,457; 4,351 ,918; and

5,204,443.

[0045] Regardless of their particular constituents, the liquid crystalline polymers may be prepared by introducing the appropriate monomer(s) (e.g., aromatic hydroxycarboxylic acid, aromatic dicarboxylic acid, aromatic diol, aromatic amine, aromatic diamine, etc.) into a reactor vessel to initiate a polycondensation reaction. The particular conditions and steps employed in such reactions are well known, and may be described in more detail in U.S. Patent No.

4,161 ,470 to Calundann: U.S. Patent No. 5,616,680 to Linstid. Ill, et al.: U.S.

Patent No. 6,1 14,492 to Linstid, 111, et al.; U.S. Patent No. 6,514,61 1 to Shepherd, et al.; and WO 2004/058851 to Waggoner, which are incorporated herein in their entirety by reference thereto for all relevant purposes. The vessel employed for the reaction is not especially limited, although it is typically desired to employ one that is commonly used in reactions of high viscosity fluids. Examples of such a reaction vessel may include a stirring tank-type apparatus that has an agitator with a variably-shaped stirring blade, such as an anchor type, multistage type, spirai-ribbon type, screw shaft type, etc., or a modified shape thereof. Further examples of such a reaction vessel may include a mixing apparatus commonly used in resin kneading, such as a kneader, a roll mill, a Banbury mixer, etc.

[0046] If desired, the reaction may proceed through the acetylation of the monomers as referenced above and known the art. This may be accomplished by adding an acetylating agent (e.g., acetic anhydride) to the monomers. Acetylation is generally initiated at temperatures of about 90°C. During the initial stage of the acetylation, reflux may be employed to maintain vapor phase temperature below the point at which acetic acid byproduct and anhydride begin to distill.

Temperatures during acetylation typically range from between 90°C to 150°C, and in some embodiments, from about 1 10°C to about 150°C. If reflux is used, the vapor phase temperature typically exceeds the boiling point of acetic acid, but remains low enough to retain residual acetic anhydride. For example, acetic anhydride vaporizes at temperatures of about 140°C. Thus, providing the reactor with a vapor phase reflux at a temperature of from about 1 10°C to about 130°C is particularly desirable. To ensure substantially complete reaction, an excess amount of acetic anhydride may be employed. The amount of excess anhydride will vary depending upon the particular acetylation conditions employed, including the presence or absence of reflux. The use of an excess of from about 1 to about 10 mole percent of acetic anhydride, based on the total moles of reactant hydroxyl groups present is not uncommon.

[0047] Acetylation may occur in in a separate reactor vessel, or it may occur in situ within the polymerization reactor vessel. When separate reactor vessels are employed, one or more of the monomers may be introduced to the acetylation reactor and subsequently transferred to the polymerization reactor. Likewise, one or more of the monomers may also be directly introduced to the reactor vessel without undergoing pre-acetylation.

[0048] In accordance with the present invention, the aromatic amide oligomer is also added to the polymerization apparatus. Although it may be introduced at any time, it is typically desired to apply the oligomer before melt polymerization has been initiated, and typically in conjunction with the precursor monomers for the liquid crystalline polymer. The relative amount of the aromatic amide oligomer added to the reaction mixture may be selected to help achieve a balance between viscosity and mechanical properties. More particularly, high oligomer contents can result in Sow viscosity, but too high of a content may reduce the viscosity to such an extent that the oligomer adversely impacts the melt strength of the reaction mixture. In most embodiments, for example, the aromatic amide oligomer, or mixtures thereof, may be employed in an amount of from about 0.1 to about 5 parts, in some embodiments from about 0.2 to about 4 parts, and in some embodiments, from about 0.3 to about 1.5 parts by weight relative to 100 parts by weight of the reaction mixture, The aromatic amide oligomers may, for example, constitute from about 0.1 wt.% to about 5 wt.%, in some embodiments from about 0.2 wt.% to about 4 wt.%, and in some

embodiments, from about 0.3 wt.% to about 1.5 wt.% of the reaction mixture.

Liquid crystalline polymers may likewise constitute from about 95 wt.% to about

99.9 wt.%, in some embodiments from about 96 wt.% to about 98.8 wt.%, and in some embodiments, from about 98.5 wt.% to about 99.7 wt.% of the reaction mixture. While referred to in terms of the reaction mixture, it should also be understood that the ratios and weight percentages may also be applicable to the final polymer composition. That is, the parts by weight of the oligomer relative to

100 parts by weight of liquid crystalline polymer and the percentage of the oligomer in the final polymer composition may be within the ranges noted above.

[0049] In addition to the monomers, oligomer, and optional acetylating agents, other components may also be included within the reaction mixture to help facilitate polymerization. For instance, a catalyst may be optionally employed, such as metal sait catalysts (e.g., magnesium acetate, tin(l) acetate, tetrabutyl titanate, lead acetate, sodium acetate, potassium acetate, etc.) and organic compound catalysts (e.g., N-methylimidazole). Such catalysts are typically used in amounts of from about 50 to about 500 parts per million based on the total weight of the recurring unit precursors. When separate reactors are employed, it is typically desired to apply the catalyst to the acetylation reactor rather than the polymerization reactor, although this is by no means a requirement.

[0050] The reaction mixture is generally heated to an elevated temperature within the polymerization reactor vessel to initiate melt polycondensation of the reactants. Polycondensation may occur, for instance, within a temperature range of from about 210 a C to about 400°C, and in some embodiments, from about

250°C to about 350°C. For instance, one suitable technique for forming an aromatic polyester may include charging precursor monomers (e.g., 4- hydroxybenzoic acid and 2,6-hydroxynaphthoic acid), aromatic amide oligomer, and acetic anhydride into the reactor, heating the mixture to a temperature of from about 90°C to about 150°C to acetylize a hydroxyl group of the monomers (e.g., forming acetoxy), and then increasing the temperature to a temperature of from about 210°C to about 400°C to carry out melt potycondensation. As the final polymerization temperatures are approached, volatile byproducts of the reaction (e.g., acetic acid) may also be removed so that the desired molecular weight may be readily achieved. The reaction mixture is generally subjected to agitation during polymerization to ensure good heat and mass transfer, and in turn, good material homogeneity. The rotational velocity of the agitator may vary during the course of the reaction, but typically ranges from about 10 to about 100

revolutions per minute ("rpm"), and in some embodiments, from about 20 to about 80 rpm. To build molecular weight in the melt, the polymerization reaction may also be conducted under vacuum, the application of which facilitates the removal of volatiles formed during the final stages of polycondensation. The vacuum may be created by the application of a suctional pressure, such as within the range of from about 5 to about 30 pounds per square inch ("psi"), and in some embodiments, from about 10 to about 20 psi.

