Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
METHOD FOR IMPROVING OXIDATION AND DEPOSIT RESISTANCE OF LUBRICATING OILS
Document Type and Number:
WIPO Patent Application WO/2020/123440
Kind Code:
A1
Abstract:
Provided is a method for improving oxidation resistance and deposit resistance of a lubricating oil for use in lubricating a mechanical component. The method includes the step of providing the lubricating oil to the mechanical component and measuring the improved oxidation and deposit resistance. The lubricating oil includes a lubricating oil base stock at from 0 to 80 wt%, at least one branched isoparaffin having a mole % of epsilon carbon as measured by C13 NMR of less than or equal to 10% at from 20 to 80 wt%, at least one viscosity modifier at from 5 to 20 wt%, and one or more other lubricating oil additives. The oxidation resistance in the CEC L-109 oxidation resistance test is improved to greater than 310 hours to achieve a 100% viscosity increase and the deposit resistance in the TEOST 33C is improve to total deposits of less than 45 mg as compared to oxidation resistance and deposit resistance achieved using a lubricating oil not containing the at least one branched isoparaffin.

Inventors:
DECKMAN DOUGLAS (US)
TAGGI ANDREW (US)
HAGEMEISTER MARK (US)
SATTERFIELD ANDREW (US)
Application Number:
PCT/US2019/065366
Publication Date:
June 18, 2020
Filing Date:
December 10, 2019
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
EXXONMOBIL RES & ENG CO (US)
International Classes:
C10M105/04; C10N30/08; C10N30/10
Foreign References:
US5681797A1997-10-28
US4956122A1990-09-11
US4827064A1989-05-02
US4827073A1989-05-02
US4149178A1979-04-10
US3382291A1968-05-07
US3742082A1973-06-26
US3769363A1973-10-30
US3876720A1975-04-08
US4239930A1980-12-16
US4367352A1983-01-04
US4413156A1983-11-01
US4434408A1984-02-28
US4910355A1990-03-20
US5068487A1991-11-26
US4218330A1980-08-19
US5075269A1991-12-24
US2817693A1957-12-24
US4975177A1990-12-04
US4921594A1990-05-01
US4897178A1990-01-30
GB1429494A1976-03-24
GB1350257A1974-04-18
GB1440230A1976-06-23
GB1390359A1975-04-09
EP0464546A11992-01-08
EP0464547A11992-01-08
US4594172A1986-06-10
US4943672A1990-07-24
US6080301A2000-06-27
US6090989A2000-07-18
US6165949A2000-12-26
US7704930B22010-04-27
US9458403B22016-10-04
US9422497B22016-08-23
US8048833B22011-11-01
US3172892A1965-03-09
US3215707A1965-11-02
US3219666A1965-11-23
US3316177A1967-04-25
US3341542A1967-09-12
US3444170A1969-05-13
US3454607A1969-07-08
US3541012A1970-11-17
US3630904A1971-12-28
US3632511A1972-01-04
US3787374A1974-01-22
US4234435A1980-11-18
US3036003A1962-05-22
US3200107A1965-08-10
US3254025A1966-05-31
US3275554A1966-09-27
US3438757A1969-04-15
US3454555A1969-07-08
US3565804A1971-02-23
US3413347A1968-11-26
US3697574A1972-10-10
US3725277A1973-04-03
US3725480A1973-04-03
US3726882A1973-04-10
US4454059A1984-06-12
US3329658A1967-07-04
US3449250A1969-06-10
US3519565A1970-07-07
US3666730A1972-05-30
US3687849A1972-08-29
US3702300A1972-11-07
US4100082A1978-07-11
US5705458A1998-01-06
EP0471071A11992-02-19
US3087936A1963-04-30
US3272746A1966-09-13
US3322670A1967-05-30
US3652616A1972-03-28
US3948800A1976-04-06
CA1094044A1981-01-20
US4426305A1984-01-17
US4767551A1988-08-30
US3703536A1972-11-21
US3704308A1972-11-28
US3751365A1973-08-07
US3756953A1973-09-04
US3798165A1974-03-19
US3803039A1974-04-09
US3755433A1973-08-28
US3822209A1974-07-02
US5084197A1992-01-28
US2100993A1937-11-30
US6323164B12001-11-27
US4952739A1990-08-28
US20080020950A12008-01-24
US5430105A1995-07-04
US3595791A1971-07-27
US6034039A2000-03-07
US4798684A1989-01-17
US8048833B22011-11-01
US1815022A1931-07-14
US2015748A1935-10-01
US2191498A1940-02-27
US2387501A1945-10-23
US2655479A1953-10-13
US2666746A1954-01-19
US2721877A1955-10-25
US2721878A1955-10-25
US3250715A1966-05-10
Other References:
"Friedel-Crafts and Related Reactions", vol. 2, 1964, INTER-SCIENCE PUBLISHERS
M. W. RANNEY: "Lubricants and Related Products", 1973, NOYES DATA CORPORATION
L. R. RUDNICK: "Synthetics, Mineral Oils, and Bio-Based Lubricants", vol. 111, 2006, CRC TAYLOR AND FRANCIS, article "Polyalphaolefins", pages: 3 - 36
J.G. WILLS: "Lubrication Fundamentals", 1980, MARCEL DEKKER INC.
"Synthetic Lubricants and High-Performance Functional Fluids", 1999, MARCEL DEKKER INC.
W. W. YAUJ. J. KIRKLANDD. D. BLY: "Modern Size Exclusion Liquid Chromatography", 1979, JOHN WILEY AND SONS
Attorney, Agent or Firm:
BARRETT, Glenn, T. et al. (US)
Download PDF:
Claims:
CLAIMS:

1. A method for improving oxidation resistance and deposit resistance of a lubricating oil for use in lubricating a mechanical component comprising: providing a lubricating oil to a mechanical component, wherein the lubricating oil comprises a lubricating oil base stock at from 0 to 80 wt% of the lubricating oil, at least one branched isoparaffin having a mole % of epsilon carbon as measured by 13C NMR of less than or equal to 10% at from 20 to 80 wt% of the lubricating oil, at least one viscosity modifier at from 5 to 20 wt% of the lubricating oil, and wherein the remainder of the lubricating oil includes one or more other lubricating oil additives; and wherein oxidation resistance is improved (CEC L-109 oxidation resistance to a 100% viscosity increase greater than 310 hours) and deposit resistance is improved (TEOST 33C total deposits less than 45 mg) as compared to oxidation resistance and deposit resistance achieved using a lubricating oil not containing the at least one branched isoparaffin having a mole % of epsilon carbon as measured by 13C NMR of less than or equal to 10%.

2. The method of claim 1, wherein the lubricating oil base stock is selected from the from the group consisting of a Group I base stock, a Group II base stock, a Group III base stock, a Group IV base stock, a Group V base stock and combinations thereof.

3. The method of claim 2, wherein the Group III base stock is a gas to liquids (GTL) base stock and the Group IV base stock is a polyalphaolefin (PAO) base stock.

4. The method of claim 2, wherein the Group V base stock is an ester based Group V base stock selected from the group consisting of a C11/C13/C15/C17 Estolide, a C8/C10 TMP ester, a C7/C9/C 11/C 13/C 15 TMP ester, a C6/C7/C9 TMP ester, a C15/C17diester, a C6/C7/C9 TMP ester, a C4/C5/C6/C7/C8/C9 TMP ester, Cl 6 mixed mono and di alkylated naphthalene, and combinations thereof.

5. The method of claim 4, wherein the ester based Group V base stock comprises a monoester, a di-ester, a polyol ester, a complex ester or mixtures thereof derived from a renewable biological material.

6. The method of claim 5, wherein the renewable biological material is derived from coconut oil, palm oil, rapeseed oil, soy oil, vegetable oil, or sunflower oil.

7. The method of claims 1-6, wherein the at least one branched isoparaffin is selected from the group consisting of squalane, isosqualane, pristine, tetracosane, isoparaffins represented by the formulas

and combinations thereof.

8. The method of claim 7, wherein the at least one branched isoparaffin is squalane having a kinematic viscosity at 100 deg. C ranging from 3.9 to 4.3 cSt.

9. The method of claims 1-8, wherein the at least one viscosity modifier comprises linear or star shaped polymers and copolymers of methacrylate, butadiene, olefins, alkylated styrenes or combinations thereof.

10. The method of claims 1-8, wherein the at least one viscosity modifier is selected from the group consisting of polyisobutylene, polymethacrylate, polyisoprene, copolymers of ethylene and propylene, hydrogenated block copolymers of styrene and isoprene, styrene-butadiene based polymers, star polyisoprene polymers, star polyisoprene-styrene copolymers and combinations thereof.

11. The method of claims 1-10, wherein the one or more other lubricating oil additives are selected from the group consisting of an anti-wear additive, viscosity index improver, antioxidant, detergent, dispersant, pour point depressant, corrosion inhibitor, metal deactivator, seal compatibility additive, anti-foam agent, inhibitor, anti-rust additive, and friction modifier.

12. The method of claims 1-11, wherein the mechanical component is selected from the group consisting of internal combustion engines, power trains, drivelines, transmissions, gears, gear trains, gear sets, compressors, pumps, hydraulic systems, bearings, bushings, turbines, pistons, piston rings, cylinder liners, cylinders, cams, tappets, lifters, bearings (journal, roller, tapered, needle, ball), gears and valves.

13. The method of claim 12, wherein the lubricating oil provides the engine with a Sequence III H piston land 3 merit rating of greater than or equal to 4.0.

14. The method of claims 1-13, wherein the oxidation resistance or deposit resistance is measured at an oxygen partial pressure of less than 90 psig.

15. The method of claims 1-14, wherein the at least one branched isoparaffin has a mole % of alpha carbon as measured by 13C NMR of less than 3.8%.

16. The method of claims 1-14, wherein the at least one branched isoparaffin has a mole % of T/P methyl as measured by 13C NMR of greater than 2%.

17. The method of claims 1-14, wherein the at least one branched isoparaffin has a mole % of P- methyl as measured by 13C NMR of greater than 5%.

18. A lubricating oil comprising: a lubricating oil base stock at from 0 to 80 wt % of the lubricating oil, at least one branched isoparaffin having a mole % of epsilon carbon as measured by 13C NMR of less than or equal to 10% at from 20 to 80 wt% of the lubricating oil, at least one viscosity modifier at from 5 to 20 wt% of the lubricating oil, and wherein the remainder of the lubricating oil includes one or more other lubricating oil additives; and wherein oxidation resistance is improved (CEC L-109 oxidation resistance to a 100% viscosity increase greater than 310 hours) and deposit resistance is improved (TEOST 33C total deposits less than 45 mg) for the lubricating oil as compared to oxidation resistance and deposit resistance achieved using a lubricating oil not containing the at least one branched isoparaffin having a mole % of epsilon carbon as measured by 13C NMR of less than or equal to 10%.

Description:
METHOD FOR IMPROVING OXIDATION AND DEPOSIT RESISTANCE OF

LUBRICATING OILS

FIELD

[0001] This disclosure relates to a method for improving oxidation resistance and deposit control of lubricating oils. The lubricating oils include a branched isoparaffin and at least one viscosity modifier and are useful as passenger vehicle engine oil (PVEO) products or commercial vehicle engine oil (CVEO) products.

BACKGROUND

[0002] Lubricant oxidative stability is one of the key parameters controlling oil life, which translates in oil drain interval in practical terms. Additionally, deposit formation is an issue associated with the decomposition of the base stock molecules mostly propagated by oxidative chain reactions. There are several conventional approaches to improve the resistance to oxidation of a finished lubricant product, but most products are formulated using small molecules such as diphenylamine (DPA) or a phenolic antioxidant.

[0003] Improved oxidation stability is necessary to increase oil life and oil drain intervals, thus reducing the amount of used oil generated as a consequence of more frequent oil changes. Longer oil life and oil drain intervals are key benefits that are desirable to end customers.

Traditional antioxidant packages provide standard protection leaving the main differentiation hinging on the quality of the base stock in the formulation.

[0004] What is needed is newly designed lubricating oils capable of controlling oxidation and oil thickening for longer periods of time as compared to conventional lubricants. Further, what is needed is newly designed lubricants that enable extended oil life in combination with desired deposit control and cleanliness performance.

SUMMARY

[0005] This disclosure relates to a method for improving oxidation resistance and deposit resistance of lubricating oils by including in the oil a combination of base stocks and viscosity modifiers that lead to advantageous performance.

