Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
METHOD OF STABILISING MONOMERS, IMMOBILIZED RADICAL POLYMERISATION INHIBITORS OR RETARDERS
Document Type and Number:
WIPO Patent Application WO/2000/037584
Kind Code:
A1
Abstract:
The present invention relates to a method of stabilising monomers. Said method comprises placing said monomers in contact with an effective amount of at least one radical polymerisation inhibitor or retarder. Characteristically said inhibitor or retarder is immobilised on a solid support. The present invention also related to new radical polymerisation inhibitors or retarders immobilised on a solid support.

Inventors:
MORONI MARC (FR)
Application Number:
PCT/EP1999/010503
Publication Date:
June 29, 2000
Filing Date:
December 21, 1999
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
CORNING INC (US)
MORONI MARC (FR)
International Classes:
C07B63/04; C07C67/62; C09K15/32; (IPC1-7): C09K15/32; C07B63/04
Foreign References:
US4888375A1989-12-19
US4946880A1990-08-07
Other References:
PATENT ABSTRACTS OF JAPAN vol. 010, no. 280 (C - 374) 24 September 1986 (1986-09-24)
Attorney, Agent or Firm:
Le Roux, Martine (Rue de l'Université Paris Cedex 07, FR)
Download PDF:
Claims:
Claims
1. I. A method of stabilising monomers, comprising placing said monomers in contact with an effective amount of at least one radical polymerisation inhibitor or retarder, wherein said inhibitor or retarder is immobilised on a solid support.
2. The method according to claim 1, wherein the contact is temporary and is followed by a physical separation of said immobilised inhibitor or retarder from said monomers.
3. The method according to claim 1 or 2, wherein said inhibitor or retarder is selected in the group consisting of : the phenol derivatives, the quinones, the phenothiazine, the organic radicals known as stable organic radicals, the nitro derivatives, the metal salts, and the sulphur derivatives.
4. The method according to any one of claims 1 to 3, wherein said inhibitor or retarder is immobilised on a mineral solid support.
5. The method according to any one of claims 1 to 4, wherein said inhibitor or retarder is immobilised on particles the size of which is between 20 nm and 50 um, advantageously between 200 nm and 1 um; on the walls of recipients of the reactor type, storage reservoir type or transport reservoir type, piping or analogues, or on detachable structures especially intended to be inserted into recipients of the above type.
6. The method according to any one of claims 1 to 5, wherein said inhibitor or retarder is immobilised on said support by chemical grafting, optionally via a coupling agent.
7. The method according to any one of claims 1 to 6, wherein said inhibitor or retarder is immobilised on a silica support or a silicabased glass support by chemical grafting, via a coupling agent, advantageously a silanetype coupling agent.
8. : The method according to claim 7, wherein said inhibitor or retarder is linked to the silica of said support by a group comprising a chain having at least three atoms which are different from silicon; said group being of the SiOCC... type or of theSiCCC... type; advantageously of the SiCCC... type.
9. The method according to any one of claims 1 to 8, wherein it comprises: immobilising an effective amount of at least one radical polymerisation inhibitor or retarder on particles; incorporating and dispersing said particles within monomers to be stabilised ; maintaining said particles within said monomers for their stabilisation; physically separating said particles from said monomers for recovering said particles on the one hand and said monomers able to be efficiently polymerised on the other hand.
10. A radical polymerisation inhibitor or retarder, selected from the group consisting in: the phenol derivatives or quinones, which are unsubstituted in at least one orthoposition of a free hydroxy function, the phenothiazine, the organic radicals known as stable organic radicals, the nitro derivatives, the metal salts, and the sulphur derivatives, immobilised on a solid support.
Description:
Method of stabilising monomers. immobilized radical polvmerisation inhibitors or retarders.

The present invention relates to : -a method of stabilising, at least temporarily, monomers, which makes use of immobilised radical polymerisation inhibitors or retarders; -new immobilised radical polymerisation inhibitors or retarders.

