Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
MODULAR MULTIPOINT POWER CONVERTER AND METHOD FOR OPERATING SAME
Document Type and Number:
WIPO Patent Application WO/2017/032740
Kind Code:
A1
Abstract:
A modular multipoint power converter (8) for converting an A.C. voltage into D.C. voltage or vice versa, and a method for operating the multipoint power converter are created. The multipoint power converter has a plurality of converter arms (9a-f), wherein two converter arms (9a-b, 9c-d, 9e-f) are each connected to one another in order to create a phase leg (11a-c) of the power converter (8). Each converter arm has a number of similar submodules (14), which are each configured by an H-bridge circuit (18) with power semiconductor switches. The branch currents through the converter arms (9a-f) are controlled or regulated during operation by increasing the DC component of the branch current or of the intermediate circuit direct current (Idc) such that one current having a single polarity, preferably a continuous unipolar sinusoidal current, flows through the converter arms (9a-f). As a result, with the same number of submodules (14) per converter arm (9a-f), the transmissible power can be increased, or the power semiconductor components can be better exploited or, with a constant transmissible power, the number of submodules (14) can be reduced.

Inventors:
GESKE MARTIN (DE)
BASIC DURO (DE)
Application Number:
PCT/EP2016/069798
Publication Date:
March 02, 2017
Filing Date:
August 22, 2016
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
GE ENERGY POWER CONVERSION TECHNOLOGY LTD (GB)
International Classes:
H02M7/483
Foreign References:
EP2782239A12014-09-24
US20140146583A12014-05-29
DE10103031A12002-07-25
DE102010046142A12012-03-15
DE102011086087A12013-05-16
EP1497911B12005-10-05
Other References:
ANTONIOS ANTONOPOULOS ET AL: "On dynamics and voltage control of the Modular Multilevel Converter", 13TH EUROPEAN CONFERENCE ON POWER ELECTRONICS AND APPLICATIONS, 2009 : EPE '09 ; 8 - 10 SEPT. 2009, BARCELONA, SPAIN, IEEE, PISCATAWAY, NJ, USA, 8 September 2009 (2009-09-08), pages 1 - 10, XP031541295, ISBN: 978-1-4244-4432-8
ANDREJA RASIC ET AL: "Optimization of the modular multilevel converters performance using the second harmonic of the module current", 13TH EUROPEAN CONFERENCE ON POWER ELECTRONICS AND APPLICATIONS, 2009 : EPE '09 ; 8 - 10 SEPT. 2009, BARCELONA, SPAIN, IEEE, PISCATAWAY, NJ, USA, 8 September 2009 (2009-09-08), pages 1 - 10, XP031541462, ISBN: 978-1-4244-4432-8
Attorney, Agent or Firm:
SERJEANTS LLP (GB)
Download PDF:
Claims:
T\, m.tansprüche :

1. nodularer MehrpunktStromrichter zur Umwandlong einer Wechselspannung in eine Gleichspannung oder umgekehrt mit einer Anzahl von Stromrichterzweigen (9a-f), wobei. jeder Stromrichterzweig ( 9a-f ) eine Anzahl von Submodulen (14, 14") enthält, wobei jedes Submodul (14, 14") durch eine

Brückenschaltung (18) mit wenigstens zwei

Leistungenalbleiterscha11ern (T1-T4 ) gebildet ist, und mit einer Steuereinrichtung (28 ) zur Steuerung des

Betriebs des Mehrpunktstromrichters (8) , wobei die

Steuereinrichtung (28) eine Steuerlogik (31) aufweist, die eingerichtet ist, um einen Zweigstrom (iq (t) ) durch die

Stromrichterzweige ( 9a-f ) derart zu steuern bzw. zu regeln, dass durch die Stromrichterzweige (9a-f } jeweils ein Strom einer einzigen Polarität fließt .

2. nodularer Mehrpunktstromrichter nach Anspruch 1, dadurch gekennzeichnet, dass der Zweigstrom einer einzigen Polarität ein unidirektionaler, kontinuierlicher, im

Wesentlichen sinusförmiger Strom ist, der einen Mittelwert ( Ig) aufweist, der in etwa gleich oder größer ist als die

Spitzenamplitude des Wechselanteils des Zweigstroms ist.

3. nodularer Mehrpunktstromrichter nach Anspruch 1, dadurch gekennzeichnet, dass der Zweigstrom einer einzigen Polarität ein unidirektionaler, diskontinuierlicher, im

Wesentlichen sinusförmiger Strom ist, der nicht leitende

Phasen bis zu einer halben Periode der Grundf equenz der

Wechselspannung aufweist, wobei ein Zwischenkreisgleichstrom ( Idc) in etwa gleich oder geringfügig größer als der ist

Netzstromspitzenwert (in) .

4. Nodularer MehrpunktStromrichter nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass jeder Stromrichterzweig ( 9a-f) eine Reihenschaltung aus wenigstens zwei Submodulen (14, 14') aufweist, wobei ein erster

Wechselspannungsanschluss (26) wenigstens eines Submoduls (14, 14' ) mit einem zweiten Wechselspannungsanschluss (27) eines benachbarten Submoduls (14, 141 ) elektrisch verbunden ist.

5. nodularer Mehrpunktstromrichter nach einem der vorhergehenden Ansprüche,, dadurch gekennzeichnet, dass er eine einer Anzahl von Phasen entsprechende Anzahl von Phasenzweigen (lla-c) aufweist, die zwischen einer positiven und einer negativen Zwischenkreisgleichspannungsklemme (12, 13) des

Mehrpunktstromrichters (8) angeschlossen sind, wobei jeder Phasenzweig (lla-c) durch zwei miteinander in Reihe verbundene gleichartige Stromrichterzweige ( 9a-b, 9c-d, 9e-f) gebildet ist und wobei ein Verbiedungspunkt zwischen den beiden

Stromrichte zweigen eines jeden Phasenzweigs (lla-c) mit einer Wechselsparmungsklemme (26, 27) des Mehrpunktstromrichters (8) verbunden ist .

6. Moduiarer Mehrpu k stromrichter nach einem der

vorhergehenden Ansprüche, dadurch gekennzeichnet, dass jedes Subraodul {14, 14') aufweist: eine H-Brückenscha! ung (18) mit zwei parallelen

Leistungshalbleiterzweigen (21, 22), die zwischen einem ersten und einem zweiten Gleichspannungsknoten (23, 24) des Submoduls (14, 14') angeschlossen sind und in denen jeweils wenigstens ein ansteuerbarer LeistungshalbleiterSchalter (T1-T4 )

angeordnet ist, zu dem vorzugsweise eine Freilaufdiode (D1-D4 ) antiparaliel geschaltet ist und einen Kondensator (C, 19) , der parallel zu der H- Brückenschaltung ( 18 ) zwischen dem ersten und dem zweiten Gleichspannungsknoten (23, 24) angeschlossen ist.

7. Modularer Mehrpunktstromrichter nach Anspruch 6, dadurch gekennzeichnet, dass jeder Leistungshalbleiterzweig (21, 22) zwei in Reihe verbundene Leistungshalbleiterschalter (Tl, 2 ; T3, T ) aufweist, denen jeweils eine antiparallele Freilaufdiode (D1-D ) zugeordnet ist und deren

Verbindungspunkte einen ersten bzw. zweiten

Wechselspannungsanschluss (26, 27) des Submoduls (14) bilden.

8. Modularer MehrpunktStromrichter nach Anspruch 6, dadurch gekennzeichnet, dass die Brückenschaltung (18) einen ersten. Leistungshalbleiterzweig (21) mit einer Reihenschaltung aus einem ersten Leistungshalbleiterschalter (12; Tl) und einer ersten Diode (Dl; D2 ) sowie einen zweiten

Leistungshalbleiterzweig (22} mit einer Reihenschaltung aus einem zweiten Leistungshalbleiterschalter (T3 ; 14) und einer zweiten Diode (D4 ; D3) aufweist, wobei die erste und die zweite Diode (Dl, D4; D2, D3) in einer Brückendiagonale der Brückenschaltung angeordnet sind und jedem

Leistungshalbleiterschalter (T2, T3 ; Tl , ) vorzugsweise eine antiparallele Freilaufdiode (D2, D3; Dl, D } zugeordnet ist, wobei ein Verbindungspunkt zwischen dem ersten

Leistungshalbleiterschalter (T2; Tl) und der ersten Diode (Dl; D2) einen ersten Wechselspannungsanschluss (26) des Submoduls

(14') bildet und ein Verbindungspunkt zwischen dem zweiten

Leistungshalbleiterschal er (T3; T4) und der zweiten Dioden

(D ; D3 ) einen zweiten Wechselspannungsanschluss (27) des

Submoduls (14') bildet.

9. Modularer Mehrpunktstromrichter nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass er eine Überwachungseinrichtung {33) zur Überwachung wenigstens einer einen Zweigstrom ( iq ( t ) ) durch wenigstens einen

Stromrichterzweig ( a- f) kennzeichnenden Größe aufweist.

10. Modularer MehrpunktStromrichter nach Anspruch 8, dadurch gekennzeichnet, dass die Oberwachungseinrichtung {33) dazu eingerichtet ist, den Zweigstrom in jedem

Stromrichterzweig (9a-f) direkt zu messen oder einen

Zwischenkreis gleichstrom (Idc) und Phasenstrenne ae allen

Wechselspannungs-Phasenausgängen (17a-c) des

Mehrpunktstromrichters {8} zu messen.

11. Modularer MehrpunktStromrichter nach einem

beliebigen der Ansprüche 8-10, dadurch gekennzeichnet, dass die Steuereinrichtung (28) eine Regeleinrichtung (32) zur

Regelung des Zweigstroms (iq (t) ) durch die Stromrichterzweige (9a-f ) auf der Basis der wenigstens einen einen Zweigstrom durch wenigstens einen Stromrichterzweig (9a-f)

kennzeichnenden Größe aufweist.

12. Modularer MehrpunktStromrichter nach einem

beliebigen der vorhergehenden Ansprüche, dadurch

gekennzeichnet, dass die Steuerlogik (31) den Zweigstrom, durch Erhöhung eines Gleichanteils (Ig) des Zweigstroms ( iq ( t) ) bzw. des Zwischenkreisgleichst oms (Idc) steuert bzw. regelt.

13. Modularer Mehrpunktstromrichter nach einem

beliebigen der vorhergehenden Ansprüche, dadurch

gekennzeichnet, dass die Steuerlogik (31) dazu eingerichtet ist, einen Kreisstrom der 2. Harmonischen einem Zweigstrom (iq(t) ) zu überlagern, um einen Betrieb mit unidi rekti onalern Zweigstrom unter Anpassung der Gleichspannung (Udc) bzw. unter Modifikation der Verhältnisse zwischen Wechsel- und

gieichspannungsseitigen Strömen und Spannungen des Stromrichters (8 ) zu erzielen .

14. Modularer Mehrpunktstromrichter nach einem

beliebigen der vorhergehenden Ansprüche, dadurch

gekennzeichnet, dass die Steuerlogik (31) dazu eingerichtet ist, einen Kreisstrom der 2. Harmonischen einem Zweigstrom (iq ( t ) ) zu überlagern, um einen Betrieb mit unidirekt iona lern Zweigstrom unter Minimierung der Rippelspannung von

Kondensatoren (C, 19) der Submoduie (14, 14 ' ) zu erzielen.

15. nodularer Mehrpunktstromrichter nach Anspruch 13 oder 14, dadurch gekennzeichnet, dass die Steuerlogik (31) eine Reglereinheit (61) zur Regelung der zu überlagernden Kreisströme der 2. Harmonischen aufweist.