[0006] More particularly, this disclosure relates to a method for improving oxidation resistance and deposit resistance of a lubricating oil for use in lubricating a mechanical component comprising: providing a lubricating oil to a mechanical component, wherein the lubricating oil comprises a lubricating oil base stock at from 0 to 80 wt% of the lubricating oil, at least one branched isoparaffin having a mole % of epsilon carbon as measured by 13 C NMR of less than or equal to 10% at from 20 to 80 wt% of the lubricating oil, at least one viscosity modifier at from 5 to 20 wt% of the lubricating oil, and wherein the remainder of the lubricating oil includes one or more other lubricating oil additives. The method provides an oxidation resistance improvement (CEC L-109 oxidation resistance to a 100% viscosity increase greater than 310 hours) and deposit resistance improvement (TEOST 33C total deposits less than 45 mg) as compared to oxidation resistance and deposit resistance achieved using a lubricating oil not containing the at least one branched isoparaffin having a mole % of epsilon carbon as measured by 13 C NMR of less than or equal to 10%.

[0007] This disclosure also relates to a lubricating oil composition including a lubricating oil base stock at from 0 to 80 wt% of the lubricating oil, at least one branched isoparaffin having a mole % of epsilon carbon as measured by 13 C NMR of less than or equal to 10% at from 20 to 80 wt% of the lubricating oil, at least one viscosity modifier at from 5 to 20 wt% of the lubricating oil, and wherein the remainder of the lubricating oil includes one or more other lubricating oil additives. The lubricating oil composition provides an oxidation resistance improvement (CEC L-109 oxidation resistance to a 100% viscosity increase greater than 310 hours) and deposit resistance improvement (TEOST 33C total deposits less than 45 mg) as compared to oxidation resistance and deposit resistance achieved using a lubricating oil not containing the at least one branched isoparaffin having a mole % of epsilon carbon as measured by 13 C NMR of less than or equal to 10%.

[0008] Other objects and advantages of the present disclosure will become apparent from the detailed description that follows.

DETAILED DESCRIPTION

Definitions

[0009] “About” or“approximately.” All numerical values within the detailed description and the claims herein are modified by“about” or“approximately” the indicated value, and take into account experimental error and variations that would be expected by a person having ordinary skill in the art.

[0010] “Major amount” as it relates to components included within the lubricating oils of the specification and the claims means greater than or equal to 50 wt.%, or greater than or equal to 60 wt.%, or greater than or equal to 70 wt.%, or greater than or equal to 80 wt.%, or greater than or equal to 90 wt.% based on the total weight of the lubricating oil.

[0011] “Minor amount” as it relates to components included within the lubricating oils of the specification and the claims means less than 50 wt.%, or less than or equal to 40 wt.%, or less than or equal to 30 wt.%, or greater than or equal to 20 wt.%, or less than or equal to 10 wt.%, or less than or equal to 5 wt.%, or less than or equal to 2 wt.%, or less than or equal to 1 wt.%, based on the total weight of the lubricating oil. [0012] “Essentially free” as it relates to components included within the lubricating oils of the specification and the claims means that the particular component is at 0 weight % within the lubricating oil, or alternatively is at impurity type levels within the lubricating oil (less than 100 ppm, or less than 20 ppm, or less than 10 ppm, or less than 1 ppm).

[0001] “Other lubricating oil additives” as used in the specification and the claims means other lubricating oil additives that are not specifically recited in the particular section of the specification or the claims. For example, other lubricating oil additives may include, but are not limited to, antioxidants, detergents, dispersants, antiwear additives, corrosion inhibitors, viscosity modifiers, metal passivators, pour point depressants, seal compatibility agents, antifoam agents, extreme pressure agents, friction modifiers and combinations thereof.

[0013] “Hydrocarbon” refers to a compound consisting of carbon atoms and hydrogen atoms.

[0014] “Alkane” refers to a hydrocarbon that is completely saturated. An alkane can be linear, branched, cyclic, or substituted cyclic.

[0015] “Olefin” refers to a non-aromatic hydrocarbon comprising one or more carbon-carbon double bond in the molecular structure thereof.

[0016] “Mono-olefin” refers to an olefin comprising a single carbon-carbon double bond.

[0017] “Cn” group or compound refers to a group or a compound comprising carbon atoms at total number thereof of n. Thus,“Cm-Cn” group or compound refers to a group or compound comprising carbon atoms at a total number thereof in the range from m to n. Thus, a C1-C50 alkyl group refers to an alkyl group comprising carbon atoms at a total number thereof in the range from 1 to 50.

[0018] “Carbon backbone” refers to the longest straight carbon chain in the molecule of the compound or the group in question.“Branch” refer to any substituted or unsubstituted hydrocarbyl group connected to the carbon backbone. A carbon atom on the carbon backbone connected to a branch is called a“branched carbon.”

[0019] “Epsilon-carbon” in a branched alkane refers to a carbon atom in its carbon backbone that is (i) connected to two hydrogen atoms and two carbon atoms and (ii) connected to a branched carbon via at least four (4) methylene (CH2) groups. Quantity of epsilon carbon atoms in terms of mole percentage thereof in a alkane material based on the total moles of carbon atoms can be determined by using, e.g., 13 C NMR.

[0020] “Alpha-carbon” in a branched alkane refers to a carbon atom in its carbon backbone that is with a methyl end with no branch on the first 4 carbons. It is also measured in mole percentage using 13 C NMR. [0021] “T/P methyl” in a branched alkane refers to a methyl end and a methyl in the 2 position. It is also measured in mole percentage using 13 C NMR.

[0022] “P-methyl” in a branched alkane refers to a methyl branch anywhere on the chain, except in the 2 position. It is also measured in mole percentage using 13 C NMR.

[0023] “SAE” refers to SAE International, formerly known as Society of Automotive Engineers, which is a professional organization that sets standards for internal combustion engine lubricating oils.

[0024] “SAE J300” refers to the viscosity grade classification system of engine lubricating oils established by SAE, which defines the limits of the classifications in rheological terms only.

[0025] “Base stock” or“base oil” interchangeably refers to an oil that can be used as a component of lubricating oils, heat transfer oils, hydraulic oils, grease products, and the like.

[0026] “Lubricating oil” or“lubricant” interchangeably refers to a substance that can be introduced between two or more surfaces to reduce the level of friction between two adjacent surfaces moving relative to each other. A lubricant base stock is a material, typically a fluid at various levels of viscosity at the operating temperature of the lubricant, used to formulate a lubricant by admixing with other components. Non-limiting examples of base stocks suitable in lubricants include API Group I, Group II, Group III, Group IV, and Group V base stocks. PAOs, particularly hydrogenated PAOs, have recently found wide use in lubricants as a Group IV base stock, and are particularly preferred. If one base stock is designated as a primary base stock in the lubricant, additional base stocks may be called a co-base stock.

[0027] All kinematic viscosity values in this disclosure are as determined pursuant to ASTM D445. Kinematic viscosity at 100°C is reported herein as KV100, and kinematic viscosity at 40°C is reported herein as KV40. Unit of all KV100 and KV40 values herein is cSt unless otherwise specified.

[0028] All viscosity index (“VI”) values in this disclosure are as determined pursuant to ASTM D2270.

[0029] All Noack volatility (“NV”) values in this disclosure are as determined pursuant to ASTM D5800 unless specified otherwise. Unit of all NV values is wt%, unless otherwise specified.

[0030] All pour point values in this disclosure are as determined pursuant to ASTM D5950 or D97.

[0031] All CCS viscosity (“CCSV”) values in this disclosure are as determined pursuant to ASTM 5293. Unit of all CCSV values herein is millipascal second (mPa-s), which is equivalent to centipoise), unless specified otherwise. All CCSV values are measured at a temperature of interest to the lubricating oil formulation or oil composition in question. Thus, for the purpose of designing and fabricating engine oil formulations, the temperature of interest is the temperature at which the SAE J300 imposes a minimal CCSV.

[0032] All percentages in describing chemical compositions herein are by weight unless specified otherwise.“Wt.%” means percent by weight.

Methods and Lubricating Oil Compositions of This Disclosure

[0033] It has been surprisingly found that, in accordance with this disclosure, oxidative stability is improved, and deposit control is maintained or improved, as compared to oxidative stability and deposit control achieved using a lubricating oil other than the formulated oil of this disclosure.

[0034] In particular, it has been surprisingly found that, for lubricating oils of this disclosure containing at least one branched isoparaffin having a mole % of epsilon carbon as measured by 13 C NMR of less than or equal to 10% at from 20 to 80 wt% of the lubricating oil and at least one viscosity modifier at from 5 to 20 wt% of the lubricating oil provide for an improved oxidative stability (CEC L-109 oxidation resistance to a 100% viscosity increase greater than 310 hours) and improved deposit resistance (TEOST 33C total deposits less than 45 mg) as compared to oxidative stability and deposit resistance achieved using a lubricating oil not containing the at least one branched isoparaffin. The improvement in the oxidation resistance or deposit resistance of this disclosure was measured at an oxygen partial pressure of less than 90 psig, or less than 70 psig, or less than 50 psig, or less than 30 psig, or less than 15 psig.

[0035] The present disclosure provides significant improvements in lubricant life as determined by the time to a 100% viscosity increase for engine oils exposed to biodiesel fuel and oxidized at 150°C using the operating conditions of the CEC L-109-16 bench test. This disclosure facilitates the development of engine oils with extended drain capabilities.

[0036] The current state of the art is to meet the industry ACEA 2016 requirements in the CEC L-109-16 Bio-Diesel Oxidation Bench test. The present disclosure identifies approaches to significantly surpass industry requirements in the CEC L-109-16 Bio-Diesel Oxidation Bench test. The industry standard CEC L-109-16 Bio-Diesel Oxidation Bench test runs for 168 or 216 hours. The CEC L-109-16 oxidation bench test is conducted at 150°C. An organo-iron catalyst is added to the test oil to deliver 100 ppm Fe. Also 7% B100 biodiesel fuel is added prior to initiating the oxidation test to accelerate the oxidative degradation. The present disclosure facilitates running the CEC L-109-16 Bio-Diesel Oxidation Bench test for extended durations (> 310 hours) to document the benefits of this disclosure.

[0037] More, in particular, it has been surprisingly found that, in deposit measurements of the lubricating oil of this disclosure by thermo-oxidation engine oil simulation (TEOST 33C) measured by ASTM D6335, the amount of total deposits is reduced or maintained as compared to the amount of total deposits in a lubricating oil not containing the at least one branched isoparaffin.

[0038] This disclosure relates to lubricating oils for combustion engines that contain at least one least one branched isoparaffin in an amount greater than or equal to 20, 25, 30, 40, 50, 60,

70, 75, and 80 weight percent. Lubricating oils formulated with this level of the at least one branched isoparaffin base stock provides unexpectedly good oxidative stability as measured by the CEC L-109-16 Bio-Diesel Oxidation Bench test and unexpectedly good deposit resistance as measured by the TEOST 33C test.

[0039] In particular, for lubricating oils of this disclosure containing at least one branched isoparaffin having a mole % of epsilon carbon as measured by 13 C NMR of less than or equal to 10%, in a CEC L-109-16 Bio-Diesel Oxidation Bench test, the relative kinematic viscosity at 100°C (KV100) increase from 300 to 400 hours of the lubricating oil, is less than about 100 percent increase as compared to the relative kinematic viscosity at 100°C (KV100) increase from 300 to 400 hours of a lubricating oil not having the at least one branched isoparaffin.

[0040] In an embodiment, the lubricating oils of this disclosure containing at least one branched isoparaffin having a mole % of epsilon carbon as measured by 13 C NMR of less than or equal to 10%, in a CEC L-109-16 Bio-Diesel Oxidation Bench test, the time for a relative kinematic viscosity at 100°C (KV100) increase of 100% of the lubricating oil, is greater than at least about 5%, or 10%, or 15%, or 20%, or 25%, or 30%, or 35%, or 40%, or 45%, or 50%, or greater, of the time for a relative kinematic viscosity at 100°C (KV100) increase of 100% of a lubricating oil not having the at least one branched isoparaffin.

[0041] In accordance with this disclosure, a method is provided to improve oxidative stability through the lifetime of a lubricant and the deposit resistance in combustion through selection of a at least one branched isoparaffin having a mole % of epsilon carbon as measured by 13 C NMR of less than or equal to 10% and at least one viscosity modifier in the lubricating oil. Specifically, when from 20-80 weight percent of a branched isoparaffin having a mole % of epsilon carbon as measured by 13 C NMR of less than or equal to 10% is used in the formulation, the lubricant oxidation performance and deposit resistance is significantly improved as compared to formulations not containing the at least one branched isoparaffin having a mole % of epsilon carbon as measured by 13 C NMR of less than or equal to 10%.

