Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
METHOD AND DEVICE FOR PREPARING PRODUCTS CONTAINING HYDROCARBONS
Document Type and Number:
WIPO Patent Application WO/2007/006280
Kind Code:
A2
Abstract:
The invention relates to a method and a device for preparing products containing hydrocarbons by pyrolysis, especially for preparing old tyres and/or comparable rubber products, and plastics and the like. According to said method: once the reactor (2) has been loaded, it is inserted into a thermal furnace (1); the reactor (2) is heated, during a first stage, to a temperature of between 80 and 120° C, which is maintained over a period of approximately 20 minutes, and nitrogen is blown into the reactor (2) during a second stage running in parallel; the humidity and oxygen contents are reduced in the reactor (2); the temperature is increased again in the reactor (2), during the subsequent process stages, to between 360 and 420° C over a period of between 1 and 2 hours; the process temperature is briefly increased during the subsequent stage, to 480° C and up to a maximum of 600° C, for a period of between 10 and 60 minutes; following pyrolysis, the pyrolysis gas is drawn off the reactor (2) and supplied to a cooling and relaxing module (4), while the carbon deposited in the bottom of the reactor (2) is sucked up and the metallic components are removed from the reactor (2). The inventive method is carried out by means of a device consisting of at least one reactor (2) that can be inserted into the thermal furnace (1). According to the invention, the bottom (18) of a reactor (2) has a concave shape, the cover (17) is embodied with a guiding projection (28) which engages with a cover receiving element (22) in the closed state, and reflectors (30) and edge reflectors (31) are formed on the inner side of the cover (17).

Inventors:
HASENKRUG WERNER (DE)
Application Number:
PCT/DE2006/001180
Publication Date:
January 18, 2007
Filing Date:
July 10, 2006
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
CARBO TEC GMBH (DE)
HASENKRUG WERNER (DE)
International Classes:
C10G1/10; C10G1/02; C10B53/07; C10B47/04; C08J11/12
Domestic Patent References:
WO2003091359A12003-11-06
Foreign References:
DE10309530A12004-09-16
FR2277137A11976-01-30
EP0853114A21998-07-15
US5783046A1998-07-21
DE10348987A12005-05-25
Attorney, Agent or Firm:
LEINUNG, Günter (Magdeburg, DE)
Download PDF:
Claims:

Patentansprüche

1. Verfahren zum Aufbereiten von kohlewasserstoffhaltigen Produkten, insbesondere von Altreifen, durch Niedrigtemperatur-Pyrolyse zwecks Gewinnung von Kohlenstoff, Pyrolyseöl, Restgas und metallischen Bestandteilen unter Verwendung von Reaktoren, die in einem Thermoofen Aufnahme finden, dadurch gekennzeichnet, dass

nach dem Beschicken des Reaktors (2) dieser in einen Thermoofen (1) eingesetzt wird, der Reaktor (2) in einer ersten Stufe auf eine Temperatur im Bereich von 80 bis 120° C aufgeheizt wird, welche über einen Zeitraum von ca. 20 Minuten gehalten und in einer parallel ablaufenden zweiten Stufe in den Reaktor (2) Stickstoff eingeblasen wird, eine Feuchtigkeits- sowie eine Sauerstoffreduzierung im Reaktor (2) stattfindet, in den folgenden Prozessstufen eine weitere Temperaturerhöhung im Reaktor (2) auf einen Bereich von 360 bis 420° C über einen Zeitraum von 1 bis 2 Stunden erfolgt, in der nachfolgenden Verfahrensstufe eine kurzzeitige Prozesstemperaturerhöhung auf 480° C bis max. 600° C für einen Zeitraum von 10 bis 60 Minuten stattfindet, nach vollzogener Pyrolyse das Pyrolysegas aus dem Reaktor (2) abgeleitet und einem Kühl- und Entspannungsmodul (4) zugeführt wird, während der im Bodenbereich des Reaktors (2) abgesetzte Kohlenstoff abgesaugt und die metallischen Bestandteile aus dem Reaktor (2) entnommen werden.

2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass

die während der Pyrolyse freigesetzten und im Reaktor (2) aufsteigenden und schwebenden Materialpartikel in kontrollierter Weise innerhalb des Reaktors (2) umgewälzt und in den ablaufenden Prozesskreislauf der Pyrolyse eingebunden werden.

