Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
MULTI-COMPONENT ANTIOXIDANT COMPOUNDS, PHARMACEUTICAL COMPOSITIONS CONTAINING SAME AND THEIR USE FOR REDUCING OR PREVENTING OXIDATIVE STRESS
Document Type and Number:
WIPO Patent Application WO/2002/034202
Kind Code:
A2
Abstract:
An antioxidant compound is disclosed. The compound is characterized by (a) a peptide including at least three amino acid residues of which at least two are cysteine residues, each having a readily oxidizable sulfhydryl group for effecting antioxidation; and at least two peptide bonds, each being cleavable by at least one intracellular peptidase; and (b) a first hydrophobic or non-charged moiety being attached to an amino terminal of the peptide via a first bond and a second hydrophobic or non-charged moiety being attached to a carboxy terminal of the peptide via a second bond, the first hydrophobic or non-charged moiety and the second hydrophobic or non-charged moiety are selected so as to provide the antioxidant compound with membrane miscibility properties for permitting the antioxidant compound to cross cellular membranes; wherein cleavage of the at least two peptide bonds by the at least one intracellular peptidase results in generation of a plurality of antioxidant species, each including one of the cysteine residues having the readily oxidizable sulfhydryl group and which is also active in effecting antioxidation, thereby providing for a plurality of different antioxidant species acting in synergy in exerting antioxidation.

Inventors:
ATLAS DAPHNE (IL)
Application Number:
PCT/IL2001/000984
Publication Date:
May 02, 2002
Filing Date:
October 25, 2001
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
YISSUM RES DEV CO (IL)
ATLAS DAPHNE (IL)
International Classes:
A61K9/18; A61K38/00; A61K9/40; A61P3/10; A61P7/02; A61P9/00; A61P9/10; A61P9/12; A61P11/00; A61P11/06; A61P17/16; A61P19/02; A61P25/00; A61P25/16; A61P25/28; A61P25/30; A61P25/34; A61P25/36; A61P27/12; A61P29/00; A61P31/04; A61P31/12; A61P31/14; A61P31/16; A61P31/18; A61P35/00; A61P39/00; A61P39/06; A61P41/00; A61P43/00; C07K5/06; C07K5/08; C07K5/083; C07K5/10; C07K5/103; C07K7/06; C07K7/08; C07K14/00; (IPC1-7): A61K/
Domestic Patent References:
WO1997014430A11997-04-24
Foreign References:
US5906811A1999-05-25
US5683982A1997-11-04
Other References:
See also references of EP 1333809A2
Attorney, Agent or Firm:
G. E. EHRLICH (1995) LTD. (28 Bezalel Street Ramat Gan, IL)
Ehrlich, Gal c/o Anthony, Castorina Suite 207 2001 Jefferson Davis Highway Arlington (VA, US)
Download PDF:
Claims:
WHAT IS CLAIMED IS:
1. An antioxidant compound comprising: (a) a peptide including at least three amino acid residues of which at least two being cysteine residues each having a readily oxidizable sulfhydryl group for effecting antioxidation; and at least two peptide bonds each being cleavable by at least one intracellular peptidase; and (b) a first hydrophobic or noncharged moiety being attached to an amino terminal of said peptide via a first bond and a second hydrophobic or noncharged moiety being attached to a carboxy terminal of said peptide via a second bond, said first hydrophobic or noncharged moiety and said second hydrophobic or noncharged moiety are selected so as to provide the antioxidant compound with membrane miscibility properties for permitting the antioxidant compound to cross cellular membranes; wherein cleavage of said at least two peptide bonds by said at least one intracellular peptidase results in generation of several antioxidant species each including at least one of said cysteine residues having said readily oxidizable sulfhydryl group and which is also active in effecting antioxidation, thereby providing for a plurality of different antioxidant species acting in synergy in exerting antioxidation.
2. The antioxidant compound of claim 1 having a general formula of : A Yi Cys Y2 Cys Y3 B wherein, Cys is a cysteine residue, A is the first hydrophobic or noncharged moiety; B is the second hydrophobic or noncharged moiety; Y1, Y2 and Y3 are each individually one or more amino acid residues in the range of 030 residues, with the provision that Y1, Y2 and Y3 collectively provide for at least two amino acid residues in the peptide.
3. The antioxidant compound of claim 2, wherein A is selected from the group consisting of Nacetyl, tert butyl, iso propyl, nbutyl and npentyl.
4. The antioxidant compound of claim 2, wherein B is selected from the group consisting of amide and ester.
5. The antioxidant compound of claim 1, wherein cleavage of said first bond and/or said second bond by a cellular hydrolase results in loosing said membrane miscibility.
6. The antioxidant compound of claim 1, wherein cleavage of said first bond and/or said second bond by a cellular hydrolase results in formation of additional antioxidant species acting in synergy.
7. The antioxidant compound of claim 1, wherein said first bond and said second bond are each independently an ester or peptide bond.
8. The antioxidant compound of claim 1, wherein each of said first hydrophobic or noncharged moiety and said second hydrophobic or noncharged moiety is selected from the group consisting of alkyl, aryl, alkene, arene and cholesteril having a backbone of 250 carbon atoms.
9. The antioxidant compound of claim 1, wherein said first hydrophobic or noncharged moiety and said second hydrophobic or noncharged moiety are selected so as to enable the antioxidant compound to cross a blood barrier.
10. The antioxidant compound of claim 9, wherein said blood barrier is selected from the group consisting of a blood brain barrier, a blood retinal barrier and a blood testis barrier.
11. A pharmaceutical composition for preventing or reducing oxidative stress, the composition comprising a pharmaceutically acceptable carrier and, as an active ingredient, an antioxidant compound, said antioxidant compound including: (a) a peptide including at least three amino acid residues of which at least two being cysteine residues, each having a readily oxidizable sulfhydryl group for effecting antioxidation; and at least two peptide bonds each being cleavable by at least one intracellular peptidase; and (b) a first hydrophobic or noncharged moiety being attached to an amino terminal of said peptide via a first bond and a second hydrophobic or noncharged moiety being attached to a carboxy terminal of said peptide via a second bond, said first hydrophobic or noncharged moiety and said second hydrophobic or noncharged moiety are selected so as to provide the antioxidant compound with membrane miscibility properties for permitting the antioxidant compound to cross cellular membranes; wherein cleavage of said at least two peptide bonds by said at least one intracellular peptidase results in generation of a plurality of antioxidant species each including at least one of said cysteine residues having said readily oxidizable sulfhydryl group and which is also active in effecting antioxidation, thereby providing for a plurality of different antioxidant species acting in synergy in exerting antioxidation.
12. The pharmaceutical composition of claim 11, wherein said pharmaceutically acceptable carrier is selected from the group consisting of a thickener, a base, a buffer, a diluent, a surface active agent and a preservatives.
13. The pharmaceutical composition of claim 11 wherein said antioxidant compound having a general formula of : A Yl Cys Y2 Cys Y3 B wherein, Cys is a cysteine residue, A is the first hydrophobic or noncharged moiety; B is the second hydrophobic or noncharged moiety; Yl, Y2 and Y3 are each individually one or more amino acid residues in the range of 030 residues, with the provision that Y1, Y2 and Y3 collectively provide for at least two amino acid residues in the peptide.
14. The pharmaceutical composition of claim 13 wherein A is selected from the group consisting of Nacetyl, tert butyl, iso propyl, nbutyl and npentyl.
15. The pharmaceutical composition of claim 13, wherein B is selected from the group consisting of amide and ester.
16. The pharmaceutical composition of claim 11, wherein cleavage of said first bond and/or said second bond by a cellular hydrolase results in loosing said membrane miscibility.
17. The pharmaceutical composition of claim 11, wherein cleavage of said first bond and/or said second bond by a cellular hydrolase results in formation of additional antioxidant species acting in synergy.
18. The pharmaceutical composition of claim 11, wherein said first bond and said second bond are each independently an ester or peptide bond.
19. The pharmaceutical composition of claim 11, wherein each of said first hydrophobic or noncharged moiety and said second hydrophobic or noncharged moiety is selected from the group consisting of alkyl, aryl, alkene, arene and cholesteril having a backbone of 1450 carbon atoms.
20. The pharmaceutical composition of claim 11, wherein said first hydrophobic or noncharged moiety and said second hydrophobic or noncharged moiety are selected so as to enable said antioxidant compound to cross a blood barrier.
21. The pharmaceutical composition of claim 20, wherein said blood barrier is selected from the group consisting of a blood brain barrier, a blood retinal barrier and a blood testis barrier.
22. A method of treating a disease associated with formation of oxidative stress in a subject, the method comprising locally or systemically administering to the subject an antioxidant compound which comprises: (a) a peptide including at least three amino acid residues of which at least two being cysteine residues each having a readily oxidizable sulfhydryl group for effecting antioxidation; and at least two peptide bonds each being cleavable by at least one intracellular peptidase; and (b) a first hydrophobic or noncharged moiety being attached to an amino terminal of said peptide via a first bond and a second hydrophobic or noncharged moiety being attached to a carboxy terminal of said peptide via a second bond, said first hydrophobic or noncharged moiety and said second hydrophobic or noncharged moiety are selected so as to provide the antioxidant compound with membrane miscibility properties for permitting the antioxidant compound to cross cellular membranes; wherein cleavage of said at least two peptide bonds by said at least one intracellular peptidase results in generation of several antioxidant species each including at least one of said cysteine residues having said readily oxidizable sulfhydryl group and which is also active in effecting antioxidation, thereby providing for a plurality of different antioxidant species acting in synergy in exerting antioxidation.
23. The method of claim 22, wherein said antioxidant compound having a general formula of : A YI Cys Y2 Cys Y3 B wherein, Cys is a cysteine residue, A is the first hydrophobic or noncharged moiety; B is the second hydrophobic or noncharged moiety; Y1, Y2 and Y3 are each individually one or more amino acid residues in the range of 030 residues, with the provision that Y1, Y2 and Y3 collectively provide for at least two amino acid residues in the peptide.
24. The method of claim 23, wherein A is selected from the group consisting of Nacetyl, tert butyl, iso propyl, nbutyl and npentyl.
25. The method of claim 23, wherein B is selected from the group consisting of amide and ester.
26. The method of claim 22, wherein cleavage of said first bond and/or said second bond by a cellular hydrolase results in loosing said membrane miscibility.
27. The method of claim 22, wherein cleavage of said first bond and/or said second bond by a cellular hydrolase results in formation of additional antioxidant species acting in synergy.
28. The method of claim 22, wherein said first bond and said second bond are each independently an ester or peptide bond.
29. The method of claim 22, wherein each of said first hydrophobic or noncharged moiety and said second hydrophobic or noncharged moiety is selected from the group consisting of alkyl, aryl, alkene, arene and cholesteril having a backbone of 250 carbon atoms.
30. The method of claim 22, wherein said first hydrophobic or noncharged moiety and said second hydrophobic or noncharged moiety are selected so as to enable the method to cross a blood barrier.
31. The method of claim 30, wherein said blood barrier is selected from the group consisting of a blood brain barrier, a blood retinal barrier and a blood testis barrier.
32. The method of claim 22, wherein the disease associated with formation of oxidative stress is a central nervous system disease.
33. The method of claim 32, wherein said central nervous system disease is selected from the group comprising a neurodegenerative disorder, Parkinson's disease, Alzheimer's disease, CreutzfeldtJakob disease, cerebral ischemia, multiple sclerosis, a degenerative disease of the basal ganglia, a motoneuron disease, scrapies, spongiform encephalopathy, a neurological viral disease, a motoneuron disease, postsurgical neurological dysfunction, memory loss and memory impairment.
34. The method of claim 22, wherein the disease associated with formation of oxidative stress is a noncentral nervous system disease.
35. The method of claim 34, wherein said noncentral nervous system disease is selected from the group comprising rheumatoid arthritis, cataract, Down syndrome, cystic fibrosis, diabetes, acute respiratory distress syndrome, asthma, postsurgical neurological dysfunction, amyotrophic lateral sclerosis, atherosclerotic cardiovascular disease, hypertension, postoperative restenosis, pathogenic vascular smooth muscle cell proliferation, pathogenic intravascular macrophage adhesion, pathogenic platelet activation, pathogenic lipid peroxidation, myocarditis, stroke, multiple organ dysfunction, complication resulting from inflammatory processes, AIDS, cancer, aging, bacterial infection, sepsis; viral disease, AIDS, hepatitis C, influenza and a neurological viral disease.
36. A method of treating a habit associated with formation of oxidative stress in a subject, the method comprising locally or systemically administering to the subject an antioxidant compound which comprises: (a) a peptide including at least three amino acid residues of which at least two being cysteine residues each having a readily oxidizable sulfhydryl group for effecting antioxidation; and at least two peptide bonds each being cleavable by at least one intracellular peptidase; and (b) a first hydrophobic or noncharged moiety being attached to an amino terminal of said peptide via a first bond and a second hydrophobic or noncharged moiety being attached to a carboxy terminal of said peptide via a second bond, said first hydrophobic or noncharged moiety and said second hydrophobic or noncharged moiety are selected so as to provide the antioxidant compound with membrane miscibility properties for permitting the antioxidant compound to cross cellular membranes; wherein cleavage of said at least two peptide bonds by said at least one intracellular peptidase results in generation of several antioxidant species each including at least one of said cysteine residues having said readily oxidizable sulfhydryl group and which is also active in effecting antioxidation, thereby providing for a plurality of different antioxidant species acting in synergy in exerting antioxidation.
37. The method of claim 22, wherein said antioxidant compound having a general formula of : A Y1 Cys Y2 Cys Y3 B wherein, Cys is a cysteine residue, A is the first hydrophobic or noncharged moiety; B is the second hydrophobic or noncharged moiety ; Yl, Y2 and Y3 are each individually one or more amino acid residues in the range of 030 residues, with the provision that Y1, Y2 and Y3 collectively provide for at least two amino acid residues in the peptide.
38. The method of claim 23, wherein A is selected from the group consisting of Nacetyl, tert butyl,iso propyl, nbutyl and npentyl.
39. The method of claim 23, wherein B is selected from the group consisting of amide and ester.
40. The method of claim 22, wherein cleavage of said first bond and/or said second bond by a cellular hydrolase results in loosing said membrane miscibility.
41. The method of claim 22, wherein cleavage of said first bond and/or said second bond by a cellular hydrolase results in formation of additional antioxidant species acting in synergy.
42. The method of claim 22, wherein said first bond and said second bond are each independently an ester or peptide bond.
43. The method of claim 22, wherein each of said first hydrophobic or noncharged moiety and said second hydrophobic or noncharged moiety is selected from the group consisting of alkyl, aryl, alkene, arene and cholesteril having a backbone of 250 carbon atoms.
44. The method of claim 22, wherein said first hydrophobic or noncharged moiety and said second hydrophobic or noncharged moiety are selected so as to enable the method to cross a blood barrier.
45. The method of claim 30, wherein said blood barrier is selected from the group consisting of a blood brain barrier, a blood retinal barrier and a blood testis barrier.
46. The method of claim 22, wherein the habit associated with formation of oxidative stress is selected from the group comprising aging, smoking, sun tanning, cancer treatment, radiation, cocaine consumption and morphine consumption.
47. The method of claim 22, wherein said antioxidant compound is administered in a pharmaceutical composition which includes a pharmaceutically acceptable carrier.
48. The method of claim 47, wherein said pharmaceutically acceptable carrier adapts the composition for administration by a route selected from the intranasal, transdermal, intradermal, oral, buccal, parenteral, topical, rectal and inhalation route.
49. The method of claim 47, wherein the carrier provides said antioxidant compound in solution, suspension, emulsion, gel or skin pad.
50. The method of claim 47, wherein the composition further includes a formulating agent selected from the group consisting of a suspending agent, a stabilizing agent and a dispersing agent. SEQUENCE LISTING <110> Atlas, Daphne <120> MULTICOMPONENT ANTIOXIDANT COMPOUNDS, PHARMACEUTICAL COMPOSITIONS CONTAINING SAME AND THEIR USE FOR REDUCING OR PREVENTING OXIDATIVE STRESS <130>01/22633 <160> 24 <170> PatentIn version 3.0 <210> 1 <211> 4 <212> PRT <213> synthetic peptide <220> <221> MOD RES <222> (1).. (1) <223> ACETYLATION <220> <221> MOD RES <222>(4).. (4) <223> AMIDATION <400> 1 Cys Gly Pro Cys 1 <210> 2 <211> 4 <212> PRT <213>'synthetic peptide; <220> <221>MOD RES <222> (1). (1) <223> N terminal hydrophobic or noncharged moiety <220> <221>misc feature <222> (2).. (3) <223> any amino acid <220> <221>MOD RES <222> (4).. (4) <223> C terminal hydrophobic or noncharged moiety <400>2 Cys Xaa Xaa Cys 1 <210> 3 <211> 1 <212> PRT <213> synthetic peptide <220> <221>MOD RES <222> (1).. (1) <223> N terminal hydrophobic or noncharged moiety <400> 3 Cys 1 <210> 4 <211> 2 <212> PRT <213> synthetic peptide <220> <221>MOD RES <222> (1).. (1) <223> N terminal hydrophobic or noncharged moiety <220> <221> misc feature <222> (2).. (2) <223> any amino acid <400> 4 Cys Xaa 1 <210> 5 <211> 3 <212> PRT <213> synthetic peptide <220> <221>MOD RES <222> (1).. (1) <223> N terminal hydrophobic or noncharged moiety <220> <221>misc feature <222> (2).. (3) <223> any amino acid <400> 5 Cys Xaa Xaa 1 <210> 6 <211> 4 <212> PRT <213> synthetic peptide <220> <221> MOD RES <222> (1).. (1) <223> N terminal hydrophobic or noncharged moiety <220> <221>misc feature <222> (2).. (3) <223> any amino acid <400> 6 Cys Xaa Xaa Cys 1 <210> 7 <211> 4 <212> PRT <213> synthetic peptide <220> <221>MOD RES <222> (4).. (4) <223> C terminal hydrophobic or noncharged moiety <220> <221> misc feature <222> (2).. (3) <223> any amino acid <400> 7 Cys Xaa Xaa Cys 1 <210> 8 <211> 3 <212> PRT <213> synthetic peptide <220> <221>MOD RES <222> (3).. (3) <223> C terminal hydrophobic or noncharged moiety <220> <221>misc feature <222> (1).. (2) <223> any amino acid <400> 8 Xaa Xaa Cys 1 <210> 9 <211> 2 <212> PRT <213> synthetic peptide <220> <221> MOD RES <222> (2).. (2) <223> C terminal hydrophobic or noncharged moiety <220> <221> misc feature <222>(1).. (1) <223> any amino acid <400> 9 Xaa Cys 1 <210> 10 <211> 1 <212> PRT <213> synthetic peptide <220> <221>MOD RES <222> (1).. (1) <223> C terminal hydrophobic or noncharged moiety <400> 10 Cys 1 <210>11 <211> 4 <212> PRT <213> synthetic peptide <220> <221>misc feature <222> (2).. (3) <223> any amino acid <400> 11 Cys Xaa Xaa Cys 1 <210> 12 <211> 3 <212> PRT <213> synthetic peptide <220> <221>misc feature <222> (2).. (3) <223> any amino acid <400> 12 Cys Xaa Xaa 1 <210> 13 <211> 2 <212> PRT <213> synthetic petide <220> <221>misc feature <222> (2).. (2) <223> any amino acid <400> 13 Cys Xaa 1 <210> 14 <211> 1 <212> PRT <213> synthetic peptide <400> 14 Cys 1 <210> 15 <211> 3 <212> PRT <213> synthetic peptide <220> <221>misc feature <222> (1).. (2) <223> any amino acid <400> 15 Xaa Xaa Cys 1 <210> 16 <211> 2 <212> PRT <213> synthetic peptide <220> <221>misc feature <222> (1).. (1) <223> any amino acid <400> 16 Xaa Cys 1 <210> 17 <211> 3 <212> PRT <213> synthetic peptide <220> <221>MOD RES <222>(1).. (1) <223> N terminal hydrophobic or noncharged moiety <220> <221>misc feature <222> (2).. (2) <223> any amino acid <220> <221>MOD RES <222> (3).. (3) <223> C terminal hydrophobic or noncharged moiety <400>17 Cys Xaa Cys 1 <210>18 <211> 3 <212> PRT <213> synthetic peptide <220> <221>MOD RES <222>(1).. (1) <223> N terminal hydrophobic or noncharged moiety <220> <221>misc feature <222> (2).. (2) <223> any amino acid <400> 18 Cys Xaa Cys 1 <210> 19 <211> 3 <212> PRT <213> synthetic peptide <220> <221>MOD RES <222> (3). (3) <223> C terminal hydrophobic or noncharged moiety <220> <221> misc feature <222> (2).. (2) <223> any amino acid <400>19 Cys Xaa Cys 1 <210> 20 <211> 3 <212> PRT <213> synthetic peptide <220> <221>misc feature <222> (2).. (2) <223> any amino acid <400>20 Cys Xaa Cys <BR> <BR> 1<BR> <BR> <BR> <BR> <BR> <BR> <BR> <210> 21 <211> 2 <212> PRT <213> synthetic peptide <220> <221>misc feature <222> (1).. (1) <223> any amino acid <400> 21 Xaa Cys 1 <210>22 <211> 3 <212> PRT <213> synthetic peptide <220> <221>MOD RES <222> (1).. (1) <223> N terminal hydrophobic or noncharged moiety <220> <221> misc feature <222> (1).. (1) <223> any amino acid <220> <221>misc feature <222> (3).. (3) <223> any amino acid <220> <221> MOD RES <222> (3).. (3) <223> C terminal hydrophobic or noncharged moiety <400> 22 Xaa Cys Xaa 1.
Description:
MULTI-COMPONENT ANTIOXIDANT COMPOUNDS, PHARMACEUTICAL COMPOSITIONS CONTAINING SAME AND THEIR USE FOR REDUCING OR PREVENTING OXIDATIVE STRESS FIELD AND BACKGROUND OF THE INVENTION The present invention relates to antioxidant compounds, pharmaceutical compositions containing same and their use for preventing or reducing oxidative stress. More particularly, the present invention relates to novel non-central nervous system (CNS) and CNS targeted antioxidants and their use in treating non-CNS and CNS disorders, diseases or conditions associated with a formation of oxidative stress.