[0042] Further, in accordance with this disclosure, finished lubricants can be designed that are capable of controlling oxidation and oil thickening for long durations in engines as compared to lubricants not having the at least one branched isoparaffin. This disclosure also enables extended oil life in combination with superior deposit resistance in the combustion engine and viscosity control.

[0043] The at least one branched isoparaffin may have a mole % of epsilon carbon as measured by 13 C NMR of less than or equal to 10%, or less than or equal to 9%, or less than or equal to 8%, or less than or equal to 7%, or less than or equal to 6%, or less than or equal to 5%. The at least one branched isoparaffin may have a mole % of alpha carbon as measured by 13 C NMR of less than 3.8%, or less than 3.5%, or less than 3.0%, or less than 2.0%, or less than 1.5%, or less than 1.0%. The at least one branched isoparaffin may also have a mole % of T/P methyl as measured by 13 C NMR of greater than 2%, or greater than 5%, or greater than 7%, or greater than 10%, or greater than 12%. The at least one branched isoparaffin may also have a mole % of P-methyl as measured by 13 C NMR of greater than 5%, or greater than 7%, or greater than 10%, or greater than 12%.

[0044] The at least one branched isoparaffin having a mole % of epsilon carbon as measured by 13 CNMR of less than or equal to 10% is selected from the group consisting of squalane, isosqualane, pristine, tetracosane, isoparaffins represented by the following two structures below,

and combinations thereof. A particularly preferred at least one branched isoparaffin having a mole % of epsilon carbon as measured by 13 CNMR of less than or equal to 10% is squalane.

[0045] The at least one branched isoparaffin having a mole % of epsilon carbon as measured by 13 C NMR of less than or equal to 10% is incorporated into the inventive lubricating oils of this disclosure at from 20 to 80 wt%, or 25 to 75 wt%, or 30 to 70 wt%, or 35 to 65 wt%, or 40 to 60 wt%, or 45 to 55 wt% based on the total weight of the lubricating oil.

[0046] The other lubricating oil base stock of inventive lubrication oils is incorporated at from 0 to 80 wt%, or 10 to 70 wt%, or 20 to 60 wt%, or 30 to 50 wt%, or 34 to 45 wt% of the lubricating oil. Non- limiting exemplary other lubricating oil base stocks are disclosed in the next section of the disclosure. [0047] The inventive lubricating oils of this disclosure provide an improvement in oxidation resistance compared to comparable lubricating oils not including the at least one branched isoparaffin having a mole % of epsilon carbon as measured by 13 C NMR of less than or equal to 10% as measured by the CEC L-109 oxidation resistance to a 100% viscosity test. In particular, the inventive lubricating oils provide a CEC L-109 oxidation resistance to a 100% viscosity increase that is greater than 310 hours, or greater than 330 hours, or greater than 350 hours, or greater than 370 hours, or greater than 400 hours, or greater than 420 hours.

[0048] The inventive lubricating oils of this disclosure provide an improvement in deposit resistance compared to comparable lubricating oils not including the at least one branched isoparaffin having a mole % of epsilon carbon as measured by 13 C NMR of less than or equal to 10% as measured by TEOST 33C total deposits test. In particular, the inventive lubricating oils provide a deposit resistance that is less than 45 mg, or less than 43 mg, or less than 41 mg, or less than 39 mg, or less than 37 mg, or less than 35 mg.

[0049] Viscosity modifiers (also known as viscosity index improvers (VI improvers), and viscosity improvers) are in included in the lubricant compositions of this disclosure. The at least one viscosity modifier of the inventive lubricating oils is incorporated at from 0.1 to 20 wt%, or 0.3 to 20 wt%, or 0.5 to 20 wt%, or 1 to 18 wt%, or 5 to 16 wt%, or 10 to 15 w% of the lubricating oil. Viscosity modifiers provide lubricants with high and low temperature operability. These additives impart shear stability at elevated temperatures and acceptable viscosity at low temperatures.

[0050] Non-limiting exemplary viscosity modifiers for the at least one viscosity modifier of the inventive lubricating oils are as follows: high molecular weight hydrocarbons, polyesters and viscosity modifier dispersants that function as both a viscosity modifier and a dispersant. Typical molecular weights of these polymers are between about 10,000 to 1,500,000, more typically about 20,000 to 1,200,000, and even more typically between about 50,000 and 1,000,000.

[0051] Other examples of suitable viscosity modifiers are linear or star-shaped polymers and copolymers of methacrylate, butadiene, olefins, or alkylated styrenes. Polyisobutylene is a commonly used viscosity modifier. Another suitable viscosity modifier is polymethacrylate (copolymers of various chain length alkyl methacrylates, for example), some formulations of which also serve as pour point depressants. Other suitable viscosity modifiers include copolymers of ethylene and propylene, hydrogenated block copolymers of styrene and isoprene, and polyacrylates (copolymers of various chain length acrylates, for example). Specific examples include styrene-isoprene or styrene -butadiene based polymers of 50,000 to 200,000 molecular weight. [0052] Olefin copolymers are commercially available from Chevron Oronite Company LLC under the trade designation“PARATONE®” (such as“PARATONE® 8921” and“PARATONE® 8941”); from Afton Chemical Corporation under the trade designation“HiTEC®” (such as “HiTEC® 5850B”; and from The Lubrizol Corporation under the trade designation“Lubrizol® 7067C”. Hydrogenated polyisoprene star polymers are commercially available from Infineum International Limited, e.g., under the trade designation“SV200” and“SV600”. Hydrogenated diene-styrene block copolymers are commercially available from Infineum International Limited, e.g., under the trade designation“SV140”,“SV150”, and“SV160”.

[0053] The polymethacrylate or poly acrylate polymers can be linear polymers which are available from Evonik Industries under the trade designation“Viscoplex®” (e.g., Viscoplex 6-954) or star polymers which are available from Lubrizol Corporation under the trade designation Asteric™ (e.g., Lubrizol 87708 and Lubrizol 87725).

[0054] Illustrative vinyl aromatic-containing polymers as viscosity modifiers useful in this disclosure may be derived predominantly from vinyl aromatic hydrocarbon monomer. Illustrative vinyl aromatic-containing copolymers useful in this disclosure may be represented by the following general formula:

A-B

wherein A is a polymeric block derived predominantly from vinyl aromatic hydrocarbon monomer, and B is a polymeric block derived predominantly from conjugated diene monomer.

[0055] In another embodiment of this disclosure, the at least one viscosity modifier may be used in an amount of less than about 20 weight percent, or less than about 15 weight percent, or less than about 10 weight percent, or less than about 7 weight percent, or less than about 5 weight percent, and in certain instances, may be used at less than 2 weight percent, or less than about 1 weight percent, or less than about 0.5 weight percent, or less than 0.3 wt%, or less than 0.1 wt% based on the total weight of the formulated oil or lubricating engine oil. The preferred range for the at least one viscosity modifier is from 5 to 20 wt% of the formulated oil.

[0056] Viscosity modifiers are typically added as concentrates, in large amounts of diluent oil. As used herein, the viscosity modifier concentrations are given on an“as delivered” basis. Typically, the active polymer is delivered with a diluent oil. The“as delivered” viscosity modifier typically contains from 20 weight percent to 75 weight percent of an active polymer for polymethacrylate or poly acrylate polymers, or from 6 weight percent to 20 weight percent of an active polymer for olefin copolymers, hydrogenated polyisoprene star polymers, or hydrogenated diene-styrene block copolymers, in the“as delivered” polymer concentrate.

Other Lubricating Oil Base Stocks [0001] A wide range of other lubricating oil base stocks known in the art can be used in conjunction with the at least one branched isoparaffin having a mole % of epsilon carbon as measured by 13 C NMR of less than or equal to 10% in the lubricating oil compositions of the instant disclosure as primary base stock or co-base stock. Such other base stocks can be either derived from natural resources or synthetic, including un-refined, refined, or re-refined oils. Un-refined oil base stocks include shale oil obtained directly from retorting operations, petroleum oil obtained directly from primary distillation, and ester oil obtained directly from a natural source (such as plant matters and animal tissues) or directly from a chemical esterification process. Refined oil base stocks are those un-refined base stocks further subjected to one or more purification steps such as solvent extraction, secondary distillation, acid extraction, base extraction, filtration, and percolation to improve the at least one lubricating oil property. Re-refined oil base stocks are obtained by processes analogous to refined oils but using an oil that has been previously used as a feed stock.

[0057] Groups I, II, III, IV, and V are broad base oil stock categories developed and defined by the American Petroleum Institute (API Publication 1509; www.API.org) to create guidelines for lubricant base oils. Group I base stocks have a viscosity index of between about 80 to 120 and contain greater than about 0.03% sulfur and/or less than about 90% saturates. Group II base stocks have a viscosity index of between about 80 to 120, and contain less than or equal to about 0.03% sulfur and greater than or equal to about 90% saturates. Group III stocks have a viscosity index greater than about 120 and contain less than or equal to about 0.03 % sulfur and greater than about 90% saturates. Group IV includes polyalphaolefins (PAO). Group V base stock includes base stocks not included in Groups I-IV. The table below summarizes properties of each of these five groups.

[0058] Natural oils include animal oils, vegetable oils (castor oil and lard oil, for example), and mineral oils. Animal and vegetable oils possessing favorable thermal oxidative stability can be used. Of the natural oils, mineral oils are preferred. Mineral oils vary widely as to their crude source, for example, as to whether they are paraffinic, naphthenic, or mixed paraffinic-naphthenic. Oils derived from coal or shale are also useful. Natural oils vary also as to the method used for their production and purification, for example, their distillation range and whether they are straight ran or cracked, hydrorefined, or solvent extracted.

[0059] Group II and/or Group III hydroprocessed or hydrocracked base stocks, including synthetic oils such as alkyl aromatics and synthetic esters are also well known base stock oils.

[0060] Synthetic oils include hydrocarbon oil. Hydrocarbon oils include oils such as polymerized and interpolymerized olefins (polybutylenes, polypropylenes, propylene isobutylene copolymers, ethylene-olefin copolymers, and ethylene- alphaolefin copolymers, for example). Polyalphaolefin (PAO) oil base stocks are commonly used synthetic hydrocarbon oil. By way of example, PAOs derived from Cs, Cio, C12, C14 olefins or mixtures thereof may be utilized. See U.S. Patent Nos. 4,956,122; 4,827,064; and 4,827,073.

[0061] The number average molecular weights of the PAOs, which are known materials and generally available on a major commercial scale from suppliers such as ExxonMobil Chemical Company, Chevron Phillips Chemical Company, BP, and others, typically vary from about 250 to about 3,000, although PAO’s may be made in viscosities up to about 150 cSt (100°C). The PAOs are typically comprised of relatively low molecular weight hydrogenated polymers or oligomers of alphaolefins which include, but are not limited to, C2 to about C32 alphaolefins with the Cs to about Ci 6 alphaolefins, such as 1-octene, 1-decene, 1-dodecene and the like, being preferred. The preferred polyalphaolefins are poly- 1-octene, poly- 1-decene and poly- 1-dodecene and mixtures thereof and mixed olefin-derived polyolefins. However, the dimers of higher olefins in the range of C14 to Ci 8 may be used to provide low viscosity base stocks of acceptably low volatility. Depending on the viscosity grade and the starting oligomer, the PAOs may be predominantly trimers and tetramers of the starting olefins, with minor amounts of the higher oligomers, having a viscosity range of 1.5 to 12 cSt. PAO fluids of particular use may include 3.0 cSt, 3.4 cSt, and/or 3.6 cSt and combinations thereof. Mixtures of PAO fluids having a viscosity range of 1.5 to approximately 150 cSt or more may be used if desired.

[0062] The PAO fluids may be conveniently made by the polymerization of an alphaolefin in the presence of a polymerization catalyst such as the Friedel-Crafts catalysts including, for example, aluminum trichloride, boron trifluoride or complexes of boron trifluoride with water, alcohols such as ethanol, propanol or butanol, carboxylic acids or esters such as ethyl acetate or ethyl propionate. For example the methods disclosed by U.S. Patent Nos. 4,149,178 or 3,382,291 may be conveniently used herein. Other descriptions of PAO synthesis are found in the following U.S. Patent Nos. 3,742,082; 3,769,363; 3,876,720; 4,239,930; 4,367,352; 4,413,156; 4,434,408; 4,910,355; 4,956,122; and 5,068,487. The dimers of the Cu to Cis olefins are described in U.S. Patent No. 4,218,330.