3. Verfahren nach einem der Ansprüche 1 und 2, dadurch gekennzeichnet, dass

die Heißluftzufuhr zum Thermoofen (1) und die Temperaturen im Reaktor (2) geregelt, vorzugsweise elektronisch gesteuert, werden und die Temperaturruhrung des Thermoofens (1) sowie des Reaktors (2) über Thermostate erfolgt.

4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass

das Pyrolysegas aus dem Reaktor (2) über eine Abgasleitung (25) abgefördert wird.

5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass

die zu behandelnden Altreifen in gestapelter Form mittels Aufhahmevor- richtungen im jeweiligen Reaktor (2) eingesetzt und aus diesem entnommen werden.

6. Vorrichtung zur Durchführung des Verfahrens nach Anspruch 1, dadurch gekennzeichnet, dass

die Vorrichtung aus einem oder mehreren Reaktoren (2) besteht, die in Thermoofen (1) einsetzbar sind, der Boden (18) eines Reaktors (2) eine konkave Form besitzt, der Deckel (17) mit einem Führungsansatz (28), im geschlossenen Zustand in eine Deckelaumahme (22) eingreifend, ausgebildet ist und auf der Innenseite vom Deckel (17) gestaltete Reflektoren (30) und Randreflektoren (31) angeordnet sind.

7. Vorrichtung nach Anspruch 6, dadurch gekennzeichnet, dass

der Reaktor (2) Stützfuße (19) besitzt, die zwischen dem Boden (18) vom Reaktor (2) und der Aufstandsfläche im Thermoofen (1) eine Bodenfreiheit herausbilden, die positiv auf die Prozessführung innerhalb des Reaktors (2) einwirkt.

8. Vorrichtung nach den Ansprüchen 6 und 7, dadurch gekennzeichnet, dass

der Boden (18) vorzugsweise eine ebene Form besitzt und oberhalb vom Boden (18) in der Behälterwandung des Reaktors (2) Zuleitungsanschlüsse (20) angeordnet sind.

9. Vorrichtung nach einem der Ansprüche 6 bis 8, dadurch gekennzeichnet, dass

in der Deckelaufhahme (22) ein Dichtungssystem vorgesehen ist, der Deckel (17) sowie der Führungsansatz (28) mit einer zentrischen Bohrung ausgeführt sind und der Deckel (17) mit einem Anschlussstück (24) ausgebildet ist.

10. Vorrichtung nach einem der Ansprüche 6 bis 9, dadurch gekennzeichnet, dass

der Führungsansatz (28) vom Deckel (17) auf seiner Innenseite eine ebene oder konkav ausgebildete Flächenform besitzt.

11. Vorrichtung nach einem der Ansprüche 6 bis 10, dadurch gekennzeichnet, dass

die Reflektoren (30) eine ebene, konkave, kegelförmige, pyramidenförmige oder ähnliche Form besitzen.

2. Vorrichtung nach einem der Ansprüche 6 bis 11, dadurch gekennzeichnet, dass

die Randreflektoren (31) eine großflächige zentrische öffnung besitzen und kegelstumpfformig sowie konkav oder in ähnlicher Form, der Form der Reflektoren (30) angepasst, gestaltet sind.

Description:

Verfahren und Vorrichtung zum Aufbereiten von kohlenwasserstoffhaltigen Produkten

Die Erfindung betrifft ein Verfahren und eine Vorrichtung zum Aufbereiten von kohlen- wasserstoffhaltigen Produkten durch Pyrolysation, insbesondere zur Aufbereitung von Altreifen und/oder vergleichbaren Gummierzeugnissen sowie Kunststoffen und dergleichen.

Pyrolytische Verfahren und Anlagen sowie Vorrichtungen zur Aufbereitung von kohlenwasserstoffhaltigen Produkten sind allgemein bekannt, mit denen aus Abfallen, Stoffen und Abprodukten wieder verwendbare Materialien bereitgestellt werden können.

So sind bereits Wirbelschicht-Reaktoren als auch Pyrolyse-Durchlauföfen bzw. Fließbettöfen bekannt, bei denen das Pyrolysegut entweder in ganzen Stücken oder zerkleinert pyrolysiert wird.