[0051] Following melt polymerization, the molten polymer may be discharged from the reactor, typically through an extrusion orifice fitted with a die of desired configuration, cooled, and collected. Commonly, the melt is

discharged through a perforated die to form strands that are taken up in a water bath, pelletized and dried. The resin may also be in the form of a strand, granule, or powder. While unnecessary, it should also be understood that a subsequent solid phase polymerization may be conducted to further increase molecular weight. When carrying out solid-phase polymerization on a polymer obtained by melt polymerization, it is typically desired to select a method in which the polymer obtained by melt polymerization is solidified and then pulverized to form a powdery or flake-like polymer, followed by performing solid polymerization method, such as a heat treatment in a temperature range of 200°C to 350°C under an inert atmosphere (e.g., nitrogen).

[0052] Regardless of the particular method employed, the resulting liquid crystalline polymer typically may have a high number average molecular weight

(Mn) of about 2,000 grams per mo!e or more, in some embodiments from about

4,000 grams per mole or more, and in some embodiments, from about 5,000 to about 30,000 grams per mole. Of course, it is also possible to form polymers having a lower molecular weight, such as less than about 2,000 grams per mole, using the method of the present invention. The intrinsic viscosity of the polymer composition, which is generally proportional to molecular weight, may aiso be relatively high. For example, the intrinsic viscosity may be about about 4 deciliters per gram ("dL/g") or more, in some embodiments about 5 dL/g or more, in some embodiments from about 6 to about 20 dL/g, and in some embodiments from about 7 to about 15 dL/g, Intrinsic viscosity may be determined in accordance with ISO-1628-5 using a 50/50 (v/v) mixture of pentafluorophenol and

hexafluoroisopropanol, as described in more detail below. While intrinsic viscosity is generally directly proportional to the average molecular weight, the present inventors have surprisingly discovered that the melt viscosity of the composition does not follow the same trend. In other words, the presence of the aromatic oligomer during melt polymerization has been found to substantially decrease melt viscosity, but only result in a slight decrease, if any, in intrinsic viscosity.

[0053] As emphasized above, such a low melt viscosity can improve processability and also allow molecular weights to be reached that were not conventionally practical. For example, the polymer composition may have a melt viscosity of about 200 Pa-s or less, in some embodiments about 150 Pa-s or less, in some embodiments from about 0.5 to about 125 Pa-s, and in some embodiments, from about 1 to about 100 Pa-s, determined at a shear rate of

1000 seconds "1 . Melt viscosity may be determined in accordance with ISO Test

No. 11443 (equivalent to ASTM Test No. 1238-70) at a temperature of 350°C.

[0054] The melting point of the polymer composition may aiso range from about 250°C to about 400°C, in some embodiments from about 270°C to about

380°C, and in some embodiments, from about 300°C to about 360°C. Likewise, the crystallization temperature may range from about 200°C to about 400°C, in some embodiments from about 250°C to about 350°C, and in some

embodiments, from about 280°C to about 320°C. The melting and crystallization temperatures may be determined as is well known in the art using differential scanning calorimetry ("DSC"), such as determined by ISO Test No. 11357.

[0055] If desired, the resulting polymer composition may also be combined with a wide variety of other types of components to form a filled composition. For example, a filler material may be incorporated with the polymer composition to enhance strength. A filler composition can include a filler material such as a fibrous filler and/or a mineral filler and optionally one or more additional additives as are generally known in the art.

[0056] Mineral fillers may, for instance, be employed in the polymer composition to help achieve the desired mechanical properties and/or

appearance. When employed, mineral fillers typically constitute from about 5 wt.% to about 60 wt.%, in some embodiments from about 10 wt.% to about 55 wt.%, and in some embodiments, from about 20 wt.% to about 50 wt.% of the polymer composition. Clay minerals may be particularly suitable for use in the present invention. Examples of such clay minerals include, for instance, talc (Mg 3 Si4Oi 0 (OH) 2 ), halloysite (AI 2 Si 2 0 5 (OH) 4 ), kaolinite (AI 2 Si 2 05(OH)4), illite ((K,H 3 0)(AI,Mg,Fe)2 (Si,AI)4O 10 [(OH) 2j (H2O)]), montmorillonite

(Na ) Ca)o.33(AI,Mg) 2 Si 4 0 10 (OH) 2 -nH 2 0) I vermiculite ((MgFe,AI) 3 (AI,Si) 4 O 10 (OH) 2 - 4H 2 0), palygorskite ((Mg,A[) 2 Si 4 O o{OHH(H 2 0)), pyrophyllite (ΑΙ 2 5Ϊ4θ 10 (ΟΗ) 2 ), etc., as well as combinations thereof. In lieu of, or in addition to, clay minerals, still other mineral fillers may also be employed. For example, other suitable silicate fillers may also be employed, such as calcium silicate, aluminum silicate, mica, diatomaceous earth, wollastonite, and so forth. Mica, for instance, may be particularly suitable. There are several chemically distinct mica species with considerable variance in geologic occurrence, but all have essentially the same crystal structure. As used herein, the term "mica" is meant to generically include any of these species, such as muscovite (KAI 2 (AISi3)Oio(OH) 2 ), biotite

(K(Mg,Fe)3(AISi 3 )O 10 (OH) 2 ), phlogopite (KMg 3 {AISi 3 )O 10 (OH)2), !epidolite

(KiLiA ^AISisJO^iOH),), glauconite {K,Na)(A!,Mg,Fe) 2 (Si,AI) 4 O 10 (OH)2), etc., as well as combinations thereof.