According to prior art, free radical captors are used per se in various contexts for protecting molecules which are sensitive to free radicals, from said free radicals. They are suitable, for example: -as stabilisers or preservatives: placed in the presence of sensitive molecules, such as biological molecules (for example, polyunsaturated lipids, vitamins), they minimise the degradation of the sensitive molecules by said radicals ; -as radical polymerisation inhibitors or retarders: dispersed within monomers, they prevent any uncontrolled and/or premature polymerisation thereof (especially during phases of storage and transport of said monomers). Such radical polymerisation inhibitors or retarders (methoxyphenol, phenothiazine, para-benzoquinone. 2, 2-diphenyl-1-picrylhydrazyl (DPPH), metal salts) and their mechanisms of action (in the presence of monomers such as acrylic acid, butyl acrylate, acrylonitrile, styrene, even more generally, acrylates and methacrylates) have notably been described: -by L. B. Levy in Journal of Polymer Science; Polymer Chemistry, 23,1505 (1985) and 30,569 (1992) (methoxyphenol, phenothiazine, acrylic acid monomer); -by L. B. Levy in Journal of Applied Polymer Science, 60,2481 (1996) (methoxyphenol, butyl acrylate); -by S. S. Cutie, D. E. Henton, C. Powell, R. E. Reim, P. B. Smith, T. L. Staples, in Journal of Applied Polymer Science, 64,577 (1997) (methoxyphenol, acrylic acid); and -in Encyclopaedia of Polymer Science and Engineering, 2nd edition, vol. 13, p. 729-735, Ed Wiley Interscience (1988) (para-benzoquinone, DPPH, metal salts, acrylates, methacrylates acrylonitrile, styrene...).

Thus, the commercially available liquid monomers, especially those of the vinylic type (acrylates, or styrene, for example) usually contain 50 to 1,500 ppm of dissolved inhibitor (s) or retarder (s). Said inhibitor (s) or retarder (s) rapidly react with any free radical which is spontaneously generated at ambient temperature and/or under the action of light.

According to a first variant, such molecules prevent any efficient polymerisation, and it is imperative to get rid of them when it is desired to initiate said polymerisation. Their prior and compulsory removal, by distillation or chromatography, is a relatively difficult technique to carry out, especially on an industrial scale. The complete removal is in any case only with difficulty.

According to a second variant, molecules of this type are only active as inhibitors or retarders up to a certain temperature threshold and/or up to a certain irradiation threshold. It is necessary to pass over this threshold in order to initiate the polymerisation desired in the presence of said molecules. In such a context, said polymerisation, deferred with time, is slower to carry out, more difficult to control and, in any case, it generates a polymer which contains said molecules as impurities.

The presence of these molecules in the monomers is furthermore cumbersome or restricting, for various reasons. Thus: -in order to maintain a certain constancy in the process of polymerisation, especially in its kinetics, it proves to be compulsory to keep the concentration of said molecules constant. The latter, obviously, decreases with time: the longer the storage time is, the more significant the amount of inhibitor (s) or retarder (s) consumed is. Maintaining said amount constant is a real constraint; -certain inhibitors or retarders, such as hydroquinone or methoxyphenol, only react with the free radicals in the presence of oxygen. It is however difficult to ensure a homogeneous dissolved oxygen content within a mixture of monomers. Failing this, the polymer obtained by polymerisation of said mixture will not have a perfect homogeneity. The Applicant is especially confronted with this technical problem during the preparation of photochromic or non-photochromic lenses; the leaktightness at the joint of the lens mould is never perfect; -said inhibitor molecules may induce parasitic reactions with various types of other molecules (photochromic or non-photochromic colorants, chromophores...), which may be present in the mixture to be polymerised; -said inhibitor molecules can also directly influence the final properties of the polymer prepared. Thus, they may alter the optical properties thereof. For a typical concentration of 100 ppm of said inhibitor molecules in the mixture to be polymerised, said molecules, which contain C-H and C-OH groups, increase the loss of transmission at 1.55 um, by about 0.1 dB/cm in the polymerised material...

Upon considering all the problems set forth above, the Applicant desired developing an alternative to the use in accordance with prior art of dissolved inhibitors or retarders. The Applicant proposes to no longer use said dissolved free molecules per se, but to use them immobilised on a solid support. Thus, whatever their nature and the context of their use may be, they can be easily manipulated, in general got rid of, prior to the implementation of the polymerisation.

According to the prior art it has already been described some antioxidants immobilised on a solid support. describes hindered tertiary amines, fixed onto a solid support, used to stabilize polymers.