Aus der DE 26 58 371 C 2 und der DE 35 45 954 A 1 sind Wirbelschicht-Reaktoren bekannt, bei denen die Ausgangsstoffe von oben her in den Ofen eingeführt und pyrolysiert werden, während die gasförmigen Stoffe nach oben abgezogen und die Feststoffe nach unten ausgetragen werden.

Der Aufbau dieser Einrichtungen ist relativ komplex und durch die Verwendung eines Sand-Zement-Klinkerbettes mit entsprechend radial eingeleitetem Wirbelgas, ist die Aufrechterhaltung der entsprechenden Strömungsverhältnisse im Wirbelbett oft problematisch und kann durch eingebrachte Materialmassen leicht aus dem Gleichgewicht gebracht werden.

Pyrolyse-Durchlauföfen bzw. Fließbettöfen, bei denen das Pyrolysegut entweder in ganzen Stücken oder zerkleinert pyrolysiert wird, werden beispielsweise in der DE 44 47 357 A 1 und der DE 2925 202 A 1 beschrieben.

Der Nachteil dieser Durchlauföfen ist, dass diese eine äußert komplizierte Bauweise besitzen, jeweils für eine bestimmte Materialart und/oder Größe ausgelegt und nicht ohne weiteres auf verschiedene Materialarten umrüstbar sind.

l

Ein Verfahren und eine Anlage zum Pyrolysieren von kohlenwasserstofϊhaltigen Abfallprodukten, insbesondere von Altreifen, ist mit der DE 198 34 596 C 1 bekannt geworden, bei dem das zu pyrolysierende Material in einen Pyrolyseofen eingebracht und bei 500 0 C pyrolysiert wird. Dabei werden die zu behandelnden Altreifen ganzstückig über eine Aufnahmevorrichtung in einen Pyrolyseofen verbracht, wobei die Vorrichtung den Ofen gleichzeitig dicht abschließen soll.

Bei diesem Prozess wird bei Erreichen der vorgesehenen Pyrolysetemperatur das behandelte Ausgangsmaterial sofort aus dem Ofen entnommen und von Fremdstoffen wie Metall getrennt.

Mit dieser Verfahrensweise wird der eigentlich gewollte Prozess der Pyrolyse unterbrochen, was nachteilig auf die Pyrolyse selbst wirkt und aus energetischer Sicht nicht zu vertreten ist, da ein Teil der Abwärme ungenutzt bleibt und keiner Weiterverwendung zugeführt wird.

Ein weiteres Verfahren zum Pyrolysieren von kohlenwasserstoffhaltigen Produkten wurde mit der DE 103 09 530 A 1 bekannt, welches sich auf ein Industrieverfahren beziehen soll, bei dem die kohlenwasserstoffhaltigen Produkte, beispielsweise Altreifen, bei einer Temperatur von bis zu ca. 600 0 C stufenweise mit in Abhängigkeit vom Ausgangsmaterial festgelegten Verweilzeiten bei bestimmten Temperaturen pyrolysiert werden. Hierbei wird zwar der Prozess der Pyrolyse abgeschlossen, für eine industrielle Anwendung ist dieses Verfahren jedoch ungeeignet, da die vorherrschenden hohen Temperaturen sich auch auf andere Inhaltsstoffe schädigend auswirken.

Vor diesem Hintergrund stellt sich die Erfindung die Aufgabe, ein Verfahren zum Aufbereiten von kohlenwasserstoffhaltigen Produkten, insbesondere von Altreifen und/oder vergleichbaren Gurnrnierzeugnissen durch Pyrolysation zu entwickeln, mit dem im industriellen Maßstab die eingesetzten Produkte behandelt und die Reaktionsprodukte einer wirtschaftlichen Nutzung zugeführt werden können, wobei es gleichfalls Aufgabe der Erfindung ist, eine Vorrichtung zur Durchfuhrung des Verfahrens zu entwickeln.

Erfindungsgemäß wird diese Aufgabe mit den Merkmalen der Ansprüche 1 und ... gelöst. Besondere Ausgestaltungen und vorteilhafte Lösungen sind in den Unteransprüchen angegeben.