Oxidative stress : The cellular physiological reduction-oxidation (redox) state, which is dependent on concentrations of oxygen and reactive oxygen species (ROS), is involved in controlling central biochemical regulator processes, such as tyrosine phosphorylation, regulation of transcription and alteration in messenger RNA stability (1) and it is finely balanced by specific enzymes, such as superoxide dismutase (SOD), catalase, gluthatione peroxidase and thioredoxin, and selective antioxidants, such as glutathione. Regulated homeostasis of the intracellular redox state is essential to the proper physiological functioning of the cell, however, overproduction of (ROS), at levels exceeding the neutralization capacity of cellular antioxidant defenses, generates an oxidative state, termed oxidative stress. Such oxidative stress can lead to oxidative injury via processes such as inflammation, apoptosis and mutagenesis.

Inflammation, a normal physiological process involving limited tissue injury, can be pathogenic if uncontrolled, as under conditions of excessive oxidative stress. In such cases, elevation of ROS, via alterations in expression of redox state-responsive genes, causes the ubiquination and destruction of the NF-KB inhibitory proteins, thereby allowing NF-KB to bind to target gene promoters, a pivotal event in the upregulation of multiple pro-inflammatory cytokines (2). An excess of free radicals has been identified in many diseases

associated with inflammation, such as sepsis, multiple sclerosis (MS), stroke, myocarditis and rheumatoid arthritis.

While the development and maintenance of a healthy tissue involves properly regulated apoptosis, interference with this process contributes to various pathologies including tumor promotion, immunodeficiency diseases and neurodegenerative disorders. It has been shown that elevation of the intracellular oxidative state, either via addition of reactive oxygen species (ROS) or depletion of cellular antioxidants, can cause apoptosis (3,4) and much evidence has accumulated linking oxidative stress to activation of specific enzymes involved in apoptosis.

One such enzyme, essential in the signaling pathway of cytochrome c mediated apoptosis, is c-Jun N-terminal kinase (JNK) which is activated in response to UV radiation, cisplatinum treatment or cellular stress. It has been demonstrated that disruption of JNK protects against UV induced apoptosis, resulting in impairment of the mitochondrial death signaling pathway (5).

In a previous study (6), ROS were shown to play a role as intermediate factors in the pathway of various signal transduction pathways involving thioredoxin, a ubiquitous enzyme in all living cells containing a specific redox-active site. Thioredoxin acts as an inhibitor of oxidative stress induced apoptosis by binding to, and thereby inhibiting, apoptosis signal regulating kinase-1 (ASK1), a protein mediating oxidative stress-induced apoptosis via a redox state responsive domain. However, under conditions of excessive oxidative stress, oxidized thioredoxin dissociates from ASK1, thereby activating it and triggering apoptosis.

Patlzologies associated with oxidative stress : Oxidant injury has been implicated in the pathology of a wide-ranging variety of diseases, including many of major clinical and economic impact, such as cardiovascular, neurological, metabolic, infectious, hepatic, pancreatic, rheumatoid, malignant and immunological diseases, as well as conditions such as

sepsis, cataract, amyotrophic lateral sclerosis and congenital diseases such as Down syndrome, multiple organ dysfunction (7) and cystic fibrosis Described below are some of the most widespread and devastating diseases in which oxidative stress is an etiological factor.