[0063] Other useful lubricant oil base stocks include wax isomerate base stocks and base oils, comprising hydroisomerized waxy stocks (e.g. waxy stocks such as gas oils, slack waxes, fuels hydrocracker bottoms, etc.), hydroisomerized Fischer-Tropsch waxes, Gas-to-Liquids (GTL) base stocks and base oils, and other wax isomerate hydroisomerized base stocks and base oils, or mixtures thereof. Fischer-Tropsch waxes, the high boiling point residues of Fischer-Tropsch synthesis, are highly paraffinic hydrocarbons with very low sulfur content. The hydroprocessing used for the production of such base stocks may use an amorphous hydrocracking/hydroisomerization catalyst, such as one of the specialized lube hydrocracking (LHDC) catalysts or a crystalline hydrocracking/hydroisomerization catalyst, preferably a zeolitic catalyst. For example, one useful catalyst is ZSM-48 as described in U.S. Patent No. 5,075,269, the disclosure of which is incorporated herein by reference in its entirety. Processes for making hydrocracked/hydroisomerized distillates and hydrocracked/hydroisomerized waxes are described, for example, in U.S. Patent Nos. 2,817,693; 4,975,177; 4,921,594 and 4,897,178 as well as in British Patent Nos. 1,429,494; 1,350,257; 1,440,230 and 1,390,359. Each of the aforementioned patents is incorporated herein in their entirety. Particularly favorable processes are described in European Patent Application Nos. 464546 and 464547, also incorporated herein by reference. Processes using Fischer-Tropsch wax feeds are described in U.S. Patent Nos. 4,594,172 and 4,943,672, the disclosures of which are incorporated herein by reference in their entirety.

[0064] Gas-to-Liquids (GTL) base oils, Fischer-Tropsch wax derived base oils, and other wax- derived hydroisomerized (wax isomerate) base oils be advantageously used in the instant disclosure, and may have useful kinematic viscosities at 100°C of about 3 cSt to about 50 cSt, preferably about 3 cSt to about 30 cSt, more preferably about 3.5 cSt to about 25 cSt, as exemplified by GTL 4 with kinematic viscosity of about 4.0 cSt at 100°C and a viscosity index of about 141. These Gas-to-Liquids (GTL) base oils, Fischer-Tropsch wax derived base oils, and other wax- derived hydroisomerized base oils may have useful pour points of about -20°C or lower, and under some conditions may have advantageous pour points of about -25 °C or lower, with useful pour points of about -30°C to about -40°C or lower. Useful compositions of Gas-to-Liquids (GTL) base oils, Fischer-Tropsch wax derived base oils, and wax-derived hydroisomerized base oils are recited in U.S. Patent Nos. 6,080,301; 6,090,989, and 6,165,949 for example, and are incorporated herein in their entirety by reference.

[0065] The hydrocarbyl aromatics can be used as a base oil or base oil component and can be any hydrocarbyl molecule that contains at least about 5% of its weight derived from an aromatic moiety such as a benzenoid moiety or naphthenoid moiety, or their derivatives. These hydrocarbyl aromatics include alkyl benzenes, alkyl naphthalenes, alkyl diphenyl oxides, alkyl naphthols, alkyl diphenyl sulfides, alkylated bis-phenol A, alkylated thiodiphenol, and the like. The aromatic can be mono-alkylated, dialkylated, polyalkylated, and the like. The aromatic can be mono- or poly- functionalized. The hydrocarbyl groups can also be comprised of mixtures of alkyl groups, alkenyl groups, alkynyl, cycloalkyl groups, cycloalkenyl groups and other related hydrocarbyl groups. The hydrocarbyl groups can range from about Ce up to about C6o with a range of about Cx to about C 20 often being preferred. A mixture of hydrocarbyl groups is often preferred, and up to about three such substituents may be present. The hydrocarbyl group can optionally contain sulfur, oxygen, and/or nitrogen containing substituents. The aromatic group can also be derived from natural (petroleum) sources, provided at least about 5% of the molecule is comprised of an above-type aromatic moiety. Viscosities at 100°C of approximately 3 cSt to about 50 cSt are preferred, with viscosities of approximately 3.4 cSt to about 20 cSt often being more preferred for the hydrocarbyl aromatic component. In one embodiment, an alkyl naphthalene where the alkyl group is primarily comprised of 1-hexadecene is used. Other alkylates of aromatics can be advantageously used. Naphthalene or methyl naphthalene, for example, can be alkylated with olefins such as octene, decene, dodecene, tetradecene or higher, mixtures of similar olefins, and the like. Useful concentrations of hydrocarbyl aromatic in a lubricant oil composition can be about 2% to about 25%, preferably about 4% to about 20%, and more preferably about 4% to about 15%, depending on the application.

[0066] Alkylated aromatics such as the hydrocarbyl aromatics of the present disclosure may be produced by well-known Friedel-Crafts alkylation of aromatic compounds. See Friedel-Crafts and Related Reactions, Olah, G. A. (ed.), Inter-science Publishers, New York, 1963. For example, an aromatic compound, such as benzene or naphthalene, is alkylated by an olefin, alkyl halide or alcohol in the presence of a Friedel-Crafts catalyst. See Friedel-Crafts and Related Reactions, Vol. 2, part 1, chapters 14, 17, and 18, See Olah, G. A. (ed.), Inter-science Publishers, New York, 1964. Many homogeneous or heterogeneous, solid catalysts are known to one skilled in the art. The choice of catalyst depends on the reactivity of the starting materials and product quality requirements. For example, strong acids such as AICI3, BF3, or HF may be used. In some cases, milder catalysts such as FeCF or SnCU are preferred. Newer alkylation technology uses zeolites or solid super acids.

[0067] Esters comprise a useful base stock. Additive solvency and seal compatibility characteristics may be secured by the use of esters such as the esters of dibasic acids with monoalkanols and the polyol esters of monocarboxylic acids. Esters of the former type include, for example, the esters of dicarboxylic acids such as phthalic acid, succinic acid, alkyl succinic acid, alkenyl succinic acid, maleic acid, azelaic acid, suberic acid, sebacic acid, fumaric acid, adipic acid, linoleic acid dimer, malonic acid, alkyl malonic acid, alkenyl malonic acid, etc., with a variety of alcohols such as butyl alcohol, hexyl alcohol, dodecyl alcohol, 2-ethylhexyl alcohol, etc. Specific examples of these types of esters include dibutyl adipate, di(2-ethylhexyl) sebacate, di-n- hexyl fumarate, dioctyl sebacate, diisooctyl azelate, diisodecyl azelate, dioctyl phthalate, didecyl phthalate, dieicosyl sebacate, etc.

[0068] Particularly useful synthetic esters are those which are obtained by reacting one or more polyhydric alcohols, preferably the hindered polyols (such as the neopentyl polyols, e.g., neopentyl glycol, trimethylol ethane, 2-methyl-2-propyl- 1,3-propanediol, trimethylol propane, pentaerythritol and dipentaerythritol) with alkanoic acids containing at least about 4 carbon atoms, preferably C to C30 acids such as saturated straight chain fatty acids including caprylic acid, capric acid, lauric acid, myristic acid, palmitic acid, stearic acid, arachic acid, and behenic acid, or the corresponding branched chain fatty acids or unsaturated fatty acids such as oleic acid, or mixtures of any of these materials.

[0069] Suitable synthetic ester components include the esters of trimethylol propane, trimethylol butane, trimethylol ethane, pentaerythritol and/or dipentaerythritol with one or more monocarboxylic acids containing from about 5 to about 10 carbon atoms. These esters are widely available commercially, for example, the Mobil P-41 and P-51 esters of ExxonMobil Chemical Company.

[0070] Also useful are esters derived from renewable material such as coconut, palm, rapeseed, soy, sunflower and the like. These esters may be monoesters, di-esters, polyol esters, complex esters, or mixtures thereof. These esters are widely available commercially, for example, the Esterex NP 343 ester of ExxonMobil Chemical Company.

[0001] More particularly, branched polyol esters comprise a useful base stock of this disclosure. The branched polyol esters are obtained by reacting one or more polyhydric alcohols, preferably the hindered polyols (such as the neopentyl polyols, e.g., neopentyl glycol, trimethylol ethane, 2-methyl-2-propyl-l, 3 -propanediol, trimethylol propane, pentaerythritol and

dipentaerythritol) with single or mixed branched mono-carboxylic acids containing at least about 4 carbon atoms, preferably C5 to C30 branched mono-carboxylic acids including 2,2-dimethyl propionic acid (neopentanoic acid), neoheptanoic acid, neooctanoic acid, neononanoic acid, iso- hexanoic acid, neodecanoic acid, 2-ethyl hexanoic acid (2EH), 3,5,5-trimethyl hexanoic acid (TMH), isoheptanoic acid, isooctanoic acid, isononanoic acid, isodecanoic acid, or mixtures of any of these materials. These branched polyol esters include fully converted and partially converted polyol esters.

[0002] Particularly useful polyols include, for example, neopentyl glycol, 2,2-dimethylol butane, trimethylol ethane, trimethylol propane, trimethylol butane, mono-pentaerythritol, technical grade pentaerythritol, di-pentaerythritol, tri-pentaerythritol, ethylene glycol, propylene glycol and polyalkylene glycols (e.g., polyethylene glycols, polypropylene glycols, 1,4- butanediol, sorbitol and the like, 2-methylpropanediol, polybutylene glycols, etc., and blends thereof such as a polymerized mixture of ethylene glycol and propylene glycol). The most preferred alcohols are technical grade (e.g., approximately 88% mono-, 10% di- and 1-2% tri- pentaerythritol) pentaerythritol, mono-pentaerythritol, di-pentaerythritol, neopentyl glycol and trimethylol propane.

[0003] Particularly useful branched mono-carboxylic acids include, for example, 2,2-dimethyl propionic acid (neopentanoic acid), neoheptanoic acid, neooctanoic acid, neononanoic acid, iso- hexanoic acid, neodecanoic acid, 2-ethyl hexanoic acid (2EH), 3,5,5-trimethyl hexanoic acid (TMH), isoheptanoic acid, isooctanoic acid, isononanoic acid, isodecanoic acid, or mixtures of any of these materials. One especially preferred branched acid is 3, 5, 5 -trimethyl hexanoic acid. The term "neo" as used herein refers to a trialkyl acetic acid, i.e., an acid which is triply substituted at the alpha carbon with alkyl groups.

[0004] Preferably, the branched polyol ester is derived from a polyhydric alcohol and a branched mono-carboxylic acid. In particular, the branched polyol ester is obtained by reacting one or more polyhydric alcohols with one or more branched mono-carboxylic acids containing at least about 4 carbon atoms.

[0005] Preferred branched polyol esters useful in this disclosure include, for example, mono- pentaerythritol ester of branched mono-carboxylic acids, di-pentaerythritol ester of branched mono-carboxylic acids, trimethylolpropane ester of C8-C10 acids, and the like.

[0006] Other synthetic esters that can be useful in this disclosure are those which are obtained by reacting one or more polyhydric alcohols, preferably the hindered polyols (such as the neopentyl polyols, e.g., neopentyl glycol, trimethylol ethane, 2-methyl-2-propyl- 1,3 -propanediol, trimethylol propane, pentaerythritol and dipentaerythritol) with mono carboxylic acids containing at least about 4 carbon atoms, preferably branched C to C30 acids including caprylic acid, capric acid, lauric acid, myristic acid, palmitic acid, stearic acid, arachic acid, and behenic acid, or the corresponding branched chain fatty acids or unsaturated fatty acids such as oleic acid, or mixtures of any of these materials.

[0007] Other ester base oils useful in this disclosure include adipate esters. The dialkyl adipate ester is derived from adipic acid and a branched alkyl alcohol. [0008] Mixtures of branched polyol ester base stocks with other lubricating oil base stocks (e.g., Groups I, II, III, IV and V base stocks) may be useful in the lubricating oil formulations of this disclosure.

[0009] The branched polyol ester can be present in an amount of from about 1 to about 50 weight percent, or from about 5 to about 45 weight percent, or from about 10 to about 40 weight percent, or from about 15 to about 35 weight percent, or from about 20 to about 30 weight percent, based on the total weight of the formulated oil.

[0010] Engine oil formulations containing renewable esters are included in this disclosure. For such formulations, the renewable content of the ester is typically greater than about 70 weight percent, preferably more than about 80 weight percent and most preferably more than about 90 weight percent.