In Erkenntnis dessen, dass es nicht mehr zeitgemäß ist, immer neue, unwiederbringliche Rohstoffe in diversen Industrieprozessen zu vergeuden, wenn die technischen Möglichkeiten bestehen, qualitativ gleichwertige Sekundärprodukte für diese Prozesse bereitzustellen, wurden gemäß der Erfindung ein Industrieverfahren und eine Vorrichtung zur wirtschaftlichen Aufspaltung von kohlenwasserstoffhaltigen Altmaterialien, beispielsweise von Altreifen geschaffen, um zum einen die Altprodukte aufzubereiten und zum anderen die innewohnenden Wertstoffe wie Pyrolyseöl, Kohlenstoff und in den Altreifen eingeschlossenen Stahl zurück zu gewinnen und diese aufgeschlossenen Wertstoffe einer Wiederverwendung zuzuführen.

Das vorgestellte Verfahren zur Aufbereitung von kohlenwasserstoffhaltigen Produkten ist ein Pyrolyseverfahren, welches als geschlossenes System im Niedrigtemperaturbereich drucklos arbeitet und infolge des geschlossenen Systems das Austreten von Schadstoffen in die Atmosphäre verhindert wird.

Das geschaffene Verfahren zeichnet sich dadurch aus, dass, nachdem die zu behandelnden kohlenwasserstoffhaltigen Abprodukte, das Input, in einen Reaktor verbracht und dieser in einen Thermoofen eingesetzt wurde, der Pyrolyseprozess derart abläuft, dass Stickstoff in das Innere des Reaktors eingeleitet wird, die Temperaturkurve während der Sauerstoffentfernung im Bereich von 80 bis 120 0 C verläuft und dieser Vorgang über eine Zeitschiene von ca. 20 min. gefuhrt wird.

Anschließend erfolgt eine Temperaturerhöhung im Thermoofen derart, dass sich im Reaktor eine Prozesstemperatur im Bereich von 360 bis 420 °C einstellt und dieser Pro- zesszustand über einen Zeitraum von 1 bis 2 h aufrechterhalten wird.

Danach erfolgt eine kurzzeitige Prozesstemperaturerhöhung auf 480 bis 600 0 C für einen Zeitraum von 10 bis 60 min, um den Pyrolyseprozess innerhalb des Reaktors vollständig

ablaufen zu lassen, ohne dass sich im Reaktor ungewollte Abprodukte absetzen können. Die während des Pyrolysevorganges gewonnenen Prozessgase werden aus dem Reaktor abgeleitet und einem Kühler mit Entspanner zugeführt.

Die nachfolgenden Verfahrensschritte beziehen sich zum einen auf die Behandlung des gewonnenen Pyrolysegases und zum anderen auf die Abforderung und Behandlung des im Reaktor sich herausgebildeten Kohlenstoffes.

Das in den Kühler eingeleitete Prozessgas wird abgekühlt und entspannt, so dass infolge der stattfindenden Kondensation ein Pyrolyseöl gewonnen wird, welches in einem nachfolgenden Verfahrensschritt durch Destillation, Zentrifugation oder Filtrierung einer Separation unterzogen wird. Je nach Weiterverwendung des gewonnenen Pyrolyseöles ist die Möglichkeit gegeben, dieses in einen Tagestank zur Zwischenlagerung mit anschließender Qualitätskontrolle einem Haupttank zuzuführen, von dem dann die Auslieferung zur weiteren Verwendung des Pyrolyseöles erfolgen kann.

Der andere parallel ablaufende Verfahrensschritt läuft nun so ab, dass nach einer kontrollierten Abkühlung des Reaktors dieser aus dem Thermoofen entnommen und geöffnet wird, um die in dem Reaktor befindlichen Abprodukte samt der Aufhahmevorrichtung für die Abprodukte, hier Altreifen, entnehmen zu können.

Anschließend erfolgt die Entleerung des Reaktors in bevorzugter Ausführung über das Absaugen des Reaktorinhaltes. Es schließt sich eine Abkühlung des Kohlenstoffes und eine Trennung von Kohlenstoff und den Metallrückständen an, wobei die beiden Abproduktrückstände getrennt gelagert werden, um von dort dann ihrer weiteren Verwendung zugeführt werden zu können.