16. Verfahren zum Betreiben eines modularen

Mehrpunktstromrichters , der eine Anzahl von

Stromrichterzweigen (9a-f ) mit jeweils einer Anzahl von

Submodulen (14, 141 ) enthält, wobei jedes Submodul (14, 14') durch eine Brückenschaltung (18) mit wenigstens zwei

Leistungshalbleiterschaltern (T1-T4) gebildet ist, wobei das Verfahren aufweist:

Ansteuere (Sl) der Leistungshalbleiterschalter (T1-T ) aller Submoduie (14, 14') in Abhängigkeit von momentanen

Betriebsbedingungen, um eine eingangsseitige Wechselspannung { UN (t } ) des Mehrpunktstromrichters (8) in eine ausgangssei ige Gleichspannung (Udc) umzuwandeln oder umgekehrt; und

Steuern bzw. Regeln (S2) der Zweigströme (iq(t) ) durch die Stromrichterzweige ( 9a- f) in einer derartigen Weise, das durch die Stromrichterzweige jeweils ein Strom einer einzigen

Polarität fließt. 17» Verfahren nach Anspruch 16, dadurch gekennzeichnet, dass der Zweigstrom einer einzigen Polarität ein

unidirektionaler, kontinuierlicher, im Wesentlichen

sinusförmiger Strom oder unidi ektionale ,

diskontinuierlicher, im Wesentlichen sinusförmiger Strom ist, der nicht leitende Phasen bis zu einer halben Periode der Grundfreguenz der WechselSpannung aufweist.

18. Verfahren nach Anspruch 16 oder 17, dadurch

gekennzeichnet, dass es ferner ein Überwachen wenigstens einer einen Zweigstrom (iq ( t ) } durch die Stromrichterzweige { 9a-f ) kennzeichnenden Größe aufweist, wobei das Steuern bzw. Regeln (S2 ) der Zweigströme ein Regeln der Zweigströme in

Abhängigkeit von der überwachten Größe aufweist,

19. Verfahren nach einem beliebigen der Änsprüche 16-18, dadurch gekennzeichnet, dass das Steuern bzw. Regeln (52) der Zweigströme auf der Basis einer Erhöhung eines Gleichanteils (Ig) eines Zweigstroms bzw. eines Zwische krei sg 1eichstroms erfolgt .

20. Verfahren nach einem beliebigen der Ansprüche 16-19, dadurch gekennzeichnet, dass das Steuern bzw. Regein (S2 ) der Zweigströme auf der Basis einer aktiven Überlagerung eines

Kreisstromes der 2. Harmonischen erfolgt, um gleichzeitig wenigstens eines der Folgenden zu erreiche : Anpassung der Gleichspannung; Modifikation der Verhältnisse zwischen

Wechsel- und gleichspannungsseifigen Strömen und Spannungen des Stromrichters; und/oder Minimierung der Rippe1Spannung von Kondensatoren der Submodule .

Description:
Modularer Mahrp nktgtroc- ich or und

Verfahren TOB Betreibtta desselben

Die vorliegende Erfindung betrifft einen nodularen

Mehrpunktstromrichter zur Omwandlung einer Wechselspannung in eine Gleichspannung oder umgekehrt und ein Verfahren zum Betreiben eines derartigen modularen Mehrpunktstromrichters.

Stromrichter zur Umwandlung von Gleichstrom in

Wechselstrom und umgekehrt werden für viele Anwendungen, wie bspw. zur Kopplung elektrischer Netze mit drehzahl ariablen Antrieben, zum Energieaustausch zwischen zwei elektrischen Netzen und dgl . verwendet. Hierzu sind Stromrichter in unterschiedlichen Schaltungstopologie und Konfigurationen bekannt. Für kleinere und mittlere Leistungen sind

konventionelle Stromrichter in Zweipunkttechnik bekannt, die einfache und robuste Lösungen bieten und weit verbreitet sind.

Mit fortwährender Entwicklung von

Leistungshaibiei e sehal ern werden stets neuere

Stromrichtertopologien für immer höhere Leistungs- und

Spannungsbereiche gewünscht und entwickelt . Im Mittel- und

Hochspaneungsbereich werden zunehmend sogenannte

Mehrpunktstromrichter eingesetzt, um mehrere Spannungsstufen zu erzeugen und die Spannungen auf höhere Niveaus bis in

Bereiche der Hochspannungsgleichstromübertragung (HGÜ) zu erhöhen.

Eine relativ neuartige Stromrich ertopologie stellt der modulare MehrpunktStromrichter ( odular Muitiievel Converter, MMC bzw. M2C) dar. Dieser Stromrichter weist Phase moduie auf, die aus zwei in Reihe miteinander verbundenen Zweigen

bestehen, wobei eder Zweig aus ei er Anzahl gleichartiger Zellen (Submodulen) aufgebaut ist, Jedes Submodul ist durch eine Brückenschaltung mit ansteuerbaren

Leistungshalbleiterschaltern und einem internen Kondensator zur Z ischenspeicherang elektrischer Energie gebildet. Die Brückenschaltung kann, eine Halbbrücke mit zwei in Reihe verbundenen, ansteuerbaren Leistungshaibiei verschal em oder auch eine K- bzw. Vollbrücke sein, die zwei parallele, an den Zwischenkreis angeschlossene Leistungshalbleiterzweige aufweist, in denen jeweils zwei Leistungshalbieiterschalter in Reihe zueinander angeordnet sind. Jedem ansteuerbaren Schalter ist eine antiparallele Freilaufdiode zugeordnet. Durch die modulare Bauweise ist der Stromrichter für unterschiedliche Leistungen und Anwendungen individuell, skalierbar. Die

Spannungen und Ströme auf der AC- und DC-Seite können

hochdynamisch und weitgehend entkoppelt voneinander gesteuert und geregelt werden.

Ein derartiger modularer Mehrpunktstromrichter ist bspw. aus der DE 101 03 031 AI bekannt, wobei die Submodule nach Art einer Halbbrücke ausgebildet sind.

Modulare MehrpunktStromrichter mit Submodulen in Form von asymmetrischen Voll- oder H-Brücken sind bspw. aus der DE 10 2010 046 142 AI und DE 10 2011 086 087 AI bekannt.

EP 1 497 911 Bl beschreibt weitere

Submodulkonfigurationen, die sich zur Verwendung in .nodularen

Mehrpunktstromrichtern eignen.

In der Praxis werden modulare Mehrpunktstromrichter in einem Betriebsmodus mit kontinuierlichem bidirektionalem

Zweigstrom betrieben. In dem kontinuierlichen bidirektionalen Zweigstrombetrieb werden die Lexstungshalbleiter der Submodule derart angesteuert, dass durch jeden Stromrichter weig ein bidirektionaler, z.B. sinusförmiger Zweigstrom fließt. Der Zweigstrom kann eine Gleichstromkomponente haben, die von dem Gleichstrom in dem Gleichspannungszwischenkreis herrührt .

Es besteht weiterhin der Bedarf daran, die durch einen modularen Mehrpunktstromrichter übertragbare Leistung zu erhöhen. Dies sollte möglichst ohne eine Erhöhung des Aufwands für die Schaltungsanordnung und die Steuerung des

Stromrichters und bei hohen Wirkungsgraden des Stromrichters erfolgen. Umgekehrt besteht der Wunsch, bei einer gegebenen Nennleistung des Stromrichters die Anzahl der Submodule oder Leistungshalbleiter in diesen möglichst zu reduzieren bzw. die Leistungshalbi iterbauelemente besser auszunutzen.

Ausgehe d hiervon ist es eine Aufgabe der vorliegenden Erfindung, einen modularen Mehrpunktstromrichter und ein

Verfahren zum Betreiben desselben zu schaffen, die sich zur Übertragung hoher Leistungen bei hohen Wirkungsgraden eignen. Insbesondere ist es eine Aufgabe der vorliegenden Erfindung, einfache Maßnahmen vorzuschlagen, um bedarfsweise die

übertragbare Leistung des Stromrichters zu erhöhen und/oder bei einer gegebenen übertragbaren Leis ung die Anzahl der

Submodule oder der Leistungshalbl iter zu verringern,,

möglichst ohne hierzu den schaltungstechnischen und/oder steuerungstechnischen Aufwand wesentlich zu vergrößern .

Diese Aufgabe wird durch einen modularen

Mehrpunktstromrichter mit den Merkmalen des unabhängigen

Anspruchs 1 und durch ein Verfahren zum Betreiben eines

modularen MehrpunktStromrich ers mit den Merkmalen des

unabhängigen Anspruchs 16 gelöst. Besonders vorteilhafte

Ausführungsformen der Erfindung sind Gegenstand der

Unteransprüche . Gemäß einem Aspekt der Erfindung ist ein modularer

MehrpunktStromrichter zur Umwandlung einer Wechselspannung in eine Gleichspannung oder umgekehrt geschaffen, der eine Anzahl von Stromrichterzweigen bzw. -armen aufweist, wobei jeder Stromrichterzweig eine Anzahl von Submodulen enthält und wobei jedes Submodul durch eine Brückenschaltung mit wenigstens zwei Leistungshalbleiterschaltern gebildet ist. Der modulare

Mehrpunktstromrichter weist ferner eine Steuereinrichtung zur Steuerung des Betriebs des Mehrpunktstromrichters auf, wobei die Steuereinrichtung eine Steuerlogik aufweist, die

eingerichtet ist, um den Zweigstrom durch die

Stromrichterzweige derart zu steuern bzw. zu regeln, dass durch die Stromrichterzweige jeweils ein Strom einer einzigen Polarität fließt.

Der modulare Mehrpunktstromrichter weist also einen modularen Aufbau mit mehreren gleichartigen oder identischen Submodulen a f, der die diesem immanenten Vorteile der

Modularität und Skalierbarkeit bietet. Zusätzlich ist die Steuereinrichtung dazu eingerichtet,, die Zweigströme derart zu steuern, dass durch jeden Stromrichterzweig ein Strom einer einzigen Polarität fließt. In bevorzugten Ausführungsformen ist dies ein unidir ektionaler bzw. unipolarer,

kontinuierlicher, im Wesentlichen sinusförmiger Zweigstrom, dessen Mittelwert gleich oder größer als die Spitzenamplitude des Wechselanteils oder der Sinusform des Zweigstroms ist, so dass der Strom nur eine einzige, entweder positive oder negative Polarität aufweist. Hierbei können harmonische

Anteile, insbesondere die 2. Harmonische, eines Kreisstroms berücksichtigt sein. Alternativ kann der Strom einer einzigen Polarität ein unidirektionaler, diskontinuierlicher, im

Wesentlichen sinusförmiger St om sein, der nicht leitende

Phasen bis zu einer halben Periode der Grundfrequenz der

Wechselspannung aufweist, wobei der Zwischenkreisgleichstrom in etwa gleich oder geringfügig größer, insbesondere zwischen 1 und 20 Prozent größer, vorzugsweise in etwa 1 bis 10

Prozent, als der Netzstromspitzenwert ist»

Die ünipolarität der Zweigströme kann durch Erhöhung des Gleichstromanteils der Zweigströme der Stromrichterzweige bewerkstelligt werden. Die Erhöhung des Gleichstromanteils hat dabei bei einer gleichbleibenden Anzahl von Submodulen pro Stromrichterzweig eine Erhöhung der übertragenen Leistung bzw. eine erhöhte Ausnutzung der Halbleiterbauelemente zur Folge . Umgekehrt kann bei gegebener zu übertragender Leistung und erhöhtem. Gleichstromanteil des Zweigstroms die Zweigspannung reduziert werden, so dass die Anzahl der Submodule pro

Stromrichterzweig verringert werden kann.