Neurodegenerative patliologies-involveinent of inflammation and oxidative stress : Evidence has accumulated demonstrating a strong linkage of oxidative stress with pathogenesis of major human neurodegenerative disorders (8-10) including Parkinson's disease (11, 12), Alzheimer's disease (13-15), Creutzfeldt-Jakob disease (16) as well as MS (17).

The different pathological markers characteristic of various neurodegenerative diseases, such as Lewy bodies in Parkinson's disease and amyloid plaques in Alzheimer's disease, indicate different causal factors in the initiation of these diseases. However, there is growing evidence that, once initiated, the progression of a large number of neurodegenerative diseases follows similar cellular pathways. Namely, elevation of the intracellular oxidative state in specific regions of the CNS appears to be an important factor in the etiology of diseases such as Alzheimer's disease, Parkinson's disease, spongiform encephalopathies, degenerative diseases of the basal ganglia, motoneuron diseases and memory loss.

For example, a role for oxidative stress in the pathogenesis of Alzheimer's disease was indicated in a recent analysis of the relationship between p-amyloid protein fragment and oxygen radical formation. This study employed a highly sensitive system, utilizing monitoring blood vessel vasoactive responses, in which ß-amyloid-mediated enhancement of phenylephrine-mediated vasoconstriction could be abrogated by pretreatment of blood vessels with SOD, an enzyme which scavenges oxygen free radicals (15). Other studies have shown that oxidative stress and free radical production are linked to the presence of ß-amyloid fragment (amino acids 25-35) and likely contribute to neurodegenerative events associated with Alzheimer's disease (18). Further studies have shown extensive RNA oxidation in neurons in Alzheimer's disease

and Down's syndrome (13,14) and genetic evidence for oxidative stress in Alzheimer's disease has also been reported (19,20).

Evidence of a role for elevated oxidative stress in pathogenesis of MS was provided in studies analyzing the role of metallothioneins, enzymes involved in maintenance of redox homeostasis, in MS or experimental autoimmune encephalomyelitis (EAE) (21,22), in studies demonstrating increased lipid peroxidation in serum and cerebrospinal fluid of MS patients and in studies demonstrating the role of heme oxygenase-1 (HO-1), a heat shock protein induced by oxidative stress, in the progression of EAE (23).

In the case of scrapies, a type of spongiform encephalopathy occuring in sheep, it was demonstrated that pathogenesis is mediated via microglia cells which respond to prion protein fragment PrPl06~l26 by increasing oxygen radical production (16).

Diabetes : There is convincing experimental and clinical evidence that the generation of ROS is increased in both types of diabetes and that the onset of diabetes is closely associated with oxidative stress. Recently, it was demonstrated that intracellular content of the oxidant H202, visualized with 2', 7'-dichlorofluorescein and quantified by flow cytometry, is increased following treatment with high glucose levels. Concomitant elevation of lactate dehydrogenase activity was detected suggesting that high glucose promotes necrotic cell death through H202 formation, which may contribute to the development of diabetic vasculopathy (24). Consistent with these results, a recent study has demonstrated that long-term administration of antioxidants can inhibit the development of the early stages of diabetic retinopathy (25). Other studies carried out with treatment of diabetic rats with antioxidants suggest that diabetes-induced oxidative stress and the generation of superoxide may be partially responsible for the development of diabetic vascular and neural complications (26).

Cataractforvnation : A role for oxidant injury in cataract formation was shown in early studies demonstrating that decreased levels of the antioxidant

hepatic glutathione-S-transferase (GSH) are associated with increasing opacity of the lens (27). Later studies have shown that in the mammalian lens, intracellular oxidants produced by light induced oxidative processes cause oxidative damage, result in changes in gene expression, and are causally related to cataract formation. It is presently believed that H202 is the major oxidant to which the lens is exposed (28).

Infectious diseases : Harmful levels of oxygen free radicals and nitric oxide (NO) are generated in a diverse range of, and are essential to, the pathogenesis of many types of microbial infections (29). Viral diseases whose pathogenesis is associated with oxidative stress include hepatitis C, AIDS, influenza and diseases caused by various neurotropic agents. In many kinds of viral infections high levels of NO generate highly reactive nitrogen oxide species including reactive oxygen intermediates as well as peroxynitrite, via interaction with oxygen radicals. These species of reactive nitrogen cause oxidant injury as well as mutagenesis via oxidation of various biomolecules. Recent evidence has also demonstrated that oxidative stress induced by NO causes further harm by increasing viral mutation rates and by suppressing type 1 helper T cell function.

For example, studies employing the equine influenza virus (EIV) influenza model have shown that viral infection causes cytopathogenic effects and apoptosis as a result of oxidative stress (30). Another study has shown that progression of human hepatitis C virus infection involves triggering of oxidative stress via a mechanism in which the non-structural HCV protein NS5A triggers elevation of ROS in mitochondria, leading to the nuclear translocation and constitutive activation of the pro-inflammatory transcription factors NF-KB and STAT-3 (31).

Neurological dysfunction following cardiac surgery : Cardiac operations, such as coronary bypass surgery, following multiple infarctions has been shown to significantly increase the risk of neurologic dysfunction, such as impairment of brain function and memory (32-34). Studies have provided evidence that such neurological impairment is associated with oxidative stress (35).

Cardiovascular diseases : The pathogenesis of major cardiovascular diseases, such as atherosclerosis, hypertension, stroke and restenosis, has been shown to involve oxidative stress. Such oxidant stress in the vasculature causes adverse vessel reactivity, vascular smooth muscle cell proliferation, macrophage adhesion, platelet activation, and lipid peroxidation (36). In the case of atherosclerosis, one of the leading causes of mortality in the developed world, pathogenesis specifically involves inflammation and oxidation of lipoprotein-derived lipids (37).

Recent studies have shown that cerebral ischemia followed by reperfusion leads to elevated oxidative stress (38, 39) and that such oxidative stress can cause damage to genes in brain tissue despite functional DNA repair mechanisms (40).

Involvement of such oxidative stress in ischemia-associated pathogenesis was further demonstrated in studies reporting increased infarct size and exacerbated apoptosis in glutathione peroxidase-1 (Gpx-1) knockout mouse brain subjected to ischemia/reperfusion injury (41).

Cancer : Studies have shown that oxidative stress is involved in development of cancers, such as prostate cancer, the most common human malignancy and the second leading cause of cancer deaths among men in Western nations (42).

Thus, the pathogenesis of a very broad variety of diseases involves oxidative stress and, as such, methods of reducing oxidative state may provide an attractive means of treating such diseases.

Prior art 7netAtods of treating disease via reduction of oxidative stress : Various prior art methods of treating diseases associated with oxidative stress via reduction of oxidative stress have been attempted and have demonstrated the potential effectiveness of treating disease by restoring redox balance. These have involved either prevention of enzymatic production of ROS by specific inhibitors or introduction of exogenous antioxidants for restoring redox balance.

Diseases of the CNS. To overcome high oxidative stress for the treatment of diseases of the CNS, it is desirable to administer agents capable of reducing oxidative stress into the CNS. However, the CNS is physiologically separated from the rest of the body and from the peripheral blood circulation, by the blood brain barrier (BBB). Since the BBB constitutes a very effective barrier for the passage of agents, such as antioxidants, lacking a selective transporter, such as enzymes or other proteins capable of decreasing oxidative stress, administration of such agents must be via direct injection into the brain or cerebrospinal fluid (CSF). Such a route of administration, however, is unacceptably risky, cumbersome and invasive and thus represents a major drawback for this treatment modality.

One approach has employed administration of the antioxidants vitamin E and vitamin C for treatment of neurological diseases, such as Parkinson's disease (43,44). Vitamin E was found to be ineffective at decreasing oxidative stress in the substantia nigra and, although capable of crossing the BBB, is trapped in the cell membrane and therefore does not reach the cytoplasm where its antioxidant properties are needed. Vitamin C was shown to cross the BBB to some extent, via a selective transporter, nevertheless it has also been shown to be ineffective in treating neurodegenerative diseases of the CNS.

In another approach, antioxidant compounds characterized by a combination of low molecular weight and membrane miscibility properties for permitting the compounds to cross the BBB of an organism, a readily oxydizable (i. e., reducing) chemical group for exerting antioxidation properties and a chemical make-up for permitting the compounds or their intracellular derivative to accumulate within the cytoplasm of cells, have been employed to treat pathology, including CNS pathology, associated with oxidative stress (44).

Diseases of non-CNS tissues : Systemic administration of antioxidants : The major prior art approach used for reducing oxidative stress in non-CNS tissues has employed administration antioxidants.

The antioxidant NAC has been employed to treat canine kidney cells so as to attenuate EIV-induced cytopathic effect and apoptosis (30) and to treat atherosclerosis and restenosis following angioplasty (46). Dimers of NAC have also been employed for treating atherosclerosis (37).

The sulphur-containing fatty acid with antioxidant properties, tetradecylthioacetic acid, has been employed to achieve long-term reduction of restenosis following balloon angioplasty in porcine coronary arteries (47).

The antioxidants pyrrolidine dithiocarbamate (PDTC) and NAC have been used to prevent pathogenic HCV mediated constitutive activation of the pro-inflammatory transcription factor STAT-3 (31).

Synthetic antioxidants have also been employed to treat oxidative stress related disease. For example, treatment of asthma has been attempted by reducing the levels of free oxygen using the synthetic reactive oxygen inhibitor 2,4-diaminopyrrolo-2,3-dipyrimidine (48).

Apoptosis in an ischemic swine heart model has been treated with ebselen, a glutathione peroxidase mimic (35).

The cytosolic antioxidant, copper/zinc superoxide dismutase, has been employed to treat blood-brain barrier disruption and infarction following cerebral ischemia-reperfusion (49). Attenuation of ischemia-induced mouse brain injury has been attempted by administration of SAG, a redox-inducible antioxidant protein (50).

Administration of metabolic regulators of antioxidants : Another approach has attempted to employ metabolic regulators of antioxidants to reduce oxidative stress. One study has attempted prevention of cataract in a chick embryo model via administration of thyroxine to drive metabolic maintenance of hepatic GSH levels so as to reduce oxidative stress induced by glucocorticoids (51) Hemin, an inducer of the oxidative stress induced protein, heme oxygenase-1, has been utilized to inhibit progression of EAE (23).

Administration of corticosteroids has been employed to treat lipid peroxidation in MS patients (24).

Stimulation of production of the endogenous antioxidant reduced glutathione has been attempted for treating acute respiratory distress syndrome (ARDS), a condition characterized by overproduction of oxidants or ROS by the immune system, by administration of the drug pro-cysteine (Free Radical Sciences Inc., CA, U. S.). This drug functions by boosting cellular production of glutathione by upregulation of cellular cysteine uptake.

A common feature characterizing all of the above described and other antioxidant compounds is their limited diversity in structure, body distribution, cellular distribution, organelle distribution, and/or antioxidant properties, etc. As such, any given antioxidant may prove useful for some applications, yet less or non-useful for other applications. In some cases, a specific antioxidant may efficiently reduce oxidative stress in some body parts, some cells, or some subcellular structures, yet not in others.

There is thus, a great need for, and it would be highly advantageous to have, an antioxidant compound which is devoid of the above limitations, which compound will by hydrolyzed in vivo to a plurality of different antioxidant species which will act in concert to reduce or prevent oxidative stress in a plurality of tissues, cell types and cellular organelles, so as to combat disease, syndromes and conditions associated with formation of oxidative stress, both in non-CNS and CNS tissues.

SUMMARY OF THE INVENTION According to one aspect of the present invention there is provided an antioxidant compound comprising (a) a peptide including at least three amino acid residues of which at least two being cysteine residues, each having a readily oxidizable sulfhydryl group for effecting antioxidation; and at least two peptide bonds each being cleavable by at least one intracellular peptidase; and (b) a first hydrophobic or non-charged moiety being attached to an amino terminal of the

peptide via a first bond and a second hydrophobic or non-charged moiety being attached to a carboxy terminal of the peptide via a second bond, the first hydrophobic or non-charged moiety and the second hydrophobic or non-charged moiety are selected so as to provide the antioxidant compound with membrane miscibility properties for permitting the antioxidant compound to cross cellular membranes; wherein cleavage of the at least two peptide bonds by the at least one intracellular peptidase results in generation of a plurality of antioxidant species, each including at least one of the cysteine residue having the readily oxidizable sulfhydryl group and which is also active in effecting antioxidation, thereby providing for a plurality of different antioxidant species acting in synergy in exerting antioxidation.