US-A-4,888,375 describes sterically hindered phenol derivatives (substituted in the two ortho-positions of the free hydroxy function), also fixed onto a solid support, also used to stabilize polymers.

Said two types of immobilised antioxidants stay definitely within the polymer they stabilize.

JP-A-61 100587 also describes a sterically hindered phenol derivative (substituted in the two ortho-positions of the free hydroxy function) which may be fixed onto a solid support. Said derivative may be used as an additive in plastics and as a surface treatment agent to prevent the scale of polymer on a surface within a polymerisation reactor. Such a surface agent is effective at high temperature.

It may be here emphasized that, according to the invention, the immobilised inhibitors or retarders are used to stabilize monomers, and that they develop their action within a volume of such monomers, generally at room temperature.

Thus, according to a first object, the presently claimed invention relates to a method of stabilizing monomers (molecules, which are sensitive to free radicals, able to polymerise). Said method comprises placing said monomers in contact with an effective amount of at least one radical polymerisation inhibitor or retarder (it is of course understood that in general, several inhibitors or retarders intervene which may be of the same nature or not). Characteristically, said inhibitor or retarder is immobilised on a solid support.

The contact monomers/immobilised radical polymerisation inhibitors or retarders is at least temporary. It is of course obvious that the invention was developed for a use to a temporary stabilisation end. The introduction to the present text may be referred to. In such a context, the said contact is temporary

and is followed by a physical separation of said immobilised inhibitors or retarders from said monomers. It is however also obvious that the use of the inhibitors or retarders immobilised in the sense of the invention is not excluded for "definitive"protection ends (throughout the whole of the life of the monomers protected, such monomers being per se interesting and not as polymer precursors).

The radical polymerisation inhibitors or retarders are used, according to the method of the invention, fixed in a stable manner onto a solid support.

Advantageously, the radical polymerisation inhibitors or retarders are selected from: -phenol derivatives, and especially : * alkylphenols, such as 2,6-di-tert-butyl-4-methylphenol, * hydroquinone, * alkoxyphenols, such as methoxyphenol, * catechol and derivatives thereof, such as 4-tert-butylcatechol ; -quinones and especially benzoquinone ; -phenothiazine; -organic radicals known as stable organic radicals, and especially : * nitroxy radicals, such as 6-tetramethylpiperidinooxy (TEMPO), * 2,2-diphenyl-1-picrylhydrazyl (DPPH); -nitro derivatives, and especially : * nitromethane, * nitrobenzene ; -metal salts, and especially : * CuBr2, * FeCl3, both used in solution, advantageously in dimethylformamide (DMF) ; -sulphur derivatives, used in iniferter systems.

These radical polymerisation inhibitors or retarders are known per se.

Within the context of the present invention, it is proposed to use them in an original manner, i. e. immobilised on a support.

The most-used radical polymerisation inhibitors or retarders to this day are phenol derivatives and stable organic radicals. According to a preferred variant, the inhibitors or retarders, immobilised in the method of the invention, consist of said phenol derivatives or said stable organic radicals.

The solid support which intervenes can be of any nature. Obviously, it must be suitable for the stable immobilisation of the inhibitor or retarder on its surface, as well as for the further use of said immobilised inhibitor or retarder.

Generally, it is a mineral and/or organic support, more frequently a mineral or organic support, and, preferably, a mineral support.

An organic support, either by nature or after chemical modification of its surface, possesses on said surface numerous reactive functions, notably of the alcohol-, amine-, carboxylic acid-, halide-, ester-, amide-type... These reactive functions are advantageously used for the immobilisation (coupling), generally by chemical grafting, of the inhibitors or retarders.

The intervention of a: -silica support or silica-based glass support (containing more than 50% by weight of silica); -an alumina support, or -an iron oxide support, titanium oxide support... is recommended as mineral support.

This list is not exhaustive.

The immobilisation of the inhibitor or retarder on such mineral supports is generally carried out via a covalent bond, via silanes, boranes, zirconates, alumino-zirconates, titanates, or equivalents. A chemical grafting is more particularly recommended, via a silane, on a silica support or a silica-based support.

The intervening solid support can furthermore have various forms. These can notably be particles, recipient walls, or detachable structures...