Jeder Stromrichterzweig weist vorzugsweise eine

Reihenschaltung aus wenigstens zwei Submodulen auf, die derart zusammengeschaltet si d, dass ein erster

Wechselspann ngsanschiuss wenigstens eines Submoduls mit einem zweiten ffechselspannungsanschluss eines benachbarten

gleichartigen Submoduls elektrisch verbunden ist. Die

Submodule bilden Zweipole, die in Reihe oder Kaskade

zueinander geschaltet sind.

Der Stromrichter kann eine, zwei , vorzugsweise drei oder sogar mehr als drei Phasen mit entsprechender Anzahl von

Phasenzweigen oder -modulen aufweisen, die zwischen einer positiven und einer negativen

Zwischenkreisgleichspannungsklermae des MehrpunktStrom ich ers angeschlossen sind . Jeder Phasenzweig enthält zwei miteinander in Reihe verbundene, identische oder gleichartige

Stromrichterzweige, wobei ein Verbindungspunkt zwischen den beiden Stromrichterzweigen eines jeden Phasenzweigs mit einer Wechselspannungsklemme des Mehrpunktstromrichters verbunden Ist. Jeder Stromrichterzweig kann ferner eine Induktivität zur Entkopplung des Stromrichterzweigs von anderen

Stromrichterzweigen enthalten.

Die Submodule können unterschiedliche Konfigurationen aufweisen, Halbbrücken können jedoch aufgrund der

unidirektionalen Spannungspolarität der Submodule hierin nicht eingesetzt werden. Bevorzugt werden Voll- oder H-Brücken- schaltungen mit zwei parallelen Leistungshalbleiterzweigen, die zwischen einem ersten und einem zweiten

Gleichspannungsknoten des Submoduls angeschlossen sind und in denen jeweils wenigstens ein ans euerbarer

LeistungshalbleiterSchalter angeordnet ist, zu dem

bevorzugterweise eine Freilaufdiode antiparallel geschaltet sein kann, aber nicht rauss . Jedes Submodul weist ferner einen Kondensator auf, der parallel zu der H-Brückenschaltung zwischen dem ersten und dem zweiten Gleichspannungsknoten angeschlossen ist und zur Zwischenspeicherung von Energie als Gieichspannungszwischenkreiskondensator dient. Somit ist der Gleichspannungszwischenkreis des Mehrpunktstromrichters durch die Reihenschaltung der

Gleichspannungszw schenkreiskondensatoren der Submodule

gebildet . Die H-Brückenschaltung weist

Wachseispannungsansch1üsse auf, die in der Schaltung des

moduiaren MehrpunktStromrichters mit benachbarten Submodulen verbunden sind, wobei zwischen den Wechselspannungsanschlüssen der H-Brückenschaltung jedes Submoduls in Abhängigkeit von dem Schaltzustand der Leistungshalbleiterschalter die positive oder negative Spannung des Kondensators oder die Spannung 0 anliegt .

In einer Ausführungs form weist jeder Leistungshalbleiterzweig einer H-Brückenschaltung zwei in Reihe verbundene

Leistungshalbleiterschalter auf, denen jeweils eine antiparallele Freilaufdiode zugeordnet ist und deren Verbindungspunkte einen ersten bzw. zweiten

Wechselspannungsanschiuss des Submoduis bilden. Eine derartige H- oder Vollbrücke wird auch als symmet ische H-Brücke

bezeichnet. Vorteilhafterweise brauchen, nachdem jeder

Stromrichterzweig einen unipolaren Strom führt, von den vier Leistungshalbleiterschaltern jedes Submoduis nur zwei auf einer Brückendiagonale liegenden Schalter angesteuert zu werden, um alle erforderlichen Schaltzustände des Submoduis zum Betreiben des Stromrichters zu schaffen. Die anderen beiden Leistungshalbleiterschalter auf der anderen

Brückendiagonale können ausgeschaltet bleiben, was die

Schaltverluste gegenüber dem konventionellen Betrieb

symmetrischer H-Brücken deutlich reduziert.

In einer anderen Ausführungsform kann das Submodul mit einer asymmetrischen oder reduzierten H- oder Vollbrücke geschaffen sein, die einen ersten Leis ungshalbleiterzweig mit einer Reihenschaltung aus einem ersten

Leistungshalbleiterschalter und einer ersten Diode sowie einen zweiten LeistungshalbLeiterzweig mit einer Reihenschaltung aus einem zweiten Leistungshalbleiterschalter und einer zweiten Diode aufweist, wobei die erste und die zweite Diode in einer Brückendiagonale der Brückenschaltung angeordnet sind und jedem Leistungshalbleiterschalter eine antiparallele

Freilaufdiode zugeordnet ist . Gegebenenfalls kann die

Freilaufdiode auch weggelassen werden.

Bei Verwendung asymmetrischer H-Brücken kann durch

Vorsehen kontinuierlicher unidirekt ionaler Zweigströme im Vergleich zu einem Betriebsmodus mit diskontinuierlichem

Zweigstrom für die gleiche Nennleistung die Anzahl von Zellen bzw. Submoduien reduziert werden. Durch Verringerung der

Gleichspannung des Gleichspannungszwischenkreises des Stromrichters ist für die gleiche Leistungsübertragong eine geringere Anzahl an Submodulen erforderlich. Umgekehrt können die H-Brücken, unabhängig davon, ob sie symmetrisch oder asymmetrisch ausgeführt sind, bei betragsmäßig erhöhten

Zweigströmen für ÜberlastSituat onen verwendet werde . Dies kann ohne zusätzliche Submodule und sogar unter Einsatz von lediglich zwei Leistungshalbleiterschaltern pro Submodul geschehen » insofern die Randbedingungen für eine erhöhte

Leistungsübertragung erfüllt sind. Eine Erhöhung der

Zwischenkreisgleichspannung des Mehrpunktstromrichters, um bei Bedarf die Leistungsübertragung zu steigern, würde hingegen mehr Submodule erfordern, was den Aufwand und die Kosten des Systems steigern würde. Auf der anderen Seite sind der

Erhöhung der Zwischenkreisspannung auch technische Grenzen gesetzt, wie sie bspw. durch XLPE-Kabei vorgegeben werden, die derzeit häufig für die Hochspannungsgleichstromübertragung eingesetzt werden,

Um die Zweigströme geeignet zu steuern bzw. zu regeln, weist der nodulare MehrpunktStromrichter vorzugsweise eine

Überwachungseinrichtung auf, die zur Überwachung wenigstens einer kennzeichnenden Größe eines Zweigstroms durch wenigstens einen Stromrichterzweig eingerichtet ist. Die Überwachung ermöglicht es, den Zweigstrom je nach gegebenen Betriebs- und Umgebungsbedingungen bedarfsweise dynamisch anzupassen .

In einer Ausführungsform ist die überwachungseinrichtung dazu eingerichtet, den Zweigstrom in jedem Stromrichte zweig mit entsprechenden Strommesswandlern direkt zu messen. Daraus kann auf einfache Weise der erforderliche Gleichstrom-Offsetwert bzw. zusätzliche Gleichanteil berechnet werden, der erforderlich ist, um den Zweigstrom unidirektional zu machen.

In einer alternativen. Äusführungsform ist die überwachungseinrichtang dazu eingerichtet, einen

Zwischenkreisgleichstrom und Phasenströme an allen

Wechsel spannungs-Phasenausgängen des Mehrpunktstromrichters zu messen. Letztere Messwerte sind auch für die Stromregeleng des Mehrpunktstromrichters erforderlich. Da sich der

Zwischenkreisgleichstrom auf alle Phasenzweige weitgehend gleichmäßig verteilen lässt, lässt sich aus diesen Größen leicht der Verlauf der jeweiligen Zweigströme bestimmen.

In einer besonders bevorzugten Ausführungsform weist die Steuereinrichtung eine Regeleinrichtung zur Regelung des Zweigstroms durch die Stromrichterzweige auf. Zur Regelung wird die von der Überwachungseinrichtung erfasste Größe

herangezogen, die den Zweigstrom durch den wenigstens einen Stromrichterzweig kennzeichnet. Durch eine passende Regelung, bspw. eine Proportional-Integral (PI) -Regelung können

stationäre Abweichungen der Ist-Zweigströme von den

gewünschten Zweigströmen vermieden bzw. korrigiert werden. Außerdem kann das dynamische Verhalten, einschließlich des Störverhaltens, verbessert werden.

Die Steuereinrichtung kann den Zweigstrom durch eine

Erhöhung des DC-Stromoffsets oder Gleichanteils des

Zweigstroms oder des Zwischenkreisgleichstroms, bei Regelung z.B. des Sollwertes für diesen, auf einfache Weise steuern bzw. regein .

In einer vorteilhaften Ausführungsforra kann die

Steuereinrichtung dazu eingerichtet sein, einen Kreisstrom der 2, Harmonischen einem Zweigstrom aktiv zu überlagern, um einen

Betrieb mit unidirektionalem Zweigstrom zu erzielen und dabei gleichzeitig die Gleichspannung anzupassen und/oder die

Verhältnisse zwischen Wechsel- und gleichspannungsseitigen

Strömen und Spannungen des Stromrich e s zu modifizieren« In einer weiteren vorteilhaften Ausführungsform kann die Steuereinrichtung dazu eingerichtet sein, einen Kreisstrom der 2, Harmonischen einem Zweigstrom zu überlagern, um einen

Betrieb mit unidirektionalem Zweigstrom zu erzielen und dabei gleichzeitig die Rippe!Spannung von

Gleichspannungszwischenkreiskondensatoren der Submodule zu minimieren.

Bei den zuletzt erwähnten vorteilhaften Ausführungsformen kann die Steuereinrichtung eine Reglereinheit zur Regelung der zu überlagernden Kreisströme der 2. Harmonischen aufweisen.

Gemäß einem weiteren Aspekt der Erfindung ist ein

Verfahren zum Betreiben eines modularen

Mehrpunktstromrichters, der eine Anzahl von

Stromrichterzweigen mit jeweils einer Änzahl von Submodulen enthält, wobei jedes Submodul durch eine Brückenschaltung mit wenigstens zwei Leistungshalbleiterschaltern gebildet ist, geschaffen. Das Verfahren weist ein Ansteuern der

Leistungshalbleiterschalter aller Submodule in Abhängigkeit von momentanen Betriebsbedingungen und gemäß einer

vorgegebenen Modulation auf, um eine eingangsseit ige

WechselSpannung des Mehrpunktstromrichters in eine

ausgangsseitige Gleichspannung oder umgekehrt umzuwandeln. Das Verfahren weist ferner ein Steuern bzw. Regeln der Zweigströme durch die Stromrichterzweige in einer derartigen Weise auf, dass durch die Stromrichterzweige j eweils ein Strom einer einzigen Polarität, also ein unidirektionaier, vorzugsweise kontinuierlicher, gegebenenfalls diskontinuierlicher, bspw. im Wesentlichen sinusförmiger Strom fließt, der stets nicht negativ (oder nicht positiv) ist. Dies unabhängig davon, ob die Submodul -Klemmenspannung positiv, negativ oder null ist . Das Verfahren weist die im Zusammenhang mit dem modularen Mehrpunktstromrichter oben erwähnten Weiterbildungen und

Vorteile auf.

Das zuvor erwähnte Verfahren kann ferner ein Überwachen wenigstens einer einen Zweigstrom durch die Stromrichterzweige kennzeichnenden Größe aufweisen, wobei das Steuern bzw. Regeln der Zweigströme ein Regeln der Zweigströme in Abhängigkeit von der wenigstens einen überwachten Größe aufweisen kann. Durch die Regelung können Störungen und Betriebstransienten

ausgeregelt und bleibende Abweichungen bei den Zweigströmen vermieden werden.