According to another aspect of the present invention there is provided a pharmaceutical composition for preventing or reducing oxidative stress, the composition comprising a pharmaceutically acceptable carrier and, as an active ingredient, an effective amount of an antioxidant compound, the antioxidant compound including: (a) a peptide including at least three amino acid residues of which at least two being a cysteine residues, each having a readily oxidizable sulfhydryl group for effecting antioxidation; and at least two peptide bondd eac being cleavable by at least one intracellular peptidase; and (b) a first hydrophobic or non-charged moiety being attached to an amino terminal of the peptide via a first bond and a second hydrophobic or non-charged moiety being attached to a carboxy terminal of the peptide via a second bond, the first hydrophobic or non-charged moiety and the second hydrophobic or non-charged moiety are selected so as to provide the antioxidant compound with membrane miscibility properties for permitting the antioxidant compound to cross cellular membranes; wherein cleavage of the at least two peptide bonds by the at least one intracellular peptidase results in generation of a plurality of antioxidant species each including at least one of the cysteine residue having the readily oxidizable sulfhydryl group and which is also active in effecting antioxidation, thereby providing for a

plurality of different antioxidant species acting in synergy in exerting antioxidation.

According to further features in preferred embodiments of the invention described below, the antioxidant compound has a general formula of : A---Yl---Cys---Y2---Cys---Y3---B wherein, Cys is a cysteine residue, A is the first hydrophobic or non-charged moiety; B is the second hydrophobic or non-charged moiety; Y1, Y2 and Y3 are each individually one or more amino acid residues in the range of 0-30 residues, with the provision that YI, Y2 and Y3 collectively provide for at least two amino acid residues in the peptide.

According to still further features in the described preferred embodiments the A is selected from the group consisting of N-acetyl, tert butyl, iso propyl, n-butyl and n-pentyl.

According to still further features in the described preferred embodiments the B is selected from the group consisting of amide and ester.

According to still further features in the described preferred embodiments cleavage of the first bond and/or the second bond by a cellular hydrolase results in loosing the membrane miscibility.

According to still further features in the described preferred embodiments the cleavage of the first bond and/or the second bond by a cellular hydrolase results in formation of additional antioxidant species acting in synergy.

According to still further features in the described preferred embodiments the first bond and the second bond are each independently an ester or peptide bond.

According to still further features in the described preferred embodiments each of the first hydrophobic or non-charged moiety and the second hydrophobic or non-charged moiety is selected from the group consisting of alkyl, aryl, alkene, arene and cholesteril having a backbone of 2-50 carbon atoms.

According to still further features in the described preferred embodiments the first hydrophobic or non-charged moiety and the second hydrophobic or

non-charged moiety are selected so as to enable the antioxidant compound to cross a blood barrier.

According to still further features in the described preferred embodiments the blood barrier is selected from the group consisting of a blood brain barrier, a blood retinal barrier and a blood testis barrier.

According to yet another aspect of the present invention there is provided a method of treating a disease associated with formation of oxidative stress in a subject, the method comprising locally or systemically administering to the subject an antioxidant compound comprising: (a) a peptide including at least three amino acid residues of which at least two being cysteine residues each having a readily oxidizable sulfhydryl group for effecting antioxidation; and at least two peptide bonds each being cleavable by at least one intracellular peptidase; and (b) a first hydrophobic or non-charged moiety being attached to an amino terminal of the peptide via a first bond and a second hydrophobic or non-charged moiety being attached to a carboxy terminal of the peptide via a second bond, the first hydrophobic or non-charged moiety and the second hydrophobic or non-charged moiety are selected so as to provide the antioxidant compound with membrane miscibility properties for permitting the antioxidant compound to cross cellular membranes; wherein cleavage of the at least two peptide bonds by the at least one intracellular peptidase results in generation of several antioxidant species each including at least one of the cysteine residues having the readily oxidizable sulfhydryl group and which is also active in effecting antioxidation, thereby providing for a plurality of different antioxidant species acting in synergy in exerting antioxidation.

According to further features in preferred embodiments of the invention described below, the disease associated with formation of oxidative stress is a central nervous system disease.

According to still further features in the described preferred embodiments, the central nervous system disease is selected from the group comprising a neurodegenerative disorder, Parkinson's disease, Alzheimer's disease,

Creutzfeldt-Jakob disease, cerebral ischemia, multiple sclerosis, a degenerative disease of the basal ganglia, a motoneuron disease, scrapies, spongiform encephalopathy, a neurological viral disease, a motoneuron disease, post-surgical neurological dysfunction, memory loss and memory impairment.

According to still further features in the described preferred embodiments, the disease associated with formation of oxidative stress is a non-central nervous system disease. According to still further features in the described preferred embodiments, the non-central nervous system disease is selected from the group comprising rheumatoid arthritis, cataract, Down syndrome, cystic fibrosis, diabetes, acute respiratory distress syndrome, asthma, post-surgical neurological dysfunction, amyotrophic lateral sclerosis, atherosclerotic cardiovascular disease, hypertension, post-operative restenosis, pathogenic vascular smooth muscle cell proliferation, pathogenic intra-vascular macrophage adhesion, pathogenic platelet activation, pathogenic lipid peroxidation, myocarditis, stroke, multiple organ dysfunction, complication resulting from inflammatory processes, AIDS, cancer, aging, bacterial infection, sepsis; viral disease, AIDS, hepatitis C, influenza and a neurological viral disease.

According to still another aspect of the present invention there is provided a method of treating a habit associated with formation of oxidative stress in a subject, the method comprising locally or systemically administering to the subject an antioxidant compound comprising: (a) a peptide including at least three amino acid residues of which at least two being cysteine residues each having a readily oxidizable sulfhydryl group for effecting antioxidation; and at least two peptide bonds each being cleavable by at least one intracellular peptidase; and (b) a first hydrophobic or non-charged moiety being attached to an amino terminal of the peptide via a first bond and a second hydrophobic or non-charged moiety being attached to a carboxy terminal of the peptide via a second bond, the first hydrophobic or non-charged moiety and the second hydrophobic or non-charged moiety are selected so as to provide the antioxidant compound with membrane miscibility properties for permitting the antioxidant

compound to cross cellular membranes; wherein cleavage of the at least two peptide bonds by the at least one intracellular peptidase results in generation of several antioxidant species each including at least one of the cysteine residues having the readily oxidizable sulfhydryl group and which is also active in effecting antioxidation, thereby providing for a plurality of different antioxidant species acting in synergy in exerting antioxidation.

According to further features in preferred embodiments of the invention described below, the habit associated with formation of oxidative stress is selected from the group comprising aging, smoking, sun tanning, cancer treatment, radiation, cocaine consumption and morphine consumption.

According to still further features in the described preferred embodiments, the antioxidant compound is administered in a pharmaceutical composition which includes a pharmaceutically acceptable carrier.

According to still further features in the described preferred embodiments, the pharmaceutically acceptable carrier adapts the composition for administration by a route selected from the intranasal, transdermal, intradermal, oral, buccal, parenteral, topical, rectal and inhalation route.

According to still further features in the described preferred embodiments, the carrier provides the antioxidant compound in solution, suspension, emulsion, gel or skin pad.

According to still further features in the described preferred embodiments, the composition further includes a formulating agent selected from the group consisting of a suspending agent, a stabilizing agent and a dispersing agent.

The present invention successfully addresses the shortcomings of the presently known configurations by providing novel multifunctional antioxidant compounds which are non-central nervous system and central nervous system targeted antioxidants, N-and/or C-terminal blocked peptide derivatives for the use in treatment of non-central nervous system and central nervous system disorders related to oxidation processes.

BRIEF DESCRIPTION OF THE DRAWINGS The invention is herein described, by way of example only, with reference to the accompanying drawings. With specific reference now to the drawings in detail, it is stressed that the particulars shown are by way of example and for purposes of illustrative discussion of the preferred embodiments of the present invention only, and are presented in the cause of providing what is believed to be the most useful and readily understood description of the principles and conceptual aspects of the invention. In this regard, no attempt is made to show structural details of the invention in more detail than is necessary for a fundamental understanding of the invention, the description taken with the drawings making apparent to those skilled in the art how the several forms of the invention may be embodied in practice.

In the drawings: FIG. 1 shows the HPLC profile of purified N-acetyl cysteine-glycine-proline-cysteine-amid (referred to herein as CB, SEQ ID NO : 1)) compound according to the present invention; FIG. 2 shows inhibition of JNK and p38 phosphorylation by CB, NOXi and NAC as determined by immunoprecipitation with specific antibodies against phosphorylated JNK and p38 followed by gel electrophoresis; FIG. 3 represents cellular ROS levels as determined using a fluorescence assay in the presence of CB, NOXi and NAC antioxidants.

DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention is of novel non-CNS and CNS targeted antioxidant compounds effective in treating non-CNS and CNS disorders, diseases or conditions associated with the formation of oxidative stress. More specifically, the compounds of the present invention can be used for the treatment of neurodegenerative disorders in which the pathology in the CNS is associated with oxidative stress, and for treatment of non-CNS tissues in conditions associated with overproduction of oxidants. Moreover, the novel compounds of

the present invention can also be used for improving cognitive skills such as memory.

Before explaining at least one embodiment of the invention in detail, it is to be understood that the invention is not limited in its application to the details set forth in the following description or illustrated in the examples. The invention is capable of other embodiments or of being practiced or carried out in various ways. Also, it is to be understood that the phraseology and terminology employed herein is for the purpose of description and should not be regarded as limiting.

The principles of operation of the compounds according to the present invention may be better understood with reference to the examples and accompanying descriptions.

Antioxidant compounds are used according to the present invention to relieve oxidative stress within cells. A compound which can be used to relieve oxidative stress according to the present invention (i) has a combination of molecular weight and membrane miscibility properties rendering it capable of crossing blood barriers; (ii) includes a readily oxidizable (i. e., reduced) chemical group, such as, but not limited to, a sulfhydryl (-SH) group derived from a cysteine amino acid residue, for exerting its antioxidation properties; and (iii) has a chemical make-up for permitting it or its cellular derivative (s) to accumulate within the cytoplasm of cells. Collectively, these properties render the compounds of the present invention suitable for treatment of neurodegenerative disorder of the central nervous system, as well as for treating conditions in which non-CNS tissues, such as, but not limited to, the lungs and/or heart, are damaged due to overproduction of oxidants (i. e., reactive oxygen species), which is the case in, for example, acute respiratory distress syndrome, amyotrophic lateral sclerosis, atherosclerotic cardiovascular disease, multiple organ dysfunction, complication resulting from inflammatory processes, AIDS, cancer and aging.

As used in the specifications herein,"non-CNS"tissues refers to all body tissues, such as peripheral central nervous system tissues and non-nervous system tissues, with the exclusion of CNS tissues such as the brain and spinal cord.

As is further detailed in the background section above, prior art antioxidant compounds are limited in their structure diversity, body distribution, cellular distribution, organelle distribution, and/or antioxidant properties and capabilities, etc. As such, prior art antioxidant compounds are useful for some applications, yet less or non-useful for other applications.

To overcome the limitations inherent to prior art antioxidant compounds and their use, the present invention teaches novel compounds which are hydrolyzed in vivo to a plurality of different antioxidant species, which act in concert to reduce or prevent oxidative stress in a plurality of tissues, cell types and cellular organelles, so as to combat disease, syndromes and conditions associated with formation of oxidative stress both in the body periphery and in the brain.

Thus, according to one aspect of the present invention there is provided an antioxidant compound which includes a peptide including at least three amino acid residues of which at least two are cysteine residues, each having a readily oxidizable sulfhydryl group which serves for effecting antioxidation. The peptide, which is an antioxidant in itself, also includes at least two peptide bonds each is cleavable by at least one intracellular peptidase. The antioxidant compound of the present invention further includes a first hydrophobic or non-charged moiety which is attached to an amino terminal of the peptide via a first bond and a second hydrophobic or non-charged moiety which is attached to a carboxy terminal of the peptide via a second bond. The first and second hydrophobic or non-charged moieties are selected so as to provide the antioxidant compound with membrane miscibility properties, for permitting the antioxidant compound to cross cellular membranes. The antioxidant compounds of the present invention are characterized by the following unique and advantageous feature. Cleavage of the peptide bonds of the peptide by the

intracellular peptidase (s) results in generation of a plurality of antioxidant species, each including at least one of the cysteine residues having the readily oxidizable sulfhydryl group and which is also active in effecting antioxidation, thereby providing a plurality of different antioxidant species acting in synergy in exerting antioxidation.

Thus, the antioxidant compound of the present invention is a peptide prodrug which penetrates the cells due to its solubility in the cell membrane.