[0011] Other useful fluids of lubricating viscosity include non-conventional or unconventional base stocks that have been processed, preferably catalytically, or synthesized to provide high performance lubrication characteristics.

[0012] Non-conventional or unconventional base stocks/base oils include one or more of a mixture of base stock(s) derived from one or more Gas-to-Liquids (GTL) materials, as well as isomerate/isodewaxate base stock(s) derived from natural wax or waxy feeds, mineral and or non mineral oil waxy feed stocks such as slack waxes, natural waxes, and waxy stocks such as gas oils, waxy fuels hydrocracker bottoms, waxy raffinate, hydrocrackate, thermal crackates, or other mineral, mineral oil, or even non-petroleum oil derived waxy materials such as waxy materials received from coal liquefaction or shale oil, and mixtures of such base stocks.

[0013] GTL materials are materials that are derived via one or more synthesis, combination, transformation, rearrangement, and/or degradation deconstructive processes from gaseous carbon- containing compounds, hydrogen-containing compounds and/or elements as feed stocks such as hydrogen, carbon dioxide, carbon monoxide, water, methane, ethane, ethylene, acetylene, propane, propylene, propyne, butane, butylenes, and butynes. GTL base stocks and/or base oils are GTL materials of lubricating viscosity that are generally derived from hydrocarbons; for example, waxy synthesized hydrocarbons, that are themselves derived from simpler gaseous carbon-containing compounds, hydrogen-containing compounds and/or elements as feed stocks. GTL base stock(s) and/or base oil(s) include oils boiling in the lube oil boiling range (1) separated/fractionated from synthesized GTL materials such as, for example, by distillation and subsequently subjected to a final wax processing step which involves either or both of a catalytic dewaxing process, or a solvent dewaxing process, to produce lube oils of reduced/low pour point; (2) synthesized wax isomerates, comprising, for example, hydrodewaxed or hydroisomerized cat and/or solvent dewaxed synthesized wax or waxy hydrocarbons; (3) hydrodewaxed or hydroisomerized cat and/or solvent dewaxed Fischer-Tropsch (F-T) material (i.e., hydrocarbons, waxy hydrocarbons, waxes and possible analogous oxygenates); preferably hydrodewaxed or hydroisomerized/followed by cat and/or solvent dewaxing dewaxed F-T waxy hydrocarbons, or hydrodewaxed or hydroisomerized/followed by cat (or solvent) dewaxing dewaxed, F-T waxes, or mixtures thereof.

[0014] GTL base stock(s) and/or base oil(s) derived from GTL materials, especially, hydrodewaxed or hydroisomerized/followed by cat and/or solvent dewaxed wax or waxy feed, preferably F-T material derived base stock(s) and/or base oil(s), are characterized typically as having kinematic viscosities at 100°C of from about 2 mm 2 /s to about 50 mm 2 /s (ASTM D445). They are further characterized typically as having pour points of -5°C to about -40°C or lower (ASTM D97). They are also characterized typically as having viscosity indices of about 80 to about 140 or greater (ASTM D2270).

[0015] In addition, the GTL base stock(s) and/or base oil(s) are typically highly paraffinic (>90% saturates), and may contain mixtures of monocycloparaffins and multicycloparaffins in combination with non-cyclic isoparaffins. The ratio of the naphthenic (i.e., cycloparaffin) content in such combinations varies with the catalyst and temperature used. Further, GTL base stock(s) and/or base oil(s) typically have very low sulfur and nitrogen content, generally containing less than about 10 ppm, and more typically less than about 5 ppm of each of these elements. The sulfur and nitrogen content of GTL base stock(s) and/or base oil(s) obtained from F-T material, especially F-T wax, is essentially nil. In addition, the absence of phosphorus and aromatics make this materially especially suitable for the formulation of low SAP products.

[0016] The term GTL base stock and/or base oil and/or wax isomerate base stock and/or base oil is to be understood as embracing individual fractions of such materials of wide viscosity range as recovered in the production process, mixtures of two or more of such fractions, as well as mixtures of one or two or more low viscosity fractions with one, two or more higher viscosity fractions to produce a blend wherein the blend exhibits a target kinematic viscosity.

[0017] The GTL material, from which the GTL base stock(s) and/or base oil(s) is/are derived is preferably an F-T material (i.e., hydrocarbons, waxy hydrocarbons, wax).

[0018] Base oils for use in the formulated lubricating oils useful in the present disclosure are any of the variety of oils corresponding to API Group I, Group II, Group III, Group IV, and Group V oils and mixtures thereof, preferably API Group II, Group III, Group IV, and Group V oils and mixtures thereof, more preferably the Group III to Group V base oils due to their exceptional volatility, stability, viscometric and cleanliness features. Minor quantities of Group I stock, such as the amount used to dilute additives for blending into formulated lube oil products, can be tolerated but should be kept to a minimum, i.e. amounts only associated with their use as diluent/carrier oil for additives used on an“as-received” basis. Even in regard to the Group II stocks, it is preferred that the Group II stock be in the higher quality range associated with that stock, i.e. a Group II stock having a viscosity index in the range 100 < VI < 120. Groups II and III base stocks can be included in the lubricating oil formulations of this disclosure, but preferably only those with high quality, e.g., those having a VI from 100 to 120. Group IV and V base stocks, preferably those of high quality, are desirably included into the lubricating oil formulations of this disclosure.

[0019] The base oil constitutes the major component of the lubricating oil compositions of the present disclosure and typically is present in an amount ranging from about 5 to about 99 weight percent, or about 7 to about 95 weight percent, or about 10 to about 90 weight percent, or about 20 to about 80 weight percent, preferably from about 70 to about 95 weight percent, and more preferably from about 85 to about 95 weight percent, based on the total weight of the composition. The base oil may be selected from any of the synthetic or natural oils typically used as crankcase lubricating oils for spark-ignited and compression-ignited engines. The base oil conveniently has a kinematic viscosity, according to ASTM standards, of about 2.5 cSt to about 12 cSt (or mm 2 /s) at 100°C and preferably of about 2.5 cSt to about 9 cSt (or mm 2 /s) at 100° C. Mixtures of synthetic and natural base oils may be used if desired. Bi-modal mixtures of Group I, II, III, IV, and/or V base stocks may be used if desired. A second base stock or co-base stock may be also optionally incorporated into the lubricating oil compositions of this disclosure in an amount ranging from about 5 to about 80 weight percent, or about 10 to about 60 weight percent, or about 15 to about 50 weight percent, or about 20 to about 40 weight percent, or from about 25 to about 35 weight percent.

Other Lubricating Oil Additives of the Lubricating Oil Compositions of This Disclosure

[0002] The lubricating oil compositions (preferably lubricating oil formulations) of this disclosure may additionally contain one or more of the commonly used other lubricating oil performance additives including but not limited to dispersants, detergents, viscosity modifiers, antiwear additives, corrosion inhibitors, rust inhibitors, metal deactivators, extreme pressure additives, anti-seizure agents, wax modifiers, fluid-loss additives, seal compatibility agents, lubricity agents, anti-staining agents, chromophoric agents, defoamants, demulsifiers, densifiers, wetting agents, gelling agents, tackiness agents, colorants, and others. Lor a review of many commonly used additives and the quantities used, see: (i) Klamann in Lubricants and Related Products, Verlag Chemie, Deerfield Beach, LL; ISBN 0-89573-177-0; (ii)“Lubricant Additives,” M. W. Ranney, published by Noyes Data Corporation of Parkridge, NJ (1973); (iii)“Synthetics, Mineral Oils, and Bio-Based Lubricants,” Edited by L. R. Rudnick, CRC Taylor and Francis, 2006, ISBN 1-57444-723-8; (iv)“Lubrication Fundamentals”, J.G. Wills, Marcel Dekker Inc., (New York, 1980); (v) Synthetic Lubricants and High-Performance Functional Fluids, 2nd Ed., Rudnick and Shubkin, Marcel Dekker Inc., (New York, 1999); and (vi)“Polyalphaolefins,” L. R. Rudnick, Chemical Industries (Boca Raton, FL, United States) (2006), 111 (Synthetics, Mineral Oils, and Bio-Based Lubricants), 3-36. Reference is also made to: (a) U.S. Patent No. 7,704,930 B2; (b) U.S. Patent No. 9,458,403 B2, Column 18, line 46 to Colum 39, line 68; (c) U.S. Patent No. 9,422,497 B2, Column 34, line 4 to Column 40, line 55; and (d) U.S. Patent No. 8,048,833 B2, Column 17, line 48 to Colum 27, line 12, the disclosures of which are incorporated herein in its entirety. These additives are commonly delivered with varying amounts of diluent oil that may range from 5 wt% to 50 wt% based on the total weight of the additive package before incorporation into the formulated oil.

[0003] Further details of the other lubricating oil additives useful in the lubricating oil compositions of this disclosure are as follows:

Friction Modifiers

[0020] A friction modifier is any material or materials that can alter the coefficient of friction of a surface lubricated by any lubricant or fluid containing such material(s). Friction modifiers, also known as friction reducers, or lubricity agents or oiliness agents, and other such agents that change the ability of base oils, formulated lubricant compositions, or functional fluids, to modify the coefficient of friction of a lubricated surface may be effectively used in combination with the base oils or lubricant compositions of the present disclosure if desired. Friction modifiers that lower the coefficient of friction are particularly advantageous in combination with the base oils and lube compositions of this disclosure.

[0021] Illustrative friction modifiers may include, for example, inorganic compounds or materials, or mixtures thereof. Illustrative inorganic friction modifiers useful in the lubricating engine oil formulations of this disclosure include, for example, molybdenum amine, molybdenum diamine, an organotungstenate, a molybdenum dithiocarbamate, molybdenum dithiophosphates, molybdenum amine complexes, molybdenum carboxylates, and the like, and mixtures thereof. Similar tungsten based compounds may be preferable.

[0022] Other illustrative friction modifiers useful in the lubricating engine oil formulations of this disclosure include, for example, alkoxylated fatty acid esters, alkanolamides, polyol fatty acid esters, borated glycerol fatty acid esters, fatty alcohol ethers, and mixtures thereof.

[0023] Illustrative alkoxylated fatty acid esters include, for example, polyoxyethylene stearate, fatty acid polyglycol ester, and the like. These can include polyoxypropylene stearate, polyoxybutylene stearate, polyoxyethylene isosterate, polyoxypropylene isostearate, polyoxyethylene palmitate, and the like.

[0024] Illustrative aikanolamides include, for example, lauric acid diethylalkanolamide, palmic acid diethylalkanolamide, and the like. These can include oleic acid diethyalkanolamide, stearic acid diethylalkanolamide, oleic acid diethylalkanolamide, polyethoxylated hydrocarbylamides, polypropoxylated hydrocarbylamides, and the like.

[0025] Illustrative polyol fatty acid esters include, for example, glycerol mono-oleate, saturated mono-, di-, and tri-glyceride esters, glycerol mono-stearate, and the like. These can include polyol esters, hydroxyl-containing polyol esters, and the like.

[0026] Illustrative borated glycerol fatty acid esters include, for example, borated glycerol mono-oleate, borated saturated mono-, di-, and tri-glyceride esters, borated glycerol mono-sterate, and the like. In addition to glycerol polyols, these can include trimethylolpropane, pentaerythritol, sorbitan, and the like. These esters can be polyol monocarboxylate esters, polyol dicarboxylate esters, and on occasion polyoltricarboxylate esters. Preferred can be the glycerol mono-oleates, glycerol dioleates, glycerol trioleates, glycerol monostearates, glycerol distearates, and glycerol tristearates and the corresponding glycerol monopalmitates, glycerol dipalmitates, and glycerol tripalmitates, and the respective isostearates, linoleates, and the like. On occasion the glycerol esters can be preferred as well as mixtures containing any of these. Ethoxylated, propoxylated, butoxylated fatty acid esters of polyols, especially using glycerol as underlying polyol can be preferred.

[0027] Illustrative fatty alcohol ethers include, for example, stearyl ether, myristyl ether, and the like. Alcohols, including those that have carbon numbers from C3 to C50, can be ethoxylated, propoxylated, or butoxylated to form the corresponding fatty alkyl ethers. The underlying alcohol portion can preferably be stearyl, myristyl, Cn - C13 hydrocarbon, oleyl, isosteryl, and the like.