[0057] Fibers may also be employed as a filler material to further improve the mechanical properties. Such fibers generally have a high degree of tensile strength relative to their mass. For example, the ultimate tensile strength of the fibers (determined in accordance with ASTM D2101 ) is typically from about 1 ,000 to about 15,000 Megapascals ("MPa"), in some embodiments from about 2,000

MPa to about 10,000 MPa, and in some embodiments, from about 3,000 MPa to about 6,000 MPa. To help maintain an insulative property, which is often desirable for use in electronic components, the high strength fibers may be formed from materials that are also generally insulative in nature, such as glass, ceramics (e.g., alumina or silica), aramids (e.g., Kevlar® marketed by E. I.

duPont de Nemours, Wilmington, Del.), polyolefins, polyesters, etc., as well as mixtures thereof. Glass fibers are particularly suitable, such as E-glass, A-glass, C-glass, D-glass, AR-glass, R-glass, S1 -glass, S2-glass, etc., and mixtures thereof.

[0058] The volume average length of the fibers may be from about 50 to about 400 micrometers, in some embodiments from about 80 to about 250 micrometers, in some embodiments from about 100 to about 200 micrometers, and in some embodiments, from about 1 10 to about 180 micrometers. The fibers may also have a narrow length distribution. That is, at least about 70% by volume of the fibers, in some embodiments at least about 80% by volume of the fibers, and in some embodiments, at least about 90% by volume of the fibers have a length within the range of from about 50 to about 400 micrometers, in some embodiments from about 80 to about 250 micrometers, in some

embodiments from about 100 to about 200 micrometers, and in some

embodiments, from about 1 10 to about 180 micrometers. The fibers may also have a relatively high aspect ratio (average length divided by nominal diameter) to help improve the mechanical properties of the resulting polymer composition.

For example, the fibers may have an aspect ratio of from about 2 to about 50, in some embodiments from about 4 to about 40, and in some embodiments, from about 5 to about 20 are particulariy beneficial. The fibers may, for example, have a nominal diameter of about 10 to about 35 micrometers, and in some

embodiments, from about 5 to about 30 micrometers.

[0059] The relative amount of the fibers in the filled polymer composition may also be selectively controlled to help achieve the desired mechanical properties without adversely impacting other properties of the composition, such as its flowability. For example, the fibers may constitute from about 2 wt.% to about 40 wt.%, in some embodiments from about 5 wt.% to about 35 wt.%, and in some embodiments, from about 6 wt.% to about 30 wt.% of the polymer composition. Although the fibers may be employed within the ranges noted above, small fiber contents may be employed while still achieving the desired mechanical properties. For example, the fibers can be employed in small amounts such as from about 2 wt.% to about 20 wt.%, in some embodiments, from about 5 wt.% to about 6 wt.%, and in some embodiments, from about 6 wt.% to about 12 wt.%.

[0060] Still other additives that can be included in the composition may include, for instance, antimicrobials, pigments (e.g., carbon black), antioxidants, stabilizers, surfactants, waxes, solid solvents, and other materials added to enhance properties and processability. Lubricants, for instance, may be employed in the polymer composition. Examples of such lubricants include fatty acids esters, the salts thereof, esters, fatty acid amides, organic phosphate esters, and hydrocarbon waxes of the type commonly used as lubricants in the processing of engineering plastic materials, including mixtures thereof. Suitable fatty acids typically have a backbone carbon chain of from about 12 to about 60 carbon atoms, such as myristic acid, palmitic acid, stearic acid, arachic acid, montanic acid, octadecinic acid, parinric acid, and so forth. Suitable esters include fatty acid esters, fatty alcohol esters, wax esters, glycerol esters, glycol esters and complex esters. Fatty acid amides include fatty primary amides, fatty secondary amides, methylene and ethylene bisamides and alkanolamides such as, for example, palmitic acid amide, stearic acid amide, oleic acid amide, Ν,Ν'- ethylenebisstearamide and so forth. Also suitable are the metal salts of fatty acids such as calcium stearate, zinc stearate, magnesium stearate, and so forth; hydrocarbon waxes, including paraffin waxes, polyolefin and oxidized polyolefin waxes, and microcrystalline waxes. Particularly suitable lubricants are acids, salts, or amides of stearic acid, such as pentaerythritol tetrastearate, calcium stearate, or Ν,Ν'-ethylenebisstearamide. When employed, the lubricant(s) typically constitute from about 0.05 wt.% to about 1.5 wt.%, and in some embodiments, from about 0.1 wt.% to about 0.5 wt.% (by weight) of the polymer composition.

[0061] The present invention may be better understood with reference to the following examples.

Test Methods

[0062] Melt Viscosity: The melt viscosity (Pa-s) was determined in accordance with ISO Test No. 11443 at 350°C and at a shear rate of 400 s "1 and 1000 s "1 using a Dynisco 7001 capillary rheometer. The rheometer orifice (die) had a diameter of 1 mm, length of 20 mm, L/D ratio of 20.1 , and an entrance angle of 180°. The diameter of the barrel was 9.55 mm + 0.005 mm and the length of the rod was 233.4 mm.

[0063] Intrinsic Viscosity: The intrinsic viscosity ("IV") may be measured in accordance with ISO- 628-5 using a 50/50 (v/v) mixture of pentafluorophenol and hexafiuoroisopropanol. Each sample was prepared in duplicate by weighing about 0.02 grams into a 22 mL vial. 0 mL of pentafluorophenol ("PFP") was added to each vial and the solvent. The vials were placed in a heating block set to 80°C overnight. The following day 10 mL of hexafiuoroisopropanol ("HFIP") was added to each vial. The final polymer concentration of each sample was about 0.1 %. The samples were allowed to cool to room temperature and analyzed using a Poly Vise automatic viscometer.