Das Steuern bzw. Regeln der Zweigströme kann auf der Basis einer Erhöhung eines DC-Stromsollwertes bzw. Gleichanteils eines Zweigstroms bzw. des Zwischenkreisgleichstroms erfolgen.

In vorteilhaften Aus ührungsformen des Verfahrens kann das Steuern bzw. Regeln der Zweigströme auf der Basis einer

aktiven Oberlagerung eines Kreisstromes der 2. Harmonischen erfolgen, wobei gleichzeitig wenigstens eines der Folgenden bewirkt werden kann; Anpassung der Gleichspannung;

Modifikation der Verhältnisse zwischen Wechsel- und

gleichspannungsseit igen. Strömen und Spannungen des

Stromrichters ; und/oder Minimierung der HippelSpannung von

Kondensatoren der Submodule .

Jedenfalls ist das Betriebsverfahren wie der modulare Mehrpunktstromrichter dazu eingerichtet, durch Erhöhung eines Gleichstrommittelwertes und des Effekt ivwert.es der

Gleichströme die übertragbare DC-Leist ng zu erhöhen bzw. die Leistungs-Halbleiterbaueiement besser auszunutzen oder bei gleichbleibender übertragbarer Leistung die Spannung des

Gleichspannungszwischenkreises und damit die Anzahl der erforderlichen Submodule zu reduzieren. Weitere vorteilhafte Einzelheiten von Ausführungsformen der Erfindung ergeben sich aus Unteransprüchen, der Zeichnung sowie der zugehörigen Beschreibung, Die Erfindung ist

nachstehend anhand einer Zeichnung näher beschrieben, die beispielhafte, keinesfalls beschränkende Ausführungsformen der Erfindung zeigt, wobei gleiche Bezugszeichen in allen Figuren verwendet werden, um gleiche Elemente zu bezeichnen. Es zeigen;

Fig. 1 ein beispielhaftes System mit einem aus mehreren Submodulen aufgebauten modularen MehrpunktStromrichter zur

Kopplung eines elektrischen Energieversorgungsnetzes, einer elektrischen Maschine oder einer anderen

Wechselspannungsquelle mit einem anderen Netz oder einer Last zur Verdeutlichung einer beispielhaften Anwendung der

Erfindung, in Form eines vereinfachten Blockdiagramms;

Fig. 2 einen vereinfachten Schaltplan eines Stromrichter- Submoduls mit einer Vollbrückentopologie, das in dem modularen

Mehrpunktstromrichter nach Fig. 1 gemäß der Erfindung

verwendet werden kann;

Fig. 3 ein Ersatzschaltbild eines Phasenzweiges des modularen Mehrpunktstromrichters nach Fig. 1, in stark

vereinfachter Prinzipdarstellung;

Fig. 4 einen beispielhaften Verlauf eines Zweigstroms beim herkömmlichen bidirektionalen Betriebsmodus;

Figuren 5a und 5b beispielhafte idealisierte Verläufe von

Zweigströmen bei einem erfindungsgemäßen Betriebsmodus mit kontinuierlichen bzw. mit diskontinuierlichem Zweigstrom., in stark vereinfachter Darstellung; Fig. 6 das Submodul aus Fig. 2 " unter zusätzlicher

Veranschaulichung der Strompfade, die sich im Betrieb des

ehrpun krs romrichters gemäß der Erfindung für eine

beispielhafte Stromrichtung ergeben;

Fig. 7 eine alternative Aus führungsform eines Submoduls in asymmetrischer H-Brücken-Bau eise zur Verwendung in dem

modularen Mehrpunktstromrichter nach Fig. 1 gemäß der

Erfindung;

Fig . 8 ein Blockschaltbild, das eine beispielhafte

Regeleinrichtung zur Regelung der Zweigströme des

Mehrpunktstromrichters gemäß der Erfindung veranschaulicht;

Fig. 9 ein erstes Implementierungsbeispiel für eine

Regelungsstruktur zur Erzielung unipolarer Ströme und

zusätzlicher Aspekte der Erfindung in Form eines vereinfachten

Blockschaltbilds;

Fig. 10 einen beispielhaften Ve lauf eines Zweigstroms bei einem erfindungsgemäßen Betriebsmodus mit kontinuierlichem Zweigstrom mit überlagerter 2. Harmonischen des Zweigstrom, in vereinfachter, idealisierter Darstellung;

Fig. 11 ein weiteres Implementierungsbeispiel für eine Regelungsstruktur zur Erzielung unipolarer Ströme und

zusätzlicher Aspekte der Erfindung in Form eines vereinfachten Blockschaltbilds; und

Fig. 12 ein Flussdiagramm eines Verfahrens um Betreiben eines modularen Mehrpunktstromrichters gemäß der Erfindung, in einer stark vereinfachten Prinzipdarstellung. In Fig. 1 is t in eine r vereinfachten Darstellung e in System 1 veranschaulicht, das sich für ein

Hochspannungsgleichstrom-Verteilungssystem zur elektrischen Energieübertragung bei hoher Gleichspannung oder für viele andere Anwendungen eignet. Das System 1 umfasst eine hier bsp . dreiphasige Wechselspannungsquelle 2, die z . B . e in elektrisches Energieversorgungsnetz, eine elektrische

Wechselstrom (AC) -Maschine, ein AC-Generator, eine

Windkraftanlage oder dgl . sein kann. An die

Wechselspannungsquelle 2 ist mit seiner Wechselspannungsseite 3 ein elektrischer Umrichter 4 angeschlossen, dessen

Gleichspannungsseite 6 über eine hier nicht näher dargestellte Gleichstromübertragungseinrichtung mit einem anderen

elektrischen Energie e sorgungsnetz oder elektrischem

Umrichter ähnlich oder gleich 4 verbunden sein können. Der Änschluss des Umrichters 4 an die Wechselspannungsquelle 2 kann optional über einen Transformator 7 erfolgen.

Der Umrichter 4 weist wenigstens einen ersten Stromrichter

8 auf, der hier ein Gleichrichter sein kann, um eine

Wechsel pannung u N (t) der WechselSpannungsquelle 2 in ei e ausgangsseitige Gleichspannung Ud C zu wandeln. Optional könnte der Umrichter 4 einen hier nicht dargestellten weiteren

Stromrichter aufweisen, der die Spannung Udc in eine für ein anderes Netz oder einen elektrischen Antrieb passende

Wechselspannung wandelt oder dem ersten Stromrichter 8

parallel geschaltet ist. Es versteht sich, dass sich die

Funktionen der Stromrichter umkehren, wenn der Energiefluss umgekehrt zu dem Energieversorgungsnetz oder der

Spannungssenke 2 hin erfolgt.

Wie aus Fig. 1 ersichtlich, weist der Stromrichter 8 hier sechs Stromrichterzweige 9a-9f auf, von denen jeweils zwei, ein oberer und ein unterer 9a, 9b bzw. 9c, 9d bzw. 9e, 9f einen jeweiligen Phasenzweig IIa, IIb bzw. 11c bilden. Jeder Phasenzweig IIa, IIb, 11c erstreckt sich zwischen einer

positiven Stromschiene bzw. einem positiven

Gleichspannungsanschluss (,,+" ) 12 des Stromrichters 8 und einer negativen Stromschiene bzw. einem negativen

Gleichspannungsanschluss („-") 13.

Sie ferner aus Fig. 1 ersichtlich, weist jeder Stromrichterzweig hier eine Reihenschaltung aus mehreren in Reihe geschalteten Stromrichter-Submodulen oder modularen Schaltern 14 auf . Die steuerbare Gleichspannung Udc a den

Gleichspannungsanschlüssen 12, 13 des Stromrichters 8 kann über die Schaltzustände der einzelnen St omrichter-Subraodule 14 dynamisch verändert we den . Die Anzahl der Stromrichter- Submodule 14 bestimmt dabei die verfügbare Anzahl von

Stro richter-Schalt zuständen, die eine feine Spannungsstufung und eine Spannungsform hoher Güte sowie hohe Spannungsniveaus bis auf Hochspannungs-Gleichspannungs-Übertragungs ( HGÜ } - Niveaus ermöglichen . Bei dem Stromrichter 8 handelt es sich somit um einen modularen Multi-Level- oder

Mehrpunktstromrichter, Die Submoduie 14 sind nachstehend im Zusammenhang mit den Figuren 2 und 7 näher erläutert.

In den Stromrichterzweigen 9a-3f können jeweils

kreisst rombegrenzende Induktivitäten 16 vorgesehen sein, die eine Entkopplung der Stromrichterzweige voneinander

unterstützen . An dem Verbindungspunkt zwischen den zugehörigen Stromrichterzweigen 9a, 9b bzw. 9c, 9d bzw. 9e, 9f sind die jeweiligen Wechselspannungsanschlüsse 17a » 17b » 17c des

Stromrichters 8 herausgeführt, die mit der

Wechselspannungsquelle 2 verbunden sind. Die

gleichspannungsseitigen Anschlüsse der ersten, obersten

Submoduie 14 des Stromrichters 8 sind miteinander und mit der positiven Stromschiene 12 verbunden. Ähnlich sind die gieichspannungsseitigen Anschlüsse der letzten, untersten Sobmodule 14 miteinander und mit der negativen Stromschiene 13 verbunden. Zwischen den Stromschienen 12, 13 liegt die

Gleichspannung Ode an, die eine Hochspannung von bspw. über 100 kV sein kann.

Fig. 2 zeigt in Form eines vereinfachten Schaltplans eine an sich bekannte Topologie eines Submoduls oder modula en Schalters 14, wie er in dem Mehrpunktstromrichter 8 der in Fig. 1 gezeigten Art verwendet werden kann.

Das bidirektionale Submodul 14 gemäß Fig. 2 weist eine

Brückenschaltung 18 und einen zu der Brückenschaltung 18 parallel geschalteten Kondensator C, 19 auf . Die

Brückenschaltung 18 ist hier als sogenannte symmetrische H- oder Vollbrücke mit zwei parallelen Leistungshalbleiterzweigen 21, 22 ausgebildet, die zwischen einem ersten und einem zweiten Gleichspannungsknoten 23, 24 parallel zueinander angeschlossen sind. Der erste Leistungshalbleite zweig 21 weist eine Reihenschaltung aus einem ersten

Leistungshalblei erschalter Tl und einem zweiten

Leistungshalbleiterschalter T2 auf, wobei dem ersten und dem zweiten Leistungshalbleiterschalter Tl, T2 jeweils eine antiparallele bzw. gegensinnig parallel geschaltete

Freilaufdiode Dl bzw. D2 zugeordnet ist, Die Freilaufdioden Dl, D2 dienen dazu, bei ausgeschaltetem

Leistungshalbleiterschalter Tl bzw. T2 Betriebsstrom zu führen und den zugehörigen Leistungsschalter gegen unzulässige Überbzw. Sperrspannungen zu schützen.

In ähnlicher Weise weist der zweite Leistungshalbleiterzweig 22 eine Reihenschaltung aus einem dritten und einem vierten Leistungshalbleiterschalter T3, T4 auf, denen j eweils eine Freilaufdiode D3 bzw. D4 antiparallel geschaltet ist. Die Freilaufdicden D3, D4 erfüllen die gleiche Funktion wie die

Freilaufdioden Dl, D2.

Die Leistungshalbleiterschalter T1-T4 sind steuerbare Schalter, die hier vorteilhafterweise durch IGBTs

(Bipolartransistoren mit isolierter Gate-Elektrode) gebildet sind. Prinzipiell könnten aber auch andere Transistoren, wie bspw« Feldeffekttransistoren, insbesondere MOSFETs, Gate-Turn- Off (GTO) -Thyristoren, IGC-Thyristoren (Integrated Gate-Commu- tated Thyristors, IGCTs) und andere vergleichbare schaltbare elektronische Bauelemente eingesetzt werden. Die hier

verwendeten Bezeichnungen Kollektor, Emitter und Gate-Elektrode beziehen sich auf die bevorzugte Verwendung von IGBTs als die Leistungshalbleiterschalter T1- 4 der Brückenschaltung 18, wobei für den Fachmann die entsprechenden Bezeichnungen für Anschlüsse und Elektroden anderer vergleichbarer

Halbleiterbauelemente ohne weiteres geläufig sind.