Dabei ist es von besonderem Vorteil, wenn der Kohlenstoff noch einer Desodoration unterzogen wird, um dem Kohlenstoff die innewohnenden geruchsbelästigenden Bestandteile zu entziehen.

Die erfindungsgemäße Vorrichtung zur Durchführung des Verfahrens für die Aufbereitung kohlenwasserstoßhaltiger Abprodukte wird in der Gesamtheit durch einen Reaktor charakterisiert, in dem der Pyrolyseprozess stattfindet und für diese Prozessvorgänge in einen Thermoofen eingefahren bzw. eingesetzt wird, wobei der Reaktor oder die Reaktoren, die in den Thermoofen verbracht werden, mit dem zu behandelnden Gut, hier Altreifen bestückt sind.

Die erfindungsgemäße Vorrichtung, der Reaktor, ist aufgrund seiner weitestgehend einfachen Gestaltung geeignet, in vorhandenen Anlagen eingesetzt zu werden, Voraussetzung ist jedoch dabei, dass der Thermoofen in seiner konstruktiven Ausbildung für die Aufnahme eines oder mehrerer Reaktoren gemäß der Erfindung geeignet ist. Dabei muss der Thermoofen selbstverständlich mit entsprechenden technischen Ausrüstungen ausgebildet sein, damit die Voraussetzungen gegeben sind, eine Pyrolyse zu realisieren.

Erfindungswesentlich bei der Vorrichtung ist, dass diese als ein Funktionsmodul in Form eines Pyrolysereaktors ausgebildet ist, welcher aus einem mit einem verschließbaren Deckel ausgebildeten Behälter besteht, welcher einen besonders gestalteten Boden besitzt und auf der Innenseite des Deckels vom Reaktor formgestaltete Reflektoren angeordnet sind.

Dabei gehört es zur Erfindung, dass der Reaktor mit entsprechenden Anschlüssen ausgebildet ist, über die Zu- und Abfuhrungsleitungen anschließbar, welche durch den Thermoofen geführt sind und anschließend mit den nachgeordneten Funktionseinheiten, außerhalb vom Thermoofen, verbindbar bzw. zu diesem anschließbar sind.

So ist der Reaktor im unteren Bereich mit einem Anschluss für die Zuleitung von Stickstoffausgebildet. Oberhalb vom Deckel des Reaktors weist dieser ein Anschlussstück auf, an dem das Gasableitungsrohr angeschlossen ist, in dem ein Ventil vorgesehen ist und das Gasleitungsrohr ausgangsseitig in ein Anschlussstück übergeht, mittels dem die Verbindung zum Kühl- und Entspannungsmodel hergestellt wird.

Es gehört femer zur Erfindung, dass im Inneren des Deckels vom Reaktor zusätzlich zu den innenseitig vorgesehenen Reflektoren Randreflektoren angeordnet sind, welche mit bestimmten Formen ausgebildet sind, die weitestgehend den Formen der am Deckel angeordneten Reflektoren entsprechen.

Die Erfindung wird nachstehend anhand eines Ausfuhrungsbeispieles näher erläutert. Die dazugehörige Zeichnung zeigt in

Figur 1 : das Fließschema zur Demonstration des wesentlichen

Verfahrensablaufes und zugehöriger Anlageteile, Figur 2: eine prinziphafte Darstellung des Reaktors,

Figur 3 und 4: weitere Ausfuhrungsvarianten eines Reaktors,

Figur 5 und 6: verschiedene Ausbildungen des Deckels eines Reaktors mit zugeordneten Reflektoren und Randreflektoren.