[0064] Melting and Crystallization Temperatures: The melting temperature

("Tm") and crystallization temperature ("Tc") were determined by differentia] scanning calorimetry ("DSC") as is known in the art. The melting temperature is the differential scanning calorimetry (DSC) peak melt temperature as determined by ISO Test No. 11357. The crystallization temperature is determined from the cooling exotherm in the cooling cycle. Under the DSC procedure, samples were heated and cooled at 20°C per minute as stated in ISO Standard 10350 using

DSC measurements conducted on a TA Q2000 Instrument.

[0065] GPC Analysis: The samples were dissolved in 50/50 HFIP/PFP to a concentration of 1 .00 mg/ml and left on an orbital shaker for 24 hours. The samples were filtered using 0.2 pm disposable Teflon filters. After filtration, the samples were run in duplicate in the same solvent. The system was run at a flow rate of 1 .0 ml/min on a JORDl DVB Mixed Bed column, 250mm x 0mm (ID).

The column temperature was maintained at 40°C, Injection size was 50μΙ of a

1.00 mg/ml sample solution. Polymethylmethacrylate standards with a

concentration of 0.5 mg/ml were used (molecular weight as follows: 903K, 701 K,

366K, 11 OK, 89.3K, 31 .6K, 14.7K, 5.09K, 2.58K, 402 & 202) with an injection size of 50 μΐ. The samples were monitored at a sensitivity of 8 and a scale factor of

20 with a WATERS 410 differential refracto meter. Data acquisition and handling may be performed with Jordi GPC software. [0066] Deflection Under Load Temperature ("DTUL"): The deflection under load temperature was determined in accordance with ISO Test No. 75-2

(technically equivalent to ASTM D648-07). More particularly, a test strip sample having a length of 80 mm, thickness of 10 mm, and width of 4 mm was subjected to an edgewise three-point bending test in which the specified load (maximum outer fibers stress) was 1.8 Megapascals. The specimen was lowered into a silicone oil bath where the temperature is raised at 2°C per minute until it deflects

0.25 mm (0.32 mm for ISO Test No. 75-2).

Synthesis of N1, N4-diphenylterephthalamide

Compound A

[0067] The synthesis of Compound A from terephthaloyl chloride and

[0068] The experimental set up consisted of a 2L glass beaker equipped with a glass rod stirrer coupled with an overhead mechanical stirrer. Dimethyl acetamide ("DMAc") (3 L) was added to the beaker and the beaker was immersed in an ice bath to cool the system to 10-15 °C. Then aniline (481.6 g) was added to the solvent with constant stirring, the resultant mixture was cooled to 10-15°C. Terephthaloyl chloride (300 g) was added gradually to the cooled stirred mixture such that the temperature of the reaction was maintained below 30°C. The acid chloride was added over a period of one-two hours, after which the mixture was stirred for another three hours at 10-15°C and then at room temperature overnight. The reaction mixture was milky white (a fine suspension of the product in the solvent) and was vacuum filtered using a filter paper and a Buchner funnel. The crude product was washed with acetone (2 L) and then washed with hot water (2 L). The product was then air dried over night at room temperature and then was dried in a vacuum oven 50°C for 4-6 hours. The product (464.2 g) was a highly crystalline white solid. The melting point was 346-348°C, as determined by differential scanning calorimetry ("DSC"). The Proton NMR characterization for the compound is also shown in Fig. 1 . Synthesis of N1 , N4-diphenylisoterephthanalide

Compound B

[0069] The synthesis of Compound B from isophthaloyl chloride and aniline

[0070] The experimental set up consisted of a 2L glass beaker equipped with a glass rod stirrer coupled with an overhead mechanical stirrer. DMAc (1.5 L) was added to the beaker and the beaker was immersed in an ice bath to cool the solvent to 10-15°C. Then aniline (561.9 g) was added to the solvent with constant stirring, the resultant mixture was cooled to 10-15°C. Isophthaloyl chloride (350 g dissolved in 200 g of DMAc) was added gradually to the cooled stirred mixture such that the temperature of the reaction was maintained below 30°C. The acid chloride was added over a period of one hour, after which the mixture was stirred for another three hours at 10-15°C and then at room temperature overnight. The reaction mixture was milky white in appearance. The product was recovered by precipitation by addition of 1.5 L of distilled water and followed by was vacuum filtration using a filter paper and a Buchner funnel. The crude product was then washed with acetone (2 L) and then washed again with hot water (2 L). The product was then air dried over night at room temperature and then was dried in a vacuum oven 150°C for 4-6 hours. The product (522 g) was a white solid. The melting point was 290°C as determined by DSC. The Proton NMR

characterization for the compound is also shown in Fig. 2.

Synthesis of N1 , N4-bis(2,3A5,6-pentafluorophenyliterephthalamide

Compound C

[0071] The synthesis of Compound C from pentafluorophenol and tere hthaloyl chloride may be performed according to the following scheme:

[0072] Pentafluoroaniline (10 g) was dissolved in dimethyl acetamide

(D Ac) (50 mL) and terephthaloyl chloride (3.7 g) was added in one portion. The reaction mixture was stirred and then refluxed for six (6) hours at 120°C. The reaction mixture was then cooled and 200 mL water was added to the mixture to precipitate the crude product. The product was then filtered and dried. The crude product was then washed with acetone (100 mL) and dried to give a white powder as the final product (6.8 g). The melting point by DSC was 331 .6 °C. The Proton

NMR characterization for the compound is shown in Fig. 3.