[0028] Useful concentrations of friction modifiers may range from 0.01 weight percent to 5 weight percent, or about 0.1 weight percent to about 2.5 weight percent, or about 0.1 weight percent to about 1.5 weight percent, or about 0.1 weight percent to about 1 weight percent. Concentrations of molybdenum-containing materials are often described in terms of Mo metal concentration. Advantageous concentrations of Mo may range from 25 ppm to 700 ppm or more, and often with a preferred range of 50-200 ppm. Friction modifiers of all types may be used alone or in mixtures with the materials of this disclosure. Often mixtures of two or more friction modifiers, or mixtures of friction modifier(s) with alternate surface active material(s), are also desirable.

Antiwear Additives [0029] A metal alkylthiophosphate and more particularly a metal dialkyl dithio phosphate in which the metal constituent is zinc, or zinc dialkyl dithio phosphate (ZDDP) can be a useful component of the lubricating oils of this disclosure. ZDDP can be derived from primary alcohols, secondary alcohols or mixtures thereof. ZDDP compounds generally are of the formula

Zn[SP(S)(OR 1 )(OR 2 )] 2

where R 1 and R 2 are Ci-Cis alkyl groups, preferably C2-C12 alkyl groups. These alkyl groups may be straight chain or branched. Alcohols used in the ZDDP can be 2-propanol, butanol, secondary butanol, pentanols, hexanols such as 4-methyl-2-pentanol, n-hexanol, n-octanol, 2-ethyl hexanol, alkylated phenols, and the like. Mixtures of secondary alcohols or of primary and secondary alcohol can be preferred. Alkyl aryl groups may also be used.

[0030] Preferable zinc dithiophosphates which are commercially available include secondary zinc dithiophosphates such as those available from for example, The Lubrizol Corporation under the trade designations“LZ 677A”,“LZ 1095” and“LZ 1371”, from for example Chevron Oronite under the trade designation“OLOA 262” and from for example Afton Chemical under the trade designation“HITEC 7169”.

[0031] The ZDDP is typically used in amounts of from about 0.4 weight percent to about 1.2 weight percent, preferably from about 0.5 weight percent to about 1.0 weight percent, and more preferably from about 0.6 weight percent to about 0.8 weight percent, based on the total weight of the lubricating oil, although more or less can often be used advantageously. Preferably, the ZDDP is a secondary ZDDP and present in an amount of from about 0.6 to 1.0 weight percent of the total weight of the lubricating oil.

[0032] Low phosphorus engine oil formulations are included in this disclosure. For such formulations, the phosphorus content is typically less than about 0.12 weight percent preferably less than about 0.10 weight percent and most preferably less than about 0.085 weight percent. Dispersants

[0033] During engine operation, oil-insoluble oxidation byproducts are produced. Dispersants help keep these byproducts in solution, thus diminishing their deposition on metal surfaces. Dispersants used in the formulation of the lubricating oil may be ashless or ash-forming in nature. Preferably, the dispersant is ashless. So called ashless dispersants are organic materials that form substantially no ash upon combustion. For example, non-metal-containing or borated metal-free dispersants are considered ashless. In contrast, metal-containing detergents discussed herein form ash upon combustion. [0034] Suitable dispersants typically contain a polar group attached to a relatively high molecular weight hydrocarbon chain. The polar group typically contains at least one element of nitrogen, oxygen, or phosphorus. Typical hydrocarbon chains contain 50 to 400 carbon atoms.

[0035] A particularly useful class of dispersants are the (poly)alkenylsuccinic derivatives, typically produced by the reaction of a long chain hydrocarbyl substituted succinic compound, usually a hydrocarbyl substituted succinic anhydride, with a polyhydroxy or polyamino compound. The long chain hydrocarbyl group constituting the oleophilic portion of the molecule which confers solubility in the oil, is normally a polyisobutylene group. Many examples of this type of dispersant are well known commercially and in the literature. Exemplary U.S. patents describing such dispersants are U.S. Patent Nos. 3,172,892; 3,215,707; 3,219,666; 3,316,177; 3,341,542;

3,444,170; 3,454,607; 3,541,012; 3,630,904; 3,632,511; 3,787,374 and 4,234,435. Other types of dispersant are described in U.S. Patent Nos. 3,036,003; 3,200,107; 3,254,025; 3,275,554;

3,438,757; 3,454,555; 3,565,804; 3,413,347; 3,697,574; 3,725,277; 3,725,480; 3,726,882;

4,454,059; 3,329,658; 3,449,250; 3,519,565; 3,666,730; 3,687,849; 3,702,300; 4,100,082;

5,705,458. A further description of dispersants may be found, for example, in European Patent Application No. 471 071, to which reference is made for this purpose.

[0036] Hydrocarbyl-substituted succinic acid and hydrocarbyl-substituted succinic anhydride derivatives are useful dispersants. In particular, succinimide, succinate esters, or succinate ester amides prepared by the reaction of a hydrocarbon-substituted succinic acid compound preferably having at least 50 carbon atoms in the hydrocarbon substituent, with at least one equivalent of an alkylene amine are particularly useful.

[0037] Succinimides are formed by the condensation reaction between hydrocarbyl substituted succinic anhydrides and amines. Molar ratios can vary depending on the polyamine. For example, the molar ratio of hydrocarbyl substituted succinic anhydride to TEPA can vary from about 1 : 1 to about 5: 1. Representative examples are shown in U.S. Patent Nos. 3,087,936; 3,172,892; 3,219,666; 3,272,746; 3,322,670; and 3,652,616, 3,948,800; and Canada Patent No. 1,094,044.

[0038] Succinate esters are formed by the condensation reaction between hydrocarbyl substituted succinic anhydrides and alcohols or polyols. Molar ratios can vary depending on the alcohol or polyol used. For example, the condensation product of a hydrocarbyl substituted succinic anhydride and pentaerythritol is a useful dispersant.

[0039] Succinate ester amides are formed by condensation reaction between hydrocarbyl substituted succinic anhydrides and alkanol amines. For example, suitable alkanol amines include ethoxylated poly alky lpoly amines, propoxylated poly alky lpoly amines and poly alkenylpoly amines such as polyethylene poly amines. One example is propoxylated hexamethylenediamine. Representative examples are shown in U.S. Patent No. 4,426,305.

[0040] The molecular weight of the hydrocarbyl substituted succinic anhydrides used in the preceding paragraphs will typically range between 800 and 2,500 or more. The above products can be post-reacted with various reagents such as sulfur, oxygen, formaldehyde, carboxylic acids such as oleic acid. The above products can also be post reacted with boron compounds such as boric acid, borate esters or highly borated dispersants, to form borated dispersants generally having from about 0.1 to about 5 moles of boron per mole of dispersant reaction product.

[0041] Mannich base dispersants are made from the reaction of alkylphenols, formaldehyde, and amines. See U.S. Patent No. 4,767,551, which is incorporated herein by reference. Process aids and catalysts, such as oleic acid and sulfonic acids, can also be part of the reaction mixture. Molecular weights of the alkylphenols range from 800 to 2,500. Representative examples are shown in U.S. Patent Nos. 3,697,574; 3,703,536; 3,704,308; 3,751,365; 3,756,953; 3,798,165; and 3,803,039.

[0042] Typical high molecular weight aliphatic acid modified Mannich condensation products useful in this disclosure can be prepared from high molecular weight alkyl-substituted hydroxyaromatics or HNR2 group-containing reactants.

[0043] Hydrocarbyl substituted amine ashless dispersant additives are well known to one skilled in the art; see, for example, U.S. Patent Nos. 3,275,554; 3,438,757; 3,565,804; 3,755,433, 3,822,209, and 5,084,197.

[0044] Preferred dispersants include borated and non-borated succinimides, including those derivatives from mono-succinimides, bis-succinimides, and/or mixtures of mono- and bis- succinimides, wherein the hydrocarbyl succinimide is derived from a hydrocarbylene group such as polyisobutylene having a Mn of from about 500 to about 5000, or from about 1000 to about 3000, or about 1000 to about 2000, or a mixture of such hydrocarbylene groups, often with high terminal vinylic groups. Other preferred dispersants include succinic acid-esters and amides, alkylphenol-polyamine-coupled Mannich adducts, their capped derivatives, and other related components.

[0045] Polymethacrylate or polyacrylate derivatives are another class of dispersants. These dispersants are typically prepared by reacting a nitrogen containing monomer and a methacrylic or acrylic acid esters containing 5 -25 carbon atoms in the ester group. Representative examples are shown in U.S. Patent Nos. 2, 100, 993, and 6,323,164. Polymethacrylate and polyacrylate dispersants are normally used as multifunctional viscosity modifiers. The lower molecular weight versions can be used as lubricant dispersants or fuel detergents. [0046] Illustrative preferred dispersants useful in this disclosure include those derived from polyalkenyl-substituted mono- or dicarboxylic acid, anhydride or ester, which dispersant has a polyalkenyl moiety with a number average molecular weight of at least 900 and from greater than 1.3 to 1.7, preferably from greater than 1.3 to 1.6, most preferably from greater than 1.3 to 1.5, functional groups (mono- or dicarboxylic acid producing moieties) per polyalkenyl moiety (a medium functionality dispersant). Functionality (F) can be determined according to the following formula:

F = (SAP x M n )/((112,200 x A.I.)-(SAP x 98))

wherein SAP is the saponification number (i.e., the number of milligrams of KOH consumed in the complete neutralization of the acid groups in one gram of the succinic-containing reaction product, as determined according to ASTM D94); M n is the number average molecular weight of the starting olefin polymer; and A.I. is the percent active ingredient of the succinic-containing reaction product (the remainder being unreacted olefin polymer, succinic anhydride and diluent).

[0047] The polyalkenyl moiety of the dispersant may have a number average molecular weight of at least 900, suitably at least 1500, preferably between 1800 and 3000, such as between 2000 and 2800, more preferably from about 2100 to 2500, and most preferably from about 2200 to about 2400. The molecular weight of a dispersant is generally expressed in terms of the molecular weight of the polyalkenyl moiety. This is because the precise molecular weight range of the dispersant depends on numerous parameters including the type of polymer used to derive the dispersant, the number of functional groups, and the type of nucleophilic group employed.

[0048] Polymer molecular weight, specifically M n , can be determined by various known techniques. One convenient method is gel permeation chromatography (GPC), which additionally provides molecular weight distribution information (see W. W. Yau, J. J. Kirkland and D. D. Bly, "Modern Size Exclusion Liquid Chromatography", John Wiley and Sons, New York, 1979). Another useful method for determining molecular weight, particularly for lower molecular weight polymers, is vapor pressure osmometry (e.g., ASTM D3592).

[0049] The polyalkenyl moiety in a dispersant preferably has a narrow molecular weight distribution (MWD), also referred to as polydispersity, as determined by the ratio of weight average molecular weight (M w ) to number average molecular weight (M n ). Polymers having a M w /M n of less than 2.2, preferably less than 2.0, are most desirable. Suitable polymers have a polydispersity of from about 1.5 to 2.1, preferably from about 1.6 to about 1.8.

[0050] Suitable polyalkenes employed in the formation of the dispersants include homopolymers, interpolymers or lower molecular weight hydrocarbons. One family of such polymers comprise polymers of ethylene and/or at least one C3 to C2 alpha-olefin having the formula H2C = CHR 1 wherein R 1 is a straight or branched chain alkyl radical comprising 1 to 26 carbon atoms and wherein the polymer contains carbon-to-carbon unsaturation, and a high degree of terminal ethenylidene unsaturation. Preferably, such polymers comprise interpolymers of ethylene and at least one alpha-olefin of the above formula, wherein R 1 is alkyl of from 1 to 18 carbon atoms, and more preferably is alkyl of from 1 to 8 carbon atoms, and more preferably still of from 1 to 2 carbon atoms.

[0051] Another useful class of polymers is polymers prepared by cationic polymerization of monomers such as isobutene and styrene. Common polymers from this class include polyisobutenes obtained by polymerization of a C4 refinery stream having a butene content of 35 to 75% by wt., and an isobutene content of 30 to 60% by wt. A preferred source of monomer for making poly-n-butenes is petroleum feedstreams such as Raffinate II. These feedstocks are disclosed in the art such as in U.S. Pat. No. 4,952,739. A preferred embodiment utilizes polyisobutylene prepared from a pure isobutylene stream or a Raffinate I stream to prepare reactive isobutylene polymers with terminal vinylidene olefins. Poly isobutene polymers that may be employed are generally based on a polymer chain of from 1500 to 3000.