Upon entering the cytoplasm of a cell, the prodrug is cleaved by one or several intracellular peptidases, to release a plurality of different antioxidant species, each having at least one readily oxidizable sulfhydryl group to exert the antioxidative properties and acting in synergy in exerting antioxidation. Each cleaved species acts according to its biological half-life and independently of the other generated species to exert antioxidation. It will be appreciated in this respect that different cells consist of a selective set of different peptidases/esterases.

As used herein in the specification, the term"prodrug"refers to an agent which is converted into an active parent drug in vivo. Prodrugs are often useful because in some instances they may be easier to administer than the parent drug itself. They may, for instance, be bioavailable by oral administration whereas the parent drug is not. The prodrug may also have improved solubility compared to the parent drug in pharmaceutical compositions.

As used herein in the specification and in the claims section below the term"peptide"includes native peptides (either degradation products, synthetically synthesized peptides or recombinant peptides) and peptidomimetics (typically, synthetically synthesized peptides), such as peptoids and semipeptoids which are peptide analogs, which may have, for example, modifications rendering the peptides more stable while in a body, or less immunogenic. Such modifications include, but are not limited to, cyclization, N-terminus modification, C-terminus modification, peptide bond modification, including, but not limited to, CH2-NH, CH2-S, CH2-S=O, O=C-NH, CH2-0, CH2-CH2,

S=C-NH, CH=CH or CF=CH, backbone modification and residue modification.

Methods for preparing peptidomimetic compounds are well known in the art and are specified, for example, in (53), which is incorporated by reference as if fully set forth herein. Further detail in this respect are provided hereinunder.

Thus, a peptide according to the present invention can be a cyclic peptide.

Cyclization can be obtained, for example, through amide bond formation, e. g., by incorporating Glu, Asp, Lys, Orn, di-amino butyric (Dab) acid, di-aminopropionic (Dap) acid at various positions in the chain (-CO-NH or -NH-CO bonds).

Cyclization via formation of S-S bonds through incorporation of two Cys residues, in addition to the Cys residues exerting antioxidation, is also possible.

Additional side-chain to side chain cyclization can be obtained via formation of an interaction bond of the formula- (-CH2-) n-S-CH2-C-, wherein n = 1 or 2, which is possible, for example, through incorporation of Cys or homoCys and reaction of its free SH group with, e. g., bromoacetylated Lys, Orn, Dab or Dap.

Peptide bonds (-CO-NH-) within the peptide may be substituted, for example, by N-methylated bonds (-N (CH3)-CO-), ester bonds (-C (R) H-C-O-O-C (R)-N-), ketomethylen bonds (-CO-CH2-), o-aza bonds (-NH-N (R)-CO-), wherein R is any alkyl, e. g., methyl, carba bonds (-CH2-NH-), hydroxyethylene bonds (-CH (OH)-CH2-), thioamide bonds (-CS-NH-), olefinic double bonds (-CH=CH-), retro amide bonds (-NH-CO-), peptide derivatives (-N (R)-CH2-CO-), wherein R is the"normal"side chain, naturally presented on the carbon atom.

These modifications can occur at any of the bonds along the peptide chain and even at several (2 to 3) at the same time.

Natural aromatic amino acids, Trp, Tyr and Phe, may be substituted for synthetic non-natural acid such as TIC, naphthyl (Nol), ring-methylated derivatives of Phe, halogenated derivatives of Phe or o-methyl-Tyr.

Accordingly, as used herein in the specification and in the claims section below the term"amino acid"or"amino acids"is understood to include the 20

naturally occurring amino acids; those amino acids often modified post-translationally in vivo, including, for example, hydroxyproline, phosphoserine and phosphothreonine; and other unusual amino acids including, but not limited to, 2-aminoadipic acid, hydroxylysine, isodesmosine, nor-valine, nor-leucine and ornithine. Furthermore, the term"amino acid"includes both D- and L-amino acids which are linked via a peptide bond or a peptide bond analog to at least one addition amino acid as this term is defined herein.

An amino acid residue is understood to be an amino acid as this term is defined herein when serving as a building block or unit in a peptide, as this term is defined herein.

Tables 1-2 below list all the naturally occurring amino acids (Table 1) and non-conventional or modified amino acids (Table 2).

Table 1. Naturally occurring amino acids.

Amino acid Three-letter One-letter abbreviation symbol Alanine Ala A Arginine Arg R Asparagine Asn N Aspartic acid Asp D Cysteine Cys C Glutamine Gln Q Glutamic Acid Glu E Glycine Gly G Histidine His H Isoleucine Ile I Leucine Leu L Lysine Lys K Methionine Met M Phenylalanine Phe F Proline Pro P Serine Ser S Threonine Thr T Tryptophan Trp W Tyrosine Tyr Y Valine Val V Any amino acid as above Xaa X Table 2. Non-conventional or modified amino acids. Non-conventional amino acid Code Non-conventional amino acid Code a-aminobutyric acid Abu L-N-methylalanine Nmala o-amino-α-methylbutyrate Mgabu L-N-methylarginine Nmarg aminocyclopropane-Cpro L-N-methylasparagine Nmasn carboxylateXXXXXXL-N-methyIaspartic acidNmasp aminoisobutyric acid Aib L-N-methylcysteine Nmcys aminonorbomyl-Norb L-N-methylglutamine Nmgin Carboxylate XXX XXX L-N-methylglutamic aic Nmglu cyclohexylalanine Chexa L-N-methylhistidine Nmhis cyclopentylalanine Cpen L-N-methylisolleucine Nmile D-alanine Dal L-N-methylleucine Nmleu D-arginine Darg L-N-metliyllysine Nmlys D-aspartic acid Das L-N-methylmethionine Nmmet D-cysteine Dcys L-N-methylnorleucine Nmnle D-glutamine Dgln L-N-methylnorvaline Nmnva D-glutamic acid Dglu L-N-methylornithine Nmorn D-histidine Dhis L-N-methylphenylalanine Nmphe D-isoleucine Dile L-N-methylproline Nmpro D-leucine Dleu L-N-methylserine Nmser D-lysine Dlys L-N-methylthreonine Nmthr D-methionine Dmet L-N-methyltryptophan Nmtrp D-ornithine Dorn L-N-methyltyrosine Nmtyr D-phenylalanine Dphe L-N-methylvaline Nmval D-proline Dpro L-N-methylethylglycine Nmetg D-serine Dser L-N-methyl-t-butylglycine Nmtbug D-threonine Dthr L-norleucine Nle D-tryptophan Dtrp L-norvaline Nva D-tyrosine Dtyr α-methyl-aminoisobutyrate Maib D-valine Dval o-methyl-y-aminobutyrate Mgabu D-0-methylalanine Dmala o-methylcyclohexylalanine Mchexa D-α-methylarginine Dmarg α-methylcyclopentylalanine Mcpen D-α-methylasparagine Dmasn α-methyl-α-napthylalanine Manap D-α-methylaspartate Dmasp α-methylpenicillamine Mpen D-a-methylcysteine Dmcys N- (4-aminobutyl) glycine Nglu D-α-methylglutamine Dmgln N-(2-aminoethyl)g lycine Naeg D-α-methylhistidine Dmhis N-(3-aminopropyl)glycine Norn D-0-methylisoleucine Dmile N-amino-a-methylbutyrate Nmaabu D-o-methylleucine Dmleu o-napthylalanine Anap D-α-methyllysine Dmlys N-benzylglycine Nphe D-α-methylmethionine Dmmet N- (2-carbamylethyl) glycine Ngln D-α-methylornithine Dmorn N-(carbamylmethyl)glycine Nasn D-a-methylphenylalanine Dmphe N- (2-carboxyethyl) glycine Nglu D-a-methylproline Dmpro N-(carboxymethyl) glycine Nasp D-α-methdylserine Dmser N-cyclobutylglycine Ncbut D-a-methylthreonine Dmthr N-cycloheptylglycine Nchep D-α-methyltryptophan Dmtrp N-cyclohexylglycine Nchex D-a-methyltyrosine Dmty N-cyclodecylglycine Ncdec D-0-methylvaline Dmval N-cyclododeclglycine Ncdod D-α-methylalnine Dnmala N-cycloocytylglycine Ncoct D-a-methylarginine Dnmarg N-cyclopropylglycine Ncpro D-a-methylasparagine Dnmasn N-cycloundecylglycine Ncund D-α-methylsparatate Dnmasp N-(2,2-diphenylethyl) glycine Nbhm D-0-methylcysteineDnmcysN- (3, 3-diphenylpropyl) glycine Nbhe D-N-methylleucine Dnmleu N- (3-indolylyethyl) glycine Nhtrp D-N-methyllysine Dnmlys N-methyl-y-aminobutyrate Nmgabu N-methylcyclohexylalanine Nmchexa D-N-methylmethionine Dnmmet D-N-methylornithine Dnmorn N-methylcyclopentylalanine Nmcpen N-methylglycine Nala D-N-methylphenylalanine Dnmphe N-methylaminoisobutyrate Nmaib D-N-methylproline Dnmpro N-(1-methylpropyl)glycine Nile D-N-methylserine Dnmser N-(2-methylpropyl)glycine Nile D-N-methylserine Dnmser N- (2-methylpropyl) glycine Nleu D-N-methylthreonine Dnmthr D-N-methyltryptophan Dnmtrp N- (1-methylethyl) glycine Nva D-N-methyltyrosine Dnmtyr N-methyla-napthylalanine Nmanap D-N-methylvaline Dnmval N-methylpenicillamine Nmpen y-aminobutyric acid Gabu N- (p-hydroxyphenyl) glycine Nhtyr L-t-butylglycine Tbug N- (thiomethyl) lycine Ncys L-ethylglycine Et enicillamine Pen L-homophenylalanine Hphe L-0-methylalanine Mala L-a-methylarginine Marg L-0-methylasparagine Masn L-0-methylaspartate Masp L-a-methyl-t-butylglycine Mtbug L-a-methylcysteine Mcys L-methylethylglycine Metg L-α-methylglutamine Mgln L-α-methylglutamate Mglu L-α-methylhistidine Mhis L-α-methylhomo phenylalanine Mhphe L-a-methylisoleucine Mile N-(2-methylthioethyl) glycine Nmet D-N-methylglutamine Dnmgln N-(3-guanidinopropyl) glycine Narg D-N-methylglutamate Dnmglu N-(1-hydroxytethyl0glycine Nthr D-N-methylhistidine Dnmhis N-(hydroxyethyl0glycine Nser D-N-methylisoleucine Dnmile N-(imidazolylethyl)glycine Nhis D-N-methylleucine Dnmleu N-(3-indolylyethyl)glycine Nhtrp D-N-methyllysine Dnmlys N-methyl-γ-aminobutyrate Nmgabu N-methylcyclohexylalanine Nmchexa D-N-methylmetliionine Dnmmet D-N-methylomithine Dnmom N-methylcyclopentylalanine Nmcpen N-methylglycine Nala D-N-methylphenylalanine Dnmphe N-methylaminoisobutyrate Nmaib D-N-methylproline Dnmpro N-(1-methylpropyl)glycine Nile D-N-methylserine Dnmser N-(2-methylpropyl) glycine Nleu D-N-methylthreonine Dnmthr D-N-methyltryptophan Dnmtrp N- (1-methylethyl) glycine Nval D-N-methyltyrosine Dnmtyr N-methyla-napthylalanine Nmanap D-N-methylvaline Dnmval N-methylpenicillamine Nmpen y-aminobutyric acid Gabu N- (p-hydroxyphenyl) glycine Nhtyr L-t-butylglycine Tbug N- (thiomethyl) glycine Ncys L-ethylglycine Etg penicillamine Pen L-homophenylalanine Hphe L-a-methylalanine Mala L-a-methylarginine Marg L-a-methylasparagine Masn L-α-methylaspartate Masp L-α-methyl-t-butylglycine Mtbug L-0-methylcysteine Mcys L-methylethylglycine Metg L-α-methylglutamine Mgln L-α-methylglutamate Mglu L-O-methylhistidine Mhis L-a-methylhomophenylalanine Mhphe L-o-methylisoleucine Mile N-(2-methylthioethyl) glycine Nmet L-o-methylleucine Mleu. L-o-methyllysine Mlys L-a-methylmethionine Mmet L-a-methylnorleucine L-0-methylnorvaline Mnva L-0-methylomithine Mom L-0-methylphenylalanine Mphe L-a-methylproIine Mpro L-0-methylserine mser L-0-methylthreonine Mthr L-0-methylvaline Mtrp L-a-methyltyrosine L-0-methylleucine Mval Nnbhm L-N-methylhomophenylalanine Nmhphe N- (N- (2, 2-diphenylethyl) N- (N- (3, 3-diphenylpropyl) carbamylmethyl-glycine Nnbhm carbamylmethyl (1) glycine Nnbhe 1-carboxy-1-(2, 2-diphenyl Nmbc XXX XXX ethylamino) cyclopropane

According to a presently preferred embodiment of the invention, the antioxidant compound has the general formula: A---Yl---Cys---Y2---Cys---Y3---B wherein, Cys is a cysteine residue, A is the first hydrophobic or non-charged moiety; B is the second hydrophobic or non-charged moiety; Y1, Y2 and Y3 are each individually one or more amino acid residues in the range of 0-30, preferably 0-20, more preferably 0-10, most preferably 0-5,0-4,0-3,0-2 or 0-1 amino acid residues, with the provision that Yl, Y2 and Y3 collectively provide for at least two amino acid residues in the peptide.