Thus, according to the invention, the used inhibitor or retarder is advantageously immobilised on particles which are intended to intervene dispersed in liquids. Said particles are advantageously as fine as possible and also advantageously have a surface/volume ratio (a specific surface) as great as possible. However, their size must be sufficient, on the one hand, in order to enable the immobilisation of the inhibitor or retarder at their surface easily, and on the other hand, in order also to easily enable their physical separation (for example, by filtration or centrifugation) from the liquid medium in which, dispersed, they exert their action (as radical polymerisation inhibitor). Thus, said particles generally have a size between 20 nm and 50 m, advantageously between 200 nm and 1 m.

The person skilled in the art has already grasped the interest of this variant of the invention. Such particles, on the surface of which inhibitors or retarders are immobilised, are perfectly suitable for the stabilisation of monomers (stored, transported) awaiting polymerisation. When it is desired to carry out said

polymerisation, it is easy to remove said particles, much easier to remove said particles than the inhibitors or retarders which intervene per se, according to prior art.

The inhibitors or retarders can also intervene, as indicated above, on the walls of a recipient. Inside said recipients, the monomers which are sensitive to free radicals can thus be protected. Such recipients can notably consist of reactors (within which, for example, it is desired to functionalise the monomers, protected from free radicals), storage reservoirs, transport reservoirs, piping or analogues. It can prove to be particularly interesting to have effective inhibitors or retarders immobilised onto the internal walls of piping.

The method of the invention-based on the use of immobilised radical polymerisation inhibitors or retarders-can also be developed according to another variant: said inhibitors or retarders intervening immobilised on detachable structures. Said inhibitors or retarders are therefore of great flexibility of use. The detachable structure can, as much as is desired, be introduced and then taken out of the medium in which the immobilised inhibitors or retarders must exert their action. The detachable structure can notably be successively introduced and then taken out of recipients of the type set forth above. Said detachable structure advantageously has a significant specific surface (a surface/volume ratio).

Advantageously, it is a cellular and/or porous structure.

The method of the invention can therefore avail itself according to numerous variants, notably with reference to the nature and the form of the intervening support.

It is now proposed to specify, in a totally non-limiting way, how the inhibitors or retarders can, according to the invention, be immobilised onto the solid support. In the absolute, any type of stable coupling is suitable. Obviously, it is suitable to conserve, during use, the inhibitors or retarders immobilised on the support in order not to come up against the problems encountered according to prior art with dissolved inhibitors or retarders.

The inhibitors or retarders which are used immobilised according to the invention onto the solid support can especially be linked to said support : -via a covalent bond, or -via weaker bonds, such as ionic bonds, hydrogen bonds...

The first of these variants is particularly preferred, i. e. a chemical grafting (via a covalent bond). Said chemical grafting may or may not make use of a coupling agent.

In this context of chemical grafting, i. e. by making use of a covalent bond, the inhibitor or retarder/support bond can even be developed according to numerous variants, such as: -a direct grafting of said inhibitor or retarder onto the non-treated, non-modified surface of said support ; -a direct grafting of said inhibitor or retarder onto the surface of said support having undergone a surface treatment (for example: plasma treatment or chemical treatment of the oxidation type or others); -an indirect grafting of said inhibitor or retarder onto the surface of said support, the surface being optionally treated; said indirect grafting making use of a coupling agent; it being possible for various types of coupling agent to be used, notably « short » coupling agents and « long » coupling agents, which are intrinsically long or which make use of a spacer...

The person skilled in the art upon considering the nature of the support and the nature of the inhibitor or retarder knows how to carry out efficient chemical graftings.

As has been indicated already : -the reactive functions of the alcohol-, amine-, carboxylic acid-, halide-, ester-, amide-type..., of organic supports are advantageously made use of for such chemical graftings; -coupling agents of the silane-, borane-, zirconate-, alumino-zirconate-, and titanate-type are themselves advantageously used for inhibitor or retarder/mineral support chemical graftings.

Whatever the type of support, the use of a spacer is generally prioritised, insofar as the inhibitor or retarder, grafted via a « long » coupling agent, gains mobility and is therefore thus capable of best expressing its properties. The optimal expression of said properties can obligatorily be required in certain contexts. It is generally as such of the radical polymerisation inhibitors or retarders used for stabilising difunctional monomers; difunctional monomers such as divinylbenzene, which are more sensitive to free radicals than monofunctional monomers such as (meth) acrylates.