Das Fließschema nach Figur 1 zeigt den erfinderischen Verfahrensablauf mit zugehörigen Anlagekomponenten zur Aufbereitung von kohlenwasserstoffhaltigen Produkten am Beispiel von Altreifen, welche vorgelagert werden und vor ihrem Einsatz in den Reaktor 2 in Aufhahmevorrichtungen 3 verbracht werden, mittels denen die zu behandelnden Altreifen dann in den jeweiligen Reaktor 2 eingesetzt werden. Die Altreifen kommen so in den Reaktor 2, wie sie angeliefert werden, dass bedeutet, die Altreifen können sowohl mit Felgen als auch ohne Felgen in den Reaktor 2 verbracht werden, was sich nicht negativ auf den Prozessablauf auswirkt. Ist der Reaktor 2 mit den Altreifen bestückt, wird der Reaktor 2 luftdicht verschlossen, in den Thermoofen 1 verbracht, die notwendigen Verbindungen zu weiteren Funktionsmodulen der Anlage werden hergestellt. Der Thermoofen 1 wird verschlossen und auf Temperatur angefahren. Während dieser Phase wird der Reaktor 2 thermisch angefahren, dies erfolgt über einen Zeitraum von ca. 20 min bei einem Temperaturkurvenverlauf von 80 bis 120 °C, um das im Reaktor befindliche Wasser zu beseitigen. Gleichfalls während dieser Phase wird im unteren Bereich des

Reaktors 2 Stickstoff in das Innere des Reaktors 2 eingeblasen, um den darin befindlichen Sauerstoff zu entfernen/zu beseitigen.

Im nächsten Prozessschritt wird der Thermoofen 1 auf Temperaturen im Bereich von 360 bis 420 0 C hochgefahren, wodurch gleichfalls die Temperaturen im Reaktor 2 auf die Werte ansteigen und über einen Zeitraum von 1 bis 2 h gehalten werden, dem sich ein kurzzeitiges Hochfahren der Temperaturen auf 480 bis 600 0 C anschließt, dieser Temperaturbereich über einen Zeitraum von ca. 10 bis 60 min gehalten, um die Pyrolyse vollständig ablaufen zu lassen.

Die beim Pyrolyseprozess frei gewordenen Pyrolysegase werden über eine Abgasleitung einem Kühl- und Entspannungsmodul 4 zugeführt, indem die Kondensation zu Pyrolyse- öl stattfindet.

Im nachfolgenden Verfahrensschritt erfolgt die Separation des Pyrolyseöles in einem Separator 6 durch Destillation, Zentrifugation oder Filtrierung.

Das Pyrolyseöl wird sodann über einen Tagestank 6, für eine Zwischenlagerung ausgebildet, einer nachfolgenden Qualitätskontrolle 7 und danach zum Haupttank 8 verbracht und kann dann bei Bedarf über eine Abforderleitung zur Auslieferungsstation 9 geleitet werden.

Erfolgt die Separation des Pyrolyseöles durch Destillation, wird das Pyrolyseöl vor dem Verbringen in den Tagestank 6 bzw. in den Haupttank 8 vorsorglich heruntergekühlt.

Die Abförderung bzw. Entleerung der anderen bei der Pyrolyse erhaltenen Wertstoffe aus dem Reaktor 2 erfolgt derart, dass der jeweilige Reaktor 2 aus dem Thermoofen 1 entnommen wird, der Deckel 17 des Reaktors 2 wird geöffnet, somit können die darin befindlichen Wertstoffe wie Kohlenstoff und metallische Rückstände/Stahldraht abgefordert bzw. entnommen werden.

Im Fließschema nach Figur 1 werden diese Prozessschritte in dem als Entleerungsstation dargestellten Anlagenmodul 10 vollzogen, in dem gleichfalls auch eine Abkühlung der entnommenen Wertstoffe erfolgt, welche dann anschließend einer Separationseinheit 11

zufuhrt werden, in der die Trennung von Kohlenstoff und metallischen Bestandteilen erfolgt.

Die metallischen Rückstände werden zur Lagerung und Auslieferungsstation 15 verbracht, während der Kohlenstoff über eine Sortierstation 13 einer Verpackungsstation 14 zugeführt und im Anschluss daran zur Lager- und Auslieferstation 16 geführt wird. In vorteilhafter Ausführung ist zwischen der Separationseinheit 11 und der Sortierstation 13 eine Desodoration 12 vorgesehen, in der die dem Kohlenstoff anhaftenden geruchsbelästigenden Bestandteile entzogen werden.

Die Figur 2 veranschaulicht in einer prinziphaften Darstellung die Ausbildung und Gestaltung eines Reaktors 2, welcher aus einem kreisrunden Grundbehälter besteht, welcher einen konkav gestalteten Boden 18 besitzt und im oberen Bereich mit einer Deckelaufhahme 22 ausgebildet ist, in der ein Dichtsystem zum luftdichten Abschließen des Reaktors 2 vorgesehen ist, welches in Funktion tritt, wenn der Reaktor 2 mittels des Deckels 17 verschlossen wird.