[0052] The dispersant(s) are preferably non-polymeric (e.g., mono- or bis-succinimides). Such dispersants can be prepared by conventional processes such as disclosed in U.S. Patent Application Publication No. 2008/0020950, the disclosure of which is incorporated herein by reference.

[0053] The dispersant(s) can be borated by conventional means, as generally disclosed in U.S. Patent Nos. 3,087,936, 3,254,025 and 5,430,105.

[0054] Such dispersants may be used in an amount of about 0.01 to 20 weight percent or 0.01 to 10 weight percent, preferably about 0.5 to 8 weight percent, or more preferably 0.5 to 4 weight percent. Or such dispersants may be used in an amount of about 2 to 12 weight percent, preferably about 4 to 10 weight percent, or more preferably 6 to 9 weight percent. On an active ingredient basis, such additives may be used in an amount of about 0.06 to 14 weight percent, preferably about 0.3 to 6 weight percent. The hydrocarbon portion of the dispersant atoms can range from C60 to C1000, or from C70 to C300, or from C70 to C200. These dispersants may contain both neutral and basic nitrogen, and mixtures of both. Dispersants can be end-capped by borates and/or cyclic carbonates. Nitrogen content in the finished oil can vary from about 200 ppm by weight to about 2000 ppm by weight, preferably from about 200 ppm by weight to about 1200 ppm by weight. Basic nitrogen can vary from about 100 ppm by weight to about 1000 ppm by weight, preferably from about 100 ppm by weight to about 600 ppm by weight.

[0055] As used herein, the dispersant concentrations are given on an“as delivered” basis. Typically, the active dispersant is delivered with a process oil. The“as delivered” dispersant typically contains from about 20 weight percent to about 80 weight percent, or from about 40 weight percent to about 60 weight percent, of active dispersant in the“as delivered” dispersant product.

Detergents

[0056] Illustrative detergents useful in this disclosure include, for example, alkali metal detergents, alkaline earth metal detergents, or mixtures of one or more alkali metal detergents and one or more alkaline earth metal detergents. A typical detergent is an anionic material that contains a long chain hydrophobic portion of the molecule and a smaller anionic or oleophobic hydrophilic portion of the molecule. The anionic portion of the detergent is typically derived from an organic acid such as a sulfur-containing acid, carboxylic acid (e.g., salicylic acid), phosphorus-containing acid, phenol, or mixtures thereof. The counterion is typically an alkaline earth or alkali metal. The detergent can be overbased as described herein.

[0057] The detergent is preferably a metal salt of an organic or inorganic acid, a metal salt of a phenol, or mixtures thereof. The metal is preferably selected from an alkali metal, an alkaline earth metal, and mixtures thereof. The organic or inorganic acid is selected from an aliphatic organic or inorganic acid, a cycloaliphatic organic or inorganic acid, an aromatic organic or inorganic acid, and mixtures thereof.

[0058] The metal is preferably selected from an alkali metal, an alkaline earth metal, and mixtures thereof. More preferably, the metal is selected from calcium (Ca), magnesium (Mg), and mixtures thereof.

[0059] The organic acid or inorganic acid is preferably selected from a sulfur-containing acid, a carboxylic acid, a phosphorus-containing acid, and mixtures thereof.

[0060] Preferably, the metal salt of an organic or inorganic acid or the metal salt of a phenol comprises calcium phenate, calcium sulfonate, calcium salicylate, magnesium phenate, magnesium sulfonate, magnesium salicylate, an overbased detergent, and mixtures thereof.

[0061] Salts that contain a substantially stochiometric amount of the metal are described as neutral salts and have a total base number (TBN, as measured by ASTM D2896) of from 0 to 80. Many compositions are overbased, containing large amounts of a metal base that is achieved by reacting an excess of a metal compound (a metal hydroxide or oxide, for example) with an acidic gas (such as carbon dioxide). Useful detergents can be neutral, mildly overbased, or highly overbased. These detergents can be used in mixtures of neutral, overbased, highly overbased calcium salicylate, sulfonates, phenates and/or magnesium salicylate, sulfonates, phenates. The TBN ranges can vary from low, medium to high TBN products, including as low as 0 to as high as 600. Preferably the TBN delivered by the detergent is between 1 and 20. More preferably between 1 and 12. Mixtures of low, medium, high TBN can be used, along with mixtures of calcium and magnesium metal based detergents, and including sulfonates, phenates, salicylates, and carboxylates. A detergent mixture with a metal ratio of 1, in conjunction of a detergent with a metal ratio of 2, and as high as a detergent with a metal ratio of 5, can be used. Borated detergents can also be used.

[0062] Alkaline earth phenates are another useful class of detergent. These detergents can be made by reacting alkaline earth metal hydroxide or oxide (CaO, Ca(OH)2, BaO, Ba(OH)2, MgO, Mg(OH)2, for example) with an alkyl phenol or sulfurized alkylphenol. Useful alkyl groups include straight chain or branched C1-C30 alkyl groups, preferably, C4-C20 or mixtures thereof. Examples of suitable phenols include isobutylphenol, 2-ethylhexylphenol, nonylphenol, dodecyl phenol, and the like. It should be noted that starting alkylphenols may contain more than one alkyl substituent that are each independently straight chain or branched and can be used from 0.5 to 6 weight percent. When a non-sulfurized alkylphenol is used, the sulfurized product may be obtained by methods well known in the art. These methods include heating a mixture of alkylphenol and sulfurizing agent (including elemental sulfur, sulfur halides such as sulfur dichloride, and the like) and then reacting the sulfurized phenol with an alkaline earth metal base.

[0063] In accordance with this disclosure, metal salts of carboxylic acids are preferred detergents. These carboxylic acid detergents may be prepared by reacting a basic metal compound with at least one carboxylic acid and removing free water from the reaction product. These compounds may be overbased to produce the desired TBN level. Detergents made from salicylic acid are one preferred class of detergents derived from carboxylic acids. Useful salicylates include long chain alkyl salicylates. One useful family of compositions is of the formula

where R is an alkyl group having 1 to about 30 carbon atoms, n is an integer from 1 to 4, and M is an alkaline earth metal. Preferred R groups are alkyl chains of at least Cn, preferably C13 or greater. R may be optionally substituted with substituents that do not interfere with the detergent’ s function. M is preferably, calcium, magnesium, barium, or mixtures thereof. More preferably, M is calcium.

[0064] Hydrocarbyl-substituted salicylic acids may be prepared from phenols by the Kolbe reaction (see U.S. Patent No. 3,595,791). The metal salts of the hydrocarbyl-substituted salicylic acids may be prepared by double decomposition of a metal salt in a polar solvent such as water or alcohol. [0065] Alkaline earth metal phosphates are also used as detergents and are known in the art.

[0066] Detergents may be simple detergents or what is known as hybrid or complex detergents. The latter detergents can provide the properties of two detergents without the need to blend separate materials. See U.S. Patent No. 6,034,039.

[0067] Preferred detergents include calcium sulfonates, magnesium sulfonates, calcium salicylates, magnesium salicylates, calcium phenates, magnesium phenates, and other related components (including borated detergents), and mixtures thereof. Preferred mixtures of detergents include magnesium sulfonate and calcium salicylate, magnesium sulfonate and calcium sulfonate, magnesium sulfonate and calcium phenate, calcium phenate and calcium salicylate, calcium phenate and calcium sulfonate, calcium phenate and magnesium salicylate, calcium phenate and magnesium phenate. Overbased detergents are also preferred.

[0068] The detergent concentration in the lubricating oils of this disclosure can range from about 0.5 to about 6.0 weight percent, preferably about 0.6 to 5.0 weight percent, and more preferably from about 0.8 weight percent to about 4.0 weight percent, based on the total weight of the lubricating oil.

[0069] As used herein, the detergent concentrations are given on an“as delivered” basis. Typically, the active detergent is delivered with a process oil. The“as delivered” detergent typically contains from about 20 weight percent to about 100 weight percent, or from about 40 weight percent to about 60 weight percent, of active detergent in the“as delivered” detergent product.

Antioxidants

[0070] Antioxidants retard the oxidative degradation of base oils during service. Such degradation may result in deposits on metal surfaces, the presence of sludge, or a viscosity increase in the lubricant. One skilled in the art knows a wide variety of oxidation inhibitors that are useful in lubricating oil compositions. See, Klamann in Lubricants and Related Products, op cite, and U.S. Patent Nos. 4,798,684 and 5,084,197, for example.

[0071] Useful antioxidants include hindered phenols. These phenolic antioxidants may be ashless (metal-free) phenolic compounds or neutral or basic metal salts of certain phenolic compounds. Typical phenolic antioxidant compounds are the hindered phenolics which are the ones which contain a sterically hindered hydroxyl group, and these include those derivatives of dihydroxy aryl compounds in which the hydroxyl groups are in the o- or p-position to each other. Typical phenolic antioxidants include the hindered phenols substituted with C 6 + alkyl groups and the alkylene coupled derivatives of these hindered phenols. Examples of phenolic materials of this type 2-t-butyl-4-heptyl phenol; 2-t-butyl-4-octyl phenol; 2-t-butyl-4-dodecyl phenol; 2,6-di-t- butyl-4-heptyl phenol; 2,6-di-t-butyl-4-dodecyl phenol; 2-methyl-6-t-butyl-4-heptyl phenol; and 2-methyl-6-t-butyl-4-dodecyl phenol. Other useful hindered mono-phenolic antioxidants may include for example hindered 2,6-di-alkyl-phenolic proprionic ester derivatives. Bis-phenolic antioxidants may also be advantageously used in combination with the instant disclosure. Examples of ortho-coupled phenols include: 2,2’-bis(4-heptyl-6-t-butyl-phenol); 2,2’-bis(4-octyl- 6-t-butyl-phenol); and 2,2’-bis(4-dodecyl-6-t-butyl-phenol). Para-coupled bisphenols include for example 4,4’-bis(2,6-di-t-butyl phenol) and 4,4’-methylene-bis(2,6-di-t-butyl phenol).

[0072] Effective amounts of one or more catalytic antioxidants may also be used. The catalytic antioxidants comprise an effective amount of a) one or more oil soluble polymetal organic compounds; and, effective amounts of b) one or more substituted N,N'-diaryl-o-phenylenediamine compounds or c) one or more hindered phenol compounds; or a combination of both b) and c). Catalytic antioxidants are more fully described in U.S. Patent No. 8, 048,833, herein incorporated by reference in its entirety.

[0073] Non-phenolic oxidation inhibitors which may be used include aromatic amine antioxidants and these may be used either as such or in combination with phenolics. Typical examples of non-phenolic antioxidants include: alkylated and non-alkylated aromatic amines such as aromatic monoamines of the formula R 8 R 9 R 10 N where R 8 is an aliphatic, aromatic or substituted aromatic group, R 9 is an aromatic or a substituted aromatic group, and R 10 is H, alkyl, aryl or R n S(0)xR 12 where R 11 is an alkylene, alkenylene, or aralkylene group, R 12 is a higher alkyl group, or an alkenyl, aryl, or alkaryl group, and x is 0, 1 or 2. The aliphatic group R 8 may contain from 1 to about 20 carbon atoms, and preferably contains from about 6 to 12 carbon atoms. The aliphatic group is a saturated aliphatic group. Preferably, both R 8 and R 9 are aromatic or substituted aromatic groups, and the aromatic group may be a fused ring aromatic group such as naphthyl. Aromatic groups R 8 and R 9 may be joined together with other groups such as S.

[0074] Typical aromatic amines antioxidants have alkyl substituent groups of at least about 6 carbon atoms. Examples of aliphatic groups include hexyl, heptyl, octyl, nonyl, and decyl. Generally, the aliphatic groups will not contain more than about 14 carbon atoms. The general types of amine antioxidants useful in the present compositions include diphenylamines, phenyl naphthylamines, phenothiazines, imidodibenzyls and diphenyl phenylene diamines. Mixtures of two or more aromatic amines are also useful. Polymeric amine antioxidants can also be used. Particular examples of aromatic amine antioxidants useful in the present disclosure include: p,p’- dioctyldiphenylamine; t-octylphenyl-alpha-naphthylamine; phenyl-alphanaphthylamine; and p-octylphenyl-alpha-naphthylamine. [0075] Sulfurized alkyl phenols and alkali or alkaline earth metal salts thereof also are useful antioxidants.