Generally, when a coupling agent is made use of, the immobilisation of the inhibitor or retarder on the surface of the support is carried out in two steps: -either the inhibitor or retarder and the coupling agent are firstly joined, and then secondly, said coupling agent, joined to said inhibitor or retarder is grafted onto the surface of the support: -or the coupling agent is firstly grafted onto the surface of the support, and then second, the inhibitor or retarder is joined to said coupling agent grafted onto said support.

In the context of an advantageous variant, the inhibitor or retarder is immobilised by chemical grafting (via a covalent bond), onto a silica support or a silica-based glass support (vide supra); a coupling agent, advantageously of the silane type, joining said inhibitor or retarder to said support.

The inhibitor or retarder immobilised in the sense of the invention can be schematised thus: Supports ; o,-Coupling agent (s; iane)-Inhibitor or Retarder.

Said coupling agent of the silane type or non-silane type, joined or not joined to the inhibitor or retarder, has in general been grafted onto the surface of the support by condensation (grafting technique, per se, familiar to the person skilled in the art).

This same type of chemical reaction-condensation-may be carried out with other coupling agents (vide supra) onto surfaces of the silica type or silica- based type, even onto other types of surface (based on other metal oxides).

Purely as an illustration, coupling agents which are advantageously used according to the invention for immobilising inhibitors or retarders onto a silica or silica-based mineral support can be listed below: -silicon tetrachloride (SiCl4), alone: short coupling agent ; -tetramethoxysilane (Si (OCH3) 4), alone: short coupling agent ; -silicon tetrachloride (SiC14) + bromopropanol (CHBr-CH2-CH2OH): long coupling agent (short coupling agent + spacer) ; -glycidoxypropyl trimethoxysilane

intrinsically long coupling agent.

It is recalled here that the intervention of « long » coupling agents is generally prioritised. This remark applies more particularly to silane-type coupling agents.

Thus, within the context of the advantageous variant of the invention specified above, the inhibitor or retarder is preferably capable of linking to the silica of the support by a group comprising a chain having at least three atoms different from silicon, a chain of the type : -Si-O-C-C..., or -si-c-c-c...

The use of a spacer between the Si of the coupling agent and the inhibitor or retarder is more particularly recommended. Thus, advantageously, said inhibitor or retarder can be grafted onto the silica via a group of the second of the <BR> <BR> types above, i. e. of the-Si-C-C-C-type...; insofar as the Si-C-bonds are more resistant to hydrolysis than the Si-O bonds. This remark is of course valid whatever the length of the group may be.

It is recalled here that the person skilled in the art will perfectly master the chemistry which enables carrying out the graftings of the various types set forth above.

The present invention also relates to a method of preparing said immobilised inhibitors or retarders. Said method comprises immobilising, advantageously via a chemical grafting, either directly or via a coupling agent, said inhibitor or retarder onto the surface of a solid support having adequate reactive groups.

It has been seen above that said immobilisation can be carried out according to numerous variants, said variants obviously being adapted to the nature of said solid support. It has especially been seen that when said immobilisation results from a chemical grafting, it is advantageously carried out by making use of a coupling agent, especially of a silane; said coupling agent being condensed onto the surface of the support. Details on this aspect of the method of the invention are given above.

The method of the invention (for the stabilisation of monomers), may avail, itself according to numerous variants, and in numerous contexts. Notably, the said method may comprise: -immobilising an effective amount of at least one radical polymerisation inhibitor or retarder on particles;

-incorporating and dispersing said particles within monomers to be stabilised; -maintaining said particles within said monomers for their stabilisation (at this stage in the method, it can be a case of an intrinsically stable suspension or of a stabilised suspension, for example by agitation or by electrostatic interaction); -physically separating said particles from said monomers for recovering said particles on the one hand and said monomers able to be efficiently polymerised on the other hand.

The inhibitors or retarders intervene temporarily for example within a mixture of monomers during its storage and/or transport. They are then easily removed for example by centrifugation or filtration, prior to carrying out the polymerisation of said mixture of monomers.