Die Innenseite vom Deckel 17 ist mit einem Führungsansatz 28 ausgebildet. Dieser Führungsansatz 28 sichert die formschlüssige Verbindung vom Deckel 17 zum Reaktor 2. Der Deckel 17 ist ferner mit einer zentrischen öffnung und einem Anschlussstück 24 ausgebildet, zu dem das Gasableitungsrohr 25 anordbar ist.

Ferner ist im oberen Bereich des Deckels 17 ein Bügel 23 vorgesehen, mittels dem der Deckel 17 vom Reaktor 2 genommen bzw. auf den Reaktor 2 aufgesetzt werden kann, was über geeignete Hebemittel erfolgt.

Der Reaktor ist mit Stützfüßen 19 ausgebildet, vorzugsweise mit drei Stützfußen 19 gewählt, wodurch die Standsicherheit des Reaktors 2 gewährleistet ist und ferner die dadurch gewonnene Bodenfreiheit zwischen der Aufstandsfläche im Thermoofen 1 und dem Reaktor 2 sich positiv auf die Prozessführung auswirkt, was weiter unten noch näher erläutert wird.

Für den Transport des Reaktors 2 und sowohl für das Einsetzen und das Entnehmen des Reaktors 2 aus dem Thermoofen 1 sind an seinem äußeren Umfang Halterungen 21 vorgesehen, zu denen entsprechende Anschlagmittel von Hebezeugen befestigbar sind. Im unteren Bereich vom Reaktor 2, oberhalb vom Boden 18, sind ein oder mehrere Zuleitungsanschlüsse 20 vorgesehen über die der Stickstoff in das Innere des Reaktors 2 geleitet wird. Vorteilhafterweise sind in diesen Zuleitungsanschlüssen 20 Ventile vorgesehen, die zum einen verhindern, dass Verunreinigungen in den Reaktor 2 eintreten und Inhaltsstoffe aus dem Reaktor 2 austreten können.

Das Gasableitungsrohr 25 ist gleichfalls mit einem Ventil 26 ausgerüstet, welches ansteuerbar ist und somit in regelbarer Weise auf die Prozessführung, hier das Austreten des Pyrolysegases, eingewirkt werden kann.

Das Anschlussstück 27 vom Gasableitungsrohr 25 dient einer ordnungsgemäßen Verbindung zum Anschluss an das nachgeordnete Kühler- und Entspannungsmodul 4.

Aus der Darstellung nach Figur 2 ergibt sich auch, dass die Innenseite vom Deckel 17 zusätzlich zu seinem Führungsansatz 28 mit einem weiteren Funktionsbauteil bestückt ist. Dieses Bauteil ist ein besonders geformter Reflektor 30, welcher über Halterungen 29 zum Deckel 17 befestigt ist.

Der Reflektor 30 ist in ebener, konkaver, kegelförmiger, pyramidenförmiger oder ähnlicher Form ausbildbar, wie teilweise in den Figuren 5 und 6 gezeigt. Die Anordnung eines Reflektors 30 und dessen besondere konstruktive Gestaltung wirken positiv auf den im Reaktor 2 ablaufenden Pyrolyseprozess ein, da im weitesten Sinne ein erfindungsgemäß ausgebildeter Deckel 17, mit seinem Führungsansatz 28 und dem zugeordneten Reflektor 30 einen Reaktionsbehälterdeckel darstellt, welcher die Prozessführung innerhalb des Reaktors 2 positiv wirkt. Insbesondere bewirkt dieser Deckel 17 ein vakuumdichtes Verschließen des Reaktors 2 und eine gute Umwälzung des zu behandelnden Gutes innerhalb des Reaktors 2, wodurch eine besonders gleichmäßige Behandlung des Pyrolysegutes erreicht wird.

So werden aufsteigende Partikel des Pyrolysegutes bei ihrem Auftreffen auf den Reflektor 30 von diesem entsprechend seiner Gestaltung umgelenkt und zurückgeführt in das Pyrolysegut.