Wie aus Fig. 2 ersichtlich, ist der Emitter des ersten Leistungshalbleiterschalters Tl mit dem Kollektor des zweiten

Leistungshalbleiterschalters 2 verbunden, wobei der

Verbindungspunkt einen ersten Wechselspannungsanschluss 26 des Submoduls 14 bildet, der wahlweise ein Eingangs- oder

Ausgangsanschluss sein kann . Ebenso ist der Emitter des dritten Leistungshalbleiterschalters 13 mit dem Kollektor des vierten Leistungshalbleiterschalters T4 verbunden, wobei der Verbindungspunk einen zweiten Wechselspannungsanschluss 27 des Submoduls 14 bildet, der wahlweise ein Eingangs- oder Ausgangsanschluss sein kann.

Zu den beiden parallel geschalteten Reihenschaltungen bzw, Leistungshalbleiterzweigen 21, 22 ist der als Energiespeieher 19 dienende Kondensator C parallel geschaltet, der auch als Gleichspannungszwi schenkreiskondensa cr des Submoduls 14 bezeichnet werden kann. Die Gleichspannung u<sc an dem

Kondensator C ist aufgrund der Schaltung der Freilaufdioden D1-D4 stets positiv und kann je nach Bemessung und Anwendung bspw . zwischen einigen hundert Volt und einigen kV betragen. Die Klemmenspannung u a zwischen den AC-Anschlüssen 26, 27 des Submoduls 14 kann im Wesentlichen die Werte -u.de, +Udc oder 0 annehmen . Die Gleichspannung dc an dem Kondensator C kann größer oder kleiner werden. Ein Strom kann durch das Submodul 14 prinzipiell i beide Richtungen, also von dem Anschluss 26 zu dem Änschluss 27 oder umgekehrt von dem Anschluss 27 zu dem Anschluss 26 fließen. Wie nachstehend im Einzelnen erläutert, werden die Submodule 14 erfindungsgemäß geeignet angesteuert, damit durch jedes Submodul 14 in dem nodularen

Mehrpunk Stromrichter 8 nach Fig. 1 stets ein

unidirektionaler, also lediglich eine einzige Polarität aufweisender, vorzugsweise kontinuierlicher Strom, bspw. ein entweder positiver oder negativer im Wesentlichen

sinusförmiger Strom in lediglich eine Richtung, bspw. von dem Anschluss 26 zu dem Anschluss 27, fließt .

Erneut bezugnehmend auf Fig. 1 ist ferner eine

Steuereinrichtung 28 ersichtlich, die dazu vorgesehen ist, auf der Basis der momentanen Betriebsbedingungen den Betrieb des Stromrichters 8 geeignet zu steuern. Die Steuerungspfade sind in Fig. 1 der Übersichtlichkeit wegen nur an wenigen Stellen durch gestrichelte Pfeile angedeutet . Insbesondere steuert die Steuereinrichtung 28 mittels einer Ansteuereinrichtung 29 die Leistungshalbleiterschalter T1-T4 der Submodule 14 aller Stromrichterzweige 9a-f geeignet an, um aus der Netzspannung us ( t } bzw. deren Transformierten an den

Wechselspannungsanschlüssen 17a-c eine gewünschte

Gleichspannung Udc zwischen den Gleichspannungsanschlüssen 12, 13 des Stromrichters 8 zu erzeugen oder umgekehrt . Die hierzu geeigneten Schaltsignale s ( t ) werden von einer zugehörigen Steuerlogik 31 bestimmt, die je nach Konfiguration auch eine

Regeleinrichtung 32 zur Regelung der Zweigströme durch die Stromrichterzweige 9a-f enthalten kann. Die Steuereinrichtung 28 mit ihren Funktionsblöcken 29, 31 und 32 ist in größeren Einzelheiten nachstehend im Zusammenhang mit den Figuren 4 bis 11 näher beschrieben.

Die Steuereinrichtung 28 steuert den Betrieb des

Stromrichters 8 in Abhängigkeit von Parametern, die von einer Überwachungseinrichtung 33 im Betrieb laufend gemessen bzw. bestimmt werden. In Fig. 1 sind beispielhafte Messpfade dargestellt, obwohl aus Übersichtlichkeit einige weggelassen wurden. Wie dargestellt, können bspw. alle Phasen der

Netzspannung u« (t) und/oder, wenn ein Transformator 7

eingesetzt wird, die Phasenspannungen an den

Wechselspannungsanschlüssen 17a-c gemessen werden . Ferner können die Phasenströme an den Wechselspannungsanschlüssen 17a-c direkt gemessen werden. Noch weiter werden vorzugsweise die Zweigströme i q ( t ) in den Stromrichterzweigen 9a-f und/oder der Zwischenkreisst öm Idc mit entsprechenden St omwandlern direkt gemessen. Ferner werden die Potentiale an den

Gleichspannungsanschlüssen 12, 13 erfasst, um die Spannung üdc des Gleichspannungszwischenkreises zu bestimmen. Es können andere Größen, als hier angegeben, gemessen werden, und manche Größen können aus anderen Größen mit allgemeinen bekannten Beziehungen für elektrische Ströme und Spannungen bestimmt werden .

Zum Verständnis der Funktionsweise des erfindungsgemäßen modularen MehrpunktStromrichters 8 wird zunächst auf Fig» 3 Bezug genommen, die ein Ersatzschaltbild eines Phasenzweigs aus den Phasenzweigen lla-c zeigt, wobei hier lediglich als ein Beispiel der Phasenzweig IIa mit dem oberen

Stromrichterzweig 9a und dem unteren Stromrichterzweig 9b betrachtet wird. Wie zu sehen, können die Submodule 14 eines Zweiges bei entsprechendender, idealer Ansteuerung summarisch durch ideale gesteuerte Spannungsquellen u q i, u q 2 ersetzt werden. Beide Spannungsquellen u q i , u Q 2 werden symmetrisch belastet. Die Spannung Ode zwischen den

Gleichspannungsanschlüssen 12, 13 wird als konstant angenommen und verteilt sich gleichmäßig auf die Reihenschaltung der

Kondensatoren C, 19 in dem oberen und dem unteren

Stromrichterzweig 9a, 9b. Die maximal einstellbare

Spannungsamplitude ü N eines Phasenmoduls bezieht sich somit auf

*4Udc -

Der Strom in einem Strom ichterzweig 9a-f, also in der Spannungsqueile u q i, u q z, ist die Summe aus dem

Gleichstromanteil I g in dem Phasenmodul lla-c und dem halben Wechselstromanteil ( t ) . Bei symmetrischer Auslegung fließt somit bspw. durch den oberen Stromrichterzweig 9a der Strom I g + *iiu ( t) , während durch den unteren Stromrichterzweig 9b der Strom Ig - ^i N {t) fließt.

Die Anzahl der benötigten Submodule 14 pro

Stromrichterzweig 9a-f ist durch die maximale Zweigspannung wobei ÜH der Effektivwert der Wechselspannung u N ( t ) ist, und die Gleichspannung der Zwischenkreiskondensatoren C, 90 der Submodule 14, UDC, wie folgt definiert:

N q = ce.il (Ü q /u äc ) (Gl. 2), wobei cell ( x ) die Auf undungs funktion ist, die der rellen Zahl x die nächstliegende nicht kleinere fanze Zahl zuordnet. Die übertragene Gieichspannungsieiscung Pdc = üa c "Iac

entspricht der entnommenen Wechselspannungslei. stung Pac, so dass bei einem n-phasigen Stromrichter die folgende Beziehung (Leistungsbilanzgleichung) gilt:

N / 2 -G N - IN = Udc-Idc (Gl. 3) .

Zum weiteren Verständnis der Funktionsweise des

erfindungsgemäßen modularen Mehrpunktstromrichters 8 wird auf die Figuren 4 und 5 Bezug genommen . Fig. 4 veranschaulicht einen herkömmlichen Betriebsmodus, bei dem der Zweigstrom i q ( t) ein kon inuierlicher, bidirektionaler, im Wesentlichen

sinusförmiger Strom ist. Dieser Strom ist, wie bereits im Zusammenhang mit Fig. 3 vorstehend erläutert, die Summe aus einem Gleichstromanteil Ig in dem Phasenzweig lla-c und dem halben Wechselstromanteil Hiu(t) , Der Gleichstromanteil I g entspricht bei einem n-phasigen Stromrichter 8 einem n-tel des Gleichstroms Jac in dem Gleichspannungszwischenkreis. Wie

ersichtlich, ist der Zweigstrom i q (t) übe einen Zeitraum, der größer ist als die halbe Periodendauer des

Wechselstromanteils, positiv u d in dem verbleibenden Zeitraum der Periode negativ, wie in Fig. 4 mit einem gestrichelten Kreis angezeigt .

Fig. 5a zeigt einen ersten, diskontinuierlichen

Betriebsmodus gemäß der Erfindung, der einer

Halbweiiengleichrichtung ähnlich ist. Es ist stark

vereinfacht, unter Weglassung der entstehenden Harmonischen und sonstigen Störsignale ein Zweigstrom i q ( t) im Verlauf der Zeit t veranschaulicht . Wie ersichtlich, leitet bspw. der Stromrichterzweig 9a, 9c, 9e» der mit dem positiven

Gieichspannungsanschluss 12 verbunden ist, die positive Halbwelle des Stromrichterstroms, während der Zweigstrom für den Zeitraum der negativen Halbwelle null ist. Entsprechend leitet der Stromrichterzweig 9b, 9d, 9f, der mit dem negativen Überspannungsanschluss 13 verbunden ist, die negative

Halbwelle des Stromrichterstroms , während der Zweigstrom während der positiven Halbwelle null ist. Deshalb wird dieser Betriebsmodus auch als diskontinuierlicher Strombetriebsmodus bezeichnet. Durch geeignete Ansteuerung der

Leistungshalbleiterschalter T1-T4 in den Submodulen 14 der oberen Stromrichterzweige 9a, 9c, 9e bzw. der unteren

Stromrichterzweig 9b, 9d, 9f kann bewirkt werden, dass durch jeden Stromrichterzweig 9a-9f stets ein diskontinuierlicher unipolarer Strom in etwa in einer Halbwelle fließt.

Vorteilhafterweise müssen hier nur 2 der 4

Leistungshalbleiterschalter T1-T4, also entweder Tl, T4 oder

12, T3, angesteuert werden, um diesen diskontinuierlichen unidirektion len Strombetriebsmodus zu implementieren. Wie j edoch aus Fig. 5a ersichtlich, sind im Vergleich zu den relativ hohen Spitzenwerten der Zweigströme die Effektivwerte relativ niedrig. Die übertragbare Leistung des Stromrichters 8 ist somit begrenzt bzw. die Halbleiterschalter T1-T4 werden nur unzureichend ausgenutzt, weshalb der nachfolgend

erläuterte kontinuierliche Betriebsmodus nach Fig. 5b

bevorzugt wird .