In other contexts, such radical polymerisation inhibitors or retarders are immobilised on recipient walls or on detachable structures. In order to annihilate their inhibitory action with regard to monomers, they are removed from contact with them. In the first case, the monomers are transported away, in the second case said detachable structure is removed.

The person skilled in the art, upon reading the foregoing, has not failed to grasp the interest of the method of the invention.

Said method relies on the use of immobilised inhibitors or retarders, more particularly on the use of the above described immobilised inhibitors or retarders (described per se and via their process of preparation). Some of said immobilised inhibitors or retarders are new. They therefore constitute the second object of the presently claimed invention. Said second object consists in radical polymerisation inhibitors or retarders, selected from the group consisting in : -the phenol derivatives or quinones, which are unsubstituted in at least one ortho-position of a free hydroxy function, -the phenothiazine, -the organic radicals known as stable organic radicals, -the nitro derivatives, -the metal salts, and -the sulphur derivatives, immobilised on a solid support.

Precisions on the exact nature of said new radical polymerisation inhibitors or retarders, on the way they are immobilised on said solid support as

well as on the exact nature of said solid support have been given above in reference to the method using such (new or not new) immobilised radical polymerisation inhibitors or retarders.

The invention is now illustrated by Examples A and B below.

Within the context of said Examples, various methods of immobilising radical polymerisation inhibitors or retarders onto mineral supports (silica particles) have notably been set forth. For reasons of simplicity, only the term < radical polymerisation inhibitor » is spoken of in said Examples. The person skilled in the art cannot ignore that according to the kinetics in question, this term reveals to be suitable or not. In this latter case, it is hereafter advantageously implicitly replaced by the term « radical polymerisation retarder ».

Example A 1) Radical polymerisation inhibitors Two types of inhibitor were used : -hydroquinone (HQ): an inhibitor which is frequently used for stabilising acrylates and methacrylates. After grafting, the active part is of the alkoxyphenol type. The alkoxyphenols such as methoxyphenol (MP) are well known for their inhibiting properties for acrylates; -2,2, 6.6-tetramethylpiperidinooxy (TEMPO): a stable organic radical.

This radical reacts with C'radicals to form covalent bonds which are able to rupture homolytically with heating. Thus, the TEMPO radicals can be regenerated by washing, with a hot solvent, the surfaces on which they were grafted according to the invention. Free radical stabilising articles may therefore be prepared with these radicals, which are reusable, and which are especially useful in the fields of transport and storage of monomers.

2) Solid supports Two types of particles of silica having different particle sizes were used.

For the first type, the weight distribution shows an average diameter of 0.3 pm (in fact: 10 % below 0.088 urn, 10 % above 0.434 um and nothing above 0.8 nom).

For the second type, the weight distribution shows an average diameter of 55 um (in fact: 10 % below 30 um, 10 % above 100 ure).

3) Grafting In order to carry out tests, the size of the particles was varied thus. The grafting method was also varied, more specifically, the nature of the coupling agent (with the presence or not of a spacer) used between the silica and the inhibitor. In fact, the nature and the size of the coupling agent act upon the mobility of the inhibitor and may influence the efficiency of the inhibition. Two types of grafting were carried out: a) a « short » grafting between the silica particles and the inhibitor ; b) a « long » grafting, via a flexible spacer between the silica particles and the inhibitor. a) « Short » grafting Clean and dry silica particles were stirred in 10 ml of anhydrous methylene chloride. Silicon tetrachloride (1 ml) was added. Said mixture was then stirred vigorously at ambient temperature for 30 minutes. The stirring was stopped in order to enable decanting the particles. The solvent was removed and the silica particles were washed quickly with anhydrous methylene chloride. 10 ml of anhydrous methylene chloride were then poured on said particles and the inhibitor (1 g) was added. The resulting mixture was stirred for 3 hours, then filtered. The recovered grafted particles were cautiously washed with methylene chloride and ethanol in order to remove traces of non-grafted inhibitor.

Said washed grafted particles were then dried. The grafting generated bonds of the type: with TEMPO. b) « Long » grafting The same procedure was carried out except that the inhibitor was replaced by bromopropanol (spacer). The silica particles grafted with said bromopropanol were then placed in a flask with 0.5 g of sodium carbonate, 1 g of hydroquinone (HQ), and 20 ml of THF. The resulting mixture was stirred and heated under reflux for 16 hours. It was then brought to ambient temperature.