A compound which has the above listed properties and which is hydrolyzable within a cell so as to generate a plurality of antioxidant species acting in concert is for example: A-Cys-Al-A2-Cys-B (SEQ ID NO : 2) wherein Al and A2 are amino acid residues. This tetra-peptide having hydrophobic or non-charged moieties (A and B) at the N and C terminals and which is an antioxidant by itself, is hydrolyzable in vivo to yield additional 14 antioxidant species, each having at least one cysteine residue, each of which is active in effecting antioxidation by virtue of the functional CH2-SH-group of the cysteine residue thereof: 1. A-Cys (SEQ ID NO : 3)

2. A-Cys-Al (SEQ ID NO : 4) 3. A-Cys-Al-A2 (SEQ ID NO : 5) 4. A-Cys-Al-A2-Cys (SEQ ID NO : 6) 5. Cys-Al-A2-Cys-B (SEQ ID NO : 7) 6. Al-A2-Cys-B (SEQ ID NO : 8) 7. A2-Cys-B (SEQ ID NO : 9) 8. Cys-B (SEQ ID NO: 10) 9. Cys-Al-A2-Cys (SEQ ID NO : 11) 10. Cys-Al-A2 (SEQ ID N0 : 12) 11. Cys-Al (SEQ ID NO : 13) 12. Cys (SEQ ID NO : 14) 13. Al-A2-Cys (SEQ ID NO : 15) 14. A2-Cys (SEQ ID NO : 16) A specific example of an A-Cys-Al-A2-Cys-B (SEQ ID NO : 2) tetrapeptide antioxidant compound is N-Acetyl Cysteine-Glycine-Proline-Cysteine-Amid (SEQ ID NO : 1), which compound is designated in the Examples section that follows as CB and has the following chemical structure: CH3CO-NH-CH (CH2SH) CO-NHCH2CO-N (CH2-CH2-CH2)-CO-NH-CH (CH2SH)-CO-NH2 Another compound which has the above listed properties and which is hydrolyzable within a cell so as to generate a plurality of antioxidant species acting in concert is for example the tripeptide having the general formula: A-Cys-Al-Cys-B (SEQ ID NO : 17) This tripeptide can be hydrolyzed in vivo to yield an additional 9 species, each having at least one cysteine residue which is active in effecting antioxidation by virtue of the functional CH2-SH-group thereof : 1. A-Cys (SEQ ID NO : 3) 2. A-Cys-Al (SEQ ID NO : 4) 3. A-Cys-Al-Cys (SEQ ID NO : 18) 4. Cys-Al-Cys-B (SEQ ID NO : 19)

5. Cys-Al-Cys (SEQ ID NO : 20) 6. Al-Cys (SEQ ID NO : 21) 7. Cys-Al (SEQ ID NO : 13) 8. Cys-B (SEQ ID NO : 10) 9. Cys (SEQ ID NO : 14) It will be appreciated in this respect that living cells include a repertoire of peptidases capable of hydrolyzing a peptide bond formed between any pair of amino acid residues in a peptide. Some peptidases are more specific than others, they may have different abundancy and subcellular distribution, so as to result in some antioxidant species being more represented than others in a certain cellular environment.

To successfully protect biological systems from oxidants, the antioxidant must have a higher reactivity for the oxidant than the biologic molecule which it seeks to protect. To protect the desired biologic system from oxidation, it is also necessary for the antioxidant to partition itself adjacent to the molecule to be protected. As an example, a molecule to be protected within the lipid bilayer of plasma, endosomal or nuclear membranes might be best protected by an antioxidant with, at least in part, a lipophilic structure, so that it is partitioned to or near the lipid portion of the membrane, adjacent to the molecule needing protection from oxidation.

The hydrophobic or non-charged moieties conjugated to the antioxidant peptides of the present invention can be of any type which will render the compound sufficiently hydrophobic or non-charged so as to penetrate into the cytoplasm via its membrane miscibility properties. The exact type will of course depend on the peptide itself, as some peptides are more hydrophobic or non-charged than others. For central nervous system and other applications the compound of the present invention should be designed sufficiently hydrophobic or non-charged so as to cross blood barriers, such as, BBB, blood retinal barrier and blood testis barrier.

In addition to peptidases, living cells are also characterized by a large repertoire of other hydrolases such as, but not limited to, esterases and amidases, which are effective in hydrolyzing the bonds between the hydrophobic or non-charged moieties A and/or B and the peptide in-between, so as to increase the repertoire of antioxidant species released inside the cell. This cleavage action has an additional effect. Removal of one or both of the hydrophobic or non-charged moieties results in decrease in the total hydrophobic or non-charged moiety of the antioxidant species thus generated and as a result, the formed species are advantageously trapped in the cells, so as to efficiently exert their antioxidant properties therein.

Thus, according to a preferred embodiment of the present invention cleavage of the first bond and/or the second bond which connect between the hydrophobic or non-charged moieties A and/or B by a cellular hydrolase results in loss of membrane miscibility, therefore the antioxidant species are trapped within the cell so as to exert their antioxidant activity.

Each of the first and second hydrophobic or non-charged moieties can independently be, for example, alkyl, aryl, alkene, arene or cholesteril having a backbone of 1-50 carbon atoms.

As used herein in the specification and in the claims section that follows, the term"alkyl"refers to a saturated aliphatic hydrocarbon group having a linear or branched backbone. Preferably, the alkyl has 1 to 20 carbon atoms in its backbone. Whenever a numerical range, e. g.,"1-20", is stated herein, it means that the group, in this case the alkyl group, may contain 1 carbon atom, 2 carbon atoms, 3 carbon atoms, etc., up to and including 20 carbon atoms. More preferably, the alkyl is a medium size alkyl having 1 to 10 carbon atoms. Most preferably, it is a lower alkyl having 1 to 4 carbon atoms. The alkyl group may be substituted or unsubstituted. When substituted, the substituent group can be, for example, cycloalkyl, aryl, heteroaryl, heteroalicyclic, hydroxy, alkoxy, aryloxy, thiohydroxy, thioalkoxy, thioa, cyano, halo, carbonyl, thiocarbonyl, 0-carbamyl, N-carbamyl, O-thiocarbamyl, N-thiocarbamyl, C-amido, N-amido,

C-carboxy, O-carboxy, nitro, sulfonamido, trihalomethanesulfonamido, silyl, guanyl, guanidino, ureido, amino or NRloRll, wherein RIO and Rll are each independently hydrogen, alkyl, cycloalkyl, aryl, carbonyl, sulfonyl, trihalomethysulfonyl and, combined, a five-or six-member heteroalicyclic ring.

A"cycloalkyl"group refers to an all-carbon monocyclic or fused ring (i. e., rings which share an adjacent pair of carbon atoms) group wherein, one of more of the rings does not have a completely conjugated pi-electron system.

Examples, without limitation, of cycloalkyl groups are cyclopropane, cyclobutane, cyclopentane, cyclopentene, cyclohexane, cyclohexadiene, cycloheptane, cycloheptatriene, and adamantane. A cycloalkyl group may be substituted or unsubstituted. When substituted, the substituent group can be, for example, alkyl, aryl, heteroaryl, heteroalicyclic, hydroxy, alkoxy, aryloxy, thiohydroxy, thioalkoxy, thioaryloxy, cyano, halo, carbonyl, thiocarbonyl, C-carboxy, O-carboxy, 0-carbamyl, N-carbamyl, C-amido, N-amido, nitro, amino and NR R as defined above.

An"alkenyl"group refers to an alkyl group which consists of at least two carbon atoms and at least one carbon-carbon triple bond.

An"aryl"group refers to an all-carbon monocyclic or fused-ring polycyclic (i. e., rings which share adjacent pairs of carbon atoms) groups having a completely conjugated pi-electron system. Examples, without limitation, of aryl groups are phenyl, naphthalenyl and anthracenyl. The aryl group may be substituted or unsubstituted. When substituted, the substituent group can be, for example, halo, trihalomethyl, alkyl, hydroxy, alkoxy, aryloxy, thiohydroxy, thiocarbonyl, C-carboxy, O-carboxy, 0-carbamyl, N-carbamyl, O-thiocarbamyl, N-thiocarbamyl, C-amido, N-amido, sulfinyl, sulfonyl, amino and NR as defined above.

A"heteroaryl"group refers to a monocyclic or fused ring (i. e., rings which share an adjacent pair of atoms) group having in the ring (s) one or more atoms, such as, for example, nitrogen, oxygen and sulfur and, in addition, having a completely conjugated pi-electron system. Examples, without limitation, of

heteroaryl groups include pyrrole, furane, thiophene, imidazole, oxazole, thiazole, pyrazole, pyridine, pyrimidine, quinoline, isoquinoline and purine. The heteroaryl group may be substituted or unsubstituted. When substituted, the substituent group can be, for example, alkyl, cycloalkyl, halo, trihalomethyl, hydroxy, alkoxy, aryloxy, thiohydroxy, thiocarbonyl, sulfonamido, C-carboxy, O-carboxy, sulfinyl, sulfonyl, 0-carbamyl, N-carbamyl, O-thiocarbamyl, N-thiocarbamyl, C-amido, N-amido, amino or NR1oRl 1 as defined above.

A"heteroalicyclic"group refers to a monocyclic or fused ring group having in the ring (s) one or more atoms such as nitrogen, oxygen and sulfur. The rings may also have one or more double bonds. However, the rings do not have a completely conjugated pi-electron system. The heteroalicyclic may be substituted or unsubstituted. When substituted, the substituted group can be, for example, alkyl, cycloalkyl, aryl, heteroaryl, halo, trihalomethyl, hydroxy, alkoxy, aryloxy, thiohydroxy, thioalkoxy, thioaryloxy, cyano, nitro, carbonyl, thiocarbonyl, C-carboxy, 0-carboxy, 0-carbamyl, N-carbamyl, O-thiocarbamyl, N-thiocarbamyl, sulfinyl, sulfonyl, C-amido, N-amido, amino and NRloR1 1 as defined above.

According to a presently most preferred embodiment of the present invention, each of the hydrophobic or non-charged moieties identified herein by A and B, is independently N-acetyl, tert butyl, iso propyl, n-butyl, n-pentyl, amide or ester.

A compound according to the present invention can be administered per se to an organism, such as a human being or any other mammal, or in a pharmaceutical composition where it is mixed with suitable carriers or excipients.

Thus, according to another aspect of the present invention there is provided a pharmaceutical composition for preventing or reducing oxidative stress, the composition comprising a pharmaceutically acceptable carrier and, as an active ingredient, an antioxidant compound as described hereinabove.

As used herein a"pharmaceutical composition"refers to a preparation of one or more of the compounds described herein, or physiologically acceptable salts or prodrugs thereof, with other chemical components such as physiologically suitable carriers and excipients. The purpose of a pharmaceutical composition is to facilitate administration of a compound to an organism.

Herein the term"excipient"refers to an inert substance added to a pharmaceutical composition to further facilitate administration of a compound.

Examples, without limitation, of excipients include calcium carbonate, calcium phosphate, various sugars and types of starch, cellulose derivatives, gelatin, vegetable oils and polyethylene glycols.

Pharmaceutical compositions may also include one or more additional active ingredients, such as, but not limited to, anti-inflammatory agents, antimicrobial agents, anesthetics in addition to the antioxidant compounds.

Pharmaceutical compositions of the present invention may be manufactured by processes well known in the art, e. g., by means of conventional mixing, dissolving, granulating, dragee-making, levigating, emulsifying, encapsulating, entrapping or lyophilizing processes.

Pharmaceutical compositions for use in accordance with the present invention thus may be formulated in conventional manner using one or more physiologically acceptable carriers comprising excipients and auxiliaries, which facilitate processing of the active compounds into preparations which can be used pharmaceutically. Proper formulation is dependent upon the route of administration chosen.

For injection, the compounds of the invention may be formulated in aqueous solutions, preferably in physiologically compatible buffers such as Hank's solution, Ringer's solution, or physiological saline buffer. For transmucosal administration, penetrants appropriate to the barrier to be permeated are used in the formulation. Such penetrants are generally known in the art.