Fig. 5b zeigt einen kontinuierlichen unidirektionalen Strombetriebsmodus gemäß der Erfindung, Wie veranschaulicht, wird der Zweigstrom i q (t ) durch die Steuerlogik 31 der

Steuereinrichtung 28 derart gesteuert bzw. geregelt, dass der Zweigstrom i q ( t) kontinuierlich und stets entweder positiv (oder zumindest nicht-negativ) oder negativ (oder zumindest nicht-positiv} ist. Dies wird dadurch erreicht, dass der

Gleichspannungsanteil I g des Zweigstroms i q ( t) im Wesentlichen auf einen Wert eingestellt wird, der größer oder gleich der maximalen Amplitude Ϊ Ν des Wechsels romantei1s is(t) ist. Dies bedeutet, dass die Steuereinrichtung 28 im Betrieb den

Gleichstrom Id C des Gieichspannungszwischenk eises derart erhöht, dass sich in allen Stromrichte zweigen ein a-f ein kontinuierlicher unidirek ionaler Zweigstrom i q (t ) ergibt » der lediglich eine einzige Polarität aufweist. Wie in Fig. 5b veranschaulicht , kann der Gleichstromanteil Ig vorzugsweise derart eingestellt werden, dass der Zweigstrom iq (t ) stets betragsmäßig um mindestens einen gewünschten Betrag I m ±n größer als 0 ist .

Durch Erhöhung des Gleichstromanteils I g der Zweigströme in den S romrichterzweigen 9a-f » so dass der Zweigstrom seine Polarität nie ändert, kann vorteilhafterweise ohne

Modifikation der leistungselektronischen Schaltung, allein durch eine geeignete Steuerlogik 31 bei gleichbleibender

Anzahl von Submodulen (N q ) die übertragene Leistung erhöht werden, indem die entsprechenden Bedingungen am Ansch1usspunkt des Stromrichters 8 geschaffen werden. Dies ist insbesondere dann von Vorteil, wenn die maximale Spannung üdc des

Gleichspannungszwischenkreises begrenzt ist, wie dies bspw. bei Hochspannungs-Gleichspannungs-Übertragungskabein der Fall ist, bei denen die maximal übertragbare Gleichspannung

aufgrund von Technologiebeschränkongen aktuell auf +320 kVdc beschränkt ist.

Außerdem wird durch die erfindungsgemäße Maßnahme

vorteilh f erweise die Spannung des

Gleichspannungszwischenkreises nicht erhöht, um die

übertragbare Leistung zu erhöhen. Eine höhere Spannung des

Gleichspannungszwischenkreises des Stromrichters 8 würde mehr Submodule 14 erfordern, was den Schaltungs- und

Ansteuerungsaufwand mit den zugehörigen Kosten steigern würde. Ein noch weiterer Vorteil der Erfindung liegt darin, dass lediglich zwei der vier Leistungshalbleiterschalter, z . B .

IGBTs T1-T4, des Submoduls 14 {wie in Fig. 2 veranschaulicht) erforderlich sind bzw. angesteuert werden müssen, um den kontinuierlichen unipolaren Zweigstrom i q {t) und bipolare Klemmenspannungen unter Verwendung von H-Brücken zu

realisieren. Dies ist auch aus Fig. 6 ersichtlich, die das Submodul nach Fig. 2 wiedergibt und in der zusätzlich die sich für den kontinuierlichen unidirekt onalen Strombetriebsmodus ergebenden Zweigs rompfade für eine beispielhafte

Stromflussrichtung von dem ersten 26 zu dem zweiten 27

echselspannungsanschiuss veranschaulicht sind.

Bezug nehmend auf Fig. 6 fließt der Strom in dem Submodul 14 , der dem Zweigstrom i q ( t ) entspricht, für den Fall , dass die

Leitungshalbleiterschalter T2 T3 beide eingeschaltet bzw.

geschlossen sind, von dem Wechselspannungsanschiuss 26 über den geschlossenen Schalter T2 , den Kondensator C und den geschlossenen Schalter T3 zu dem Anschluss 27, wie durch den mit durchgezogener Linie eingezeichneten Strompfad (1)

veranschaulicht. Die Klemmenspannung u a zwischen dem Anschluss 26 und dem Anschluss 27 beträgt -Udc

Falls der Schalter T2 eingeschaltet und der Schalter T3 ausgeschaltet ist, fließt der Submodulström bzw. Zweigstrom von dem Anschluss 26 über den geschlossenen Schalter T2 und die zu dem Schalter T4 antiparallele Freilaufdiode D4 zu dem Anschluss 27, wie durch den gestrichelten Strompfad {2} veranschaulicht. Die Klemmenspannung u ä ist gleich null.

Alternativ kann der Schalter T2 ausgeschaltet und der Schalter T3 eingeschaltet werden. Der Zweigstrom fließt dann von dem Anschluss 26 über die zu dem Schalter Tl antiparallele

Freilaufdiode Dl und den geschlossenen Schalter T3 zu dem Wechselspannungsanschluss 27 wieder in der gleichen Richtung.

Dieser Strompfad ist mit strichpunktierter Linie (3)

veranschaulicht. Die Klemmenspannung u a ist gleich null.

Schließlic ist für eine Phase, in der beide Schalter T2 und T3 ausgeschaltet sind, der Strompfad (4) mit einer punktierten Linie in Fig. 6 veranschaulicht, wobei der Zweigbzw. Submodulstrom von dem Anschluss 26 über die zu dem

Schalter Tl antiparallele Freilaufdiode Dl, den Kondensator C, 19 und die zu dem Schalter C4 antiparallele Diode D4 zu dem Wechselspannungsanschluss 27 fließt. Die Klemmenspannung u a beträgt +uac ·

Insofern brauchen die Leistungshalbleiterschalter Tl, T4 zur Realisierung des kontinuierlichen unidirektionalen

Zweigstroms i q (t ) gemäß der Erfindung, wie in Fig. 5b

veranschaulicht, nicht angesteuert zu werden. Dies reduziert den Ansteuerungsaufwand und die Schaltverluste .

Außerdem ermöglicht die Erfindung eine Reduktion der Schaltungskomplexität. Die für die Änsteuerung nicht

erforderlichen Leistungshalbleiterschalter Tl, T4 können weggelassen werden. Dies ergibt ein für den

Mehrpunktstromrichter 8 verwendbares Submodul 14 , das die Konfiguration einer reduzierten oder asymmetrischen K-Brücke aufweist, wie in Fig. 7 dargestellt . Das Submodul 1 ' nach

Fig. 7 unterscheidet sich von demjenigen gemäß den Figuren 2 und 6 dadurch, dass hier in einer H-Brückendiagonale anstelle der LeistungshalbleiterSchalter Tl, T4 mit zugehörigen

Freilaufdioden nun lediglich die Dioden Dl und D4 vorgesehen sind. Selbstverständlich können je nach

Schaltungskonfiguration, Anschluss der Submodule und Einsatz als Gleich- oder Wechselstromrichter anstelle des Paars

Leistungshalbleiterschalter Tl, T4 die Leistungshalbleiterschalter T2, T3 auf der anderen Brückendiagonale weggelassen werden. Jedenfalls können teure Leistungshalbleiterelemente gemeinsam mit zugehörigen, hier nicht näher veranschaulichten Ar.st.euere.inheit.er- bzw. Gate- Treibern eingespart werden . Der Schaltungsaufwand, der

Ans euerungsaufwand, die Hersteillings- und Betriebskosten werden reduziert.

Wie bereits vorstehend erläutert, steuert die

Steuereinrichtung 28 den Betrieb des Stromrichters 8 in

Abhängigkeit von durch die Überwachungseinrichtung 33

gemessenen bzw. bestimmten Betriebsgrößen. Hierbei gibt die Steuerlogik 31 auch die Zweigströme geeignet vo und bestimmt die hierzu erforderliche Schaltfunktion s ( t ) , die die

Ansteuereinrichtung 29 zur Ansteuerung der

Leistungshalbleiterschalter T1-T4 der Submoduie 14, 14' verwendet. Die Steuerlogik 31 kann den Zweigstrom i q ( t) durch die Stromrichterzweige 9a-f unter Verwendung einer offenen

Steuerstrecke steuern, indem sie einen hinreichenden

Gleichstromanteil I g des Zweigstroms bei bekanntem

Wechselstrom.ante.il Hin ( t ) festlegt und daraus die je nach verwendetem Modulationsverfahren erforderliche Schaltfunktion bzw. das stationäre Tast erhältnis bestimmt.

In einer bevorzugten Ausführungsform wird der Zweigstrom i q ( t) aber mit einem geschlossenen Regelkreis passend geregelt. Hierzu weist die Steuerlogik 31 die Regeleinrichtung 32 auf, die dazu eingerichtet ist, anhand der durch die

Überwachungseinrichtung bestimmten Größen, die Zweigströme in den Stromrichterzweigen 9a-f kennzeichnen, die Zweigströme i q ( t) durch die Stromrichterzweige 9a-f zu regeln. Ein stark vereinfachtes Blockschaltbild einer möglichen Regeleinrichtung 32 ist in Fig. 8 veranschaulicht. Wie aus Fig. 8 ersichtlich, weist die Regelein ichtung 32 hier eine Stromregeleinheit 34, eine SpannungsregeIeinhert 36 und eine Modulationseinheit 37 auf. Die Stromregeleinheit 34 bestimmt zunächst mit einem Addierer 38 die Differenz zwischen dem Sollwert und dem Istwert iq__ ac des Wechselstromanteils des Zweigstroms und fügt diese Abweichung als Führungsgröße einem Regler, vorzugsweise einem Proportional-Integral (PI) - Regler 39, zu. Ferner wird die Abweichung zwischen, dem

Sollwert I * g und dem Istwert I g des Gleichstromanteils des Zweigstroms i q (t) mit einem weiteren Addierer 41 bestimmt und einem weiteren Regler 42 zugeführt. Die Ausgangssignale der Regler 39, 42 werden mit einem Addierer 43 aufsummiert, um die Stellgröße für den Stromrichterzweigstrom, zu erhalten. Daraus kann bei gewünschter zu übertragender Leistung der Sollwert u * q für die Zweigspannung als Führungsgröße für die

Spannungsregeleinheit 36 bestimmt werden.

Die Spannungsregeleinheit 36 bestimmt mit einem weiterem Addierer 44 die Regelabweichung zwischen dem Sollwert u * g und dem Istwert u q der Zweigspannung und führt die Differenz einem weiteren Regler 44, vorzugsweise PI-Regler, zu, um eine

Scllschaltfunktion s * (t) zur Ansteuerung der

Leistungshalbleiterschalter T1-T4 der Submodule 14, 14' der Stromz eige 9a-f zu bestimmen.

Die Stellgröße s * ( t ) wird der Modulationseinheit 37

zugeführt, die daraus in Abhängigkeit von dem eingesetzten Modulationsverfahren, wie bspw. PWM-Modulation,

Raumzeigermodulation oder dgl , » die tatsächlichen

Schaltsignaie s (t) für die Leistungshalbieiterschal ter T1-T4 der Submodule 14, 14" bestimmt.

Somit kann die Regeleinrichtung 32 fortlaufend den Zweigstrom i q ( t ) mittels der Überwachungseinrichtung 33 direkt oder indirekt überwachen und derart regeln, dass ein

kontinuierlicher, unidirektionaler bzw. unipolarer Zweigstrom i q (t) erhalten wird. Selbstverständlich sind außer den

Regelkreisen nach Fig. 8 andere Regelungskonzepte bzw. - verfahren, wie bspw. adaptive Regelungen,, Zustandsregeiungen oder dgl . , zu diesem Zweck einsetzbar.

Im Folgenden werden vorteilhafte Regelungsstrukturen in größeren Einzelheiten erläutert, die verwendet werden können, um unidirektionale bzw. unipolare Zweigströme ig ( t ) in den St omrichterzweigen 9a-f sowie zusätzliche vorteilhafte

Aspekte der Erfindung zu erhalten. Zum besseren Verständnis dieser Aspekte sollen zunächst die Anforderungen für einen unidirektionalen bzw. unipolaren Zweigstrom genauer betrachtet werden, wobei ein dreiphasiger Stromrichter 8 betrachtet wird.