Synthesis of N4-phenv[-N1-r4-rr4-(phenylcarbamoyl)benzovnamino1phenyl1j terephthalamide

Compound E

[0073] The synthesis of Compound E from 4-amino benzanilide and

[0074] The experimental setup consisted of a 1 L glass beaker equipped with a glass rod stirrer coupled with an overhead mechanical stirrer. 4- aminobenzanilide (20.9 g) was dissolved in warm DMAc (250 mL) (alternatively N- methyl pyrrolidone can also be used). Terephthaloyl chloride (10 g) was added to the stirred solution of the diamine maintained at 40-50°C, upon the addition of the acid chloride the reaction temperature increased from 50°C to 80 °C. After the addition of the acid chloride was completed, the reaction mixture was warmed to 70-80 °C and maintained at that temperature for about three hours and allowed to rest overnight at room temperature. The product was then isolated by the addition of water (500 mL) followed by vacuum filtration followed by washing with hot water (1 L). The product was then dried in a vacuum oven at 150 °C for about 6-8 hours, to give a pale yellow colored solid (yield ca. 90%). The melting point by DSC was 462 °C. Synthesis of N1 ,N3-bis(4-benzamidopbenyl)benzene-1 ,3-dicarboxamide

Compound F2

[0075] The synthesis of Compound F2 from 1 ,4-phenylene diamine, terephthaloyl chloride, and benzoyl chloride may be performed according to the following scheme:

[0076] The experimental setup consisted of a 500 mL glass beaker equipped with a magnetic stirrer. 1 ,4 phenylene diamine (20 g) was dissolved in warm NMP (200 mL) at 40 °C. Benzoyl chloride (26.51 g) was added drop wise to a stirred solution of the diamine over a period of 30 minutes. After the addition of the benzoyl chloride was completed, the reaction mixture was warmed to 70-80°C and then allowed to cool to 50 °C. After cooling to the desired temperature, isophthaloyl chloride (18.39 g) was added in small portions such that the temperature of the reaction mixture did not increase above 70°C. The mixture was then stirred for additional one (1 ) hour at 70°C, and was allowed to rest overnight at room temperature. The product was recovered by addition of water (200 mL) to the reaction mixture, followed by filtration and washing with hot water (500 mL). The product was then dried in a vacuum oven at 150°C for about 6-8 hours to give a pale yellow colored solid (51 g). The melting point by DSC was 329 °C. The Proton NMR characterization for the compound is also shown in Fig. 4. Synthesis of N1 ,N3-bis(3-benzamidophenyQbenzene-1 ,3-dicarboxamide

Compound G2

[0077] The synthesis of Compound G2 from 1 ,3-phenylene diamine, isophthaioyi chloride, and benzoyl chloride may be performed according to the following scheme:

[0078] The experimental setup consisted of a 500 mL glass beaker equipped with a magnetic stirrer. 1 ,3 phenylene diamine (20 g) was dissolved in warm DMAc (200 mL) at 40°C. Benzoyl chloride (26.51 g) was added drop wise to a stirred solution of the diamine over a period of 30 minutes. After the addition of the benzoyl chloride was completed, the reaction mixture was warmed to 70-80°C and allowed to cool to 50 °C. After cooling to the desired temperature, isophthaioyi chloride (18.39 g) was added in small portions such that the temperature of the reaction mixture did not increase above 70 °C. The mixture was then stirred for additional one hour at 70°C, and was allowed to rest overnight at room

temperature. The product was recovered by addition of water (200 mL) to the reaction mixture, followed by filtration and washing with hot water (500 mL). The product was then dried in a vacuum oven at 50°C for about 6-8 hours to give a pale yellow colored solid (45 g). The Proton NMR characterization for the compound is also shown in Fig. 5. Synthesis of N1 ,N3,N5-triphenylbenzene-1 ,3,5-tr!carboxamide

Compound J

[0079] Compound J was synthesized from trimesoyl chloride and aniline according to the following scheme:

[0080] The experimental set up consisted of a 2L glass beaker equipped with a glass rod stirrer coupled with an overhead mechanical stirrer. Trimesoyl chloride (200 g) was dissolved in dimethyl acetamide ("DMAc") (1 L) and cooled by an ice bath to 10-20°C. Aniline (421 g) was added drop wise to a stirred solution of the acid chloride over a period of 1.5 to 2 hours. After the addition of the amine was completed, the reaction mixture was stirred additionally for 45 minutes, after which the temperature was increased to 90°C for about 1 hour. The mixture was allowed to rest overnight at room temperature. The product was recovered by precipitation through the addition of 1.5 L of distilled water, which was followed by was vacuum filtration using a filter paper and a Buchner funnel. The crude product was washed with acetone (2 L) and then washed again with hot water (2 L). The product was then air dried over night at room temperature and then was dried in a vacuum oven 150°C for 4 to 6 hours. The product (250 g) was a white solid, and had a melting point of 319.6°C, as determined by differential scanning calorimetry ("DSC"). The Proton NMR characterization for the compound is also shown in Fig. 6.

Synthesis of 1 ,3-Benzenedicarboxamide, N1 ,N3-dicyclohexyl

Compound N1

[0081] The synthesis of Compound N1 from isophthaloyl chloride and cyclohexyl amine can be performed according to the following scheme:

[0082] The experimental set up consisted of a 1 L glass beaker equipped with a glass rod stirrer coupled with an overhead mechanical stirrer. Cyclohexyl amine (306 g) was mixed in dimethyl acetamide (1 L) (alternatively N-methyl pyrrolidone can also be used) and triethyl amine (250 g) at room temperature. Next isopthaloyl chloride (250 g) was slowly added over a period of 1 .5 to 2 hours, to the amine solution with constant stirring. The rate of addition of the acid chloride was maintained such that the reaction temperature was maintained less than 60 °C. After complete addition of the benzoyl chloride, the reaction mixture was gradually warmed to 85-90 °C and then allowed to cool to around 45-50 °C. The mixture was allowed to rest overnight (for at least 3 hours) at room temperature. The product was recovered by precipitation through the addition of 1 .5 L of distilled water, which was followed by was vacuum filtration using a filter paper and a Buchner funnel. The crude product was then washed with acetone (250 ml_) and washed again with hot water (500 ml_). The product (yield: ca. 90 %) was then air dried over night at room temperature and then was dried in a vacuum oven 150°C for 4 to 6 hours. The product was a white solid. The Proton NMR characterization was as follows: 1 H NMR (400 MHz /e-DMSO): 8.3 (s, 2H, CONH), 8.22 (s, 1 H, Ar), 7.9 (d, 2H, Ar), 7.5 (s, 1 H, Ar), 3.7 (broad s, 2H, cyclohexyl), 1.95 -1 .74 broad s, 4H, cyclohexyl) and 1 .34 -1.14 (m, 6H, cyclohexyl).