For oral administration, the compounds can be formulated readily by combining the active compounds with pharmaceutically acceptable carriers well known in the art. Such carriers enable the compounds of the invention to be formulated as tablets, pills, dragees, capsules, liquids, gels, syrups, slurries, suspensions, and the like, for oral ingestion by a patient. Pharmacological preparations for oral use can be made using a solid excipient, optionally grinding the resulting mixture, and processing the mixture of granules, after adding suitable auxiliaries if desired, to obtain tablets or dragee cores. Suitable excipients are, in particular, fillers such as sugars, including lactose, sucrose, mannitol, or sorbitol; cellulose preparations such as, for example, maize starch, wheat starch, rice starch, potato starch, gelatin, gum tragacanth, methyl cellulose, hydroxypropylmethyl-cellulose, sodium carbomethylcellulose; and/or physiologically acceptable polymers such as polyvinylpyrrolidone (PVP). If desired, disintegrating agents may be added, such as cross-linked polyvinylpyrrolidone, agar, or alginic acid or a salt thereof such as sodium alginate.

Dragee cores are provided with suitable coatings. For this purpose, concentrated sugar solutions may be used which may optionally contain gum arabic, talc, polyvinyl pyrrolidone, carbopol gel, polyethylene glycol, titanium dioxide, lacquer solutions and suitable organic solvents or solvent mixtures.

Dyestuffs or pigments may be added to the tablets or dragee coatings for identification or to characterize different combinations of active compound doses.

Pharmaceutical compositions, which can be used orally, include push-fit capsules made of gelatin as well as soft, sealed capsules made of gelatin and a plasticizer, such as glycerol or sorbitol. The push-fit capsules may contain the active ingredients in admixture with filler such as lactose, binders such as starches, lubricants such as talc or magnesium stearate and, optionally, stabilizers. In soft capsules, the active compounds may be dissolved or suspended in suitable liquids, such as fatty oils, liquid paraffin, or liquid

polyethylene glycols. In addition, stabilizers may be added. All formulations for oral administration should be in dosages suitable for the chosen route of administration.

For buccal administration, the compositions may take the form of tablets or lozenges formulated in conventional manner.

For administration by inhalation, the compounds for use according to the present invention are conveniently delivered in the form of an aerosol spray presentation from a pressurized pack or a nebulizer with the use of a suitable propellant, e. g., dichlorodifluoromethane, trichlorofluoromethane, dichloro-tetrafluoroethane or carbon dioxide. In the case of a pressurized aerosol, the dosage unit may be determined by providing a valve to deliver a metered amount. Capsules and cartridges of, e. g., gelatin for use in an inhaler or insufflator may be formulated containing a powder mix of the compound and a suitable powder base such as lactose or starch.

Pharmaceutical compositions for parenteral administration include aqueous solutions of the active preparation in water-soluble form. Additionally, suspensions of the active compounds may be prepared as appropriate oily injection suspensions. Suitable lipophilic solvents or vehicles include fatty oils such as sesame oil, or synthetic fatty acids esters such as ethyl oleate, triglycerides or liposomes. Aqueous injection suspensions may contain substances, which increase the viscosity of the suspension, such as sodium carboxymethyl cellulose, sorbitol or dextran. Optionally, the suspension may also contain suitable stabilizers or agents which increase the solubility of the compounds to allow for the preparation of highly concentrated solutions.

Alternatively, the active ingredient may be in powder form for constitution with a suitable vehicle, e. g., sterile, pyrogen-free water, before use.

The compounds of the present invention may also be formulated in rectal compositions such as suppositories or retention enemas, using, e. g., conventional suppository bases such as cocoa butter or other glycerides.

The pharmaceutical compositions herein described may also comprise suitable solid of gel phase carriers or excipients. Examples of such carriers or excipients include, but are not limited to, calcium carbonate, calcium phosphate, various sugars, starches, cellulose derivatives, gelatin and polymers such as polyethylene glycols.

Pharmaceutical compositions suitable for use in context of the present invention include compositions wherein the active ingredients are contained in an amount effective to achieve the intended purpose. More specifically, a therapeutically effective amount means an amount of antioxidant preparation effective to prevent, alleviate or ameliorate symptoms of disease or prolong the survival of the subject being treated.

Determination of a therapeutically effective amount is well within the capability of those skilled in the art, especially in light of the detailed disclosure provided herein.

Toxicity and therapeutic efficacy of the compounds described herein can be determined by standard pharmaceutical procedures in cell cultures or experimental animals, e. g., by determining the IC50 and the LDso (lethal dose causing death in 50 % of the tested animals) for a subject compound. The data obtained from these cell culture assays and animal studies can be used in formulating a range of dosage for use in human. The dosage may vary depending upon the dosage form employed and the route of administration utilized. The exact formulation, route of administration and dosage can be chosen by the individual physician in view of the patient's condition. See e. g., (54).

Depending on the severity and responsiveness of the condition to be treated, dosing can also be a single administration of a slow release composition, with course of treatment lasting from several days to several weeks or until cure is effected or diminution of the disease state is achieved.

The amount of a composition to be administered will, of course, be dependent on the subject being treated, the severity of the affliction, the manner of administration, the judgment of the prescribing physician, etc.

The present invention can be used to treat any one of a plurality of diseases, disorders or conditions associated with the formation of oxidative stress.

As used herein, the tenn"treat"include substantially inhibiting, slowing or reversing the progression of a disease, disorder or condition, substantially ameliorating clinical symptoms of a disease disorder or condition, or substantially preventing the appearance of clinical symptoms of a disease, disorder or condition.

The compounds of the present invention can be used to treat non-central nervous system disorders such as rheumatoid arthritis, cataract, Down syndrome, cystic fibrosis, diabetes, acute respiratory distress syndrome, asthma, post-surgical neurological dysfunction, amyotrophic lateral sclerosis, atherosclerotic cardiovascular disease, hypertension, post-operative restenosis, pathogenic vascular smooth muscle cell proliferation, pathogenic intra-vascular macrophage adhesion, pathogenic platelet activation, pathogenic lipid peroxidation, myocarditis, stroke, multiple organ dysfunction, complication resulting from inflammatory processes, AIDS, cancer, aging, bacterial infection, sepsis; viral disease, such as AIDS, hepatitis C, an influenza and a neurological viral disease, all of which were previously shown to be associated with the formation and/or overproduction of oxidants and habits resulting in oxidative stress, such as, but not limited to, smoking, sun tanning, cancer treatment, radiation cocaine consumption and morphine consumption.

The compounds of the present invention can also be used to treat a central nervous system disorder characterized by oxidative stress, such as, neurodegenerative disorders, Parkinson's disease, Alzheimer's disease, Creutzfeldt-Jakob disease, cerebral ischemia, multiple sclerosis, degenerative diseases of the basal ganglia, motoneuron diseases, scrapies, spongiform

encephalopathy, neurological viral diseases, motoneuron diseases, post-surgical neurological dysfunction and loss or memory impairment, all of which were previously shown to be associated with the formation and/or overproduction of oxidants and habits resulting in oxidative stress, such as, but not limited to, smoking, sun tanning, cancer treatment, radiation cocaine consumption and morphine consumption.

Additional objects, advantages, and novel features of the present invention will become apparent to one ordinarily skilled in the art upon examination of the following examples, which are not intended to be limiting. Additionally, each of the various embodiments and aspects of the present invention as delineated hereinabove and as claimed in the claims section below finds experimental support in the following examples.

EXAMPLES Reference is now made to the following examples, which together with the above descriptions, illustrate the invention in a non limiting fashion.

EXAMPLE 1 Synthesis of N-Acetyl Cysteine-Glycine-Proline-Cysteine-Amid The synthesis of N-Acetyl Cysteine-Glycine-Proline-Cysteine-Amid (CB, SEQ ID NO : 1) having the chemical structure of : CH3CO-NH-CH(CH2SH) CO-NHCH2CO-N (CH2-CH2-CH2) CH-CO-NH-CH (CH2SH)-CO-NH2 (molecular weight of 406) is described herein.

Synthesis : CB was prepared by solid phase synthesis of peptides according to published protocols. The synthesis was carried out according to Fastmoc 0.25 mmol modules in a peptide synthesizer Model 433A (Applied Biosystems) according to the User's manual.

In particular, 9-fluorenylmethoxycarbonyl (Fmoc) amino acid (1 mmol) was dissolved and activated in the cartridge in a mixture of 3.0 g of 0.45 M 2- (lH-benzoltriazol-1-yl)-1, 1, 3,3-tetramethyluronium hexafluorophosphate (HBTU/HOBt) in DMF, 2 M Diisopropyethylamine (DIEA) and 0.8 ml

N-methyl-pyrrolidone (NMP). De-protection was carried out in 22 % piperidine solution in NMP. All steps were carried out under nitrogen.

De-protection : The resin was de-protected as follows: Fmoc-Benzhydrylamine resin (368 mg; 0.25 mmol) was stirred in N-methyl pyrrolidone (7 ml). De-protection was carried out by washing the resin with 22 % piperidine/NMP solution for 2 minutes. The solvents were removed and the resin was subjected to a second treatment with 22 % piperidine/NMP for 7.6 minutes. Then, the resin was washed 6 times with DCM, followed by 4 washes in NMP.

Step 1 : Fmoc-trityl cysteine (0.454g) was reacted for 6 min in NMP (2 g) together with 0.9 mmol of 0. 45M HPTU/HOBt in DMF (2 g). De-protection was carried out as outlined above.

Step 2 : Fmoc-proline (0.478 g) was reacted for 6 min in NMP (2 g) together with 0.9 mmol of 0.45 M HPTU/HOBt in DMF (2 g). De-protection was carried out as outlined above.

Step 3 : Fmoc-glycine (0.493 mg) was reacted for 6 min in NMP (2 g) together with 0.9 mmol of 0.45 HPTU/HOBt in DMF (2 g). De-protection was carried out as outlined above.

Step 4 : Fmoc-trityl cysteine (0.454 g) was reacted for 6 min in NMP (2 g) together with 0.9 mmol of 0.4 5M HPTU/HOBt in DMF (2 g). De-protection was carried out as outlined above.

Step 5 : Acetic anhydride (0.534 g) was reacted 6 min in NMP (2 g) together with 0.9 mmol of 0. 45M HPTU/HOBt in DMF (2 g).

Step 6 : The resin was mixed using a vortex with 95 % TFA/2.5 % DDW/2.5% triisopropyl silane for 10 min at 40 °C and 2 hours at room temperature. The mixed resin was filtered and the resulting peptide was precipitated with cold ether. The precipitate was washed 4 times with cold ether, next 10 % acetic acid was added followed by lyophilization.

The yield of the above synthesis was 80 mg of the CB molecule.

Analysis : The product of the above synthesis was analyzed by HPLC.

The HPLC profile of the purified CB compound is presented in Figure 1. Mass spectra of CB is 419.9. Amino acid data: is Gly-retention time of 13.35 min; 401.023 nmol/ml; Pro-retention time of 20.83 min; 402.56 nmole/ml ; Cys- degraded.

EXAMPLE 2 InAlibiion of JN19 (c-Jun NH2-termiBlal kinase) and p38 enzymes In order to show the efficacy of CB against a stimulant that activates oxidative stress, an inhibition assay of both JNK (c-Jun NH2-terminal kinase) and p38 enzymes in tissue culture was perfonned.

NIH3T3 cells overexpressing EGF receptor (DHER14 cells) (55) were exposed to cisplatin (CDDP, 30 uM) which activates specific enzymes involved in apoptosis including JNK and p38.

As shown in Figure 2, JNK or p38 were detected by specific antibodies essentially as previously described (6). In the presence of increasing concentrations of CB, a dramatic reduction in the phosphrylated form of either p38 or JNK enzymes was obtained. In the presence of 20 p. M CB, phosphorylated p38 and JNK enzymes were not detected at all. Two known antioxidants were used as positive controls, NOXi (at 300 and 1000 1M) and NAC (NAC) (at 1000 uM). The efficacy of CB at 20 uM was similar to that obtained by the addition of 1 mM of N-acetyl cysteine.

EXAMPLE 3 Inhibition of ROS production The concentration of reactive oxygen species (ROS) in DHER14 cells following administration of antioxidants was determined using the ROS sensitive fluorescent dye DHDCF (fluoresceine derivative). As shown in Figure 3, reduction of ROS below normal levels was prominent in the presence of 20 uM of CB. Two known antioxidants were used as control, NOXi (at 1000 uM) and NAC (NAC) (at 1000 pM). The efficacy of CB in reducing ROS was about-50 fold better then these two known antioxidants. Thus, at 20 µM CB was as efficient as 1000 µM NAC or 1000 µM NOXi.

REFERENCES CITED 1. D'Angio CT, Finkelstein JN. Oxygen regulation of gene expression: a study in opposites. Mol Genet Metab 2000 Sep-Oct ; 71 (1-2) : 371-80.