An den Aeschlusspunkten 12, 13 des Stromrichters 8 auf der Gleichspannungsseite 6 gilt: i = I Jc

An. den Anschlusspunkten 17a-c auf der

Wechselspannungsseite 3 gilt:

u N {t) = Ü N cos{ax)

Aus den Spannungen und Strömen an diesen Anschlusspunkten ergeben sich folgende Spannungen und Ströme für einen

Phasenzweig lla-e des Stromrichters 8, nämlich für die

Spannung eines Phasenzweiges:

und für den Strom eines Phasenzweiges :

Für einen unidi ekt ionalen bzw. unipolaren sinusförmigen

Zweigstrom gilt i (() > 0 und

Der Gleichstrom Idc kann bsp . als 1,5-facher Wert der

Spitzenspannung des Wechselstromes festgelegt werden. Diese Bedingung kann durch ein bestimmtes Verhältnis zwischen

Gleich- und Wechselspannung erreicht werden. Dieser

Zusammenhang kann mit Hilfe der Leistungsbilanz des Zweiges darg

— - ' -^-cos(2<tf +· ) (Gl.7) ,

Aus dieser Betrachtung wird ersichtlich, dass ein Te m mit konstanter Leistung und zwei Terme mit oszillierender Leistung vorliegen. Die Terme mit oszillierender Leistung treten mit der Grundfrequenz (1. Harmonischen) und der 2. Harmonischen auf und wirken sich auf die resultierende Spannungswelligkeit der Kondensatoren 19 in den Brückenschaltungen 18 eines

Zweiges 9a- f aus. Die mittlere Leistung des Kondensators 19 ist Null, womit sich folgendes Gleichgewicht zwischen der Wechsel- und Gleichstromleistung des Umrichters einstellen muss

Unter der Berücksichtigung eines unipolaren Zweigstroms mit

3 - der Bedingung l -— / Λ , ergibt sich:

Entsprechend der Leistungsbilanz sollte die Spannung der Gleichspannungsseite somit kleiner sein als :

U dc < U N GOs((p) (Gl. 9).

Diese Bedingung kann erfüllt werden, wenn das

Spannungsniveau der Gleichspannungsseite 6 unterhalb der abgeleiteten Grenze liegt,

Fig. 9 zeigt ein vereinfachtes Blockschaltbild eines ersten Beispiels zur Implementierung einer Regelungsstruktur eines AC/DC-ümrichters 8 zur Umsetzung unipolarer Zweigströme.

Hierin wird bspw. die Gleichspannung Ode dynamisch angepasst, um unterhalb des kritischen Wertes nach Gl. 9 zu verbleiben. I dem Biockdiag amm nach Fig. 9 können folgende

Funktionsblöcke unterschieden werden, die wahlweise auch als Einrichtungen bezeichnet werden: PLL (Phase Locked Loop) -Block 47 als Phasenregelschleife zur Synchronisation mit der

WechselSpannung u H des elektrischen Netzes; Block 48 zur

Überwachung des Netzes; Block 49 zur Erzeugung des

Gleichspannungssollwertes; Block 51 als Regelschleife für die Kondensatorspannung; Blöcke 52 und 53 als Regelschleifen für die Ströme (d~ und q- omponenten) auf der

Wechselspannungsseite; Blöcke 54, 56 zur Transformation der dreiphasigen Größen in das d, q-Koordinatensys em und

umgekehrt; und Block 5? zur Erzeugung der Sollwerte der

Phasenzweigspannungen . Der PLL-Block 47 erhält Messwerte der Wechselspannungen UR des elektrischen Netzes und erzeugt mit Hilfe einer

Phasenregelschleife einen Winkel GPLL zur Positionierung des rotierenden d, q-Koordinatensystems SFR (Synchronous d, q

Reference Frame} des Reglers, in dem der Spannungsvektor mit der d-Achse ausgerichtet ist.

Der Block 48 zur Netzüberwachung bestimmt die Höhe der Netzspannungen UN und den Leistungsfaktor cos (φ) . Auf Basis dieser Informationen wird im Block 49 der Sollwert der

Gleichspannung Udc Ref , d.h. der Gleichanteil in den Referenzen aller 6 Phasenzweigspannungen des Umrichters 8, eingestellt, so dass die Bedingung U dc < Ü N cos<p) erfüllt ist. Auf diese Art wird sichergestellt, dass der Zweigstrom unabhängig davon, wie groß der Gleichstrom im Zwischenkreis ist, unipolar ist bzw. ein positives Vorzeichen hat.

Die (mit der Netzspannung phasengleiche)

Netzstromkomponente der d-Achse wird verwendet, um den

Wirkleistungstransfer durch die echsei Spannungsanschl üsse 17a-c des Stromrichters 8 zu regeln. Diese Komponente wird weiterhin, verwendet, um die gesamte gespeicherte Energiemenge in den Gleichspannungskondensatoren 19 auszubalancieren.

Dementsprechend wird die d-Komponente des Metzstromsollwertes durch den Regler 51 für die Kondensato Spannung vorgegebe . Dieser Regier 51 verwendet den Mittelwert aller

Kondensatorspannungen und gibt den Sollwert der d-Komponente des Stromes IȊ Ref vor.

Die q-Komponente des Stromes steht senkrecht zur

Hetzspannung und kann verwendet werden, um die Blindleistung und den Leistungsfaktor cos (φ) zu regeln. In dem dargelegten Beispiel ist der Sollwert der q--Stromkomponente I N q Ref zu Null gesetzt .

Der Netzstrom wird anhand der Sollwerte für die

Wechselspannungsanteile in den Phasenzweigen des Stromrichters 8 geregelt. Typischerweise werden zwei PI-Regler 52, 53 zur Regelung der d- und der q- omponente des Netzstromes

eingesetzt. Die dreiphasigen Netzströme werden gemessen und im Block 54 in die d- und q-Komponenten transformiert (SRF) , die als Rückkopplungssignale für die geschlossene

Stromregelschleife -verwendet werden.

Die Stromregler 52, 53 setzen die Wechselspannungs- Sollwerte U M Ref und Unq Eef in dem d, g-Koordinatensystem fest. Nach einer Koordinatentransformation (d, q zu a,b, c) im Block

56 werden die Wechselspannungssollwerte o H i BEf - ÜH3 EEf berechnet und dem Block 57 zugeführt.

Im Block 57 erfolgt die Berechnung der Spannungssollwerte für alle Phasenzweige durch Kombination der Gleich- und

Wechselspannungssollwerte für jeden Phasenzweig. Im Mittel synthetisiert der Phasenzweig des Stromrichters die

Spannungssollwerte durch eine geeignete Modulation bzw.

Pulsbreitenmodulation der Submodule des Phasenzweiges ,

Mit der Regelungsstruktur nach Fig. 9 kann die

Steuereinrichtung für einen oder mehrere der folgenden

vorteilhaften Betriebsmodi mit unipolarem Zweigstrom

eingerichtet sein. In einem ersten Betriebsmodus kann sie bspw. zur aktiven Beeinflussung des Zweigstromverlaufs durch Überlagerung der 2. Harmonischen in einem Kreisstrom

eingerichtet sein, so dass der Gleichstrom Idc für einen

Betrieb mit unipolarem Zweigstrom eingestellt werden kann.

Beispielsweise sei ein Kreisstrom der 2. Harmonischen mit folgendem Wert angenommen: Der geforderte Gleichstrom I<_ c für einen Betrieb mit unip a;

Die beispielhaften Verläufe sind in dem Schaubild nach Fig.

10 dargestellt. In dieser Betriebsart ist ein. kontinuierlicher Strom*luss in einem Phasenzweig lla-c angenommen, wobei eine aktive Überlagerung des Kreisstroms der 2. Harmonischen derart ausgeführt ist, dass der Zweigstrom positiv ist und der

Gleichstrom Idc in etwa auf das Niveau des Spitzenwertes Ϊ des Wechselstromes herabgesetzt werden kann. Dementsprechend können die Zweigströme durch den Kreisstrom in seiner

Amplitude in bestimmten Grenzen beeinflusst werden, so dass verschiedene Verhältnisse zwischen den gleich- und

wechselspannungsseitigen Strömen und Spannungen erreicht

werden können .

Für das erläuterte Beispiel sollte der Spitzenwert der Wechselspannung Ö H oberhalb des nachstehend hergeleiteten

Wertes liege :

3 *

U äc <- V N cos{<p) (Gl. 11)

Wie aus Gl. 11 ersichtlich, kann durch Überlagerung der 2, Harmonischen eines Kreisstroms vorteilhafterweise das

Verhältnis zwischen Wechsel- und Gleichspannung des Umrichters in einem viel größerem Bereich variiert bzw. eingestellt werden. Damit kann der Betriebsbereich für den Betrieb mit unipolarem Zweigstrom erweitert werden.

In einem weiteren Betriebsmodus kann die Steuereinrichtung 28 zur Minimierung der Rippelspannung der Kondensatoren 19 unter Verwendung unipolarer Zweiströme mit überlagerter 2, Harmonischen des Kreisstroms eingerichtet sein . Da die

Überlagerung der 2. Harmonischen des Kreisstroms vielfältige Betriebspunkte mit unterschiedlichem Verhältnis zwischen

Wechsel- und Gleichspannung ermöglicht, kann der Stromrichter 8 in Betriebspunkten betrieben werden, in denen sowohl unipolare Zweigströme erhalten werden als auch die

Rippelspannung der Kondensatoren der Brückschaltungen

minimiert wird. Dies ist ein zusätzlicher Aspekt des

überlagerten Kreisstroms der 2. Harmonischen, der genutzt werden kann, um die dominierende 1. Harmonische in der

Rippelspannung der Kondensatoren zu reduzieren oder zu

eliminieren,, wenn hohe Leistungsfaktoren cos (φ) vorliegen.

Die Bedingung zur Beseitigung der 1. Harmonischen der

Kondensatorspannung kann aus Gl . 7 und der Anforderung abgeleitet werden, dass die Leistungsfluktuation des

Phasenzweiges für die Grundfrequenz Null ist, so dass gelten muss

Für große cos (φ) , d.h. φ«0 , erhält man 2 2 3

und durch Einfügung der Leistungsbilanz nach Gl, 8: 2 2 λ 2 3 Daraus resultiert als notwendige Bedingung, für die die 1, Harmonische in der HippelSpannung des Kondensators für einen Stromrichterbetrieb bei hohem Leistungsfaktor cos (<p) beseitigt werden kann:

Aus praktischer Sicht bedeutet dieser Ausdruck,, dass der Gleichstrom nur etwas größer als der Spitzenwert des

Wechselstroms sein muss, um in Fällen mit hohem

Leistungsfaktor cos (φ) die Welligkeit der 1, Harmonischen in der KondensatorSpannung zu beseitigen .

Fig. 11 zeigt ein vereinfachtes Blockschaltbild eines weiteren Beispiels zur Implementierung einer Regelungsstruktur eines AC/DC-ümrichters 8 zur Umsetzung unipolarer Zweigströme. Diese Regelungsstruktur basiert auf einer integrierten

Regelung der 2. Harmonischen des Kreis Stroms zur Beeinflussung der Phasenzweigströme . Im folgenden Ausführungsbeispiel wird zunächst angenommen, dass der Gleichstrom I<j C geregelt wird, wobei sich die Gleichspannung üdc in Abhängigkeit von den Lastbedingungen ändert.