[0076] Preferred antioxidants include hindered phenols, arylamines. These antioxidants may be used individually by type or in combination with one another. Such additives may be used in an amount of about 0.01 to 5 weight percent, preferably about 0.01 to 1.5 weight percent, more preferably zero to less than 1.5 weight percent, more preferably zero to less than 1 weight percent. Pour Point Depressants (PPDs)

[0077] Conventional pour point depressants (also known as lube oil flow improvers) may be added to the compositions of the present disclosure if desired. These pour point depressant may be added to lubricating compositions of the present disclosure to lower the minimum temperature at which the fluid will flow or can be poured. Examples of suitable pour point depressants include polymethacrylates, polyacrylates, polyarylamides, condensation products of haloparaffin waxes and aromatic compounds, vinyl carboxylate polymers, and terpolymers of dialky lfumarates, vinyl esters of fatty acids and allyl vinyl ethers. U.S. Patent Nos. 1,815,022; 2,015,748; 2,191,498; 2,387,501; 2,655, 479; 2,666,746; 2,721,877; 2,721,878; and 3,250,715 describe useful pour point depressants and/or the preparation thereof. Such additives may be used in an amount of about 0.01 to 5 weight percent, preferably about 0.01 to 1.5 weight percent.

Seal Compatibility Agents

[0078] Seal compatibility agents help to swell elastomeric seals by causing a chemical reaction in the fluid or physical change in the elastomer. Suitable seal compatibility agents for lubricating oils include organic phosphates, aromatic esters, aromatic hydrocarbons, esters (butylbenzyl phthalate, for example), and polybutenyl succinic anhydride. Such additives may be used in an amount of about 0.01 to 3 weight percent, preferably about 0.01 to 2 weight percent.

Antifoam Agents

[0079] Anti-foam agents may advantageously be added to lubricant compositions. These agents retard the formation of stable foams. Silicones and organic polymers are typical anti-foam agents. For example, polysiloxanes, such as silicon oil or polydimethyl siloxane, provide antifoam properties. Anti-foam agents are commercially available and may be used in conventional minor amounts along with other additives such as demulsifiers; usually the amount of these additives combined is less than 1 weight percent and often less than 0.1 weight percent.

Inhibitors and Antirust Additives

[0080] Antirust additives (or corrosion inhibitors) are additives that protect lubricated metal surfaces against chemical attack by water or other contaminants· A wide variety of these are commercially available. [0081] One type of antirust additive is a polar compound that wets the metal surface preferentially, protecting it with a film of oil. Another type of antirust additive absorbs water by incorporating it in a water- in-oil emulsion so that only the oil touches the metal surface. Yet another type of antirust additive chemically adheres to the metal to produce a non-reactive surface. Examples of suitable additives include zinc dithiophosphates, metal phenolates, basic metal sulfonates, fatty acids and amines. Such additives may be used in an amount of about 0.01 to 5 weight percent, preferably about 0.01 to 1.5 weight percent.

[0082] The types and quantities of performance additives used in combination with the instant disclosure in lubricant compositions are not limited by the examples shown herein as illustrations.

[0083] When lubricating oil compositions contain one or more of the additives discussed above, the additive(s) are blended into the composition in an amount sufficient for it to perform its intended function. Typical amounts of such additives useful in the present disclosure are shown in Table 1 below.

[0084] It is noted that many of the additives are shipped from the additive manufacturer as a concentrate, containing one or more additives together, with a certain amount of base oil diluents. Accordingly, the weight amounts in the table below, as well as other amounts mentioned herein, are directed to the amount of active ingredient (that is the non-diluent portion of the ingredient). The weight percent (wt%) indicated below is based on the total weight of the lubricating oil composition.

[0085] When lubricating oil compositions contain one or more of the additives discussed above, the additive(s) are blended into the composition in an amount sufficient for it to perform its intended function. Typical amounts of such additives useful in the present disclosure are shown in Table 1 below.

[0086] It is noted that many of the additives are shipped from the additive manufacturer as a concentrate, containing one or more additives together, with a certain amount of base oil diluents. Accordingly, the weight amounts in the table below, as well as other amounts mentioned herein, are directed to the amount of active ingredient (that is the non-diluent portion of the ingredient). The weight percent (wt%) indicated below is based on the total weight of the lubricating oil composition.

TABLE 1 Typical Amounts of Other Lubricating Oil Components

Approximate Approximate

Compound wt% (Useful) wt% (Preferred)

Antiwear 0.1-2 0.5- 1

Dispersant 0.1-20 0.1-8

Detergent 0.1-20 0.1-8

Antioxidant 0.1-10 0.1-5

Friction Modifier 0.01-5 0.01-1.5

Pour Point Depressant 0.0-5 0.01-1.5

(PPD)

Anti- foam Agent 0.001-3 0.001-0.15

Viscosity Index Improver 0.0-8 0.1-6

(pure polymer basis)

Inhibitor and Antirust 0.01-5 0.01-1.5

[0087] The foregoing additives are all commercially available materials. These additives may be added independently but are usually precombined in packages which can be obtained from suppliers of lubricant oil additives. Additive packages with a variety of ingredients, proportions and characteristics are available and selection of the appropriate package will take the requisite use of the ultimate composition into account.

[0088] The following non-limiting examples are provided to illustrate the disclosure.

EXAMPLES

Test Methods

[0089] In all Examples herein, unless specified otherwise, the following properties are determined pursuant to the following ASTM standards:

[0090] Additional bench testing was conducted for the lubricating oil compositions or formulations of this disclosure. The additional bench testing included the following: thermo oxidation engine oil simulation testing (TEOST 33C-SAE 932837 and SAE 962039), Rotary Pressurized Vessel Oxidation Test (D2272), and Pressurized Differential Scanning Calorimetry. TEOST 33C is conducted at 1 atmosphere of air pressure.

[0091] Oil life was assessed using the CEC L-109 oxidation test and determining time to a 100% viscosity increase. [0092] The CEC L- 109- 16 oxidation bench test is conducted at 150°C to a 100% viscosity increase. The CEC L- 109- 16 oxidation bench test is conducted at 1 atmosphere of air pressure. An organo-iron catalyst is added to the test oil to deliver 100 ppm Fe. Also 7% B100 biodiesel fuel is added prior to initiating the oxidation test to accelerate the oxidative degradation. The present disclosure facilitates running the CEC L-109-16 Bio-Diesel Oxidation Bench test for extended durations (> 310 hours) to document the benefits of this disclosure.

[0093] Deposit resistance formation of the lubricating oils was compared using the thermo oxidation engine oil simulation test (TEOST 33C), ASTM D6335. A good result in the TEOST test is defined as less than 60 mg, or less than 50 mg, or less than 45 mg, or less than 40 mg. Inventive and Comparative Lubricating Oil Compositions

[0094] Table 2 below compares physical properties of squalane to other Group II, Group III, and Group IV base stocks. Squalane has a 115 VI and as a result is an API Group II base stock. Compared to EHC 45 which also has a 115 VI (also an API Group II base stock), squalane has a lower D445 KV 100, and a lower Noack volatility. Compared to Yubase 4 Group III base stock, squalane has a lower D445 KV 100, and a lower Noack volatility. In addition, squalane has improved simulated distillation volatility characteristics compared to EHC 45 or Yubase 4. 13C NMR was also used to characterize the Group II, III, and IV basestocks. The 13C NMR designations are as follows:

[0095] Alpha carbon - methyl end with no branch on the first 4 carbons

[0096] Epsilon carbon- 4 carbons from the end and 3 carbons from a branch

[0097] T/P methyl - methyl end and a methyl in the 2 position

[0098] P-methyl - is a methyl branch anywhere on the chain, except in the 2 position.

[0099] Table 2 - Base Stock Properties

[00100] Table 3 below shows deposit and oxidation results for an engine oil formulated with squalane compared to other Group II, Group III, and Group IV base stocks. For Table 3, all of the examples contained 5.5 wt.% of a styrene-isoprene star polymer viscosity modifier (VM) wherein the Mw of the VM is 990,000 by light scattering and the polydispersity is 1.78. In the TEOST 33C deposit test, which is designed to simulate turbocharger deposits, the engine oil formulated with squalane produced 36 mg of deposits. The results obtained for the same engine oil formulated with PAO 3.4, PAO 3.6, GTL 4, Yubase 4, and EHC 45 were 159 to 39% poorer. This is a very significant benefit in deposit control for squalane. The CEC L-109 oxidation test was used to measure the oxidation stability of squalane versus PAO 4, PAO 3.4, GTL 4, Yubase 4, and EHC 45. The comparative basestocks are Group IV, III, and II hydrocarbon basestocks. Squalane lasted 67 to 39% longer until a viscosity increase of 100% occurred. This is a very significant benefit in oxidation control for squalane. The CEC L-109 viscosity control stability benefit for squalane also produced a benefit in superior IR oxidation control. The engine oil formulated with squalane lasted 44 to 156% longer until the IR oxidation reached 80A/cm. A distinguishing feature of the TEOST 33C deposit test and the CEC LI 09 oxidation test is both operate in a 1 atmosphere air environment. Table 3 also shows Pressurized Differential Scanning Calorimetry (PDSC) Onset Temperature measurements conducted on the same formulated oils. In the PDSC experiments, 500 psig air (oxygen partial pressure = 105 psig) is used with a heating rate of 10°C/minute. In the high pressure PDSC oxidation test, there was no performance benefit for squalane compared to other hydrocarbon basestocks. Likewise in the D2272 RPVOT oxidation test where the test oil is pressurized with 90 psig of oxygen, there was no performance benefit for squalane compared to other hydrocarbon basestocks. For both PDSC oxidation and RPVOT oxidation tests, a higher value indicates better oxidative stability of the lubricating oil composition.

[00101] Table 3 - Formulated Engine Oil Deposit and Oxidation Performance

[00102] Table 4 below shows additional D2272 data using lower levels of additive compared to the formulations presented in Table 3. Similar to the D2272 data presented in Table 3, there was no performance benefit for squalane compared to other hydrocarbon basestocks with low levels of additive in the high pressure D2272 oxidation test.

[00103] Table 4 - High Pressure Oxidation Performance Results

[00104] Another example of the superior deposit control performance of squalane is shown below in Table 5. In this case, squalane is used in an engine oil at 25%. Sequence IIIH (ASTM D8111) testing was conducted on the squalane containing formulation and on a formulation that contained no squalane. Of note is the significant improvement in Land 3 deposit merits for the squalane containing formulation compared to the formulation without squalane (7.5 merits vs. 3.7 merits). Land 3 precision for ASTM reference oils is 1 standard deviation unit = 1.2. The Sequence IIIH engine test operates at ambient pressure.

[00105] Table 5 - Formulated Engine Oil Sequence IIIH Deposit Performance

[00106] For the inventive example 2 of Table 5, the viscosity modifier (VM) used was a combination of a styrene isoprene star polymer (Mw = 990,000 by light scattering, polydispersity = 1.78, styrene content = 26%) at a loading of 3 wt.% and a styrene isoprene block co-polymer (Mw = 106,000 by light scattering, polydispersity = 1.02, styrene content = 35%) at a loading of 6 wt.%. For the comparative example 11 of Table 5, the viscosity modifier (VM) used was a combination of a styrene isoprene star polymer (Mw = 990,000 by light scattering, polydispersity = 1.78, styrene content = 26%) at a loading of 3.25 wt.% and a styrene isoprene block co polymer (Mw = 106,000 by light scattering, polydispersity = 1.02, styrene content = 35%) at a loading of 6.5 wt.%.

[00107] In summary, it has been discovered that by employing squalane in lubricating oil formulations in combination with at least one viscosity modifier, oxidation resistance and deposit resistance are improved significantly in comparison to comparable lubricating oils not including squalane.

[00108] All patents and patent applications, test procedures (such as ASTM methods, UL methods, and the like), and other documents cited herein are fully incorporated by reference to the extent such disclosure is not inconsistent with this disclosure and for all jurisdictions in which such incorporation is permitted.

[00109] When numerical lower limits and numerical upper limits are listed herein, ranges from any lower limit to any upper limit are contemplated. While the illustrative embodiments of the disclosure have been described with particularity, it will be understood that various other modifications will be apparent to and can be readily made by those skilled in the art without departing from the spirit and scope of the disclosure. Accordingly, it is not intended that the scope of the claims appended hereto be limited to the examples and descriptions set forth herein but rather that the claims be construed as encompassing all the features of patentable novelty which reside in the present disclosure, including all features which would be treated as equivalents thereof by those skilled in the art to which the disclosure pertains.

[00110] The present disclosure has been described above with reference to numerous embodiments and specific examples. Many variations will suggest themselves to those skilled in this art in light of the above detailed description. All such obvious variations are within the full intended scope of the appended claims.