(1996).

2. Schoonbroodt S, Piette J. (2000) Oxidative stress interference with the nuclear factor-kappa B activation pathways. Biochem Pharmacol 60 (8): 1075-83.

3. Buttke TM, Sandstrom PA. Oxidative stress as a mediator of apoptosis. Immunol Today 1994 Jan; 15 (l) : 7-10.

4. Jacobson MD. Reactive oxygen species and programmed cell death. Trends Biochem Sci 1996 Mar; 21 (3): 83-6.

5. Tourier C, Hess P, Yang DD, Xu J, Turner TK, Nimnual A, Bar-Sagi D, Jones SN, Flavell RA, Davis RJ. Requirement of JNK for stress-induced activation of the cytochrome c-mediated death pathway. Science 2000 May 5; 288 (5467): 870-4.

6. Saitoh M, Nishitoh H, Fujii M, Takeda K, Tobiume K, Sawada Y, Kawabata M, Miyazono K, Ichijo H. Mammalian thioredoxin is a direct inhibitor of apoptosis signal-regulating kinase (ASK) 1. EMBO J. 1998 17,: 2596-606.

7. Craig. C. Transcend therapeutics takes flight against oxidative stress public. BioWorld Today. Aug. 27,1996, pp. 1-2.

8. Jenner, O. Oxidative damage in neurodengenerative disease.

Lancet, 344,796-798 (1994).

9. Olanow, C. W. A. radical hypothesis for neurodegeneration.

Trends. Neurol. Soc. 16,439-444 (1993).

10. Jones DC, Gunasekar PG, Borowitz JL, Isom GE.

Dopamine-induced apoptosis is mediated by oxidative stress and is enhanced by cyanide in differentiated PC12 cells. J Neurochem 74,2296-2304 (2000).

11. Olanow, C. W. Oxidation reactions in Parkinson's disease.

Neurology 40,32-37 (1990).

12. Fahn S. & Cohen, G. The oxidant stress hypothesis in Parkinson's disease: evidence supporting it. Ann Neurol. 32,804-812 (1992).

13. Nunomura A, Perry G, Hirai K, Aliev G, Takeda A, Chiba S, Smith MA. Neuronal RNA oxidation in Alzheimer's disease and Down's syndrome.

Ann N Y Acad Sci. 893,362-4. (1999a).

14. Nunomura A, Perry G, Pappolla MA, Wade R, Hirai K, Chiba S, Smith MA. RNA oxidation is a prominent feature of vulnerable neurons in Alzheimer's disease. J Neurosci. 19,1959-1964 (1999b).

15. Thomas, T., Thomas, G. M., McLendon, C., Sutton, T. & Mullan, M. ß-Amyloid-mediated vasoactivity and vascular endothelial damage. Nature 380,168-171 (1996).

16. Brown, D. R., Schmidt, B. & Kretzschmar, H. A. Role of microglia and host prion protein in neurotoxicity of a prion protein fragment. Nature 380, 345-347 17. Mann CL, Davies MB, Boggild MD, Alldersea J, Fryer A, Jones PW, Ko Ko C, Young C, Strange RC, Hawkins CP. Glutathione S-transferase polymorphisms in MS: their relationship to disability. Neurology 54,552-557 (2000) 18. Cafe, C., Torri, C., Betorelli, L., Angeretti, N., Luccan E., Forloni, G., & Marzatico, F., Oxidative stress after acute and chronic application of b-amyloid fragment 25-35 in cortical cultures. Neuroscience Letts. 203,61-65 (1996).

19. Raina AK, Takeda A, Nunomura A, Perry G, Smith MA. Genetic evidence for oxidative stress in Alzheimer's disease. Neuroreport. 10, 1355-1357 (1999).

20. Rottkamp CA, Nunomura A, Raina AK, Sayre LM, Perry G, Smith MA Oxidative stress, antioxidants, and Alzheimer disease. Alzheimer Dis Assoc Disord 14 Suppl 1 : S62-6 (2000).

21. Penkowa M, Hidalgo J. (2001) Metallothionein treatment reduces proinflammatory cytokines IL-6 and TNF-a and apoptotic cell death during experimental autoimmune encephalomyelitis (EAE). Exp Neurol. 170 (1) : 1-14.

22. Espejo C, Carrasco J, Hidalgo J, Penkowa M, Garcia A, Saez-Torres I, Martinez-Caceres EM. (2001) Differential expression of metallothioneins in the CNS of mice with experimental autoimmuneencephalomyelitis. Neuroscience. 105 (4): 1055-65.

23. Liu Y, Zhu B, Luo L, Li P, Paty DW, Cynader MS (2001a) Heme oxygenase-1 plays an important protective role in experimentalautoimmune encephalomyelitis. Neuroreport ; 12 (9): 1841-5 24. Peiro C, Lafuente N, Matesanz N, Cercas E, Llergo JL, Vallejo S, Rodriguez-Manas L, Sanchez-Ferrer CF. (2001) High glucose induces cell death of cultured human aortic smooth muscle cells through the formation of hydrogen peroxide. Br JPharmacol 133 (7): 967-974.

25. Kowluru RA, Tang J, Kern TS. (2001) Abnormalities of retinal metabolism in diabetes and experimental galactosemia. VII. Effect of long-term administration of antioxidants on the development of retinopathy. Diabetes 50 (8): 1938-42 26. Coppey LJ, Gellett JS, Davidson EP, Dunlap JA, Lund DD, Yorek MA. (2001) Effect of antioxidant treatment of streptozotocin-induced diabetic rats on endoneurial blood flow, motor nerve conduction velocity, and vascular reactivity of epineurial arterioles of the sciatic nerve. Diabetes 50 (8): 1927-37.

27. Harding J. (1991) In Cataract. Biochemistry, epidemiology and Pharmacology. Pp. 125-217 Chapman &Hall Lomdom UK.

28. Dudek EJ, Shang F, Taylor A. (2001). H202-mediated oxidative stress activates NF-kappaB in lens epithelial cells. Free Radic Biol Med. Sep 1; 31 (5): 651-8.

29. Akaike T (2001) Role of free radicals in viral pathogenesis and mutation are key molecules in the pathogenesis of various infectious diseases.

Rev Med Virol Mar-Apr ; 11 (2): 87-101 30. Lin C, Zimmer SG, Lu Z, Holland RE Jr, Dong Q, Chambers TM (2001) The involvement of a stress-activated pathway in equine influenza virus-mediated apoptosis. Virology Aug 15; 287 (1) : 202-13 31. Gong G, Waris G, Tanveer R, Siddiqui A. (2001) Human hepatitis C virus NS5A protein alters intracellular calcium levels, induces oxidative stress, and activates STAT-3 and NF-kappa B. Proc Natl 4cad Sci U S A 98 (17): 9599-604.

32. Goto T, Baba T, Honma K, Shibata Y, Arai Y, Uozumi H, Okuda T. (2001) Magnetic resonance imaging findings and postoperative neurologic dysfunction in elderly patients undergoing coronary artery bypass grafting. Ann Thorac Surg. 72 (1) : 137-42.

33. Khan NE, De Souza AC, Pepper JR. (2001) S100 protein: its use as a marker of cerebral damage in cardiac operations. Ann Thorac Surg.

72 (2): 666-7.

34. Reid KH, Li GY, Payne RS, Schurr A, Cooper NG. (2001). The mRNA level of the potassium-chloride cotransporter KCC2 covaries with seizure susceptibility in inferior colliculus of the post-ischemic audiogenic seizure-prone rat. Neurosci Lett. 308 (1) : 29-32.

35. Maulik N, Yoshida T. (2000) Oxidative stress developed during open heart surgery induces apoptosis: reductionof apoptotic cell death by ebselen, a glutathione peroxidase mimic. J Cardiovasc Pharmacol ; 36 (5): 601-8 36. Maytin M, Leopold J, Loscalzo J. (1999) Oxidant stress in the vasculature. Curr Atheroscler Rep 1 (2): 156-64.

37. Wagberg M, Jansson AH, Westerlund C, Ostlund-Lindqvist AM, Sarnstrand B, Bergstrand H, Pettersson K. (2001) N, n'-diacetyl-l-cystine (dinac), the disulphide dimer of NAC, inhibits atherosclerosis in whhl rabbits: evidence for immunomodulatory agents as a new approach to prevent atherosclerosis. J Pharmacol Exp Ther 299 (1) : 76-82.

38. Cui J, Liu PK. (2001) Neuronal NOS Inhibitor That Reduces Oxidative DNA Lesions and Neuronal Sensitivity Increases the Expression of Intact c-fos Transcripts after Brain Injury. JBiomed Sci. 8 (4): 336-41.

39. Sinha J, Das N, Basu MK. (2001) Liposomal antioxidants in combating ischemia-reperfusion injury in rat brain. Biomed Pharmacother ; 55 (5): 264-71.

40. Liu PK, Grossman RG, Hsu CY, Robertson CS. (2001b) Ischemic injury and faulty gene transcripts in the brain. Trends Neurosci24 (10): 581-8 41. Crack PJ, Taylor JM, Flentjar NJ, de Haan J, Hertzog P, Iannello RC, Kola I. (2001) Increased infarct size and exacerbated apoptosis in the glutathione peroxidase-1 (Gpx-1) knockout mouse brain in response to ischemia/reperfusion injury. JNeurochem. 78 (6): 1389-99.

42. Fleshner NE, Klotz LH. Diet, androgens, oxidative stress and prostate cancer susceptibility. Cancer Metastasis Rev 1998-99; 17 (4): 325-30.

43. The Parkinson Study Group. Effects of tocopherol and deprenyl on the progression of disability in early Parkinson's disease. N. Eng. J. Med. 328, 176-183 (1993).

44. Offen, D., Ziv, I., Srernin, H., Melamed, E. and Hochman, A.

Prevention of dopamine-induced cell death by thiol-antioxidants: Possible implications for treatment of Parkinson's disease. Exptt. Neurol., 141,32-39 (1996).

45. Atlas D., Melamed E. and Ofen D. Brain targeted low molecular weight hydrophobic antioxidant compounds. 1999. U. S. Pat. No. 5,874,468.

46. Watanabe T, Pakala R, Katagiri T, Benedict CR. (2001) Lipid peroxidation product 4-hydroxy-2-nonenal acts synergistically with serotonin in inducing vascular smooth muscle cell proliferation.

Atherosclerosis155 (1) : 37-44.

47. Pettersen RJ, Kuiper KK, Froyland L, Berge RK, Nordrehaug JE.

(2001). Long-term retention of a novel antioxidant sulphur-substituted fatty acid analogue after local delivery in porcine coronary arteries. Scand Cardiovasc J. ; 35 (2): 101-6.

48. Bundy, G.-L., Ayer, D. E., Banitt, L. S., Belonga, K. L., Mizsak, S.

A., Palmer, J. R., Tustin, J. M., Chin, J. E., Hall, E. D., Linseman, K. L., et al.

Synthesis of novel 2,4-diaminopyrrolo- [2,3-d] pyrimidines with antioxidant, neuroprotective, and anti asthma activity. J Med Chem. 38, 4161-3 (1995).

49. Kim GW, Lewen A, Copin J, Watson BD, Chan PH. (2001) The cytosolic antioxidant, copper/zinc superoxide dismutase, attenuates blood-brain barrier disruption and oxidative cellular injury after photothrombotic cortical ischemia in mice. Neuroscience. 105 (4): 1007-1018.

50. Yang GY, Pang L, Ge HL, Tan M, Ye W, Liu XH, Huang FP, Wu DC, Che XM, Song Y, Wen R, Sun Y. (2001) Attenuation of ischemia-induced mouse brain injury by SAG, a redox-inducible antioxidant protein. J Cereb Blood Flow Metab. 21 (6): 722-33.

51. Kosano H, Watanabe H, Nishigori H. (2001) Suppressive effects of thyroxine on glucocorticoid (gc)-induced metabolic changes and cataract formation on developing chick embryos. Exp Eye Res. 72 (6): 643-8.

52. Keles MS, Taysi S, Sen N, Aksoy H, Akcay F. Effect of corticosteroid therapy on serum and CSF malondialdehyde and antioxidant proteins in multiple sclerosis. Can J Neurol Sci 2001 May; 28 (2): 141-3.

53. Quantitative Drug Design, C. A. Ramsden Gd., Chapter 17.2, F.

Choplin Pergamon Press (1992).

54. Fingl, et al., 1975, in"The Pharmacological Basis of Therapeutics", Ch. 1 p. l.

55. Dull TJ, Lax I, Schlessinger J, Ullrich A. HER2 cytoplasmic domain generates normal mitogenic andtransforming signals in a chimeric receptor. EMBO J. (1989) 8167-73.