In den Figuren 3 und 4 sind zwei weitere Ausfuhrungsformen eines Reaktors 2 einschließlich des zugehörigen Deckels 17 dargestellt.

So zeigt Figur 3 einen Reaktor 2, welcher mit einem eben gestalteten Boden 18 ausgebildet ist. Der Reaktor 2 selbst ist, wie bereits oben beschrieben und in Figur 2 gezeigt, mit Stützfüßen 19 ausgebildet, um die erforderliche Bodenfreiheit zur Aufstandsfläche im Thermoofen 1 zu haben.

Der Deckel 17 ist bei dieser Ausführung in analoger Weise gemäß Figur 2 ausgebildet, indem auf der Unterseite vom Deckel 17 ein konkav ausgebildeter Reflektor 30 vorgesehen ist.

Bei der in Figur 4 gezeigten Ausfuhrungsvariante des Reaktors 2 ist der Reaktor 2 in analoger Weise zur beschriebenen Ausführung gemäß Figur 2 mit einem konkav gestalteten Boden 18 ausgebildet, wobei, wie sich aus Figur 4 ergibt, der Führungsansatz 28 vom Deckel 17 gleichfalls konkav ausgeführt ist. Die konkave Form des Führungsansatzes 28 entspricht der konkaven Form des Reflektors 30, ist allerdings über den äußeren Umfang des Reflektors 30 hinausgeführt, so dass der Pyrolyseraum innerhalb des Reaktors 2 auch im Bereich des Deckels so ausgeformt ist, dass durch die Umwälzung des Pyrolysegutes eine besonders gleichmäßige Austrocknung des Pyrolysegutes erreicht wird.

Um diesen Umwälzungsprozess optimal gestalten zu können, ist es vorteilhaft, auf der Innenseite des jeweiligen Deckels 17 zusätzlich zu dem vorgesehenen Reflektor 30 Randreflektoren 31 anzuordnen, wie in den Figuren 5 und 6 gezeigt.

Diese Randreflektoren 31 sind jeweils unterhalb des Reflektors 30 vorgesehen und so ausgebildet, dass sie mit einer sehr großen zentrischen öffnung ausgebildet sind, damit die Wirkung der Reflektoren 30 nicht eingeschränkt wird. Dies bedeutet, die Randreflek-

toren 31 überdecken nur den Zwischenspalt zwischen dem äußeren Umfang der Reflektoren 30 und der Innenwandung des Reaktors 2.

So zeigt die Figur 5 a einen Deckel 17 mit einem konkav ausgebildeten Führungsansatz 28 und zugeordnetem ebenen Reflektor 30 sowie einen kegelstumpfförmig ausgebildeten Randreflektor 31.

Figur 5 b zeigt einen Deckel 17 mit eben ausgeführten Führungsansatz 28 und zugeordneten ebenen Reflektor 30, dem gleichfalls ein kegelstumpfförmiger Randreflektor 31 zugeordnet ist.

Die Darstellung nach Figur 5 c entspricht in der Ausbildung des Deckels 17 und des Führungsansatzes 28 sowie des Randreflektors 31 der Ausführung nach 5 b, aber mit einem konkav ausgebildeten Reflektor 30.

Der in der Figur 5 d dargestellte Deckel 17 entspricht dem der Figur 5 a hinsichtlich der Ausbildung des Führungsansatzes 28 und des Randreflektors 31, der Reflektor 30 ist hier jedoch in konkaver Form ausgebildet.

In den Figuren 6 a bis 6 b sind Deckel 17 mit Führungsansätzen 28 dargestellt, bei denen die Führungsansätze 28 konkav, der Reflektor 30 eben und der Randreflektor 31 kegelstumpfförmig - Figur 6 a -, der Führungsansatz 28 eben, der Reflektor 30 eben und der Randreflektor 31 kegelstumpfförmig - Figur 6 b -, der Führungsansatz 28 eben, der Reflektor 30 konkav, der Randreflektor 31 kegelstumpfförmig - Figur 6 c - und in Figur 6 d der Führungsansatz 28 konkav, der Reflektor 30 gleichfalls konkav und der Randreflektor 31 kegelstumpfförmig ausgebildet sind.