Finally, the mixture was neutralised by adding a I M solution of hydrochloric acid (HC1). The particles grafted with the entities (coupling agent + spacer)- (hydroquinone) (Si-Sp-HQ) were filtered and washed cautiously with THF and ethanol. They were finally dried.

The grafting with spacer generated bonds of type: 4) Verification of the inhibiting power of the grafted inhibitors The stabilising action of the grafted inhibitors was verified mainly on methyl methacrylate (MMA) monomers.

To this end, in order to simulate the spontaneous formation of free radicals in the mixture, and to accelerate said formation, a thermal radical polymerisation initiator, ADVN or 4,4'-azobis-4-cyanovaleric acid was added.

More specifically, it was carried out as follows: 7 different vials (identified as a, b, c, d, e, f, and g) were charged with : -5 ml of freshly distilled methyl methacrylate (MMA) (HPLC, C8 reverse phase, eluent: 40 % acetonitrile, 60 % sodium acetate buffer, electrochemical and UV detectors, methoxyphenol concentration lower than 0.2 ppm, hydroquinone concentration lower than 0.3 ppm) ; -5 mg of ADVN; and -a magnetic stirrer.

In vial a (respectively b), 1 g of non-grafted silica particles having an average diameter of 0.3 pm (respectively 55 um) was introduced. In vials c to g, 1 g of silica particles grafted with an inhibitor (HQ, TEMPO or Sp-HQ) was introduced. The Table below indicates specifically the types of particles introduced into said vials a to g. Vials a b c d e f Particle size (urn) 0.3 55 0.3 55 0. 3 55 55 Grafted inhibitor HQ HQ TEMPO TEMPO Sp-HQ

Each of the vials was stirred and heated at 60°C. In vials a and b (not containing inhibitor) the monomer (MMA) rapidly polymerised. The viscosity increased and the mixture became solid in I h.

In vials c to g, the mixtures remained fluid. They were still fluid after 16 hours at 60°C, even though more than 97% of the initiator had dissociated into free radicals (half life: about 180 minutes at 60°C).

The grafted inhibitors develop their inhibiting action.

5) Verification of the stabilitv of the grafting Two samples were prepared, as indicated above for the sample of vial g (Si-Sp-HQ on silica particles of 55 llm). They were stirred at ambient temperature.

They were filtered and analysed by HPLC (reverse phase C8; eluent: 40 % acetonitrile, 60 % sodium acetate buffer, electrochemical and UV detectors) after 30 min and 24 h respectively. The hydroquinone content, detectable only by the electrochemical detector, was estimated at less than 0.3 ppm.

Said hydroquir one was grafted in a very stable manner onto the silica particles. The stability of the grafting was verified during reactivity tests at higher temperature.

6) Verification of the reactivity of the temporarily stabilised monomer Two vials « of type g >> were prepared. Each contain: I g of grafted silica particles (Sp-HQ on silica particles of 55 um) ; 10 mg of ADVN; 5 ml of monomers (MMA); and a magnetic stirrer.

Each of the mixtures was stirred and heated at 60°C for 1 hour. At the end of this heating, about 20% of the ADVN had decomposed and 80% of this initiator remained non-dissociated (half-life: about 180 min at 60°C).

The vials were brought to ambient temperature. 2.5 ml was taken from each of said vials, said amount was filtered and poured into two other vials. 2.5 ml of grafted monomer-silica mixture was conserved in the first vials.

The four vials were then stirred and heated at 60°C for 6 h, during which time 75% of the residual ADVN was dissociated and thus numerous free radicals were formed.

After 2 hours, the filtered samples (in the two other vials) polymerised to generate a solid mass, whereas the samples containing the grafted silica (in the first two vials) remained fluid.

The inoccuousness of the grafted inhibitors of the invention towards the reactivity of the monomers has hereby been verified after their removal by simple filtration, as well as, once again, the efficiency of their inhibiting action.

Example B 1) Radical polymerisation inhibitor Hydroquinone (HQ) was used.

2) Solid support Silica particles marketed by Degussa were used. They had an average diameter of 20 nm.