COMPARATIVE EXAMPLE 1

[0083] A 2 L flask was charged with 4-hydroxybenzoic acid (562.0 g), 2,6- hydroxynaphthoic acid (61.2 g), terephthalic acid (174.9), 4,4'-biphenol (135.6 g), acetaminophen (49.1 g) and potassium acetate (43 mg). The flask next was equipped with C-shaped stirrer, a thermal couple, a gas inlet, and distillation head. The flask was placed under a low nitrogen purge and acetic anhydride (99.7% assay, 651.9 g) was added. The milky-white slurry was agitated at 75 rpm and heated to 140°C over the course of 95 minutes using a fluidized sand bath. After this time, the mixture was then gradually heated to 350°C steadily over 290 minutes. Reflux was seen once the reaction exceeded 140°C and the overhead temperature increased to approximately 115°C as acetic acid byproduct (754 g) was removed from the system. During the heating, the mixture became yellow and slightly more viscous and the vapor temperature gradually dropped to 90°C. Once the mixture had reached 350°C, the nitrogen flow was stopped. The flask was evacuated below 20 psi and the agitation slowed to 30 rpm over the course of 45 minutes. After 99 minutes, the final viscosity target was reached as gauged by the strain on the agitator motor (torque value of 30 units). The flask was cooled and then polymer was recovered as a solid, dense yellow-brown plug. Sample for analytical testing was obtained by mechanical size reduction. Yield = 796.56 g.

COMPARATIVE EXAMPLE 2

[0084] A 2-liter flask was charged with 4-hydroxybenzoic acid (562 g), 2,6- hydroxynaphthoic acid (61.2 g), terephthalic acid (174.9 g), 4,4'-biphenol ( 35.6 g), 4-hydroxyacetanilide (49.1 g), 2,6-diphenylpyrrolo[3,4-f]isoindole-1 ,3,5,7(2H,6H)~ tetraone {25 g), and 21 mg of potassium acetate. The additive 2,6- diphenylpyrrolo[3,4-f]isoindole-1 ,3,5,7 2H,6H)-tetraone has the following structure:

[0085] The flask was equipped with a C-shaped mechanical stirrer, a thermal couple, a gas inlet, and distillation head. The flask was placed under a low nitrogen purge and acetic anhydride (99.7% assay, 648 g) was added. The milky- white slurry was agitated at 75 rpm and heated to 133°C over the course of 95 minutes using a fluidized sand bath. The mixture was then gradually heated to 350°C steadily over 310 minutes. Reflux was seen once the reaction exceeded 140°C and the overhead temperature increased to approximately 115°C as acetic acid byproduct was removed from the system. During heating, the mixture grew yellow and slightly more viscous and the vapor temperature gradually dropped to 97°C. Once the mixture had reached 350°C, the nitrogen flow was stopped and the flask was evacuated below 20 psi and the agitation slowed to 30 rpm over the course of 45 minutes. As the time under vacuum progressed, the mixture grew viscous. After 90 minutes, the final viscosity target was reached as gauged by the strain on the agitator motor (torque value of 30 in/oz). The vacuum was broken and the reaction was stopped by cooling the flask to room temperature followed by the recovery of the polymer as a solid plug. Sample for analytical testing was obtained by mechanical size reduction.

COMPARATIVE EXAMPLE 3

[0086] A 2-liter flask was charged with 4-hydroxybenzoic acid (562 g), 2,6- hydroxynaphthoic acid (61.2 g), terephthalic acid (174.9 g), 4,4'-biphenol (135.6 g), 4-hydroxyacetanilide (49.1 g), p-terphenyl (25 g), and 21 mg of potassium acetate. The additive p-terphenyl has the following structure:

[0087] The flask was equipped with a C-shaped mechanical stirrer, a thermal couple, a gas inlet, and distillation head. The flask was placed under a low nitrogen purge and acetic anhydride (99.7% assay, 648 g) was added. The milky- white slurry was agitated at 75 rpm and heated to 33°C over the course of 95 minutes using a fluidized sand bath. The mixture was gradually heated to 350°C steadily over 310 minutes. Reflux was seen once the reaction exceeded 140°C and the overhead temperature increased to approximately 1 15°C as acetic acid byproduct was removed from the system. During the heating, the mixture grew yellow and slightly more viscous and the vapor temperature gradually dropped to 97°C. The heating was continued till a final temperature of 350°C. A dense white "smoke" was seen generated in the system at around 320-350°C, presumably the volatiles of the 4B. Once the mixture had reached 350°C, the nitrogen flow was stopped and the flask was evacuated below 20 psi and the agitation slowed to 30 rpm over the course of 45 minutes. As the time under vacuum progressed, the mixture grew viscous. After 150 minutes, the final viscosity target was reached as gauged by the strain on the agitator motor (torque value of 32 in/oz). The vacuum was broken and the reaction was stopped by cooling the flask to room temperature followed by the recovery of the polymer as a solid plug. Sample for analytical testing was obtained by mechanical size reduction.

EXAMPLE 1

[0088] A two-liter, three-neck flask was charged with 4-hydroxybenzoic acid (562.0 g), 2,6-hydroxynaphthoic acid (61 .2 g), terephthalic acid (174.9), 4,4'- biphenol (135.6 g), acetaminophen (49.1 g), potassium acetate (43 mg), and Compound A (17 g). The flask next was equipped with C-shaped stirrer, a thermal couple, a gas inlet, and distillation head. The flask was placed under a low nitrogen purge and acetic anhydride (99.7% assay, 651.9 g) was added. The milky-white slurry was agitated at 75 rpm and heated to 140°C over the course of 95 minutes using a fluidized sand bath. After this time, the mixture was then gradually heated to 350°C steadily over 290 minutes. Reflux was seen once the reaction exceeded 40°C and the overhead temperature increased to

approximately 115°C as acetic acid byproduct (760 g) was removed from the system. During the heating, the mixture became yellow and slightly more viscous and the vapor temperature gradually dropped to 90°C. Once the mixture had reached 350°C, the nitrogen flow was stopped. The flask was evacuated below 20 psi and the agitation slowed to 30 rpm over the course of 45 minutes. After 102 minutes, the reaction was then stopped by releasing the vacuum and stopping the heat flow to the reactor - no torque reading was recorded. The reaction mixture had a very low viscosity as compared to Comparative Example 1 . The flask was cooled and then polymer was recovered as a solid, dense yellow-brown plug. Sample for analytical testing was obtained by mechanical size reduction. Yield = 821.39 g.