Im Vergleich zu der Regelungsstruktur nach Fig. 9 werden hier folgende Funktionsblöcke zusätzlich verwendet: Block 58 zur Gleichstromregelung; Block 59 zur Erzeugung des Sollwertes der 2, Harmonischen des Kreisstroms; Block 61 zur

Kreisstromregelung; und Block 62 zur Zerlegung der

Zweigströme .

Alle Blöcke 47-57 haben die gleiche Funktion wie in der Regelungsstruktur nach Fig. 9, so dass diesbezüglich auf die vorstehenden Ausführungen zu Fig. 9 verwiesen wird.

Nachstehend werden nur die zusätzlichen Funktionsblöcke 58-62 näher erläutert.

Die Ströme auf der Wechsel- und Gleichspannungsseite können gesondert gemessen oder aus den gemessenen

Phasenzweigströmen ermittelt werden. Es ist ferner möglich aus den Phasenzweigströmen des Stromrichters 8 die vorliegenden

Kreisströme zu bestimmen.

In dem Äusführungsbeispiel wird der Gleichstrom Idc durch den Gleichstromregler 58 geführt, der das Niveau der

Gleichspannung Udc anpasst, bis der Gleichstrom Idc dem

zughörigen Sollwert entspricht.

Auf Grundlage der Gleich- und Wechselstromamplituden wird der Kreisstrom der 2. Harmonischen im Block 53 derart

vorgegeben, dass die Phasenzweigströme einen unipolaren Strom führen.

Der Soliwert der 2. Harmonischen wird dem

Kreisstromregler 61 übergeben, der diesen mit dem tatsächlich vor 1 legenden Wert des Kreisstroms vergleicht und

Phasenzweigspannungssollwerte entsprechend nachführt, um einen Fluss des geforderten Kreisstroms der 2. Harmonischen zu

bewirken. Die tatsächlich vorliegenden Kreisströme werden durch den Block 62 zur Zerlegung der Phasenzweigströme

ermittelt .

Äls ein weiteres Beispiel für einen Betriebsmodus kann die Steuereinrichtung 28 eingerichtet sein, um für den Betrieb mit konstanter Gleichspannung Udc die Rippe!Spannung der

Kondensatoren zu minimieren. Dafür kann eine ähnliche

Regelungsstruktur wie in Fig, 11 verwendet werden. Der einzige Unterschied ist, dass die Gleichspannung Udc an den

entsprechenden Anschlusspunkten 12, 13 fest ist, d.h. der Stomrichter 8 befindet sich in der Betriebsart mit Gleichspannungsregelung wie in dem Beispiel nach Fig . 9.

Demnach gilt (vgl. Gl. 11}:

Ein Kreisstrom der 2. Harmonischen wird mit folgender Amplitude überlagert;

Ein Kreisstrom der 2. Harmonischen mit dieser Amplitude erzeugt unipolare Phasenzweigströme mit einer Minimierung der Rippe1Spannung der Kondensatoren.

Als ein noch weiteres Beispiel für einen Betriebsmodus, für den die Steuereinrichtung 28 eingerichtet sein kann, sei nochmals der in Fig. 5a dargestellte Betriebsmodus mit diskontinuierlichem Zweigstrom betrachtet. Die vorstehend beschriebenen Betriebsmodi unterlagen der Annahme eines kontinuierlichen, unipolaren Zweigstroms mit einem

gegebenenfalls aktiv geregelten Kreisstrom der 2. Harmonischen unter der Bedingung, dass der Spitzenwert des Wechselstromes ungefähr gleich dem Gleichstrom sei.

Die Betriebsart mit Überlagerung des Kreisstromes der 2.

Harmonischen kann in natürlicher Weise ohne aktive Regelung erreicht werden. Wenn der Gleichstromwert etwas oberhalb des Spitzenwertes des Netzstroms liegt (bspw. bei einem Faktor von 1,05), verteilen sich die Phasenzweigströme auf natürliche Weise ähnlich einer 6- uls-Brückengleichrichtung . Die

Zweigströme haben dann einen diskontinuierlichen Verlauf mit nicht leitenden Phasen bis zu einer halben Periode der

Grundfrequenz . Die resultierenden Zweigströme sehen denen mit aktiver Kreisstromüberlagerung ähnlich und enthalten die 2. Harmonische mit fast gleicher Amplitude . Idealisiert ergibt sich für jeden Zweigstrom der in Fig. 5b gezeigte

Stronveriauf , wobei hier die überlagerte 2. Harmonische des Kreisstroms nicht dargestellt ist.

An dieser Stelle sei angemerkt, dass die Zweigströme und der Anteil der 2. Harmonischen indirekt erreicht werden und ein konstantes, gleichbleibendes Verhältnis zwischen der

Wechsel- und Gleichstromseite vorliegt,

Fig. 12 zeigt ein Verfahren zum Betreiben eines nodularen Mehrpunktstromrichters, wie bspw. des in Fig. 1 dargestellten Stromrichters 8, der eine Anzahl von Stromrichterzweigen, bspw. 9a-f, mit jeweils einer Anzahl von Submodulen, z.B. 14» 14', enthält, wobei jedes Submodul 14, 1 ' durch eine

Brückenschaltung mit wenigstens zwei

Leistungshalbleiterschaltern gebildet ist. Das Verfahren weist im Schritt Sl ein Ansteuern der Leistungshalbleiterschalter, z.B. T1-T4, aller Submodule 14, 14' aller Stromrichterzweige 9a-£ in Abhängigkeit von den momentanen Betriebsbedingungen, um den Stromrichter 8 zu betreiben, um eine eingangsseitige Wechselspannung, z.B. Unit) des Mehrpunktstromrichters in eine ausgangsseitige Gleichspannung, z.B. Ude r umzuwandeln oder umgekehrt .

Das Verfahren weist ferner im Schritt 52 den Schritt des

Stenerns bzw. Regeins der Zweigströme, z.B. i q ( t ) , durch die Stromrichterz eige 9a-f in einer derartigen Weise auf, dass durch die Stromrichterzweige .9a-f jeweils ein Strom i (t) einer einzigen Polarität fließt. Insbesondere ist der durch die Steuerung bzw. Regelung sich ergebende Zweigstrom ein

vor ugsweise kontinuierliche , unidirekt ionaier oder

unipolarer, im Wesentlichen sinusförmiger Strom mit einem Gleichanteil , der sicherstellt, dass der Zweigstrom stets entweder positiv (zumindest nicht-nega iv) oder negativ

(zumindest nicht-positiv) ist. Alternativ kann der Strom auch ein unidirektionaler, diskontinuierlicher, im Wesentlichen sinusförmiger Strom sein, der nicht leitende Phasen bis zu einer halben Periode der Grundfrequenz der Wechselspannung aufweist .

In einer Aus führungs form weist das Verfahren ein

Überwachen wenigstens einer einen Zweigst om durch die

Stromrichte zweige kennzeichnenden Größe auf, und der Schritt

S2 des Stenerns bzw. Regeins der Zweigströme weist ein Regeln der Zweigströme in Abhängigkeit von der überwachten Größe auf .

Das Überwachen einer einen Zweigstrom durch die

Stromrichterzweige kennzeichnenden Größe kann ein direktes Messen der Zweigströme unmittelbar in den jeweiligen

Stromrichterzweigen 9a-f aufweisen, wobei dann die Zweigströme auf der Basis der Zweigstrommesswe te geregelt werden können.

Alternativ kann das Überwachen einer einen Zweigstrom durch die St omrich erzweige Sa-f kennzeichnenden Größe ein Messen eines Zwischenkreisgleichstroms, z.B. Idc, in einem

Gleichspannungszwischenkreis des Mehrpunktstromrichters 8 und von Phasenströmen in echselspannungs-Phasenausgangen 17a-c aufweisen, wobei die Zweigströme auf der Basis der Messwerte des Zwischenkreisgleichstroms und der Phasenströme geregelt werden können .

In dem Verfahren einer beliebigen vorstehend erwähnten Art können die Zweigströme auf der Basis einer Erhöhung des DC- Stromsol 1wertes oder Gleichanteils I g eines Zweigstroms i q ( t) bzw. des Zwischenkreisgleichstroms Idc gesteuert bzw. geregelt werden . In einer vorteilhaften Ausführungsform des Verfahrens kann das Steuern bzw. Regeln der Zweigströme auf der Basis einer aktiven Oberlagerung eines Kreisstromes der 2. Harmonischen vorgenommen werden, wobei gleichzeitig eine Anpassung der Gleichspannung erzielt wird. Alternativ oder zusätzlich kann gleichzeitig eine Modifikation der Verhältnisse zwischen

Wechsel- und gleichspannungsseitigen Strömen und Spannungen des Stromrichters erzielt werden. Als weitere Alternative oder weiter zusätzlich kann gleichzeitig eine Minimierung der

Rippelspannung von Kondensatoren der Submodule erzielt werden.

Im Rahmen de Erfindung sind zahlreiche Modifikationen möglich. Bspw. kann der Stromrichter 8 mehr oder weniger

Phasen als die in Fig. 1 veranschaulichten drei Phasen

enthalten. Die Anzahl der Submodule 14, 14' pro

St omrichterzweig ist ebenfalls je nach Anwendung und

Anforderung beliebig wählbar. Während die Stromrichterzweige hier identisch ausgebildet sind, könnten die

Stromrichterzweige prinzipiell unterschiedlich, auch

asymmetrisch ausgebildet sein. Obwohl in Fig. 1 der

Stromrichter 8 als ein Gleichrichter veranschaulicht ist, der die Netzspannung uw(t) in die Gleichspannung üdc an seinem

Ausgang 6 liefert, kann der Stromrichter 8 auch als

Wechselrichter oder auch als Frequenzumrichter eingerichtet sein. Der Stromrichter 8 kann für unterschiedliche Anwendungen zur Umformung und Verteilung elektrischer Energie, zur

Netzkopplung, zur Blindleistungskompensation, zur

Hochspannung-Gle chstrom-Übertragung oder für

elektromechanische Antriebe verwendet werden. Anstelle der veranschaulichten Submodule 14, 14' können auch andere

Submodule verwendet werden, wie sie bspw. in der eingangs erwähnten EP 1 497 911 Bl, außer den Halbbrücken-basierten Submodulen, verwendet werden. Es sind ein mcdularer MehrpunktStromrichter 8 zur

Umwandlung einer Wechselspannung in eine Gleichspannung oder umgekehrt und ein Verfahren zum Betreiben des

Mehrpunktstromrichters geschaffen. Der Mehrpunktstromrichter weist mehrere Stromrichterzweige 9a-f auf, wobei jeweils zwei Stromrichterzweige 9a-b, 9c-d, 9e-f miteinander verbunden sind, um einen Phasenzweig 1 la-c des Stromrichters 8 zu

bilden. Jeder Stromrichterzweig weist eine Änzahl von

gleichartigen Submodulen 14 , 14 ' auf, die jeweils durch eine H-Brückenschal ung 18 mit Leistungshalbleiterschaltern T1-T4 gebildet sind. Die Zweigströme i q (t) durch die

Stromrichterzweige 9a-f werden im Betrieb durch Erhöhung des Gleichanteils I g des Zweigstroms oder des

Zwischenkreisgieichstroms I<j c derart gesteuert bzw. geregelt, dass durch die Stromrichterzweige 9a-f jeweils ein Strom einer einzigen Polarität, vorzugsweise ein kontinuierlicher

unipolarer sinusförmiger Strom, fließt. Dadurch kann bei gleicher Anzahl von Submodulen 14, 14' pro Stromrichterzweig 9a- die übertragbare Leistung erhöht bzw. die

Leistungshalbleiterbauelemente besser ausgenutzt werden oder bei gleichbleibender übertragbarer Leistung die Anzahl von Submodulen 14, 14' reduziert werden.