3) « Long >) grafting The grafting method was carried out in two steps. First of all, glycidoxypropyl trimethoxysilane (coupling agent with intrinsic spacer: GlyMo) was condensed onto the silica particles. Hydroquinone (HQ) was then added onto the epoxy group. The reaction scheme is indicated below: 0 OH ß ß +- -spi- Silica MeO-Si-OMe-Si- Silice OMe OH (X. ! 0 HO OH 0 OH -Si--Si- Silica Silica

More specifically, the method is carried out as follows: 200 g of a solution of GlyMo (at 1 % by weight in THF) are first of all prepared and stirred for 15 minutes. 5 g of the silica particles are added thereto and the resulting mixture is stirred vigorously for 4 hours. After the 4 hours, 5 g of HQ and 0.1 g of potassium tert-butoxide are added. The resulting mixture is heated under reflux and stirred for 16 hours. The majority of the solvent is evaporated off to give a thick paste which is placed in a dialysis membrane tube (pores for stopping particles of a diameter greater than 5 nm). Said tube is placed in a recipient containing 300 ml of THF. The tube is slowly stirred therein for 24 hours. The solvent is then removed and replaced with a further 300 ml of clean THF. The tube is left for 24 hours under slow stirring in this clean THF. The operation is renewed once more. The grafted silica particles are then recovered and dried in VICUO.

4) Verification of the inhibiting power of the grafted inhibitor.

The stabilising action (with regard to the free radicals) was verified with methyl methacrylate (MMA) monomers. A thermal radical polymerisation initiator was added to simulate the spontaneous formation of free radicals in the

mixture and to accelerate said formation. The thermal radical polymerisation initiator was ADVN or 4,4'-azobis-4-cyanovaleric acid.

Four vials (referenced 1,2,3 and 4) were charged with 10 ml of freshly distilled MMA (see Example A), containing less than 0.7 ppm of HQ after distillation (100 ppm before distillation).

Vial 1 was a control vial (without silica particles). In vials 2 and 3,0.5 g of non-grafted silica particles was added. These also are control vials. In vial 4, 0.5 g of silica particles grafted according to the method described above (grafting of the Sp-HQ type) was added.

At to = 0, samples from the four vials (lto, 2to, 3to, 4to) were tested. By HPLC, their content of HQ; of methoxyphenol (MP) or other alkoxyphenols were measured (HPLC reverse phase C8; eluent: 40 % acetonitrile-60 % sodium acetate buffer, electrochemical and UV detectors). No trace of MP or any other alkoxyphenol was detected in the vials. In each one, the HQ content was less than 0.7 ppm.

. 5 mg of ADVN were added into vials 3 and 4. The contents of four vials was then stirred and monitored after 1 hour (ltl, 2tl, 3tl, 4t).

. Said four vials were then heated, with stirring, at 50°C (half life of the ADNV at 50°C: about 12 hours). Their content was monitored after: -20 min (lt2, 2t2, 3t2, 4t2); 2% of initiator dissociated, -3 h (I t3,2t3,3t3,4t3); 16 % of initiator dissociated, -16 h (lt4, 2t4,3t4,4t4); 54 % of initiator dissociated.

The heating with stirring was thus carried out for 16 hours.

More particularly, the viscosities and HQ content of the vials 3 (control with non-grafted silica) and 4 (grafted silica) were considered at tl, t2, t3, and t4.

The increase in the viscosity indicated an increase in the level of polymerisation of the monomers. The results obtained are given in the Table below. Vial 3 Vial 4 Time ViscosityHQconc.Viscosityconc. t1t1< 0.7 ppm fluid<0,7 ppm fluid t2 < 0.6 ppm slightly viscous < 0.7 ppm fluid t3 < 0.6 ppm hi, ghlv viscous < 1 ppm fluid t4solid < 1 ppm fluid

The formation of polyMMA was confirmed by size exclusion chromatography: in the vials 2 and 3 at t3, and in the vials 1,2 and 3 at t4.

5) Verification of the stability of the grafting No MP or any alkoxyphenol was detected in any of the samples monitored. The HQ concentration was less than 0.7 ppm for all said samples at to = 0. Said HQ concentration remained lower than 0.7 ppm in vials 1 and 2 for all measurement times. At t4, the viscosity of the samples started to increase in vials 1 and 2, and this demonstrates that the non-stabilised monomers started to polymerise even in the absence of the polymerisation initiator ADVN.