[0089] The samples of the aforementioned examples were then tested for thermal properties. The results are set forth below.

[0090] As noted, the addition of Compound A did not substantially lower the number average molecular weight, although the peak molecular weight did exhibit a decrease. It is believed that the lowering of the peak molecular weight led to the decrease in the intrinsic viscosity.

EXAMPLE 2

[0091] To evaluate the effect of Compound A on the mechanical properties of parts, polymers were synthesized as described in Comparative Example 1 and Example 1 and then injection molded to yield test specimens for mechanical testing. The results are set forth below.

[0092] As indicated above, the mechanical properties were not substantially altered by the addition of Compound A.

EXAMPLE 3

[0093] Various polymers were formed as described in Example 1 at concentrations for Compound A of 0, 1 , 2, 3, and 5 wt.%. The thermal properties of the polymers were tested as described above. The results are set forth below. Concentration of Compound A MV at

Tm (°C)

(wt.%) 1000 s "1 (Pa*s) at 350°C

0 343.72 79.6

1 333.28 17.7

2 328.25 6.8

3 320.56 4.6

5 31 1.37 3.1

[0094] As indicated, an increase in the concentration of Compound A resulted in a decrease in the melting point and melt viscosity.

COMPARATIVE EXAMPLE 4

[0095] A 2L flask was charged with HBA (432.3 g), HNA (47 g), TA (134.6 g), BP (104.3 g) and APAP (37.8 g) and 33 mg of potassium acetate. The flask was equipped with C-shaped stirrer, a thermal couple, a gas inlet, and distillation head. The flask was placed under a low nitrogen purge and acetic anhydride (99.7% assay, 50 .5 g) was added. The milky-white slurry was agitated at 75 rpm and heated to 140°C over the course of 95 minutes using a fluidized sand bath. After this time, the mixture was then gradually heated to 350°C steadily over 290 minutes. Reflux was seen once the reaction exceeded 140°C and the overhead temperature increased to approximately 115°C as acetic acid byproduct was removed from the system. During heating, the mixture grew yellow and slightly more viscous and the vapor temperature gradually dropped to 90°C. Once the mixture had reached 350°C, the nitrogen flow was stopped. The flask was evacuated below 20 psi and the agitation slowed to 30 rpm over the course of 45 minutes. As the time under vacuum progressed, the mixture grew viscous. After 84 minutes, the final viscosity target was reached as gauged by the strain on the agitator motor (torque value of 31 units). The reaction was then stopped by releasing the vacuum and stopping the heat flow to the reactor. The flask was cooled and then polymer was recovered as a solid, dense yellow-brown plug. Sample for analytical testing was obtained by mechanical size reduction.

EXAMPLE 4

[0096] A 2 L flask was charged with HBA (432.3 g), HNA (47 g), TA (134.6 g), BP (104.3 g), APAP (37.8 g), Compound E (19.65 g) and 33 mg of potassium acetate. The flask was equipped with C-shaped stirrer, a thermal couple, a gas inlet, and distillation head. The flask was placed under a low nitrogen purge and acetic anhydride (99.7% assay, 501 .5 g) was added. The milky-white slurry was agitated at 75 rpm and heated to 140°C over the course of 95 minutes using a f!uidized sand bath. After this time, the mixture was then gradually heated to 350°C steadily over 290 minutes. Reflux was seen once the reaction exceeded 140°C and the overhead temperature increased to approximately 115°C as acetic acid byproduct was removed from the system. During the heating, the mixture grew yellow and slightly more viscous and the vapor temperature gradually dropped to 90°C. Once the mixture had reached 350°C, the nitrogen flow was stopped. The flask was evacuated below 20 psi and the agitation slowed to 30 rpm over the course of 45 minutes. As the time under vacuum progressed, the mixture grew viscous. After 84 minutes, the reaction was stopped, no torque was observed. The reaction was then stopped by releasing the vacuum and stopping the heat flow to the reactor. The flask was cooled and then polymer was recovered as a solid, dense yellow-brown plug. Sample for analytical testing was obtained by mechanical size reduction.

EXAMPLE 5

[0097] A 2 L flask was charged with HBA (432.3 g), HNA (47 g), TA (134.6 g), BP (104.3 g) , APAP (37.8 g), Compound J (19.65 g) and 33 mg of potassium acetate. The flask next was equipped with C-shaped stirrer, a thermal couple, a gas inlet, and distillation head. The flask was placed under a low nitrogen purge and acetic anhydride (99.7% assay, 50 .5 g) was added. The milky-white slurry was agitated at 75 rpm and heated to 140°C over the course of 95 minutes using a fluidized sand bath. After this time, the mixture was then gradually heated to

350°C steadily over 290 minutes. Reflux was seen once the reaction exceeded

140°C and the overhead temperature increased to approximately 1 15°C as acetic acid byproduct was removed from the system. During the heating, the mixture grew yellow and slightly more viscous and the vapor temperature gradually dropped to 90°C. Once the mixture had reached 350°C, the nitrogen flow was stopped. The flask was evacuated below 20 psi and the agitation slowed to 30 rpm over the course of 45 minutes. As the time under vacuum progressed, the mixture grew viscous. After 84 minutes, the reaction was stopped, no torque was observed. The reaction was then stopped by releasing the vacuum and stopping the heat flow to the reactor. The flask was cooled and then polymer was recovered as a solid, dense yellow-brown plug. Sample for analytical testing was obtained by mechanical size reduction.

EXAMPLE 6

[0098] A 2 L flask was charged with HBA (432.3 g), HNA (47 g), TA (134.6 g), BP (104.3 g), APAP (37.8 g), Compound A (19.65 g) and 33 mg of potassium acetate. The flask was equipped with C-shaped stirrer, a thermal couple, a gas inlet, and distillation head. The flask was placed under a low nitrogen purge and acetic anhydride (99.7% assay, 501.5 g) was added. The milky-white slurry was agitated at 75 rpm and heated to 140°C over the course of 95 minutes using a fluidized sand bath. After this time, the mixture was then gradually heated to 350°C steadily over 290 minutes. Reflux was seen once the reaction exceeded 140°C and the overhead temperature increased to approximately 115°C as acetic acid byproduct was removed from the system. During the heating, the mixture grew yellow and slightly more viscous and the vapor temperature gradually dropped to 90°C. Once the mixture had reached 350°C, the nitrogen flow was stopped. The flask was evacuated below 20 psi and the agitation slowed to 30 rpm over the course of 45 minutes. As the time under vacuum progressed, the mixture grew viscous. After 84 minutes, the reaction was stopped, no torque was observed. The reaction was then stopped by releasing the vacuum and stopping the heat flow to the reactor. The flask was cooled and then polymer was recovered as a solid, dense yellow-brown plug. Sample for analytical testing was obtained by mechanical size reduction.

[0099] The thermal properties of the polymers of Comparative Example 4 and Examples 4-6 were tested as described above. The results are set forth below.

[00100] As indicated, Compounds A, E, and J resulted in a decrease in melt viscosity.

EXAMPLE 7

[00101] A first sample (Sample 1 ) was formed. A 2 L flask was charged with 4-hydroxybenzoic acid (415.7 g), 2,6-hydroxynaphthoic acid (32 g), terephthalic acid (151 .2 g), 4,4'-biphenol (122.9 g), acetominophen (37.8 g), and 50 mg of potassium acetate. The flask was equipped with C-shaped stirrer, a thermal couple, a gas inlet, and distillation head. The flask was placed under a low nitrogen purge and acetic anhydride (99.7% assay, 497.6 g) was added. The milky-white slurry was agitated at 75 rpm and heated to 140°C over the course of 95 minutes using a fluid ized sand bath. After this time, the mixture was then gradually heated to 360°C stead iiy over 300 minutes. Reflux was seen once the reaction exceeded 140°C and the overhead temperature increased to

approximately 1 15°C as acetic acid byproduct was removed from the system. During the heating, the mixture grew yellow and slightly more viscous and the vapor temperature gradually dropped to 90°C. Once the mixture had reached 360°C, the nitrogen flow was stopped. The flask was evacuated below 20 psi and the agitation slowed to 30 rpm over the course of 45 minutes. As the time under vacuum progressed, the mixture grew viscous. After 72 minutes, the final viscosity target was reached as gauged by the strain on the agitator motor (torque value of 30 units). The reaction was then stopped by releasing the vacuum and stopping the heat flow to the reactor. The flask was cooled and then polymer was recovered as a solid, dense yellow-brown plug. Sample for analytical testing was obtained by mechanical size reduction.

[00102] A second sample (Sample 2) was formed as described for Sample 1 , except that 19.65 grams of Compound D was also introduced into the reactor. It was observed that there were fewer residues in the distillate as compared to Sample . The reaction was stopped after 72 minutes - no torque was observed on the agitator motor.

[00103] A third sample (Sample 3) was formed as described for Sample 1 , except that 19.76 grams of Compound J was also introduced into the reactor. It was observed that there were fewer residues in the distillate as compared to Sample 1. The reaction was stopped after 72 minutes - no torque was observed on the agitator motor.

[00104] The thermal properties of the melt polymerized polymers of Samples 1-3 were tested as described above. The results are set forth below in the following table.

Example 8

[00105] A 300-liter Hastalloy C reactor was charged with 4-hydroxybenzoic acid (65.9 lbs.), 6-hydroxy-2-naphthoic acid (7.2 lbs.), terephthalic acid (2.8 lbs.), 4,4'-biphenol (18.8 lbs.), 4-hydroxyacetanilide (5.8 lbs.), N,N-diphenyl

terepthalamide (Compound A) (2.8 lbs.), and 3.4 g of potassium acetate.

[00106] The reactor was equipped with a paddle-shaped mechanical stirrer, a thermocouple, a gas inlet, and distillation head. Under a slow nitrogen purge acetic anhydride (99.7% assay, 76.1 lbs.) was added. The milky-white slurry was agitated at 120 rpm and heated to 190°C over the course of 130 minutes. During this time approximately 42 pounds of acetic acid was distilled from the reactor. The mixture was then transferred to a 190 liter stainless steel polymerization reactor and heated at 1°C /min. to 245°C. At this point a steady reflux of byproduct acetic acid was established which reduced the heating rate to ~ 0.5°C/min. When the reaction mixture reached 305°C reflux was turned off and the batch was allowed to heat at a rate of about 1°C/min. During heating, the mixture grew yellow and slightly more viscous and the vapor temperature gradually dropped below 00°C as distillation of byproduct acetic acid came to an end. Heating continued until the batch reached the target temperature of 350°C. The nitrogen purge was stopped and a vacuum applied to slowly reduce the pressure to less than 5 mm over a 45 minute period. As the time under vacuum progressed the last traces of acetic acid were removed and the batch became more viscous. After 30 minutes under full vacuum (less than 5 mm) nitrogen was admitted to the system and the molten polymer was extruded from the reactor at 3 PS!G pressure through a 3- hole die plate. The polymer strands were cooled and solidified by running through a water bath and then chopped into pellets.

[00107] The polymer had a melting temperature (T m ) of 325.6°C and a melt viscosity of 5.0 Pa-s at a shear rate of 1000 sec "1 as measured by capillary rheology at a temperature of 350°C.

[00108] These and other modifications and variations of the present invention may be practiced by those of ordinary skill in the art, without departing from the spirit and scope of the present invention, in addition, it should be understood that aspects of the various embodiments may be interchanged both in whole or in part. Furthermore, those of ordinary skill in the art will appreciate that the foregoing description is by way of example only, and is not intended to limit the invention so further described in such appended claims.